WorldWideScience

Sample records for bcc metal oriented

  1. Equation of state and thermodynamic properties of BCC metals

    Directory of Open Access Journals (Sweden)

    Vu Van Hung, N.T. Hoa

    2017-10-01

    Full Text Available The moment method in statistical dynamics is used to study the equation of state and thermodynamic properties of the bcc metals taking into account the anharmonicity effects of the lattice vibrations and hydrostatic pressures. The explicit expressions of the lattice constant, thermal expansion  oefficient, and the specific heats of the bcc metals are derived within the fourth order moment approximation. The termodynamic quantities of W, Nb, Fe,and Ta metals are calculated as a function of the pressure, and they are in good agreement with the corresponding results obtained from the first principles calculations and experimental results. The effective pair potentials work well for the calculations of bcc metals.

  2. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  3. The role of edge dislocations in the deformation of BCC metals

    International Nuclear Information System (INIS)

    Lung, C.W.

    1994-08-01

    It was widely accepted that the screw dislocation is responsible for the strong temperature dependence of the yield stresses observed in bcc metals. In this paper, we show the role of edge dislocations in the deformation of bcc metals and point out that in some cases, its main contribution to the yield stress cannot be ignored. (author). 15 refs, 2 figs, 1 tab

  4. Neutron spectroscopy of fast hydrogen diffusion in BCC transition metals

    International Nuclear Information System (INIS)

    Richter, D.; Lottner, V.

    1979-01-01

    Quasielastic neutron scattering reveals microscopic details of both the time and space development of the H-diffusion process on an atomic scale. After outlining the method on the example of PdH/sub x/, new results on the jump geometry in bcc metals are surveyed. In particular, the anomalous diffusion behavior of H in Nb, Ta, and V at elevated temperature is emphasized, where correlated jump processes are important. The influence of impurities on the H-diffusion process is demonstrated by experiments performed on NbH/sub x/ doped with nitrogen impurities, which act as trapping centers for the diffusing hydrogen. The results are discussed in terms of a two-state random walk model which includes multiple trapping and detrapping processes. The concentration and temperature dependence of the capture and escape rates of traps are obtained

  5. Comparison of interface structure of BCC metallic (Fe, V and Nb) films on MgO (100) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.L. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Zhang, L.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 (China); Fu, E.G., E-mail: efu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Ding, X., E-mail: dingxd@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 (China); Yu, K.Y., E-mail: kyyu@cup.edu.cn [Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Y.G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, Y.Q.; Baldwin, J.K. [Experimental Physical Sciences Directorate, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Wang, X.J. [State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871 (China); Xu, P. [Department of Chemistry, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)

    2017-07-15

    Highlights: • The difference of BCC metal/MgO(100) interface configuration with various lattice mismatches is identified by experiments and simulations in terms of dislocations and work of separation. • The strength of bonds along interface is found to be the fundamental factor to determine the interface configurations between BCC metal and MgO substrate. • The combination of experiments and simulations shows that the O-atop model is the actual match type between BCC metal and MgO substrate. - Abstract: This study systematically investigates the interface structure of three body-centered-cubic (BCC) metallic (Fe, V and Nb) films grown on MgO(100) substrates through experiments and simulations. Orientation relationships of their interfaces with the different lattice mismatches exhibit cube-on-cube configurations. The misfit dislocations at these three interfaces exhibit different characteristics. High resolution TEM (HRTEM), combined with first principle calculations, demonstrates the O-atop match type between metal atoms and MgO substrates for the first time. The fundamental mechanism in determining the interface configuration is discussed in terms of the work of separation and delocalization of atomic charge density.

  6. Hydrogen diffusion and trapping in bcc and fcc metals

    International Nuclear Information System (INIS)

    Richter, D.

    1979-01-01

    The fundamental aspects of the metal--hydrogen systems are described. The large number of anomalous properties are the reason for continuous scientific effort. The time scale of hydrogen motion is extremely short. The characteristic frequencies of the localized modes of hydrogen in Ta, Nb, or V are in the order of 10 -14 sec (energies between 0.1 to 0.2 eV); the jump frequencies for H-diffusion at elevated temperatures in those systems are between 10 +12 to 10 +13 sec -1 . They are comparable with the correlation times for diffusion in liquids and more than ten orders of magnitude larger than the jump times for nitrogen in Nb. Out of the large number of experimental data this paper will survey only some recent results on representative fcc and bcc metals for dilute H solutions. The nature of the elementary step in H-diffusion is described. Here the temperature and isotope dependence of the H-diffusion coefficient gives hints to the mechanism involved. The experimental results are discussed in terms of semiclassical and quantum mechanical diffusion theories

  7. Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron

    Science.gov (United States)

    Fikar, Jan; Gröger, Roman; Schäublin, Robin

    2017-12-01

    The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.

  8. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals

    Science.gov (United States)

    Dudarev, S. L.; Ma, Pui-Wai

    2018-03-01

    Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a orientation of the defect.

  9. Solid-liquid interface free energies of pure bcc metals and B2 phases

    Science.gov (United States)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  10. Ab initio theory of noble gas atoms in bcc transition metals.

    Science.gov (United States)

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  11. Investigation of irradiation strengthening of bcc metals and their alloys. Progress report, January 1977--October 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Progress is reported in the areas of (a) the effect of neutron damage on the dislocation kinetics in bcc metals and their alloys, and (b) the effect of 3 He on the deformation characteristics of body centered cubic metals and their alloys. Results obtained from these projects are discussed

  12. Strain ordering in BCC metals and the associated anelasticity

    International Nuclear Information System (INIS)

    Dattagupta, S.; Ranganathan, R.; Balakrishnan, R.

    1982-01-01

    The BCC to BCT transformation is thought to occur as a consequence of strain ordering due to the interaction between impurity interstitials. A Hamiltonian is given, which involves the interaction energies between the strain fields of the interstitials belonging to three distinct sublattices. In the BCT phase, one of the sublattices is preferentially occupied. The free energy of the system is calculated in the mean field approximation. In this, the BCC to BCT transformation is found to be a first-order transition at a temperature Tsub(p) that is proportional to the concentration of the interstitials and certain basic interaction parameters. The anelastic behaviour of the interacting interstitials is then studied in the region T > Tsub(p). From the anelastic strain, which is proportional to the order parameter associated with the phase transition, the static compliance is obtained. The latter obeys a Curie-Weiss type of law. The creep function, which determines the response to a constant applied stress, is found to exhibit viscous behaviour near Tsub(p). From the creep function, the frequency-dependent compliance and the internal friction are evaluated. The results predict a shift and a broadening of the internal friction peak as Tsub(p) is approached from above. The features show qualitative resemblance with the recent data on Ta-O. (author)

  13. Kinetics of self-interstitial migration in bcc and fcc transition metals

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  14. Simulation of He embrittlement at grain boundaries in bcc transition metals

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-01-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  15. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Suzudo, Tomoaki, E-mail: suzudo.tomoaki@jaea.go.jp; Yamaguchi, Masatake

    2015-10-15

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  16. Vibrational properties of vacancy in bcc transition metals using ...

    Indian Academy of Sciences (India)

    The calculated results of the formation entropy of the vacancy compared well with other available ... for Fe, Mo and W transition metals employing a third-neighbour model. ... For the atomic electron density we have chosen a power law: f (r) = fe.

  17. Optical properties of bcc d-transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillova, M M; Nomerovannaya, L V [AN SSSR, Sverdlovsk. Inst. Fiziki Metallov

    1978-04-01

    The optical properties of a niobium monocrystal in the spectral range of h..nu..=4.66 - 0.069 eV have been studied using the polarimetry method. The obtained results have been discussed on the basis of the zone calculations of the density of electron states for Nb and other isostructural metals of the 5 and 6 groups (Y, Ta, Cr, Mo, W). The existence of an intense low energy interband absorption in niobium in the range of h..nu..<0.1 eV is shown experimentally. The influence of the gapless and low-energy interzone transitions on the evaluations of the plasma and relaxation frequencies of conductivity electrons of d metals is discussed.

  18. Low temperature irradiation effects on plastic deformation in BCC metals

    International Nuclear Information System (INIS)

    Aono, Yasuhisa

    1984-01-01

    Low temperature electron beam experiment was carried out on high purity iron and molybdenum single crystals, and its effect on the plastic deformation was examined. As the characteristics of the irradiated iron below 77 K, remarkable softening occurred in all orientations. This phenomenon is based on the interaction of self interstitial atoms and screw dislocations, and the other features such as the absorption of interstitial atoms into screw dislocations and the slip on maximum shearing stress planes were shown. On the other hand, the aggregate of interstitial atoms formed by annealing showed the different plastic characteristics from those of interstitial atoms, and gave the results corresponding to respective stages of the electric resistance recovery curves. Regarding molybdenum, the transfer of its self interstitial atoms is near 40 K, therefore at 77 K, cluster is formed, and it largely affects abnormal slip, which is one of the features of the plasticity of molybdenum. The peculiar dependence of the yield stress on the crystalline orientation was shown. The property of the interaction of the aggregate of interstitial atoms formed and grown by the annealing from 77 K to 500 K with dislocations corresponded to the information of defects obtained by the X-ray research of Maeta, and the similarity to the aggregate of iron was observed. (Kako, I.)

  19. Study of microplasticity of bcc metals by quasirelaxation method

    International Nuclear Information System (INIS)

    Ermishkin, V.A.; Plastinin, V.M.

    1977-01-01

    The microplasticity of single crystals of tungsten of orientation and of polycrystalline wire samples of molybdenum and of a tungsten-rhenium alloy has been investigated by a new method of quasi-relaxation at room temperature. It is shown that the micro-yield limit values determined by mechanostatic hysteresis and by least quasi-relaxation stress methods agree well one with another and for W lie, in the range between 0.25 and 0.35 kg/mm 2 . A formula, based on model assumptions of the mechanism of plastic deformation, is derived to describe the deformation curve in the micro-yield range. It has been established that the micro-yield limit is not a characteristic of the material proper, as it varies as a function of the base of the tests

  20. Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling

    International Nuclear Information System (INIS)

    Osetsky, Yu.N.; Bacon, D.J.

    2005-01-01

    Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects

  1. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Final technical report

    International Nuclear Information System (INIS)

    Moss, S.C.

    1984-04-01

    Research was conducted on the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals with emphasis on V and Nb. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction was used, with neutron scattering providing useful corollary data. One objective was to determine the phase relations, solid solution structures and phase transitions in metal-hydride alloys which depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties (as in critical wetting) which are revealed in structural studies. Crystals were supplied for positron annihilation studies of the Fermi surface of H-Ta alloys which have revealed significant electronic trends. Work on alkali-graphite intercalates was initiated

  2. Thermodynamic properties of bcc crystals at high temperatures: The transition metals

    International Nuclear Information System (INIS)

    MacDonald, R.A.; Shukla, R.C.

    1985-01-01

    The second-neighbor central-force model of a bcc crystal, previously used in lowest-order anharmonic perturbation theory to calculate the thermodynamic properties of the alkali metals, is here applied to the transition metals V, Nb, Ta, Mo, and W. The limitations of the model are apparent in the thermal-expansion results, which fall away from the experimental trend above about 1800 K. The specific heat similarly fails to exhibit the sharp rise that is observed at higher temperatures. A static treatment of vacancies cannot account for the difference between theory and experiment. The electrons have been taken into account by using a model that specifically includes d-band effects in the electron ground-state energy. The results thus obtained for the bulk moduli are quite satisfactory. In the light of these results, we discuss the prerequisites for a better treatment of metals when the electrons play an important role in determining the thermodynamic properties

  3. Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics, Geology, and Engineering Technology (United States)

    2016-12-15

    With the aim of developing a transferable potential set capable of predicting defect formation, defect association, and diffusion properties in a wide range of intermetallic compounds, the present study was undertaken to test parameterization strategies for determining empirical pair-wise interaction parameters in the modified embedded atom method (MEAM) developed by Baskes and coworkers. This report focuses on indium-solute and indium-vacancy interactions in FCC and BCC metals, for which a large set of experimental data obtained from perturbed angular correlation measurements is available for comparison. Simulation results were found to be in good agreement with experimental values after model parameters had been adjusted to reproduce as best as possible the following two sets of quantities: (1) lattice parameters, formation enthalpies, and bulk moduli of hypothetical equiatomic compounds with the NaCl crystal structure determined using density functional theory and (2) dilute solution enthalpies in metals as predicted by Miedema’s semi-empirical model.

  4. Calculation of elastic constants of BCC transition metals: tight-binding recursion method

    International Nuclear Information System (INIS)

    Masuda, K.; Hamada, N.; Terakura, K.

    1984-01-01

    The elastic constants of BCC transition metals (Fe, Nb, Mo and W) are calculated by using the tight-binding d band and the Born-Mayer repulsive potential. Introducing a small distortion characteristic to C 44 (or C') elastic deformation and calculating the energy change up to second order in the atomic displacement, the shear elastic constants C 44 and C' are determined. The elastic constants C 11 and C 12 are then calculated by using the relations B=1/3(C 11 + 2C 12 ) and C'=1/2(C 11 -C 12 ), where B is the bulk modulus. In general, the agreement between the present results and the experimental values is satisfactory. The characteristic elasticity behaviour, i.e. the strong Nsub(d) (number of d electrons) dependence of the observed anisotropy factor A=C 44 /C', will also be discussed. (author)

  5. Nuclear spin relaxation due to hydrogen diffusion in b.c.c. metals

    International Nuclear Information System (INIS)

    Faux, D.A.; Hall, C.K.

    1989-01-01

    We present Monte Carlo simulation results for the proton-proton contribution to the T 1 -1 relaxation rate for hydrogen spins diffusing on the tetrahedral sites of a b.c.c. metal. It is assumed that each hydrogen blocks all sites to the zeroth (no multiple-occupancy), second or third neighbour and that longer-range interactions may be neglected. Comparisons are made to the BPP and Torrey models. It is found that both the BPP and Torrey models give reasonable values for the peak height but that their predictions for the peak position and the high- and low-temperature limit are in error, particularly for large blocking distances. (orig.)

  6. Investigation of irradiation strengthening of b.c.c. metals and their alloys. Progress report, January 1976--October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Research on irradiation of bcc metals and alloys is reported. Data and information are presented in appendixes on low temperature neutron irradiation of Nb, effects of tritium on the yield stress of Nb, multiple dislocation motion, dislocation group motion, dislocation kinetics, and computer simulation of dislocation motion

  7. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals

    Directory of Open Access Journals (Sweden)

    Yu-Wei You

    2013-01-01

    Full Text Available First-principles calculations are performed to investigate the dissolving, trapping and detrapping of H in six bcc (V, Nb, Ta, Cr, Mo, W and six fcc (Ni, Pd, Pt, Cu, Ag, Au metals. We find that the zero-point vibrations do not change the site-preference order of H at interstitial sites in these metals except Pt. One vacancy could trap a maximum of 4 H atoms in Au and Pt, 6 H atoms in V, Nb, Ta, Cr, Ni, Pd, Cu and Ag, and 12 H atoms in Mo and W. The zero-point vibrations never change the maximum number of H atoms trapped in a single vacancy in these metals. By calculating the formation energy of vacancy-H (Vac-Hn complex, the superabundant vacancy in V, Nb, Ta, Pd and Ni is demonstrated to be much more easily formed than in the other metals, which has been found in many metals including Pd, Ni and Nb experimentally. Besides, we find that it is most energetically favorable to form Vac-H1 complex in Pt, Cu, Ag and Au, Vac-H4 in Cr, Mo and W, and Vac-H6 in V, Nb, Ta, Pd and Ni. At last, we examine the detrapping behaviors of H atoms in a single vacancy and find that with the heating rate of 10 K/min a vacancy could accommodate 4, 5 and 6 H atoms in Cr, Mo and W at room temperature, respectively. The detrapping temperatures of all H atoms in a single vacancy in V, Nb, Ta, Ni, Pd, Cu and Ag are below room temperature.

  8. Assessment of the structural relations between the bcc and omega phases of Ti, Zr, Hf and other transition metals

    International Nuclear Information System (INIS)

    Aurelio, G.; Guillermet, A.F.

    2000-01-01

    The name omega (Ω) phase refers to a high-pressure structural modification of the transition metals (TMs) Ti, Zr, and Hf. In alloys of Ti, Zr and Hf with other TMs, the Ω phase can be formed and retained metastably at room temperature by quenching the bcc structure, which is usually the stable high-temperature phase in these alloy systems. As a part of a systematic investigation of the structural and bonding properties of the bcc and Ω phases, and of the bcc → Ω phase transformation in TMs and alloys, we present in this paper a detailed analysis of the structural relations between these phases in Ti, Zr, Hf and in other TMs. The approach is as follows. First, we establish the most general geometrical relations connecting the lattice parameters and interatomic distances (IDs) of the bcc and Ω structures. Next, we focus on the ratio between the relevant IDs of these phases, which are assessed on the basis of an extensive database with experimental and theoretical information. Both stable and metastable structures are considered, and various remarkable regularities in ID ratios are discussed. Finally, in the light of the systematics of ID ratios established in the present work, a discussion is made of the probable lattice parameters for the Ω phase of Hf, which are not yet accurately known from direct measurements. (orig.)

  9. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    Energy Technology Data Exchange (ETDEWEB)

    Gorondy-Novak, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Jomard, F. [Groupe d' Etude de la Matière Condensée, CNRS, UVSQ, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Prima, F. [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Lefaix-Jeuland, H., E-mail: helene.lefaix@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs{sup +} primary ion beam coupled with CsHe{sup +} molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, {sup 4}He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  10. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    International Nuclear Information System (INIS)

    Jahangir, Vafa; Riahifar, Reza; Sahba Yaghmaee, Maziar

    2016-01-01

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  11. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, Vafa, E-mail: vafa.jahangir@yahoo.com; Riahifar, Reza, E-mail: reza_rfr@yahoo.com; Sahba Yaghmaee, Maziar, E-mail: fkmsahba@uni-miskolc.hu

    2016-03-31

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  12. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    Science.gov (United States)

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  13. ''Cube-on-hexagon'' orientation relationship for Fe on GaN(0001): The missing link in bcc/hcp epitaxy

    International Nuclear Information System (INIS)

    Gao Cunxu; Brandt, Oliver; Laehnemann, Jonas; Jahn, Uwe; Jenichen, Bernd; Schoenherr, Hans-Peter; Erwin, Steven C.

    2010-01-01

    We investigate, experimentally and theoretically, the epitaxy of body-centered-cubic Fe on hexagonal GaN. For growth on the Ga-polar GaN(0001) surface we find the well-known Pitsch-Schrader orientation relationship between Fe and GaN. On the N-polar GaN(0001) surface we observe coexistence between the familiar Burgers orientation and a new orientation in which the Fe(001) plane is parallel to GaN(0001). This 'cube-on-hexagon' orientation constitutes the high-symmetry link required for constructing a symmetry diagram for bcc/hcp systems in which all orientation relationships are connected by simple rotations.

  14. Angular forces and melting in bcc transition metals: A case study of molybdenum

    International Nuclear Information System (INIS)

    Moriarty, J.A.

    1994-01-01

    Both the multi-ion and effective pair potentials also permit a large amount of supercooling of the liquid before the onset of freezing. With v 2 eff a bcc structure is nucleated at freezing, while with the multi-ion potentials an amorphous glasslike structure is obtained, which appears to be related to the energetically competitive A15 structure. In our second approach to melting, the multi-ion potentials have been used to obtain accurate solid and liquid free energies from quasiharmonic lattice dynamics and MD calculations of thermal energies and pressures. The resulting ion-thermal melting curve exactly overlaps the dynamically observed melting point, indicating that no superheating of the solid occurred in our MD simulations. To obtain a full melting curve, electron-thermal contributions to the solid and liquid free energies are added in terms of the density of electronic states at the Fermi level, ρ(E F ). Here the density of states for the solid has been calculated with the linear-muffin-tin-orbital method, while for the liquid tight-binding calculations have been used to justify a simple model. In the liquid ρ(E F ) is increased dramatically over the bcc solid, and the net effect of the electron-thermal contributions is to lower the calculated melting temperatures by about a factor of 2. A full melting curve to 2 Mbar has thereby been obtained and the calculated melting properties near zero pressure are in generally good agreement with experiment

  15. Application of generalized non-Schmid yield law to low-temperature plasticity in bcc transition metals

    International Nuclear Information System (INIS)

    Lim, H; Weinberger, C R; Battaile, C C; Buchheit, T E

    2013-01-01

    In this work, a generalized yield criterion that captures non-Schmid effects is proposed and implemented into a finite element crystal plasticity model to simulate plastic deformation of single and polycrystals. The parameters required for the constitutive formulation were calibrated to deformation experiments on single crystals. This model is used to investigate the effects of non-Schmid effects on the predictions of the stress–strain response and texture evolution in body-centered-cubic (bcc) metals. The non-Schmid contributions are required to accurately predict the stress–strain response of single crystals, and the concomitant non-associativity of the flow also increases the tendency of localization in polycrystal deformations. (paper)

  16. Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals

    Science.gov (United States)

    Byun, T. S.

    2007-04-01

    The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.

  17. bcc transition metals under pressure: results from ultrasonic interferometry and diamond-cell experiments

    International Nuclear Information System (INIS)

    Katahara, K.W.; Manghnani, M.H.; Ming, L.C.; Fisher, E.S.

    1976-01-01

    Hydrostatic pressure derivatives of the single-crystal elastic moduli, dC/sub ij//dP, have been measured ultrasonically for b.c.c. Nb--Mo and Ta--W solid solutions. The composition dependence of various electronic properties of these alloys is known to be reasonably well approximated by a rigid-electron-band filling model where e/a, the electron per atom ratio, is the primary parameter. The results indicate that the elastic moduli and their pressure derivatives may also be calculated in such a model. In particular, the dC/sub ij//dP show relatively sharp increases at e/a compositions of 5.4 for Nb--Mo and 5.7 for Ta--W. Both compositions correspond to changes in Fermi surface topology, as deduced from existing band calculations and the rigid band assumption. The results are discussed in the light of related electronic properties and possible geophysical applications. A comparison is also made between ultrasonic results and X-ray diffraction data for Nb. Using diamond-anvil pressure cell, compression of Nb was determined by X-ray diffraction up to 55 kbar in a liquid medium under purely hydrostatic conditions, and up to 175 kbar in a solid medium under nonhydrostatic conditions. The data obtained under hydrostatic conditions agree well with the ultrasonic equation of state and shock wave data, whereas the nonhydrostatic results tend to imply either a higher bulk modulus K/sub s/ or a higher (par. deltaK/sub s//par. deltaP)/sub T/

  18. Grain size engineering of bcc refractory metals: Top-down and bottom-up-Application to tungsten

    International Nuclear Information System (INIS)

    Kecskes, L.J.; Cho, K.C.; Dowding, R.J.; Schuster, B.E.; Valiev, R.Z.; Wei, Q.

    2007-01-01

    We have used two general methodologies for the production of ultrafine grained (UFG) and nanocrystalline (NC) tungsten (W) metal samples: top-down and bottom-up. In the first, Equal channel angular extrusion (ECAE), coupled with warm rolling has been used to fabricate UFG W, and high pressure torsion (HPT) was used to fabricate NC W. We demonstrate an abrupt shift in the deformation mechanism, particularly under dynamic compressive loading, in UFG and NC W. This novel deformation mechanism, a dramatic transition from a uniform deformation mode to that of localized shearing, is shared by other UFG and NC body-centerd cubic (BCC) metals. We have also conducted a series of bottom-up experiments to consolidate powdered UFG W precursors into solid bodies. The bottom-up approach relies on rapid, high-temperature consolidation, specifically designed for UFG and NC W powders. The mechanical property results from the top-down UFG and NC W were used as minimum property benchmarks to guide and design the experimental protocols and parameters for use in the bottom-up procedures. Preliminary results, showing rapid grain growth during the consolidation cycle, did not achieve full density in the W samples. Further development of high-purity W nanopowders and appropriate grain-growth inhibitors (e.g., Zener pinning) will be required to successfully produce bulk-sized UFG and NC W samples

  19. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to symmetric core structures for all the studied metals....

  20. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and ...

  1. Texture formation in metals with bcc lattice during drawing in dead rollers

    International Nuclear Information System (INIS)

    Gubchevskij, V.P.; Zemlyanskov, V.A.; Zlatoustovskij, D.M.; Nemkina, Eh.D.

    1976-01-01

    The texture of low-carbon steel, molybdenum and tungsten wires subjected to intermediate and finish drawing were studied to find whether it is common to metals with a body-centered lattice. Experimental data tend to indicate that both the intermediate drawing and the finish drawing give rise to two axial textures, or (110) and (114), parallel to the axis of drawing. It was inferred that the mechanism of the formation of texture in drawing is common to all the metals of a VCC lattice

  2. Comparison between radiation effects in some fcc and bcc metals irradiated with energetic heavy ions - a review

    International Nuclear Information System (INIS)

    Iwase, A.; Ishino, S.

    2000-01-01

    It has been reported that there are substantial differences in radiation effects in fcc copper and bcc iron. Whether these differences are due to the difference in crystal structure or not is the subject of the present paper. These differences have been discussed in terms of microstructure and mechanical property changes, whereas in the present paper, results of electrical resistivity measurements are discussed in terms of damage production cross sections, defect annihilation cross sections, damage efficiency and so on during and after various ion irradiations with wide energy ranges from 1 MeV to more than 100 MeV. For crucial discussion on the effect of the difference in crystal structure, nickel and iron are compared. These metals are allotted closely in the periodic table, with similar melting points and fairly strong electron-lattice coupling, both ferromagnetic and yet with different crystal structure. It may be concluded that as far as the damage production and defect annihilation cross sections and survival ratio are concerned, the difference in crystal structure is not an essential factor. Electronic energy deposition may play an important role even for low energy ions as well as for high energies. The effect of electronic energy deposition on defect clustering is discussed

  3. The lattice dynamics of six prominent B.C.C. transition metals

    International Nuclear Information System (INIS)

    Brescansin, L.M.; Padial, N.T.; Shukla, M.M.

    1975-01-01

    The frequency versus wave vector dispersion relations along the three principal symmetry directions, [xi00], [xixi0] and [xixixi], of six prominent body centered cubic transition metals, namely that of molybdenum, α-iron, tungsten, tantalum, niobium and that of chromium, have been computed on the basis of a phenomenological model. The calculated results are in very good agreements to the experimental findings

  4. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype

    International Nuclear Information System (INIS)

    Xu, W.; Moriarty, J.A.

    1996-01-01

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal molybdenum (Mo). Many-body angular forces, which are important to the structural and mechanical properties of such central transition metals with partially filled d bands, are accounted for in the present theory through explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations have also been investigated. The left-angle 110 right-angle split dumbbell interstitial is found to have the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measurements. In ascending order, the sequence of energetically stable interstitials is predicted to be left-angle 110 right-angle split dumbbell, crowdion, left-angle 111 right-angle split dumbbell, tetrahedral site, left-angle 001 right-angle split dumbbell, and octahedral site. In addition, the migration paths for the left-angle 110 right-angle dumbbell self-interstitial have been studied. The migration energies are found to be 3 endash 15 times higher than previous theoretical estimates obtained using simple radial-force Finnis-Sinclair potentials. Finally, the atomic structure and energetics of left-angle 111 right-angle screw dislocations in Mo have been investigated. We have found that the so-called open-quote open-quote easy close-quote close-quote core configuration has a lower formation energy than the open-quote open-quote hard close-quote close-quote one, consistent with previous theoretical studies. (Abstract Truncated)

  5. Modelling of initial stages of interstitial solid solution decomposition in bcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Blanter, M S

    1982-01-01

    By means of a model of deformation interaction of interstitial atoms added by interlocking of the nearest positions the configuration of cluster of alien atoms intruded into octahedral ..cap alpha..-Fe, V, Nb and Ta interstitially sites is computerized. The cluster structure is determined by elastic properties, of the crystal lattice of the metal-solvent. Clusters in ..cap alpha..-Fe have a plate form in a plane (001) of half lattice period width, in V, Nb and Ta - of monatomic plate in a plane (110). Clusters of interstitials must be sufficiently stable and arise even in solutions low concentration.

  6. Tensile properties of several 800 MeV proton-irradiated bcc metals and alloys

    International Nuclear Information System (INIS)

    Brown, R.D.; Wechsler, M.S.; Tschalar, C.

    1987-01-01

    A spallation neutron source for the 600-MeV proton accelerator facility at the Swiss Institute for Nuclear Research (SIN) consists of a vertical cylinder filled with molten Pb-Bi. The proton beam enters the cylinder, passing upward through a window in contact with the Pb-Bi eutectic liquid that must retain reasonable strength and ductility upon irradiation at about 673 K to fluence of about 1 x 10/sup 25/ protons/m/sup 2/. Investigations are underway at the 800-MeV proton accelerator at the Los Alamos Meson Physics Facility (LAMPF) to test the performance of candidate SIN window materials under appropriate conditions of temperature, irradiation, and environment. Based on considerations of chemical compatibility with molten Pb-Bi, as well as interest in identifying fundamental radiation damage mechanisms, Fe, Ta, Fe-2.25Cr-1Mo, and Fe-12Cr-1Mo(HT-9) were chosen as candidate materials. Sheet tensile samples, 0.5-mm thick, of the four materials were fabricated and heat treated. The samples were sealed inside capsules containing Pb-Bi and were proton-irradiated at LAMPF to two fluences, 4.8 and 54 x 10/sup 23/ p/m/sup 2/. The beam current was approximately equal to the 1 mA anticipated for the upgraded SIN accelerator. The power deposited by the proton beam in the capsules was sufficient to maintain sample temperatures of about 673 K. Post-irradiation tensile tests were conducted at room temperature at a strain rate of 9 x 10/sup -4/s/sup -1/. The yield and ultimate strengths increased upon irradiation in all materials, while the ductility decreased, as indicated by the uniform strain. The pure metals, Ta and Fe, exhibited the greatest radiation hardening and embrittlement. The HT-9 alloy showed the smallest changes in strength and ductility. The increase in strength following irradiation is discussed in terms of a dispersed-barrier hardening model, for which the barrier sizes and formation cross sections are calculated

  7. Geometric factors in f.c.c. and b.c.c. metal-on-metal epitaxy

    International Nuclear Information System (INIS)

    Bruce, L.A.; Jaeger, H.

    1978-01-01

    Deposits of Ni, Au and Ag formed by condensing metal vapour in U.H.V. onto (001)W, held at a temperature Tsub(s) in the range 300K< Tsub(s)<1200 K, always form epitaxial layers. However, while Au and Ag form (001) epitaxial layers of f.c.c. single crystals, (001)d parallel to (001)s with, say, [110]d parallel to [010]s, Ni and Cu occur in two orthogonal domains, each characterized by an exclusive set of fault (or twin) planes. Within a fault plane, atoms are hexagonally close-packed and, within a domain, fault planes are normal to either [1-1-0]s or [1-10]s and a close-packed direction in the planes is normal to the substrate. The lateral stacking of the fault planes may range from random at low values of Tsub(s) to that of, say, (11-1-) planes in heavily faulted and/or twinned (110) epitaxed f.c.c. material, or of basal planes in (110) epitaxed h.c.p. material at high values of Tsub(s). The results are readily explained on the basis of a growth model developed for deposits of Ni and Cu on (001) Ag. (author)

  8. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    Science.gov (United States)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  9. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, H. (Aomori Public College, 153-4 Yamazaki, Goushi-zawa, Aomori 030-01 (Japan)); Rafii-Tabar, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Kawazoe, Y. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Matsui, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan))

    1994-09-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  10. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    International Nuclear Information System (INIS)

    Kamiyama, H.; Rafii-Tabar, H.; Kawazoe, Y.; Matsui, H.

    1994-01-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers ''below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  11. On hyper BCC-algebras

    OpenAIRE

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

    2006-01-01

    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  12. On hyper BCC-algebras

    Directory of Open Access Journals (Sweden)

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  13. Anelastic relaxation of interstitial foreign atoms and their complexes with intrinsic defects in B.C.C. metals

    International Nuclear Information System (INIS)

    Weller, M.

    1985-01-01

    In body-centred cubic metals, heavy interstitial foreign atoms (IFA) O, N and C give rise to relaxations of Snoek type. For dilute alloys, relaxation parameters are summarized. In concentrated alloys (group Va metals containing O or N) Snoek relaxations are influenced by the interaction of IFA. The recent controversy is discussed as to whether this interaction is based on clustering or anticlustering. In irradiated metals complexes of IFA with intrinsic atomic defects (vacancies or self interstitial atoms) also give rise to relaxations

  14. Phonon dispersion curves of BCC Ba

    International Nuclear Information System (INIS)

    Mizuki, J.; Stassis, C.; Zarestky, J.

    1985-01-01

    Ba, as well as Sr and Ca, is a divalent alkaline earth metal. At room temperature and ambient pressure, the structure of Ba is bcc, whereas that of Sr and Ca is fcc. Under pressure, the bcc phase of Ba transforms to an hcp structure at 55 kbar. Also, at 37 kbar Ba becomes a superconductor with T/sub c/ = 0.06 K. These properties are highly dependent on the position of the d bands relative to the Fermi level. Experimental investigation of the elastic and lattice dynamical properties of these metals has been hindered by difficulties in growing single crystals. However, recently the authors were able to grow several single crystals of bcc Ba of sufficient volume for inelastic neutron scattering experiments. Some of the results are summarized here

  15. The development of BCC

    International Nuclear Information System (INIS)

    He Xiaoping; Yang Hailiang; Sun Jianfeng; Ren Shuqing; Zhang Jiasheng; Shi Lei; Peng Jianchang; Li Hongyu; Qiu Aici; Tang Junping; Xi'an Jiaotong Univ., Xi'an

    2004-01-01

    An analysis of principle of a BCC for measuring ion beam density and the main reasons related to the measuring accuracy were presented. An array of 13 biased charge collecrors was designed for the measurement of ion beam density of 'FLASH-II' high power ion beam source, and the data of experiments was analyzed. (authors)

  16. Smarandache hyper BCC-algebra

    OpenAIRE

    Ahadpanah, A.; Borumand Saeid, A.

    2011-01-01

    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  17. Nuclear orientation of rare earth impurities in ferromagnetic host metals

    International Nuclear Information System (INIS)

    Keus, H.E.

    1981-01-01

    Experiments are described investigating the behaviour of the metals Nd and Lu as impurities in a ferromagnetic host metal - iron, cobalt and nickel. The systems have been studied with the aid of nuclear orientation, making use of the interactions between the atom nuclei and the electrons - the so called hyperfine interactions. (C.F.)

  18. Nuclear orientation studies of rare-earth metals

    International Nuclear Information System (INIS)

    Krane, K.S.; Morgan, G.L.; Moses, J.D.

    1981-01-01

    The angular distributions of gamma rays from 166 sup(m)Ho and 160 Tb aligned at low temperatures in, respectively, Ho metal and Tb metal have been measured. Large hyperfine splittings, expected for the rare earths, have been deduced from the temperature dependence of the gamma ray anisotropies. Both samples show a macroscopic magnetic anisotropy which is not consistent with an interpretation in terms of a randomly oriented polycrystalline structure. (orig.)

  19. In-situ transmission electron microscopy study of ion-irradiated copper : comparison of the temperature dependence of cascade collapse in FCC- and BCC- metals.

    Energy Technology Data Exchange (ETDEWEB)

    Daulton, T. L.

    1998-10-23

    The kinetics which drive cascade formation and subsequent collapse into point-defect clusters is investigated by analyzing the microstructure produced in situ by low fluence 100 keV Kr ion irradiations of fcc-Cu over a wide temperature range (18-873 K). The yield of collapsed point-defect clusters is demonstrated unequivocally to be temperature dependent, remaining approximately constant up to lattice temperatures of 573 K and then abruptly decreasing with increasing temperature. This drop in yield is not caused by defect loss during or following ion irradiation. This temperature dependence can be explained by a thermal spike effect. These in-situ yield measurements are compared to previous ex-situ yield measurements in fcc-Ni and bcc-Mo.

  20. In situ transmission electron microscopy study of ion-irradiated copper: comparison of the temperature dependence of cascade collapse in fcc- and bcc-metals

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Rehn, L.E.

    2000-01-01

    The kinetics which drive cascade formation and subsequent collapse into point-defect clusters are investigated by analyzing the microstructure produced in situ by low fluence 100 keV Kr ion irradiations of fcc-Cu over a wide temperature range (18-873 K). The yield of collapsed point-defect clusters is demonstrated unequivocally to be temperature dependent, remaining approximately constant up to lattice temperatures of 573 K and then abruptly decreasing with increasing temperature. This drop in yield is not caused by defect loss during or following ion irradiation. In addition, this temperature dependence can be explained by a thermal spike effect. These in situ yield measurements are compared to previous ex situ yield measurements in fcc-Ni and bcc-Mo

  1. Knowledge-oriented strategies in the metal industry (empirical studies

    Directory of Open Access Journals (Sweden)

    A. Krawczyk-Sołtys

    2016-07-01

    Full Text Available The aim of this article is an attempt to determine which knowledge-oriented strategies can give metal industry enterprises the best results in achieving and maintaining a competitive advantage. To determine which of these discussed in the literature and implemented in various organizations knowledge-oriented strategies may prove to be the most effective in the metal industry, empirical research has begun. A chosen strategy of knowledge management and supporting strategies are the basis of a choice of methods and means of intended implementation. The choice of a specific knowledge management strategy may also result in the need for changes in an organization, particularly in an information system, internal communication, work organization and human resource management.

  2. Shear instabilities in perfect bcc crystals during simulated tensile tests

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Šesták, P.; Pokluda, J.; Šob, Mojmír

    2013-01-01

    Roč. 87, č. 1 (2013), 014117/1-014117/4 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : instabilities * tensile test * bcc metals * ab initio calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  3. On Weak-BCC-Algebras

    Science.gov (United States)

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  4. Magnetization reversal in an obliquely oriented metal evaporated tape

    International Nuclear Information System (INIS)

    Srinath, S.; Vavassori, P.; Rekveldt, M.Th.; Cook, R.E.; Felcher, G.P.

    2004-01-01

    Magnetization reversal in obliquely oriented metal evaporated videotapes as a function of the tape depth was studied by vector magneto-optic Kerr effect and polarized neutron reflectivity. The magnetization vector was found to rotate coherently out-of-plane by an angle α during the magnetization reversal for a substantial part of the hysteresis cycle. However α differs between the surface-facing and the substrate-facing sides of the film, with the more oxidized surface layer following closely the applied field. Close to M∼0 the film breaks down magnetically into a collage of small domains, reflecting the crystalline microstructure of the material

  5. Interface magnetism of 3d transition metals

    DEFF Research Database (Denmark)

    Niklasson, A. M. N.; Johansson, B.; Skriver, Hans Lomholt

    1999-01-01

    The layered resolved magnetic spin moments of the magnetic 3d bilayer interfaces Fe/V bcc, Fe/Co bcc, Fe/Cu bcc, Co/V bcc, Co/Ni fee, Co/Cu fee, Ni/V fee, Ni/Cr fcc, Ni/Cu fee and the magnetic surfaces Fe bcc, Co bcc, Co fee, and Ni fee are calculated for the (001), (011), and (111) orientations...

  6. Crystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation

    Science.gov (United States)

    Narayanan, Sankar; McDowell, David L.; Zhu, Ting

    2014-04-01

    The mobility of dislocation in body-centered cubic (BCC) metals is controlled by the thermally activated nucleation of kinks along the dislocation core. By employing a recent interatomic potential and the Nudged Elastic Band method, we predict the atomistic saddle-point state of 1/2 screw dislocation motion in BCC iron that involves the nucleation of correlated kinkpairs and the resulting double superkinks. This unique process leads to a single-humped minimum energy path that governs the one-step activation of a screw dislocation to move into the adjacent {110} Peierls valley, which contrasts with the double-humped energy path and the two-step transition predicted by other interatomic potentials. Based on transition state theory, we use the atomistically computed, stress-dependent kinkpair activation parameters to inform a coarse-grained crystal plasticity flow rule. Our atomistically-informed crystal plasticity model quantitatively predicts the orientation dependent stress-strain behavior of BCC iron single crystals in a manner that is consistent with experimental results. The predicted temperature and strain-rate dependencies of the yield stress agree with experimental results in the 200-350 K temperature regime, and are rationalized by the small activation volumes associated with the kinkpair-mediated motion of screw dislocations.

  7. Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal

    Science.gov (United States)

    Zhao, Z. C.; Qin, R. S.

    2017-10-01

    The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity ( fc ) and alignment ratio ( fe ) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.

  8. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates.

    Science.gov (United States)

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, J Kevin; Jain, Manish; Zheng, Shijian; Mara, Nathan A; Beyerlein, Irene J

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

  9. Stress dependence of the Peierls barrier of 1/2〈1 1 1〉 screw dislocations in bcc metals

    International Nuclear Information System (INIS)

    Gröger, R.; Vitek, V.

    2013-01-01

    The recently formulated constrained nudged elastic band method with atomic relaxations (NEB + r) (Gröger R, Vitek V. Model Simul Mater Sci Eng 2012;20:035019) is used to investigate the dependence of the Peierls barrier of 1/2〈1 1 1〉 screw dislocations in body-centered cubic metals on non-glide stresses. These are the shear stresses parallel to the slip direction acting in the planes of the 〈1 1 1〉 zone different from the slip plane, and the shear stresses perpendicular to the slip direction. Both these shear stresses modify the structure of the dislocation core and thus alter both the Peierls barrier and the related Peierls stress. Understanding of this effect of loading is crucial for the development of mesoscopic models of thermally activated dislocation motion via formation and propagation of pairs of kinks. The Peierls stresses and related choices of the glide planes determined from the Peierls barriers agree with the results of molecular statics calculations (Gröger R, Bailey AG, Vitek V. Acta Mater 2008;56:5401), which demonstrates that the NEB + r method is a reliable tool for determining the variation in the Peierls barrier with the applied stress. However, such calculations are very time consuming, and it is shown here that an approximate approach of determining the stress dependence of the Peierls barrier (proposed in Gröger R, Vitek V. Acta Mater 2008;56:5426) can be used, combined with test calculations employing the NEB + r method

  10. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  11. Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies

    International Nuclear Information System (INIS)

    Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.

    2006-01-01

    Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)

  12. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011){sub B3} single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Higuchi, Jumpei; Yabuhara, Osamu [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011){sub B3} single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar]{sub bcc} || GaAs(011)[011-bar]{sub B3}. The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{l_brace}011{r_brace} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011){sub B3} substrates.

  13. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011)B3 single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Higuchi, Jumpei; Yabuhara, Osamu; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011) B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar] bcc || GaAs(011)[011-bar] B3 . The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011) B3 substrates.

  14. Sandhopper solar orientation as a behavioural biomarker of trace metals contamination

    International Nuclear Information System (INIS)

    Ungherese, Giuseppe; Ugolini, Alberto

    2009-01-01

    Although many studies have focused on trace metals accumulation, investigations of talitrid amphipods as biomarkers are rare. This study explores the possibility of using the solar orientation capacity of Talitrus saltator as a behavioural marker of exposure to two essential (Cu and Zn) and two non-essential (Cd and Hg) metals. LC 50 analyses performed before the solar orientation tests showed that the 72 h LC 50 for Hg was 0.02 ppm while the 96 h LC 50 values for Cu, Cd and Zn were 13.28 ppm, 27.66 ppm, and 62.74 ppm, respectively. The presence of metals in seawater affects the solar orientation capacity of T. saltator in a concentration-dependent manner and according to the toxicity ranking of the metals (Hg > Cu > Cd > Zn). Therefore, the solar orientation capacity of T. saltator seems to be a promising behavioural marker for exposure to trace metals. - Solar orientation capacity is a promising behavioural marker for exposure to trace metals in sandhoppers

  15. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang, E-mail: sgyang@nju.edu.cn

    2016-12-30

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  16. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    International Nuclear Information System (INIS)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-01-01

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  17. Nucleation and growth of a BCC Fe phase deposited on a single crystal (001) Cu film

    International Nuclear Information System (INIS)

    Koike, J.

    1991-01-01

    As a thin film overlayer grows on a substrate with a different structure, the overlayer initially adopts the substrate structure and subsequently transforms to an equilibrium bulk structure. such a growth characteristic has been extensively studied in Fe/Cu bicrystals. An Fe overlayer grown on a Cu substrate is known to have the fcc structure up to a thickness of 2 nm, whereas a thicker Fe overlayer consists of submicrometer grains of the bcc-Cu has been reported in a relatively thick Fe film and was found to consist of the Nishiyama (N), Kurdjumov-Sacks (KS), or Pitsch (P), depending on the orientation of the substrate surface. However, previous studies have not explained how the bcc structure nucleates or how the observed submicrometer polycrystalline grains form. The paper provides an understanding of these two points. Transmission electron microscopy (TEM) was used to study Fe/Cu bicrystals as the Fe thickness was varied systematically. Analysis of moire fringes, which are caused by superposition of different structures, enabled us to determine the orientation relationship between the very thin Fe layer and the Cu substrate. We show that a single variant of the P orientation relationship, which accompanies atomic rearrangement parallel to the interface, predominates at the nucleation stage of the bcc structure. Nucleation of other variants of P, N, and KS occurs with increasing Fe thickness and causes the formation of the submicrometer bcc grains

  18. 3D highly oriented nanoparticulate and microparticulate array of metal oxide materials

    International Nuclear Information System (INIS)

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-01-01

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiation source facility

  19. Determination of positions and curved transition pathways of screw dislocations in BCC crystals from atomic displacements

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vítek, V.

    2015-01-01

    Roč. 643, SEP (2015), s. 203-210 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Screw dislocation * BCC metal * Dislocation pathway Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  20. Orientational Analysis of Dodecanethiol and P-Nitrothiophenol SAMs on Metals with Polarisation - dependent SFG spectroscopy

    International Nuclear Information System (INIS)

    Manea, A.

    2011-01-01

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitro thiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarizations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarizations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces. (author)

  1. The effect of grooves in amorphous substrates on the orientation of metal deposits. I - Carbon substrates

    Science.gov (United States)

    Anton, R.; Poppa, H.; Flanders, D. C.

    1982-01-01

    The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.

  2. Inherited textures in the bcc phase furnish information about the type of transformation from the fcc phase

    International Nuclear Information System (INIS)

    Jung, V.

    1982-07-01

    Drawing annealed cylindric 18/8 Cr Ni steels, which are originally free of textures, produces the transformed phases - hcp and bcc - both showing major texture contributions with increasing stretching of the cylindric specimens. After stretching the original fcc-phase shows two orientations: [100]fcc vertical stroke vertical stroke cylinder axis and [111]fcc vertical stroke vertical stroke cylinder axis, i.e. direction of stress. In both cases the martensitic phase is produced by gliding and shear in the sequence fcc → hcp → bcc by Nishiyama-Wasserman (N-W) or Kurdjumov-Sachs (K-S) transformation in the (111)fcc planes, which enclose a small angle with direction of stress, i.e. cylinder axis. The calculated orientation distributions of the (110)bcc reflex are compared with the distribution measured by neutron diffraction to get information on the bulk material. The special K-S transformation with only 6 (110)bcc orientations shows relatively good agreement with the measured distribution, except at small angles ω between the cylinder axis and the scattering vector. This might be caused by the isotropic fraction of the fcc phase producing an anisotropic (110)bcc orientation distribution. (orig.) [de

  3. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Science.gov (United States)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-12-01

    In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn2O3, Co3O4 and Cr2O3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  4. Standard test method for determining the orientation of a metal crystal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the back-reflection Laue procedure for determining the orientation of a metal crystal. The back-reflection Laue method for determining crystal orientation (1, 2) may be applied to macrograins (3) (0.5-mm diameter or larger) within polycrystalline aggregates, as well as to single crystals of any size. The method is described with reference to cubic crystals; it can be applied equally well to hexagonal, tetragonal, or orthorhombic crystals. 1.2 Most natural crystals have well developed external faces, and the orientation of such crystals can usually be determined from inspection. The orientation of a crystal having poorly developed faces, or no faces at all (for example, a metal crystal prepared in the laboratory) must be determined by more elaborate methods. The most convenient and accurate of these involves the use of X-ray diffraction. The “orientation of a metal crystal” is known when the positions in space of the crystallographic axes of the unit cell have been located with...

  5. Studies of permittivity and permeability of dielectric matrix with cuboid metallic inclusions in different orientations

    Directory of Open Access Journals (Sweden)

    W. M. Wu

    2014-10-01

    Full Text Available In this paper, we investigate the possibility of using the heterogeneous materials, with cuboid metallic inclusions inside a dielectric substrate (host to control the effective permittivity. We find that in the gigahertz range, such a material demonstrates a significantly larger permittivity compared to the pure dielectric substrate. Three principal orientations of microscale cuboid inclusions have been taken into account in this study. The highest permittivity is observed when the orientation provides the largest polarization (electric dipole moment. The detrimental side effect of the metallic inclusion, which leads to the decrease of the effective magnetic permeability, can be suppressed by the proper choice of shape and orientation of the inclusions. This choice can in fact reduce the induced current and hence maximize the permeability. The dissipative losses are shown to be negligible in the relevant range of frequencies and cuboid dimensions.

  6. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth.

    Science.gov (United States)

    Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W; Hill, Anita J; Williams, Timothy; Doonan, Christian; Takahashi, Masahide

    2017-03-01

    The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.

  7. Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite

    Science.gov (United States)

    Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.

    2011-03-01

    Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.

  8. Premelting hcp to bcc Transition in Beryllium

    Science.gov (United States)

    Lu, Y.; Sun, T.; Zhang, Ping; Zhang, P.; Zhang, D.-B.; Wentzcovitch, R. M.

    2017-04-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to x-ray equipment. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp → bcc transition occurs near the melting curve at 0 materials.

  9. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, M.J.; Stutz, C.E.

    1997-07-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was {approximately}1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in {ge}1 GPa tensile increase in film stress.

  10. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    International Nuclear Information System (INIS)

    O'Keefe, M.J.; Stutz, C.E.

    1997-01-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was approximately1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in ge1 GPa tensile increase in film stress

  11. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  12. Metastable bcc Fe-Mn alloys produced by rf sputtering

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Kadono, Masaru; Nakamura, Yoji

    1981-01-01

    Fe sub(1-x)Mn sub(x) alloy films obtained by rf sputtering technique have been investigated by X-ray diffraction, magnetization and Moessbauer effect measurements. The single bcc phase extends up to about x = 0.2, while a bcc-fcc mixed phase appears for x = 0.2 - 0.26. The lattice constants of the bcc phase are about 0.5% larger than those of the bulk specimens. The magnetization decreases monotonically with increasing x in the bcc phase, while it decreases sharply in the bcc-fcc mixed phase. These results are consistent with the Moessbauer spectra of these alloy films. The volume fraction of bcc and fcc phases has been estimated from Moessbauer analyses as well as magnetization measurements. (author)

  13. Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition Metal Dichalcogenides

    KAUST Repository

    Aljarb, Areej

    2017-08-07

    Two-dimensional (2D) transition metal dichalcogenide (TMDCs) semiconductors are important for next-generation electronics and optoelectronics. Given the difficulty in growing large single crystals of 2D TMDC materials, understanding the factors affecting the seed formation and orientation becomes an important issue for controlling the growth. Here, we systematically study the growth of molybdenum disulfide (MoS2) monolayer on c-plane sapphire with chemical vapor deposition (CVD) to discover the factors controlling their orientation. We show that the concentration of precursors, i.e., the ratio between sulfur and molybdenum oxide (MoO3), plays a key role in the size and orientation of seeds, subsequently controlling the orientation of MoS2 monolayers. High S/MoO3 ratio is needed in the early stage of growth to form small seeds that can align easily to the substrate lattice structures while the ratio should be decreased to enlarge the size of the monolayer at the next stage of the lateral growth. Moreover, we show that the seeds are actually crystalline MoS2 layers as revealed by high-resolution transmission electron microscopy. There exist two preferred orientations (0° or 60°) registered on sapphire, confirmed by our density functional theory (DFT) simulation. This report offers a facile technique to grow highly aligned 2D TMDCs and contributes to knowledge advancement in growth mechanism.

  14. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    Science.gov (United States)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  15. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    Science.gov (United States)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Atomistic model application to the problem of magnetite adhesion on iron BCC

    International Nuclear Information System (INIS)

    Forti; M; Alonso, P; Gargano, P; Rubiolo, G

    2012-01-01

    Oxide scale adhesion on a metal substrate has been investigated in the Magnetite - BCC Iron system. An Universal Binding Energy Relation (UBER) has been applied to obtain the interface energy from a fitting parameter. The interface energy thus calculated is in a reasonable order of magnitude when compared to experimental data for similar systems. This result allows this technique to be used to develop a comparative scale based on quantitative data which otherwise would require complex experiments to be obtained (author)

  17. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    International Nuclear Information System (INIS)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-01

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  18. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Xiaomin [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Hu, Yuyan; Feng, Yuheng [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Dai, Xiaohu [National Engineering Research Centre for Urban Pollution Control, Tongji University, Shanghai 200092 (China); College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-01-05

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  19. High Temperature Magneto-Elastic Instability of Dislocations in bcc Iron

    International Nuclear Information System (INIS)

    Dudarev, S.; Bullough, R.; Gilbert, M.; Derlet, P.

    2007-01-01

    Full text of publication follows: Density functional calculations show that the low temperature structure of self-interstitial defects in iron is fundamentally different from the structure of self-interstitial defects in all the other bcc metals. The origin of this anomaly is associated with the magnetic part of the cohesive energy of iron, where the Stoner exchange term stabilizes the body centred cubic phase, and where the magnetic part of energy is strongly affected by the large strain associated with the core region of an interstitial defect. At elevated temperatures magnetic excitations erode the stability of the bcc phase, giving rise to the gradual softening of the 110 transverse acoustic phonon modes and to the α-γ bcc-fcc martensitic phase transition occurring at 912 deg. C at normal pressure. Elastic moduli of bcc iron vary as a function of temperature with c' = (C 11 - c 12 )/2 vanishing at the α-γ transition point. This has significant effects on the magnitude of both the elastic interactions between dislocations and other defects in the material and on the intrinsic structural stability of the dislocations and other defects themselves. To evaluate structural stability of defects at elevated temperatures we investigate elastic self-energies of dislocations in the continuum anisotropic elasticity approximation. We also develop atomistic models of dislocations and point defects based on a generalised form of the magnetic potential. By varying the magnetic part of the potential we are able to reproduce the experimentally observed variation of elastic moduli as a function of temperature, and assess relative stability of various types of defect structures. Our analysis shows that, in complete contrast to other straight dislocations, the elastic self-energy of straight 100 edge dislocations actually sharply decreases as we approach the α-γ transition, indicating that this surprising fact is a probable explanation of the frequent observation of the 100

  20. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    David, Sabrina N.; Zhai, Yao; Zande, Arend M. van der; O'Brien, Kevin; Huang, Pinshane Y.; Chenet, Daniel A.; Hone, James C.; Zhang, Xiang; Yin, Xiaobo

    2015-01-01

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques

  1. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    International Nuclear Information System (INIS)

    Wang, S.; Wang, M.P.; Chen, C.; Xiao, Z.; Jia, Y.L.; Li, Z.; Wang, Z.X.

    2014-01-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compression axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different

  2. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    International Nuclear Information System (INIS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-01-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  3. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Terentyev, Dmitry, E-mail: dterenty@SCKCEN.BE [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Yu, Long; Song, Dingkun [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China)

    2015-11-15

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  4. Allotropic transformation bcc in equilibrium hcp in zirconium

    International Nuclear Information System (INIS)

    Akhtar, A.

    1976-01-01

    The allotropic transformation hcp(α) in equilibrium bcc(β) was examined in crystal bar zirconium. The β → α transformation is massive type in melt grown crystals of β--Zr. Upon thermal cycling through α → β → α the bcc → hcp transformation occurs frequently through a shear process and less frequently through a massive transformation. The presence of α → β transformation substructure may favor the operation of the shear mode. The hcp → bcc phase change occurs through a massive transformation. A lack of transformation memory is associated with the process of thermal cycling. 11 fig., 3 tables

  5. Orientational analysis of dodecanethiol and p-nitrothiophenol SAMs on metals with polarisation-dependent SFG spectroscopy.

    Science.gov (United States)

    Cecchet, Francesca; Lis, Dan; Guthmuller, Julien; Champagne, Benoît; Caudano, Yves; Silien, Christophe; Mani, Alaa Addin; Thiry, Paul A; Peremans, André

    2010-02-22

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitrothiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarisations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarisations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces.

  6. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Science.gov (United States)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  7. Specific oriented metal-organic framework membranes and their facet-tuned separation performance.

    Science.gov (United States)

    Mao, Yiyin; Su, Binbin; Cao, Wei; Li, Junwei; Ying, Yulong; Ying, Wen; Hou, Yajun; Sun, Luwei; Peng, Xinsheng

    2014-09-24

    Modulating the crystal morphology, or the exposed crystal facets, of metal-organic frameworks (MOFs) expands their potential applications in catalysis, adsorption, and separation. In this article, by immobilizing the citrate modulators on Au nanoparticles and subsequently being fixed on solid copper hydroxide nanostrands, a well-intergrown and oriented HKUST-1 cube crystal membrane was formed at room temperature. In contrast, in the absence of Au nanoparticles, well-intergrown and oriented cuboctahedron and octahedron membranes were formed in water/ethanol and ethanol, respectively. The gas separation performances of these HKUST-1 membranes were tuned via their exposed facets with defined pore sizes. The HKUST-1 cube membrane with exposed {001} facets demonstrated the highest permeance but lowest gas binary separation factors, while the octahedron membrane with exposed {111} facets presented the highest separation factors but lowest permeance, since the window size of {111} facets is 0.46 nm which is smaller than 0.9 nm of {001} facets. Separation of 0.38 nm CO2 from 0.55 nm SF6 was realized by the HKUST-1 octahedron membrane. As a proof of concept, this will open a new way to design MOF-related separation membranes by facet controlling.

  8. A systematic study on the interfacial energy of O-line interfaces in fcc/bcc systems

    International Nuclear Information System (INIS)

    Dai, Fuzhi; Zhang, Wenzheng

    2013-01-01

    Habit planes between face-centered cubic (fcc)/body-centered cubic (bcc) phases usually exhibit irrational orientations, which often agree with the O-line criterion. Previously, energy calculation was made to test whether the habit planes were energetically favorable, but the values of the energy were found very sensitive to the initial atomic configuration in an irrationally orientated interface. In this paper, under the O-line condition, simple selection criteria are proposed to define and remove interfacial interstitials and vacancies in the initial atomic configuration. The criteria are proved to be effective in obtaining robust energy results. Interfacial energies of two types of O-line interfaces in fcc/bcc systems are calculated following the criteria. The observed transformation crystallography of precipitates in Ni–Cr and Cu–Cr systems can be explained consistently as the irrational habit plane in each system is associated with the lowest energy O-line interface. (paper)

  9. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC.

    Science.gov (United States)

    Sekulic, Aleksandar; Migden, Michael R; Lewis, Karl; Hainsworth, John D; Solomon, James A; Yoo, Simon; Arron, Sarah T; Friedlander, Philip A; Marmur, Ellen; Rudin, Charles M; Chang, Anne Lynn S; Dirix, Luc; Hou, Jeannie; Yue, Huibin; Hauschild, Axel

    2015-06-01

    Primary analysis from the pivotal ERIVANCE BCC study resulted in approval of vismodegib, a Hedgehog pathway inhibitor indicated for treatment of adults with metastatic or locally advanced basal cell carcinoma (BCC) that has recurred after surgery or for patients who are not candidates for surgery or radiation. An efficacy and safety analysis was conducted 12 months after primary analysis. This was a multinational, multicenter, nonrandomized, 2-cohort study in patients with measurable and histologically confirmed locally advanced or metastatic BCC taking oral vismodegib (150 mg/d). Primary outcome measure was objective response rate (complete and partial responses) assessed by independent review facility. After 12 months of additional follow-up, median duration of exposure to vismodegib was 12.9 months. Objective response rate increased from 30.3% to 33.3% in patients with metastatic disease, and from 42.9% to 47.6% in patients with the locally advanced form. Median duration of response in patients with locally advanced BCC increased from 7.6 to 9.5 months. No new safety signals emerged with extended treatment duration. Limitations include low prevalence of advanced BCC and challenges of designing a study with heterogenous manifestations. The 12-month update of the study confirms the efficacy and safety of vismodegib in management of advanced BCC. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance.

    Science.gov (United States)

    Chen, Alexander Z; Shiu, Michelle; Ma, Jennifer H; Alpert, Matthew R; Zhang, Depei; Foley, Benjamin J; Smilgies, Detlef-M; Lee, Seung-Hun; Choi, Joshua J

    2018-04-06

    Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.

  11. Slip transmission in bcc FeCr polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Patriarca, Luca, E-mail: luca.patriarca@polimi.it [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34, I-20156 Milano (Italy); Abuzaid, Wael; Sehitoglu, Huseyin [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206W. Green St., Urbana, IL 61801 (United States); Maier, Hans J. [Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen (Germany)

    2013-12-20

    Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation–grain boundary interaction (slip transmission) in modeling research.

  12. Fabrication and Evaluation of One-Axis Oriented Lead Zirconate Titanate Films Using Metal-Oxide Nanosheet Interface Layer

    Science.gov (United States)

    Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi

    2013-09-01

    Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.

  13. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  14. The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Friederike

    2007-11-19

    This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)

  15. Calculation of thermodynamic equilibrium between bcc disordered solid solutions U and Mo

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Rubiolo, Gerardo H.

    2003-01-01

    There is actually an interest to develop a new fuel with higher density for research reactors. Fuel plates would be obtained by dispersion, a method that requires both a very dense fuel dispersant (>15.0 g U/cm 3 ) and a very high volume loading of the dispersant (>55%). Dispersants based in gamma (BCC) stabilized uranium alloys are being investigated, as they are able to reach uranium densities of 17.0 g U/cm 3 . Among them, we focus in U(Mo) bcc solid solutions with the addition of ternary elements to stabilize gamma phase. Transition metals, 4d and 5d, of groups VII and VIII are good candidates for the ternary alloy U - Mo - X. Their relative power to stabilize gamma phase seems to be in close relation with bonding energies between atoms in the alloy. A first approach to the calculation of these energies has been performed by the semi empiric method of Miedema where only bonds between pairs are considered, neglecting ternary and quaternary bonds. There is also a lack of information concerning solubilities of the ternary elements in the ternary cubic phase. In this work we aim to calculate bonding energies between atoms in the alloy using a cluster expansion of the formation energy (T=0 K) of a series of bcc ordered compounds in the systems U-Mo-X. Then the calculation of the equilibrium phase diagram by the Cluster Variation Method will be done (CVM). We show here the first part of the investigation devoted to calculation of phases equilibria in the U Mo system Formation energies of the ordered compounds were obtained by the first principles methods TB-LMTO-ASA and FP-LAPW. Another set of bonding energies was calculated in order to fit the known experimental diagram and new formation energies for the ordered compounds were derived from them. Discrepancies between both sets are discussed. (author)

  16. Co thin film with metastable bcc structure formed on GaAs(111 substrate

    Directory of Open Access Journals (Sweden)

    Minakawa Shigeyuki

    2014-07-01

    Full Text Available Co thin films are prepared on GaAs(111 substrates at temperatures ranging from room temperature to 600 ºC by radio-frequency magnetron sputtering. The growth behavior and the detailed resulting film structure are investigated by in-situ reflection high-energy electron diffraction and X-ray diffraction. In early stages of film growth at temperatures lower than 200 ºC, Co crystals with metastable A2 (bcc structure are formed, where the crystal structure is stabilized through hetero-epitaxial growth. With increasing the film thickness beyond 2 nm, the metastable structure starts to transform into more stable A1 (fcc structure through atomic displacements parallel to the A2{110} close-packed planes. The crystallographic orientation relationship between the A2 and the transformed A1 crystals is A1{111} || A2{110}. When the substrate temperature is higher than 400 ºC, Ga atoms of substrate diffuse into the Co films and a Co-Ga alloy with bcc-based ordered structure of B2 is formed.

  17. Control of in-plane texture of body centered cubic metal thin films

    International Nuclear Information System (INIS)

    Harper, J.M.; Rodbell, K.P.; Colgan, E.G.; Hammond, R.H.

    1997-01-01

    We show that dramatically different in-plane textures can be produced in body centered cubic (bcc) metal thin films deposited on amorphous substrates under different deposition conditions. The crystallographic orientation distribution of polycrystalline bcc metal thin films on amorphous substrates often has a strong left-angle 110 right-angle fiber texture, indicating that {110} planes are parallel to the substrate plane. When deposition takes place under bombardment by energetic ions or atoms at an off-normal angle of incidence, the left-angle 110 right-angle fiber texture develops an in-plane texture, indicating nonrandom azimuthal orientations of the crystallites. Three orientations in Nb films have been observed under different deposition geometries, in which the energetic particle flux coincides with channeling directions in the bcc crystal structure. In-plane orientations in Mo films have also been obtained in magnetron sputtering systems with various configurations. These are described, and an example is given in which the in-plane orientation of Mo films deposited in two different in-line magnetron sputtering systems differs by a 90 degree rotation. In these two cases, there is a strong left-angle 110 right-angle fiber texture, but the in-plane left-angle 100 right-angle direction is oriented parallel to the scan direction in one system, and perpendicular to the scan direction in the other system. The conditions which produce such different in-plane textures in two apparently similar sputtering systems are discussed. copyright 1997 American Institute of Physics

  18. Uranium-throium isotopes and transition metal fluxes in two oriented manganese nodules from the Central Indian Basin: implications for nodule turnover

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    turnover. Mar. Geol., 95:71-76. Transition metal fluxes to the top and bottom of two oriented manganese nodules (SS-657 and SK-176) were deter- mined by combining radiochemical and geochemical analyses. Distinct differences in transition metal fluxes, 2a... of rotation of the nodule several times over time intervals which are smaller than the time resolution involved in U-Th isotope dating techniques. Introduction orientation of a nodule, the turnover exposing the accreting surfaces to different environ...

  19. Multiscale modeling of dislocation processes in BCC tantalum: bridging atomistic and mesoscale simulations

    International Nuclear Information System (INIS)

    Yang, L H; Tang, M; Moriarty, J A

    2001-01-01

    Plastic deformation in bcc metals at low temperatures and high-strain rates is controlled by the motion of a/2 screw dislocations, and understanding the fundamental atomistic processes of this motion is essential to develop predictive multiscale models of crystal plasticity. The multiscale modeling approach presented here for bcc Ta is based on information passing, where results of simulations at the atomic scale are used in simulations of plastic deformation at mesoscopic length scales via dislocation dynamics (DD). The relevant core properties of a/2 screw dislocations in Ta have been obtained using quantum-based interatomic potentials derived from model generalized pseudopotential theory and an ab-initio data base together with an accurate Green's-function simulation method that implements flexible boundary conditions. In particular, the stress-dependent activation enthalpy for the lowest-energy kink-pair mechanism has been calculated and fitted to a revealing analytic form. This is the critical quantity determining dislocation mobility in the DD simulations, and the present activation enthalpy is found to be in good agreement with the previous empirical form used to explain the temperature dependence of the yield stress

  20. Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal-organic framework (ZMOF) with rho topology

    KAUST Repository

    Shekhah, Osama; Cadiau, Amandine; Eddaoudi, Mohamed

    2015-01-01

    Here we report the fabrication of the first thin film of a zeolite-like metal-organic framework (ZMOF) with rho topology (rho-ZMOF-1, ([In48(HImDC)96]48-)n) in a highly oriented fashion on a gold-functionalized substrate. The oriented rho-ZMOF-1

  1. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  2. The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Rodney, David

    2006-01-01

    We present atomic-scale simulations of screw dislocation glide in bcc iron. Using two interatomic potentials that, respectively, predict degenerate and non-degenerate core structures, we compute the static 0 K dependence of the screw dislocation Peierls stress on crystal orientation and show strong boundary condition effects related to the generation of non-glide stress components. At finite temperatures we show that, with a non-degenerate core, glide by nucleation/propagation of kink-pairs in a {1 1 0} glide plane is obtained at low temperatures. A transition in the twinning region, towards an average {1 1 2} glide plane, with the formation of debris loops is observed at higher temperatures

  3. Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition Metal Dichalcogenides

    KAUST Repository

    Aljarb, Areej; Cao, Zhen; Tang, Hao-Ling; Huang, Jing-Kai; Li, Mengliu; Hu, Weijin; Cavallo, Luigi; Li, Lain-Jong

    2017-01-01

    affecting the seed formation and orientation becomes an important issue for controlling the growth. Here, we systematically study the growth of molybdenum disulfide (MoS2) monolayer on c-plane sapphire with chemical vapor deposition (CVD) to discover

  4. Magnetism of CrO overlayers on Fe(001)bcc surface: first principles calculations

    Science.gov (United States)

    Félix-Medina, Raúl Enrique; Leyva-Lucero, Manuel Andrés; Meza-Aguilar, Salvador; Demangeat, Claude

    2018-04-01

    Riva et al. [Surf. Sci. 621, 55 (2014)] as well as Calloni et al. [J. Phys.: Condens. Matter 26, 445001 (2014)] have studied the oxydation of Cr films deposited on Fe(001)bcc through low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy. In the present work we perform a density functional approach within Quantum Expresso code in order to study structural and magnetic properties of CrO overlayers on Fe(001)bcc. The calculations are performed using DFT+U. The investigated systems include O/Cr/Fe(001)bcc, Cr/O/Fe(001)bcc, Cr0.25O0.75/Fe(001)bcc, as well as the O coverage Ox/Cr/Fe(001)bcc (x = 0.25; 0.50). We have found that the ordered CrO overlayer presents an antiferromagnetic coupling between Cr and Fe atoms. The O atoms are located closer to the Fe atoms of the surface than the Cr atoms. The ground state of the systems O/Cr/Fe(001)bcc and Cr/O/Fe(001)bcc corresponds to the O/Cr/Fe(001)bcc system with a magnetic coupling c(2 × 2). The effect of the O monolayer on Cr/Fe(001)bcc changes the ground state from p(1 × 1) ↓ to c(2 × 2) and produces an enhancement of the magnetic moments. The Ox overlayer on Cr/Fe(001)bcc produces an enhancement of the Cr magnetic moments.

  5. Pre-melting hcp to bcc Transition in Beryllium

    OpenAIRE

    Lu, Y.; Sun, T.; Zhang, Ping.; Zhang, P.; Zhang, D. -B.; Wentzcovitch, R. M.

    2017-01-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to X-ray equipments. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp to bcc transition occurs near the melting curve at 0

  6. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  7. Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2018-02-01

    Full Text Available An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of an infinitely thin metal plate in the lower terahertz (THz frequency region. In this region, the metal plate can be viewed as a perfect electrically conductive object with a marginally rough surface. Hence, the THz scattered field from the metal plate can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are used to compute the coherent part, whereas the small perturbation method is used to compute the incoherent part. Then, the radar cross section of the rough metal plate surface is computed by the multilevel fast multipole and proposed hybrid algorithms. The numerical results show that the proposed algorithm has a good accuracy when rapidly simulating the scattering properties in the lower THz region.

  8. Orientation correlations in metal structures from the micrometer to nanometer range

    DEFF Research Database (Denmark)

    Juul Jensen, D.; Bowen, Jacob R.; Mishin, Oleg

    2005-01-01

    Distributions of boundary misorientations in aluminium are measured as a function of deformation for strains up to 10. These experimental distributions are compared to misorientation distributions generated from a random mix of orientations present in the microstructure. It is found that for all ...

  9. Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals

    NARCIS (Netherlands)

    Wouters, Onne; Vellinga, WP; van Tijum, Redmer; De Hosson, JTM

    Surface roughening during tensile deformation of polycrystalline aluminum, iron and zinc is investigated using white light confocal microscopy and orientation imaging microscopy. A height-height correlation technique is used to analyze the data. The surface obeys self-affine scaling on length scales

  10. New orientation formation and growth during primary recrystallization in stable single crystals of three face-centred cubic metals

    International Nuclear Information System (INIS)

    Miszczyk, M.; Paul, H.; Driver, J.H.; Maurice, C.

    2015-01-01

    Graphical abstract: For Ni, Cu and Cu-2%Al and (1 1 0)[0 0 −1] and (1 1 0)[1 −1 −2] initial orientations at the initial stages of recrystallization, the appearance of a specific number of new orientation groups of new grains has been demonstrated. The orientation relations across the recrystallization front are characterized by a high proportion of angles in the range 25–35° and 45–55° around axes mostly grouped about the 〈1 2 2〉, 〈1 1 1〉, 〈1 2 3〉 and 〈1 1 2〉 directions. A local minimum was noted for the disorientation angle densities close to 40° in all cases. For a single isolated nucleus of uniform orientation, the rotation axes are usually grouped around one of the normals of all four {1 1 1} planes but do not (or only rarely) coincide with them. The orientation of the growing new grain quickly transforms through the formation of a first generation twins. The most frequent situation occurs when the normal of the twinning face plane is situated near the rotation axis, around which the crystal lattice of the ‘primary nuclei’ rotates. Based on the anisotropy of grain growth a possible mechanism of orientation generation and grain growth by thermally activation movement of dislocation families, on {1 1 1} planes is proposed. - Abstract: The early stages of recrystallization have been systematically characterized in single crystal metals of medium and low stacking fault energy. Goss {1 1 0}〈0 0 1〉 and brass {1 1 0}〈1 1 2〉 oriented samples of Ni, Cu and Cu–2 wt.% Al alloy were deformed in a channel die to a logarithmic strain of 0.51 to develop a homogeneous structure composed of two sets of symmetrical primary microbands and then lightly annealed. Scanning electron microscopy/electron backscattered diffraction analyses demonstrate a strong relation between as-deformed orientations and the limited number of recrystallized grain orientations. The disorientation angles across the recrystallization front are mostly grouped in

  11. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  12. Evolution of Non-metallic Inclusions and Precipitates in Oriented Silicon Steel

    Science.gov (United States)

    Luo, Yan; Yang, Wen; Ren, Qiang; Hu, Zhiyuan; Li, Ming; Zhang, Lifeng

    2018-06-01

    The evolution of inclusions in oriented silicon steel during the manufacturing process was carried out by chemical composition analysis, non-aqueous electrolytic corrosion, and thermodynamic calculation. The morphology, composition, and size of inclusions were analyzed introducing field emission scanning electron microscope. The oxides were mainly formed during the secondary refining, and the nitrides, sulfides, and compounds were formed during the solidification and cooling of steel in the processes of continuous casting and hot rolling.

  13. The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ → hcp ε → bcc α′ martensitic phase transformation

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Sun, Sheng; Zhang, Tong-Yi

    2015-01-01

    High Resolution Transmission Electron Microscopy (HRTEM) and Molecular Dynamics (MD) simulations were conducted here to study the plastic deformation induced γ (fcc) → ε (hcp) → α′ (bcc) martensitic transformation in 304 stainless steels for the α′ nucleation from single hcp-ε laths. Results elucidate that the underlying microscopic mechanism for the α′ nucleation from single hcp-ε laths obeys the Bogers–Burgers–Olson–Cohen “3T/8–T/3” model. In particular, the atomic-scale observations clearly show the Kurdyumov–Sachs (K–S) lattice orientation relation (OR) and Pitsch OR at the γ/α′ interfaces, the lattice rotation inside an α′ martensitic inclusion, the transition lattice and the reverse shear-shuffling induced continuous lattice elastic deformation at the diffuse ε/α′ interface, which caters the 3T/8 and T/3 shears and sheds atomic process insight into the mechanism of the martensitic transformation

  14. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  15. Toughening MoSi2 with Niobium metal -- Effects of size and orientation of ductile laminae

    International Nuclear Information System (INIS)

    Shaw, L.; Abbaschian, R.

    1994-01-01

    Effects of size and orientation of ductile laminae on the toughness of brittle matrix composites have been evaluated using MoSi 2 composites reinforced with Nb laminae. Nb laminae with thicknesses ranging from 0.127 to 1.0 mm were hot pressed with MoSi 2 powder to prepare the composites. Toughness of the composites was measured using four-point bend test on chevron-notched specimens. It was found that the toughness of the composites increased with increasing size of the niobium laminae. Furthermore, toughening was observed at crack propagation directions perpendicular to the laminae plane, indicating that ductile laminae offer two dimensional toughening. A model based on the bridging contribution of the ductile phase has been proposed to analyze the chevron-notched specimens of the ductile-phase-reinforced brittle matrix composites. The analysis showed that the dependence of the toughness of the composites on the size and orientation of the ductile laminae could be interpreted in terms of their bridging capability and bending contributions

  16. Recycling-Oriented Product Characterization for Electric and Electronic Equipment as a Tool to Enable Recycling of Critical Metals

    Science.gov (United States)

    Rotter, Vera Susanne; Chancerel, Perrine; Ueberschaar, Maximilian

    To establish a knowledge base for new recycling processes of critical elements, recycling-orientated product characterization for Electric and Electronic Equipment (EEE) can be used as a tool. This paper focuses on necessary data and procedures for a successful characterization and provides information about existing scientific work. The usage of this tool is illustrated for two application: Hard Disk Drives (HDD) and Liquid Crystal Display (LCD) panels. In the first case it could be shown that Neodymium and other Rare Earth Elements are concentrated in magnets (25% by weight) and contribute largely to the end demand of Neodymium. Nevertheless, recycling is limited by the difficult liberation and competing other target metals contained in HDD. In the second case it could be shown that also for this application the usage of Indium is concentrated in LCDs, but unlike in magnets the concentration is lower (200 ppm). The design of LCDs with two glued glass layers and the Indium-Tin-Oxide layer in between make the Indium inaccessible for hydro-metallurgical recovery, the glass content puts energetic limitations on pyro-metallurgical processes. For the future technical development of recycling infrastructure we need an in depth understanding of product design and recycling relevant parameters for product characterization focusing on new target metals. This product-centered approach allows also re-think traditional "design for recycling" approaches.

  17. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    Science.gov (United States)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  18. An analytic n-body potential for bcc Iron

    Energy Technology Data Exchange (ETDEWEB)

    Pontikis, V. [Commissariat a l' Energie Atomique, DRECAM/LSI, CE de Saclay, Building 524, Room 40B, 91191 Gif-sur-Yvette Cedex (France)]. E-mail: Vassilis.Pontikis@cea.fr; Russier, V. [Centre d' Etudes de Chimie Metallurgique, CNRS UPR2801, 94407 Vitry-sur-Seine (France); Wallenius, J. [Royal Institute of Technology, Department of Nuclear and Reactor Physics, Stockholm (Sweden)

    2007-02-15

    We have developed an analytic n-body phenomenological potential for bcc iron made of two electron-density functionals representing repulsion via the Thomas-Fermi free-electron gas kinetic energy term and attraction via a square root functional similar to the second moment approximation of the tight-binding scheme. Electron-density is given by radial, hydrogen-like orbitals with effective charges taken as adjustable parameters fitted on experimental and ab-initio data. Although the set of adjustable parameters is small, prediction of static and dynamical properties of iron is in excellent agreement with the experiments. Advantages and shortcomings of this model are discussed with reference to published works.

  19. An analytic n-body potential for bcc Iron

    International Nuclear Information System (INIS)

    Pontikis, V.; Russier, V.; Wallenius, J.

    2007-01-01

    We have developed an analytic n-body phenomenological potential for bcc iron made of two electron-density functionals representing repulsion via the Thomas-Fermi free-electron gas kinetic energy term and attraction via a square root functional similar to the second moment approximation of the tight-binding scheme. Electron-density is given by radial, hydrogen-like orbitals with effective charges taken as adjustable parameters fitted on experimental and ab-initio data. Although the set of adjustable parameters is small, prediction of static and dynamical properties of iron is in excellent agreement with the experiments. Advantages and shortcomings of this model are discussed with reference to published works

  20. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  1. Nanoscale orientation and lateral organization of chimeric metal-binding green fluorescent protein on lipid membrane determined by epifluorescence and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Isarankura Na Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Epifluorescence microscopy as well as atomic force microscopy was successfully applied to explore the orientation and lateral organization of a group of chimeric green fluorescent proteins (GFPs) on lipid membrane. Incorporation of the chimeric GFP carrying Cd-binding region (His6CdBP4GFP) to the fluid phase of DPPC monolayer resulted in a strong fluorescence intensity at the air-water interface. Meanwhile, non-specific adsorption of the GFP having hexahistidine (His6GFP) led to the perturbation of the protein structure in which very low fluorescence was observed. Specific binding of both of the chimeric GFPs to immobilized zinc ions underneath the metal-chelating lipid membrane was revealed. This specific binding could be reversibly controlled by addition of metal ions or metal chelator. Binding of the chimeric GFPs to the metal-chelating lipid membrane was proven to be the end-on orientation while the side-on adsorption was contrarily noted in the absence of metal ions. Increase of lateral mobility owing to the fluidization effect on the chelating lipid membrane subsequently facilitated crystal formation. All these findings have opened up a potential approach for a specific orientation of immobilization of protein at the membrane interface. This could have accounted for a better opportunity of sensor development

  2. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Science.gov (United States)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  3. The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997-2010.

    Science.gov (United States)

    Nguyen-Nielsen, Mary; Wang, Lisa; Pedersen, Lars; Olesen, Anne Braae; Hou, Jeannie; Mackey, Howard; McCusker, Margaret; Basset-Seguin, Nicole; Fryzek, Jon; Vyberg, Mogens

    2015-01-01

    Few data exist on the occurrence of metastatic basal cell carcinoma (mBCC). To identify all cases of mBCC in Denmark over a 14-year period. We searched the Danish National Patient Registry covering all Danish hospitals, the Danish Cancer Registry, the National Pathology Registry and the Causes of Death Registry during the period 1997 to 2010 for potential cases of mBCC registered according to the International classification of diseases ICD-10 and the International Systemized Nomenclature of Medicine (SNOMED). We identified 126,627 patients with a history of primary basal cell carcinoma (BCC) in the registries during the 14-year study period. Using case identifications from the four registries, a total of 170 potential mBCC cases were identified. However, after a pathology review, only five cases could be confirmed, of which three were basosquamous carcinomas. The 14-year cumulative incidence proportion of mBCC was 0.0039% (95% CI 0.0016-0.0083) among individuals with a history of previous BCC (n = 126,627) and 0.0001% (95% CI 0.0000-0.0002) in the general population. MBCC is a rare disease and only a small proportion of potential cases identified in automated clinical databases or registries can be confirmed by pathology and medical record review.

  4. Evaluate and Analysis Efficiency of Safaga Port Using DEA-CCR, BCC and SBM Models-Comparison with DP World Sokhna

    Science.gov (United States)

    Elsayed, Ayman; Shabaan Khalil, Nabil

    2017-10-01

    The competition among maritime ports is increasing continuously; the main purpose of Safaga port is to become the best option for companies to carry out their trading activities, particularly importing and exporting The main objective of this research is to evaluate and analyze factors that may significantly affect the levels of Safaga port efficiency in Egypt (particularly the infrastructural capacity). The assessment of such efficiency is a task that must play an important role in the management of Safaga port in order to improve the possibility of development and success in commercial activities. Drawing on Data Envelopment Analysis(DEA)models, this paper develops a manner of assessing the comparative efficiency of Safaga port in Egypt during the study period 2004-2013. Previous research for port efficiencies measurement usually using radial DEA models (DEA-CCR), (DEA-BCC), but not using non radial DEA model. The research applying radial - output oriented (DEA-CCR), (DEA-BCC) and non-radial (DEA-SBM) model with ten inputs and four outputs. The results were obtained from the analysis input and output variables based on DEA-CCR, DEA-BCC and SBM models, by software Max DEA Pro 6.3. DP World Sokhna port higher efficiency for all outputs were compared to Safaga port. DP World Sokhna position is below the southern entrance to the Suez Canal, on the Red Sea, Egypt, makes it strategically located to handle cargo transiting through one of the world's busiest commercial waterways.

  5. Helium bubbles in bcc Fe and their interactions with irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Xiao, E-mail: X.Gai@lboro.ac.uk; Lazauskas, Tomas; Smith, Roger; Kenny, Steven D.

    2015-07-15

    The properties of helium bubbles in a body-centred cubic (bcc) Fe lattice have been examined. The atomic configurations and formation energies of different He–vacancy complexes were determined. The 0 K results show that the most energetically favourable He to Fe vacancy ratio increases from about 1:1 for approximately 5 vacancies up to about 4:1 for 36 vacancies. The formation mechanisms for small He clusters have also been considered. Isolated interstitials and small clusters can diffuse quickly through the lattice. MD simulations of randomly placed interstitial He atoms at 500 K showed clustering over the time scale of nanoseconds with He clusters containing up to 4 atoms being mobile over this time scale. He clusters containing 4 or 5 atoms were shown to eject an Fe dumbbell interstitial which could then detach from the He cluster and diffuse with the remaining He–vacancy complex being effectively immobile. Collision cascades initiated near larger bubbles showed that Fe vacancies produced by the cascades readily become part of the He–vacancy complexes. Energy barriers for He to join an existing bubble as a function of the He–vacancy ratio are also calculated. These can be larger than the diffusion barrier in the pristine lattice, but are lower when the bubbles contain excess vacancies, thus indicating that bubble growth may be kinetically constrained.

  6. Vacancy formation enthalpies in bcc and fcc FeCo by positron annihilation

    International Nuclear Information System (INIS)

    Jackman, J.A.; Kim, S.M.; Buyers, W.J.L.

    1982-01-01

    A long slit angular correlation apparatus was used to measure the peak coincidence count rate in stoichiometric FeCo from 290 K to 1510 K. The count rate did not change significantly at the order-disorder phase transition (1008 K), but decreased sharply by 3.2% at the bcc-fcc phase transition at 1258 K. The threshold temperatures for the trapping of positrons in vacancies are measured to be 1125 K for the bcc phase and 1260 K for the fcc phase. The vacancy formation enthalpies in the bcc and fcc phases are determined to be 1.45 +- 0.05 eV and 1.63 +- 0.05 eV. The activation energies for self-diffusion have been estimated from the threshold temperatures, and are found to be 2.45 eV and 2.74 eV for the bcc and fcc phases respectively. (Auth.)

  7. Deposition of metal-organic frameworks by liquid-phase epitaxy: The influence of substrate functional group density on film orientation

    KAUST Repository

    Liu, J.

    2012-09-05

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4\\'-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  8. Deposition of metal-organic frameworks by liquid-phase epitaxy: The influence of substrate functional group density on film orientation

    KAUST Repository

    Liu, J.; Shekhah, O.; Stammer, X.; Arslan, H.K.; Liu, B.; Schupbach, B.; Terfort, A.; Woll, C.

    2012-01-01

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4'-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  9. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation

    Science.gov (United States)

    Liu, Jinxuan; Shekhah, Osama; Stammer, Xia; Arslan, Hasan K.; Liu, Bo; Schüpbach, Björn; Terfort, Andreas; Wöll, Christof

    2012-01-01

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4’-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  10. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation

    Directory of Open Access Journals (Sweden)

    Christof Wöll

    2012-09-01

    Full Text Available The liquid phase epitaxy (LPE of the metal-organic framework (MOF HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA, 4’-carboxyterphenyl-4-methanethiol (TPMTA and 9-carboxy-10-(mercaptomethyltriptycene (CMMT. The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100 direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111 direction.

  11. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  12. Fission-neutron displacement cross sections in metals

    International Nuclear Information System (INIS)

    Takamura, Saburo; Aruga, Takeo; Nakata, Kiyotomo

    1985-01-01

    The sensitivity damage rates for 22 metals were measured after fission-spectrum neutron irradiation at low temperature and the experimental damage rates were compared with the theoretical calculation. The relation between the theoretical displacement cross section and the atomic weight of metals can be written by two curves; one is for fcc and hcp metals, and another is for bcc metals. On the other hand, the experimental displacement cross section versus atomic weight is shown approximately by a curve for both fcc and bcc metals, and the cross section for hcp metals deviates from the curve. The defect production efficiency is 0.3-0.4 for fcc metals and 0.6-0.8 for bcc metals. (orig.)

  13. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang; Bü rck, Jochen; Bihlmeier, Angela; Liu, Jinxuan; Shekhah, Osama; Weidler, Peter G.; Azucena, Carlos; Wang, Zhengbang; Heiß ler, Stefan; Gliemann, Hartmut; Klopper, Wim; Ulrich, Anne S.; Wö ll, Christof H.

    2014-01-01

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  16. Energy barrier of bcc-fcc phase transition via the Bain path in Yukawa system

    Science.gov (United States)

    Kiyokawa, Shuji

    2018-05-01

    In the Yukawa system with the dimensionless screening parameter κ>1.5 , when bcc-fcc transition occurs via Bain path, we show that spontaneous transitions do not occur even if the system temperature reaches the transition point of bcc-fcc because it is necessary to increase once the free energy in the process of transition from bcc to fcc through Bain deformation. Here, we refer the temporary increment of the free energy during Bain deformation as Bain barrier. Since there are the Bain barriers at the transitions between bcc and fcc phases, these phases may coexist as metastable state in the wide region (not a coexistence line) of κ and the coupling constant Γ. We study the excess energy of the system and the free energy difference between bcc and fcc phases by the Monte Carlo method, where the simulation box is divided into a large number of elements with small volume and a particle in the box is restricted be placed in one of these elements. By this method, we can tabulate the values of the interparticle potential and can calculate the internal energy fast and precisely.

  17. Biological changes of APA-BCC analgesic microcapsule in cerebrospinal fluid of patients with carcinomatous pain

    International Nuclear Information System (INIS)

    Luo Yun; Li Yanling; Xue Yilong; Guo Shulong; Gao Yuhong; Cui Xin

    2005-01-01

    To explore the changes of alginate-polylysine-alginate microcapsulated bovine adrenal medullary chromaffin cells (APA-BCC microcapsules) in morphology, survival rate and leucine- enkephalin secretion after they were transplanted into CSF of cancerpain patients, the APA- BCC microcapsules were Implanted into cavitas subarachnoidealis of cancer-pain patients by conventional lumbar puncture. After 7 or 8 days, cerebrospinal fluid was collected and the morphology of the APA-BCC microcapsule, the survival rate of cells were observed and secretory volume of leucine-enkephalin was assayed by radioimmunity method. Seven days after trans- plantation, the mean VAS decreased from 8.8 to 2.4, the survival rate of cells averagely reduced from 91.2% to 89.1%, morphology of APA-BCC microcapsules did not change obviously and secretory volume of leucine-enkephalin went up 1.65 times compared with that at pretrans- plantation. In conclusion, APA-BCC can survive, secret leucine-enkephalin and produce analgesic effect after transplanted into CSF of cancer-patients. (authors)

  18. Magnetic properties of metastable bcc and fcc Fe-Cu alloys produced by vapor quenching

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Yoshitake, Tsutomu; Nakamura, Yoji

    1984-01-01

    High concentration Fesub(1-x)Cusub(x) alloys have been obtained by rf sputtering technique and investigated by X-ray diffraction and magnetization measurements. The bcc phase is extended over the region with x=0-0.4, while the fcc phase with x=0.6-1.0. For x=0.4-0.6, we have the mixed phase of bcc and fcc. The lattice constant of bcc phase increases slightly and that of fcc phase decreases with increasing x. In the bcc alloys, the average magnetic moment decreases with increasing x and deviates upwards from the simple dilution law. In the fcc alloys, the magnetic moment also decreases with increasing x but it deviates downwards from the simple dilution law. The Curie temperature, Tsub(c), of the Fesub(1-x)Cusub(x) alloys decreases abruptly with increasing x: Tsub(c) is higher than 750 K for the bcc alloys, while it is lower than 320 K for the fcc alloys and become 0 K at about x=0.92. (author)

  19. The study on binary Mg-Co hydrogen storage alloys with BCC phase

    International Nuclear Information System (INIS)

    Zhang Yao; Tsushio, Yoshinori; Enoki, Hirotoshi; Akiba, Etsuo

    2005-01-01

    Novel Mg-Co binary alloys were successfully synthesized by mechanical alloying. These alloys were studied by X-ray diffraction (XRD), transmission electron micrograph (TEM), pressure-composition-isotherms measurements (P-C-T) and differential scanning calorimetry (DSC). Both XRD Rietveld analysis and TEM observation confirmed that these binary alloys contain BCC phase and that the BCC phase existed in the range from 37 to 80 at.% Co. The lattice parameter of the BCC phase increased with the increase of the Co content from 37 to 50 at.%. When the Co content reached 50 at.%, the lattice parameter reached a maximum value, and then turned to decrease gradually with further increase of the Co content. Most of Mg-Co BCC alloys absorbed hydrogen at 373 K under 6 MPa of hydrogen pressure. The Mg 60 Co 40 alloy showed the highest hydrogen absorption capacity, about 2.7 mass% hydrogen. However, all the Mg-Co alloys studied did not desorb hydrogen at 373 K. By means of DSC measurements and in situ XRD analysis, it was found that under 4 MPa hydrogen atmosphere, Mg 50 Co 50 alloy transformed from BCC solid solution to Mg 2 CoH 5 tetragonal hydride at 413 K

  20. Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal-organic framework (ZMOF) with rho topology

    KAUST Repository

    Shekhah, Osama

    2015-01-01

    Here we report the fabrication of the first thin film of a zeolite-like metal-organic framework (ZMOF) with rho topology (rho-ZMOF-1, ([In48(HImDC)96]48-)n) in a highly oriented fashion on a gold-functionalized substrate. The oriented rho-ZMOF-1 film was functionalized by non-covalent modification via post-synthetic exchange of different probe molecules, such as acridine yellow, methylene blue, and Nile red. In addition, encapsulation of a porphyrin moiety was achieved via in situ synthesis and construction of the rho-ZMOF. Adsorption kinetics of volatile organic compounds on rho-ZMOF-1 thin films was also investigated. This study suggests that rho-ZMOF-1 thin films can be regarded as a promising platform for various applications such as sensing and catalysis. This journal is

  1. Proceedings of the 4th seminar of R and D on advanced ORIENT 'strategy and technical requirement for new resource of noble metals in advanced atomic energy science'

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yuji; Koyama, Shinichi; Ozawa, Masaki [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, Tokai, Ibaraki (Japan)

    2010-12-15

    The 4th Seminar of R and D on advanced ORIENT, 'Strategy and technical requirement for new resource of noble metals in advanced atomic energy science' was held in Swany hall, Rokkasho-Mura, on July 30th, 2010 organized by Japan Atomic Energy Agency. The first meeting of this seminar was held at Oarai, Ibaraki on May, 2007, the second seminar was held at Tokai, on November, 2008, and the third seminar was held at Sendai, on October, 2009. Spent nuclear fuel should be recognized as not only mass of radioactive elements but also potentially useful materials including platinum metals and rare earth elements. Taking the cooperation with universities related companies and research institutes, into consideration, we aimed at expanding and progressing the basic researches. In this seminar, there are many poster presentation included, and the useful discussion with many students are performed. This report records abstracts and figures submitted from the oral speakers in this seminar. (author)

  2. Proceedings of the 4th seminar of R and D on advanced ORIENT 'strategy and technical requirement for new resource of noble metals in advanced atomic energy science'

    International Nuclear Information System (INIS)

    Sasaki, Yuji; Koyama, Shinichi; Ozawa, Masaki

    2010-12-01

    The 4th Seminar of R and D on advanced ORIENT, 'Strategy and technical requirement for new resource of noble metals in advanced atomic energy science' was held in Swany hall, Rokkasho-Mura, on July 30th, 2010 organized by Japan Atomic Energy Agency. The first meeting of this seminar was held at Oarai, Ibaraki on May, 2007, the second seminar was held at Tokai, on November, 2008, and the third seminar was held at Sendai, on October, 2009. Spent nuclear fuel should be recognized as not only mass of radioactive elements but also potentially useful materials including platinum metals and rare earth elements. Taking the cooperation with universities related companies and research institutes, into consideration, we aimed at expanding and progressing the basic researches. In this seminar, there are many poster presentation included, and the useful discussion with many students are performed. This report records abstracts and figures submitted from the oral speakers in this seminar. (author)

  3. Atomistic simulation of fcc—bcc phase transition in single crystal Al under uniform compression

    International Nuclear Information System (INIS)

    Li Li; Liang Jiu-Qing; Shao Jian-Li; Duan Su-Qing; Li Yan-Fang

    2012-01-01

    By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density functional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111-bar) plane and the (11-bar1) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution function analysis explicitly indicates the phase transition of Al from fcc phase to bcc structure. (condensed matter: structural, mechanical, and thermal properties)

  4. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  5. Kinetics of disorder-to-fcc phase transition via an intermediate bcc state

    International Nuclear Information System (INIS)

    Liu Yongsheng; Nie Huifen; Bansil, Rama; Steinhart, Milos; Bang, Joona; Lodge, Timothy P.

    2006-01-01

    Time-resolved small-angle x-ray scattering measurements reveal that a long-lived intermediate bcc state forms when a poly(styrene-b-isoprene) diblock copolymer solution in an isoprene selective solvent is rapidly cooled from the disordered micellar fluid at high temperature to an equilibrium fcc state. The kinetics of the epitaxial growth of the [111] fcc peak from the [110] bcc peak was obtained by fitting the scattering data to a simple model of the transformation. The growth of the [111] fcc peak agrees with the Avrami model of nucleation and growth kinetics with an exponent n=1.4, as does the initial decay of the [110] bcc peak, with an exponent n=1.3. The data were also found to be in good agreement with the Cahn model of grain boundary nucleation and growth

  6. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application

    Science.gov (United States)

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-01-01

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. PMID:28773757

  7. Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Shijian Zhou

    2018-02-01

    Full Text Available Ordered mesoporous silicas (OMSs attract considerable attention due to their advanced structural properties. However, for the pristine silica materials, the inert property greatly inhibits their catalytic applications. Thus, to contribute to the versatile surface of OMSs, different metal active sites, including acidic/basic sites and redox sites, have been introduced into specific locations (mesoporous channels and framework of OMSs and the metal-functionalized ordered mesoporous silicas (MOMSs show great potential in the catalytic applications. In this review, we first present the categories of metal active sites. Then, the synthesized processes of MOMSs are thoroughly discussed, in which the metal active sites would be introduced with the assistance of organic groups into the specific locations of OMSs. In addition, the structural morphologies of OMSs are elaborated and the catalytic applications of MOMSs in the oxidation of aromatic compounds are illustrated in detail. Finally, the prospects for the future development in this field are proposed.

  8. Deposition of highly oriented (K,Na)NbO3 films on flexible metal substrates

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Thydén, Karl; Bowen, Jacob R.

    2018-01-01

    In view of developing flexible, highly textured Pb-free piezoelectric thin films, (K,Na)NbO3 was deposited by chemical solution deposition on cube-textured Ni-W alloy substrates. After heat treatment, a strong (001)pc out-of-plane preferential orientation is created in the (K,Na)NbO3 layer, which...

  9. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    Science.gov (United States)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of /{100} and /{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of /{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in /{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in /{111} shows higher strength and elastic modulus than /{100} oriented nanowire.

  10. Influence of Substrate on Crystal Orientation of Large-Grained Si Thin Films Formed by Metal-Induced Crystallization

    Directory of Open Access Journals (Sweden)

    Kaoru Toko

    2015-01-01

    Full Text Available Producing large-grained polycrystalline Si (poly-Si film on glass substrates coated with conducting layers is essential for fabricating Si thin-film solar cells with high efficiency and low cost. We investigated how the choice of conducting underlayer affected the poly-Si layer formed on it by low-temperature (500°C Al-induced crystallization (AIC. The crystal orientation of the resulting poly-Si layer strongly depended on the underlayer material: (100 was preferred for Al-doped-ZnO (AZO and indium-tin-oxide (ITO; (111 was preferred for TiN. This result suggests Si heterogeneously nucleated on the underlayer. The average grain size of the poly-Si layer reached nearly 20 µm for the AZO and ITO samples and no less than 60 µm for the TiN sample. Thus, properly electing the underlayer material is essential in AIC and allows large-grained Si films to be formed at low temperatures with a set crystal orientation. These highly oriented Si layers with large grains appear promising for use as seed layers for Si light-absorption layers as well as for advanced functional materials.

  11. Experimental observations elucidating the mechanisms of structural bcc-hcp transformations in ?-Ti alloys

    NARCIS (Netherlands)

    Van Bohemen, S.M.C.; Sietsma, J.; Van der Zwaag, S.

    2006-01-01

    The formation mechanisms of two hcp ? phase morphologies in Ti-4.5Fe-6.8Mo-1.5Al have been investigated by optical microscopy (OM), atomic force microscopy (AFM), electron probe microanalysis (EPMA) and dilatometry. At relatively high temperatures primary ? forms predominantly on prior bcc ? grain

  12. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor

    2014-06-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  13. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  14. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  15. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor; Csé bfalvi, Balá zs; Rautek, Peter; Grö ller, Eduard M.

    2014-01-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  16. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    Science.gov (United States)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  17. Hirsutane Sesquiterpenes from Cultures of the Basidiomycete Marasmiellus sp. BCC 22389

    Directory of Open Access Journals (Sweden)

    Masahiko Isaka

    2016-08-01

    Full Text Available Abstract Two new hirsutane sesquiterpenes, marasmiellins A (1 and B (2, were isolated from cultures of the basidiomycete Marasmiellus sp. BCC 22389. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. The absolute configuration of marasmiellin B was determined by application of the modified Mosher’s method. Graphical Abstract

  18. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  19. Solubility of hydrogen and deuterium in bcc-uranium-titanium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Kirkpatrick, J.R.

    1996-01-01

    For the bcc-U-Ti alloy system, H and D solubility measurements have been made on 12 alloy specimens ranging in composition from pure U to pure Ti and temperature range bounded by 900 K to 1,500 K. The results are described by a model within a standard error of 3%

  20. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot...

  1. A new approach to texture measurements: Orientation distribution function (ODF) determination by Rietveld refinement

    International Nuclear Information System (INIS)

    Vondreele, R.; Larson, A.; Lawson, A.; Sheldon, R.; Wright, S.

    1996-01-01

    The preferred orientation of crystal grains within a manufactured part is described most fully by its orientation distribution function (ODF), which is a mapping of the probability of each of the possible grain orientations with respect to the exterior dimensions. Traditionally, an ODF is determined from pole figures for a relatively small number of reflections. These pole figures are measured with x-rays or neutrons using short detector scans over the center of an individual diffraction peak for a large number of different sample orientations. This is efficient if the selected diffraction peaks are reasonably strong (relative to background) and well separated, such as in pure fcc and bcc metals. It is also appropriate for constant wavelength sources where collection of individual diffraction peak intensities is a reasonably efficient use of the source. However, the traditional method is not very efficient for neutron diffraction at a spallation source such as LANSCE where the entire diffraction pattern is accessible for each sample setting. Moreover, a different approach is necessary for complicated diffraction patterns, such as from composite materials, intermetallic compounds, high T c ceramics, polyphasic minerals and polymers where there is expected to be heavy overlap of adjacent diffraction peaks. In addition, the large number of settings normally collected for an individual pole figure may not be necessary, since the entire pattern is obtained at each setting. Thus, a new method of ODF analysis needs to be developed to handle the more complex diffraction patterns obtained from modern technological materials as well as take advantage of the particular characteristics of spallation neutron sources. This project sought to develop the experimental procedures and the mathematical treatment needed to produce an orientation distribution function (ODF) directly from full diffraction patterns from a sample in a limited number of orientations

  2. Stone-Wales defects can cause a metal-semiconductor transition in carbon nanotubes depending on their orientation

    International Nuclear Information System (INIS)

    Partovi-Azar, P; Namiranian, A

    2012-01-01

    It has been shown that the two different orientations of Stone-Wales (SW) defects, i.e. longitudinal and circumferential SW defects, on carbon nanotubes (CNTs) result in two different electronic structures. Based on density functional theory we have shown that the longitudinal SW defects do not open a bandgap near the Fermi energy, while a relatively small bandgap emerges in tubes with circumferential defects. We argue that the bandgap opening in the presence of circumferential SW defects is a consequence of long-range symmetry breaking which can spread all the way along the tube. Specifically, the distribution of contracted and stretched bond lengths due to the presence of defects, and hopping energies for low-energy electrons, i.e. the 2p z electrons, show two different patterns for the two types of defects. Interplay between the geometric features and the electronic properties of the tubes have also been studied for different defect concentrations. Considering π-orbital charge density, it has also been shown that the deviations of bond lengths from their relaxed length result in different doping for two defect orientations around the defects - electron-rich for a circumferential defect and hole-rich for a longitudinal one. We have also shown that, in the tubes having both types of defects, circumferential defects would dominate and impose their electronic properties. (paper)

  3. The growth of noble metals in (112-bar0)-oriented hexagonal close-packed nano-films by epitaxy on Nb(001)

    International Nuclear Information System (INIS)

    Hueger, E.; Osuch, K.

    2005-01-01

    The morphology and crystal structure of noble metal nano-films deposited on oxygen contaminated and oxygen-free Nb(001) surfaces have been studied with angle-resolved ultraviolet photoelectron spectroscopy, X-ray photo-electron diffraction, and reflection high energy electron diffraction. In the both cases a deposited noble metal film aligns its direction with the [110] direction of the Nb(001) surface. But, while a noble metal grows on an oxygen contaminated Nb(001) surface with the hexagonal close-packed (hcp) (111) planes parallel to the surface (i.e. in the (111)-oriented face centred cubic phase (fcc)), on a non-contaminated Nb(001) it grows with its hcp planes perpendicular to the surface. The latter happens because in the initial stages of the epitaxy the first two monolayers (MLs) of the noble metal grow pseudomorphically on a contamination-free Nb(001). The pseudomorphic layer is strongly extended parallel to the Nb(001) surface in comparison to its natural fcc (001) plane. As a consequence of the atomic volume conservation principle the out-of-plane lattice of the pseudomorphic layer is contracted. Thus, its body centred tetragonal (110) planes, which stay perpendicular to the surface, contract into denser-packed planes, i.e. in hcp ones. In the direction perpendicular to the surface, where the substrate does not have a direct influence on the film, the pseudomorphic layer relaxes into its natural close-packed phase, i.e. into hcp atomic planes. These planes appear as soon as the third pseudomorphic ML begins to grow. The stacking axis of the planes lies in the (100) surface of Nb and is locked by it. The fact that thick nano-films of Cu (up to 50 MLs), Ag and Au (up to 100 MLs) grow in the (112-bar0)-oriented hcp phase can be attributed to a much better fit of the hcp than of fcc stacking sequence to the four-fold symmetry of the Nb(001) surface

  4. Electrical characterization of Ω-gated uniaxial tensile strained Si nanowire-array metal-oxide-semiconductor field effect transistors with - and channel orientations

    International Nuclear Information System (INIS)

    Habicht, Stefan; Feste, Sebastian; Zhao, Qing-Tai; Buca, Dan; Mantl, Siegfried

    2012-01-01

    Nanowire-array metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated along and crystal directions on (001) un-/strained silicon-on-insulator substrates. Lateral strain relaxation through patterning was employed to transform biaxial tensile strain into uniaxial tensile strain along the nanowire. Devices feature ideal subthreshold swings and maximum on-current/off-current ratios of 10 11 for n and p-type transistors on both substrates. Electron and hole mobilities were extracted by split C–V method. For p-MOSFETs an increased mobility is observed for channel direction devices compared to devices. The n-MOSFETs showed a 45% increased electron mobility compared to devices. The comparison of strained and unstrained n-MOSFETs along and clearly demonstrates improved electron mobilities for strained channels of both channel orientations.

  5. Electric quadrupole interaction in cubic BCC α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)

    2016-07-15

    Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge

  6. Electric quadrupole interaction in cubic BCC α-Fe

    International Nuclear Information System (INIS)

    Błachowski, A.; Komędera, K.; Ruebenbauer, K.; Cios, G.; Żukrowski, J.; Górnicki, R.

    2016-01-01

    Mössbauer transmission spectra for the 14.41-keV resonant line in "5"7Fe have been collected at room temperature by using "5"7Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V_z_z = +1.61(4) × 10"1"9 Vm"−"2 for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the "5"7Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the "5"7Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V_z_z = +1.92(4) × 10"1"9 Vm"−"2. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge for ab initio calculations

  7. Influence of hydrostatic pressure on BCC-lattice parameter in molybdenum, niobium and vanadium with rhenium solid solutions

    International Nuclear Information System (INIS)

    Smol'yaninova, Eh.A.; Stribuk, E.K.; Tyavlovskij, V.I.

    1987-01-01

    Data on the effect of 1.8GPa hydrostatic pressure on bcc lattice parameters of solid solutions in Mo-Re, Nb-Re, V-re systems are presented. It is shown that after the application hydrostatic pressure a decrease in bcc lattice parameter is observed and the greatest change in the lattice parameter takes place in bcc of solid solutions in the Nb-Re system (DELTA A ∼ 0.0035 nm). Analysis of the experimental data obtained on the basis of calculations made for packing density change in the above-mentioned solid solutions under the pressure is carried out

  8. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy

    International Nuclear Information System (INIS)

    Rao, S.I.; Varvenne, C.; Woodward, C.; Parthasarathy, T.A.; Miracle, D.; Senkov, O.N.; Curtin, W.A.

    2017-01-01

    Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2〈111〉 dislocations in a randomly-distributed model-BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. Core structure variations along an individual dislocation line are found for a/2〈111〉 screw and edge dislocations. One reason for the core structure variations is the local variation in composition along the dislocation line. Calculated unstable stacking fault energies on the (110) plane as a function of composition vary significantly, consistent with this assessment. Molecular dynamics simulations of the critical glide stress as a function of temperature show significant strengthening, and much shallower temperature dependence of the strengthening, as compared to pure BCC Fe as well as a reference mean-field BCC alloy material of the same overall composition, lattice and elastic constants as the target alloy. Interpretation of the strength versus temperature in terms of an effective kink-pair activation model shows the random alloy to have a much larger activation energy than the mean-field alloy or BCC Fe. This is interpreted as due to the core structure variations along the dislocation line that are often unfavorable for glide in the direction of the load. The configuration of the gliding dislocation is wavy, and significant debris is left behind, demonstrating the role of local composition and core structure in creating kink pinning (super jogs) and/or deflection of the glide plane of the dislocation. - Graphical abstract: Measured critical resolved shear stress scaled by the (111) shear modulus (39 GPa) necessary to achieve on-going glide as a function of temperature, for the a/2[111] screw dislocation in the model BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. The upper and lower bounds of the critical resolved shear stress is shown in the plot. Also shown in is the measured strength for the mean-field A-atom material and BCC Fe as a function of

  9. Radiation effects on BCC metals and alloys. Final report, March 1, 1970 to August 31, 1980

    International Nuclear Information System (INIS)

    Moteff, J.

    1980-12-01

    To contribute to more meaningful and self-consistent deformation and/or strengthening models, use was made of quantitative transmission electron microscopy to obtain the number density and size distribution of the various defect states in the irradiated material. With this information, the influence of defects on dislocation mobility and deformation modes was determined. In addition, by means of high temperature anneals for different time intervals, the original defect states was significantly changed so that the above dislocation-defect interaction models may be tested under many different conditions. Combinations of time at temperature and appied stress has been shown to be extremely important in the dislocation channeling phenomenon, a circumstance that is closely associated with irradiation induced embrittlement. Detailed resistivity measurements, a technique for determining defect thermal stability and recovery kinetics, was used to establish critical test temperatures

  10. First-principles study of atomic ordering in bcc Cu-Al

    Science.gov (United States)

    Lanzini, F.; Gargano, P. H.; Alonso, P. R.; Rubiolo, G. H.

    2011-01-01

    The order-disorder transitions and phase stability in the body centered cubic structure of Cu-Al binary alloys are studied by means of theoretical methods. The total energy of different ordered compounds sharing a common bcc Bravais lattice was calculated within the framework of density functional theory. A set of effective cluster interactions was calculated through a cluster expansion (CE) of the total energies. The finite temperature phase diagram of bcc Cu-Al was obtained using the CE formalism coupled with the cluster variation method calculation of the configurational entropy. These results are confronted with a simpler semi-empirical approach based on effective pair interactions obtained from experiment. Both approaches predict a single first-order A2/DO3 transition for compositions close to Cu3Al, in agreement with the most recent experimental results.

  11. Emergence of the bcc Phase and Phase Transition in Be through Phonon Quasiparticle Calculations

    Science.gov (United States)

    Zhang, D. B., Sr.; Wentzcovitch, R. M.

    2016-12-01

    Beryllium (Be) is an important material with applications in a number of areas ranging from aerospace components to X-ray equipment. Yet a precise understanding of the phase diagram of Be remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticle properties. We find that the hcp to bcc transition occurs near the melting curve at 0

  12. Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3

    OpenAIRE

    Sorkin, V.; Polturak, E.; Adler, Joan

    2006-01-01

    Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid He-3 in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21.5 cm^3. From the single phonon dynamic structure factor, we obtain both the longitudinal and transverse phonon branches along the main crystalline directions, [001], [011] and [111]. Our results are compared with other theoretical predictions and available experimental data.

  13. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr

    2011-01-01

    Roč. 33, č. 9 (2011), s. 1182-1188 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : 3D molecular dynamics * fatigue * bcc iron * mode I Subject RIV: JG - Metallurgy Impact factor: 1.546, year: 2011 http://www.sciencedirect.com/science/article/pii/S0142112311000600

  14. Curie temperatures of fcc and bcc Nickel and Permalloy: Supercell and Green's function methods

    Czech Academy of Sciences Publication Activity Database

    Yu, P.; Jin, X.F.; Kudrnovský, Josef; Wang, D. S.; Bruno, P.

    2008-01-01

    Roč. 77, č. 5 (2008), 054431/1-054431/8 ISSN 1098-0121 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616 Institutional research plan: CEZ:AV0Z10100520 Keywords : fcc - and bcc-Ni * Permalloy * magnetic moments * Curie temperatures Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008

  15. Crack-induced stress, dislocations and acoustic emission by 3-D atomistic simulation in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Spielmannová, Alena; Machová, Anna; Hora, Petr

    2009-01-01

    Roč. 57, č. 14 (2009), s. 4065-4073 ISSN 1359-6454 R&D Projects: GA ČR GA101/09/1630; GA AV ČR KJB200760802; GA ČR(CZ) GA101/07/0789 Institutional research plan: CEZ:AV0Z20760514 Keywords : bcc iron * crack * dislocation emisision Subject RIV: JG - Metallurgy Impact factor: 3.760, year: 2009

  16. Melting temperature and structural transformation of some rare-earth metals

    International Nuclear Information System (INIS)

    Vu Van Hung; Hoang Van Tich; Dang Thanh Hai

    2009-01-01

    the pressure dependence of the melting temperatures of rare-earth metals is studied using the equation of states derived from the statistical moment (SMM). SMM studies were carried out order to calculate the Helmholtz free energy of hcp, bcc Dy and fcc, bcc Ce metals at a wide range of temperatures. the stable phase of Dy and Ce metals can be determined by examining the Helmholtz free energy at a given temperature, i, e. the phase that gives the lowest free energy will be stable. For example, we found that at T lower than 1750 K the hcp Dy metal is stable. At T higher than 1750 K the bcc Dy metal is also stable. Thus 1750 K marks the phase transition temperature of Dy metal. These findings are in agreement with previous experiments. (author)

  17. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  18. Short-range order clustering in BCC Fe-Mn alloys induced by severe plastic deformation

    Science.gov (United States)

    Shabashov, V. A.; Kozlov, K. A.; Sagaradze, V. V.; Nikolaev, A. L.; Lyashkov, K. A.; Semyonkin, V. A.; Voronin, V. I.

    2018-03-01

    The effect of severe plastic deformation, namely, high-pressure torsion (HPT) at different temperatures and ball milling (BM) at different time intervals, has been investigated by means of Mössbauer spectroscopy in Fe100-xMnx (x = 4.1, 6.8, 9) alloys. Deformation affects the short-range clustering (SRC) in BCC lattice. Two processes occur: destruction of SRC by moving dislocations and enhancement of the SRC by migration of non-equilibrium defects. Destruction of SRC prevails during HPT at 80-293 K; whereas enhancement of SRC dominates at 473-573 K. BM starts enhancing the SRC formation at as low as 293 K due to local heating at impacts. The efficiency of HPT in terms of enhancing SRC increases with increasing temperature. The authors suppose that at low temperatures, a significant fraction of vacancies are excluded from enhancing SRC because of formation of mobile bi- and tri-vacancies having low efficiency of enhancing SRC as compared to that of mono vacancies. Milling of BCC Fe100-xMnx alloys stabilises the BCC phase with respect to α → γ transition at subsequent isothermal annealing because of a high degree of work hardening and formation of composition inhomogeneity.

  19. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  20. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  1. Ab initio study of Cr interactions with point defects in bcc Fe

    International Nuclear Information System (INIS)

    Olsson, P.; Domain, Ch.; Wallenius, J.

    2008-01-01

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  2. States of light positive particles in metals

    International Nuclear Information System (INIS)

    Klamt, A.G.

    1987-01-01

    The states of light positively charged particles in metals are treated in tight-binding approximation. The polaron states of the particles are investigated. The 'molecular crystal model' and an interstitial model' are treated. Moreover, the particle-lattice coupling of excited particles is treated for fcc and bcc lattices. (BHO)

  3. Influence of the intermediate bcc phase on the evolution of superfluid inclusions in hcp matrix 3He-4He

    International Nuclear Information System (INIS)

    Birchenko, A.P.; Mikhin, N.P.; Neoneta, A.S.; Rudavskij, Eh.Ya.; Fisun, Ya.Yu.

    2016-01-01

    The evolution of liquid inclusions which are formed in the hcp matrix by rapid cooling of the 3 He- 4 He solution containing 1.05% 3 He was studied by pulse NMR. The diffusion coefficient of 3 He in the liquid was measured by two-pulses spin-echo method during evolution of the inclusions. Measurements were carried out at 1.67 K which corresponds to the bcc phase existence in the phase diagram, as well as at 1.38 K, where the bcc phase is absent. It is found that in the process of the evolution, in both cases the size of the liquid inclusions is less than diffusion length and so the diffusion is restricted. The measured restricted dif-fusion coefficient allowed to find the characteristic size of the inclusions. In the first case, during the evolution of liquid inclusions, dendrites of intermediate bcc phase is forming and the inclusions are separating into a lot of smaller droplets. Due to the rapid growth of the bcc dendrites, the droplet size decreases rapidly, and the process comes to disappearance of bcc phase and an amorphous state appearance. The results obtained by measuring the diffusion coefficient, correlated with the behavior of the spin-lattice relaxation time in such a system. In the second case at a lower temperature bcc phase is not formed, and the size of the liquid inclusions decreases very slow until the completion of their solidification.

  4. Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads

    Science.gov (United States)

    Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.

    2018-06-01

    We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.

  5. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    Science.gov (United States)

    Gong, Zhiqiang; Dogar, Muhammad Mubashar Ahmad; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-09-01

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM's summer precipitation forecasting ability over EA-NWP.

  6. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    KAUST Repository

    Gong, Zhiqiang

    2017-04-05

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts\\' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM\\'s summer precipitation forecasting ability over EA-NWP.

  7. Coexistence of ductile and brittle fracture in metals

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.J.; Park, C.G.; Thomson, R.

    1985-01-01

    It is well known that semibrittle body-centered cubic (bcc) metals fail at low temperatures by cleavage that is preceded by crack tip deformation. Sinclair and Finnis proposed a mechanism by which crack tip deformation may be combined with brittle crack extension. In this model, edge dislocations are emitted from a crack tip on an inclined plane under pure mode I loading conditions. The authors propose a new mechanism of brittle fracture of semibrittle metals preceded by crack tip deformation by extending the model of Sinclair and Finnis and by incorporating experimental evidence on mixed mode crack propagation observed by transmission electron microscopy (TEM). They have shown experimentally that, even when the orientation of the dislocations in the plastic zone indicated pure mode III crack tip deformation, the crack opening displacement determined from the relative displacement of the crack flanks showed the presence of an additional mode I component. They have also shown that zigzag crack propagation observed in many metals can occur only if mode I cleavage is superimposed to mode II crack tip deformation

  8. Spin-polarized scanning tunneling microscopy of magnetic nanostructures at the example of bcc-Co/Fe(110), Fe/Mo(110), and copper phthalocyanine/Fe(1110); Spinpolarisierte Rastertunnelmikroskopie magnetischer Nanostrukturen am Beispiel von bcc-Co/Fe(110), Fe/Mo(110) und Kupfer-Phthalocyanin/Fe(110)

    Energy Technology Data Exchange (ETDEWEB)

    Methfessel, Torsten

    2010-12-09

    This thesis provides an introduction into the technique of spin-polarized scanning tunnelling microscopy and spectroscopy as an experimental method for the investigation of magnetic nanostructures. Experimental results for the spin polarized electronic structure depending on the crystal structure of ultrathin Co layers, and depending on the direction of the magnetization for ultrathin Fe layers are presented. High-resolution measurements show the position-dependent spin polarization on a single copper-phthalocyanine molecule deposited on a ferromagnetic surface. Co was deposited by molecular beam epitaxy on the (110) surface of the bodycentered cubic metals Cr and Fe. In contrast to previous reports in the literature only two layers of Co can be stabilized in the body-centered cubic (bcc) structure. The bcc-Co films on the Fe(110) surface show no signs of epitaxial distortions. Thicker layers reconstruct into a closed-packed structure (hcp / fcc). The bcc structure increases the spin-polarization of Co to P=62 % in comparison to hcp-Co (P=45 %). The temperature-dependent spin-reorientation of ultrathin Fe/Mo(110) films was investigated by spin-polarized spectroscopy. A reorientation of the magnetic easy axis from the [110] direction along the surface normal to the in-plane [001] axis is observed at T (13.2{+-}0.5) K. This process can be identified as a discontinuous reorientation transition, revealing two simultaneous minima of the free energy in a certain temperature range. The electronic structure of mono- and double-layer Fe/Mo(110) shows a variation with the reorientation of the magnetic easy axis and with the direction of the magnetization. The investigation of the spin-polarized charge transport through a copper-phthalocyanine molecule on the Fe/Mo(110) surface provides an essential contribution to the understanding of spin-transport at the interface between metal and organic molecule. Due to the interaction with the surface of the metal the HOMO-LUMO energy

  9. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    International Nuclear Information System (INIS)

    Li, Xiantao

    2014-01-01

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  10. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    Science.gov (United States)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  11. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.

    Science.gov (United States)

    Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J

    2014-10-17

    An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.

  12. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    Science.gov (United States)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  13. Enhanced moments in bcc Co{sub 1−x}Mn{sub x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Snow, R.J.; Bhatkar, H. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); N' Diaye, A.T.; Arenholz, E. [Advanced Light Source, Lawrence Berkeley Nat. Labs, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: Idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59715 (United States)

    2016-12-01

    A 40% enhancement of the Co magnetic moment has been found for thin films of bcc Co{sub 1−x}Mn{sub x} grown by molecular beam epitaxy on a 2 nm bcc Fe buffer layer on MgO(001). Although the bcc phase cannot be stabilized in the bulk, we confirm that it is stable as an epitaxial film in the composition range x=0–0.7. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we show that the Co moment is a maximum of 2.38 μ{sub B} at x=0.24, while the net Mn moment remains roughly constant until x=0.24, then drops steadily. Mn is found to align parallel with Co for all ferromagnetic concentrations, up to x=0.7, where the total moment of the film abruptly collapses to zero, most likely due to the onset of the observed structural instability. - Highlights: • Stabilization of bcc Co{sub 1−x}Mn{sub x} films in the composition range of x=0 to 0.7. • Enhancement of Co moment by 40% from pure bcc Co. • Parallel alignment of Mn moment and Co moment. • Measured the elemental moment of Co and Mn as a function of composition.

  14. Boron doped bcc-W films: Achieving excellent mechanical properties and tribological performance by regulating substrate bias voltage

    Science.gov (United States)

    Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao

    2017-11-01

    Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.

  15. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Rovere, M.; Tosi, M.P.

    1990-08-01

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  16. Stress induced martensitic transformation from bcc to fcc in Ag-Zn

    International Nuclear Information System (INIS)

    Takezawa, K.; Akamatsu, R.; Marukawa, K.

    1995-01-01

    The martensitic transformation in Ag-Zn alloys of low-Zn content has been studied by optical and electron microscopic observations and by tensile tests. The β 1 phase of B2 structure transforms to the thermo-elastic martensite having 9R structure similar to Cu-based alloys upon cooling to temperature below Ms. When the β 1 phase is stretched at room temperature, the slip deformation occurs at first and then the stress-induced martensite(SIM) of wedge-like morphology forms. The SIM has the ordered fcc structure containing micro-twins. This direct transformation from bcc to fcc is a unique feature in Ag-Zn alloys. In Cu alloys, martensites of fcc structure appear only after the second transformation from the first transformation product of 9R structure. The critical stress for the martensitic transformation and a degree of order of SIM decrease as the deformation temperature rises. In Ag-Zn alloys, the martensite of disordered fcc is thermally produced also by up-quenching to a higher temperature. In the present study, the relation between martensites of ordered and disordered fcc is discussed through thermodynamical calculations. The condition for the direct transformation from bcc to fcc is also examined. (orig.)

  17. Vibrational contribution to the thermodynamics of nanosized precipitates: vacancy-copper clusters in bcc-Fe

    International Nuclear Information System (INIS)

    Talati, Mina; Posselt, Matthias; Al-Motasem, Ahmed; Bergner, Frank; Bonny, Giovanni

    2012-01-01

    The effects of lattice vibration on the thermodynamics of nanosized coherent clusters in bcc-Fe consisting of vacancies and/or copper are investigated within the harmonic approximation. A combination of on-lattice simulated annealing based on Metropolis Monte Carlo simulations and off-lattice relaxation by molecular dynamics is applied to obtain the most stable cluster configurations at T = 0 K. The most recent interatomic potential built within the framework of the embedded-atom method for the Fe-Cu system is used. The total free energy of pure bcc-Fe and fcc-Cu as well as the total formation free energy and the total binding free energy of the vacancy-copper clusters are determined for finite temperatures. Our results are compared with the available data from previous investigations performed using many-body interatomic potentials and first-principles methods. For further applications in rate theory and object kinetic Monte Carlo simulations, the vibrational effects evaluated in the present study are included in the previously developed analytical fitting formulae. (paper)

  18. bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: Coupled shuffle and shear modes

    Science.gov (United States)

    Liu, J. B.; Johnson, D. D.

    2009-04-01

    Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.

  19. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  20. Assessment and correction of BCC_CSM's performance in capturing leading modes of summer precipitation over North Asia

    KAUST Repository

    Gong, Zhiqiang

    2017-11-07

    This article examines the ability of Beijing Climate Center Climate System Model (BCC_CSM) in demonstrating the prediction accuracy and the leading modes of the summer precipitation over North Asia (NA). A dynamic-statistic combined approach for improving the prediction accuracy and the prediction of the leading modes of the summer precipitation over NA is proposed. Our results show that the BCC_CSM can capture part of the spatial anomaly features of the first two leading modes of NA summer precipitation. Moreover, BCC_CSM regains relationships such that the first and second mode of the empirical orthogonal function (EOF1 and EOF2) of NA summer precipitation, respectively, corresponds to the development of the El Niño and La Niña conditions in the tropical East Pacific. Nevertheless, BCC_CSM exhibits limited prediction skill over most part of NA and presents a deficiency in reproducing the EOF1\\'s and EOF2\\'s spatial pattern over central NA and EOF2\\'s interannual variability. This can be attributed as the possible reasons why the model is unable to capture the correct relationships among the basic climate elements over the central NA, lacks in its ability to reproduce a consistent zonal atmospheric pattern over NA, and has bias in predicting the relevant Sea Surface Temperature (SST) modes over the tropical Pacific and Indian Ocean regions. Based on the proposed dynamic-statistic combined correction approach, compared with the leading modes of BCC_CSM\\'s original prediction, anomaly correlation coefficients of corrected EOF1/EOF2 with the tropical Indian Ocean SST are improved from 0.18/0.36 to 0.51/0.62. Hence, the proposed correction approach suggests that the BCC_CSM\\'s prediction skill for the summer precipitation prediction over NA and its ability to capture the dominant modes could be certainly improved by choosing proper historical analogue information.

  1. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  2. Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1998-01-01

    The solution energies of 4d metals in other 4d metals as well as the bcc-hcp structural energy differences in random 4d alloys are calculated by density functional theory. It is shown that the crystal structure of the host plays a crucial role in the solid solubility. A local virtual bond...

  3. The lattice distortion around the divacancy in cubic metals using the method of lattice statics

    International Nuclear Information System (INIS)

    Yoshioki, S.

    1976-01-01

    The lattice distortion produced by a divacancy in FCC metals (Al, Cu, Ag and Au) and in BCC metals (Fe, Mo and V) has been calculated using the method of lattice statics. The model assumes non-equilibrium pairwise interactions extending out to second nearest neighbours. Roughly speaking, the relaxation volumes associated with the divacancy are twice the values for the isolated vacancy. (author)

  4. Study of the multiple exchange frequencies in bcc 3He by thermodynamic measurements

    International Nuclear Information System (INIS)

    Bernier, M.; Suaudeau, E.; Roger, M.

    1987-08-01

    To study the multiple exchange hamiltonian of solid 3 He we measured the contribution of the spin exchange to the pressure of bcc solid in various magnetic fields (O≤ H≤ 7.5T). Due to the nature of the atomic exchange of a fermion system this contribution is a strong function of the spin polarization. The characteristic frequencies of the exchange hamiltonian are obtained by fitting the pressure measurements with the results of a statistical calculation using a high temperature series expansion of the hamiltonian in a temperature range where both the magnetic effect is significant and the expansion converges (7mK < T < 30mK). We discuss the results obtained for two molar volumes

  5. Atomistic studies of nucleation of He clusters and bubbles in bcc iron

    International Nuclear Information System (INIS)

    Yang, L.; Deng, H.Q.; Gao, F.; Heinisch, H.L.; Kurtz, R.J.; Hu, S.Y.; Li, Y.L.; Zu, X.T.

    2013-01-01

    Atomistic simulations of the nucleation of He clusters and bubbles in bcc iron at 800 K have been carried out using the newly developed Fe–Fe interatomic potential, along with Ackland potential for the Fe–Fe interactions. Microstructure changes were analyzed in detail. We found that a He cluster with four He atoms is able to push out an iron interstitial from the cluster, creating a Frenkel pair. Small He clusters and self-interstitial atom (SIA) can migrate in the matrix, but He-vacancy (He-V) clusters are immobile. Most SIAs form clusters, and only the dislocation loops with a Burgers vector of b = 1/2 appear in the simulations. SIA clusters (or loops) are attached to He-V clusters for He implantation up to 1372 appm, while the He-V cluster–loop complexes with more than one He-V cluster are formed at the He concentration of 2057 appm and larger

  6. Properties of grain boundaries in BCC iron and iron-based alloys

    International Nuclear Information System (INIS)

    Terentyev, D.; He, Xinfu

    2010-01-01

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  7. Compositional Variation of the Phonon Dispersion Curves of bcc Fe-Ga Alloys

    International Nuclear Information System (INIS)

    Zarestky, Jerel L.; Garlea, Vasile O.; Lograsso, Tom; Schlagel, D.L.; Stassis, C.

    2005-01-01

    Inelastic neutron scattering techniques have been used to measure the phonon dispersion curves of bcc Fe1-xGax x=10.8, 13.3, 16.0, 22.5 alloys as a function of Ga concentration. The phonon frequencies of every branch were found to decrease significantly with increasing Ga concentration. The softening was most pronounced for the T2 0 branch and, to a lesser extent, the L branch in the vicinity of = 2 3. The concentration dependence of the shear elastic constant C =1/2 C11-C12 , calculated from the slope of the T2 0 branch, was found to agree with the results of sound velocity measurements. For the higher concentration sample measured, 22.5 at. % Ga, new branches appeared, an effect associated with the increase in the number of atoms per unit cell.

  8. Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys

    International Nuclear Information System (INIS)

    Nishihara, Y.; Yamaguchi, Y.; Kohara, T.; Tokumoto, M.

    1985-01-01

    The magnetic and superconducting properties of bcc Cr-Re alloys with up to 40 at. % Re were studied via measurements of the magnetic susceptibility, electrical resistivity, and nuclear magnetic resonance of the Re nuclei. Antiferromagnetic order coexists with superconductivity above 18 at. % Re. The results were analyzed with the coexistence model of spin-density waves and superconductivity. In the Re-concentration range greater than 18 at. %, about 10% of the Fermi surface satisfies the nesting condition and the rest of it contributes to form the superconducting gap. This model also explains the increase in the superconducting transition temperature and the decrease in the magnetic susceptibility by annealing as a competing effect between spin-density waves and superconductivity

  9. Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films

    Science.gov (United States)

    Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.

    2016-08-01

    The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.

  10. Properties of grain boundaries in BCC iron and iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D.; He, Xinfu

    2010-08-15

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  11. Interactions of foreign interstitial and substitutional atoms in bcc iron from ab initio calculations

    Science.gov (United States)

    You, Y.; Yan, M. F.

    2013-05-01

    C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.

  12. Assessment and correction of BCC_CSM's performance in capturing leading modes of summer precipitation over North Asia

    KAUST Repository

    Gong, Zhiqiang; Dogar, Muhammad Mubashar; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-01-01

    in the tropical East Pacific. Nevertheless, BCC_CSM exhibits limited prediction skill over most part of NA and presents a deficiency in reproducing the EOF1's and EOF2's spatial pattern over central NA and EOF2's interannual variability. This can be attributed

  13. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    KAUST Repository

    Gong, Zhiqiang; Dogar, Muhammad Mubashar; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-01-01

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection

  14. SCC, Bowen's disease and BCC arising on chronic radiation dermatitis due to radiation therapy for tinea pedis

    International Nuclear Information System (INIS)

    Aoki, Eri; Aoki, Mikako; Ikemura, Akiko; Igarashi, Tsukasa; Suzuki, Kayano; Kawana, Seiji

    2000-01-01

    We reported a case who developed three different types of skin cancers: SCC, BCC, and Bowen's disease, on the chronic radiation dermatitis. He had been treated for his tinea pedis et palmaris with radiotherapy in 1940's. It is very ratre that three different types of skin cancers arise in the same patient. This is a second case reported in Japan. (author)

  15. Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering.

    Science.gov (United States)

    Mengucci, P; Gatto, A; Bassoli, E; Denti, L; Fiori, F; Girardin, E; Bastianoni, P; Rutkowski, B; Czyrska-Filemonowicz, A; Barucca, G

    2017-07-01

    Direct Metal Laser Sintering (DMLS) technology was used to produce tensile and flexural samples based on the Ti-6Al-4V biomedical composition. Tensile samples were produced in three different orientations in order to investigate the effect of building direction on the mechanical behavior. On the other hand, flexural samples were submitted to thermal treatments to simulate the firing cycle commonly used to veneer metallic devices with ceramics in dental applications. Roughness and hardness measurements as well as tensile and flexural mechanical tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate sample microstructure. Results evidenced a difference in the mechanical response of tensile samples built in orthogonal directions. In terms of microstructure, samples not submitted to the firing cycle show a single phase acicular α' (hcp) structure typical of metal parts subject to high cooling rates. After the firing cycle, samples show a reduction of hardness and strength due to the formation of laths of the β (bcc) phase at the boundaries of the primary formed α' plates as well as to lattice parameters variation of the hcp phase. Element partitioning during the firing cycle gives rise to high concentration of V atoms (up to 20wt%) at the plate boundaries where the β phase preferentially forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Theoretical study of defect properties in metals

    International Nuclear Information System (INIS)

    Sindzingre, P.

    1987-01-01

    Several characteristic properties (formation and migration enthalpies and volumes, dipole tensors, effects on shear elastic constants) of several point defects (vacancy, divacancy, interstitial, di-interstitial) in different metals: f.c.c. metals (Al, Cu, Ag, Au), h.c.p. metals (Be, Mg, Zn, Cd, Na, Co, Ti, Zr), b.c.c. metals (Li, Na, K, Rb, Cs) have been calculated. The calculated properties are evaluated from static computations performed with pair potentials derived from pseudo-potential theory (for simple or noble metals) or deduced empirically. Results are compared with available experimental data with previous theoretical works. The first part of this work where we have studied point defects properties in f.c.c. metals lead us to suggest a more convincing interpretation of X-ray scattering and elastic relation measurements concerning interstitials in Al and Cu, and a new interpretation for X-ray scattering measurements concerning di-interstitials in Al. In the second part, devoted to h.c.p. metals we are brought to propose for each studied metal the interstitial configurations which yield the best agreement with experimental results. The third part, devoted to the study of point defects in alkalin b.c.c. metals lead us to interpret self-diffusion in these metals with the assumption of a simultaneous contribution of monovacancies, divacancies and interstitials [fr

  17. Volumes of virtual modifications and virtual polymorphous transformations in transition metals under pressure

    International Nuclear Information System (INIS)

    Zil'bershtejn, V.A.; Zaretskij, L.B.; Ehstrin, Eh.I.

    1975-01-01

    To find out what phases are likely to occur under pressure, it is necessary to know the relative density of various modifications, that is the ratio of the volumes of stable and virtual modifications and generally speaking the ratio of the phase compressibility. If the virtual phase volume is less than the volume of the stable phase, then such a phase is likely to appear under pressure. A method has been developed for computing the volumes of the virtual modifications from the data on the solid solutions lattice parameters. Testing the applicability of the method for a number of systems with a complete mutual solubility has shown, that the method proposed permits to estimate the volumes of the transition metals virtual modifications with the error probably not exceeding 1%. The analysis was made of the data available on the solid solutions of transition metals with fcc-, bcc- and hcp-lattices. The virtual volumes have been computed for hcp-iridium, hcp-rhodium, hcp-molybdenum, fcc-molybdenum, fcc-chromium, bcc-rhenium, bcc-ruthenium and bcc-technetium. The data obtained on the virtual modifications volumes permit to assume that the pressure increase is likely to result in the phase transformations of fcc-hcp in iridium and rhodium, and bcc-hcp in molybdenum, while evidently the transformations of bcc-fcc in molybdenum and chromium, hcp-bcc in technetium, rhenium and ruthenium are impossible. The pressure resulting in the transformations in the metals investigated equals approximately hundreds of kbar, or even approximately 1 Mbar for Ir

  18. German Orientalism

    OpenAIRE

    Margaret Olin

    2011-01-01

    Review of: Suzanne L. Marchand, German Orientalism in the Age of Empire: Religion, Race and Scholarship, Cambridge and Washington, D.C.: Cambridge University Press, 2009. This analysis of Suzanne L. Marchand’s German Orientalism in the Age of Empire: Religion, Race and Scholarship reads her contribution in part against the background of Edward Said’s path breaking book Orientalism. Differences lie in her more expansive understanding of the term ‘Oriental’ to include the Far East and her conce...

  19. Epitaxial growth of bcc-FexCo100-x thin films on MgO(1 1 0) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nishiyama, Tsutomu; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2010-01-01

    Fe x Co 100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe x Co 100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe x Co 100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe 50 Co 50 /MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  20. Epitaxial growth of bcc-Fe{sub x}Co{sub 100-x} thin films on MgO(1 1 0) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Nishiyama, Tsutomu; Shikada, Kouhei [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2010-07-15

    Fe{sub x}Co{sub 100-x} (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe{sub x}Co{sub 100-x} film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe{sub x}Co{sub 100-x} crystals with very small errors less than +-0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe{sub 50}Co{sub 50}/MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  1. Refractory metal based superalloys

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Vicente, Eduardo E.; Rubiolo, Gerardo H.

    1999-01-01

    Refractory metals are looked as promising materials for primary circuits in fission reactors and even as fusion reactor components. Indeed, superalloys could be developed which take advantage of their high temperature properties together with the benefits of a two- phase (intermetallic compound-refractory metal matrix) coherent structure. In 1993, researchers of the Office National d'Etudes et de Recherches Aerospatiales of France reported the observation of such a coherent structure in the Ta-Ti-Zr-Al-Nb-Mo system although the exact composition is not reported. The intermetallic compound would be Ti 2 AlMo based. However, the formation of this compound and its possible coexistence with a disordered bcc phase in the ternary system Ti-Al-Mo is a controversial subject in the related literature. In this work we develop a technique to obtain homogeneous alloys samples with 50 Ti-25 Al-25 Mo composition. The resulting specimens were characterized by optical and electronic metallography (SEM), microprobe composition measurements (EPMA) and X-ray diffraction (XRD) analyses. The results show the evidence for a bcc (A2→B2) ordering reaction in the Ti-Al-Mo system in the 50 Ti-25 Al-25 Mo composition. (author)

  2. Orienteering injuries

    OpenAIRE

    Folan, Jean M.

    1982-01-01

    At the Irish National Orienteering Championships in 1981 a survey of the injuries occurring over the two days of competition was carried out. Of 285 individual competitors there was a percentage injury rate of 5.26%. The article discusses the injuries and aspects of safety in orienteering.

  3. Vibrational entropies in metallic alloys

    Science.gov (United States)

    Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher

    2000-03-01

    Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.

  4. Ion irradiation effects on high purity bcc Fe and model FeCr alloys

    International Nuclear Information System (INIS)

    Bhattacharya, Arunodaya

    2014-01-01

    FeCr binary alloys are a simple representative of the reduced activation ferritic/martensitic (F-M) steels, which are currently the most promising candidates as structural materials for the sodium cooled fast reactors (SFR) and future fusion systems. However, the impact of Cr on the evolution of the irradiated microstructure in these materials is not well understood in these materials. Moreover, particularly for fusion applications, the radiation damage scenario is expected to be complicated further by the presence of large quantities of He produced by the nuclear transmutation (∼ 10 appm He/dpa). Within this context, an elaborate ion irradiation study was performed at 500 C on a wide variety of high purity FeCr alloys (with Cr content ranging from ∼ 3 wt.% to 14 wt.%) and a bcc Fe, to probe in detail the influence of Cr and He on the evolution of microstructure. The irradiations were performed using Fe self-ions, in single beam mode and in dual beam mode (damage by Fe ions and co-implantation of He), to separate ballistic damage effect from the impact of simultaneous He injection. Three different dose ranges were studied: high dose (157 dpa, 17 appm He/dpa for the dual beam case), intermediate dose (45 dpa, 57 appm He/dpa for dual beam case) and in-situ low dose (0.33 dpa, 3030 appm He/dpa for the dual beam case). The experiments were performed at the JANNuS triple beam facility and dual beam in situ irradiation facility at CEA-Saclay and CSNSM, Orsay respectively. The microstructure was principally characterized by conventional TEM, APT and EDS in STEM mode. The main results are as follows: 1) A comparison of the cavity microstructure in high dose irradiated Fe revealed strong swelling reduction by the addition of He. It was achieved by a drastic reduction in cavity sizes and an increased number density. This behaviour was observed all along the damage depth, up to the damage peak. 2) Cavity microstructure was also studied in the dual beam high dose

  5. Changes in the vibrational energies and interatomic spacings upon the formation of vacancies in the volume and in the cores of crystallite conjugation regions of polycrystalline transition metals with cubic lattices

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Timofeev, A.N.

    2008-01-01

    Measured changes (ε vac ) i,j of vibrational energy on vacancies formation in i-fields (in volumes and nuclei of crystallite conjugation regions of polycrystalline metals (CCR-PM)): Cr, Mo, Ta, W, Cu, Ir are presented. Changes ε vol of vibrational energy of vacancy nearest environment formed in the metal volume, changes ε FCC of vibrational energy when vacancies formation in CCR nuclei of BCC- and FCC lattices transition metals are discussed. Measured changes ε FCC of vibrational energy, u FCC potential energy and determined sign of interatomic distances changes Δa FCC when formation of split vacancy in the FCC-lattice CCR-PM, changes ε BCC of vibrational energy, u BCC potential energy and determined sign of Δa BCC changes of interatomic distances when vacancies formation in the BCC-lattice CCR-PM are demonstrated. It is noted that the increase of interatomic distances when vacancies formation in the BCC-lattice CCR nucleus of transition metals is conditioned by the the appearance of vacancies alternative structure. Properties of CCR-PM nuclei are more sensitive to interatomic distances changes in the vacancies environment, than to changes of its nearest neighbours numbers [ru

  6. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    Science.gov (United States)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal

  7. First-principles calculation for the effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Endo, Tatsuro; Higuchi, Kenji; Ogata, Shigenobu; Kimizuka, Hajime

    2012-01-01

    Effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron has been evaluated using the first-principles calculation. The stable position of a hydrogen atom is found to be near the screw dislocation core and inside the core respectively when the dislocation is at the easy-core or hard-core configuration in BCC iron. The intrinsically unstable hard-core configuration of the screw dislocation is stabilized when a hydrogen atom is trapped inside the core. On the basis of this first-principles result, an elastic string model of a dislocation is developed to predict the kink motion in the presence of a hydrogen atom. It is found that a double-kink formation is facilitated when a hydrogen atom is located near a dislocation line, however, a kink motion is retarded when a hydrogen atom is behind the kink. (author)

  8. Investigation of the structural and hydrogenation properties of disordered Ti-V-Cr-Mo BCC solid solutions

    International Nuclear Information System (INIS)

    Raufast, C.; Planté, D.; Miraglia, S.

    2014-01-01

    Highlights: • Materials synthesis and structural analysis of selected compositions of TiVCr(Mo) bcc samples. • Extraction of the thermodynamics relevant parameters for hydride formation and dissociation state of Ti 0.3 V 1.7 Cr 0.7 Mo 0.3 sample. • Discussion of the hydrides practicability. - Abstract: Selected compositions in the Ti-Cr-V-Mo system (with the BCC structure-type) have been synthesized and characterized for structural (crystalline structure, solidification microstructure) and thermodynamic properties (equilibrium and reversible hydrogen storage capacity). We present as well the effect of co-melting with a so-called activating phase that results in a secondary phase development and a subsequent enhancement of the hydrogen sorption kinetics. Ageing properties and applicability of such materials for hybrid hydrogen storage systems are also discussed

  9. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  10. Magnetic ordering of four particle exchange model in BCC 3He

    International Nuclear Information System (INIS)

    Ishikawa, Koji; Okada, Isamu

    1978-01-01

    The low temperature magnetic ordering of BCC 3 He within the mean field approximation was studied. A model including four particle exchange interactions was considered. Two types of cyclic quadrupole exchange process, planar and folded, were taken into account. Assuming four sublattices, it was considered to minimize the spin energy with respect to the classical spin vector and to find out four ordered states at the absolute zero point. They are antiferromagnetic (AF), weak ferromagnetic (WF) and two kinds of simple cubic antiferromagnetic states (SCAF). The condition for the existence of each ordered state is given, and the free energies of the ordered states are calculated in the mean field approximation. The transition between AF or SCAF and the paramagnetic states is of the first order. The phase diagram is drawn in the parameter space. The phase diagram was obtained numerically at Hetherington and Willard's value and at its neighbouring values. The difference between the present result and HW's is that of magnetic field direction in the perpendicular simple cubic antiferromagnetic states. The second order transition disappears, and the WF state changes gradually into AF state. With respect to the first order transition, the transition temperature increases with magnetic field. In this case, a critical magnetic field exists. (Kato, T

  11. Diffusion of Y and Ti/Zr in bcc iron: A first principles study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Sundar, C.S.

    2011-01-01

    The diffusion of yttrium plays an important role in the kinetics of formation of oxide nanoclusters in oxide dispersion strengthened alloys. Also, the diffusivity of minor alloying elements like Ti and Zr are of special interest as they are crucial for fine dispersion of oxide nanoclusters in the ferritic matrix. These solute atoms occupy substitutional sites in bcc Fe. The diffusion coefficients of these solute atoms were calculated using Le Claire’s nine frequency model involving the vacancy mechanism. We have done detailed density functional theory calculation of the interaction of these solute atoms with vacancies (□) and estimated various migration energy barriers of the vacancies in the presence of these solute atoms using nudged elastic band method. Strikingly, compared with Zr and Ti, Y shows a very large relaxation towards first neighbor vacancy resulting in strong binding with the vacancy. The Y-□ binding energy of 1.45 eV is almost double that of Zr-□ binding energy of 0.78 eV. We have also compared the calculated diffusion coefficients of these solute atoms with the experimental values.

  12. Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment

    Directory of Open Access Journals (Sweden)

    Altaf Ahmed Simair

    2017-06-01

    Full Text Available The high cost of fermentation media is one of the technical barriers in amylase production from microbial sources. Amylase is used in several industrial processes or industries, for example, in the food industry, the saccharification of starchy materials, and in the detergent and textile industry. In this study, marine microorganisms were isolated to identify unique amylase-producing microbes in starch agar medium. More than 50 bacterial strains with positive amylase activity, isolated from marine water and soil, were screened for amylase production in starch agar medium. Bacillus sp. BCC 021-50 was found to be the best amylase-producing strain in starch agar medium and under submerged fermentation conditions. Next, fermentation conditions were optimized for bacterial growth and enzyme production. The highest amylase concentration of 5211 U/mL was obtained after 36 h of incubation at 50 °C, pH 8.0, using 20 g/L molasses as an energy source and 10 g/L peptone as a nitrogen source. From an application perspective, crude amylase was characterized in terms of temperature and pH. Maximum amylase activity was noted at 70 °C and pH 7.50. However, our results show clear advantages for enzyme stability in alkaline pH, high-temperature, and stability in the presence of surfactant, oxidizing, and bleaching agents. This research contributes towards the development of an economical amylase production process using agro-industrial residues.

  13. Strain Fields And Crystallographic Characteristics Of Interstitial Dislocation Loops of Various Geometry In BCC Iron

    International Nuclear Information System (INIS)

    Sivak, Alexander B.; Chernov, Viatcheslav M.; Romanov, Vladimir A.

    2008-01-01

    The formation energy, the relaxation volume, the dipole-force tensor, the self strain tensor and strain fields of interstitial dislocation loops in bcc iron (clusters of self interstitial atoms) have been calculated by molecular statics. Hexagonal and square dislocation loops of different types with different Burgers vectors, directions of dislocation segments and habit planes containing up to ∼2500 self-interstitials have been considered. Analytical expressions describing size dependence of the formation energy, the relaxation volume and the self strain tensor for the loops stated have been obtained. The most energetically favorable loops are hexagonal loops with Burgers vector a/2 and habit plane {11x}, where x takes values in the range from 0 to 1 depending on the loop size. The formation energy of a loops with and dislocation segments is ∼14% and 23% greater than that of hexagonal a/2 loops at N>500, respectively. The analysis of the formation energies of a/2 and a loops demonstrated that the nucleation of an a loop by joining of two a/2 loops is possible when the total number of constituent self-interstitials in these loops is larger than 13

  14. Investigation of point defects diffusion in bcc uranium and U–Mo alloys

    International Nuclear Information System (INIS)

    Smirnova, D.E.; Kuksin, A.Yu.; Starikov, S.V.

    2015-01-01

    We present results of investigation of point defects formation and diffusion in pure γ-U and γ-U–Mo fuel alloys. The study was performed using molecular dynamics simulation with the different interatomic potentials. The point defects formation and migration energies were estimated for bcc γ-U and U–9 wt.%Mo alloy. The calculated diffusivities of atoms via defects are provided for pure γ-U and for the alloy components. Analysis of simulation results shows that self-interstitial atoms play a leading role in the self-diffusion processes in the materials studied. This fact can explain a remarkably high self-diffusion mobility observed experimentally for γ-U. The self-diffusion coefficients in γ-U calculated in this assumption agree with the data measured experimentally. It is shown that alloying of γ-U with Mo increase formation energy for self-interstitial atoms and decelerate their mobility. These changes lead to decrease of self-diffusion coefficients in U–Mo alloy compared to pure U

  15. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  16. On the Secrecy Capacity Region of the Block-Fading BCC with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2017-02-07

    In this work, we examine the secrecy capacity region of the block-fading broadcast channel with confidential messages (BCC) when the transmitter has limited knowledge of the channel. In particular, we consider a two-user communication system where the transmitter has one common message to be transmitted to both users and one confidential message intended to only one of them. The confidential message has to be kept secret from the other user to whom the information is not intended. The transmitter is not aware of the channel state information (CSI) of neither channel and is only provided by limited CSI feedback sent at the beginning of each fading block. Assuming an error-free feedback link, we characterize the secrecy capacity region of this channel and show that even with a 1-bit CSI feedback, a positive secrecy rate can still be achieved. Then, we look at the case where the feedback link is not error- free and is rather a binary erasure channel (BEC). In the latter case, we provide an achievable secrecy rate region and show that as long as the erasure event is not a probability 1 event, the transmitter can still transmit the confidential information with a positive secrecy rate.

  17. MD and BCA simulations of He and H bombardment of fuzz in bcc elements

    Science.gov (United States)

    Klaver, T. P. C.; Zhang, S.; Nordlund, K.

    2017-08-01

    We present results of MD simulations of low energy He ion bombardment of low density fuzz in bcc elements. He ions can penetrate several micrometers into sparse fuzz, which allows for a sufficient He flux through it to grow the fuzz further. He kinetic energy falls off exponentially with penetration depth. A BCA code was used to carry out the same ion bombardment on the same fuzz structures as in MD simulations, but with simpler, 10 million times faster calculations. Despite the poor theoretical basis of the BCA at low ion energies, and the use of somewhat different potentials in MD and BCA calculations, the ion penetration depths predicted by BCA are only ∼12% less than those predicted by MD. The MD-BCA differences are highly systematic and trends in the results of the two methods are very similar. We have carried out more than 200 BCA calculation runs of ion bombardment of fuzz, in which parameters in the ion bombardment process were varied. For most parameters, the results show that the ion bombardment process is quite generic. The ion species (He or H), ion mass, fuzz element (W, Ta, Mo, Fe) and fuzz element lattice parameter turned out to have a modest influence on ion penetration depths at most. An off-normal angle of incidence strongly reduces the ion penetration depth. Increasing the ion energy increases the ion penetration, but the rate by which ion energy drops off at high ion energies follows the same exponential pattern as at lower energies.

  18. Pre-melting hcp to bcc Transition in Beryllium: A Study by First-Principles Phonon Quasiparticle Approach

    Science.gov (United States)

    Zhang, D. B., Sr.

    2017-12-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to X-ray equipments. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp to bcc transition occurs near the melting curve at 0

  19. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga

    2014-01-01

    Roč. 83, February (2014), s. 229-234 ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575

  20. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Pokluda, J.; Machová, Anna; Hora, Petr

    2012-01-01

    Roč. 61, AUG 2012 (2012), s. 12-19 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : fatigue * mode II * bcc iron * molecular dynamic simulations Subject RIV: JG - Metallurgy Impact factor: 1.878, year: 2012 http://www.sciencedirect.com/science/article/pii/S0927025612001929

  1. Effect of orientation and loading rate on compression behavior of small-scale Mo pillars

    International Nuclear Information System (INIS)

    Schneider, A.S.; Clark, B.G.; Frick, C.P.; Gruber, P.A.; Arzt, E.

    2009-01-01

    Recently, much work has focused on the size effect in face centered cubic (fcc) structures, however few pillar studies have focused on body centered cubic (bcc) metals. This paper explores the role of bcc crystal structure on the size effect, through compression testing of [001] and [235] Molybdenum (Mo) small-scale pillars manufactured by focused ion beam (FIB). The pillar diameters ranged from 200 nm to 5 μm. Results show that the relationship between yield stress and diameter exhibits an inverse relationship (σ y ∝ d -0.22 for [001] Mo and σ y ∝ d -0.34 for [235] Mo) weaker than that observed for face centered cubic (fcc) metals (σ y ∝ d -0.6to-1.0 ). Additional tests at various loading rates revealed that small-scale Mo pillars exhibit a strain rate sensitivity similar to bulk Mo.

  2. The physical and mechanical metallurgy of advanced O+BCC titanium alloys

    Science.gov (United States)

    Cowen, Christopher John

    deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.

  3. Determinants of adherence to therapies among Malaysian women with breast cancer: MyBCC Cohort

    Directory of Open Access Journals (Sweden)

    Mao Li Cheng

    2017-12-01

    Full Text Available Background: Breast cancer therapies have been progressively advancing to improve the breast cancer survival over the last few decades. However, non-adherence to cancer treatments has shown to be associated with reduced treatment effectiveness, increased mortality, and increased health care costs. The aim of the study is to understand the determinants of adherence to therapies among Malaysian breast cancer patients. Methods: This was a secondary analysis of all newly diagnosed Malaysian breast cancer patients recruited into a prospective cohort study in Universiti Malaya Medical Centre, MyBCC cohort, from 1st February 2012 to 31st December 2015. The MyBCC cohort study has ethics approval, MEC number 896.150. The treatment options (surgery, chemotherapy, radiotherapy, and overall therapies, surgical options, socio-demographic characteristics, clinical signs and symptoms, traditional and complementary medicine, and psychosocial assessments were measured using Hospital Anxiety and Depression Scale (HADS and Multidimensional Scale of Perceived Social Support (MSPSS. Results: In total, 467 patients were analysed. The adherence to surgery was 93.8%, chemotherapy 87.7%, radiotherapy 89.1%, and overall therapies 65.8% respectively. Breast conserving surgery was associated with adherence to surgery compared to mastectomy (adjusted OR 5.48 [95% CI 1.00, 30.09], p = 0.034, radiotherapy (adjusted OR 5.44 [95% CI 1.17, 25.16], p = 0.030 and overall therapies (adjusted OR 2.45 [95% CI 1.04, 5.78], p = 0.041. Time from diagnosis to surgery of less than 60 days was associated with adherence to surgery (adjusted OR 49.98 [95% CI 8.47, 289.05], p less than 0.0001 and overall therapies (adjusted OR 9.38 [95% CI 1.26, 69.73], p = 0.029. Adherence to chemotherapy associated with no surgery (adjusted OR 0.15 [95% CI 0.03, 0.70], p = 0.016. Adherence to radiotherapy was associated with financial reimbursement (adjusted OR 4.34 [95% CI 1.03, 18.26], p = 0.045 and

  4. Development of a new formulation of interferons (HEBERPAG for BCC treatment

    Directory of Open Access Journals (Sweden)

    Bello-Rivero I

    2013-12-01

    Full Text Available Purpose: This work is aimed to show briefly, the clinical development of a new pharmaceutical formulation of interferons for the treatment of basal cell carcinoma. Methods: A rationale design of the combination of IFN-α2b and -γ based in their anti-proliferative synergism on several tumors cell lines identified adequate proportions to be combined to obtain the best clinical results. The potential mechanism of antitumoral effect was studied by qPCR mRNA quantification. HEBERPAG (anti-proliferative synergistic combination of co-formulated recombinant interferons-α2b and –γ was used in clinical trials in adult patients with non-melanoma skin cancer. Trials were conducted after approval by the ethics review boards of the institutions participating in trials; and the patients gave their written informed consent to be enrolled in the studies and receive HEBERPAG. Results: HEBERPAG inhibits the proliferation of several tumor cell lines in vitro and in vivo. The combination has improved pharmacodinamic properties. Several clinical trials have demonstrated the efficacy of HEBERPAG in BCC, with excellent cosmetic effect and well tolerable, mild side effects. HEBERPAG was approved by State Control Center for Drug, Medical Equipment and Devises in Cuba, for the treatment of basal cell carcinoma of any subtype, size and localization, and adjuvant to other treatments, surgical or not. After 3-year follow-up, a recurrence rate of 0.03% was detected in treated patients. Conclusions: HEBERPAG is a novel formulation of IFNs, more potent than separated IFNs for the treatment of basal cell carcinoma, with more rapid and prolonged clinical effect and excellent cosmetic effect and safety profile.

  5. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    International Nuclear Information System (INIS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A.D.P.; Valsakumar, M.C.

    2017-01-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  6. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bukkuru, S., E-mail: srinivasaraobukkuru@gmail.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Bhardwaj, U., E-mail: haptork@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Warrier, M., E-mail: manoj.warrier@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Rao, A.D.P., E-mail: adp_rao_99@yahoo.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Valsakumar, M.C., E-mail: mc.valsakumar@gmail.com [IIT Palakkad, Kozhippara P.O., Palakkad 678557, Kerala (India)

    2017-02-15

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  7. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  8. Decrease Risk Behavior HIV Infected on Construction Laborers with Behavior Change Communication (BCC Approach

    Directory of Open Access Journals (Sweden)

    Purwaningsih Purwaningsih

    2016-09-01

    The purpose of this study was to determine the effectiveness of BCC approach to the reduction of contracting HIV risk behavior in the construction laborers. Method: This study used operational research design. In this study measures the effectiveness of behavior change of construction workers on the prevention of HIV transmission by comparing the behavior of the construction workers before and after the intervention. The subjects of this study were 150 people risk group of construction workers who work and are spread throughout the city of Surabaya. This research was carried out into three phases, namely, phase preintervention research, intervention research, and post-intervention phase of the study. Implemented in the first year and second year praintervensi stage implemented intervention and post-intervention phases. Result: The results of this study showed that 72% of construction workers is productive (18–35 years and visit his family more than once a month (38%. There is 20% of construction workers had sex with commercial sex workers and no one was using drugs. By 50% of construction workers never get information about HIV/AIDS and as many as 48% never use the services of HIV/AIDS. Discussion: External motivation construction workers associated with the utilization of behavioral HIV/AIDS services with sufficient correlation. Strong external motivation is influenced by risk behaviors of HIV/AIDS were conducted and the desire to get help. Weak external motivation is influenced by a lack of exposure to information related to HIV/AIDS services. The results of the FGD stakeholders have the perception is the same if a construction worker is a high risk group of contracting HIV. Most of the construction workers not have enough knowledge for the prevention of HIV transmission because they do not have access to HIV care and behavior are at risk of contracting HIV by construction workers. Keywords: construction workers, behavior change communication, behavior

  9. Mesoscale plastic texture in body-centered cubic metals under uniaxial load

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vitek, V.; Lookman, T.

    2017-01-01

    Roč. 1, č. 6 (2017), s. 063601 E-ISSN 2475-9953 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-13797S Institutional support: RVO:68081723 Keywords : dislocations * mesoscale * bcc metals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  10. Orienteering club

    CERN Multimedia

    Club d'orientation

    2015-01-01

    Course d'orientation La reprise des courses d’orientation était attendue dans la région puisque près de 150 coureurs ont participé à la première épreuve automnale organisée par le club d’orientation du CERN sur le site de La Faucille. Les circuits ont été remportés par Yann Locatelli du club d’Orientation Coeur de Savoie avec 56 secondes d’avance sur Damien Berguerre du club SOS Sallanches pour le parcours technique long, Marie Vuitton du club CO CERN (membre également de l’Equipe de France Jeune) pour le parcours technique moyen avec presque 4 minutes d’avance sur Jeremy Wichoud du club Lausanne-Jorat, Victor Dannecker pour le circuit technique court devant Alina Niggli, Elliot Dannecker pour le facile moyen et Alice Merat sur le facile court, tous membres du club O’Jura. Les résultats comp...

  11. Oriental cholangiohepatitis

    International Nuclear Information System (INIS)

    Scheible, F.W.; Davis, G.B.; California Univ., San Diego, La Jolla

    1981-01-01

    The recent influx of immigrants from Southeast Asia into the United States has increased the likelihood of encountering unusual diseases heretofore rarely seen in this country. Among these disorders is Oriental cholangiohepatitis, a potentially life-threatening process whose early diagnosis is facilitated by roentgenographic findings. Ultrasonography can also provide useful information, although potential pitfalls in diagnosis should be recognized. (orig.)

  12. Oriental cholangiohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Scheible, F.W.; Davis, G.B.

    1981-07-15

    The recent influx of immigrants from Southeast Asia into the United States has increased the likelihood of encountering unusual diseases heretofore rarely seen in this country. Among these disorders is Oriental cholangiohepatitis, a potentially life-threatening process whose early diagnosis is facilitated by roentgenographic findings. Ultrasonography can also provide useful information, although potential pitfalls in diagnosis should be recognized.

  13. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  14. Analytical description of brittle-to-ductile transition in bcc metals. Nucleation of dislocation loop at the crack tip

    International Nuclear Information System (INIS)

    Voskoboinikov, R.E.

    2002-03-01

    Nucleation of dislocation loop at the crack tip in a material subjected to uniaxial loading is investigated. Analytical expression for the total energy of rectangular dislocation loop at the crack tip is found. Dependence of the nucleation energy barrier on dislocation loop shape and stress intensity factor at the crack tip is determined. It is established that the energetic barrier for nucleation of dislocation loop strongly depends on the stress intensity factor. Nucleation of dislocation loop is very sensitive to stress field modifiers (forest dislocations, precipitates, clusters of point defects, etc) in the crack tip vicinity. (orig.)

  15. Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene

    Czech Academy of Sciences Publication Activity Database

    Hüter, C.; Friák, Martin; Weikamp, M.; Neugebauer, J.; Goldenfeld, N.; Svendsen, B.; Spatschek, R.

    2016-01-01

    Roč. 93, č. 21 (2016), 214105-1-214105-14 ISSN 2469-9950 Institutional support: RVO:68081723 Keywords : DENSITY-FUNCTIONAL THEORY Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  16. Investigation of irradiation strengthening of b.c.c. metals and their alloys. Progress report, January 1975--October 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Results of studies on radiation strengthening of V, Mo, and Nb are presented. Information is included on deformation characteristics of low-temperature neutron-irradiated Nb, the effects of He 3+ on the low-temperature deformation characteristics of Nb, electron-transmission microscopic studies of the nature of neutron damage effects of post-irradiation annealing, microplasticity, thermally activated dislocation motion, production of high-purity Nb and V, early stages of flow in Mo, microplasticity in V, and effects of impurity interstitials on the lattice resistance to dislocation motion. (JRD)

  17. Nanoclusters in bcc-Fe containing vacancies, copper and nickel: Structure and energetics

    International Nuclear Information System (INIS)

    Al-Motasem, A.T.; Posselt, M.; Bergner, F.

    2011-01-01

    Highlights: → Fe-Cu-Ni model alloys for RPV steels. → Atomistic simulation, mainly MMC and MD simulations. → Finding the most stable configurations of defect clusters. → Energetics of clusters, formation and binding energies. → Size dependence of monomer binding energy formula as input for OKMC methods. - Abstract: The most stable atomic configuration of coherent nanoclusters in bcc-Fe formed by vacancies, Cu and Ni as well as the corresponding energetics are determined by on-lattice simulated annealing and subsequent off-lattice relaxation. An interatomic potential recently designed for investigations of radiation-induced effects in the ternary Fe-Cu-Ni system is used in the atomistic simulations. Ternary v l Cu m Ni n clusters show a core-shell structure with vacancies in the core coated by a shell of Cu atoms, followed by a shell of Ni atoms. In binary Cu m Ni n clusters the Cu core is covered by a shell of Ni atoms. On the contrary, binary v l Ni n clusters consist of a pure vacancy cluster surrounded by an agglomeration of Ni atoms. The latter is similar to a pure Ni cluster (Ni n ) and consists of Ni atoms at the second nearest neighbor distance. Because of this special arrangement of atoms v l Ni n and Ni n are also called quasi-clusters. In all clusters investigated Ni atoms may be nearest neighbors of Cu atoms but never nearest neighbors of vacancies or other Ni atoms. The atomic configurations found can be understood by the peculiarities of the binding between vacancies, Cu, Ni and Fe atoms. The structure obtained for Cu m Ni n clusters is in agreement with previous theoretical results and with indications from measurements while for the other clusters reference data are not available. It is shown that the presence of Ni atoms promotes the nucleation of clusters containing vacancies and Cu. This is in agreement with experimental observations and with recent results of atomic kinetic Monte Carlo simulations. Based on the specific atomic structure

  18. Retraction of 'Composition design and mechanical properties of BCC Ti solid solution alloys with low Young's modulus'

    International Nuclear Information System (INIS)

    Tulugan, Keli Mu; Park, Cheol Hong; Park, Won Jo; Qing, Wang

    2012-01-01

    The article 'Composition design and mechanical properties of BCC Ti solid solution alloys with low Young's modulus' has been retracted upon the request of the third author (Prof. Wang Qing, the first author's former advisor during his internship at DaLian University of Technology). The article was published without the third author's knowledge and consent. The corresponding author (Prof. Wonjo Park) apologizes to the third author, to the readers, and to the editorial staff of the JMST. The JMST editorial board does not tolerate such actions from authors and we will take appropriate action to prevent this from happening in the future

  19. Anisotropy migration of self-point defects in dislocation stress fields in BCC Fe and FCC Cu

    International Nuclear Information System (INIS)

    Sivak, A.B.; Chernov, V.M.; Dubasova, N.A.; Romanov, V.A.

    2007-01-01

    Spatial dependence of the interaction energies of self-point defects (vacancies and self interstitial atoms in stable, metastable and saddle point configurations) with edge dislocations in slip systems {1 1 0} and {1 0 0} in BCC Fe and {1 1 1} in FCC Cu was calculated using the anisotropic theory of elasticity and molecular statics (hybrid method). The migration pathways of vacancies and SIA ( dumbbell in Fe and dumbbell in Cu) along which the migration of the defects with the lowest energy barriers were defined in the presence of the dislocation stress fields. These pathways are significantly different in the stress fields of dislocations

  20. A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact

    International Nuclear Information System (INIS)

    Zhang, Hua; Chen, Qi; Xie, Bing

    2015-01-01

    A new parameterization of the solar and infrared optical properties of ice clouds that considers the multiple habits of ice particles was developed on the basis of a prescribed dataset. First, the fitting formulae of the bulk extinction coefficient, single-scatter albedo, asymmetry factor, and δ-function forward-peak factor at the given 65 wavelengths as a function of effective radius were created for common scenarios, which consider a greater number of wavelengths and are more accurate than those used previously. Then, the band-averaged volume extinction and absorption coefficients, asymmetry factor and forward-peak factor of ice cloud were derived for the BCC-RAD (Beijing Climate Center radiative transfer model) using a parameter reference table. Finally, the newly developed and the original schemes in the BCC-RAD and the commonly used Fu Scheme of ice cloud were all applied to the BCC-RAD. Their influences on radiation calculations were compared using the mid-latitude summer atmospheric profile with ice clouds under no-aerosol conditions, and produced a maximum difference of approximately 30.0 W/m 2 for the radiative flux, and 4.0 K/d for the heating rate. Additionally, a sensitivity test was performed to investigate the impact of the ice crystal density on radiation calculations using the three schemes. The results showed that the maximum difference was 68.1 W/m 2 for the shortwave downward radiative flux (for the case of perpendicular solar insolation), and 4.2 K/d for the longwave heating rate, indicating that the ice crystal density exerts a significant effect on radiation calculations for a cloudy atmosphere. - Highlights: • A new parameterization of the radiative properties of ice cloud was obtained. • More accurate fitting formulae of them were created for common scenarios. • The band-averaged of them were derived for our radiation model of BCC-RAD. • We found that there exist large differences of results among different ice schemes. • We found

  1. Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haohua; Woo, C.H., E-mail: chungho@cityu.edu.hk

    2014-12-15

    Entropies and enthalpies of vacancy formation and diffusion in BCC iron are calculated for each temperature directly from free-energies using phase-space trajectories obtained from spin–lattice dynamics simulations. Magnon contributions are found to be particularly substantial in the temperature regime near the α−β (ferro/para-magnetic) transition. Strong temperature dependence and singular behavior can be seen in this temperature regime, reflecting magnon softening effects. Temperature dependence of the lattice component in this regime is also much more significant compared to previous estimations based on Arrhenius-type fitting. Similar effects on activation processes involving other irradiation-produced defects in magnetic materials are expected.

  2. Orientation Club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    COURSE ORIENTATION Résultats de samedi 10 mai    C’est sur une carte entièrement réactualisée dans les bois de Versoix, que plus de 100 coureurs sont venus participer à la course d’orientation, type longue distance, préparée par des membres du club du CERN. Le terrain plutôt plat nécessitait une orientation à grande vitesse, ce qui a donné les podiums suivants :  Technique long avec 17 postes : 1er Jurg Niggli, O’Jura en 52:48, 2e Beat Muller, COLJ Lausanne-Jorat en 58:02, 3e Christophe Vuitton, CO CERN en 58:19 Technique moyen avec 13 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:05 ; 2e Yves Rousselot, Balise 25 Besançon, en 55:11 ; 3e Laurent Merat, O'Jura, en 55:13 Technique court avec 13 postes : 1er Julien Vuitton, CO CERN en 40:59, 2e Marc Baumgartner, CO CERN en 43:18, 3e Yaelle Mathieu en 51:42 Su...

  3. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation ce printemps Le Club d’orientation du CERN vous invite à venir découvrir la course d’orientation et vous propose, en partenariat avec d’autres clubs de la région, une dizaine de courses populaires. Celles-ci ont lieu les samedis après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Si vous êtes débutant vous pouvez profiter d’une petite initiation offerte par l’organisateur avant de vous lancer sur un parcours. Divers types de parcours sont à votre choix lors de chaque épreuve : facile court (2-3 km), facile moyen (3-5 km), technique court (3-4 km), technique moyen (4-5 km) et technique long (5-7 km). Les dates à retenir sont les suivantes : Samedi 23 mars: Pully (Vd) Samedi 13 avril: Pougny...

  4. Self-assembled metal clusters on an alumina nanomesh

    International Nuclear Information System (INIS)

    Buchsbaum, A.

    2012-01-01

    either bcc[110] or bcc[100] orientation, depending on the substrate temperature, and for Co we found random stacking of close-packed planes [fcc (111) and hcp (0001), respectively] on top of the clusters. Pd clusters grow with fcc[111] orientation. The contact angle of the clusters was derived from the measurements; at a deposition temperature of 470 K the contact angle of Co clusters is approx. 75° and for Fe clusters approx. 80° . With increasing deposition temperature the contact angle increases, i.e., the clusters are not in thermodynamic equilibrium. The size of the clusters grown on top of an ideal defect-free oxide is limited to approx. 1000 atoms/cluster. For larger clusters coalescence happens and a continuous film forms. The magnetic properties of the clusters and the Ni3Al(111) substrate have been studied by means of x-ray magnetic circular dichroism (XMCD) and surface magneto-optic Kerr effect (SMOKE). SMOKE measurements show that the Curie temperature of the substrate surface highly depends on the stoichiometry and thereby on the preparation history of the sample. By fitting calculated magnetization curves to the data measured by XMCD the magnetic properties of the clusters could be determined. The anisotropy of Co clusters is less than for hcp bulk Co. This is probably a consequence of random stacking of close-packed Co planes. The anisotropy of Fe clusters is enhanced compared to bulk bcc Fe, as expected for nanoparticles. The easy axis of the clusters is perpendicular to the surface. In order to describe the experimental data by the model two types of clusters with different coupling to the substrate have to be taken into account: clusters with strong AF coupling and predominantly FM coupled clusters which also show a considerable biquadratic contribution to the coupling energy. Basic considerations show that the atoms inside the corner holes mediate FM coupling of the clusters to the substrate. Most probably the coupling energy depends on the atoms

  5. Oxygen pressure manipulations on the metal-insulator transition characteristics of highly (011)-oriented vanadium dioxide films grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Yu Qian; Li Wenwu; Duan Zhihua; Hu Zhigao; Chu Junhao; Liang Jiran; Chen Hongda; Liu Jian

    2013-01-01

    The metal-insulator transition behaviour of vanadium dioxide (VO 2 ) films grown at different oxygen pressures is investigated. With the aid of temperature-dependent electrical and infrared transmittance experiments, it is found that the transition temperature in the heating process goes up with increasing argon-oxygen ratio, whereas the one in the cooling process shows an inverse variation trend. It is found that the hysteresis width of the phase transition is narrowed at a lower argon-oxygen ratio because the defects introduced by excess oxygen lower the energy requirement of transformation. Furthermore, the defects reduce the forbidden gap of the VO 2 system due to the generation of a V 5+ ion. The present results are valuable for the achievement of VO 2 -based optoelectronic devices.

  6. Metal arc welding and the risk of skin cancer

    DEFF Research Database (Denmark)

    Heltoft, K N; Slagor, R M; Agner, T

    2017-01-01

    OBJECTIVES: Arc welding produces the full spectrum of ultraviolet radiation and may be a contributory cause of skin cancer; however, there has been little research into this occupational hazard. The aim of this study is to explore if metal arc welding increases the risk of malignant melanoma and....../or basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) on skin areas which may possibly be exposed (neck, head, and upper extremities). METHOD: A Danish national company-based historic cohort of 4333 male metal arc welders was followed from 1987 through 2012 to identify the risk of skin cancer....... An external reference group was established including all Danish skilled and unskilled male workers with similar age distribution. Occupational histories were gathered by questionnaires in 1986 and information about skin cancer diagnoses [BCC, SCC, cutaneous malignant melanoma (CMM), and precancerous...

  7. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Hinata, Shintaro [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Japan Society for the Promotion of Science Research Fellow (PD), 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  8. Anharmonic correlated Debye model high-order expanded interatomic effective potential and Debye-Waller factors of bcc crystals

    Energy Technology Data Exchange (ETDEWEB)

    Van Hung, Nguyen, E-mail: hungnv@vnu.edu.vn [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Hue, Trinh Thi [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Khoa, Ha Dang [School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Vuong, Dinh Quoc [Quang Ninh Education & Training Department, Nguyen Van Cu, Ha Long, Quang Ninh (Viet Nam)

    2016-12-15

    High-order expanded interatomic effective potential and Debye-Waller factors (DWFs) for local vibrational amplitudes in X-ray absorption fine structure (XAFS) of bcc crystals have been studied based on the anharmonic correlated Debye model. DWFs are presented in terms of cumulant expansion up to the fourth order and the many-body effects are taken into account in the present one-dimensional model based on the first shell near neighbor contribution approach used in the derivations of the anharmonic effective potential and XAFS cumulants where Morse potential is assumed to describe the single-pair atomic interaction. Analytical expressions for the dispersion relation, correlated Debye frequency and temperature and four first temperature-dependent XAFS cumulants have been derived based on the many-body perturbation approach. Thermodynamic properties and anharmonic effects in XAFS of bcc crystals described by the obtained cumulants have been in detail discussed. The advantage and efficiency of the present theory are illustrated by good agreement of the numerical results for Mo, Fe and W with experiment.

  9. Dislocations in materials with mixed covalent and metallic bonding

    International Nuclear Information System (INIS)

    Nguyen-Manh, D.; Cawkwell, M.J.; Groeger, R.; Mrovec, M.; Porizek, R.; Pettifor, D.G.; Vitek, V.

    2005-01-01

    Environment-dependent bond-order potentials have been developed for L1 0 TiAl, bcc Mo and fcc Ir. They comprise both the angular character of bonding and the screening effect of nearly free electrons. These potentials have been employed in atomistic studies of screw dislocations that revealed the non-planar character of their cores. It is argued that both covalent as well as metallic character of bonding govern these structures, which in turn control the mechanical behaviour

  10. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation Le soleil enfin de retour a incité nombre de sportifs et promeneurs à nous rejoindre dans la belle forêt de Challex /Pougny pour la deuxième étape de notre coupe de printemps 2013. Certains sont revenus crottés et fourbus alors que d’autres avaient les joues bien roses après un grand bol d’air frais. Mais tous avaient passé un agréable moment dans la nature. Nous rappelons que nos activités sont ouvertes à tous, jeunes, moins jeunes, sportifs, familles, du CERN ou d’ailleurs, et que le seul inconvénient est que si vous goûtez à la course d’orientation, il vous sera difficile de ne pas y revenir ! Samedi 20 avril 2013, nous serons sur le Mont Mourex (entre Gex et Divonne) pour notre prochaine épreuve et vous y serez les bienvenus. Les inscriptions et les départ...

  11. Orienteering club

    CERN Multimedia

    Club d’Orientation du CERN

    2015-01-01

    Courses d’orientation Nouvelle saison nouveau programme Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une dizaine de courses populaires comptant pour la coupe Genevoise de printemps: samedi 28 mars: Vernand Dessus samedi 18 avril: Pougny/Challex samedi 25 avril: Chancy/Valleiry samedi 2 mai: Mauvernay samedi 9 mai: Longchaumois samedi 16 mai: Genolier samedi 30 mai: Prevondavaux samedi 6 juin: Biere-Ballens samedi 13 juin: Haut-Jura samedi 20 juin: Bonmont - Finale Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Les inscriptions se font sur place le jour de l’épreuve. Si vous êtes débutant, vous pouvez profiter d’une initiation offerte par l’organisateur avant de vous lancer sur un parcours. Le club propose aussi...

  12. Orienteering club

    CERN Multimedia

    Orienteering Club

    2016-01-01

    Course d'orientation Calendrier des courses d’orientation Coupe genevoise d’automne 2016 Samedi 3 septembre : La Faucille (01) Samedi 10 septembre : Prémanon (39) Samedi 17 septembre : Saint-Cergue (VD) Samedi 24 septembre : Jorat / Corcelles (VD) Samedi 1 octobre: Bière - Ballens (VD) -relais Vendredi 14 octobre : Parc Mon Repos (GE) - nocturne Samedi 15 octobre : Terrasse de Genève (74) Samedi 29 octobre : Bonmont (VD) Samedi 5 novembre : Pomier (74) – one-man-relay - Finale   Courses ouvertes à toutes et à tous, sportifs, familles, débutants ou confirmés, du CERN ou d’ailleurs. Cinq circuits disponibles, ceci va du facile court (2 km) adapté aux débutants et aux enfants jusqu’au parcours technique long de 6 km pour les chevronnés en passant par les parcours facile moyen (4&am...

  13. COURSE ORIENTATION

    CERN Multimedia

    Club d'orientation du CERN

    2015-01-01

      Les coureurs d’orientation de la région se sont donné rendez-vous samedi dernier dans les bois de Pougny/Challex lors de l’épreuve organisée par le club d’orientation du CERN. La carte proposée pour les 5 circuits offrait aussi bien un coté très technique avec un relief pentu qu’un coté avec de grandes zones plates à forêt claire. Le parcours technique long comportant 20 postes a été remporté par Beat Muller du COLJ Lausanne en 56:26 devançant Denis Komarov, CO CERN en 57:30 et Yvan Balliot, ASO Annecy en 57:46. Pour les autres circuits les résultats sont les suivants: Technique moyen (13 postes): 1er Joël Mathieu en 52:32 à une seconde du 2e Vladimir Kuznetsov, COLJ Lausanne-Jorat, 3e Jean-Bernard Zosso, CO CERN, en 54:01 Technique court (12 postes): 1er Lennart Jirden, ...

  14. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2013-01-01

    Course d’orientation Face aux Championnats de France des Clubs à Poitiers, et à une météo hivernale (vent glaciale et pluie), il ne restait qu’une cinquantaine d’orienteurs pour participer à l’épreuve organisée le samedi 25 mai à Grange-Malval. Les participants ont tout de même bien apprécié les 5 circuits proposés par le Satus Genève. Les résultats sont disponibles sur notre site http://cern.ch/club-orientation. En plus des résultats, vous pourrez noter des informations sur la nouvelle école de CO encadrée par B. Barge, Prof. EPS à Ferney-Voltaire pour les jeunes à partir de 6 ans. La prochaine étape de la coupe genevoise se déroulera samedi 1er juin à Morez (39). Epreuve organisée par le club O’Jura&nb...

  15. Orienteering Club

    CERN Multimedia

    Le Club d’orientation du CERN

    2017-01-01

    COURSE ORIENTATION Finale de la coupe d’automne Le club d’orientation du CERN (COC Genève) a organisé sa dernière course populaire de la saison samedi 4 novembre au lieu-dit Les Terrasses de Genève (74). Cette 9e épreuve qui se courait sous la forme d’un One-Man-Relay, clôturait ainsi la coupe genevoise d’automne dont les lauréats sont : Circuit technique long : 1. Julien Vuitton (COC Genève), 2. Berni Wehrle (COC Genève), 3. Christophe Vuitton (COC Genève). Circuit technique moyen : 1. Vladimir Kuznetsov (Lausanne-Jorat), 2. J.-Bernard Zosso (COC Genève), 3. Laurent Merat (O’Jura). Circuit technique court : 1. Thibault Rouiller (COC Genève), 2. exæquo Lennart Jirden (COC Genève) et Katya Kuznetsova (Lausanne-Jorat). Circuit facile moyen : 1. Tituan Barge ...

  16. Orienteering Club

    CERN Multimedia

    Le Club d’orientation du CERN

    2017-01-01

    COURSE ORIENTATION Finale de la coupe d’automne Le club d’orientation du CERN (COC Genève) a organisé sa dernière course populaire de la saison samedi 4 novembre au lieu-dit Les Terrasses de Genève (74). Cette 9e épreuve qui se courait sous la forme d’un One-Man-Relay, clôturait ainsi la coupe genevoise d’automne dont les lauréats sont : Circuit technique long : 1. Julien Vuitton (COC Genève), 2. Berni Wehrle (COC Genève), 3. Christophe Vuitton (COC Genève). Circuit technique moyen : 1. Vladimir Kuznetsov (Lausanne-Jorat), 2. J.-Bernard Zosso (COC Genève), 3. Laurent Merat (O’Jura). Circuit technique court : 1. Thibault Rouiller (COC Genève), 2. exæquo Lennart Jirden (COC Genève) et Katya Kuznetsova (Lausanne-Jorat). Circuit facile moyen : 1. Tituan Barge...

  17. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2015-01-01

    Course orientation C’est au pied du Salève, proche du Golf de Bosset, que le club d’orientation du CERN (CO CERN) a organisé samedi 19 septembre une nouvelle épreuve comptant pour la Coupe Genevoise d’automne. La zone « des Terrasses de Genève » avait été cartographiée et mise en service l’année dernière. Les participants ont pu apprécier un terrain ludique avec beaucoup de microreliefs, de points d’eau et de gros rochers, le tout au milieu d’une forêt assez claire et agréable à courir. Sur le parcours technique long, le résultat a été très serré puisque Pierrick Merino du club d’Annecy a gagné avec seulement 9 secondes d’avance sur Gaëtan Vuitton (CO CERN) qui confiait avoir perdu beaucoup du te...

  18. Orienteering Club

    CERN Multimedia

    Le Club d’orientation du CERN

    2017-01-01

    Course orientation Les courses d’orientation comptant pour la coupe genevoise de printemps s’enchainent dans la région franco-suisse. Samedi dernier, une bonne centaine de coureurs se sont retrouvés au Mont Mourex où le club du CERN avait préparé la sixième épreuve. A l’issue de la course, les participants confirmaient l’exigence des circuits, à savoir la condition physique et le côté technique du traçage. Le parcours technique long comportant 20 postes a été remporté par Darrell High du Care Vevey en 1:22:38 devançant Beat Muller du COLJ Lausanne-Jorat en 1:25:25 et Alison High également du Care Vevey en 1:28:51. Le circuit technique moyen a été remporté par Christophe Vuitton du CO CERN et le circuit technique court par Claire-Lise Rouiller, CO CERN. Les trois pr...

  19. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2010-01-01

    COURSE D’ORIENTATION La finale de la coupe de printemps Après avoir remporté le challenge club, samedi 29 juin lors du relais inter-club à Lausanne, le Club d’orientation du CERN organisait la dernière étape de la coupe genevoise de printemps samedi 5 juin à Saint-Cergue dans les bois de Monteret (Canton de Vaud). Plus de 100 participants se sont déplacés pour venir participer à la finale et découvrir une toute nouvelle carte dans une forêt vallonnée. Les résultats pour chaque circuit de cette étape sont : Technique long : 1. Jurg Niggli du club O’Jura, 2. Clément Poncet, 3. Oystein Midttun. Technique moyen : 1. Zoltan Trocsanyi CO CERN, 2. Christophe Ingold, 3. Christina Falga. Technique court : 1. Pierre-Andre Baum, CARE Vevey, 2. Emese Szunyog, 3. Solène Balay. Facile moyen : 1. Elisa P...

  20. Club Orientation

    CERN Multimedia

    Club d'orientation

    2014-01-01

      COURSE ORIENTATION   Pas moins de 100 concurrents sont venus s’affronter sur les parcours proposés par le club d’orientation du CERN ce samedi 26 avril lors de la 4e étape de la coupe genevoise de printemps. Les podiums ont été attribués à :  Technique long avec 19 postes : 1er Yvan Balliot, ASO Annecy en 1:01:39 ; 2e Dominique Fleurent, ASO Annecy, en 1:05:12 ; 3e Rémi Fournier, SOS Sallanches, en 1:05:40. Technique moyen avec 14 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:42 ; 2e Céline Zosso, CO CERN, en 50:51 ; 3e Clément Poncet, O’Jura Prémanon, en 51:27. Technique court avec 13 postes : 1er Jaakko Murtomaki, YKV Seinaejoki, en 36:04 ; 2e Marc Baumgartner en 41:27 ; 3e Natalia Niggli, O’Jura Prémanon, en 52:43. Sur les parcours facile moyen et facile court, victoire respectivement de Stéphanie...

  1. Orienteering Club

    CERN Multimedia

    Le Club d’orientation du CERN

    2017-01-01

    Calendrier des courses de la Coupe Genevoise – printemps 2017 Club d'orientation - Julien,  jeune membre du club. Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une série de courses populaires, qui se dérouleront des deux côtés de la frontière franco-suisse, à savoir : Samedi 1 avril : Pougny/Challex (01) Samedi 8 avril: Ballens (VD) Samedi 22 avril: Apples (VD) Samedi 29 avril: Mont Mussy (01) Samedi 6 mai: Prémanon (39) Samedi 13 mai: Mont Mourex (01) Samedi 20 mai: Prévondavaux (VD) Samedi 10 juin: Chancy/Valleiry (74) Samedi 17 juin: Trélex - Finale (VD) Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel. Les inscriptions sur un des 5 parcours proposés se font sur place le jour de l...

  2. Low-temperature nuclear orientation

    International Nuclear Information System (INIS)

    Stone, N.J.; Postma, H.

    1986-01-01

    This book comprehensively surveys the many aspects of the low temperature nuclear orientation method. The angular distribution of radioactive emissions from nuclei oriented by hyperfine interactions in solids, is treated experimentally and theoretically. A general introductory chapter is followed by formal development of the theory of the orientation process and the anisotropic emission of decay products from oriented nuclei, applied to radioactive decay and to reactions. Five chapters on applications to nuclear physics cover experimental studies of alpha, beta and gamma emission, nuclear moment measurement and level structure information. Nuclear orientation studies of parity non-conservation and time reversal asymmetry are fully described. Seven chapters cover aspects of hyperfine interactions, magnetic and electric, in metals, alloys and insulating crystals, including ordered systems. Relaxation phenomena and the combined technique of NMR detection using oriented nuclei are treated at length. Chapters on the major recent development of on-line facilities, giving access to short lived nuclei far from stability, on the use of nuclear orientation for thermometry below 1 Kelvin and on technical aspects of the method complete the main text. Extensive appendices, table of relevant parameters and over 1000 references are included to assist the design of future experiments. (Auth.)

  3. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001 Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Ludovico Megalini

    2018-02-01

    Full Text Available We report on the use of InGaAsP strain-compensated superlattices (SC-SLs as a technique to reduce the defect density of Indium Phosphide (InP grown on silicon (InP-on-Si by Metal Organic Chemical Vapor Deposition (MOCVD. Initially, a 2 μm thick gallium arsenide (GaAs layer was grown with very high uniformity on exact oriented (001 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2 stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD; atomic force microscopy (AFM; transmission electron microscopy (TEM; and electron channeling contrast imaging (ECCI; which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer.

  4. Spontaneous recombination volumes of Frenkel defects in neutron-irradiated non-fcc metals

    International Nuclear Information System (INIS)

    Nakagawa, M.; Mansel, W.; Boening, K.; Rosner, P.; Vogl, G.

    1979-01-01

    Production and production-rate curves for the non-fcc metals Fe, Mo, Ta, W, Zr, and Sn are obtained by electrical-resistivity measurements taken at 4.6 K during reactor neutron irradiations. The saturation concentration of Frenkel defects, c/sub s/, and the recombination volume v/sub o/ are evaluated. A parabolic relation between the spontaneous recombination volume v 0 and the compressibility kappa for a series of bcc metals is found

  5. Fracture mechanics and physics approach to cleavage analysis in bcc monocrystals

    International Nuclear Information System (INIS)

    Ivanova, V.S.; Plastinin, V.M.

    1980-01-01

    On monocrystals of molybdenum obtained by electron--beam zone melting studied are the bonds between micro-and macroparameters of fracture controlling the limit state. Monocrystals of three orientations have been studied, namely >001 110 111<. Confirmed is an important role of plastic deformation in the (110) family planes at cleavage forming in the (100) family planes. A correlation connection is established between threshold value of the stress intensity coefficient and activation energy of plastic deformation

  6. Orienting hypnosis.

    Science.gov (United States)

    Hope, Anna E; Sugarman, Laurence I

    2015-01-01

    This article presents a new frame for understanding hypnosis and its clinical applications. Despite great potential to transform health and care, hypnosis research and clinical integration is impaired in part by centuries of misrepresentation and ignorance about its demonstrated efficacy. The authors contend that advances in the field are primarily encumbered by the lack of distinct boundaries and definitions. Here, hypnosis, trance, and mind are all redefined and grounded in biological, neurological, and psychological phenomena. Solutions are proposed for boundary and language problems associated with hypnosis. The biological role of novelty stimulating an orienting response that, in turn, potentiates systemic plasticity forms the basis for trance. Hypnosis is merely the skill set that perpetuates and influences trance. This formulation meshes with many aspects of Milton Erickson's legacy and Ernest Rossi's recent theory of mind and health. Implications of this hypothesis for clinical skills, professional training, and research are discussed.

  7. Oriented Approach

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Moghimi

    2013-12-01

    Full Text Available Promoting productivity is one of the goals of usinginformation technology in organizations. The purpose of this research isexamining the impact of IT on organizational productivity andrecognizing its mechanisms based on process-oriented approach. For thisend, by reviewing the literature of the subject a number of impacts of ITon organizational processes were identified. Then, through interviewswith IT experts, seven main factors were selected and presented in aconceptual model. This model was tested through a questionnaire in 148industrial companies. Data analysis shows that impact of IT onproductivity can be included in the eight major categories: Increasing ofthe Automation, Tracking, Communication, Improvement, Flexibility,Analytic, Coordination and Monitoring in organizational processes.Finally, to improve the impact of information technology onorganizational productivity, some suggestions are presented.

  8. First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe

    Czech Academy of Sciences Publication Activity Database

    Yao, Y.; Kleinman, L.; MacDonald, A. H.; Sinova, J.; Jungwirth, Tomáš; Wang, D. S.; Wang, E.; Niu, Q.

    2004-01-01

    Roč. 92, č. 3 (2004), 037204/1-037204/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : transition metal ferromagnet * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  9. Highly hard yet toughened bcc-W coating by doping unexpectedly low B content

    KAUST Repository

    Yang, Lina; Zhang, Kan; Wen, Mao; Hou, Zhipeng; Gong, Chen; Liu, Xucheng; Hu, Chaoquan; Cui, Xiaoqiang; Zheng, Weitao

    2017-01-01

    of improved hardness (2 × larger than pure W) and superior toughness (higher crack formation threshold compared to pure W). We believe this is an innovative sight to design new generation of transition-metal-based multifunctional coatings. Besides, our results

  10. Numerical simulation of ductile-brittle behaviour of cracks in aluminium and bcc iron

    International Nuclear Information System (INIS)

    Zacharopoulos, Marios

    2017-01-01

    The principal aim of the present dissertation is to investigate the role of sharp cracks on the mechanical behaviour of crystals under load at the atomic scale. The question of interest is how a pure crystal, which contains a single crack in mechanical equilibrium, deforms. Two metals were considered: aluminium, ductile at any temperature below its melting point, and iron, being transformed from ductile to brittle upon decreasing temperature below T=77 K. Cohesive forces in both metals were modeled via phenomenological n-body potentials. A (010)[001] mode I nano-crack was introduced in the perfect crystalline lattice of each of the studied metals by using appropriate displacements ascribed by anisotropic elasticity. At T=0 K, equilibrium crack configurations were obtained via energy minimization with a mixed type of boundary conditions. Both models revealed that the crack configurations remained stable under a finite range of applied stresses due to the lattice trapping effect. The present thesis proposes a novel approach to interpret the intrinsic mechanical behaviour of the two metallic systems under loading. In particular, the ductile or brittle response of a crystalline system can be determined by examining whether the lattice trapping barrier of a pre-existing crack is sufficient to cause the glide of pre-existing static dislocations on the available slip systems. Simulation results along with experimental data demonstrate that, according to the model proposed, aluminium and iron are ductile and brittle at T=0 K, respectively. (author) [fr

  11. EDITORIAL: Optical orientation Optical orientation

    Science.gov (United States)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  12. Statistical study of defects caused by primary knock-on atoms in fcc Cu and bcc W using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warrier, M., E-mail: Manoj.Warrier@gmail.com [Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, 530012 (India); Bhardwaj, U.; Hemani, H. [Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, 530012 (India); Schneider, R. [Computational Science, Ernst-Moritz-Arndt University, D-17489 Greifswald (Germany); Mutzke, A. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Valsakumar, M.C. [School for Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad, Telangana State, 500046 (India)

    2015-12-15

    We report on molecular Dynamics (MD) simulations carried out in fcc Cu and bcc W using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code to study (i) the statistical variations in the number of interstitials and vacancies produced by energetic primary knock-on atoms (PKA) (0.1–5 keV) directed in random directions and (ii) the in-cascade cluster size distributions. It is seen that around 60–80 random directions have to be explored for the average number of displaced atoms to become steady in the case of fcc Cu, whereas for bcc W around 50–60 random directions need to be explored. The number of Frenkel pairs produced in the MD simulations are compared with that from the Binary Collision Approximation Monte Carlo (BCA-MC) code SDTRIM-SP and the results from the NRT model. It is seen that a proper choice of the damage energy, i.e. the energy required to create a stable interstitial, is essential for the BCA-MC results to match the MD results. On the computational front it is seen that in-situ processing saves the need to input/output (I/O) atomic position data of several tera-bytes when exploring a large number of random directions and there is no difference in run-time because the extra run-time in processing data is offset by the time saved in I/O. - Highlights: • MD simulations of collision cascades in 200 random directions explored in the energy range of 1–5 keV for fcc Cu and bcc W. • 60–80 random directions must be sampled for the number of displacements produced in a collision cascade to stabilize. • In-cascade clustering of interstitials and vacancies occur. • Direction averaged distribution of interstitials and vacancies around the origin of a PKA is presented. • Comparisons with MD indicate that the recoils produced in BCA-MC simulations be checked for recombination against all vacancies created.

  13. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W.

    Science.gov (United States)

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-06-03

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W 1-x-y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11 , the other elastic parameters including C 12 , C 44 , Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W 1-y  Os y than in W 1-x  Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W 1-x-y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  14. Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2016-10-01

    Full Text Available Due to its excellent glass-forming ability (GFA, the Zr48Cu36Al8Ag8 bulk metallic glass (BMG is of great importance in glass transition investigations and new materials development. However, due to the lack of detailed structural information, the local structure and atomic packing of this alloy is still unknown. In this work, synchrotron measurement and reverse Monte Carlo simulation are performed on the atomic configuration of a Zr-based bulk metallic glass. The local structure is characterized in terms of bond pairs and Voronoi tessellation. It is found that there are mainly two types of bond pairs in the configuration, as the body-centered cubic (bcc-type and icosahedral (ico-type bond pairs. On the other hand, the main polyhedra in the configuration are icosahedra and the bcc structure. That is, the bcc-type bond pairs, together with the ico-type bond pairs, form the bcc polyhedra, introducing the distortion in bcc clusters in short range. However, in the medium range, the atoms formed linear or planar structures, other than the tridimensional clusters. That is, the medium-range order in glass is of 1D or 2D structure, suggesting the imperfect ordered packing feature.

  15. Cr interaction in the formation of nano cluster of Y, Ti and O in bcc Fe an ab initio study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharath; Sundar, C.S.

    2008-01-01

    Nanostructured ferritic alloys containing highly stable fine dispersion of yttrium oxide nano particles, produced by mechanical alloying, are promising structural materials for fast fission and fusion environments. Formation of Cr depleted and O enriched Y-Ti-O nanoclusters are observed in the atom probe analysis. Ab initio calculations based on density functional theory are carried out to understand the role of Cr atom interactions with other solute atoms (Y, Ti, O) and vacancies in the formation of nanocluster. The binding energy of clusters of Y-Ti-O in bcc Fe is found to be very high in the presence of vacancies. Our calculations are consistent with the atom probe observation of depletion of Cr atoms and enrichment of O atoms in the nanoclusters. (author)

  16. Beyond chemical accuracy: The pseudopotential approximation in diffusion Monte Carlo calculations of the HCP to BCC phase transition in beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Shulenburger, Luke [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Motivated by the disagreement between recent diffusion Monte Carlo calculations of the phase transition pressure between the ambient and beta-Sn phases of silicon and experiments, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an opportunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation and after removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.

  17. A New Approach to Reducing Search Space and Increasing Efficiency in Simulation Optimization Problems via the Fuzzy-DEA-BCC

    Directory of Open Access Journals (Sweden)

    Rafael de Carvalho Miranda

    2014-01-01

    Full Text Available The development of discrete-event simulation software was one of the most successful interfaces in operational research with computation. As a result, research has been focused on the development of new methods and algorithms with the purpose of increasing simulation optimization efficiency and reliability. This study aims to define optimum variation intervals for each decision variable through a proposed approach which combines the data envelopment analysis with the Fuzzy logic (Fuzzy-DEA-BCC, seeking to improve the decision-making units’ distinction in the face of uncertainty. In this study, Taguchi’s orthogonal arrays were used to generate the necessary quantity of DMUs, and the output variables were generated by the simulation. Two study objects were utilized as examples of mono- and multiobjective problems. Results confirmed the reliability and applicability of the proposed method, as it enabled a significant reduction in search space and computational demand when compared to conventional simulation optimization techniques.

  18. The electronic structure and bonding of a H-H pair in the vicinity of a BCC Fe bulk vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Juan, A.; Pistonesi, C.; Brizuela, G. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Departamento de Fisica; Garcia, A.J. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Departamento de Ciencias de la Computacion

    2003-09-01

    The H-Fe interaction near a bcc Fe vacancy is analysed using a semi-empirical theoretical method. Calculations were performed using a Fe{sub 86} cluster with a vacancy. Hydrogen atoms are positioned in their local energy minima configurations. Changes in the electronic structure of Fe atoms near a vacancy were analysed for the system without H, with one H and with two H atoms. Fe atoms surrounding the vacancy weaken their bond when hydrogen is present. This is due to the formation of H-Fe bonds. Hydrogen influences only its nearest-neighbour Fe atoms. The H-H interaction was also analysed. For H-H distance of 0.82 Angstrom an H-H association is formed, while H-Fe interaction and Fe-Fe weakening is markedly reduced, when compared with other H-H interactions. (author)

  19. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Course d'orientation Le coup d’envoi de la coupe genevoise a été donné samedi 31 août dans les bois de Combe Froide à Prémanon. Plus de 150 coureurs avaient fait le déplacement. Les parcours facile court, facile moyen et technique court ont été remportés par des coureurs du club O’Jura - Ulysse Dannecker, Léo Lonchampt, Franck Lonchampt, le technique moyen par Pekka Marti du club Ol Biel Seeland et le technique long par Térence Risse du CA Rosé – également membre de l’équipe nationale suisse des moins de 20 ans. Pour le club du CERN, les meilleures résultats ont été obtenus pas Emese Szunyog sur technique court et Marie Vuitton sur technique moyen avec une 4e place. La prochaine course aura lieu samedi 14 septembre à La Faucille. Le club propose aussi...

  20. Orienteering club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    Course d'orientation Finale de la coupe d’automne La dernière épreuve de la coupe d’automne organisée par le club s’est déroulée ce samedi 1er novembre avec une course type «one-man-relay» dans la forêt de Trelex (Vd). Les concurrents des circuits techniques devaient parcourir trois boucles et ceux des circuits «faciles» deux boucles, avec changements de carte. Le parcours technique long a été remporté par un membre du club, Berni Wehrle. A l’issue de cette course, le Président du club, L. Jirden annonçait le classement général de la coupe d’automne, basé sur les 6 meilleurs résultats de la saison : Circuit technique long : 1er Juerg Niggli (O’Jura), 2e Berni Wehrle, 3e Beat Mueller. Circuit technique moyen : 1er Laurent Merat (O&r...

  1. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Course d'orientation Finale de la coupe genevoise Rapide et méthodique, voilà les qualités dont il fallait faire preuve pour remporter la dernière étape de la coupe organisée par le club du CERN dans les bois de Monteret. Il s’agissait d’une course au score où chaque concurrent disposait d’un temps imparti pour poinçonner le maximum de balises. Le parcours technique a été remporté par Tomas Shellman et le parcours facile par Victor Dannecker. Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps. Les résultats officiels étaient donnés par le président du club, L. Jirden : Circuit Technique Long : Berni Wehrle, Bruno Barge, Edvins Reisons Circuit Technique Moyen : J.-Bernard Zosso, ...

  2. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2011-01-01

    Course d'orientation Avec la CO en nocturne organisée par le club du CERN vendredi 14 octobre au stade des Eveaux (Ge), et la CO à Savigny (Vd) proposée par le club de Lausanne-Jorat le lendemain, les étapes de la coupe genevoise d’automne s’enchainent rapidement. Il ne reste plus que 3 rendez-vous pour boucler la saison. Les premières places devraient certainement se jouer entre des membres du club du CERN, du O’Jura ou de Lausanne-Jorat. La prochaine course du club est programmée pour samedi 22 octobre à Pomier, près de Cruseilles. L’accueil se fera à partir de 12h30 et les départs s’échelonneront de 13h à 15h. * * * * * * * Nouvelle belle victoire samedi 8 octobre à Saint Cergue du jeune finlandais Ville Keskisaari (COLJ) en 50:56 devant Jürg Niggli (O’Jura) en 1:03:32, et Alexandre...

  3. Orienteering Club

    CERN Document Server

    Club d'orientation

    2013-01-01

    De jour comme de nuit Les amateurs de course d’orientation ont pu s’en donner à cœur joie ce week-end puisqu’ils avaient la possibilité de courir sur deux épreuves en moins de 24 heures. En effet, le club du CERN organisait une course de nuit aux Evaux et la 7e étape de la coupe genevoise se tenait samedi après-midi dans les bois du Grand Jorat à Savigny. Les vainqueurs pour chaque course sont : Technique long CO de nuit: Julien Charlemagne, SOS Sallanches CO samedi: Philipp Khlebnikov, ANCO   Technique moyen CO de nuit: Céline Zosso, CO CERN CO samedi: Pavel Khlebnikov, ANCO Technique court CO de nuit: Colas Ginztburger, SOS Sallanches CO samedi: Victor Kuznetsov, COLJ Lausannne Facile moyen CO de nuit: Gaëtan Rickenbacher, CO CERN CO samedi: Tamas Szoke   Facile court CO de nuit:Oriane Rickenbacher, CO CERN CO samedi: Katya Kuznetsov...

  4. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2015-01-01

    Course orientation Finale de la coupe genevoise La série des courses de printemps s’est achevée samedi dernier dans les bois de Bonmont (Vaud) avec une épreuve «one-man-relay» organisée par le club. Le vainqueur du parcours technique  long, Yann Locatelli (Club de Chambéry Savoie) a réalisé les deux boucles comportant 24 balises avec presque 6 minutes d’avance sur le second concurrent Domenico Lepori (Club CARE Vevey). Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps, en comptabilisant les 6 meilleurs résultats sur les 10 épreuves. Le podium officiel était donné par le président du club, L. Jirden, qui profitait de l’occasion pour remercier tous les participants et également tous les...

  5. Orienteering Club

    CERN Multimedia

    CLUB D'ORIENTATION

    2013-01-01

    Calendrier de la coupe d’automne Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose, pour cette nouvelle coupe d’automne genevoise, une série de 10 courses. Le club du O’Jura donnera le coup d’envoi le samedi 31 août. Les courses s’enchaîneront selon le calendrier suivant : Samedi 31 août : Prémanon (39) - longue distance Samedi 14 septembre : La Faucille (01) - longue distance Samedi 21 septembre : Saint Cergue (VD) - longue distance Samedi 28 septembre : Ballens (VD) - relais Samedi 5 octobre : La Pile (VD) - longue distance Vendredi 11 octobre : Les Evaux (GE) - nocturne Samedi 12 octobre : Grand Jorat, Savigny (VD) - longue distance Samedi 19 octobre : Terrasses de Genève (74) - longue distance Samedi 26 octobre : Prémanon (39) - longue distance Samedi 2 novembre : Bois Tollot (GE) - score - Finale Les &a...

  6. Orienteering club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    Course d'orientation C’est sous un beau soleil samedi 4 octobre que s’est déroulée la 6e étape de la Coupe genevoise d’automne organisée par le club. Plus d’une centaine de concurrents provenant de 7 clubs de CO avaient fait le déplacement pour courir sur un des cinq parcours proposés dans les bois de Trélex-Génolier (VD). Le podium est le suivant : Technique long (5,9 km, 19 postes) : 1er Jurg Niggli, O’Jura (1:00:02); 2e Berni Wehrle, CO CERN (1:06:44); 3e Konrad Ehrbar, COLJ (1:07:08) Technique moyen (4,8 km, 18 postes) : 1er Christophe Vuitton, CO CERN (54:25); 2e J.B. Zosso, CO CERN (1:01:19); 3e Jeremy Wichoud, COLJ (1:06:21) Technique court (3,8 km, 14 postes) : 1er Julien Vuitton, CO CERN (36:19); 2e Vladimir Kuznetsov, COLJ (48:47); 3e Natalia Niggli, O’Jura (50:38) Facile moyen (3,2 km, 11 postes) : 1ère Alina Niggli, O&...

  7. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2012-01-01

    Relais inter-club/Challenge Carlo Milan Samedi dernier, lors de l’épreuve de course d’orientation organisée par le club du O’Jura, le moteur de la discipline était l’esprit d’équipe, puisqu’il était question d’un relais inter-club avec le Challenge Carlo Milan. Les clubs avaient aligné leurs coureurs soit sur le relais technique (trois participants) soit sur le relais facile (deux participants). Côté O’Jura, il fallait noter la participation de François Gonon, champion du monde 2011, côté club du CERN, Marie et Gaëtan Vuitton, jeunes espoirs du club, devaient préparer la piste pour lancer le dernier relayeur. Côté Lausanne-Jorat, il fallait compter sur le très jeune Viktor Kuznetsov. Les 31 équipes engagées n’ont pas m&ea...

  8. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2012-01-01

     Finale de la coupe de printemps   La dernière course d’orientation comptant pour la Coupe de printemps a eu lieu samedi dernier dans le village des Rousses et vers le Fort. Il s’agissait d’un sprint organisé par le club O’Jura. Les temps de course ont avoisiné les 20 minutes que ce soit pour le parcours technique moyen ou technique long. Tous les habitués étaient au rendez-vous pour venir consolider ou améliorer leur place au classement. A l’issue de cette course, le classement général de la Coupe de printemps prenant en compte les 6 meilleurs résultats des 9 courses était établi et les lauréats de chaque catégorie sont les suivants: Circuit technique long : 1er Berni Wehrle, 2e Bruno Barge, 3e Edvins Reisons. Circuit technique moyen : 1er Jean-Bernard Zosso, 2e Cédric Wehrl&...

  9. Orienteering club

    CERN Multimedia

    Club d'orientation

    2010-01-01

    COURSE D’ORIENTATION  De La Rippe à Sauvabellin, la coupe genevoise continue ! Le rendez-vous était donné samedi 8 mai aux amateurs de course d’orientation dans les bois de La Rippe (Canton de Vaud). Cette 6e épreuve était organisée par le Club Satus Grutli de Genève. Il est dommage que les participants n’aient pas été aussi nombreux que lors des dernières courses, les Championnats de France des clubs à Dijon ayant certainement retenus plus d’un compétiteur. La première place est revenue à : – Technique long : Berni Wehrle – Technique moyen : Jean-Bernard Zosso – Technique court : Berni Wehrle – Facile moyen : Peter Troscanyi – Facile court : Claire Droz. Il ne restera plus que deux épreuves ...

  10. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation Samedi 20 avril, les organisateurs du Club de CO du CERN ont accueilli au Mont Mourex 70 participants qui n’ont pas hésité à venir malgré la forte bise. Berni Wehrle du CO CERN s’est octroyé la première place en 1:04:49 sur le parcours technique long devant Pyry Kettunen du Saynso Juankoski en 1:06:52, la 3e place revenant à Bruno Barge, CO CERN, à 7 secondes. Les autres parcours ont été remportés par : Technique moyen : 1er Jacques Moisset, Chamonix (47:44), 2e Yves Rousselot, Balise 25 Besançon (57:16), 3e Jean-Bernard Zosso, CO CERN (59:28). Technique court : 1er Victor Kuznetsov, COLJ (51:53), 2e Pierrick Collet, CO CERN (1:12:52), 3e Dominique Balay, CO CERN (1:16:04). Pour les parcours facile moyen et facile court, Ralf Nardini et Léa Nicolas, tous deux du CO CERN, terminaient respectivement premier. Voi...

  11. Elemental moment variation of bcc Fe{sub x}Mn{sub 1−x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Bhatkar, H.; Snow, R.J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-02-01

    We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc Fe{sub x}Mn{sub 1−x} on MgO(001). It is observed that the 20 nm thick Fe{sub x}Mn{sub 1−x} alloy films remained bcc from 0.65≤x≤1, much beyond the bulk stability range of 0.88≤x≤1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L{sub 3} binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x~0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism - Highlights: • Bcc Fe{sub x}Mn{sub 1−x} films were stabilized beyond bulk range by epitaxial growth on MgO. • XMCD shows negligible moment in Mn regardless of composition. • Fe moment stays constant until 84% Mn concentration. • Magnetic moment suddenly collapses before any structural change seen in RHEED.

  12. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd.

    NARCIS (Netherlands)

    Lu, P.; Asseri, A.H.O.; Kremer, Martijn; Maaskant, Janneke; Ummels, Roy; Lill, H.; Bald, D.

    2018-01-01

    Mycobacterial energy metabolism currently attracts strong attention as new target space for development of anti-tuberculosis drugs. The imidazopyridine Q203 targets the cytochrome bcc complex of the respiratory chain, a key component in energy metabolism. Q203 blocks growth of Mycobacterium

  13. 3D atomistic studies of fatigue behaviour of edge crack (0 0 1) in bcc iron loaded in mode i and II

    Czech Academy of Sciences Publication Activity Database

    Machová, Anna; Pokluda, J.; Uhnáková, Alena; Hora, Petr

    2014-01-01

    Roč. 66, September (2014), s. 11-19 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional support: RVO:61388998 Keywords : fatigue crack growth * bcc iron * 3D atomistic simulations * molecular dynamics Subject RIV: JQ - Machines ; Tools Impact factor: 2.275, year: 2014 www.elsevier.com/locate/ijfatigue

  14. Atomic defects and diffusion in metals

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1981-11-01

    The tracer self-diffusion data for fcc and refractory bcc metals are briefly reviewed with respect to (i) the available monovacancy formation and migration properties and (ii) the high-temperature diffusion enhancement above that expected for mass transport via atomic exchange with monovacancies. While the atomic-defect mechanism for low-temperature self-diffusion can be reliably attributed to monovacancies, the mechanisms responsible for high-temperature mass transport are not so easily defined at this time; both divacancies and interstitials must be seriously considered. Possibilities for improving our understanding in this area are discussed. 68 references, 7 figures

  15. Dynamics of the HCP/BCC phase transition and of the diffusion in zirconium: a model based on a tight-binding potential

    International Nuclear Information System (INIS)

    Willaime, F.

    1991-09-01

    We have developed an N-body interatomic potential, based on the second moment approximation of the tight-binding scheme, by fitting its four adjustable parameters to the cohesive energy, atomic volume, and elastic constants of hcp-Zr. We then showed that various properties of this potential compare favorably with those of zirconium in both the low temperatures hcp phase and the high temperature bcc phase. Such is the case in particular for the elastic constants, the phonon dispersion curves, the thermal expansion, and the melting temperature. We reproduced by molecular dynamics (MD) simulations on this potential the hcp/bcc phase transformation in both ways. It indeed occurs following the mechanism predicted by Burgers. We find a vibrational entropy of transformation equal to 0.13 k B . Our calculations suggest that in real zirconium the electronic contribution to the transformation entropy is important. We show that some interatomic potential lead to a higher value of the vibrational entropy in the hcp phase than in the bcc phase. We specified the dynamics of the vacancy migration in the bcc phase. The atomic jumps are almost exclusively nearest neighbour ones. The walk of the vacancy becomes strongly correlated at high temperatures. The vacancy jump frequency is very large and has a perfectly arrhenian behaviour. There is no evicence of a dynamical lowering of the vacancy migration barrier: the static and dynamic values of the vacancy migration energy are almost equal, both being unusually small (0.3 eV). The self diffusion coefficent of our model for the vacancy mechanism reproduces an anomalous fast diffusion close to that measured experimentally in bcc-Zr. In our model at high temperatures the time interval between successive jumps is almost equal to the time of flight. The migration events will therefore influence the formation of the vacancies [fr

  16. About oxide dispersion particles chemical compatibility with areas coherent dissipation/sub-grains of bcc-alloys in Fe - (Cr, V, Mo, W systems

    Directory of Open Access Journals (Sweden)

    Udovsky A.

    2016-01-01

    Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed

  17. Generalized Rate Theory for Void and Bubble Swelling and its Application to Plutonium Metal Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    In the classical rate theory for void swelling, vacancies and self-interstitials are produced by radiation in equal numbers, and in addition, thermal vacancies are also generated at the sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to the high formation energy of self-interstitials for normal metals and alloys, their thermal generation is negligible, as pointed out by Bullough and Perrin. However, recent DFT calculations of the formation energy of self-interstitial atoms in bcc metals have revealed that the sum of formation and migration energies for self-interstitials atoms (SIA) is of the same order of magnitude as for vacancies. The ratio of the activation energies for thermal generation of SIA and vacancies is presented. For fcc metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical predictions of point defect properties in δ-Pu, this ratio could possibly be less than one. As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into considerations when modeling the growth of voids and of helium bubbles, and the classical rate theory (CRT) for void and bubble swelling must be extended to a generalized rate theory (GRT).

  18. In situ neutron diffraction study of grain-orientation-dependent phase transformation in 304L stainless steel at a cryogenic temperature

    International Nuclear Information System (INIS)

    Tao Kaixiang; Wall, James J.; Li, Hongqi; Brown, Donald W.; Vogel, Sven C.; Choo, Hahn

    2006-01-01

    In situ time-of-flight neutron diffraction was performed to investigate the martensitic phase transformation during quasistatic uniaxial compression testing of 304L stainless steel at 300 and 203 K. In situ neutron diffraction enabled the bulk measurement of intensity evolution for various hkl atomic planes during the austenite (fcc) to martensite (hcp and bcc) phase transformation. Based on the neutron diffraction patterns, the martensite phases were observed from the very beginning of the plastic deformation at 203 K. However, at 300 K, no newly formed martensite, except a small amount of preexisting hcp phase, was observed throughout the test. From the changes in the relative intensities of individual hkl atomic planes, the grain-orientation-dependent phase transformation was investigated. The preferred orientation of the newly formed martensite grains was also investigated for the sample deformed at 203 K using neutron diffraction. The results reveal the orientation relationships between the austenite and the newly formed martensites. The fcc grain family diffracting with (200) plane normal parallel to the loading axis is favored for the fcc to bcc transformation and the bcc (200) plane normals are primarily aligned along the loading direction. For the fcc to hcp transformation, the fcc grains with (111) plane normals at an angle in between about 10 deg. and 50 deg. to the loading direction are favored

  19. Sexual Orientation (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Sexual Orientation KidsHealth / For Parents / Sexual Orientation What's in this ... orientation is part of that process. What Is Sexual Orientation? The term sexual orientation refers to the gender ( ...

  20. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  1. Creep mechanisms and constitutive relations in pure metals

    International Nuclear Information System (INIS)

    Nix, W.D.

    1979-01-01

    The mechanisms of creep of pure metals is briefly reviewed and divided into two parts: steady state flow mechanisms, and non-steady state flow mechanisms and constitutive relations. Creep by diffusional flow is now reasonably well understood, with theory and experiment in good agreement. The closely related phenomenon of Harper--Dorn creep can also be understood in terms of diffusion between dislocations. Power law creep involves the climb of edge disloctions controlled by lattice self diffusion. Theoretical treatments of this process invariably give a power law exponent of 3. This natural creep law is compared with the data for FCC and BCC metals. It is suggested that diffusion controlled climb is the controlling process in BCC metals at very high temperatures. Stacking fault energy effects may preclude the possibility that creep is controlled entirely by lattice self diffusion in some FCC metals. The subject of power law breakdown is presented as a natural consequence of the transition to low temperature flow phenomena. The role of core diffusion in this transition is briefly discussed. The mechanisms are presented by which pure metals creep at elevated temperatures. While most of this review deals with the mechanisms of steady state flow, some discussion is devoted to creep flow under non-steady state conditions. This topic is discussed in connection with the development of constitutive equations for describing plastic flow in metals

  2. Stress localization in BCC polycrystals and its implications on the probability of brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Ludovic [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France); Gelebart, Lionel, E-mail: lionel.gelebart@cea.fr [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France); Dakhlaoui, Rim; Marini, Bernard [CEA, DEN, SRMA, 91191 Gif sur Yvette Cedex (France)

    2011-07-15

    Highlights: {yields} Intergranular stress distributions in a bainitic steel. {yields} Comparison of local mean stress field with neutron diffraction results. {yields} Application of the local stress distribution in a brittle fracture model. - Abstract: The evaluation of the reliability of pressure vessels in nuclear plants relies on the evaluation of failure probability models. Micromechanical approaches are of great interest to refine their description, to better understand the underlying mechanisms leading to failure, and finally to improve the prediction of these models. The main purpose of this paper is to introduce the stress heterogeneities arising within the polycrystal in a probabilistic modeling of brittle fracture. Stress heterogeneities are evaluated from Finite-Element simulations performed on a large number of Statistical Volume Elements. Results are validated both on the measured averaged behavior and on the averaged stresses measured by neutron diffraction in five specific orientations. A probabilistic model for brittle fracture is then presented accounting for the carbide distribution and the stress distribution evaluated previously inside an elementary volume V{sub 0}. Results are compared to a 'Beremin type' approach, assuming a homogeneous stress state inside V{sub 0}.

  3. Converting hcp Mg-Al-Zn alloy into bcc Mg-Li-Al-Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl-KCl

    International Nuclear Information System (INIS)

    Lin, M.C.; Tsai, C.Y.; Uan, J.Y.

    2007-01-01

    A body-centered cubic (bcc) Mg-12Li-9Al-1Zn (wt.%) alloy was fabricated in air by electrolysis from LiCl-KCl molten salt at 500 deg. C. Electrolytic deposition of Li atoms on cathode (Mg-Al-Zn alloy) and diffusion of the Li atoms formed the bcc Mg-Li-Al-Zn alloy with 12 wt.% Li and only 0.264 wt.% K. Low K concentration in the bcc Mg alloy strip after the electrolysis process resulted from 47% atomic size misfit between K and Mg atoms and low solubility of K in Mg matrix

  4. Highly hard yet toughened bcc-W coating by doping unexpectedly low B content

    KAUST Repository

    Yang, Lina

    2017-08-18

    Either hardness or toughness has been the core interest in scientific exploration and technological pursuit for a long time. However, it is still a big challenge to enhance the hardness and toughness at the same time, since the improvement of one side is always at the expense of the other one. Here, we have succeeded in dealing with this pair of conflict based on tungsten (W) coating by doping boron (B) via magnetron co-sputtering. The results reveal that the introduction of low concentrations of B (6.3 at. %), in the doping regime, leads to the formation of W(B) supersaturated solid solution with refined grains. Meanwhile, the doping-induced higher compressive stress, higher H/E* and denser microstructure result in a surprising combination of improved hardness (2 × larger than pure W) and superior toughness (higher crack formation threshold compared to pure W). We believe this is an innovative sight to design new generation of transition-metal-based multifunctional coatings. Besides, our results are applicable for industrial application because it can be realized by simple manufacturing approaches, e.g. magnetron sputtering technology.

  5. Structural properties and stability of the bcc and omega phases in the Zr-Nb system. Pt. II. Composition dependence of the lattice parameters

    International Nuclear Information System (INIS)

    Grad, G.B.; Guillermet, A.F.; Pieres, J.J.; Cuello, G.J.; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires; Universidad Nacional del Comahue

    1996-01-01

    For pt.I see Guillermet, A.F., J. Nucl. Mater., vol.218, p.236-46, 1995. This paper deals with the composition dependence of the lattice parameters of the bcc and omega phases of the Zr-Nb system. The experimental part of the work comprises neutron scattering experiments on a Zr-10 at.% Nb alloy in the as-quenched state and after successive aging treatments at 773 K. This new information is combined with an extensive review of the available data, and a detailed analysis is performed of the effects of composition and heat-treatment upon the lattice parameters a Ω and c Ω of the omega phase and the lattice-parameter relations between bcc and omega. A striking behaviour is detected in the variation of a Ω with composition in low-Nb alloys. (orig.)

  6. Neutron and PIMC determination of the longitudinal momentum distribution of HCP, BCC and normal liquid 4He

    International Nuclear Information System (INIS)

    Blasdell, R.C.; Ceperley, D.M.; Simmons, R.O.

    1993-07-01

    Deep inelastic neutron scattering has been used to measure the neutron Compton profile (NCP) of a series of condensed 4 He samples at densities from 28.8 atoms/nm 3 (essentially the minimum possible density in the solid phase) up to 39.8 atoms/nm 3 using a chopper spectrometer at the Argonne National Laboratory Intense Pulsed Neutron Source. At the lowest density, the NCP was measured along an isochore through the hcp, bcc, and normal liquid phases. Average atomic kinetic energies are extracted from each of the data sets and are compared to both published and new path integral Monte-Carlo (PIMC) calculations as well as other theoretical predictions. In this preliminary analysis of the data, account is taken of the effects of instrumental resolution, multiple scattering, and final-state interactions. Both our measurements and the PIMC theory show that there are only small differences in the kinetic energy and longitudinal momentum distribution of isochoric helium samples, regardless of their phase or crystal structure

  7. Atomistic simulations of screw dislocations in bcc tungsten: From core structures and static properties to interaction with vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ke [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Niu, Liang-Liang [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI 48109 (United States); Jin, Shuo, E-mail: jinshuo@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Shu, Xiaolin [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Xie, Hongxian [School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132 (China); Wang, Lifang; Lu, Guang-Hong [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China)

    2017-02-15

    Atomistic simulations have been used to investigate the core structures, static properties of isolated 1/2 <1 1 1> screw dislocations, and their interaction with vacancies in bcc tungsten (W) based on three empirical interatomic potentials. Differential displacement maps show that only one embedded atom method potential is able to reproduce the compact non-degenerate core as evidenced by ab initio calculations. The obtained strain energy and stress distribution from atomistic simulations are, in general, consistent with elasticity theory predictions. In particular, one component of the calculated shear stress, which is not present according to elasticity theory, is non-negligible in the core region of our dislocation model. The differences between the results calculated from three interatomic potentials are in details, such as the specific value and the symmetry, but the trend of spatial distributions of static properties in the long range are close to each other. By calculating the binding energies between the dislocations and vacancies, we demonstrate that the dislocations act as vacancy sinks, which may be important for the nucleation and growth of hydrogen bubbles in W under irradiation.

  8. Differentiation of Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis using BccI for hsp70 PCR-RFLP.

    Science.gov (United States)

    Montalvo Alvarez, Ana Margarita; Nodarse, Jorge Fraga; Goodridge, Ivón Montano; Fidalgo, Lianet Monzote; Marin, Marcel; Van Der Auwera, Gert; Dujardin, Jean-Claude; Bernal, Iván Darío Velez; Muskus, Carlos

    2010-05-01

    Leishmania panamensis and Leishmania guyanensis are two species of the subgenus Viannia that are genetically very similar. Both parasites are usually associated with cutaneous leishmaniasis, but also have the potential to cause the mucocutaneous form of the disease. In addition, the study of foci and consequently the identification of vectors and probable reservoirs involved in transmission require a correct differentiation between both species, which is important at epidemiological level. We explored the possibility of identifying these species by using restriction fragment length polymorphisms (RFLP) in the gene coding for heat-shock protein 70 (hsp70). Previously, an hsp70 PCR-RFLP assay proved to be very effective in differentiating other Leishmania species when HaeIII is used as restriction enzyme. Based on hsp70 sequences analysis, BccI was found to generate species-specific fragments that can easily be recognized by agarose gel electrophoresis. Using the analysis of biopsies, scrapings, and parasite isolates previously grouped in a cluster comprising both L. panamensis and L. guyanensis, we showed that our approach allowed differentiation of both entities. This offers the possibility not only for identification of parasites in biological samples, but also to apply molecular epidemiology in certain countries of the New World, where several Leishmania species could coexist. Copyright 2009 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  9. Entrepreneurial orientation, market orientation, and competitive environment

    DEFF Research Database (Denmark)

    Sørensen, Hans Eibe; Cadogan, John W.

    This study sheds light on the role that the competitive environment plays in determining how elements of market orientation and elements of entrepreneurial orientation interact to influence business success. We develop a model in which we postulate that market orientation, entrepreneurial...... orientation, and competitive environment shape business performance via a three-way interaction. We test the model using primary data from the CEOs of 270 CEO of manufacturing firms, together with secondary data on these firms' profit performance. An assessment of the results indicates that customer...... orientation moderates the positive relationships between the competitiveness element of entrepreneurial orientation and market share and return on assets (ROA): the positive relationships between competitiveness and market share and competitiveness and ROA become stronger the greater the firms' customer...

  10. Thermal-hydraulic study of fixed bed nuclear reactor (FBNR), in FCC, BCC and pseudo-random configurations of the core through CFD method

    International Nuclear Information System (INIS)

    Luna, M.; Chavez, I.; Cajas, D.; Santos, R.

    2015-01-01

    The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m 2 *K, 3718 W/m 2 *K and 3042 W/m 2 *K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)

  11. The behavior of hydrogen in metals

    International Nuclear Information System (INIS)

    Hirabayashi, Makoto

    1975-01-01

    Explanation is made on the equilibrium diagrams of metal-hydrogen systems and the state of hydrogen in metals. Some metals perform exothermic reaction with hydrogen, and the others endothermic reaction. The former form stable hydrides and solid solutions over a wide range of composition. Hydrogen atoms in fcc and bcc metals are present at the interstitial positions of tetrahedron lattice and octahedron lattice. For example, hydrogen atoms in palladium are present at the intersititial positions of octahedron. When the ratio of the composition of hydrogen and palladium is 1:1, the structure becomes NaCl type. Hydrogen atoms in niobium and vanadium and present interstitially in tetrahedron lattice. Metal hydrides with high hydrogen concentration are becoming important recently as the containers of hydrogen. Hydrogen atoms diffuse in metals quite easily. The activation energy of the diffusion of hydrogen atoms in Nb and V is about 2-3 kcal/g.atom. The diffusion coefficient is about 10 -5 cm 2 /sec in alpha phase at room temperature. The number of jumps of a hydrogen atom between neighboring lattice sites is 10 11 --10 12 times per second. This datum is almost the same as that of liquid metals. Discussion is also made on the electronic state of hydrogen in metals. (Fukutomi, T.)

  12. Machine Learning and Infrared Thermography for Fiber Orientation Assessment on Randomly-Oriented Strands Parts

    Science.gov (United States)

    Maldague, Xavier

    2018-01-01

    The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed. PMID:29351240

  13. Machine Learning and Infrared Thermography for Fiber Orientation Assessment on Randomly-Oriented Strands Parts.

    Science.gov (United States)

    Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Malheiros, Fernando; Ignacio, Luis Henrique; Sfarra, Stefano; Ibarra-Castanedo, Clemente; Guimaraes, Gilmar; Maldague, Xavier

    2018-01-19

    The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed.

  14. Quantum-mechanical approach to the state of hydrogen in b. c. c. metals

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Y; Sugimoto, H

    1980-01-01

    A first step towards consistent understanding of various properties of interstitial hydrogen in b.c.c. metals has been made by solving a Schroedinger equation for hydrogen atoms in the field of interaction with surrounding metal atoms. Properties investigated include the nature of self-trapped states, the relative stability of self-trapped configurations, the average stress field (P-tensor), the excitation energy to be determined by neutron spectroscopy, etc. Calculations were performed on hydrogen isotopes (H, D, T) in group-V metals (V, Nb, Ta), and good agreement was obtained with many different kinds of observations. Some predictions and tentative explanations are also presented.

  15. Quantum-mechanical approach to the state of hydrogen in B. C. C. metals

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Y; Sugimoto, H [Chuo Univ., Tokyo (Japan). Dept. of Physics

    1980-01-01

    A first step towards consistent understanding of various properties of interstitial hydrogen in B.C.C. metals has been made by solving a Schroedinger equation for hydrogen atoms in the field of interaction with surrounding metal atoms. Properties investigated include a nature of self-trapped states, a relative stability of self-trapped configurations, the average stress field (P-tensor), the excitation energy to be determined by neutron spectroscopy, etc. Calculations were performed on hydrogen isotopes (H, D, T) in group-V metals (V, Nb, Ta), and good agreement was obtained with many different kinds of observations. Some predictions and tentative explanations are also presented.

  16. Multi-pentad prediction of precipitation variability over Southeast Asia during boreal summer using BCC_CSM1.2

    Science.gov (United States)

    Li, Chengcheng; Ren, Hong-Li; Zhou, Fang; Li, Shuanglin; Fu, Joshua-Xiouhua; Li, Guoping

    2018-06-01

    Precipitation is highly variable in space and discontinuous in time, which makes it challenging for models to predict on subseasonal scales (10-30 days). We analyze multi-pentad predictions from the Beijing Climate Center Climate System Model version 1.2 (BCC_CSM1.2), which are based on hindcasts from 1997 to 2014. The analysis focus on the skill of the model to predict precipitation variability over Southeast Asia from May to September, as well as its connections with intraseasonal oscillation (ISO). The effective precipitation prediction length is about two pentads (10 days), during which the skill measured by anomaly correlation is greater than 0.1. In order to further evaluate the performance of the precipitation prediction, the diagnosis results of the skills of two related circulation fields show that the prediction skills for the circulation fields exceed that of precipitation. Moreover, the prediction skills tend to be higher when the amplitude of ISO is large, especially for a boreal summer intraseasonal oscillation. The skills associated with phases 2 and 5 are higher, but that of phase 3 is relatively lower. Even so, different initial phases reflect the same spatial characteristics, which shows higher skill of precipitation prediction in the northwest Pacific Ocean. Finally, filter analysis is used on the prediction skills of total and subseasonal anomalies. The results of the two anomaly sets are comparable during the first two lead pentads, but thereafter the skill of the total anomalies is significantly higher than that of the subseasonal anomalies. This paper should help advance research in subseasonal precipitation prediction.

  17. Atomic simulation of bcc niobium Σ5〈001〉{310} grain boundary under shear deformation

    International Nuclear Information System (INIS)

    Huang, Bo-Wen; Shang, Jia-Xiang; Liu, Zeng-Hui; Chen, Yue

    2014-01-01

    The shear behaviors of grain boundaries are investigated using molecular dynamics simulations. The Σ5〈001〉{310} symmetric tilt grain boundary (GB) of body-centered cubic (bcc) Nb is investigated and the simulations are conducted under a series of shear directions at a wide range of temperatures. The results show that the GB shearing along [13 ¯ 0], which is perpendicular to the tilt axis, has a coupled motion behavior. The coupling factor is predicted using Cahn’s model. The critical stress of the coupling motion is found to decrease exponentially with increasing temperature. The GB under shear deformation along the [001 ¯ ] direction, which is parallel to the tilt axis, has a pure sliding behavior at most of the temperatures investigated. The critical stress of sliding is found to be much larger than that of the coupled motion at the same temperature. At very low temperatures, pure sliding is not observed, and dislocation nucleating and extending is found on GBs. We observed mixed behaviors when the shear direction is between [13 ¯ 0] and [001 ¯ ]. The transition region between GB coupled motion and pure sliding is determined. If the shear angles between the shear direction and the tilt axis are larger than a certain value, the GB has a coupled motion behavior similar to the [13 ¯ 0] direction. A GB with a shear angle smaller than the critical angle exhibits mixed mechanisms at low temperatures, such as dislocation, atomic shuffle and GB distortion, whereas for the [001 ¯ ]-like GB pure sliding is the dominating mechanism at high temperatures. The stresses to activate the coupling and gliding motions are analyzed for shear deformations along different directions at various temperatures

  18. Investigating effects of BCC and FCC arrangements on flow and heat transfer characteristics in pebbles through CFD methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ferng, Yuh Ming, E-mail: ymferng@ess.nthu.edu.tw [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsingchu 30013, Taiwan, ROC (China); Lin, Kun-Yueh [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsingchu 30013, Taiwan, ROC (China)

    2013-05-15

    Highlights: ► An HTGR would be one of the possible energy generation sources. ► We propose a CFD model to study effects of pebble arrangements for a PRB core. ► The entrance effect on the Nu number can be reasonably captured. ► The present predicted Nu versus Re{sub p} shows good agreement with data and correlation. ► Using FCC lattice in a core, simulation results may be non-conservative. -- Abstract: A high temperature gas cooled reactor (HTGR) would be one of the possible energy generation sources due to its advantages of inherently safety performance and higher conversion efficiency, etc. However, safety is the most important issue for its commercialization in energy industry. It is very crucial for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, a computational fluid dynamics (CFD) methodology is proposed to investigate effects of different arrangements on these characteristics for an HTGR with a pebble bed (PB) core. Two kinds of arrangement: body-centered cubic (BCC) and face-centered cubic (FCC) are studies herein. Based on the simulation results, higher heat transfer capability and lower pebble temperature are predicted in the pebbles with the FCC-arrangement. The thermally fully-developed flow condition may be reached, which is shown in the result that the predicted average Nussel (Nu) number decreases from the 1st layer and reaches to an asymptotic value as the gas passes through the 6th layer of pebbles. This entrance effect reveals that the system codes using the correlations developed from the fully-developed flow condition can be appropriately applied in the entire PBR core. In addition, the present predicted dependence of Nu number on the inlet Reynolds (Re) number shows good agreement with that obtained from the well-known KTA. Measured data of Nu number versus Re number are also used to validate the CFD model.

  19. Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations

    Science.gov (United States)

    Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.

    2018-06-01

    In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111} orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001} orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123} slip systems were preferentially activated in these single crystals during deformation as well as {112} slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction ( orientation, associated with {123} slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.

  20. Theories of Sexual Orientation.

    Science.gov (United States)

    Storms, Michael D.

    1980-01-01

    Results indicated homosexuals, heterosexuals, and bisexuals did not differ within each sex on measures of masculinity and femininity. Strong support was obtained for the hypothesis that sexual orientation relates primarily to erotic fantasy orientation. (Author/DB)

  1. Electroplastic effect in metals

    International Nuclear Information System (INIS)

    Sprecher, A.F. Jr.

    1984-01-01

    This report presents the effects of single d-c current pulses (1000-6000 A/mm 2 approx.60 μs) on plastically deforming metals. Polycrystalline wire specimens (D 0 approx. 1/2 mm, L 0 approx. 50 mm) representing the three more common crystal structures were employed: Ti from the HCP structures; Fe, Nb, and W from the bcc structure; and Al, Cu, and Ni from the fcc structure. The tests were carried out under uniaxial tension with an applied strain rate of 1.7 x 10 -4 sec -1 at room temperature. Forced air cooling was employed in order to reduce the principal side effect, heating. As a result of applying a current pulse, there were significant drops in the flow stress (1-35%). These drops not only included an electron dislocation interaction but all side effects as well. The main side effect due to the temperature rise was thermal expansion and could account for 60-90% of the drops. In addition to thermal expansion, some thermally induced plastic flow occurred as indicated by computer simulations. The total side effects (thermal expansion and plastic flow) approximately accounted for the stress drops in Ti, W, and Nb. However, a strong electron dislocation (ed) interaction was observed in Cu and Al since plastic flow from thermal effects was negligible. In Ni and Fe the portion of the stress drops due to (ed) was unclear due to some dynamic aging effects present

  2. He–He and He–metal interactions in transition metals from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Zou, Tingting [Information Science and Technology College, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China)

    2015-12-15

    We investigated the atomistic mechanism of He–He and He–metal interactions in bcc transition metals (V, Nb, Ta, Cr, Mo, W, and Fe) using first-principles methods. We calculated formation energy and binding energy of He–He pair as function of distance within the host lattices. The strengths of He–He attraction in Cr, Mo, W, and Fe (0.37–1.11 eV) are significantly stronger than those in V, Nb, and Ta (0.06–0.17 eV). Such strong attractions mean that He atoms would spontaneously aggregate inside perfect Cr, Mo, W, and Fe host lattices in absence of defects like vacancies. The most stable configuration of He–He pair is <100> dumbbell in groups VB metals, whereas it adopts close <110> configuration in Cr, Mo, and Fe, and close <111> configuration in W. Overall speaking, the He–He equilibrium distances of 1.51–1.55 Å in the group VIB metals are shorter than 1.65–1.70 Å in the group VB metals. Moreover, the presence of interstitial He significantly facilitates vacancy formation and this effect is more pronounced in the group VIB metals. The present calculations help understand the He-metal/He–He interaction mechanism and make a prediction that He is easier to form He cluster and bubbles in the groups VIB metals and Fe.

  3. Optical orientation of atoms in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhitnikov, R

    1979-06-01

    The results are summed up of experimental work on the optical orientation of atoms in a plasma conducted by the Atomic Radiospectroscopy Group at the AN SSSR Physical Technology Institute. The main methods of forming and observing the optical orientation of atoms in a helium plasma and an alkali metal plasma are described in detail. A quantum mechanical explanation is given of all observed phenomena. The most significant results include the discovery of the effect of the optical orientation of atoms in a plasma on the plasma optical and electrical properties, such as electric conductivity, emitted light intensity, ionization degree, and electron density. The phenomenon applies generally and is inherent to plasmas of different chemical compositions, at the optical orientation of atoms of different elements. The methods are indicated of the practical application of the phenomenon in designing principally new precision quantum magnetometers.

  4. Optical orientation of atoms in plasma

    International Nuclear Information System (INIS)

    Zhitnikov, R.

    1979-01-01

    The results are summed up of experimental work on the optical orientation of atoms in a plasma conducted by the Atomic Radiospectroscopy Group at the AN SSSR Physical Technology Institute. The main methods of forming and observing the optical orientation of atoms in a helium plasma and an alkali metal plasma are described in detail. A quantum mechanical explanation is given of all observed phenomena. The most significant results include the discovery of the effect of the optical orientation of atoms in a plasma on the plasma optical and electrical properties, such as electric conductivity, emitted light intensity, ionization degree, and electron density. The phenomenon applies generally and is inherent to plasmas of different chemical compositions, at the optical orientation of atoms of different elements. The methods are indicated of the practical application of the phenomenon in designing principally new precision quantum magnetometers. (J.U.)

  5. Understanding political market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.; Henneberg, Stephan C.

    influences of such behavior. The study includes structural equation modeling to investigate several propositions. While the results show that political parties need to focus on several different aspects of market-oriented behavior, especially using an internal and external orientation as cultural antecedents......This article develops a conceptual framework and measurement model of political market orientation that consists of attitudinal and behavioural constructs. The article reports on perceived relationships among different behavioral aspects of political market orientation and the attitudinal......, a more surprising result is the inconclusive effect of a voter orientation on market-oriented behaviours. The article discusses the findings in the context of the existing literature in political marketing and commercial market orientation....

  6. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  7. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe(110) surface

    International Nuclear Information System (INIS)

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-01-01

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C 2 H 2 molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C 2 H 2 molecules. The most stable site for C 2 H 2 on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C 2 H 2 molecule, the barrier height energies for the C atom, C 2 -dimer and CH as well as the C 2 H 2 molecule are estimated using the nudged elastic band method. The barrier height energy for C 2 H 2 is 0.71 eV and this indicates that the C 2 H 2 diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C 2 H 2 on Fe. The first step is the dissociation of C 2 H 2 into C 2 H and H, and the second step is that of C 2 H into C 2 and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C 2 H 2 into C 2 H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C 2 H 2 . The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C 2 H 2 which characterizes the beginning of the formation of the graphene.

  8. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe110 surface.

    Science.gov (United States)

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-09-29

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C(2)H(2) molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C(2)H(2) molecules. The most stable site for C(2)H(2) on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C(2)H(2) molecule, the barrier height energies for the C atom, C(2)-dimer and CH as well as the C(2)H(2) molecule are estimated using the nudged elastic band method. The barrier height energy for C(2)H(2) is 0.71 eV and this indicates that the C(2)H(2) diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C(2)H(2) on Fe. The first step is the dissociation of C(2)H(2) into C(2)H and H, and the second step is that of C(2)H into C(2) and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C(2)H(2) into C(2)H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C(2)H(2). The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C(2)H(2) which characterizes the beginning of the formation of the graphene.

  9. Effects of additive Pd on the structures and electrochemical hydrogen storage properties of Mg{sub 67}Co{sub 33}-based composites or alloys with BCC phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao; Zhuang, Xiangyang [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Zhu, Yunfeng [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Zhan, Leyu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Pu, Zhenggan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China); Li, Liquan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China)

    2015-02-15

    Highlights: • Additive Pd in Mg{sub 67}Co{sub 33} benefits to form a ternary BCC alloy. • Introducing 5.0 at.% Pd in Mg{sub 67}Co{sub 33} lifts the initial discharge capacity from 10 mAh/g to maximum 530 mAh/g. • Exchange current density was increased due to the homogeneously dispersed Pd. • Additive Pd slightly enhances the hydrogen diffusion coefficient of Mg-Co-Pd composites or alloys. - Abstract: Mg{sub 67}Co{sub 33} and Mg{sub 67}Co{sub 33}-Pd composites/alloys prepared by ball milling for 120 h possess nano-crystalline with body-centered cubic (BCC) structure, which was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The introduced 5.0 at.% Pd significantly lifts the initial discharge capacity from 10 mAh g{sup -1} of Mg{sub 67}Co{sub 33} to maximum 530 mAh g{sup -1}. Pd also drives the Mg{sub 67}Co{sub 33}-Pd composite forming a full BCC alloy during ball milling. The distribution of Pd gradually becomes homogeneous with the augmentation of the ball milling time according to the analyses by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Exchange current density increased with the milling time and can be ascribed to the homogeneously dispersion of Pd over the surface. The introduced Pd also enhances the hydrogen diffusion coefficient of the Mg{sub 67}Co{sub 33}-Pd composites/alloys.

  10. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close...

  11. Electronic structure of metastable bcc Cu–Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liebscher, C.H.; Freysoldt, C. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany); Dennenwaldt, T. [Institute of Condensed Matter Physics and Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Harzer, T.P.; Dehm, G. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany)

    2017-07-15

    Metastable Cu–Cr alloy thin films with nominal thickness of 300 nm and composition of Cu{sub 67}Cr{sub 33} (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50 nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu{sub 85}Cr{sub 15} (at%) and Cu{sub 42}Cr{sub 58} (at%) and domain size of 1–5 nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu–Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu–Cr solid solutions with bcc crystal structure a single peak after the L{sub 3}-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu–Cr solid solutions with 10 at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu{sub 50}Cr{sub 50} (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu–Cr d-band that lies between the delocalized d-bands of Cu and Cr. - Highlights: • Compositional fluctuations on the order of 1–5 nm in Cu- and Cr-rich domains are observed. • EELS determines a single van Hove singularity for bcc Cu–Cr solid solutions. • The electronic structure is dominated by d

  12. Stability and mobility of defect clusters and dislocation loops in metals

    DEFF Research Database (Denmark)

    Osetsky, Y.N.; Bacon, D.J.; Serra, A.

    2000-01-01

    has been observed in the computer simulation of small vacancy loops in alpha-Fe. In the present paper we summarise results obtained by molecular dynamics simulations of defect clusters and small dislocation loops in alpha-Fe(bcc) and Cu(fcc). The structure and stability of vacancy and interstitial......According to the production bias model, glissile defect clusters and small dislocation loops play an important role in the microstructural evolution during irradiation under cascade damage conditions. The atomic scale computer simulations carried out in recent years have clarified many questions...... loops are reviewed, and the dynamics of glissile clusters assessed. The relevance and importance of these results in establishing a better understanding of the observed differences in the damage accumulation behaviour between bcc and fee metals irradiated under cascade damage conditions are pointed out...

  13. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted...... instability of vicinal metal surfaces is at variance with the almost generally observed stability of these surfaces. We argue that the unstable orientations undergo a defaceting transition at relatively low temperatures, driven by the high vibrational entropy of steps....

  14. Grain orientation, deformation microstructure and flow stress

    International Nuclear Information System (INIS)

    Hansen, N.; Huang, X.; Winther, G.

    2008-01-01

    Dislocation structures in deformed metals have been analyzed quantitatively by transmission electron microscopy, high-resolution electron microscopy and Kikuchi line analysis. A general pattern for the microstructural evolution with increasing strain has been established and structural parameters have been defined and quantified. It has been found that two dislocation patterns co-exist in all grains, however, with very different characteristics dependent on grain orientation. This correlation with the grain orientation has been applied in modeling of the tensile flow stress and the flow stress anisotropy of fcc polycrystals. In conclusion some future research areas are briefly outlined

  15. Entrepreneurial Orientation and Internationalisation

    DEFF Research Database (Denmark)

    Decker, Arnim; Rollnik-Sadowska, Ewa; Servais, Per

    Entrepreneurial orientation is a multidimensional construct that determines the strategic posture of a firm. In this study we investigate a sample of six manufacturing firms which are located both in a remote area and in a transition economy. Through interpreting the construct of entrepreneurial...... orientation as an attitude held by principals we investigate how entrepreneurial orientation affected the behaviour of these firms, specifically in terms of their internationalisation. Despite the fact that all firms have identical roots we find that entrepreneurial orientation held by their principals affect...

  16. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  17. The non-pair forces and phonon dispersion in heavy alkali metals

    International Nuclear Information System (INIS)

    Aradhana, Km.; Rathore, R.P.S.

    1990-01-01

    Two types of non-pair forces, one from the Born-Mayer and the other from the Morse potential, are derived to discuss the response of electrons in heavy alkali metals, i.e., rubidium and cesium. The potentials are added to the two-body potential of Morse to account also for the ion-ion interactions. The potentials so obtained are employed to predict the phonon dispersion relations in bcc metals, which are also compared with recent precise neutron scattering data. (author). 1 fig, 3 tabs., 24 refs

  18. Impacts of Interface Energies and Transformation Strain from BCC to FCC on Massive-like δ-γ Transformation in Steel

    International Nuclear Information System (INIS)

    Yoshiya, M; Sato, M; Watanabe, M; Nakajima, K; Yokoi, T; Ueshima, N; Nagira, T; Yasuda, H

    2015-01-01

    Interface energies of δ/γ, γ/γ, δ/δ, L/δ, and L/γ interfaces, at first, as a function of misorientation were evaluated with an aid of atomistic simulations with embedded atom method. Then, under geometric constraints where grains or interfaces compete each other to minimize overall free energy, effective interface energies for those interfaces were quantified. It is found that neither the minimum nor effective δ/γ interface energies, 0.41 or 0.56 J/m 2 , respectively, is significantly higher than those of other interfaces including liquid/solid interfaces, but the δ/γ interface energy is significantly high for the small entropy change upon δ-γ massive-like transformation, resulting in significantly higher undercooling required for γ nucleation in the δ phase matrix than in solidification. Detachment of δ-phase dendrite tips away from γ-phase dendrite trunks can be explained only from a viewpoint of interface energy if small misorientationis introduced at the δ/γ interface from the perfect lattice matching between BCC and FCC crystal structures. Examining the BCC-to-FCC transformation strain on the γ nucleation in the massive-like transformation, the γ nucleation is prohibited 170 K or more undercooling is achieved unless any relaxation mechanism for the transformation strain is taken into account. (paper)

  19. Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: a transmission electron microscope study

    International Nuclear Information System (INIS)

    Staudhammer, K.P.; Hecker, S.S.; Murr, L.E.

    1983-01-01

    The deformation of type 304 stainless steel produces a preponderance of strain-induced /chi/ (b.c.c.) martensite, which nucleates as stable embryos at micro-shear band or twin-fault intersections as proposed by Olson and Cohen. The two intersecting micro-shear bands must have a specific defect (fault-displacement) structure, and for stable martensite embryos to form requires a minimal micro-shear band thickness ranging from 50-70 A. The critical nature of nucleation is influenced by the local temperature and strain. The structure, geometry, and morphology of strain-induced martensite embryos is essentially invariant regardless of the strain rate, strain state or temperature. Larger volume fractions of martensite evolve at large strains (greater than or equal to 20%) as a result of embryo coalescence to produce a blocky-type morphology. Martensite embryos and coalesced volume elements of /chi/ are frequently characterized by an irregular non-homogeneous distribution of smaller b.c.c. regimes which result from the irregular satisfaction of the necessary and specific fault-displacement requirements within a larger intersection volume

  20. Quantum-based Atomistic Simulation of Transition Metals

    International Nuclear Information System (INIS)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-01-01

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials

  1. Point defect stability in a semicoherent metallic interface

    Science.gov (United States)

    González, C.; Iglesias, R.; Demkowicz, M. J.

    2015-02-01

    We present a comprehensive density functional theory (DFT) -based study of different aspects of one vacancy and He impurity atom behavior at semicoherent interfaces between the low-solubility transition metals Cu and Nb. Such interfaces have not been previously modeled using DFT. A thorough analysis of the stability and mobility of the two types of defects at the interfaces and neighboring internal layers has been performed and the results have been compared to the equivalent cases in the pure metallic matrices. The different behavior of fcc and bcc metals on both sides of the interface has been specifically assessed. The modeling effort undertaken is the first attempt to study the stability and defect energetics of noncoherent Cu/Nb interfaces from first principles, in order to assess their potential use in radiation-resistant materials.

  2. Wildlife value orientations

    DEFF Research Database (Denmark)

    Gamborg, Christian; Jensen, Frank Søndergaard

    2016-01-01

    This article examined value orientations toward wildlife among the adult general Danish public in relation to age, sex, past and present residence, education, and income, using a U.S. survey instrument on Wildlife Value Orientations (WVO). The study used an Internet-based questionnaire sent...

  3. Edward Said and "Orientalism"

    Science.gov (United States)

    Chronicle of Higher Education, 2007

    2007-01-01

    In the nearly 30 years since Edward Said published the hugely influential Orientalism, his indictment of racism and imperialism in Western scholarship on the Orient has had its share of plaudits and condemnations. Now Robert Irwin, the Middle East editor of The Times Literary Supplement, has reignited the controversy with his broadside against the…

  4. Orientalism/Occidentalism

    NARCIS (Netherlands)

    Minca, C.; Ong, C.E.

    2017-01-01

    Orientalism and Occidentalism are interrelated concepts. Orientalism is defined in three keys ways: (i) as a study of “the Orient”; (ii) as a cultural and aesthetic concern with “the Orient”; and (iii) as a critical approach to understanding the construction of “the Orient” by European and American

  5. Aspect-Oriented Programming

    NARCIS (Netherlands)

    Bergmans, Lodewijk; Videira Lopes, Cristina; Moreira, Ana; Demeyer, Serge

    1999-01-01

    Aspect-oriented programming is a promising idea that can improve the quality of software by reduce the problem of code tangling and improving the separation of concerns. At ECOOP'97, the first AOP workshop brought together a number of researchers interested in aspect-orientation. At ECOOP'98, during

  6. Object oriented programming

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1990-01-01

    This paper is an introduction to object oriented programming techniques. It tries to explain the concepts by using analogies with traditional programming. The object oriented approach not inherently difficult, but most programmers find a relatively high threshold in learning it. Thus, this paper will attempt to convey the concepts with examples rather than explain the formal theory

  7. METAL COMPLEXES OF SALICYLHYDROXAMIC ACID AND 1,10 ...

    African Journals Online (AJOL)

    Preferred Customer

    Metal complexes which are formed in biological systems between a ligand and a metal ion are in dynamic ... In a continuation of our research work oriented towards studying the .... Antimicrobial activity techniques. Preparation of test samples.

  8. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  9. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  10. Orientation Characterisation of Aerospace Materials by Spatially Resolved Acoustic Spectroscopy

    International Nuclear Information System (INIS)

    Li, Wenqi; Coulson, Jethro; Smith, Richard J; Clark, Matt; Somekh, Michael G; Sharples, Steve D; Aveson, John W

    2014-01-01

    Material characteristics in metals such as strength, stiffness and fracture resistance are strongly related to the underlying microstructure. The crystallographic structure and orientation are related to the ultrasonic properties through the stiffness matrix. In individual grains it is possible to analytically determine the ultrasonic velocity from the orientation and stiffness, or determine the stiffness from the known orientation and measured velocity. In this paper we present a technique for imaging the crystallographic orientation of grains in metals using spatially resolved acoustic spectroscopy (SRAS) and a novel inverse solver that can determine the crystallographic orientation from the known stiffness matrix for the material and the SRAS velocity measurement. Previously we have shown the ability of this technique to determine the orientation on single crystal nickel samples; we extended the technique to multigrain industrial metals, such as aluminium, nickel and Inconel. The comparison between SRAS and electron backscatter diffraction (EBSD) on the nickel sample is presented. SRAS is a fast, accurate, quantitative and robust technique for imaging material microstructure and orientation over a wide range of scales and industrial materials

  11. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  12. Metastable Structural Phases of Metals in Columns IVB to Vib, and Rows 4 TO 6 OF the Periodic Table

    Science.gov (United States)

    Nnolim, Neme; Tyson, Trevor

    2002-03-01

    Total energy calculations as a function of strain along the direction have been carried out for the bcc metals V, Nb, Ta, Cr, Mo and W, and the hcp metals Ti, Zr and Hf, all in the block of the periodic table defined by columns IVB to VIB, and rows 4 to 6. Since strain along the direction corresponds to variation of the c lattice constant with respect to the a lattice constant, the total energy per unit cell has being calculated as a function of the c/a ratio. The highly accurate FP-LAPW (Full Potential Linearized Augmented Plane Wave) band structure method in the DFT (Density Functional Theory) formalism has been used for the calculations. In all cases except for the hcp column IVB elements, Zr, Hf and Ti, a metastable state was predicted from the calculations. Electronic properties are computed for all structures and are correlated with electrical and mechanical properties of metastable phases that have been observed experimentally. Properties of metastable phases, which were predicted in this work but which as of yet have not been observed experimentally, have also been predicted. Special attention is paid to the phases of tantalum and calculated transport properties are used to show that the observed high resistivity of the beta phase of tantalum relative to the alpha bcc phase cannot be explained solely by simple tetragonal distortions of the bcc phase.

  13. Implementing Strategic Orientation

    Science.gov (United States)

    Fischer, Arthur K.; Brownback, Sarah

    2012-01-01

    An HRM case dealing with problems and issues of setting up orientation programs which align with corporate strategy. Discussion concerns how such a case can be used to exhibit the alignment between HRM and business strategy.

  14. Crack growth in Fe-2.7 wt% Si single crystals under cyclic loading and 3D atomistic results in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Landa, Michal; Machová, Anna; Uhnáková, Alena; Pokluda, J.; Lejček, Pavel

    2016-01-01

    Roč. 87, June (2016), s. 63-70 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698; GA ČR GAP108/12/0144; GA ČR(CZ) GA15-20666S; GA ČR GA13-13616S Institutional support: RVO:61388998 ; RVO:68378271 Keywords : grack growth * cyclic loading * Bcc iron Subject RIV: JL - Materials Fatigue, Friction Mechanics; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.899, year: 2016 http://ac.els-cdn.com/S014211231500448X/1-s2.0-S014211231500448X-main.pdf?_tid=96e3e5a0-fb08-11e5-92cb-00000aab0f02&acdnat=1459845181_19fcdd93d31b1f140714e52b835b33d8

  15. A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: Current understanding and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Wharry, Janelle P., E-mail: jwharry@purdue.edu [Purdue University, 400 Central Drive, West Lafayette, IN 47907 (United States); Swenson, Matthew J.; Yano, Kayla H. [Boise State University, 1910 University Drive, Boise, ID 83725 (United States)

    2017-04-01

    Thus far, a number of studies have investigated the irradiation evolution of oxide nanoparticles in b.c.c. Fe-Cr based oxide dispersion strengthened (ODS) alloys. But given the inconsistent experimental conditions, results have been widely variable and inconclusive. Crystal structure and chemistry changes differ from experiment to experiment, and the total nanoparticle volume fraction has been observed to both increase and decrease. Furthermore, there has not yet been a comprehensive review of the archival literature. In this paper, we summarize the existing studies on nanoparticle irradiation evolution. We note significant observations with respect to oxide nanoparticle crystallinity, composition, size, and number density. We discuss four possible contributing mechanisms for nanoparticle evolution: ballistic dissolution, Ostwald ripening, irradiation-enhanced diffusion, and homogeneous nucleation. Finally, we propose future directions to achieve a more comprehensive understanding of irradiation effects on oxide nanoparticles in ODS alloys.

  16. Progress in cold roll bonding of metals

    International Nuclear Information System (INIS)

    Li Long; Nagai, Kotobu; Yin Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version. (topical review)

  17. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  18. The effect of hydrogen on the superconducting and structural properties of b.c.c. Nb-Ru alloys

    International Nuclear Information System (INIS)

    Robbins, C.G.; Ishikawa, M.; Treyvaud, A.; Muller, J.

    1975-01-01

    The superconducting transition temperature (Tsub(c)) has been measured before and after the introduction of hydrogen into Nbsub((1-x))Rusub(x) (0.20<=x<=0.33). In all cases, the presence of appreciable amounts of this interstitial component led to a sharp increase in the Tsub(c). All the evidence suggests that conversion of the host metal lattice to f.c.c. is necessary for the appearance of the elevated Tsub(c). (author)

  19. Effect of the coupling between electronic structure and crystalline structure on some properties of transition metals

    International Nuclear Information System (INIS)

    Nastar, M.

    1994-01-01

    The elastic constants, energetic stabilities and vacancy formation energies in transition metals are calculated within a Tight Binding model. In order to outline the effect of the electronic structure, these properties are represented as functions of band filling. The variation of the shear elastic constants of hexagonal close packed (HCP), body centered cubic (BCC) and face centered cubic (FCC) structures, is in contrast with the roughly parabolic behavior of bulk modulus. The general trends are in very good agreement with available experimental and 'ab initio' data. The vacancy formation energy in the BCC structure shows strong deviations from bell shape behavior with a maximum corresponding approximately to the band filling of group 6. This band filling effect contributes to the noticeable decrease of the self diffusion rate between group 4 and group 6. We demonstrate that the abrupt increase of the C' elastic constant, the NT 1 (0.-1.1) phonon frequency, the energy differences between BCC and HCP and between FCC and HCP as well as the vacancy formation energy, that occurs when going from Zr to Mo, is related to the presence of a pseudo-gap in the density of states of the BCC structure. Using the recursion method, we show that the general trends of these properties are correctly reproduced when considering only a few moments of the density of states (about 6). On the other hand, details such as the elastic constant singularities, are displayed only with an exact calculation of the density of states. (Author). 173 refs., 84 figs., 5 tabs

  20. Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe-P system

    International Nuclear Information System (INIS)

    Ko, Won-Seok; Lee, Byeong-Joo; Kim, Nack J

    2012-01-01

    An interatomic potential for pure phosphorus, an element that has van der Waals, covalent and metallic bonding character, simultaneously, has been developed for the purpose of application to metal-phosphorus systems. As a simplification, the van der Waals interaction, which is less important in metal-phosphorus systems, was omitted in the parameterization process and potential formulation. On the basis of the second-nearest-neighbor modified embedded-atom method (2NN MEAM) interatomic potential formalism applicable to both covalent and metallic materials, a potential that can describe various fundamental physical properties of a wide range of allotropic or transformed crystalline structures of pure phosphorus could be developed. The potential was then extended to the Fe-P binary system describing various physical properties of intermetallic compounds, bcc and liquid alloys, and also the segregation tendency of phosphorus on grain boundaries of bcc iron, in good agreement with experimental information. The suitability of the present potential and the parameterization process for atomic scale investigations about the effects of various non-metallic impurity elements on metal properties is demonstrated. (paper)

  1. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  2. Neutron scattering for investigation into the connection between phonons and diffusion in metallic systems

    International Nuclear Information System (INIS)

    Herzig, C.

    1995-01-01

    For examining the connection between the diffusion systematics and the lattice dynamics of the body-centered cubic metals, the temperature dependence of the self-diffusion (radiotracer technique) and the phonon dispersion (neutron scattering) have been measured in selected systems. In continuation of previous studies, the goal of the examinations reported was to put the earlier developed phonon-related diffusion model on a broader experimental basis, in order to perform verifying analyses. The phonon dispersion of the group 5 metal Nb has been measured up to high temperatures. In contrast to the values measured for the group 4 (β-Zr) and group 6 (Cr) metals, the dispersion in Nb revealed an only very weak temperature dependence. The exceptional case of the bcc β-Tl has been examined by measuring the diffusion and the dispersion in the β-T 83 In 17 alloy. Significant deviations from the conditions in the bcc transition metals have been found. Self-diffusion has been measured for the first time in Ba and β-Sc. Their diffusion systematics correlate with electron configuration. The influence of the d-electron concentration on the diffusion systematics has been measured in Ti-Mo and Hf-Nb alloys, the results backing the predictions of the phonon-related diffusion model. (orig.) [de

  3. An overview on the Bauschinger effect in metallic materials

    International Nuclear Information System (INIS)

    Wang Yanfeng; Li Cong; Ling Xuyu; Shen Baoluo; Gao Shengji

    2002-01-01

    The Bauschinger effect in metallic materials including f.c.c. (face-centered cubic) and b.c.c. (body-centered cubic) materials such as pure alloys, casting alloys, copper alloys, aluminium alloys and metal matrix composite materials, and h.c.p. (hexagonal close packed) materials such as zirconium alloys and titanium alloys have been summarized comprehensively. The mechanism of Bauschinger effect is reviewed from the point of dislocation theory and internal stress (or back stress) that is responsible for the effect. Based upon these theories, the methods for calculating internal stress and models for simulating the effect are described briefly, which could explain the effect quantitatively. Finally, the measures to reduce or eliminate the effect have been pointed out, along with the issues to be researched in the future

  4. Refractory metal particles in refractory inclusions in the Allende meteorite

    International Nuclear Information System (INIS)

    Fuchs, L.H.; Blander, M.

    1980-01-01

    An examination of refractory metal particles in five calcium-aluminum-rich inclusions in the Allende meteorite indicates a complex variety of compositions and large departures from equilibrium. These particles appear to have been primordial condensates which were isolated from the nebula and from each other at different times by cocondensing oxides. Selective diffusion and/or oxidation of the more oxidizable metals (Mo, W, Fe and Ni), phase segregations into different alloy phases (fcc, bcc, hcp and perhaps ordered phases) and the formation of metastable condensates appears to have been involved in the modification of these materials to their present state. Only a small fraction of our observations cannot be reconciled with this picture because of a lack of knowledge of some of the phase equilibria which might have bee involved

  5. Fission neutron damage rates and efficiencies in several metals

    International Nuclear Information System (INIS)

    Klabunde, C.E.; Coltman, R.R. Jr.

    1981-11-01

    Initial rates of resistivity-measured low-temperature damage production by fission-spectrum fast neutrons have been determined for 14 metals in the same very well characterized irradiation facility. Six of these metals were fcc, 5 bcc, and 3 hcp. Most were of quite high purity. Observed damage rates, after correction for all known extraneous resistivity-producing effects, were compared with rates predicted by the damage calculation code RECOIL, using parameters chosen from the literature. These parameters, effective displacement threshold energy, E/sub d/, and Frenkel-pair resistivity, rho/sub F/, were in many cases only best estimates, the further refinement of which may be aided by the present results. Damage efficiencies (measured/predicted rates) follow the same trends by crystal classes as seen in other fast-neutron studies

  6. Oriental upper blepharoplasty.

    Science.gov (United States)

    Weng, Chau-Jin

    2009-02-01

    Aesthetic surgery of the upper eyelids is a very common procedure performed in cosmetic practices around the world. The word blepharoplasty, however, has a different meaning in Asia than it does elsewhere. Orientals have different periorbital anatomic characteristics, their motivations for seeking eyelid treatment are different, and operative techniques have been adapted consequently. There are also many eyelid shapes among Orientals, mostly with regard to the presence and location of the supratarsal fold and/or presence of an epicanthal fold. The surgeon must therefore master a range of surgical procedures to treat these variations adequately. It is critical to know the indications for each blepharoplasty technique as well as their complications to select the right surgery and avoid unfavorable results. Epicanthoplasty performed on the right patient can greatly improve aesthetic results while retaining ethnic characteristics. This article will discuss Oriental eyelid characteristics, preoperative patient assessment, commonly used corrective techniques for the "double-eyelid" creation, and complications and how to avoid them.

  7. Future-Oriented LCA

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Borup, Mads; Andersen, Per Dannemand

    2018-01-01

    LCA is often applied for decision-making that concerns actions reaching near or far into the future. However, traditional life cycle assessment methodology must be adjusted for the prospective and change-oriented purposes, but no standardised way of doing this has emerged yet. In this chapter some...... challenges are described and some learnings are derived. Many of the future-oriented LCAs published so far perform relatively short-term prediction of simple comparisons. But for more long-term time horizons foresight methods can be of help. Scenarios established by qualified experts about future...... technological and economic developments are indispensable in future technology assessments. The uncertainties in future-oriented LCAs are to a large extent qualitative and it is important to emphasise that LCA of future technologies will provide a set of answers and not ‘the’ answer....

  8. Cultural Orientation and Interdisciplinarity

    DEFF Research Database (Denmark)

    Nielsen, Sofie Søndergaard

    2004-01-01

    I begin the article with an account of the background to the German debate on ‘Literaturwissenschaft als Kulturwissenschaft’, including the introduction of the concept of ’cultural orientation’ as a strategy for achieving interdisciplinarity. This is followed by a consideration of the discussion ...... of the object of literary studies as a way of defining the disciplinarity or identity of literary studies. Finally I summarize some of the characteristics of culturally orientated literary studies.......I begin the article with an account of the background to the German debate on ‘Literaturwissenschaft als Kulturwissenschaft’, including the introduction of the concept of ’cultural orientation’ as a strategy for achieving interdisciplinarity. This is followed by a consideration of the discussion...

  9. Age and Value Orientations

    Directory of Open Access Journals (Sweden)

    Asya Kh. Kukubayeva

    2013-01-01

    Full Text Available The present article deals with value orientations and their role in men’s lives, particularly, in young people’s lives. This notion was introduced by the American theoretical sociologist T. Parsons, one of the creators of modern theoretical sociology. The scientist made an attempt to construct the structural and analytical theory of social action, combining personal interests (needs and aims and situation, it takes place in. The issue of value orientations remains acute for psychology. Herein we have considered several most important works, relating to the considered issue. Age aspects of young people’s value orientations are of peculiar interest to us. When analyzing this phenomenon, one should take into consideration the psychological formations, inhere for a certain age. In fact every age has its unique structure, which may change when passing from one development stage to another. Basing on this fact, we’ve considered the values, depending on the age features of the youth, relying upon the works of the scientists, working with different categories of the youth, such as: teenagers, students, children of different nationalities. It is not surprising that most scientists have come to the conclusion that the chief role in value orientation belongs to a family, originates in relations with parents and teachers. The positive reinforcement to the future develops throughout life in accordance with a lifestyle of a family, society and political situation in a state.Life orientations as a type of value orientations show different types of young people’s preferences. Value structure of its consciousness has its own specific character, depending on the age peculiarities. The dynamics of the transition from one age to another is accompanied with the reappraisal of values, eventually, influencing the life strategy of the future generation

  10. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  11. Object-oriented communications

    International Nuclear Information System (INIS)

    Chapman, L.J.

    1989-01-01

    OOC is a high-level communications protocol based on the object-oriented paradigm. OOC's syntax, semantics, and pragmatics balance simplicity and expressivity for controls environments. While natural languages are too complex, computer protocols are often insufficiently expressive. An object-oriented communications philosophy provides a base for building the necessary high-level communications primitives like I don't understand and the current value of X is K. OOC is sufficiently flexible to express data acquisition, control requests, alarm messages, and error messages in a straightforward generic way. It can be used in networks, for inter-task communication, and even for intra-task communication

  12. Proofs of cluster formation and transitions in liquid metals and alloys

    International Nuclear Information System (INIS)

    Filippov, E.S.

    1985-01-01

    Calculational and experimental proofs are presented indicating to existence of clusters in liquid metals and alloys. Systems of liquid alloys both on the base of ferrous metals and non-ferrous metals (Fe-C, Ni-C, Co-C, Fe-Ni, Ni-Mo, Co-Cr, Co-V as well as In-Sn, Bi-Sn, Si-Ge and others) are studied experimentally. It is shown that the general feature of the systems studied is sensitivity of a volume to change in structure, to replacement fcc structure on bcc or to initiation-dissociation of intermetallic compounds AxBy. It is shown that both in pure liquid metals and in their.alloys there are clusters as ordered aggregate of atoms

  13. Liquid metal reactor core material HT9

    International Nuclear Information System (INIS)

    Kim, S. H.; Kuk, I. H.; Ryu, W. S. and others

    1998-03-01

    A state-of-the art is surveyed on the liquid metal reactor core materials HT9. The purpose of this report is to give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is planned for the year of 2010. In-core stability of cladding materials is important to the extension of fuel burnup. Austenitic stainless steel (AISI 316) has been used as core material in the early LMR due to the good mechanical properties at high temperatures, but it has been found to show a poor swelling resistance. So many efforts have been made to solve this problem that HT9 have been developed. HT9 is 12Cr-1MoVW steel. The microstructure of HT9 consisted of tempered martensite with dispersed carbide. HT9 has superior irradiation swelling resistance as other BCC metals, and good sodium compatibility. HT9 has also a good irradiation creep properties below 500 dg C, but irradiation creep properties are degraded above 500 dg C. Researches are currently in progress to modify the HT9 in order to improve the irradiation creep properties above 500 dg C. New design studies for decreasing the core temperature below 500 dg C are needed to use HT9 as a core material. On the contrary, decrease of the thermal efficiency may occur due to lower-down of the operation temperature. (author). 51 refs., 6 tabs., 19 figs

  14. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron

    Science.gov (United States)

    Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola

    2018-01-01

    We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.

  15. QUANTIFYING WILDLIFE ORIENTATION

    African Journals Online (AJOL)

    environment (P);. Attitudes expressed towards the natural environment (A);. Activity, or the involvement of a person in conservation actions in the broader sense {I). Different combinations of these functions give rise to four typologies of orientation. (Newgard et al., 1986) in the following way: TYPOLOGY. CHARACTERISTICS.

  16. Orientals and Orientalists

    DEFF Research Database (Denmark)

    Reade, Julian

    2004-01-01

    Reviews three books on archaeology. "Possessors and Possessed: Museums, Archaeology, and the Visualization of History in the Late Ottoman Empire," by Wendy M. K. Shaw; "Orientalism and Visual Culture: Imagining Mesapotamia in Nineteenth-Century Europe," by Frederick N. Bohrer; "Empires of the Pla......: Henry Rawlinson and the Lost Languages of Babylon," by Lesley Adkins....

  17. Management oriented process

    International Nuclear Information System (INIS)

    2004-01-01

    ANAV decided to implement process-oriented management by adopting the U. S. NEI (Nuclear Electric Industry) model. The article describes the initial phases of the project, its current status and future prospects. The project has been considered as an improvement in the areas of organization and human factors. Recently, IAEA standard drafts are including processes as an accepted management model. (Author)

  18. Aspect-Oriented Programming

    NARCIS (Netherlands)

    Lopes, C.; Bergmans, Lodewijk; Lopes, C.

    1999-01-01

    Aspect-oriented programming is a promising idea that can improve the quality of software by reduce the problem of code tangling and improving the separation of concerns. At ECOOP’97, the first AOP workshop brought together a number of researchers interested in aspectorientation. At ECOOP’98, during

  19. Managing Entrepreneurial Orientation

    NARCIS (Netherlands)

    S. van Doorn (Sebastiaan)

    2012-01-01

    textabstractIn this dissertation, we evaluate the roles senior management teams and individual middle managers play in realizing the performance benefits of entrepreneurial orientations. We investigate the role of senior management teams by focusing on a sample of 9.000 firms in the Netherlands. The

  20. Component-oriented programming

    NARCIS (Netherlands)

    Bosch, J; Szyperski, C; Weck, W; Buschmann, F; Buchmann, AP; Cilia, MA

    2003-01-01

    This report covers the eighth Workshop on Component-Oriented Programming (WCOP). WCOP has been affiliated with ECOOP since its inception in 1996. The report summarizes the contributions made by authors of accepted position papers as well as those made by all attendees of the workshop sessions.

  1. Bioavailability of very finely distributed metallic platinum in the lungs and first orienting studies on effects. Part 1; Bioverfuegbarkeit von feinstverteiltem metallischem Platin in der Lunge und erste orientierende Wirkungsuntersuchungen (VPT 09; 1. Teil)

    Energy Technology Data Exchange (ETDEWEB)

    Artelt, S [Fraunhofer-Institut fuer Toxikologie und Aerosolforschung, Hannover (Germany)

    1998-12-31

    Projects 07 VPT 08 and 07 VPT 08A revealed that platinum from automotive catalytic converters are largely emitted in metallic form as bound to the support material (aluminium oxide). Platinum emissions from this source are on the order of ng per km. The aim of the still ongoing project 07 VPT 09 is to estimate any health hazards that might grow from the deposition in the human lung by inhalation of very fine platinum particles. To answer this question it is necessary to have sufficient quantities of abraded material at one`s disposal. [Deutsch] Im Rahmen des Projektes 07 VPT 08 und 07 VPT 08A wurde festgestellt, dass Platin aus Automobilabgaskatalysatoren zum ueberwiegenden Teil in metallischer Form, gebunden an Traegermaterial (Aluminiumoxid), emittiert wird. Dabei liegt die Platinemission in der Groessenordnung von ng Platin/km. Im noch laufenden Vorhaben 07 VPT 09 soll ein eventuell auftretendes gesundheitliches Risiko, das durch die inhalative Aufnahme von sehr feinen Platinpartikeln in die Lunge des Menschen entstehen koennte, abgeschaetzt werden. Versuche zur Beantwortung dieser Frage setzen voraus, dass eine genuegend grosse Menge an Abriebmaterial zur Verfuegung steht. (orig.)

  2. Bioavailability of very finely distributed metallic platinum in the lungs and first orienting studies on effects. Part 1; Bioverfuegbarkeit von feinstverteiltem metallischem Platin in der Lunge und erste orientierende Wirkungsuntersuchungen (VPT 09; 1. Teil)

    Energy Technology Data Exchange (ETDEWEB)

    Artelt, S. [Fraunhofer-Institut fuer Toxikologie und Aerosolforschung, Hannover (Germany)

    1997-12-31

    Projects 07 VPT 08 and 07 VPT 08A revealed that platinum from automotive catalytic converters are largely emitted in metallic form as bound to the support material (aluminium oxide). Platinum emissions from this source are on the order of ng per km. The aim of the still ongoing project 07 VPT 09 is to estimate any health hazards that might grow from the deposition in the human lung by inhalation of very fine platinum particles. To answer this question it is necessary to have sufficient quantities of abraded material at one`s disposal. [Deutsch] Im Rahmen des Projektes 07 VPT 08 und 07 VPT 08A wurde festgestellt, dass Platin aus Automobilabgaskatalysatoren zum ueberwiegenden Teil in metallischer Form, gebunden an Traegermaterial (Aluminiumoxid), emittiert wird. Dabei liegt die Platinemission in der Groessenordnung von ng Platin/km. Im noch laufenden Vorhaben 07 VPT 09 soll ein eventuell auftretendes gesundheitliches Risiko, das durch die inhalative Aufnahme von sehr feinen Platinpartikeln in die Lunge des Menschen entstehen koennte, abgeschaetzt werden. Versuche zur Beantwortung dieser Frage setzen voraus, dass eine genuegend grosse Menge an Abriebmaterial zur Verfuegung steht. (orig.)

  3. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver ... able content of metal nanoparticles would be of considerable value from an appli- ... polar chain and perpendicular to it [10].

  4. Value oriented strategic marketing

    Directory of Open Access Journals (Sweden)

    Milisavljević Momčilo

    2013-01-01

    Full Text Available Changes in today's business environment require companies to orient to strategic marketing. The company accepting strategic marketing has a proactive approach and focus on continuous review and reappraisal of existing and seeking new strategic business areas. Difficulties in achieving target profit and growth require turning marketing from the dominant viewpoint of the tangible product to creating superior value and developing relationships with customers. Value orientation implies gaining competitive advantage through continuous research and understanding of what value represents to the consumers and discovering new ways to meet their required values. Strategic marketing investment requires that the investment in the creation of values should be regularly reviewed in order to ensure a focus on customers with high profit potential and environmental value. This increases customer satisfaction and retention and long-term return on investment of companies.

  5. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  6. Cerro Largo South orientation

    International Nuclear Information System (INIS)

    Pradier, B.

    1982-01-01

    This work is about Cerro Largo South orientation. The site is located in the northeast of Uruguay in the south of Melo city, Department of Cerro Largo. The study was carried out in the young edge socket in the East side of a small valley. This metamorphic socket constituted by gneisses and crystalline limestone are in contact with upper carboniferous formations and basal deposits composed by sandstones and conglomerates

  7. Editorial: International Entrepreneurial Orientation

    OpenAIRE

    Krzysztof Wach

    2015-01-01

    In recent decades, both the theory of internationalisation of the firm and/or the theory of international business have developed. Recent developments in international business studies prove that entrepreneurial orientation (EO) emerges as one of the important potential factors contributing to the intensification of the processes of internationalisation of the firm (Etemad, 2015; Gupta & Gupta, 2015). It seems that international entrepreneurship (IE) has been flourishing. The general theory o...

  8. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  9. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  10. Deformation microstructure and orientation of F.C.C. crystals

    DEFF Research Database (Denmark)

    Liu, Q.; Hansen, N.

    1995-01-01

    The effect of crystallographic orientation on the microstructural evolution in f.c.c. metals with medium to high stacking fault energy is analyzed. This analysis is based on a literature review of the behaviour of single crystals and polycrystals supplemented with an experimental study of cold...

  11. Club d'orientation

    CERN Multimedia

    Club d'orientation

    2014-01-01

    Courses d’orientation ce printemps Le Club d’orientation du CERN vous invite à venir découvrir la course d’orientation et vous propose, en partenariat avec d’autres clubs de la région, une dizaine de courses populaires. Celles-ci ont lieu les samedis après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Si vous êtes débutant vous pouvez profiter d’une petite initiation offerte par l’organisateur avant de vous lancer sur un parcours. Divers types de parcours sont à votre choix lors de chaque épreuve: facile court (2-3 km), facile moyen (3-5 km), technique court (3-4 km), technique moyen (4-5 km) et technique long (5-7 km). Les dates à retenir sont les suivantes pour la coupe genevoise de printemps: Samedi 22 mars: Apples (...

  12. Production of high activity Aspergillus niger BCC4525 β-mannanase in Pichia pastoris and its application for mannooligosaccharides production from biomass hydrolysis.

    Science.gov (United States)

    Harnpicharnchai, Piyanun; Pinngoen, Waraporn; Teanngam, Wanwisa; Sornlake, Warasirin; Sae-Tang, Kittapong; Manitchotpisit, Pennapa; Tanapongpipat, Sutipa

    2016-12-01

    A cDNA encoding β-mannanase was cloned from Aspergillus niger BCC4525 and expressed in Pichia pastoris KM71. The secreted enzyme hydrolyzed locust bean gum substrate with very high activity (1625 U/mL) and a relatively high k cat /K m (461 mg -1 s -1  mL). The enzyme is thermophilic and thermostable with an optimal temperature of 70 °C and 40% retention of endo-β-1,4-mannanase activity after preincubation at 70 °C. In addition, the enzyme exhibited broad pH stability with an optimal pH of 5.5. The recombinant enzyme hydrolyzes low-cost biomass, including palm kernel meal (PKM) and copra meal, to produce mannooligosaccharides, which is used as prebiotics to promote the growth of beneficial microflora in animals. An in vitro digestibility test simulating the gastrointestinal tract system of broilers suggested that the recombinant β-mannanase could effectively liberate reducing sugars from PKM-containing diet. These characteristics render this enzyme suitable for utilization as a feed additive to improve animal performance.

  13. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    International Nuclear Information System (INIS)

    Nakashima, Kenichi; Stoller, Roger E; Xu, Haixuan

    2015-01-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a 0 to 3.3a 0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a 0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster. (paper)

  14. Evaluation of trauma service orientation.

    Science.gov (United States)

    Schott, Eric

    2010-02-01

    Orientation of residents to clinical services may be criticized as cumbersome, dull, and simplytoo much information. With the mandated resident-hour restrictions, the question arose: Do residents perceive the orientation to our trauma service as worthwhile? Residents attend a standardized orientation lecture on the first day of the rotation. Three weeks later, an eight-item, five-point Likert-scale survey is distributed to assess the residents' perceptions of the value of the orientation. Responses to each item were examined. Fifty-four (92%) of the residents completed the questionnaire between September 2005 and August 2006. Most indicated that orientation was helpful (85%), the Trauma Resuscitation DVD was informative (82%), the review of procedures was helpful (82%), and the instructor's knowledge was adequate (94%). Most (92%) disagreed with the statement that orientation should not be offered. Careful attention to orientation content and format is important to the perception that the orientation is worthwhile.

  15. The effects of market orientation

    OpenAIRE

    Sandvik, Kåre

    1998-01-01

    This research is designed to accomplish three goals. The first goal is to revisit the market orientation construct in order to define the different facets of it. A review of the market orientation literature is made to assess and synthesize the stock of accumulated knowledge regarding the market orientation construct. The second goal of the research is to develop a theory of the effects ofmarket orientation. Using the literature concerning resource-based theory and organization...

  16. Moral Orientation, Gender, and Salary.

    Science.gov (United States)

    Manning, Roger W.

    A study examined the relationship among gender, moral orientation, and pay. Although the participants were about equal in terms of gender, 48 males and 53 females, males tended to hold higher degrees. The researcher hypothesized that salaries would be differentiated based on gender and moral orientation. Assumptions were that care-oriented males…

  17. Community Orientation and Media Use.

    Science.gov (United States)

    Neuwirth, Kurt; And Others

    1989-01-01

    Examines the relationship among media use, participation in local shopping and leisure activities, and orientation toward the local community. Reexamines Robert Merton's Cosmopolitan scale, finding it to have both localite (exclusively local orientation) and cosmopolite (orientation to events outside the local community) dimensions. (MM)

  18. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  19. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    Science.gov (United States)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  20. Understanding voter orientation in the context of political market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.; Henneberg, Stephan C.

    2010-01-01

    This article develops a conceptual framework and measurement model of political market orientation. The relationships between different behavioural aspects of political market orientation and the attitudinal influences of such behaviour are analysed, and the study includes structural equation...... modelling to test several hypotheses. While the results show that political parties focus on several different aspects of market-oriented behaviour, especially using an internal and societal orientation as cultural antecedents, a more surprising result is the inconclusive effect of a voter orientation...... on political market orientation. This lends support to the argument of 'looking beyond the customer' in political marketing research and practice. The article discusses the findings in the context of the existing literature on political marketing and commercial market orientation....

  1. Sacral orientation and spondylolysis.

    Science.gov (United States)

    Peleg, Smadar; Dar, Gali; Steinberg, Nili; Masharawi, Youssef; Been, Ella; Abbas, Janan; Hershkovitz, Israel

    2009-12-01

    A descriptive study (based on skeletal material) was designed to measure sacral anatomic orientation (SAO) in individuals with and without spondylolysis. To test whether a relationship between SAO and spondylolysis exists. Spondylolysis is a stress fracture in the pars interarticularis (mainly of L5). The natural history of the phenomenon has been debated for years with opinions divided, i.e., is it a developmental condition or a stress fracture phenomenon. There is some evidence to suggest that sacral orientation can be a "key player" in revealing the etiology of spondylolysis. The pelvis was anatomically reconstructed and SAO was measured as the angle created between the intersection of a line running parallel to the superior surface of the sacrum and a line running between the anterior superior iliac spine (ASIS) and the anterior-superior edge of the symphysis pubis (PUBIS).SAO was measured in 99 adult males with spondylolysis and 125 adult males without spondylolysis. The difference between the groups was tested using an unpaired t test. Spondylolysis prevalence is significantly higher in African-Americans compared to European-Americans: 5.4% versus 2.04% in males (P < 0.001) and 2.31% versus 0.4%, P < 0.001 in females. SAO was significantly lower in the spondylolytic group (44.07 degrees +/- 11.46 degrees) compared to the control group (51.07 degrees +/- 8.46 degrees, P < 0.001). A more horizontally oriented sacrum leads to direct impingement on L5 pars interarticularis by both L4 inferior articular facet superiorly and S1 superior articular facet inferiorly. Repetitive stress due to standing (daily activities) or sitting increases the "pincer effect" on this area, and eventually may lead to incomplete synostosis of the neural arch.

  2. Emotion-oriented systems

    CERN Document Server

    Pelachaud, Catherine

    2013-01-01

    The Affective Computing domain, term coined by Rosalind Picard in 1997, gathers several scientific areas such as computer science, cognitive science, psychology, design and art. The humane-machine interaction systems are no longer solely fast and efficient. They aim to offer to users affective experiences: user's affective state is detected and considered within the interaction; the system displays affective state; it can reason about their implication to achieve a task or resolve a problem. In this book, we have chosen to cover various domains of research in emotion-oriented systems. Our aim

  3. Mina Oriental report

    International Nuclear Information System (INIS)

    Cicalese, H.; Mari, C.; Lema, F.; Valverde, C.; Haut, R.

    1986-01-01

    This report refers to the obtained results of those geophysical works practiced during the year 1985 in Mina Oriental region, located in the department of Maldonado. The same ones had like object to supplement geophysical studies previous carried out in the area and to investigate a possible connection mineralized in the geologic context with Mina La Esperanza that , where they arose anomalous indications in geochemical prospecting. They were applied the following methods: Induced Polarization, Magnetometry and Electromagnetism. The conclusions and recommendations arrived express one discontinuity among the referred areas, even subtracting some explanations on the detected lateral anomalies.

  4. Theory of defect interactions in metals

    International Nuclear Information System (INIS)

    Thetford, Roger.

    1989-09-01

    The state relaxation program DEVIL has been updated to use N-body Finnis-Sinclair potentials. Initial calculations of self-interstitial and monovacancy formation energies confirm that the modified program is working correctly. An extra repulsive pair potential (constructed to leave the original fitting unaltered) overcomes some deficiencies in the published Finnis-Sinclair potentials. The modified potentials are used to calculate interstitial energies and relaxation in the b.c.c. transition metals vanadium, niobium, tantalum, molybdenum and tungsten. Further adaptation enables DEVIL to model dislocations running parallel to any lattice vector. Periodic boundary conditions are applied in the direction of the dislocation line, giving an infinite straight dislocation. The energies per unit length of two different dislocations are compared with experiment. A study of migration of point defects in the perfect lattice provides information on the mobility of interstitials and vacancies. The total energy needed to form and migrate an interstitial is compared with that required for a vacancy. The interaction between point defects and dislocations is studied in detail. Binding energies for both self-interstitials and monovacancies at edge dislocations are calculated for the five metals. Formation energies of the point defects in the neighbourhood of the edge dislocation are calculated for niobium, and the extend of the regions from which the defects are spontaneously absorbed are found. (author)

  5. Orientations of dendritic growth during solidification

    Science.gov (United States)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  6. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  7. Club d'orientation

    CERN Document Server

    Le Club d’Orientation du CERN

    2011-01-01

      Course d’orientation : Coupe Genevoise de printemps 2011 Nouvelle saison – nouveau programme Le Club d’Orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une dizaine de courses pour la coupe de printemps. Elles se dérouleront des deux cotés de la frontière franco-suisse, à savoir : Samedi 19 mars: Vidy/Dorigny (Vd) - Score Samedi 26 mars: Attalens (Vd) Samedi 2 avril: Vulbens (74) Samedi 9 avril: Challex (74) Samedi 16 avril: Vernand-Dessus (Vd) Samedi 7 mai: Trelex (Vd) Samedi 14 mai: Chancy/Valleiry (Ge/74) Samedi 21 mai: Prémanon (39) Samedi 28 mai : Semnoz (74) Samedi 18 juin: La Faucille (01) – Finale Ces courses populaires ont lieu le samedi après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé...

  8. Milestones Universidad de Oriente

    Directory of Open Access Journals (Sweden)

    Julio A. Villalón-Infante

    2016-09-01

    Full Text Available On October 10, 1947, the University of Oriente is founded with the presence of local authorities and the historic Bell of the Damajagua. Since then it has generated outstanding events that have drawn guidelines in its history. These landmarks have taken place in different spheres of social, political and economic life. We have found that most workers and students from the University know less than fifty percent of such events, and we assume that the population outside the walls must have a greater ignorance. The present paper aims to spread these crucial events because knowing them will help appreciate better the real prestige of this house of higher learning through its rich  history, which will result in feelings of admiration and respect for this university. Thus, it is necessary to make a wider propagation through the press, radio and television programs and digital media such as Multimedia, Web Pages and the Internet.The theme landmark at the Universidad de Oriente of the subject Historical and Contemporary Debates implemented in the disciplines of all careers at this university gives freshmen the opportunity to investigate and learn about these remarkable  facts with some impact outside our national territory.

  9. Club d'orientation

    CERN Multimedia

    Le Club d’Orientation du CERN

    2011-01-01

    La première course d’orientation comptant pour la Coupe Genevoise de printemps a eu lieu près de Cossonay samedi 19 mars ; une bonne soixantaine de coureurs avaient fait le déplacement. Les vainqueurs sont : technique long, Domenico Lepori (Care Vevey) s’imposant d’une minute devant Yannick Gagneret (O’Jura) ; technique moyen, Jean-Rodolphe Knuchel (CO Lausanne-Jorat) devant Cédric Wehrle (CO CERN) ; technique court, Marie Droz (ANCO) ; facile moyen, Elia Martarelli devant Konstantinos Haider (CO CERN); facile court, Sarah Stuber (CO Lausanne-Jorat). Prochain rendez-vous à noter : samedi 26 mars dans la forêt d’Attalens (Canton de Vaud), parking au terrain de foot. Les inscriptions et départs de la course populaire se feront entre 13h et 15h. Pour ceux qui ne connaissent pas l’orientation, c’est l&am...

  10. Course d'Orientation

    CERN Multimedia

    Course d'Orientation

    2012-01-01

      Coupe de printemps La deuxième étape de la coupe de printemps organisée par le club d’orientation du CERN s’est déroulée le samedi 21 avril dans la forêt de Pougny-Challex. étant donné le temps très humide qui domine depuis début avril, les coureurs ne pouvaient trouver qu’un terrain gras et trempé, mais cela fait partie des défis de la course d’orientation. Le parcours technique long a été remporté par Yvan Balliot, CO Annecy en 51:18 devant Jean-Charles Baritaux en 56:21 et Bruno Barge, CO CERN en 59:39. La prochaine CO populaire se courra à Vulbens le samedi 28 avril. Les inscriptions et les départs se feront entre 13h et 15h. A noter les courses en mai : • Samedi 5 mai : Trelex • Samedi 12 mai : Chancy / Valleiry • Samedi 19 mai : Lausan...

  11. Fuel cycle oriented approach

    International Nuclear Information System (INIS)

    Petit, A.

    1987-01-01

    The term fuel cycle oriented approach is currently used to designate two quite different things: the attempt to consider all or part of a national fuel cycle as one material balance area (MBA) or to consider individual MBAs existing in a state while designing a unique safeguards approach for each and applying the principle of nondiscrimination to fuel cycles as a whole, rather than to individual facilities. The merits of such an approach are acceptability by the industry and comparison with the contemplated establishment of long-term criteria. The following points concern the acceptability by the industry: (1) The main interest of the industry is to keep an open international market and therefore, to have effective and efficient safeguards. (2) The main concerns of the industry regarding international safeguards are economic burden, intrusiveness, and discrimination. Answers to these legitimate concerns, which retain the benefits of a fuel cycle oriented approach, are needed. More specifically, the problem of reimbursing the operator the costs that he has incurred for the safeguards must be considered

  12. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    Science.gov (United States)

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  13. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress

    International Nuclear Information System (INIS)

    Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori

    2013-01-01

    We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)

  14. Designing biocompatible Ti-based metallic glasses for implant applications

    International Nuclear Information System (INIS)

    Calin, Mariana; Gebert, Annett; Ghinea, Andreea Cosmina; Gostin, Petre Flaviu; Abdi, Somayeh; Mickel, Christine; Eckert, Jürgen

    2013-01-01

    Ti-based metallic glasses show high potential for implant applications; they overcome in several crucial respects their well-established biocompatible crystalline counterparts, e.g. improved corrosion properties, higher fracture strength and wear resistance, increased elastic strain range and lower Young's modulus. However, some of the elements required for glass formation (e.g. Cu, Ni) are harmful for the human body. We critically reviewed the biological safety and glass forming tendency in Ti of 27 elements. This can be used as a basis for the future designing of novel amorphous Ti-based implant alloys entirely free of harmful additions. In this paper, two first alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15 . The overheating temperature of the melt before casting can be used as the controlling parameter to produce fully amorphous materials or bcc-Ti-phase reinforced metallic glass nano-composites. The beneficial effect of Nb addition on the glass-formation and amorphous phase stability was assessed by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Crystallization and mechanical behavior of ribbons are influenced by the amount and distribution of the nano-scaled bcc phase existing in the as-cast state. Their electrochemical stability in Ringer's solution at 310 K was found to be significantly better than that of commercial Ti-based biomaterials; no indication for pitting corrosion was recorded. Highlights: ► Link between biocompatibility and glass-forming ability of alloying additions in Ti ► Selection of Ti–Zr–Si and Ti–Zr–Nb–Si glass-forming alloys ► Two novel glassy alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15. ► Glass-formation, thermal stability, corrosion and mechanical behavior were studied. ► Assessing the suitability for orthopedic applications.

  15. Applications of the rotating orientation XRD method to oriented materials

    International Nuclear Information System (INIS)

    Guo Zhenqi; Li Fei; Jin Li; Bai Yu

    2009-01-01

    The rotating orientation x-ray diffraction (RO-XRD) method, based on conventional XRD instruments by a modification of the sample stage, was introduced to investigate the orientation-related issues of such materials. In this paper, we show its applications including the determination of single crystal orientation, assistance in crystal cutting and evaluation of crystal quality. The interpretation of scanning patterns by RO-XRD on polycrystals with large grains, bulk material with several grains and oriented thin film is also presented. These results will hopefully expand the applications of the RO-XRD method and also benefit the conventional XRD techniques. (fast track communication)

  16. MRI of oriental cholangiohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Wani, N.A., E-mail: ahmad77chinar@gmail.co [Department of Radiodiagnosis and Imaging, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar (India); Robbani, I.; Kosar, T. [Department of Radiodiagnosis and Imaging, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar (India)

    2011-02-15

    Oriental cholangiohepatitis (OCH) also called recurrent pyogenic cholangitis is characterized by intrahepatic duct calculi, strictures, and recurrent infections. In turn cholangitis can result in multiple hepatic abscesses, further biliary strictures, and in severe cases, progressive hepatic parenchymal destruction, cirrhosis, and portal hypertension. Magnetic resonance cholangiopancreatography (MRCP) and conventional T1-weighted (T1 W) and T2-weighted (T2 W) magnetic resonance imaging (MRI) findings have been described in patients with OCH. MRCP findings include duct dilation, strictures, and calculi. MRCP can help to localize the diseased ducts and determine the severity of involvement. T1 and T2 W sequences reveal the parenchymal changes of atrophy, abscess formation, and portal hypertension in addition to calculi. Post-treatment changes are also well depicted using MRI. Comprehensive, non-invasive assessment is achieved by using conventional MRI and MRCP in OCH providing a roadmap for endoscopic or surgical management.

  17. El oriente de Chillida

    Directory of Open Access Journals (Sweden)

    Paloma Galante Rodero

    2011-01-01

    Full Text Available Todo el arte es influyente porque todo arte nace del hombre. Esta pequeña reflexión quiere resaltar cómo el arte y el pensamiento oriental han sido más influyentes, no sólo en el ámbito estético, sino en la concepción espacial y del propio hecho creador, en el arte occidental de lo que a primera vista podemos apreciar. En el caso de Chillida es una influencia no intencionada, muy sutil y analizada desde dos perspectivas, la primera, a partir de sus contactos directos con Japón como Homenaje a Hokusai, exposiciones realizadas y premios concedidos en el país nipón y por otro lado, los contactos indirectos con Oriente como su biblioteca personal, sus colaboraciones editoriales con Heidegger y Valente y su encuentro con Mark Tobey en la Bienal de Venecia de 1958.All art is influential because all art is born of man. This short reflection wants to highlight how eastern art and Eastern thought have been most influential, not only in the aesthetic realm, in spatial conception and creative act, in Western art more than at first glance we can see. In the case of Chillida’s unintentional influence, very subtle and analyzed from two perspectives, first from direct contacts with Japan as Tribute to Hokusai, exhibitions and prizes awarded in the japanese country, and on the other hand, indirect contacts with the East as his personal library, his collaborations with Heidegger and Valente and his encounter with Mark Tobey at the Venice Biennale of 1958.

  18. Impact Orientation in Austria

    Directory of Open Access Journals (Sweden)

    Benedikt SPEER

    2015-12-01

    Full Text Available The implementation of impact orientation within the public sector constitutes an en-tirely new approach of governance. Until recently – and in many cases still so – public administration was primarily input-oriented, which means focusing on the resources (financial, personnel etc. needed to fulfil existing public tasks instead of focusing on the results and final effects which are intended to be reached ultimately by these often long ago defined assignments. As experience shows, the pressing challenge of increasing steadily the effectiveness and efficiency within public administration cannot be reached by such a one-sided and consequently limited approach. Thus, a wider and more comprehensive concept is necessary to optimize the public sector in all its dimensions. As a result of prevalent budget crises, increasing pressure of stakeholders towards public administration and generally less room for manoeuver due to a growing regulatory burden, new/adapted and more flexible ways of thinking and acting within the public sector are required. Hence, modern concepts of steering and control – not only in Europe but in a larger number of OECD countries – now tend to give more importance to the targets and effects of public administration and its activities within the societal context. This rather new concept – the so called “impact orientation” which has been introduced in Austria as core element of the Federal Budget Law Reform 2009/2013 – requires a fundamental alignment of governmental actions and a new focus on the outputs and even on the outcomes of political and administrative strategies. The results until now have been primarily “outwardly-oriented” reform concepts concentrating on the external societal effects of politico-administrative actions. However, recent research results show for Austria, that this external dimension has to be linked more closely with internal reform efforts and internal impact targets in order to

  19. Oriented Poly(dialkylstannane)s

    DEFF Research Database (Denmark)

    Choffat, Fabien; Fornera, Sara; Smith, Paul

    2008-01-01

    The inorganic (or 'organometallic') polymers poly(dibutylstannane), poly(dioctylstannane), and poly(didodecylstannane) have been oriented by shear forces, the tensile drawing of blends with polyethylene, and deposition from solution onto glass slides coated with all oriented, friction-deposited p......The inorganic (or 'organometallic') polymers poly(dibutylstannane), poly(dioctylstannane), and poly(didodecylstannane) have been oriented by shear forces, the tensile drawing of blends with polyethylene, and deposition from solution onto glass slides coated with all oriented, friction......-deposited poly(tetrafluoroethylene) (PTFE) layer. Orientation of the polystannanes has been examined by polarization microscopy, UV-vis spectroscopy with polarized light, and X-ray diffraction and their direction is found to depend on the length of the alkyl side groups and the method of orientation. Remarkably...

  20. The theory of experience orientation

    DEFF Research Database (Denmark)

    Jensen, Jesper Legaard

    2012-01-01

    This paper describes the theory of experience orientation, which builds on the division of experiences in two categories: Goal-oriented and Omni-oriented. The theory comes from preliminary studies of userexperiences in a work-context, where I have found this distinction to be beneficial....... In this paper I explain the theory behind it and the practical application of such a distinction when designing for an experience....

  1. Structural and magnetic properties of Fe{sub x}Ni{sub 100−x} alloys synthesized using Al as a reducing metal

    Energy Technology Data Exchange (ETDEWEB)

    Srakaew, N. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Jantaratana, P., E-mail: fscipsj@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Nipakul, P. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sirisathitkul, C. [Molecular Technology Research Unit, School of Science, Walailak University, Nakhon Si Thammarat 80161 (Thailand)

    2017-08-01

    Highlights: • Reduction by aluminum is a simple and safe route to synthesize iron-nickel alloys. • Alloy compositions with up to 90 at.% Fe can be obtained with minimal oxidation. • Morphology and magnetic properties are varied with the alloy composition. - Abstract: Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%–30%) Fe content the single face-centered cubic (FCC) FeNi{sub 3} phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%–70% with the alloy structure possessing a mixture of FCC FeNi{sub 3} and body-centered cubic (BCC) Fe{sub 7}Ni{sub 3}. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%–90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  2. Report of the Orientation Workshop

    DEFF Research Database (Denmark)

    Nunez, Heilyn Camacho; Buus, Lillian; Ogange, Betty

    2014-01-01

    This Orientation Workshops is part of MAAGART project. The workshop is divided in three parts: 1) pre-Orientation Workshop stage, 2) Face-to-Face stage and 3) post-Orientation stage. Pre and post stages will be developed online. All the activities will take place in a virtual learning environment...... created for this purpose. Participants will receive all the information about how to access the virtual learning environment (Moodle) prior to the pre-orientation workshop. In this report we cover only the two first stages. Jørgen Bang, as a part of the Community of Practice activity, will be facilitating...

  3. Orientation decoding: Sense in spirals?

    Science.gov (United States)

    Clifford, Colin W G; Mannion, Damien J

    2015-04-15

    The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The valence state of Yb metal under high pressure determined by XANES measurement up to 34.6 GPa

    International Nuclear Information System (INIS)

    Fuse, Akinori; Nakamoto, Go; Kurisu, Makio; Ishimatsu, Naoki; Tanida, Hajime

    2004-01-01

    The purpose of this study was to accurately determine the valency of Yb at high pressure and room temperature and to clarify the relation between the valence state and the crystal structure of Yb metal. L III -edge X-ray absorption near-edge structure (XANES) spectra were measured to determine the valence state of Yb metal in the pressure range from 0 to 34.6 GPa at room temperature, using a diamond anvil cell (DAC) and synchrotron radiation at SPring-8. In the fcc phase, Yb metal exhibits mixed valence (the mean valence ν-bar >2.1). At the fcc-to-bcc phase transition, a 0.1 jump is found in ν-bar. In the bcc phase, ν-bar(P) is an increasing function of pressure with downward curvature, reaching only 2.55 at 26 GPa. The ν-bar is only 2.65 in the hcp phase at 34.6 GPa. A tendency for saturation in ν-bar(P) to values smaller than 3.0 is found

  5. TOPICAL REVIEW Progress in cold roll bonding of metals

    Directory of Open Access Journals (Sweden)

    Long Li, Kotobu Nagai and Fuxing Yin

    2008-01-01

    Full Text Available Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB, as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described.

  6. Subcortical orientation biases explain orientation selectivity of visual cortical cells.

    Science.gov (United States)

    Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V

    2015-04-01

    The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  8. Magnetic metallic multilayers

    International Nuclear Information System (INIS)

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons

  9. COURSE D'ORIENTATION

    CERN Multimedia

    COURSE D'ORIENTATION

    2010-01-01

    Coupe d’automne Samedi 25 septembre, certains courageux ont osé affronter le temps pluvieux et frais et se sont rendus aux Pléiades pour participer à la quatrième étape de la coupe Genevoise d’automne. Le Club du CARE-Vevey avait préparé 5 jolis circuits : 3 techniques et 2 faciles. Félicitations à tous les concurrents et plus particulièrement aux vainqueurs de chaque parcours. Les résultats complets sont sur le site du club http://cern.ch/club-orientation. Technique long : 1. Samy Vaehaenen (CO CERN), 2. Clément Poncet (O’Jura), 3. Bernhard Wehrle (CO CERN). Technique moyen : 1. Sampo Vallotton (RTB), 2. Guillaume Ladine (RTB), 3. Anne Godel (CA Rosé). Technique court : 1. Miles Marston (Gimel), 2. Alison High (CARE Vevey), 3. Emese Szwuyog (CO CERN). Facile moyen : 1. Nicolas M&u...

  10. COURSE D'ORIENTATION

    CERN Multimedia

    CLUB D'ORIENTATION

    2010-01-01

      Finale de la coupe d’automne La coupe d’automne organisée par le club d’orientation du CERN s’est terminée ce samedi 23 octobre après 7 épreuves. Les deux dernières courses se sont déroulées en l’espace de 24 heures, puisque le club organisait une course type nocturne vendredi 22 octobre sur le site du CERN et la dernière étape avait lieu dans la forêt de Merdisel sous la forme d’une course aux points samedi 23 après-midi. Les participants avaient à cœur de bien terminer lors de ces deux épreuves pour consolider ou améliorer leur place au classement général. Le classement général de la coupe d’automne, basé sur les 4 meilleurs résultats de la saison, est ainsi le suivant : Circuit ...

  11. Club d’orientation

    CERN Multimedia

    Club d’orientation

    2010-01-01

    On s’approche vers la finale ! Samedi 29 juin, le club d’orientation de Lausanne-Jorat (Canton de Vaud) a accueilli le relais inter-club. Douze équipes de deux coureurs étaient venues s’affronter sur le parcours de type «facile», et vingt-six équipes de trois coureurs du côté «technique». Tous ces parcours étaient proposés sur une zone semi-urbaine où il fallait alterner entre habitations, rues, bois, parc et adapter sa vitesse de course. Le suspens était bien présent notamment sur le relais technique. La victoire est revenue à l’équipe de l’OLG Huttwil composée de Thomas Hofer, Janick Zappa et Philipp Zappa en un temps de 2:14:07. Juste derrière à 50 secondes on trouve l’équipe CO CERN T1 avec Emese&am...

  12. Course d'Orientation

    CERN Multimedia

    Course d'Orientation

    2012-01-01

      Tous à vos boussoles, cap sur une nouvelle saison! Le Club d’Orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose à nouveau une série de courses comptant pour la coupe genevoise. Le coup d’envoi sera donné samedi 17 mars au Flon dans le canton de Vaud  avec une course longue distance. Puis le programme sera le suivant: Samedi 21 avril : Challex Samedi 28 avril : Vulbens Samedi 5 mai : Trelex Samedi 12 mai : Chancy Samedi 19 mai : Lausanne/Sauvabelin Samedi 2 juin: La Faucille Samedi 9 juin: Bonmont/La Rippe Finale Ces courses populaires ont lieu le samedi après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Pour participer aux épreuves sur le territoire français, il faut être en possession soit ...

  13. COURSE D'ORIENTATION

    CERN Multimedia

    Course d'Orientation

    2010-01-01

    Du Mont Mussy à Lamoura C’est au Mont Mussy près de Divonne que s’est déroulée la deuxième course comptant pour la coupe d’automne. Une bonne centaine de participants n’ont pas hésité à venir découvrir, sous un magnifique soleil, les 5 parcours proposés par la famille Williams/Hatzifotiadou. La plupart des participants ont couru en individuel, certains ont choisi de chercher les balises en famille. C’est un effet une possibilité qu’offrent nos courses d’orientation du samedi, à savoir que l’on peut pratiquer individuellement, en famille ou entre amis. Les résultats sur les 5 parcours sont les suivants : Technique long : Yannick Gagneret en 1.08:09, suivi par F. Janod en 1.09:41 et de Bruno Barge en 1.11:23. Technique moyen : Victoire pour Rémi...

  14. Club d'orientation

    CERN Multimedia

    Club d'orientation du CERN

    2010-01-01

    COURSE D’ORIENTATION  1er mai: muguet et balises à Vulbens Les week-ends s’enchainent et les courses aussi. La quatrième manche de la coupe genevoise organisée par le club sous la direction de J. Zosso, J. Iven et W. Heinze a eu lieu sur le site de Genolier (canton de Vaud) samedi dernier. Le soleil a, une nouvelle fois, accompagné les participants sur les cinq circuits proposés. On notera la jolie performance de Sami Vaehaenen élite finlandais (CO CERN) sur le parcours technique long en 49:09 avec une avance de presque 10 mm sur le second concurrent, le junior Clément Poncet (O’Jura). Les résultats complets de cette étape sont consultables en ligne à l’adresse suivante : http://cern.ch/club-orientation. La prochaine étape est prévue dans la forêt de Vulbens (Haute Savoie) samedi 1er mai sur une toute nouvelle carte. Les...

  15. Editorial: International Entrepreneurial Orientation

    Directory of Open Access Journals (Sweden)

    Krzysztof Wach

    2015-06-01

    Full Text Available In recent decades, both the theory of internationalisation of the firm and/or the theory of international business have developed. Recent developments in international business studies prove that entrepreneurial orientation (EO emerges as one of the important potential factors contributing to the intensification of the processes of internationalisation of the firm (Etemad, 2015; Gupta & Gupta, 2015. It seems that international entrepreneurship (IE has been flourishing. The general theory of entrepreneurship indicates that market opportunities are a common and dominant link for all entrepreneurial activities. The entrepreneurship theory refers to the identification or creation opportunities, their evaluation and exploitation. The expansion into new geographic markets is undoubtedly an important market opportunity for growth and development. The internationalisation as a response to the market opportunity takes diverse paths. Based on the in-depth literature search, this issue of our journal aims to determine whether, why and how, in the context of diverse environmental conditions, the pursuit of market opportunities contributes to the increase of internationalisation of the firm (Dimitratos & Plakoyiannaki, 2003; Dimitratos, Voudouris, Plakoyiannaki & Nakos,. 2012; Wach. 2015.

  16. Impression block with orientator

    International Nuclear Information System (INIS)

    Brilin, V I; Ulyanova, O S

    2015-01-01

    Tool review, namely the impression block, applied to check the shape and size of the top of fish as well as to determine the appropriate tool for fishing operation was realized. For multiple application and obtaining of the impress depth of 3 cm and more, the standard volumetric impression blocks with fix rods are used. However, the registered impress of fish is not oriented in space and the rods during fishing are in the extended position. This leads to rods deformation and sinking due to accidental impacts of impression block over the borehole irregularity and finally results in faulty detection of the top end of fishing object in hole. The impression blocks with copy rods and fixed magnetic needle allow estimating the object configuration and fix the position of magnetic needle determining the position of the top end of object in hole. However, the magnetic needle fixation is realized in staged and the rods are in extended position during fishing operations as well as it is in standard design. The most efficient tool is the impression block with copy rods which directs the examined object in the borehole during readings of magnetic needles data from azimuth plate and averaging of readings. This significantly increases the accuracy of fishing toll direction. The rods during fishing are located in the body and extended only when they reach the top of fishing object

  17. Value oriented marketing strategies

    Directory of Open Access Journals (Sweden)

    Stanković Ljiljana

    2009-01-01

    Full Text Available The complexity of business environment imposes the need for continuous change and reexamination of business marketing strategies of enterprises. Theory and practice of strategic management and marketing show that the activities of marketing, which are closely connected to corporate strategy, are the key drivers of growth. There is a positive correlation between competition intensity, marketing strategy and business performance of companies. Even though, managers of many companies don't see a clear connection between marketing strategy and business performance, numerous empirical research show that the companies which possess and efficiently use marketing resources and capabilities are more successful. In knowledge-based economics, the development of value oriented marketing strategies for all participants in the chain is a supposition of the survival, growth and development of companies. Competitive advantage is the essence of any strategy. Acquisition and maintenance of competitive advantage is more successful if the potentials for value creation are used efficiently. The paper examines the critical factors that influence alignment and transformation of marketing strategies in accordance with changes in value estimation. Superior value, is created in different network classes. Theory and practice researches create a reliable basis for the development of new concepts, marketing strategy business models that will contribute to competitive advantage of enterprises and the economy.

  18. CERN Orienteering Club

    CERN Multimedia

    Club d’Orientation du CERN

    2018-01-01

    Calendrier des courses de la Coupe Genevoise – printemps 2018 C’est reparti pour une nouvelle saison ! Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une série de courses populaires pour ce printemps. Le coup d’envoi sera donné samedi 7 avril à 13h à Trélex dans le canton de Vaud avec une course longue distance. Puis le programme sera le suivant : Samedi 14 avril : Mont Mourex (01) Samedi 21 avril : Pougny (01) Samedi 28 avril : Vulbens (74) Samedi 5 mai : Dorigny (VD) Samedi 19 mai : Prémanon (39) Samedi 26 mai : Chancy (GE) Samedi 2 juin : Monteret (VD) Samedi 9 juin : Bonmont (VD) Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel. Les inscriptions sur un des 5 parcours proposés se font sur place le jour de l&...

  19. A constitutive description of the thermo-viscoplastic behavior of body-centered cubic metals

    International Nuclear Information System (INIS)

    Gao, C.Y.; Lu, W.R.; Zhang, L.C.; Yan, H.X.

    2012-01-01

    Highlights: ► Established a new physics-based constitutive model for the plasticity of BCC crystals. ► The new model is better than the R–K, Abed, Z–A and J–C models. ► The new model is simpler and easier to use than the original MTS model. ► The material parameters are determined by a global optimization algorithm. ► Provided a precise description of the flow stress of HSLA-65 steel as well as Tantalum. -- Abstract: The Johnson–Cook (J–C) equation, which is obtained from the phenomenological observations of experimental data at relatively low strain rates, cannot well describe the dynamic thermo-mechanical response of many materials at high strain rates, especially under the situations of high or low temperatures. This paper develops a new physics-based model for the constitutive description of BCC metals through a thermal activation analysis of the dislocation motion in the plastic deformation of crystalline materials with the use of the mechanical threshold stress (MTS) as an internal state variable. It was found that the new model can effectively reflect the plastic deformation mechanism of BCC crystals because it directly relates the macroscopic state variables in the constitutive model with the micromechanical characteristics of materials. The material parameters of the model are efficiently determined by an optimization method to guarantee that the material parameters are globally optimal in their theoretically allowed ranges. The application of the model to HSLA-65 steel and Tantalum shows that it is much easier to apply than the MTS model, that its flow stress predictions are better than the Rusinek and Klepaczko (R–K), Abed, Zerilli and Armstrong (Z–A) and J–C models, and that the present model predictions are in good agreement with the experimental data in a broad range of strain rate, temperature and strain.

  20. Investigation of the origin and distribution of heavy metals around ...

    African Journals Online (AJOL)

    2010-04-28

    Apr 28, 2010 ... JS Ogola1*, HR Mundalamo1 and G Brandl2. 1Department of Mining and ..... CSIR, Environmental Services, Pretoria,. South Africa. ... chemical orientation studies and the platinum potential of Jamaica. Trans. Inst. Min. Metall.

  1. Observation of changing crystal orientations during grain coarsening

    International Nuclear Information System (INIS)

    Sharma, Hemant; Huizenga, Richard M.; Bytchkov, Aleksei; Sietsma, Jilt; Offerman, S. Erik

    2012-01-01

    Understanding the underlying mechanisms of grain coarsening is important in controlling the properties of metals, which strongly depend on the microstructure that forms during the production process or during use at high temperature. Grain coarsening of austenite at 1273 K in a binary Fe–2 wt.% Mn alloy was studied using synchrotron radiation. Evolution of the volume, average crystallographic orientation and mosaicity of more than 2000 individual austenite grains was tracked during annealing. It was found that an approximately linear relationship exists between grain size and mosaicity, which means that orientation gradients are present in the grains. The orientation gradients remain constant during coarsening and consequently the character of grain boundaries changes during coarsening, affecting the coarsening rate. Furthermore, changes in the average orientation of grains during coarsening were observed. The changes could be understood by taking the observed orientation gradients and anisotropic movement of grain boundaries into account. Five basic modes of grain coarsening were deduced from the measurements, which include: anisotropic (I) and isotropic (II) growth (or shrinkage); movement of grain boundaries resulting in no change in volume but a change in shape (III); movement of grain boundaries resulting in no change in volume and mosaicity, but a change in crystallographic orientation (IV); no movement of grain boundaries (V).

  2. Archives: Orient Journal of Medicine

    African Journals Online (AJOL)

    Items 1 - 26 of 26 ... Archives: Orient Journal of Medicine. Journal Home > Archives: Orient Journal of Medicine. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 26 of 26 Items ...

  3. Problem-Oriented Project Work

    DEFF Research Database (Denmark)

    Olsen, Poul Bitsch; Pedersen, Nils Kaare

    This book is meant to support problem-oriented learning activities. Problem-orientation concerns the reasoning about lack of knowledge, while project work includes the ethnomethods that are practiced when collectives produce scientific knowledge. This book reflects particular methods related...

  4. Orientation-crowding within contours.

    Science.gov (United States)

    Glen, James C; Dakin, Steven C

    2013-07-15

    We examined how crowding (the breakdown of object recognition in the periphery caused by interference from "clutter") depends on the global arrangement of target and distracting flanker elements. Specifically we probed orientation discrimination using a near-vertical target Gabor flanked by two vertical distractor Gabors (one above and one below the target). By applying variable (opposite-sign) horizontal offsets to the positions of the two flankers we arranged the elements so that on some trials they formed contours with the target and on others they did not. While the presence of flankers generally elevated orientation discrimination thresholds for the target we observe maximal crowding not when flanker and targets were co-aligned but when a small spatial offset was applied to flanker location, so that contours formed between flanker and targets only when the target orientation was cued. We also report that observers' orientation judgments are biased, with target orientation appearing either attracted or repulsed by the global/contour orientation. A second experiment reveals that the sign of this effect is dependent both on observer and on eccentricity. In general, the magnitude of repulsion is reduced with eccentricity but whether this becomes attraction (of element orientation to contour orientation) is dependent on observer. We note however that across observers and eccentricities, the magnitude of repulsion correlates positively with the amount of release from crowding observed with co-aligned targets and flankers, supporting the notion of fluctuating bias as the basis for elevated crowding within contours.

  5. Postdictive modulation of visual orientation.

    Directory of Open Access Journals (Sweden)

    Takahiro Kawabe

    Full Text Available The present study investigated how visual orientation is modulated by subsequent orientation inputs. Observers were presented a near-vertical Gabor patch as a target, followed by a left- or right-tilted second Gabor patch as a distracter in the spatial vicinity of the target. The task of the observers was to judge whether the target was right- or left-tilted (Experiment 1 or whether the target was vertical or not (Supplementary experiment. The judgment was biased toward the orientation of the distracter (the postdictive modulation of visual orientation. The judgment bias peaked when the target and distracter were temporally separated by 100 ms, indicating a specific temporal mechanism for this phenomenon. However, when the visibility of the distracter was reduced via backward masking, the judgment bias disappeared. On the other hand, the low-visibility distracter could still cause a simultaneous orientation contrast, indicating that the distracter orientation is still processed in the visual system (Experiment 2. Our results suggest that the postdictive modulation of visual orientation stems from spatiotemporal integration of visual orientation on the basis of a slow feature matching process.

  6. Postdictive modulation of visual orientation.

    Science.gov (United States)

    Kawabe, Takahiro

    2012-01-01

    The present study investigated how visual orientation is modulated by subsequent orientation inputs. Observers were presented a near-vertical Gabor patch as a target, followed by a left- or right-tilted second Gabor patch as a distracter in the spatial vicinity of the target. The task of the observers was to judge whether the target was right- or left-tilted (Experiment 1) or whether the target was vertical or not (Supplementary experiment). The judgment was biased toward the orientation of the distracter (the postdictive modulation of visual orientation). The judgment bias peaked when the target and distracter were temporally separated by 100 ms, indicating a specific temporal mechanism for this phenomenon. However, when the visibility of the distracter was reduced via backward masking, the judgment bias disappeared. On the other hand, the low-visibility distracter could still cause a simultaneous orientation contrast, indicating that the distracter orientation is still processed in the visual system (Experiment 2). Our results suggest that the postdictive modulation of visual orientation stems from spatiotemporal integration of visual orientation on the basis of a slow feature matching process.

  7. Assessing New Employee Orientation Programs

    Science.gov (United States)

    Acevedo, Jose M.; Yancey, George B.

    2011-01-01

    Purpose: This paper aims to examine the importance of new employee orientation (NEO) programs, the quality of typical NEOs, and how to improve NEOs. Design/methodology/approach: The paper provides a viewpoint of the importance of new employee orientation programs, the quality of typical NEOs, and how to improve NEOs. Findings: Although western…

  8. Patterns of Wildlife Value Orientations

    Science.gov (United States)

    Harry C. Zinn; Michael J. Manfredo; Susan C. Barro

    2002-01-01

    Public value orientations toward wildlife may be growing less utilitarian and more protectionist. To better understand one aspect of this trend, we investigated patterns of wildlife value orientations within families. Using a mail survey, we sampled Pennsylvania and Colorado hunting license holders 50 or older; obtaining a 54% response rate (n = 599). Males (94% of...

  9. Thermal decomposition of the b.c.c. β-solid solution of titanium alloy containing 6.7 at% Mo, 3 at% Zr, and 1.8 at% Sn. 1

    International Nuclear Information System (INIS)

    Zakharova, M.I.; Khundzhua, A.K.; Kertesz, L.; Szasz, A.

    1981-01-01

    Changes in the crystal structure of the titanium alloy, containing 6.7 at% Mo, 3 at% Zr, and 1.8 at% Sn, during thermal decomposition are followed by means of X-ray and electron diffraction methods. Parallel to these tests the alteration in the electron structure and chemical bonds of the alloy are investigated with the help of the soft-x-ray emission (SXES) method. Attention is focussed on the at room temperature not equilibrated b.c.c. β-solid solution, on the metastable transition phase ω, and on the equilibrium phase α. (author)

  10. Different facets of market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.; Henneberg, Stephan C.

    2009-01-01

    the UK parties generally exhibited similar levels of market orientation on each of the relevant construct dimensions, the German parties had more distinct profiles; thus the applied dimensions of political market orientation show discriminatory power within and across electoral systems. In the UK......In this study we employ the concept of political market orientation to better understand how the main political parties in the UK and Germany relate to other stakeholders in the political sphere through an exploratory content analysis of their core election offering, the manifesto. This study has...... two aims: firstly, we will discuss the different facets of the market orientation of the main UK and German parties in their respective 2005 General Elections through an exploratory content analysis, and secondly, we will compare characteristics of market orientation between the two countries. Whilst...

  11. Customizable Time-Oriented Visualizations

    DEFF Research Database (Denmark)

    Kuhail, Mohammad Amin; Pantazos, Kostas; Lauesen, Søren

    2012-01-01

    Most commercial visualization tools support an easy and quick creation of conventional time-oriented visualizations such as line charts, but customization is limited. In contrast, some academic visualization tools and programming languages support the creation of some customizable time......-oriented visualizations but it is time consuming and hard. To combine efficiency, the effort required to develop a visualization, and customizability, the ability to tailor a visualization, we developed time-oriented building blocks that address the specifics of time (e.g. linear vs. cyclic or point-based vs. interval......-based) and consist of inner customizable parts (e.g. ticks). A combination of the time-oriented and other primitive graphical building blocks allowed the creation of several customizable advanced time-oriented visualizations. The appearance and behavior of the blocks are specified using spreadsheet-like formulas. We...

  12. Strong orientational coordinates and orientational order parameters for symmetric objects

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Glotzer, Sharon C

    2015-01-01

    Recent advancements in the synthesis of anisotropic macromolecules and nanoparticles have spurred an immense interest in theoretical and computational studies of self-assembly. The cornerstone of such studies is the role of shape in self-assembly and in inducing complex order. The problem of identifying different types of order that can emerge in such systems can, however, be challenging. Here, we revisit the problem of quantifying orientational order in systems of building blocks with non-trivial rotational symmetries. We first propose a systematic way of constructing orientational coordinates for such symmetric building blocks. We call the arising tensorial coordinates strong orientational coordinates (SOCs) as they fully and exclusively specify the orientation of a symmetric object. We then use SOCs to describe and quantify local and global orientational order, and spatiotemporal orientational correlations in systems of symmetric building blocks. The SOCs and the orientational order parameters developed in this work are not only useful in performing and analyzing computer simulations of symmetric molecules or particles, but can also be utilized for the efficient storage of rotational information in long trajectories of evolving many-body systems. (paper)

  13. Anisotropy of electron work function and reticular compacting of friable faces of metallic crystals

    International Nuclear Information System (INIS)

    Vladimirov, A.F.

    1999-01-01

    The review and statistical estimate of experimental data on work functions for BCC-, FCC- and HCP - metals (W, Mo, Ta, Nb, Cr, V, Ni, Y) as well as the earlier developed quantum-mechanical statistical model of double electrical layer formation at metal surface and the calculation of an electron work function dipole constituent serve as a basis for the development of a semi-empirical theory of electron work function anisotropy. A coefficient of reticular compacting of friable crystal faces is introduced and statistically estimated. A coefficient of crystal emission anisotropy is also introduced and estimated both theoretically and empirically. The theory permits calculating work functions for all crystal faces and a volumetric constituent of the work function from the measured value of electron work function for a single face [ru

  14. Fixed Orientation Interconnection Problems: Theory, Algorithms and Applications

    DEFF Research Database (Denmark)

    Zachariasen, Martin

    Interconnection problems have natural applications in the design of integrated circuits (or chips). A modern chip consists of billions of transistors that are connected by metal wires on the surface of the chip. These metal wires are routed on a (fairly small) number of layers in such a way...... that electrically independent nets do not intersect each other. Traditional manufacturing technology limits the orientations of the wires to be either horizontal or vertical — and is known as Manhattan architecture. Over the last decade there has been a growing interest in general architectures, where more than two...... a significant step forward, both concerning theory and algorithms, for the fixed orientation Steiner tree problem. In addition, the work maintains a close link to applications and generalizations motivated by chip design....

  15. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  16. The new nuclear orientation facility at Charles University Prague

    International Nuclear Information System (INIS)

    Rotter, M.; Hubalovsky, S.; Trhlik, M.; Janotova, J.; Dupak, J.; Srnka, A.; Forget, P.; Pari, P.

    1996-01-01

    The Nuclear Orientation facility for solid state physics investigations was installed at the Department of Low Temperature Physics of the Faculty of Mathematics and Physics, Charles University. The small 'top loaded' dilution refrigerator is used for cooling radioactive metallic samples to 10 mK in 4 T magnetic field. The construction and thermodynamic parameters of the 'French type' refrigerator working without 1 K precooling stage are described. (author)

  17. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  18. Superelastic load cycling of Gum Metal

    International Nuclear Information System (INIS)

    Vorontsov, V.A.; Jones, N.G.; Rahman, K.M.; Dye, D.

    2015-01-01

    The superelastic beta titanium alloy, Gum Metal, has been found to accumulate plastic strain during tensile load cycling in the superelastic regime. This is evident from the positive drift of the macroscopic stress vs. strain hysteresis curve parallel to the strain axis and the change in its geometry subsequent to every load–unload cycle. In addition, there is a progressive reduction in the hysteresis loop width and in the stress at which the superelastic transition occurs. In situ synchrotron X-ray diffraction has shown that the lattice strain exhibited the same behaviour as that observed in macroscopic measurements and identified further evidence of plastic strain accumulation. The mechanisms responsible for the observed behaviour have been evaluated using transmission electron microscopy, which revealed a range of different defects that formed during load cycling. The formation of these defects is consistent with the classical mathematical theory for the bcc to orthorhombic martensitic transformation. It is the accumulation of these defects over time that alters its superelastic behaviour

  19. Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation

    International Nuclear Information System (INIS)

    Nagasako, Naoyuki; Asahi, Ryoji; Isheim, Dieter; Seidman, David N.; Kuramoto, Shigeru; Furuta, Tadahiko

    2016-01-01

    A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations.

  20. Study of the embedded atom method of atomistic calculations for metals and alloys: Progress report, March 1, 1987-February 28, 1988

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1987-11-01

    The relationships between the physical input and output of the Embedded Atom Method (EAM) used in atomistic calculations for metals and alloys and the model functions and parameters are being investigated. An analytic fcc EAM model has been derived based on short range approximations to the input functions in EAM and has been studied both analytically and numerically for the fcc lattice. This model has been extended to longer ranges and applied to both fcc and hcp metals. The correspondence between models based on density functional theory (EAM), tight binding methods, and effective medium theory has been reported. The reasons for difficulty in applying EAM to bcc metals is under study and a new form of alloy potential which retains general properties of pure metal potentials has been developed. 8 refs