WorldWideScience

Sample records for bcc metal oriented

  1. Equation of state and thermodynamic properties of BCC metals

    Directory of Open Access Journals (Sweden)

    Vu Van Hung, N.T. Hoa

    2017-10-01

    Full Text Available The moment method in statistical dynamics is used to study the equation of state and thermodynamic properties of the bcc metals taking into account the anharmonicity effects of the lattice vibrations and hydrostatic pressures. The explicit expressions of the lattice constant, thermal expansion  oefficient, and the specific heats of the bcc metals are derived within the fourth order moment approximation. The termodynamic quantities of W, Nb, Fe,and Ta metals are calculated as a function of the pressure, and they are in good agreement with the corresponding results obtained from the first principles calculations and experimental results. The effective pair potentials work well for the calculations of bcc metals.

  2. Comparison of interface structure of BCC metallic (Fe, V and Nb) films on MgO (100) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.L. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Zhang, L.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 (China); Fu, E.G., E-mail: efu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Ding, X., E-mail: dingxd@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 (China); Yu, K.Y., E-mail: kyyu@cup.edu.cn [Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Y.G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, Y.Q.; Baldwin, J.K. [Experimental Physical Sciences Directorate, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Wang, X.J. [State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871 (China); Xu, P. [Department of Chemistry, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)

    2017-07-15

    Highlights: • The difference of BCC metal/MgO(100) interface configuration with various lattice mismatches is identified by experiments and simulations in terms of dislocations and work of separation. • The strength of bonds along interface is found to be the fundamental factor to determine the interface configurations between BCC metal and MgO substrate. • The combination of experiments and simulations shows that the O-atop model is the actual match type between BCC metal and MgO substrate. - Abstract: This study systematically investigates the interface structure of three body-centered-cubic (BCC) metallic (Fe, V and Nb) films grown on MgO(100) substrates through experiments and simulations. Orientation relationships of their interfaces with the different lattice mismatches exhibit cube-on-cube configurations. The misfit dislocations at these three interfaces exhibit different characteristics. High resolution TEM (HRTEM), combined with first principle calculations, demonstrates the O-atop match type between metal atoms and MgO substrates for the first time. The fundamental mechanism in determining the interface configuration is discussed in terms of the work of separation and delocalization of atomic charge density.

  3. Ab initio theory of noble gas atoms in bcc transition metals.

    Science.gov (United States)

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  4. The role of edge dislocations in the deformation of BCC metals

    International Nuclear Information System (INIS)

    Lung, C.W.

    1994-08-01

    It was widely accepted that the screw dislocation is responsible for the strong temperature dependence of the yield stresses observed in bcc metals. In this paper, we show the role of edge dislocations in the deformation of bcc metals and point out that in some cases, its main contribution to the yield stress cannot be ignored. (author). 15 refs, 2 figs, 1 tab

  5. Solid-liquid interface free energies of pure bcc metals and B2 phases

    Science.gov (United States)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  6. Kinetics of self-interstitial migration in bcc and fcc transition metals

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  7. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals

    Science.gov (United States)

    Dudarev, S. L.; Ma, Pui-Wai

    2018-03-01

    Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a orientation of the defect.

  8. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Suzudo, Tomoaki, E-mail: suzudo.tomoaki@jaea.go.jp; Yamaguchi, Masatake

    2015-10-15

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  9. Simulation of He embrittlement at grain boundaries in bcc transition metals

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-01-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  10. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  11. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and ...

  12. Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron

    Science.gov (United States)

    Fikar, Jan; Gröger, Roman; Schäublin, Robin

    2017-12-01

    The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.

  13. ''Cube-on-hexagon'' orientation relationship for Fe on GaN(0001): The missing link in bcc/hcp epitaxy

    International Nuclear Information System (INIS)

    Gao Cunxu; Brandt, Oliver; Laehnemann, Jonas; Jahn, Uwe; Jenichen, Bernd; Schoenherr, Hans-Peter; Erwin, Steven C.

    2010-01-01

    We investigate, experimentally and theoretically, the epitaxy of body-centered-cubic Fe on hexagonal GaN. For growth on the Ga-polar GaN(0001) surface we find the well-known Pitsch-Schrader orientation relationship between Fe and GaN. On the N-polar GaN(0001) surface we observe coexistence between the familiar Burgers orientation and a new orientation in which the Fe(001) plane is parallel to GaN(0001). This 'cube-on-hexagon' orientation constitutes the high-symmetry link required for constructing a symmetry diagram for bcc/hcp systems in which all orientation relationships are connected by simple rotations.

  14. Investigation of irradiation strengthening of bcc metals and their alloys. Progress report, January 1977--October 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Progress is reported in the areas of (a) the effect of neutron damage on the dislocation kinetics in bcc metals and their alloys, and (b) the effect of 3 He on the deformation characteristics of body centered cubic metals and their alloys. Results obtained from these projects are discussed

  15. Phonon dispersion curves of BCC Ba

    International Nuclear Information System (INIS)

    Mizuki, J.; Stassis, C.; Zarestky, J.

    1985-01-01

    Ba, as well as Sr and Ca, is a divalent alkaline earth metal. At room temperature and ambient pressure, the structure of Ba is bcc, whereas that of Sr and Ca is fcc. Under pressure, the bcc phase of Ba transforms to an hcp structure at 55 kbar. Also, at 37 kbar Ba becomes a superconductor with T/sub c/ = 0.06 K. These properties are highly dependent on the position of the d bands relative to the Fermi level. Experimental investigation of the elastic and lattice dynamical properties of these metals has been hindered by difficulties in growing single crystals. However, recently the authors were able to grow several single crystals of bcc Ba of sufficient volume for inelastic neutron scattering experiments. Some of the results are summarized here

  16. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    Science.gov (United States)

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  17. Thermodynamic properties of bcc crystals at high temperatures: The transition metals

    International Nuclear Information System (INIS)

    MacDonald, R.A.; Shukla, R.C.

    1985-01-01

    The second-neighbor central-force model of a bcc crystal, previously used in lowest-order anharmonic perturbation theory to calculate the thermodynamic properties of the alkali metals, is here applied to the transition metals V, Nb, Ta, Mo, and W. The limitations of the model are apparent in the thermal-expansion results, which fall away from the experimental trend above about 1800 K. The specific heat similarly fails to exhibit the sharp rise that is observed at higher temperatures. A static treatment of vacancies cannot account for the difference between theory and experiment. The electrons have been taken into account by using a model that specifically includes d-band effects in the electron ground-state energy. The results thus obtained for the bulk moduli are quite satisfactory. In the light of these results, we discuss the prerequisites for a better treatment of metals when the electrons play an important role in determining the thermodynamic properties

  18. Hydrogen diffusion and trapping in bcc and fcc metals

    International Nuclear Information System (INIS)

    Richter, D.

    1979-01-01

    The fundamental aspects of the metal--hydrogen systems are described. The large number of anomalous properties are the reason for continuous scientific effort. The time scale of hydrogen motion is extremely short. The characteristic frequencies of the localized modes of hydrogen in Ta, Nb, or V are in the order of 10 -14 sec (energies between 0.1 to 0.2 eV); the jump frequencies for H-diffusion at elevated temperatures in those systems are between 10 +12 to 10 +13 sec -1 . They are comparable with the correlation times for diffusion in liquids and more than ten orders of magnitude larger than the jump times for nitrogen in Nb. Out of the large number of experimental data this paper will survey only some recent results on representative fcc and bcc metals for dilute H solutions. The nature of the elementary step in H-diffusion is described. Here the temperature and isotope dependence of the H-diffusion coefficient gives hints to the mechanism involved. The experimental results are discussed in terms of semiclassical and quantum mechanical diffusion theories

  19. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    Energy Technology Data Exchange (ETDEWEB)

    Gorondy-Novak, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Jomard, F. [Groupe d' Etude de la Matière Condensée, CNRS, UVSQ, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Prima, F. [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Lefaix-Jeuland, H., E-mail: helene.lefaix@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs{sup +} primary ion beam coupled with CsHe{sup +} molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, {sup 4}He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  20. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Final technical report

    International Nuclear Information System (INIS)

    Moss, S.C.

    1984-04-01

    Research was conducted on the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals with emphasis on V and Nb. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction was used, with neutron scattering providing useful corollary data. One objective was to determine the phase relations, solid solution structures and phase transitions in metal-hydride alloys which depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties (as in critical wetting) which are revealed in structural studies. Crystals were supplied for positron annihilation studies of the Fermi surface of H-Ta alloys which have revealed significant electronic trends. Work on alkali-graphite intercalates was initiated

  1. Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling

    International Nuclear Information System (INIS)

    Osetsky, Yu.N.; Bacon, D.J.

    2005-01-01

    Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects

  2. Inherited textures in the bcc phase furnish information about the type of transformation from the fcc phase

    International Nuclear Information System (INIS)

    Jung, V.

    1982-07-01

    Drawing annealed cylindric 18/8 Cr Ni steels, which are originally free of textures, produces the transformed phases - hcp and bcc - both showing major texture contributions with increasing stretching of the cylindric specimens. After stretching the original fcc-phase shows two orientations: [100]fcc vertical stroke vertical stroke cylinder axis and [111]fcc vertical stroke vertical stroke cylinder axis, i.e. direction of stress. In both cases the martensitic phase is produced by gliding and shear in the sequence fcc → hcp → bcc by Nishiyama-Wasserman (N-W) or Kurdjumov-Sachs (K-S) transformation in the (111)fcc planes, which enclose a small angle with direction of stress, i.e. cylinder axis. The calculated orientation distributions of the (110)bcc reflex are compared with the distribution measured by neutron diffraction to get information on the bulk material. The special K-S transformation with only 6 (110)bcc orientations shows relatively good agreement with the measured distribution, except at small angles ω between the cylinder axis and the scattering vector. This might be caused by the isotropic fraction of the fcc phase producing an anisotropic (110)bcc orientation distribution. (orig.) [de

  3. Investigation of irradiation strengthening of b.c.c. metals and their alloys. Progress report, January 1976--October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Research on irradiation of bcc metals and alloys is reported. Data and information are presented in appendixes on low temperature neutron irradiation of Nb, effects of tritium on the yield stress of Nb, multiple dislocation motion, dislocation group motion, dislocation kinetics, and computer simulation of dislocation motion

  4. Nuclear spin relaxation due to hydrogen diffusion in b.c.c. metals

    International Nuclear Information System (INIS)

    Faux, D.A.; Hall, C.K.

    1989-01-01

    We present Monte Carlo simulation results for the proton-proton contribution to the T 1 -1 relaxation rate for hydrogen spins diffusing on the tetrahedral sites of a b.c.c. metal. It is assumed that each hydrogen blocks all sites to the zeroth (no multiple-occupancy), second or third neighbour and that longer-range interactions may be neglected. Comparisons are made to the BPP and Torrey models. It is found that both the BPP and Torrey models give reasonable values for the peak height but that their predictions for the peak position and the high- and low-temperature limit are in error, particularly for large blocking distances. (orig.)

  5. Neutron spectroscopy of fast hydrogen diffusion in BCC transition metals

    International Nuclear Information System (INIS)

    Richter, D.; Lottner, V.

    1979-01-01

    Quasielastic neutron scattering reveals microscopic details of both the time and space development of the H-diffusion process on an atomic scale. After outlining the method on the example of PdH/sub x/, new results on the jump geometry in bcc metals are surveyed. In particular, the anomalous diffusion behavior of H in Nb, Ta, and V at elevated temperature is emphasized, where correlated jump processes are important. The influence of impurities on the H-diffusion process is demonstrated by experiments performed on NbH/sub x/ doped with nitrogen impurities, which act as trapping centers for the diffusing hydrogen. The results are discussed in terms of a two-state random walk model which includes multiple trapping and detrapping processes. The concentration and temperature dependence of the capture and escape rates of traps are obtained

  6. Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates.

    Science.gov (United States)

    Pathak, Siddhartha; Velisavljevic, Nenad; Baldwin, J Kevin; Jain, Manish; Zheng, Shijian; Mara, Nathan A; Beyerlein, Irene J

    2017-08-15

    Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

  7. Assessment of the structural relations between the bcc and omega phases of Ti, Zr, Hf and other transition metals

    International Nuclear Information System (INIS)

    Aurelio, G.; Guillermet, A.F.

    2000-01-01

    The name omega (Ω) phase refers to a high-pressure structural modification of the transition metals (TMs) Ti, Zr, and Hf. In alloys of Ti, Zr and Hf with other TMs, the Ω phase can be formed and retained metastably at room temperature by quenching the bcc structure, which is usually the stable high-temperature phase in these alloy systems. As a part of a systematic investigation of the structural and bonding properties of the bcc and Ω phases, and of the bcc → Ω phase transformation in TMs and alloys, we present in this paper a detailed analysis of the structural relations between these phases in Ti, Zr, Hf and in other TMs. The approach is as follows. First, we establish the most general geometrical relations connecting the lattice parameters and interatomic distances (IDs) of the bcc and Ω structures. Next, we focus on the ratio between the relevant IDs of these phases, which are assessed on the basis of an extensive database with experimental and theoretical information. Both stable and metastable structures are considered, and various remarkable regularities in ID ratios are discussed. Finally, in the light of the systematics of ID ratios established in the present work, a discussion is made of the probable lattice parameters for the Ω phase of Hf, which are not yet accurately known from direct measurements. (orig.)

  8. On hyper BCC-algebras

    OpenAIRE

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

    2006-01-01

    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  9. On hyper BCC-algebras

    Directory of Open Access Journals (Sweden)

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  10. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    International Nuclear Information System (INIS)

    Jahangir, Vafa; Riahifar, Reza; Sahba Yaghmaee, Maziar

    2016-01-01

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  11. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, Vafa, E-mail: vafa.jahangir@yahoo.com; Riahifar, Reza, E-mail: reza_rfr@yahoo.com; Sahba Yaghmaee, Maziar, E-mail: fkmsahba@uni-miskolc.hu

    2016-03-31

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  12. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011)B3 single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Higuchi, Jumpei; Yabuhara, Osamu; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011) B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar] bcc || GaAs(011)[011-bar] B3 . The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011) B3 substrates.

  13. Smarandache hyper BCC-algebra

    OpenAIRE

    Ahadpanah, A.; Borumand Saeid, A.

    2011-01-01

    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  14. Control of in-plane texture of body centered cubic metal thin films

    International Nuclear Information System (INIS)

    Harper, J.M.; Rodbell, K.P.; Colgan, E.G.; Hammond, R.H.

    1997-01-01

    We show that dramatically different in-plane textures can be produced in body centered cubic (bcc) metal thin films deposited on amorphous substrates under different deposition conditions. The crystallographic orientation distribution of polycrystalline bcc metal thin films on amorphous substrates often has a strong left-angle 110 right-angle fiber texture, indicating that {110} planes are parallel to the substrate plane. When deposition takes place under bombardment by energetic ions or atoms at an off-normal angle of incidence, the left-angle 110 right-angle fiber texture develops an in-plane texture, indicating nonrandom azimuthal orientations of the crystallites. Three orientations in Nb films have been observed under different deposition geometries, in which the energetic particle flux coincides with channeling directions in the bcc crystal structure. In-plane orientations in Mo films have also been obtained in magnetron sputtering systems with various configurations. These are described, and an example is given in which the in-plane orientation of Mo films deposited in two different in-line magnetron sputtering systems differs by a 90 degree rotation. In these two cases, there is a strong left-angle 110 right-angle fiber texture, but the in-plane left-angle 100 right-angle direction is oriented parallel to the scan direction in one system, and perpendicular to the scan direction in the other system. The conditions which produce such different in-plane textures in two apparently similar sputtering systems are discussed. copyright 1997 American Institute of Physics

  15. Crystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation

    Science.gov (United States)

    Narayanan, Sankar; McDowell, David L.; Zhu, Ting

    2014-04-01

    The mobility of dislocation in body-centered cubic (BCC) metals is controlled by the thermally activated nucleation of kinks along the dislocation core. By employing a recent interatomic potential and the Nudged Elastic Band method, we predict the atomistic saddle-point state of 1/2 screw dislocation motion in BCC iron that involves the nucleation of correlated kinkpairs and the resulting double superkinks. This unique process leads to a single-humped minimum energy path that governs the one-step activation of a screw dislocation to move into the adjacent {110} Peierls valley, which contrasts with the double-humped energy path and the two-step transition predicted by other interatomic potentials. Based on transition state theory, we use the atomistically computed, stress-dependent kinkpair activation parameters to inform a coarse-grained crystal plasticity flow rule. Our atomistically-informed crystal plasticity model quantitatively predicts the orientation dependent stress-strain behavior of BCC iron single crystals in a manner that is consistent with experimental results. The predicted temperature and strain-rate dependencies of the yield stress agree with experimental results in the 200-350 K temperature regime, and are rationalized by the small activation volumes associated with the kinkpair-mediated motion of screw dislocations.

  16. Calculation of elastic constants of BCC transition metals: tight-binding recursion method

    International Nuclear Information System (INIS)

    Masuda, K.; Hamada, N.; Terakura, K.

    1984-01-01

    The elastic constants of BCC transition metals (Fe, Nb, Mo and W) are calculated by using the tight-binding d band and the Born-Mayer repulsive potential. Introducing a small distortion characteristic to C 44 (or C') elastic deformation and calculating the energy change up to second order in the atomic displacement, the shear elastic constants C 44 and C' are determined. The elastic constants C 11 and C 12 are then calculated by using the relations B=1/3(C 11 + 2C 12 ) and C'=1/2(C 11 -C 12 ), where B is the bulk modulus. In general, the agreement between the present results and the experimental values is satisfactory. The characteristic elasticity behaviour, i.e. the strong Nsub(d) (number of d electrons) dependence of the observed anisotropy factor A=C 44 /C', will also be discussed. (author)

  17. Application of generalized non-Schmid yield law to low-temperature plasticity in bcc transition metals

    International Nuclear Information System (INIS)

    Lim, H; Weinberger, C R; Battaile, C C; Buchheit, T E

    2013-01-01

    In this work, a generalized yield criterion that captures non-Schmid effects is proposed and implemented into a finite element crystal plasticity model to simulate plastic deformation of single and polycrystals. The parameters required for the constitutive formulation were calibrated to deformation experiments on single crystals. This model is used to investigate the effects of non-Schmid effects on the predictions of the stress–strain response and texture evolution in body-centered-cubic (bcc) metals. The non-Schmid contributions are required to accurately predict the stress–strain response of single crystals, and the concomitant non-associativity of the flow also increases the tendency of localization in polycrystal deformations. (paper)

  18. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011){sub B3} single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Higuchi, Jumpei; Yabuhara, Osamu [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011){sub B3} single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar]{sub bcc} || GaAs(011)[011-bar]{sub B3}. The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{l_brace}011{r_brace} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011){sub B3} substrates.

  19. Nucleation and growth of a BCC Fe phase deposited on a single crystal (001) Cu film

    International Nuclear Information System (INIS)

    Koike, J.

    1991-01-01

    As a thin film overlayer grows on a substrate with a different structure, the overlayer initially adopts the substrate structure and subsequently transforms to an equilibrium bulk structure. such a growth characteristic has been extensively studied in Fe/Cu bicrystals. An Fe overlayer grown on a Cu substrate is known to have the fcc structure up to a thickness of 2 nm, whereas a thicker Fe overlayer consists of submicrometer grains of the bcc-Cu has been reported in a relatively thick Fe film and was found to consist of the Nishiyama (N), Kurdjumov-Sacks (KS), or Pitsch (P), depending on the orientation of the substrate surface. However, previous studies have not explained how the bcc structure nucleates or how the observed submicrometer polycrystalline grains form. The paper provides an understanding of these two points. Transmission electron microscopy (TEM) was used to study Fe/Cu bicrystals as the Fe thickness was varied systematically. Analysis of moire fringes, which are caused by superposition of different structures, enabled us to determine the orientation relationship between the very thin Fe layer and the Cu substrate. We show that a single variant of the P orientation relationship, which accompanies atomic rearrangement parallel to the interface, predominates at the nucleation stage of the bcc structure. Nucleation of other variants of P, N, and KS occurs with increasing Fe thickness and causes the formation of the submicrometer bcc grains

  20. Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics, Geology, and Engineering Technology (United States)

    2016-12-15

    With the aim of developing a transferable potential set capable of predicting defect formation, defect association, and diffusion properties in a wide range of intermetallic compounds, the present study was undertaken to test parameterization strategies for determining empirical pair-wise interaction parameters in the modified embedded atom method (MEAM) developed by Baskes and coworkers. This report focuses on indium-solute and indium-vacancy interactions in FCC and BCC metals, for which a large set of experimental data obtained from perturbed angular correlation measurements is available for comparison. Simulation results were found to be in good agreement with experimental values after model parameters had been adjusted to reproduce as best as possible the following two sets of quantities: (1) lattice parameters, formation enthalpies, and bulk moduli of hypothetical equiatomic compounds with the NaCl crystal structure determined using density functional theory and (2) dilute solution enthalpies in metals as predicted by Miedema’s semi-empirical model.

  1. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals

    Directory of Open Access Journals (Sweden)

    Yu-Wei You

    2013-01-01

    Full Text Available First-principles calculations are performed to investigate the dissolving, trapping and detrapping of H in six bcc (V, Nb, Ta, Cr, Mo, W and six fcc (Ni, Pd, Pt, Cu, Ag, Au metals. We find that the zero-point vibrations do not change the site-preference order of H at interstitial sites in these metals except Pt. One vacancy could trap a maximum of 4 H atoms in Au and Pt, 6 H atoms in V, Nb, Ta, Cr, Ni, Pd, Cu and Ag, and 12 H atoms in Mo and W. The zero-point vibrations never change the maximum number of H atoms trapped in a single vacancy in these metals. By calculating the formation energy of vacancy-H (Vac-Hn complex, the superabundant vacancy in V, Nb, Ta, Pd and Ni is demonstrated to be much more easily formed than in the other metals, which has been found in many metals including Pd, Ni and Nb experimentally. Besides, we find that it is most energetically favorable to form Vac-H1 complex in Pt, Cu, Ag and Au, Vac-H4 in Cr, Mo and W, and Vac-H6 in V, Nb, Ta, Pd and Ni. At last, we examine the detrapping behaviors of H atoms in a single vacancy and find that with the heating rate of 10 K/min a vacancy could accommodate 4, 5 and 6 H atoms in Cr, Mo and W at room temperature, respectively. The detrapping temperatures of all H atoms in a single vacancy in V, Nb, Ta, Ni, Pd, Cu and Ag are below room temperature.

  2. Strain ordering in BCC metals and the associated anelasticity

    International Nuclear Information System (INIS)

    Dattagupta, S.; Ranganathan, R.; Balakrishnan, R.

    1982-01-01

    The BCC to BCT transformation is thought to occur as a consequence of strain ordering due to the interaction between impurity interstitials. A Hamiltonian is given, which involves the interaction energies between the strain fields of the interstitials belonging to three distinct sublattices. In the BCT phase, one of the sublattices is preferentially occupied. The free energy of the system is calculated in the mean field approximation. In this, the BCC to BCT transformation is found to be a first-order transition at a temperature Tsub(p) that is proportional to the concentration of the interstitials and certain basic interaction parameters. The anelastic behaviour of the interacting interstitials is then studied in the region T > Tsub(p). From the anelastic strain, which is proportional to the order parameter associated with the phase transition, the static compliance is obtained. The latter obeys a Curie-Weiss type of law. The creep function, which determines the response to a constant applied stress, is found to exhibit viscous behaviour near Tsub(p). From the creep function, the frequency-dependent compliance and the internal friction are evaluated. The results predict a shift and a broadening of the internal friction peak as Tsub(p) is approached from above. The features show qualitative resemblance with the recent data on Ta-O. (author)

  3. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    International Nuclear Information System (INIS)

    Wang, S.; Wang, M.P.; Chen, C.; Xiao, Z.; Jia, Y.L.; Li, Z.; Wang, Z.X.

    2014-01-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compression axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different

  4. Shear instabilities in perfect bcc crystals during simulated tensile tests

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Šesták, P.; Pokluda, J.; Šob, Mojmír

    2013-01-01

    Roč. 87, č. 1 (2013), 014117/1-014117/4 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : instabilities * tensile test * bcc metals * ab initio calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  5. Interface magnetism of 3d transition metals

    DEFF Research Database (Denmark)

    Niklasson, A. M. N.; Johansson, B.; Skriver, Hans Lomholt

    1999-01-01

    The layered resolved magnetic spin moments of the magnetic 3d bilayer interfaces Fe/V bcc, Fe/Co bcc, Fe/Cu bcc, Co/V bcc, Co/Ni fee, Co/Cu fee, Ni/V fee, Ni/Cr fcc, Ni/Cu fee and the magnetic surfaces Fe bcc, Co bcc, Co fee, and Ni fee are calculated for the (001), (011), and (111) orientations...

  6. Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies

    International Nuclear Information System (INIS)

    Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.

    2006-01-01

    Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)

  7. A systematic study on the interfacial energy of O-line interfaces in fcc/bcc systems

    International Nuclear Information System (INIS)

    Dai, Fuzhi; Zhang, Wenzheng

    2013-01-01

    Habit planes between face-centered cubic (fcc)/body-centered cubic (bcc) phases usually exhibit irrational orientations, which often agree with the O-line criterion. Previously, energy calculation was made to test whether the habit planes were energetically favorable, but the values of the energy were found very sensitive to the initial atomic configuration in an irrationally orientated interface. In this paper, under the O-line condition, simple selection criteria are proposed to define and remove interfacial interstitials and vacancies in the initial atomic configuration. The criteria are proved to be effective in obtaining robust energy results. Interfacial energies of two types of O-line interfaces in fcc/bcc systems are calculated following the criteria. The observed transformation crystallography of precipitates in Ni–Cr and Cu–Cr systems can be explained consistently as the irrational habit plane in each system is associated with the lowest energy O-line interface. (paper)

  8. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    International Nuclear Information System (INIS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-01-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  9. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Terentyev, Dmitry, E-mail: dterenty@SCKCEN.BE [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Yu, Long; Song, Dingkun [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China)

    2015-11-15

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  10. Fission-neutron displacement cross sections in metals

    International Nuclear Information System (INIS)

    Takamura, Saburo; Aruga, Takeo; Nakata, Kiyotomo

    1985-01-01

    The sensitivity damage rates for 22 metals were measured after fission-spectrum neutron irradiation at low temperature and the experimental damage rates were compared with the theoretical calculation. The relation between the theoretical displacement cross section and the atomic weight of metals can be written by two curves; one is for fcc and hcp metals, and another is for bcc metals. On the other hand, the experimental displacement cross section versus atomic weight is shown approximately by a curve for both fcc and bcc metals, and the cross section for hcp metals deviates from the curve. The defect production efficiency is 0.3-0.4 for fcc metals and 0.6-0.8 for bcc metals. (orig.)

  11. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  12. Metastable bcc Fe-Mn alloys produced by rf sputtering

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Kadono, Masaru; Nakamura, Yoji

    1981-01-01

    Fe sub(1-x)Mn sub(x) alloy films obtained by rf sputtering technique have been investigated by X-ray diffraction, magnetization and Moessbauer effect measurements. The single bcc phase extends up to about x = 0.2, while a bcc-fcc mixed phase appears for x = 0.2 - 0.26. The lattice constants of the bcc phase are about 0.5% larger than those of the bulk specimens. The magnetization decreases monotonically with increasing x in the bcc phase, while it decreases sharply in the bcc-fcc mixed phase. These results are consistent with the Moessbauer spectra of these alloy films. The volume fraction of bcc and fcc phases has been estimated from Moessbauer analyses as well as magnetization measurements. (author)

  13. High Temperature Magneto-Elastic Instability of Dislocations in bcc Iron

    International Nuclear Information System (INIS)

    Dudarev, S.; Bullough, R.; Gilbert, M.; Derlet, P.

    2007-01-01

    Full text of publication follows: Density functional calculations show that the low temperature structure of self-interstitial defects in iron is fundamentally different from the structure of self-interstitial defects in all the other bcc metals. The origin of this anomaly is associated with the magnetic part of the cohesive energy of iron, where the Stoner exchange term stabilizes the body centred cubic phase, and where the magnetic part of energy is strongly affected by the large strain associated with the core region of an interstitial defect. At elevated temperatures magnetic excitations erode the stability of the bcc phase, giving rise to the gradual softening of the 110 transverse acoustic phonon modes and to the α-γ bcc-fcc martensitic phase transition occurring at 912 deg. C at normal pressure. Elastic moduli of bcc iron vary as a function of temperature with c' = (C 11 - c 12 )/2 vanishing at the α-γ transition point. This has significant effects on the magnitude of both the elastic interactions between dislocations and other defects in the material and on the intrinsic structural stability of the dislocations and other defects themselves. To evaluate structural stability of defects at elevated temperatures we investigate elastic self-energies of dislocations in the continuum anisotropic elasticity approximation. We also develop atomistic models of dislocations and point defects based on a generalised form of the magnetic potential. By varying the magnetic part of the potential we are able to reproduce the experimentally observed variation of elastic moduli as a function of temperature, and assess relative stability of various types of defect structures. Our analysis shows that, in complete contrast to other straight dislocations, the elastic self-energy of straight 100 edge dislocations actually sharply decreases as we approach the α-γ transition, indicating that this surprising fact is a probable explanation of the frequent observation of the 100

  14. Grain size engineering of bcc refractory metals: Top-down and bottom-up-Application to tungsten

    International Nuclear Information System (INIS)

    Kecskes, L.J.; Cho, K.C.; Dowding, R.J.; Schuster, B.E.; Valiev, R.Z.; Wei, Q.

    2007-01-01

    We have used two general methodologies for the production of ultrafine grained (UFG) and nanocrystalline (NC) tungsten (W) metal samples: top-down and bottom-up. In the first, Equal channel angular extrusion (ECAE), coupled with warm rolling has been used to fabricate UFG W, and high pressure torsion (HPT) was used to fabricate NC W. We demonstrate an abrupt shift in the deformation mechanism, particularly under dynamic compressive loading, in UFG and NC W. This novel deformation mechanism, a dramatic transition from a uniform deformation mode to that of localized shearing, is shared by other UFG and NC body-centerd cubic (BCC) metals. We have also conducted a series of bottom-up experiments to consolidate powdered UFG W precursors into solid bodies. The bottom-up approach relies on rapid, high-temperature consolidation, specifically designed for UFG and NC W powders. The mechanical property results from the top-down UFG and NC W were used as minimum property benchmarks to guide and design the experimental protocols and parameters for use in the bottom-up procedures. Preliminary results, showing rapid grain growth during the consolidation cycle, did not achieve full density in the W samples. Further development of high-purity W nanopowders and appropriate grain-growth inhibitors (e.g., Zener pinning) will be required to successfully produce bulk-sized UFG and NC W samples

  15. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC.

    Science.gov (United States)

    Sekulic, Aleksandar; Migden, Michael R; Lewis, Karl; Hainsworth, John D; Solomon, James A; Yoo, Simon; Arron, Sarah T; Friedlander, Philip A; Marmur, Ellen; Rudin, Charles M; Chang, Anne Lynn S; Dirix, Luc; Hou, Jeannie; Yue, Huibin; Hauschild, Axel

    2015-06-01

    Primary analysis from the pivotal ERIVANCE BCC study resulted in approval of vismodegib, a Hedgehog pathway inhibitor indicated for treatment of adults with metastatic or locally advanced basal cell carcinoma (BCC) that has recurred after surgery or for patients who are not candidates for surgery or radiation. An efficacy and safety analysis was conducted 12 months after primary analysis. This was a multinational, multicenter, nonrandomized, 2-cohort study in patients with measurable and histologically confirmed locally advanced or metastatic BCC taking oral vismodegib (150 mg/d). Primary outcome measure was objective response rate (complete and partial responses) assessed by independent review facility. After 12 months of additional follow-up, median duration of exposure to vismodegib was 12.9 months. Objective response rate increased from 30.3% to 33.3% in patients with metastatic disease, and from 42.9% to 47.6% in patients with the locally advanced form. Median duration of response in patients with locally advanced BCC increased from 7.6 to 9.5 months. No new safety signals emerged with extended treatment duration. Limitations include low prevalence of advanced BCC and challenges of designing a study with heterogenous manifestations. The 12-month update of the study confirms the efficacy and safety of vismodegib in management of advanced BCC. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Sandhopper solar orientation as a behavioural biomarker of trace metals contamination

    International Nuclear Information System (INIS)

    Ungherese, Giuseppe; Ugolini, Alberto

    2009-01-01

    Although many studies have focused on trace metals accumulation, investigations of talitrid amphipods as biomarkers are rare. This study explores the possibility of using the solar orientation capacity of Talitrus saltator as a behavioural marker of exposure to two essential (Cu and Zn) and two non-essential (Cd and Hg) metals. LC 50 analyses performed before the solar orientation tests showed that the 72 h LC 50 for Hg was 0.02 ppm while the 96 h LC 50 values for Cu, Cd and Zn were 13.28 ppm, 27.66 ppm, and 62.74 ppm, respectively. The presence of metals in seawater affects the solar orientation capacity of T. saltator in a concentration-dependent manner and according to the toxicity ranking of the metals (Hg > Cu > Cd > Zn). Therefore, the solar orientation capacity of T. saltator seems to be a promising behavioural marker for exposure to trace metals. - Solar orientation capacity is a promising behavioural marker for exposure to trace metals in sandhoppers

  17. Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite

    Science.gov (United States)

    Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.

    2011-03-01

    Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.

  18. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, M.J.; Stutz, C.E.

    1997-07-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was {approximately}1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in {ge}1 GPa tensile increase in film stress.

  19. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    International Nuclear Information System (INIS)

    O'Keefe, M.J.; Stutz, C.E.

    1997-01-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was approximately1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in ge1 GPa tensile increase in film stress

  20. Determination of positions and curved transition pathways of screw dislocations in BCC crystals from atomic displacements

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vítek, V.

    2015-01-01

    Roč. 643, SEP (2015), s. 203-210 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Screw dislocation * BCC metal * Dislocation pathway Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  1. Allotropic transformation bcc in equilibrium hcp in zirconium

    International Nuclear Information System (INIS)

    Akhtar, A.

    1976-01-01

    The allotropic transformation hcp(α) in equilibrium bcc(β) was examined in crystal bar zirconium. The β → α transformation is massive type in melt grown crystals of β--Zr. Upon thermal cycling through α → β → α the bcc → hcp transformation occurs frequently through a shear process and less frequently through a massive transformation. The presence of α → β transformation substructure may favor the operation of the shear mode. The hcp → bcc phase change occurs through a massive transformation. A lack of transformation memory is associated with the process of thermal cycling. 11 fig., 3 tables

  2. Melting temperature and structural transformation of some rare-earth metals

    International Nuclear Information System (INIS)

    Vu Van Hung; Hoang Van Tich; Dang Thanh Hai

    2009-01-01

    the pressure dependence of the melting temperatures of rare-earth metals is studied using the equation of states derived from the statistical moment (SMM). SMM studies were carried out order to calculate the Helmholtz free energy of hcp, bcc Dy and fcc, bcc Ce metals at a wide range of temperatures. the stable phase of Dy and Ce metals can be determined by examining the Helmholtz free energy at a given temperature, i, e. the phase that gives the lowest free energy will be stable. For example, we found that at T lower than 1750 K the hcp Dy metal is stable. At T higher than 1750 K the bcc Dy metal is also stable. Thus 1750 K marks the phase transition temperature of Dy metal. These findings are in agreement with previous experiments. (author)

  3. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Science.gov (United States)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  4. Magnetism of CrO overlayers on Fe(001)bcc surface: first principles calculations

    Science.gov (United States)

    Félix-Medina, Raúl Enrique; Leyva-Lucero, Manuel Andrés; Meza-Aguilar, Salvador; Demangeat, Claude

    2018-04-01

    Riva et al. [Surf. Sci. 621, 55 (2014)] as well as Calloni et al. [J. Phys.: Condens. Matter 26, 445001 (2014)] have studied the oxydation of Cr films deposited on Fe(001)bcc through low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy. In the present work we perform a density functional approach within Quantum Expresso code in order to study structural and magnetic properties of CrO overlayers on Fe(001)bcc. The calculations are performed using DFT+U. The investigated systems include O/Cr/Fe(001)bcc, Cr/O/Fe(001)bcc, Cr0.25O0.75/Fe(001)bcc, as well as the O coverage Ox/Cr/Fe(001)bcc (x = 0.25; 0.50). We have found that the ordered CrO overlayer presents an antiferromagnetic coupling between Cr and Fe atoms. The O atoms are located closer to the Fe atoms of the surface than the Cr atoms. The ground state of the systems O/Cr/Fe(001)bcc and Cr/O/Fe(001)bcc corresponds to the O/Cr/Fe(001)bcc system with a magnetic coupling c(2 × 2). The effect of the O monolayer on Cr/Fe(001)bcc changes the ground state from p(1 × 1) ↓ to c(2 × 2) and produces an enhancement of the magnetic moments. The Ox overlayer on Cr/Fe(001)bcc produces an enhancement of the Cr magnetic moments.

  5. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    International Nuclear Information System (INIS)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-01-01

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  6. Co thin film with metastable bcc structure formed on GaAs(111 substrate

    Directory of Open Access Journals (Sweden)

    Minakawa Shigeyuki

    2014-07-01

    Full Text Available Co thin films are prepared on GaAs(111 substrates at temperatures ranging from room temperature to 600 ºC by radio-frequency magnetron sputtering. The growth behavior and the detailed resulting film structure are investigated by in-situ reflection high-energy electron diffraction and X-ray diffraction. In early stages of film growth at temperatures lower than 200 ºC, Co crystals with metastable A2 (bcc structure are formed, where the crystal structure is stabilized through hetero-epitaxial growth. With increasing the film thickness beyond 2 nm, the metastable structure starts to transform into more stable A1 (fcc structure through atomic displacements parallel to the A2{110} close-packed planes. The crystallographic orientation relationship between the A2 and the transformed A1 crystals is A1{111} || A2{110}. When the substrate temperature is higher than 400 ºC, Ga atoms of substrate diffuse into the Co films and a Co-Ga alloy with bcc-based ordered structure of B2 is formed.

  7. Standard test method for determining the orientation of a metal crystal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the back-reflection Laue procedure for determining the orientation of a metal crystal. The back-reflection Laue method for determining crystal orientation (1, 2) may be applied to macrograins (3) (0.5-mm diameter or larger) within polycrystalline aggregates, as well as to single crystals of any size. The method is described with reference to cubic crystals; it can be applied equally well to hexagonal, tetragonal, or orthorhombic crystals. 1.2 Most natural crystals have well developed external faces, and the orientation of such crystals can usually be determined from inspection. The orientation of a crystal having poorly developed faces, or no faces at all (for example, a metal crystal prepared in the laboratory) must be determined by more elaborate methods. The most convenient and accurate of these involves the use of X-ray diffraction. The “orientation of a metal crystal” is known when the positions in space of the crystallographic axes of the unit cell have been located with...

  8. Atomistic model application to the problem of magnetite adhesion on iron BCC

    International Nuclear Information System (INIS)

    Forti; M; Alonso, P; Gargano, P; Rubiolo, G

    2012-01-01

    Oxide scale adhesion on a metal substrate has been investigated in the Magnetite - BCC Iron system. An Universal Binding Energy Relation (UBER) has been applied to obtain the interface energy from a fitting parameter. The interface energy thus calculated is in a reasonable order of magnitude when compared to experimental data for similar systems. This result allows this technique to be used to develop a comparative scale based on quantitative data which otherwise would require complex experiments to be obtained (author)

  9. Nuclear orientation studies of rare-earth metals

    International Nuclear Information System (INIS)

    Krane, K.S.; Morgan, G.L.; Moses, J.D.

    1981-01-01

    The angular distributions of gamma rays from 166 sup(m)Ho and 160 Tb aligned at low temperatures in, respectively, Ho metal and Tb metal have been measured. Large hyperfine splittings, expected for the rare earths, have been deduced from the temperature dependence of the gamma ray anisotropies. Both samples show a macroscopic magnetic anisotropy which is not consistent with an interpretation in terms of a randomly oriented polycrystalline structure. (orig.)

  10. Angular forces and melting in bcc transition metals: A case study of molybdenum

    International Nuclear Information System (INIS)

    Moriarty, J.A.

    1994-01-01

    Both the multi-ion and effective pair potentials also permit a large amount of supercooling of the liquid before the onset of freezing. With v 2 eff a bcc structure is nucleated at freezing, while with the multi-ion potentials an amorphous glasslike structure is obtained, which appears to be related to the energetically competitive A15 structure. In our second approach to melting, the multi-ion potentials have been used to obtain accurate solid and liquid free energies from quasiharmonic lattice dynamics and MD calculations of thermal energies and pressures. The resulting ion-thermal melting curve exactly overlaps the dynamically observed melting point, indicating that no superheating of the solid occurred in our MD simulations. To obtain a full melting curve, electron-thermal contributions to the solid and liquid free energies are added in terms of the density of electronic states at the Fermi level, ρ(E F ). Here the density of states for the solid has been calculated with the linear-muffin-tin-orbital method, while for the liquid tight-binding calculations have been used to justify a simple model. In the liquid ρ(E F ) is increased dramatically over the bcc solid, and the net effect of the electron-thermal contributions is to lower the calculated melting temperatures by about a factor of 2. A full melting curve to 2 Mbar has thereby been obtained and the calculated melting properties near zero pressure are in generally good agreement with experiment

  11. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang, E-mail: sgyang@nju.edu.cn

    2016-12-30

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  12. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  13. Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal

    Science.gov (United States)

    Zhao, Z. C.; Qin, R. S.

    2017-10-01

    The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity ( fc ) and alignment ratio ( fe ) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.

  14. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  15. On Weak-BCC-Algebras

    Science.gov (United States)

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  16. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Science.gov (United States)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-12-01

    In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn2O3, Co3O4 and Cr2O3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  17. 3D highly oriented nanoparticulate and microparticulate array of metal oxide materials

    International Nuclear Information System (INIS)

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-01-01

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiation source facility

  18. The development of BCC

    International Nuclear Information System (INIS)

    He Xiaoping; Yang Hailiang; Sun Jianfeng; Ren Shuqing; Zhang Jiasheng; Shi Lei; Peng Jianchang; Li Hongyu; Qiu Aici; Tang Junping; Xi'an Jiaotong Univ., Xi'an

    2004-01-01

    An analysis of principle of a BCC for measuring ion beam density and the main reasons related to the measuring accuracy were presented. An array of 13 biased charge collecrors was designed for the measurement of ion beam density of 'FLASH-II' high power ion beam source, and the data of experiments was analyzed. (authors)

  19. The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997-2010.

    Science.gov (United States)

    Nguyen-Nielsen, Mary; Wang, Lisa; Pedersen, Lars; Olesen, Anne Braae; Hou, Jeannie; Mackey, Howard; McCusker, Margaret; Basset-Seguin, Nicole; Fryzek, Jon; Vyberg, Mogens

    2015-01-01

    Few data exist on the occurrence of metastatic basal cell carcinoma (mBCC). To identify all cases of mBCC in Denmark over a 14-year period. We searched the Danish National Patient Registry covering all Danish hospitals, the Danish Cancer Registry, the National Pathology Registry and the Causes of Death Registry during the period 1997 to 2010 for potential cases of mBCC registered according to the International classification of diseases ICD-10 and the International Systemized Nomenclature of Medicine (SNOMED). We identified 126,627 patients with a history of primary basal cell carcinoma (BCC) in the registries during the 14-year study period. Using case identifications from the four registries, a total of 170 potential mBCC cases were identified. However, after a pathology review, only five cases could be confirmed, of which three were basosquamous carcinomas. The 14-year cumulative incidence proportion of mBCC was 0.0039% (95% CI 0.0016-0.0083) among individuals with a history of previous BCC (n = 126,627) and 0.0001% (95% CI 0.0000-0.0002) in the general population. MBCC is a rare disease and only a small proportion of potential cases identified in automated clinical databases or registries can be confirmed by pathology and medical record review.

  20. Knowledge-oriented strategies in the metal industry (empirical studies

    Directory of Open Access Journals (Sweden)

    A. Krawczyk-Sołtys

    2016-07-01

    Full Text Available The aim of this article is an attempt to determine which knowledge-oriented strategies can give metal industry enterprises the best results in achieving and maintaining a competitive advantage. To determine which of these discussed in the literature and implemented in various organizations knowledge-oriented strategies may prove to be the most effective in the metal industry, empirical research has begun. A chosen strategy of knowledge management and supporting strategies are the basis of a choice of methods and means of intended implementation. The choice of a specific knowledge management strategy may also result in the need for changes in an organization, particularly in an information system, internal communication, work organization and human resource management.

  1. Comparison between radiation effects in some fcc and bcc metals irradiated with energetic heavy ions - a review

    International Nuclear Information System (INIS)

    Iwase, A.; Ishino, S.

    2000-01-01

    It has been reported that there are substantial differences in radiation effects in fcc copper and bcc iron. Whether these differences are due to the difference in crystal structure or not is the subject of the present paper. These differences have been discussed in terms of microstructure and mechanical property changes, whereas in the present paper, results of electrical resistivity measurements are discussed in terms of damage production cross sections, defect annihilation cross sections, damage efficiency and so on during and after various ion irradiations with wide energy ranges from 1 MeV to more than 100 MeV. For crucial discussion on the effect of the difference in crystal structure, nickel and iron are compared. These metals are allotted closely in the periodic table, with similar melting points and fairly strong electron-lattice coupling, both ferromagnetic and yet with different crystal structure. It may be concluded that as far as the damage production and defect annihilation cross sections and survival ratio are concerned, the difference in crystal structure is not an essential factor. Electronic energy deposition may play an important role even for low energy ions as well as for high energies. The effect of electronic energy deposition on defect clustering is discussed

  2. The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Rodney, David

    2006-01-01

    We present atomic-scale simulations of screw dislocation glide in bcc iron. Using two interatomic potentials that, respectively, predict degenerate and non-degenerate core structures, we compute the static 0 K dependence of the screw dislocation Peierls stress on crystal orientation and show strong boundary condition effects related to the generation of non-glide stress components. At finite temperatures we show that, with a non-degenerate core, glide by nucleation/propagation of kink-pairs in a {1 1 0} glide plane is obtained at low temperatures. A transition in the twinning region, towards an average {1 1 2} glide plane, with the formation of debris loops is observed at higher temperatures

  3. Multiscale modeling of dislocation processes in BCC tantalum: bridging atomistic and mesoscale simulations

    International Nuclear Information System (INIS)

    Yang, L H; Tang, M; Moriarty, J A

    2001-01-01

    Plastic deformation in bcc metals at low temperatures and high-strain rates is controlled by the motion of a/2 screw dislocations, and understanding the fundamental atomistic processes of this motion is essential to develop predictive multiscale models of crystal plasticity. The multiscale modeling approach presented here for bcc Ta is based on information passing, where results of simulations at the atomic scale are used in simulations of plastic deformation at mesoscopic length scales via dislocation dynamics (DD). The relevant core properties of a/2 screw dislocations in Ta have been obtained using quantum-based interatomic potentials derived from model generalized pseudopotential theory and an ab-initio data base together with an accurate Green's-function simulation method that implements flexible boundary conditions. In particular, the stress-dependent activation enthalpy for the lowest-energy kink-pair mechanism has been calculated and fitted to a revealing analytic form. This is the critical quantity determining dislocation mobility in the DD simulations, and the present activation enthalpy is found to be in good agreement with the previous empirical form used to explain the temperature dependence of the yield stress

  4. Volumes of virtual modifications and virtual polymorphous transformations in transition metals under pressure

    International Nuclear Information System (INIS)

    Zil'bershtejn, V.A.; Zaretskij, L.B.; Ehstrin, Eh.I.

    1975-01-01

    To find out what phases are likely to occur under pressure, it is necessary to know the relative density of various modifications, that is the ratio of the volumes of stable and virtual modifications and generally speaking the ratio of the phase compressibility. If the virtual phase volume is less than the volume of the stable phase, then such a phase is likely to appear under pressure. A method has been developed for computing the volumes of the virtual modifications from the data on the solid solutions lattice parameters. Testing the applicability of the method for a number of systems with a complete mutual solubility has shown, that the method proposed permits to estimate the volumes of the transition metals virtual modifications with the error probably not exceeding 1%. The analysis was made of the data available on the solid solutions of transition metals with fcc-, bcc- and hcp-lattices. The virtual volumes have been computed for hcp-iridium, hcp-rhodium, hcp-molybdenum, fcc-molybdenum, fcc-chromium, bcc-rhenium, bcc-ruthenium and bcc-technetium. The data obtained on the virtual modifications volumes permit to assume that the pressure increase is likely to result in the phase transformations of fcc-hcp in iridium and rhodium, and bcc-hcp in molybdenum, while evidently the transformations of bcc-fcc in molybdenum and chromium, hcp-bcc in technetium, rhenium and ruthenium are impossible. The pressure resulting in the transformations in the metals investigated equals approximately hundreds of kbar, or even approximately 1 Mbar for Ir

  5. Nuclear orientation of rare earth impurities in ferromagnetic host metals

    International Nuclear Information System (INIS)

    Keus, H.E.

    1981-01-01

    Experiments are described investigating the behaviour of the metals Nd and Lu as impurities in a ferromagnetic host metal - iron, cobalt and nickel. The systems have been studied with the aid of nuclear orientation, making use of the interactions between the atom nuclei and the electrons - the so called hyperfine interactions. (C.F.)

  6. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Rovere, M.; Tosi, M.P.

    1990-08-01

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  7. Optical properties of bcc d-transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillova, M M; Nomerovannaya, L V [AN SSSR, Sverdlovsk. Inst. Fiziki Metallov

    1978-04-01

    The optical properties of a niobium monocrystal in the spectral range of h..nu..=4.66 - 0.069 eV have been studied using the polarimetry method. The obtained results have been discussed on the basis of the zone calculations of the density of electron states for Nb and other isostructural metals of the 5 and 6 groups (Y, Ta, Cr, Mo, W). The existence of an intense low energy interband absorption in niobium in the range of h..nu..<0.1 eV is shown experimentally. The influence of the gapless and low-energy interzone transitions on the evaluations of the plasma and relaxation frequencies of conductivity electrons of d metals is discussed.

  8. Vacancy formation enthalpies in bcc and fcc FeCo by positron annihilation

    International Nuclear Information System (INIS)

    Jackman, J.A.; Kim, S.M.; Buyers, W.J.L.

    1982-01-01

    A long slit angular correlation apparatus was used to measure the peak coincidence count rate in stoichiometric FeCo from 290 K to 1510 K. The count rate did not change significantly at the order-disorder phase transition (1008 K), but decreased sharply by 3.2% at the bcc-fcc phase transition at 1258 K. The threshold temperatures for the trapping of positrons in vacancies are measured to be 1125 K for the bcc phase and 1260 K for the fcc phase. The vacancy formation enthalpies in the bcc and fcc phases are determined to be 1.45 +- 0.05 eV and 1.63 +- 0.05 eV. The activation energies for self-diffusion have been estimated from the threshold temperatures, and are found to be 2.45 eV and 2.74 eV for the bcc and fcc phases respectively. (Auth.)

  9. The study on binary Mg-Co hydrogen storage alloys with BCC phase

    International Nuclear Information System (INIS)

    Zhang Yao; Tsushio, Yoshinori; Enoki, Hirotoshi; Akiba, Etsuo

    2005-01-01

    Novel Mg-Co binary alloys were successfully synthesized by mechanical alloying. These alloys were studied by X-ray diffraction (XRD), transmission electron micrograph (TEM), pressure-composition-isotherms measurements (P-C-T) and differential scanning calorimetry (DSC). Both XRD Rietveld analysis and TEM observation confirmed that these binary alloys contain BCC phase and that the BCC phase existed in the range from 37 to 80 at.% Co. The lattice parameter of the BCC phase increased with the increase of the Co content from 37 to 50 at.%. When the Co content reached 50 at.%, the lattice parameter reached a maximum value, and then turned to decrease gradually with further increase of the Co content. Most of Mg-Co BCC alloys absorbed hydrogen at 373 K under 6 MPa of hydrogen pressure. The Mg 60 Co 40 alloy showed the highest hydrogen absorption capacity, about 2.7 mass% hydrogen. However, all the Mg-Co alloys studied did not desorb hydrogen at 373 K. By means of DSC measurements and in situ XRD analysis, it was found that under 4 MPa hydrogen atmosphere, Mg 50 Co 50 alloy transformed from BCC solid solution to Mg 2 CoH 5 tetragonal hydride at 413 K

  10. Orientational analysis of dodecanethiol and p-nitrothiophenol SAMs on metals with polarisation-dependent SFG spectroscopy.

    Science.gov (United States)

    Cecchet, Francesca; Lis, Dan; Guthmuller, Julien; Champagne, Benoît; Caudano, Yves; Silien, Christophe; Mani, Alaa Addin; Thiry, Paul A; Peremans, André

    2010-02-22

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitrothiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarisations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarisations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces.

  11. Orientational Analysis of Dodecanethiol and P-Nitrothiophenol SAMs on Metals with Polarisation - dependent SFG spectroscopy

    International Nuclear Information System (INIS)

    Manea, A.

    2011-01-01

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitro thiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarizations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarizations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces. (author)

  12. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  13. Coexistence of ductile and brittle fracture in metals

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.J.; Park, C.G.; Thomson, R.

    1985-01-01

    It is well known that semibrittle body-centered cubic (bcc) metals fail at low temperatures by cleavage that is preceded by crack tip deformation. Sinclair and Finnis proposed a mechanism by which crack tip deformation may be combined with brittle crack extension. In this model, edge dislocations are emitted from a crack tip on an inclined plane under pure mode I loading conditions. The authors propose a new mechanism of brittle fracture of semibrittle metals preceded by crack tip deformation by extending the model of Sinclair and Finnis and by incorporating experimental evidence on mixed mode crack propagation observed by transmission electron microscopy (TEM). They have shown experimentally that, even when the orientation of the dislocations in the plastic zone indicated pure mode III crack tip deformation, the crack opening displacement determined from the relative displacement of the crack flanks showed the presence of an additional mode I component. They have also shown that zigzag crack propagation observed in many metals can occur only if mode I cleavage is superimposed to mode II crack tip deformation

  14. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  15. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    Science.gov (United States)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of /{100} and /{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of /{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in /{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in /{111} shows higher strength and elastic modulus than /{100} oriented nanowire.

  16. Magnetic properties of metastable bcc and fcc Fe-Cu alloys produced by vapor quenching

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Yoshitake, Tsutomu; Nakamura, Yoji

    1984-01-01

    High concentration Fesub(1-x)Cusub(x) alloys have been obtained by rf sputtering technique and investigated by X-ray diffraction and magnetization measurements. The bcc phase is extended over the region with x=0-0.4, while the fcc phase with x=0.6-1.0. For x=0.4-0.6, we have the mixed phase of bcc and fcc. The lattice constant of bcc phase increases slightly and that of fcc phase decreases with increasing x. In the bcc alloys, the average magnetic moment decreases with increasing x and deviates upwards from the simple dilution law. In the fcc alloys, the magnetic moment also decreases with increasing x but it deviates downwards from the simple dilution law. The Curie temperature, Tsub(c), of the Fesub(1-x)Cusub(x) alloys decreases abruptly with increasing x: Tsub(c) is higher than 750 K for the bcc alloys, while it is lower than 320 K for the fcc alloys and become 0 K at about x=0.92. (author)

  17. Calculation of thermodynamic equilibrium between bcc disordered solid solutions U and Mo

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Rubiolo, Gerardo H.

    2003-01-01

    There is actually an interest to develop a new fuel with higher density for research reactors. Fuel plates would be obtained by dispersion, a method that requires both a very dense fuel dispersant (>15.0 g U/cm 3 ) and a very high volume loading of the dispersant (>55%). Dispersants based in gamma (BCC) stabilized uranium alloys are being investigated, as they are able to reach uranium densities of 17.0 g U/cm 3 . Among them, we focus in U(Mo) bcc solid solutions with the addition of ternary elements to stabilize gamma phase. Transition metals, 4d and 5d, of groups VII and VIII are good candidates for the ternary alloy U - Mo - X. Their relative power to stabilize gamma phase seems to be in close relation with bonding energies between atoms in the alloy. A first approach to the calculation of these energies has been performed by the semi empiric method of Miedema where only bonds between pairs are considered, neglecting ternary and quaternary bonds. There is also a lack of information concerning solubilities of the ternary elements in the ternary cubic phase. In this work we aim to calculate bonding energies between atoms in the alloy using a cluster expansion of the formation energy (T=0 K) of a series of bcc ordered compounds in the systems U-Mo-X. Then the calculation of the equilibrium phase diagram by the Cluster Variation Method will be done (CVM). We show here the first part of the investigation devoted to calculation of phases equilibria in the U Mo system Formation energies of the ordered compounds were obtained by the first principles methods TB-LMTO-ASA and FP-LAPW. Another set of bonding energies was calculated in order to fit the known experimental diagram and new formation energies for the ordered compounds were derived from them. Discrepancies between both sets are discussed. (author)

  18. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  19. Evaluate and Analysis Efficiency of Safaga Port Using DEA-CCR, BCC and SBM Models-Comparison with DP World Sokhna

    Science.gov (United States)

    Elsayed, Ayman; Shabaan Khalil, Nabil

    2017-10-01

    The competition among maritime ports is increasing continuously; the main purpose of Safaga port is to become the best option for companies to carry out their trading activities, particularly importing and exporting The main objective of this research is to evaluate and analyze factors that may significantly affect the levels of Safaga port efficiency in Egypt (particularly the infrastructural capacity). The assessment of such efficiency is a task that must play an important role in the management of Safaga port in order to improve the possibility of development and success in commercial activities. Drawing on Data Envelopment Analysis(DEA)models, this paper develops a manner of assessing the comparative efficiency of Safaga port in Egypt during the study period 2004-2013. Previous research for port efficiencies measurement usually using radial DEA models (DEA-CCR), (DEA-BCC), but not using non radial DEA model. The research applying radial - output oriented (DEA-CCR), (DEA-BCC) and non-radial (DEA-SBM) model with ten inputs and four outputs. The results were obtained from the analysis input and output variables based on DEA-CCR, DEA-BCC and SBM models, by software Max DEA Pro 6.3. DP World Sokhna port higher efficiency for all outputs were compared to Safaga port. DP World Sokhna position is below the southern entrance to the Suez Canal, on the Red Sea, Egypt, makes it strategically located to handle cargo transiting through one of the world's busiest commercial waterways.

  20. Biological changes of APA-BCC analgesic microcapsule in cerebrospinal fluid of patients with carcinomatous pain

    International Nuclear Information System (INIS)

    Luo Yun; Li Yanling; Xue Yilong; Guo Shulong; Gao Yuhong; Cui Xin

    2005-01-01

    To explore the changes of alginate-polylysine-alginate microcapsulated bovine adrenal medullary chromaffin cells (APA-BCC microcapsules) in morphology, survival rate and leucine- enkephalin secretion after they were transplanted into CSF of cancerpain patients, the APA- BCC microcapsules were Implanted into cavitas subarachnoidealis of cancer-pain patients by conventional lumbar puncture. After 7 or 8 days, cerebrospinal fluid was collected and the morphology of the APA-BCC microcapsule, the survival rate of cells were observed and secretory volume of leucine-enkephalin was assayed by radioimmunity method. Seven days after trans- plantation, the mean VAS decreased from 8.8 to 2.4, the survival rate of cells averagely reduced from 91.2% to 89.1%, morphology of APA-BCC microcapsules did not change obviously and secretory volume of leucine-enkephalin went up 1.65 times compared with that at pretrans- plantation. In conclusion, APA-BCC can survive, secret leucine-enkephalin and produce analgesic effect after transplanted into CSF of cancer-patients. (authors)

  1. Energy barrier of bcc-fcc phase transition via the Bain path in Yukawa system

    Science.gov (United States)

    Kiyokawa, Shuji

    2018-05-01

    In the Yukawa system with the dimensionless screening parameter κ>1.5 , when bcc-fcc transition occurs via Bain path, we show that spontaneous transitions do not occur even if the system temperature reaches the transition point of bcc-fcc because it is necessary to increase once the free energy in the process of transition from bcc to fcc through Bain deformation. Here, we refer the temporary increment of the free energy during Bain deformation as Bain barrier. Since there are the Bain barriers at the transitions between bcc and fcc phases, these phases may coexist as metastable state in the wide region (not a coexistence line) of κ and the coupling constant Γ. We study the excess energy of the system and the free energy difference between bcc and fcc phases by the Monte Carlo method, where the simulation box is divided into a large number of elements with small volume and a particle in the box is restricted be placed in one of these elements. By this method, we can tabulate the values of the interparticle potential and can calculate the internal energy fast and precisely.

  2. Changes in the vibrational energies and interatomic spacings upon the formation of vacancies in the volume and in the cores of crystallite conjugation regions of polycrystalline transition metals with cubic lattices

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Timofeev, A.N.

    2008-01-01

    Measured changes (ε vac ) i,j of vibrational energy on vacancies formation in i-fields (in volumes and nuclei of crystallite conjugation regions of polycrystalline metals (CCR-PM)): Cr, Mo, Ta, W, Cu, Ir are presented. Changes ε vol of vibrational energy of vacancy nearest environment formed in the metal volume, changes ε FCC of vibrational energy when vacancies formation in CCR nuclei of BCC- and FCC lattices transition metals are discussed. Measured changes ε FCC of vibrational energy, u FCC potential energy and determined sign of interatomic distances changes Δa FCC when formation of split vacancy in the FCC-lattice CCR-PM, changes ε BCC of vibrational energy, u BCC potential energy and determined sign of Δa BCC changes of interatomic distances when vacancies formation in the BCC-lattice CCR-PM are demonstrated. It is noted that the increase of interatomic distances when vacancies formation in the BCC-lattice CCR nucleus of transition metals is conditioned by the the appearance of vacancies alternative structure. Properties of CCR-PM nuclei are more sensitive to interatomic distances changes in the vacancies environment, than to changes of its nearest neighbours numbers [ru

  3. The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ → hcp ε → bcc α′ martensitic phase transformation

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Sun, Sheng; Zhang, Tong-Yi

    2015-01-01

    High Resolution Transmission Electron Microscopy (HRTEM) and Molecular Dynamics (MD) simulations were conducted here to study the plastic deformation induced γ (fcc) → ε (hcp) → α′ (bcc) martensitic transformation in 304 stainless steels for the α′ nucleation from single hcp-ε laths. Results elucidate that the underlying microscopic mechanism for the α′ nucleation from single hcp-ε laths obeys the Bogers–Burgers–Olson–Cohen “3T/8–T/3” model. In particular, the atomic-scale observations clearly show the Kurdyumov–Sachs (K–S) lattice orientation relation (OR) and Pitsch OR at the γ/α′ interfaces, the lattice rotation inside an α′ martensitic inclusion, the transition lattice and the reverse shear-shuffling induced continuous lattice elastic deformation at the diffuse ε/α′ interface, which caters the 3T/8 and T/3 shears and sheds atomic process insight into the mechanism of the martensitic transformation

  4. Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads

    Science.gov (United States)

    Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.

    2018-06-01

    We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.

  5. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  6. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype

    International Nuclear Information System (INIS)

    Xu, W.; Moriarty, J.A.

    1996-01-01

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal molybdenum (Mo). Many-body angular forces, which are important to the structural and mechanical properties of such central transition metals with partially filled d bands, are accounted for in the present theory through explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations have also been investigated. The left-angle 110 right-angle split dumbbell interstitial is found to have the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measurements. In ascending order, the sequence of energetically stable interstitials is predicted to be left-angle 110 right-angle split dumbbell, crowdion, left-angle 111 right-angle split dumbbell, tetrahedral site, left-angle 001 right-angle split dumbbell, and octahedral site. In addition, the migration paths for the left-angle 110 right-angle dumbbell self-interstitial have been studied. The migration energies are found to be 3 endash 15 times higher than previous theoretical estimates obtained using simple radial-force Finnis-Sinclair potentials. Finally, the atomic structure and energetics of left-angle 111 right-angle screw dislocations in Mo have been investigated. We have found that the so-called open-quote open-quote easy close-quote close-quote core configuration has a lower formation energy than the open-quote open-quote hard close-quote close-quote one, consistent with previous theoretical studies. (Abstract Truncated)

  7. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    Science.gov (United States)

    Gong, Zhiqiang; Dogar, Muhammad Mubashar Ahmad; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-09-01

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM's summer precipitation forecasting ability over EA-NWP.

  8. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    KAUST Repository

    Gong, Zhiqiang

    2017-04-05

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts\\' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM\\'s summer precipitation forecasting ability over EA-NWP.

  9. Kinetics of disorder-to-fcc phase transition via an intermediate bcc state

    International Nuclear Information System (INIS)

    Liu Yongsheng; Nie Huifen; Bansil, Rama; Steinhart, Milos; Bang, Joona; Lodge, Timothy P.

    2006-01-01

    Time-resolved small-angle x-ray scattering measurements reveal that a long-lived intermediate bcc state forms when a poly(styrene-b-isoprene) diblock copolymer solution in an isoprene selective solvent is rapidly cooled from the disordered micellar fluid at high temperature to an equilibrium fcc state. The kinetics of the epitaxial growth of the [111] fcc peak from the [110] bcc peak was obtained by fitting the scattering data to a simple model of the transformation. The growth of the [111] fcc peak agrees with the Avrami model of nucleation and growth kinetics with an exponent n=1.4, as does the initial decay of the [110] bcc peak, with an exponent n=1.3. The data were also found to be in good agreement with the Cahn model of grain boundary nucleation and growth

  10. Theoretical study of defect properties in metals

    International Nuclear Information System (INIS)

    Sindzingre, P.

    1987-01-01

    Several characteristic properties (formation and migration enthalpies and volumes, dipole tensors, effects on shear elastic constants) of several point defects (vacancy, divacancy, interstitial, di-interstitial) in different metals: f.c.c. metals (Al, Cu, Ag, Au), h.c.p. metals (Be, Mg, Zn, Cd, Na, Co, Ti, Zr), b.c.c. metals (Li, Na, K, Rb, Cs) have been calculated. The calculated properties are evaluated from static computations performed with pair potentials derived from pseudo-potential theory (for simple or noble metals) or deduced empirically. Results are compared with available experimental data with previous theoretical works. The first part of this work where we have studied point defects properties in f.c.c. metals lead us to suggest a more convincing interpretation of X-ray scattering and elastic relation measurements concerning interstitials in Al and Cu, and a new interpretation for X-ray scattering measurements concerning di-interstitials in Al. In the second part, devoted to h.c.p. metals we are brought to propose for each studied metal the interstitial configurations which yield the best agreement with experimental results. The third part, devoted to the study of point defects in alkalin b.c.c. metals lead us to interpret self-diffusion in these metals with the assumption of a simultaneous contribution of monovacancies, divacancies and interstitials [fr

  11. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  12. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  13. Generalized Rate Theory for Void and Bubble Swelling and its Application to Plutonium Metal Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    In the classical rate theory for void swelling, vacancies and self-interstitials are produced by radiation in equal numbers, and in addition, thermal vacancies are also generated at the sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to the high formation energy of self-interstitials for normal metals and alloys, their thermal generation is negligible, as pointed out by Bullough and Perrin. However, recent DFT calculations of the formation energy of self-interstitial atoms in bcc metals have revealed that the sum of formation and migration energies for self-interstitials atoms (SIA) is of the same order of magnitude as for vacancies. The ratio of the activation energies for thermal generation of SIA and vacancies is presented. For fcc metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical predictions of point defect properties in δ-Pu, this ratio could possibly be less than one. As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into considerations when modeling the growth of voids and of helium bubbles, and the classical rate theory (CRT) for void and bubble swelling must be extended to a generalized rate theory (GRT).

  14. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy

    International Nuclear Information System (INIS)

    Rao, S.I.; Varvenne, C.; Woodward, C.; Parthasarathy, T.A.; Miracle, D.; Senkov, O.N.; Curtin, W.A.

    2017-01-01

    Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2〈111〉 dislocations in a randomly-distributed model-BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. Core structure variations along an individual dislocation line are found for a/2〈111〉 screw and edge dislocations. One reason for the core structure variations is the local variation in composition along the dislocation line. Calculated unstable stacking fault energies on the (110) plane as a function of composition vary significantly, consistent with this assessment. Molecular dynamics simulations of the critical glide stress as a function of temperature show significant strengthening, and much shallower temperature dependence of the strengthening, as compared to pure BCC Fe as well as a reference mean-field BCC alloy material of the same overall composition, lattice and elastic constants as the target alloy. Interpretation of the strength versus temperature in terms of an effective kink-pair activation model shows the random alloy to have a much larger activation energy than the mean-field alloy or BCC Fe. This is interpreted as due to the core structure variations along the dislocation line that are often unfavorable for glide in the direction of the load. The configuration of the gliding dislocation is wavy, and significant debris is left behind, demonstrating the role of local composition and core structure in creating kink pinning (super jogs) and/or deflection of the glide plane of the dislocation. - Graphical abstract: Measured critical resolved shear stress scaled by the (111) shear modulus (39 GPa) necessary to achieve on-going glide as a function of temperature, for the a/2[111] screw dislocation in the model BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. The upper and lower bounds of the critical resolved shear stress is shown in the plot. Also shown in is the measured strength for the mean-field A-atom material and BCC Fe as a function of

  15. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  16. Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals

    Science.gov (United States)

    Byun, T. S.

    2007-04-01

    The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.

  17. In situ neutron diffraction study of grain-orientation-dependent phase transformation in 304L stainless steel at a cryogenic temperature

    International Nuclear Information System (INIS)

    Tao Kaixiang; Wall, James J.; Li, Hongqi; Brown, Donald W.; Vogel, Sven C.; Choo, Hahn

    2006-01-01

    In situ time-of-flight neutron diffraction was performed to investigate the martensitic phase transformation during quasistatic uniaxial compression testing of 304L stainless steel at 300 and 203 K. In situ neutron diffraction enabled the bulk measurement of intensity evolution for various hkl atomic planes during the austenite (fcc) to martensite (hcp and bcc) phase transformation. Based on the neutron diffraction patterns, the martensite phases were observed from the very beginning of the plastic deformation at 203 K. However, at 300 K, no newly formed martensite, except a small amount of preexisting hcp phase, was observed throughout the test. From the changes in the relative intensities of individual hkl atomic planes, the grain-orientation-dependent phase transformation was investigated. The preferred orientation of the newly formed martensite grains was also investigated for the sample deformed at 203 K using neutron diffraction. The results reveal the orientation relationships between the austenite and the newly formed martensites. The fcc grain family diffracting with (200) plane normal parallel to the loading axis is favored for the fcc to bcc transformation and the bcc (200) plane normals are primarily aligned along the loading direction. For the fcc to hcp transformation, the fcc grains with (111) plane normals at an angle in between about 10 deg. and 50 deg. to the loading direction are favored

  18. Enhanced moments in bcc Co{sub 1−x}Mn{sub x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Snow, R.J.; Bhatkar, H. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); N' Diaye, A.T.; Arenholz, E. [Advanced Light Source, Lawrence Berkeley Nat. Labs, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: Idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59715 (United States)

    2016-12-01

    A 40% enhancement of the Co magnetic moment has been found for thin films of bcc Co{sub 1−x}Mn{sub x} grown by molecular beam epitaxy on a 2 nm bcc Fe buffer layer on MgO(001). Although the bcc phase cannot be stabilized in the bulk, we confirm that it is stable as an epitaxial film in the composition range x=0–0.7. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we show that the Co moment is a maximum of 2.38 μ{sub B} at x=0.24, while the net Mn moment remains roughly constant until x=0.24, then drops steadily. Mn is found to align parallel with Co for all ferromagnetic concentrations, up to x=0.7, where the total moment of the film abruptly collapses to zero, most likely due to the onset of the observed structural instability. - Highlights: • Stabilization of bcc Co{sub 1−x}Mn{sub x} films in the composition range of x=0 to 0.7. • Enhancement of Co moment by 40% from pure bcc Co. • Parallel alignment of Mn moment and Co moment. • Measured the elemental moment of Co and Mn as a function of composition.

  19. Atomistic simulation of fcc—bcc phase transition in single crystal Al under uniform compression

    International Nuclear Information System (INIS)

    Li Li; Liang Jiu-Qing; Shao Jian-Li; Duan Su-Qing; Li Yan-Fang

    2012-01-01

    By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density functional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111-bar) plane and the (11-bar1) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution function analysis explicitly indicates the phase transition of Al from fcc phase to bcc structure. (condensed matter: structural, mechanical, and thermal properties)

  20. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  1. Premelting hcp to bcc Transition in Beryllium

    Science.gov (United States)

    Lu, Y.; Sun, T.; Zhang, Ping; Zhang, P.; Zhang, D.-B.; Wentzcovitch, R. M.

    2017-04-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to x-ray equipment. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp → bcc transition occurs near the melting curve at 0 materials.

  2. First-principles study of atomic ordering in bcc Cu-Al

    Science.gov (United States)

    Lanzini, F.; Gargano, P. H.; Alonso, P. R.; Rubiolo, G. H.

    2011-01-01

    The order-disorder transitions and phase stability in the body centered cubic structure of Cu-Al binary alloys are studied by means of theoretical methods. The total energy of different ordered compounds sharing a common bcc Bravais lattice was calculated within the framework of density functional theory. A set of effective cluster interactions was calculated through a cluster expansion (CE) of the total energies. The finite temperature phase diagram of bcc Cu-Al was obtained using the CE formalism coupled with the cluster variation method calculation of the configurational entropy. These results are confronted with a simpler semi-empirical approach based on effective pair interactions obtained from experiment. Both approaches predict a single first-order A2/DO3 transition for compositions close to Cu3Al, in agreement with the most recent experimental results.

  3. Effect of orientation and loading rate on compression behavior of small-scale Mo pillars

    International Nuclear Information System (INIS)

    Schneider, A.S.; Clark, B.G.; Frick, C.P.; Gruber, P.A.; Arzt, E.

    2009-01-01

    Recently, much work has focused on the size effect in face centered cubic (fcc) structures, however few pillar studies have focused on body centered cubic (bcc) metals. This paper explores the role of bcc crystal structure on the size effect, through compression testing of [001] and [235] Molybdenum (Mo) small-scale pillars manufactured by focused ion beam (FIB). The pillar diameters ranged from 200 nm to 5 μm. Results show that the relationship between yield stress and diameter exhibits an inverse relationship (σ y ∝ d -0.22 for [001] Mo and σ y ∝ d -0.34 for [235] Mo) weaker than that observed for face centered cubic (fcc) metals (σ y ∝ d -0.6to-1.0 ). Additional tests at various loading rates revealed that small-scale Mo pillars exhibit a strain rate sensitivity similar to bulk Mo.

  4. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot...

  5. Spin-polarized scanning tunneling microscopy of magnetic nanostructures at the example of bcc-Co/Fe(110), Fe/Mo(110), and copper phthalocyanine/Fe(1110); Spinpolarisierte Rastertunnelmikroskopie magnetischer Nanostrukturen am Beispiel von bcc-Co/Fe(110), Fe/Mo(110) und Kupfer-Phthalocyanin/Fe(110)

    Energy Technology Data Exchange (ETDEWEB)

    Methfessel, Torsten

    2010-12-09

    This thesis provides an introduction into the technique of spin-polarized scanning tunnelling microscopy and spectroscopy as an experimental method for the investigation of magnetic nanostructures. Experimental results for the spin polarized electronic structure depending on the crystal structure of ultrathin Co layers, and depending on the direction of the magnetization for ultrathin Fe layers are presented. High-resolution measurements show the position-dependent spin polarization on a single copper-phthalocyanine molecule deposited on a ferromagnetic surface. Co was deposited by molecular beam epitaxy on the (110) surface of the bodycentered cubic metals Cr and Fe. In contrast to previous reports in the literature only two layers of Co can be stabilized in the body-centered cubic (bcc) structure. The bcc-Co films on the Fe(110) surface show no signs of epitaxial distortions. Thicker layers reconstruct into a closed-packed structure (hcp / fcc). The bcc structure increases the spin-polarization of Co to P=62 % in comparison to hcp-Co (P=45 %). The temperature-dependent spin-reorientation of ultrathin Fe/Mo(110) films was investigated by spin-polarized spectroscopy. A reorientation of the magnetic easy axis from the [110] direction along the surface normal to the in-plane [001] axis is observed at T (13.2{+-}0.5) K. This process can be identified as a discontinuous reorientation transition, revealing two simultaneous minima of the free energy in a certain temperature range. The electronic structure of mono- and double-layer Fe/Mo(110) shows a variation with the reorientation of the magnetic easy axis and with the direction of the magnetization. The investigation of the spin-polarized charge transport through a copper-phthalocyanine molecule on the Fe/Mo(110) surface provides an essential contribution to the understanding of spin-transport at the interface between metal and organic molecule. Due to the interaction with the surface of the metal the HOMO-LUMO energy

  6. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    Science.gov (United States)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  7. Studies of permittivity and permeability of dielectric matrix with cuboid metallic inclusions in different orientations

    Directory of Open Access Journals (Sweden)

    W. M. Wu

    2014-10-01

    Full Text Available In this paper, we investigate the possibility of using the heterogeneous materials, with cuboid metallic inclusions inside a dielectric substrate (host to control the effective permittivity. We find that in the gigahertz range, such a material demonstrates a significantly larger permittivity compared to the pure dielectric substrate. Three principal orientations of microscale cuboid inclusions have been taken into account in this study. The highest permittivity is observed when the orientation provides the largest polarization (electric dipole moment. The detrimental side effect of the metallic inclusion, which leads to the decrease of the effective magnetic permeability, can be suppressed by the proper choice of shape and orientation of the inclusions. This choice can in fact reduce the induced current and hence maximize the permeability. The dissipative losses are shown to be negligible in the relevant range of frequencies and cuboid dimensions.

  8. Influence of hydrostatic pressure on BCC-lattice parameter in molybdenum, niobium and vanadium with rhenium solid solutions

    International Nuclear Information System (INIS)

    Smol'yaninova, Eh.A.; Stribuk, E.K.; Tyavlovskij, V.I.

    1987-01-01

    Data on the effect of 1.8GPa hydrostatic pressure on bcc lattice parameters of solid solutions in Mo-Re, Nb-Re, V-re systems are presented. It is shown that after the application hydrostatic pressure a decrease in bcc lattice parameter is observed and the greatest change in the lattice parameter takes place in bcc of solid solutions in the Nb-Re system (DELTA A ∼ 0.0035 nm). Analysis of the experimental data obtained on the basis of calculations made for packing density change in the above-mentioned solid solutions under the pressure is carried out

  9. Low-temperature embrittlement and fracture of metals with different crystal lattices – Dislocation mechanisms

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2016-12-01

    Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.

  10. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    Science.gov (United States)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  11. Vibrational properties of vacancy in bcc transition metals using ...

    Indian Academy of Sciences (India)

    The calculated results of the formation entropy of the vacancy compared well with other available ... for Fe, Mo and W transition metals employing a third-neighbour model. ... For the atomic electron density we have chosen a power law: f (r) = fe.

  12. Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2016-10-01

    Full Text Available Due to its excellent glass-forming ability (GFA, the Zr48Cu36Al8Ag8 bulk metallic glass (BMG is of great importance in glass transition investigations and new materials development. However, due to the lack of detailed structural information, the local structure and atomic packing of this alloy is still unknown. In this work, synchrotron measurement and reverse Monte Carlo simulation are performed on the atomic configuration of a Zr-based bulk metallic glass. The local structure is characterized in terms of bond pairs and Voronoi tessellation. It is found that there are mainly two types of bond pairs in the configuration, as the body-centered cubic (bcc-type and icosahedral (ico-type bond pairs. On the other hand, the main polyhedra in the configuration are icosahedra and the bcc structure. That is, the bcc-type bond pairs, together with the ico-type bond pairs, form the bcc polyhedra, introducing the distortion in bcc clusters in short range. However, in the medium range, the atoms formed linear or planar structures, other than the tridimensional clusters. That is, the medium-range order in glass is of 1D or 2D structure, suggesting the imperfect ordered packing feature.

  13. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  14. Metal arc welding and the risk of skin cancer

    DEFF Research Database (Denmark)

    Heltoft, K N; Slagor, R M; Agner, T

    2017-01-01

    OBJECTIVES: Arc welding produces the full spectrum of ultraviolet radiation and may be a contributory cause of skin cancer; however, there has been little research into this occupational hazard. The aim of this study is to explore if metal arc welding increases the risk of malignant melanoma and....../or basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) on skin areas which may possibly be exposed (neck, head, and upper extremities). METHOD: A Danish national company-based historic cohort of 4333 male metal arc welders was followed from 1987 through 2012 to identify the risk of skin cancer....... An external reference group was established including all Danish skilled and unskilled male workers with similar age distribution. Occupational histories were gathered by questionnaires in 1986 and information about skin cancer diagnoses [BCC, SCC, cutaneous malignant melanoma (CMM), and precancerous...

  15. Creep mechanisms and constitutive relations in pure metals

    International Nuclear Information System (INIS)

    Nix, W.D.

    1979-01-01

    The mechanisms of creep of pure metals is briefly reviewed and divided into two parts: steady state flow mechanisms, and non-steady state flow mechanisms and constitutive relations. Creep by diffusional flow is now reasonably well understood, with theory and experiment in good agreement. The closely related phenomenon of Harper--Dorn creep can also be understood in terms of diffusion between dislocations. Power law creep involves the climb of edge disloctions controlled by lattice self diffusion. Theoretical treatments of this process invariably give a power law exponent of 3. This natural creep law is compared with the data for FCC and BCC metals. It is suggested that diffusion controlled climb is the controlling process in BCC metals at very high temperatures. Stacking fault energy effects may preclude the possibility that creep is controlled entirely by lattice self diffusion in some FCC metals. The subject of power law breakdown is presented as a natural consequence of the transition to low temperature flow phenomena. The role of core diffusion in this transition is briefly discussed. The mechanisms are presented by which pure metals creep at elevated temperatures. While most of this review deals with the mechanisms of steady state flow, some discussion is devoted to creep flow under non-steady state conditions. This topic is discussed in connection with the development of constitutive equations for describing plastic flow in metals

  16. Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1998-01-01

    The solution energies of 4d metals in other 4d metals as well as the bcc-hcp structural energy differences in random 4d alloys are calculated by density functional theory. It is shown that the crystal structure of the host plays a crucial role in the solid solubility. A local virtual bond...

  17. Refractory metal based superalloys

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Vicente, Eduardo E.; Rubiolo, Gerardo H.

    1999-01-01

    Refractory metals are looked as promising materials for primary circuits in fission reactors and even as fusion reactor components. Indeed, superalloys could be developed which take advantage of their high temperature properties together with the benefits of a two- phase (intermetallic compound-refractory metal matrix) coherent structure. In 1993, researchers of the Office National d'Etudes et de Recherches Aerospatiales of France reported the observation of such a coherent structure in the Ta-Ti-Zr-Al-Nb-Mo system although the exact composition is not reported. The intermetallic compound would be Ti 2 AlMo based. However, the formation of this compound and its possible coexistence with a disordered bcc phase in the ternary system Ti-Al-Mo is a controversial subject in the related literature. In this work we develop a technique to obtain homogeneous alloys samples with 50 Ti-25 Al-25 Mo composition. The resulting specimens were characterized by optical and electronic metallography (SEM), microprobe composition measurements (EPMA) and X-ray diffraction (XRD) analyses. The results show the evidence for a bcc (A2→B2) ordering reaction in the Ti-Al-Mo system in the 50 Ti-25 Al-25 Mo composition. (author)

  18. States of light positive particles in metals

    International Nuclear Information System (INIS)

    Klamt, A.G.

    1987-01-01

    The states of light positively charged particles in metals are treated in tight-binding approximation. The polaron states of the particles are investigated. The 'molecular crystal model' and an interstitial model' are treated. Moreover, the particle-lattice coupling of excited particles is treated for fcc and bcc lattices. (BHO)

  19. Assessment and correction of BCC_CSM's performance in capturing leading modes of summer precipitation over North Asia

    KAUST Repository

    Gong, Zhiqiang

    2017-11-07

    This article examines the ability of Beijing Climate Center Climate System Model (BCC_CSM) in demonstrating the prediction accuracy and the leading modes of the summer precipitation over North Asia (NA). A dynamic-statistic combined approach for improving the prediction accuracy and the prediction of the leading modes of the summer precipitation over NA is proposed. Our results show that the BCC_CSM can capture part of the spatial anomaly features of the first two leading modes of NA summer precipitation. Moreover, BCC_CSM regains relationships such that the first and second mode of the empirical orthogonal function (EOF1 and EOF2) of NA summer precipitation, respectively, corresponds to the development of the El Niño and La Niña conditions in the tropical East Pacific. Nevertheless, BCC_CSM exhibits limited prediction skill over most part of NA and presents a deficiency in reproducing the EOF1\\'s and EOF2\\'s spatial pattern over central NA and EOF2\\'s interannual variability. This can be attributed as the possible reasons why the model is unable to capture the correct relationships among the basic climate elements over the central NA, lacks in its ability to reproduce a consistent zonal atmospheric pattern over NA, and has bias in predicting the relevant Sea Surface Temperature (SST) modes over the tropical Pacific and Indian Ocean regions. Based on the proposed dynamic-statistic combined correction approach, compared with the leading modes of BCC_CSM\\'s original prediction, anomaly correlation coefficients of corrected EOF1/EOF2 with the tropical Indian Ocean SST are improved from 0.18/0.36 to 0.51/0.62. Hence, the proposed correction approach suggests that the BCC_CSM\\'s prediction skill for the summer precipitation prediction over NA and its ability to capture the dominant modes could be certainly improved by choosing proper historical analogue information.

  20. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor

    2014-06-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  1. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor; Csé bfalvi, Balá zs; Rautek, Peter; Grö ller, Eduard M.

    2014-01-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  2. Influence of the intermediate bcc phase on the evolution of superfluid inclusions in hcp matrix 3He-4He

    International Nuclear Information System (INIS)

    Birchenko, A.P.; Mikhin, N.P.; Neoneta, A.S.; Rudavskij, Eh.Ya.; Fisun, Ya.Yu.

    2016-01-01

    The evolution of liquid inclusions which are formed in the hcp matrix by rapid cooling of the 3 He- 4 He solution containing 1.05% 3 He was studied by pulse NMR. The diffusion coefficient of 3 He in the liquid was measured by two-pulses spin-echo method during evolution of the inclusions. Measurements were carried out at 1.67 K which corresponds to the bcc phase existence in the phase diagram, as well as at 1.38 K, where the bcc phase is absent. It is found that in the process of the evolution, in both cases the size of the liquid inclusions is less than diffusion length and so the diffusion is restricted. The measured restricted dif-fusion coefficient allowed to find the characteristic size of the inclusions. In the first case, during the evolution of liquid inclusions, dendrites of intermediate bcc phase is forming and the inclusions are separating into a lot of smaller droplets. Due to the rapid growth of the bcc dendrites, the droplet size decreases rapidly, and the process comes to disappearance of bcc phase and an amorphous state appearance. The results obtained by measuring the diffusion coefficient, correlated with the behavior of the spin-lattice relaxation time in such a system. In the second case at a lower temperature bcc phase is not formed, and the size of the liquid inclusions decreases very slow until the completion of their solidification.

  3. Pre-melting hcp to bcc Transition in Beryllium

    OpenAIRE

    Lu, Y.; Sun, T.; Zhang, Ping.; Zhang, P.; Zhang, D. -B.; Wentzcovitch, R. M.

    2017-01-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to X-ray equipments. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp to bcc transition occurs near the melting curve at 0

  4. Fabrication and Evaluation of One-Axis Oriented Lead Zirconate Titanate Films Using Metal-Oxide Nanosheet Interface Layer

    Science.gov (United States)

    Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi

    2013-09-01

    Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.

  5. The effect of grooves in amorphous substrates on the orientation of metal deposits. I - Carbon substrates

    Science.gov (United States)

    Anton, R.; Poppa, H.; Flanders, D. C.

    1982-01-01

    The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.

  6. Slip transmission in bcc FeCr polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Patriarca, Luca, E-mail: luca.patriarca@polimi.it [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34, I-20156 Milano (Italy); Abuzaid, Wael; Sehitoglu, Huseyin [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206W. Green St., Urbana, IL 61801 (United States); Maier, Hans J. [Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen (Germany)

    2013-12-20

    Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation–grain boundary interaction (slip transmission) in modeling research.

  7. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, H. (Aomori Public College, 153-4 Yamazaki, Goushi-zawa, Aomori 030-01 (Japan)); Rafii-Tabar, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Kawazoe, Y. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Matsui, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan))

    1994-09-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  8. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    International Nuclear Information System (INIS)

    Kamiyama, H.; Rafii-Tabar, H.; Kawazoe, Y.; Matsui, H.

    1994-01-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers ''below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  9. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  10. Classification of different kinds of pesticide residues on lettuce based on fluorescence spectra and WT-BCC-SVM algorithm

    Science.gov (United States)

    Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu

    2017-07-01

    In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.

  11. Magnetization reversal in an obliquely oriented metal evaporated tape

    International Nuclear Information System (INIS)

    Srinath, S.; Vavassori, P.; Rekveldt, M.Th.; Cook, R.E.; Felcher, G.P.

    2004-01-01

    Magnetization reversal in obliquely oriented metal evaporated videotapes as a function of the tape depth was studied by vector magneto-optic Kerr effect and polarized neutron reflectivity. The magnetization vector was found to rotate coherently out-of-plane by an angle α during the magnetization reversal for a substantial part of the hysteresis cycle. However α differs between the surface-facing and the substrate-facing sides of the film, with the more oxidized surface layer following closely the applied field. Close to M∼0 the film breaks down magnetically into a collage of small domains, reflecting the crystalline microstructure of the material

  12. A new approach to texture measurements: Orientation distribution function (ODF) determination by Rietveld refinement

    International Nuclear Information System (INIS)

    Vondreele, R.; Larson, A.; Lawson, A.; Sheldon, R.; Wright, S.

    1996-01-01

    The preferred orientation of crystal grains within a manufactured part is described most fully by its orientation distribution function (ODF), which is a mapping of the probability of each of the possible grain orientations with respect to the exterior dimensions. Traditionally, an ODF is determined from pole figures for a relatively small number of reflections. These pole figures are measured with x-rays or neutrons using short detector scans over the center of an individual diffraction peak for a large number of different sample orientations. This is efficient if the selected diffraction peaks are reasonably strong (relative to background) and well separated, such as in pure fcc and bcc metals. It is also appropriate for constant wavelength sources where collection of individual diffraction peak intensities is a reasonably efficient use of the source. However, the traditional method is not very efficient for neutron diffraction at a spallation source such as LANSCE where the entire diffraction pattern is accessible for each sample setting. Moreover, a different approach is necessary for complicated diffraction patterns, such as from composite materials, intermetallic compounds, high T c ceramics, polyphasic minerals and polymers where there is expected to be heavy overlap of adjacent diffraction peaks. In addition, the large number of settings normally collected for an individual pole figure may not be necessary, since the entire pattern is obtained at each setting. Thus, a new method of ODF analysis needs to be developed to handle the more complex diffraction patterns obtained from modern technological materials as well as take advantage of the particular characteristics of spallation neutron sources. This project sought to develop the experimental procedures and the mathematical treatment needed to produce an orientation distribution function (ODF) directly from full diffraction patterns from a sample in a limited number of orientations

  13. Elemental moment variation of bcc Fe{sub x}Mn{sub 1−x} on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Bhatkar, H.; Snow, R.J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 (United States); Idzerda, Y.U., E-mail: idzerda@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-02-01

    We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc Fe{sub x}Mn{sub 1−x} on MgO(001). It is observed that the 20 nm thick Fe{sub x}Mn{sub 1−x} alloy films remained bcc from 0.65≤x≤1, much beyond the bulk stability range of 0.88≤x≤1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L{sub 3} binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x~0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism - Highlights: • Bcc Fe{sub x}Mn{sub 1−x} films were stabilized beyond bulk range by epitaxial growth on MgO. • XMCD shows negligible moment in Mn regardless of composition. • Fe moment stays constant until 84% Mn concentration. • Magnetic moment suddenly collapses before any structural change seen in RHEED.

  14. Ab initio study of Cr interactions with point defects in bcc Fe

    International Nuclear Information System (INIS)

    Olsson, P.; Domain, Ch.; Wallenius, J.

    2008-01-01

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  15. Solubility of hydrogen and deuterium in bcc-uranium-titanium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Kirkpatrick, J.R.

    1996-01-01

    For the bcc-U-Ti alloy system, H and D solubility measurements have been made on 12 alloy specimens ranging in composition from pure U to pure Ti and temperature range bounded by 900 K to 1,500 K. The results are described by a model within a standard error of 3%

  16. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance.

    Science.gov (United States)

    Chen, Alexander Z; Shiu, Michelle; Ma, Jennifer H; Alpert, Matthew R; Zhang, Depei; Foley, Benjamin J; Smilgies, Detlef-M; Lee, Seung-Hun; Choi, Joshua J

    2018-04-06

    Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.

  17. Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe-P system

    International Nuclear Information System (INIS)

    Ko, Won-Seok; Lee, Byeong-Joo; Kim, Nack J

    2012-01-01

    An interatomic potential for pure phosphorus, an element that has van der Waals, covalent and metallic bonding character, simultaneously, has been developed for the purpose of application to metal-phosphorus systems. As a simplification, the van der Waals interaction, which is less important in metal-phosphorus systems, was omitted in the parameterization process and potential formulation. On the basis of the second-nearest-neighbor modified embedded-atom method (2NN MEAM) interatomic potential formalism applicable to both covalent and metallic materials, a potential that can describe various fundamental physical properties of a wide range of allotropic or transformed crystalline structures of pure phosphorus could be developed. The potential was then extended to the Fe-P binary system describing various physical properties of intermetallic compounds, bcc and liquid alloys, and also the segregation tendency of phosphorus on grain boundaries of bcc iron, in good agreement with experimental information. The suitability of the present potential and the parameterization process for atomic scale investigations about the effects of various non-metallic impurity elements on metal properties is demonstrated. (paper)

  18. Low temperature irradiation effects on plastic deformation in BCC metals

    International Nuclear Information System (INIS)

    Aono, Yasuhisa

    1984-01-01

    Low temperature electron beam experiment was carried out on high purity iron and molybdenum single crystals, and its effect on the plastic deformation was examined. As the characteristics of the irradiated iron below 77 K, remarkable softening occurred in all orientations. This phenomenon is based on the interaction of self interstitial atoms and screw dislocations, and the other features such as the absorption of interstitial atoms into screw dislocations and the slip on maximum shearing stress planes were shown. On the other hand, the aggregate of interstitial atoms formed by annealing showed the different plastic characteristics from those of interstitial atoms, and gave the results corresponding to respective stages of the electric resistance recovery curves. Regarding molybdenum, the transfer of its self interstitial atoms is near 40 K, therefore at 77 K, cluster is formed, and it largely affects abnormal slip, which is one of the features of the plasticity of molybdenum. The peculiar dependence of the yield stress on the crystalline orientation was shown. The property of the interaction of the aggregate of interstitial atoms formed and grown by the annealing from 77 K to 500 K with dislocations corresponded to the information of defects obtained by the X-ray research of Maeta, and the similarity to the aggregate of iron was observed. (Kako, I.)

  19. The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Friederike

    2007-11-19

    This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)

  20. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    Science.gov (United States)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  1. Short-range order clustering in BCC Fe-Mn alloys induced by severe plastic deformation

    Science.gov (United States)

    Shabashov, V. A.; Kozlov, K. A.; Sagaradze, V. V.; Nikolaev, A. L.; Lyashkov, K. A.; Semyonkin, V. A.; Voronin, V. I.

    2018-03-01

    The effect of severe plastic deformation, namely, high-pressure torsion (HPT) at different temperatures and ball milling (BM) at different time intervals, has been investigated by means of Mössbauer spectroscopy in Fe100-xMnx (x = 4.1, 6.8, 9) alloys. Deformation affects the short-range clustering (SRC) in BCC lattice. Two processes occur: destruction of SRC by moving dislocations and enhancement of the SRC by migration of non-equilibrium defects. Destruction of SRC prevails during HPT at 80-293 K; whereas enhancement of SRC dominates at 473-573 K. BM starts enhancing the SRC formation at as low as 293 K due to local heating at impacts. The efficiency of HPT in terms of enhancing SRC increases with increasing temperature. The authors suppose that at low temperatures, a significant fraction of vacancies are excluded from enhancing SRC because of formation of mobile bi- and tri-vacancies having low efficiency of enhancing SRC as compared to that of mono vacancies. Milling of BCC Fe100-xMnx alloys stabilises the BCC phase with respect to α → γ transition at subsequent isothermal annealing because of a high degree of work hardening and formation of composition inhomogeneity.

  2. Vibrational entropies in metallic alloys

    Science.gov (United States)

    Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher

    2000-03-01

    Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.

  3. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    Science.gov (United States)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth.

    Science.gov (United States)

    Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W; Hill, Anita J; Williams, Timothy; Doonan, Christian; Takahashi, Masahide

    2017-03-01

    The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.

  5. bcc transition metals under pressure: results from ultrasonic interferometry and diamond-cell experiments

    International Nuclear Information System (INIS)

    Katahara, K.W.; Manghnani, M.H.; Ming, L.C.; Fisher, E.S.

    1976-01-01

    Hydrostatic pressure derivatives of the single-crystal elastic moduli, dC/sub ij//dP, have been measured ultrasonically for b.c.c. Nb--Mo and Ta--W solid solutions. The composition dependence of various electronic properties of these alloys is known to be reasonably well approximated by a rigid-electron-band filling model where e/a, the electron per atom ratio, is the primary parameter. The results indicate that the elastic moduli and their pressure derivatives may also be calculated in such a model. In particular, the dC/sub ij//dP show relatively sharp increases at e/a compositions of 5.4 for Nb--Mo and 5.7 for Ta--W. Both compositions correspond to changes in Fermi surface topology, as deduced from existing band calculations and the rigid band assumption. The results are discussed in the light of related electronic properties and possible geophysical applications. A comparison is also made between ultrasonic results and X-ray diffraction data for Nb. Using diamond-anvil pressure cell, compression of Nb was determined by X-ray diffraction up to 55 kbar in a liquid medium under purely hydrostatic conditions, and up to 175 kbar in a solid medium under nonhydrostatic conditions. The data obtained under hydrostatic conditions agree well with the ultrasonic equation of state and shock wave data, whereas the nonhydrostatic results tend to imply either a higher bulk modulus K/sub s/ or a higher (par. deltaK/sub s//par. deltaP)/sub T/

  6. Study of microplasticity of bcc metals by quasirelaxation method

    International Nuclear Information System (INIS)

    Ermishkin, V.A.; Plastinin, V.M.

    1977-01-01

    The microplasticity of single crystals of tungsten of orientation and of polycrystalline wire samples of molybdenum and of a tungsten-rhenium alloy has been investigated by a new method of quasi-relaxation at room temperature. It is shown that the micro-yield limit values determined by mechanostatic hysteresis and by least quasi-relaxation stress methods agree well one with another and for W lie, in the range between 0.25 and 0.35 kg/mm 2 . A formula, based on model assumptions of the mechanism of plastic deformation, is derived to describe the deformation curve in the micro-yield range. It has been established that the micro-yield limit is not a characteristic of the material proper, as it varies as a function of the base of the tests

  7. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to symmetric core structures for all the studied metals....

  8. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Xiaomin [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Hu, Yuyan; Feng, Yuheng [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Dai, Xiaohu [National Engineering Research Centre for Urban Pollution Control, Tongji University, Shanghai 200092 (China); College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-01-05

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  9. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    International Nuclear Information System (INIS)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-01

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  10. Uranium-throium isotopes and transition metal fluxes in two oriented manganese nodules from the Central Indian Basin: implications for nodule turnover

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    turnover. Mar. Geol., 95:71-76. Transition metal fluxes to the top and bottom of two oriented manganese nodules (SS-657 and SK-176) were deter- mined by combining radiochemical and geochemical analyses. Distinct differences in transition metal fluxes, 2a... of rotation of the nodule several times over time intervals which are smaller than the time resolution involved in U-Th isotope dating techniques. Introduction orientation of a nodule, the turnover exposing the accreting surfaces to different environ...

  11. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  12. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    David, Sabrina N.; Zhai, Yao; Zande, Arend M. van der; O'Brien, Kevin; Huang, Pinshane Y.; Chenet, Daniel A.; Hone, James C.; Zhang, Xiang; Yin, Xiaobo

    2015-01-01

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques

  13. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  14. Hirsutane Sesquiterpenes from Cultures of the Basidiomycete Marasmiellus sp. BCC 22389

    Directory of Open Access Journals (Sweden)

    Masahiko Isaka

    2016-08-01

    Full Text Available Abstract Two new hirsutane sesquiterpenes, marasmiellins A (1 and B (2, were isolated from cultures of the basidiomycete Marasmiellus sp. BCC 22389. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. The absolute configuration of marasmiellin B was determined by application of the modified Mosher’s method. Graphical Abstract

  15. The lattice distortion around the divacancy in cubic metals using the method of lattice statics

    International Nuclear Information System (INIS)

    Yoshioki, S.

    1976-01-01

    The lattice distortion produced by a divacancy in FCC metals (Al, Cu, Ag and Au) and in BCC metals (Fe, Mo and V) has been calculated using the method of lattice statics. The model assumes non-equilibrium pairwise interactions extending out to second nearest neighbours. Roughly speaking, the relaxation volumes associated with the divacancy are twice the values for the isolated vacancy. (author)

  16. Texture formation in metals with bcc lattice during drawing in dead rollers

    International Nuclear Information System (INIS)

    Gubchevskij, V.P.; Zemlyanskov, V.A.; Zlatoustovskij, D.M.; Nemkina, Eh.D.

    1976-01-01

    The texture of low-carbon steel, molybdenum and tungsten wires subjected to intermediate and finish drawing were studied to find whether it is common to metals with a body-centered lattice. Experimental data tend to indicate that both the intermediate drawing and the finish drawing give rise to two axial textures, or (110) and (114), parallel to the axis of drawing. It was inferred that the mechanism of the formation of texture in drawing is common to all the metals of a VCC lattice

  17. Spontaneous recombination volumes of Frenkel defects in neutron-irradiated non-fcc metals

    International Nuclear Information System (INIS)

    Nakagawa, M.; Mansel, W.; Boening, K.; Rosner, P.; Vogl, G.

    1979-01-01

    Production and production-rate curves for the non-fcc metals Fe, Mo, Ta, W, Zr, and Sn are obtained by electrical-resistivity measurements taken at 4.6 K during reactor neutron irradiations. The saturation concentration of Frenkel defects, c/sub s/, and the recombination volume v/sub o/ are evaluated. A parabolic relation between the spontaneous recombination volume v 0 and the compressibility kappa for a series of bcc metals is found

  18. The valence state of Yb metal under high pressure determined by XANES measurement up to 34.6 GPa

    International Nuclear Information System (INIS)

    Fuse, Akinori; Nakamoto, Go; Kurisu, Makio; Ishimatsu, Naoki; Tanida, Hajime

    2004-01-01

    The purpose of this study was to accurately determine the valency of Yb at high pressure and room temperature and to clarify the relation between the valence state and the crystal structure of Yb metal. L III -edge X-ray absorption near-edge structure (XANES) spectra were measured to determine the valence state of Yb metal in the pressure range from 0 to 34.6 GPa at room temperature, using a diamond anvil cell (DAC) and synchrotron radiation at SPring-8. In the fcc phase, Yb metal exhibits mixed valence (the mean valence ν-bar >2.1). At the fcc-to-bcc phase transition, a 0.1 jump is found in ν-bar. In the bcc phase, ν-bar(P) is an increasing function of pressure with downward curvature, reaching only 2.55 at 26 GPa. The ν-bar is only 2.65 in the hcp phase at 34.6 GPa. A tendency for saturation in ν-bar(P) to values smaller than 3.0 is found

  19. Nanoscale orientation and lateral organization of chimeric metal-binding green fluorescent protein on lipid membrane determined by epifluorescence and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Isarankura Na Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Epifluorescence microscopy as well as atomic force microscopy was successfully applied to explore the orientation and lateral organization of a group of chimeric green fluorescent proteins (GFPs) on lipid membrane. Incorporation of the chimeric GFP carrying Cd-binding region (His6CdBP4GFP) to the fluid phase of DPPC monolayer resulted in a strong fluorescence intensity at the air-water interface. Meanwhile, non-specific adsorption of the GFP having hexahistidine (His6GFP) led to the perturbation of the protein structure in which very low fluorescence was observed. Specific binding of both of the chimeric GFPs to immobilized zinc ions underneath the metal-chelating lipid membrane was revealed. This specific binding could be reversibly controlled by addition of metal ions or metal chelator. Binding of the chimeric GFPs to the metal-chelating lipid membrane was proven to be the end-on orientation while the side-on adsorption was contrarily noted in the absence of metal ions. Increase of lateral mobility owing to the fluidization effect on the chelating lipid membrane subsequently facilitated crystal formation. All these findings have opened up a potential approach for a specific orientation of immobilization of protein at the membrane interface. This could have accounted for a better opportunity of sensor development

  20. Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal-organic framework (ZMOF) with rho topology

    KAUST Repository

    Shekhah, Osama; Cadiau, Amandine; Eddaoudi, Mohamed

    2015-01-01

    Here we report the fabrication of the first thin film of a zeolite-like metal-organic framework (ZMOF) with rho topology (rho-ZMOF-1, ([In48(HImDC)96]48-)n) in a highly oriented fashion on a gold-functionalized substrate. The oriented rho-ZMOF-1

  1. Experimental observations elucidating the mechanisms of structural bcc-hcp transformations in ?-Ti alloys

    NARCIS (Netherlands)

    Van Bohemen, S.M.C.; Sietsma, J.; Van der Zwaag, S.

    2006-01-01

    The formation mechanisms of two hcp ? phase morphologies in Ti-4.5Fe-6.8Mo-1.5Al have been investigated by optical microscopy (OM), atomic force microscopy (AFM), electron probe microanalysis (EPMA) and dilatometry. At relatively high temperatures primary ? forms predominantly on prior bcc ? grain

  2. An analytic n-body potential for bcc Iron

    Energy Technology Data Exchange (ETDEWEB)

    Pontikis, V. [Commissariat a l' Energie Atomique, DRECAM/LSI, CE de Saclay, Building 524, Room 40B, 91191 Gif-sur-Yvette Cedex (France)]. E-mail: Vassilis.Pontikis@cea.fr; Russier, V. [Centre d' Etudes de Chimie Metallurgique, CNRS UPR2801, 94407 Vitry-sur-Seine (France); Wallenius, J. [Royal Institute of Technology, Department of Nuclear and Reactor Physics, Stockholm (Sweden)

    2007-02-15

    We have developed an analytic n-body phenomenological potential for bcc iron made of two electron-density functionals representing repulsion via the Thomas-Fermi free-electron gas kinetic energy term and attraction via a square root functional similar to the second moment approximation of the tight-binding scheme. Electron-density is given by radial, hydrogen-like orbitals with effective charges taken as adjustable parameters fitted on experimental and ab-initio data. Although the set of adjustable parameters is small, prediction of static and dynamical properties of iron is in excellent agreement with the experiments. Advantages and shortcomings of this model are discussed with reference to published works.

  3. An analytic n-body potential for bcc Iron

    International Nuclear Information System (INIS)

    Pontikis, V.; Russier, V.; Wallenius, J.

    2007-01-01

    We have developed an analytic n-body phenomenological potential for bcc iron made of two electron-density functionals representing repulsion via the Thomas-Fermi free-electron gas kinetic energy term and attraction via a square root functional similar to the second moment approximation of the tight-binding scheme. Electron-density is given by radial, hydrogen-like orbitals with effective charges taken as adjustable parameters fitted on experimental and ab-initio data. Although the set of adjustable parameters is small, prediction of static and dynamical properties of iron is in excellent agreement with the experiments. Advantages and shortcomings of this model are discussed with reference to published works

  4. Neutron scattering for investigation into the connection between phonons and diffusion in metallic systems

    International Nuclear Information System (INIS)

    Herzig, C.

    1995-01-01

    For examining the connection between the diffusion systematics and the lattice dynamics of the body-centered cubic metals, the temperature dependence of the self-diffusion (radiotracer technique) and the phonon dispersion (neutron scattering) have been measured in selected systems. In continuation of previous studies, the goal of the examinations reported was to put the earlier developed phonon-related diffusion model on a broader experimental basis, in order to perform verifying analyses. The phonon dispersion of the group 5 metal Nb has been measured up to high temperatures. In contrast to the values measured for the group 4 (β-Zr) and group 6 (Cr) metals, the dispersion in Nb revealed an only very weak temperature dependence. The exceptional case of the bcc β-Tl has been examined by measuring the diffusion and the dispersion in the β-T 83 In 17 alloy. Significant deviations from the conditions in the bcc transition metals have been found. Self-diffusion has been measured for the first time in Ba and β-Sc. Their diffusion systematics correlate with electron configuration. The influence of the d-electron concentration on the diffusion systematics has been measured in Ti-Mo and Hf-Nb alloys, the results backing the predictions of the phonon-related diffusion model. (orig.) [de

  5. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    Science.gov (United States)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  6. Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition Metal Dichalcogenides

    KAUST Repository

    Aljarb, Areej

    2017-08-07

    Two-dimensional (2D) transition metal dichalcogenide (TMDCs) semiconductors are important for next-generation electronics and optoelectronics. Given the difficulty in growing large single crystals of 2D TMDC materials, understanding the factors affecting the seed formation and orientation becomes an important issue for controlling the growth. Here, we systematically study the growth of molybdenum disulfide (MoS2) monolayer on c-plane sapphire with chemical vapor deposition (CVD) to discover the factors controlling their orientation. We show that the concentration of precursors, i.e., the ratio between sulfur and molybdenum oxide (MoO3), plays a key role in the size and orientation of seeds, subsequently controlling the orientation of MoS2 monolayers. High S/MoO3 ratio is needed in the early stage of growth to form small seeds that can align easily to the substrate lattice structures while the ratio should be decreased to enlarge the size of the monolayer at the next stage of the lateral growth. Moreover, we show that the seeds are actually crystalline MoS2 layers as revealed by high-resolution transmission electron microscopy. There exist two preferred orientations (0° or 60°) registered on sapphire, confirmed by our density functional theory (DFT) simulation. This report offers a facile technique to grow highly aligned 2D TMDCs and contributes to knowledge advancement in growth mechanism.

  7. Mesoscale plastic texture in body-centered cubic metals under uniaxial load

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vitek, V.; Lookman, T.

    2017-01-01

    Roč. 1, č. 6 (2017), s. 063601 E-ISSN 2475-9953 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-13797S Institutional support: RVO:68081723 Keywords : dislocations * mesoscale * bcc metals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  8. Self-assembled metal clusters on an alumina nanomesh

    International Nuclear Information System (INIS)

    Buchsbaum, A.

    2012-01-01

    either bcc[110] or bcc[100] orientation, depending on the substrate temperature, and for Co we found random stacking of close-packed planes [fcc (111) and hcp (0001), respectively] on top of the clusters. Pd clusters grow with fcc[111] orientation. The contact angle of the clusters was derived from the measurements; at a deposition temperature of 470 K the contact angle of Co clusters is approx. 75° and for Fe clusters approx. 80° . With increasing deposition temperature the contact angle increases, i.e., the clusters are not in thermodynamic equilibrium. The size of the clusters grown on top of an ideal defect-free oxide is limited to approx. 1000 atoms/cluster. For larger clusters coalescence happens and a continuous film forms. The magnetic properties of the clusters and the Ni3Al(111) substrate have been studied by means of x-ray magnetic circular dichroism (XMCD) and surface magneto-optic Kerr effect (SMOKE). SMOKE measurements show that the Curie temperature of the substrate surface highly depends on the stoichiometry and thereby on the preparation history of the sample. By fitting calculated magnetization curves to the data measured by XMCD the magnetic properties of the clusters could be determined. The anisotropy of Co clusters is less than for hcp bulk Co. This is probably a consequence of random stacking of close-packed Co planes. The anisotropy of Fe clusters is enhanced compared to bulk bcc Fe, as expected for nanoparticles. The easy axis of the clusters is perpendicular to the surface. In order to describe the experimental data by the model two types of clusters with different coupling to the substrate have to be taken into account: clusters with strong AF coupling and predominantly FM coupled clusters which also show a considerable biquadratic contribution to the coupling energy. Basic considerations show that the atoms inside the corner holes mediate FM coupling of the clusters to the substrate. Most probably the coupling energy depends on the atoms

  9. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  10. The lattice dynamics of six prominent B.C.C. transition metals

    International Nuclear Information System (INIS)

    Brescansin, L.M.; Padial, N.T.; Shukla, M.M.

    1975-01-01

    The frequency versus wave vector dispersion relations along the three principal symmetry directions, [xi00], [xixi0] and [xixixi], of six prominent body centered cubic transition metals, namely that of molybdenum, α-iron, tungsten, tantalum, niobium and that of chromium, have been computed on the basis of a phenomenological model. The calculated results are in very good agreements to the experimental findings

  11. The non-pair forces and phonon dispersion in heavy alkali metals

    International Nuclear Information System (INIS)

    Aradhana, Km.; Rathore, R.P.S.

    1990-01-01

    Two types of non-pair forces, one from the Born-Mayer and the other from the Morse potential, are derived to discuss the response of electrons in heavy alkali metals, i.e., rubidium and cesium. The potentials are added to the two-body potential of Morse to account also for the ion-ion interactions. The potentials so obtained are employed to predict the phonon dispersion relations in bcc metals, which are also compared with recent precise neutron scattering data. (author). 1 fig, 3 tabs., 24 refs

  12. Stress induced martensitic transformation from bcc to fcc in Ag-Zn

    International Nuclear Information System (INIS)

    Takezawa, K.; Akamatsu, R.; Marukawa, K.

    1995-01-01

    The martensitic transformation in Ag-Zn alloys of low-Zn content has been studied by optical and electron microscopic observations and by tensile tests. The β 1 phase of B2 structure transforms to the thermo-elastic martensite having 9R structure similar to Cu-based alloys upon cooling to temperature below Ms. When the β 1 phase is stretched at room temperature, the slip deformation occurs at first and then the stress-induced martensite(SIM) of wedge-like morphology forms. The SIM has the ordered fcc structure containing micro-twins. This direct transformation from bcc to fcc is a unique feature in Ag-Zn alloys. In Cu alloys, martensites of fcc structure appear only after the second transformation from the first transformation product of 9R structure. The critical stress for the martensitic transformation and a degree of order of SIM decrease as the deformation temperature rises. In Ag-Zn alloys, the martensite of disordered fcc is thermally produced also by up-quenching to a higher temperature. In the present study, the relation between martensites of ordered and disordered fcc is discussed through thermodynamical calculations. The condition for the direct transformation from bcc to fcc is also examined. (orig.)

  13. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  14. Proofs of cluster formation and transitions in liquid metals and alloys

    International Nuclear Information System (INIS)

    Filippov, E.S.

    1985-01-01

    Calculational and experimental proofs are presented indicating to existence of clusters in liquid metals and alloys. Systems of liquid alloys both on the base of ferrous metals and non-ferrous metals (Fe-C, Ni-C, Co-C, Fe-Ni, Ni-Mo, Co-Cr, Co-V as well as In-Sn, Bi-Sn, Si-Ge and others) are studied experimentally. It is shown that the general feature of the systems studied is sensitivity of a volume to change in structure, to replacement fcc structure on bcc or to initiation-dissociation of intermetallic compounds AxBy. It is shown that both in pure liquid metals and in their.alloys there are clusters as ordered aggregate of atoms

  15. Stability and mobility of defect clusters and dislocation loops in metals

    DEFF Research Database (Denmark)

    Osetsky, Y.N.; Bacon, D.J.; Serra, A.

    2000-01-01

    has been observed in the computer simulation of small vacancy loops in alpha-Fe. In the present paper we summarise results obtained by molecular dynamics simulations of defect clusters and small dislocation loops in alpha-Fe(bcc) and Cu(fcc). The structure and stability of vacancy and interstitial......According to the production bias model, glissile defect clusters and small dislocation loops play an important role in the microstructural evolution during irradiation under cascade damage conditions. The atomic scale computer simulations carried out in recent years have clarified many questions...... loops are reviewed, and the dynamics of glissile clusters assessed. The relevance and importance of these results in establishing a better understanding of the observed differences in the damage accumulation behaviour between bcc and fee metals irradiated under cascade damage conditions are pointed out...

  16. Vibrational contribution to the thermodynamics of nanosized precipitates: vacancy-copper clusters in bcc-Fe

    International Nuclear Information System (INIS)

    Talati, Mina; Posselt, Matthias; Al-Motasem, Ahmed; Bergner, Frank; Bonny, Giovanni

    2012-01-01

    The effects of lattice vibration on the thermodynamics of nanosized coherent clusters in bcc-Fe consisting of vacancies and/or copper are investigated within the harmonic approximation. A combination of on-lattice simulated annealing based on Metropolis Monte Carlo simulations and off-lattice relaxation by molecular dynamics is applied to obtain the most stable cluster configurations at T = 0 K. The most recent interatomic potential built within the framework of the embedded-atom method for the Fe-Cu system is used. The total free energy of pure bcc-Fe and fcc-Cu as well as the total formation free energy and the total binding free energy of the vacancy-copper clusters are determined for finite temperatures. Our results are compared with the available data from previous investigations performed using many-body interatomic potentials and first-principles methods. For further applications in rate theory and object kinetic Monte Carlo simulations, the vibrational effects evaluated in the present study are included in the previously developed analytical fitting formulae. (paper)

  17. A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact

    International Nuclear Information System (INIS)

    Zhang, Hua; Chen, Qi; Xie, Bing

    2015-01-01

    A new parameterization of the solar and infrared optical properties of ice clouds that considers the multiple habits of ice particles was developed on the basis of a prescribed dataset. First, the fitting formulae of the bulk extinction coefficient, single-scatter albedo, asymmetry factor, and δ-function forward-peak factor at the given 65 wavelengths as a function of effective radius were created for common scenarios, which consider a greater number of wavelengths and are more accurate than those used previously. Then, the band-averaged volume extinction and absorption coefficients, asymmetry factor and forward-peak factor of ice cloud were derived for the BCC-RAD (Beijing Climate Center radiative transfer model) using a parameter reference table. Finally, the newly developed and the original schemes in the BCC-RAD and the commonly used Fu Scheme of ice cloud were all applied to the BCC-RAD. Their influences on radiation calculations were compared using the mid-latitude summer atmospheric profile with ice clouds under no-aerosol conditions, and produced a maximum difference of approximately 30.0 W/m 2 for the radiative flux, and 4.0 K/d for the heating rate. Additionally, a sensitivity test was performed to investigate the impact of the ice crystal density on radiation calculations using the three schemes. The results showed that the maximum difference was 68.1 W/m 2 for the shortwave downward radiative flux (for the case of perpendicular solar insolation), and 4.2 K/d for the longwave heating rate, indicating that the ice crystal density exerts a significant effect on radiation calculations for a cloudy atmosphere. - Highlights: • A new parameterization of the radiative properties of ice cloud was obtained. • More accurate fitting formulae of them were created for common scenarios. • The band-averaged of them were derived for our radiation model of BCC-RAD. • We found that there exist large differences of results among different ice schemes. • We found

  18. He–He and He–metal interactions in transition metals from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Zou, Tingting [Information Science and Technology College, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China)

    2015-12-15

    We investigated the atomistic mechanism of He–He and He–metal interactions in bcc transition metals (V, Nb, Ta, Cr, Mo, W, and Fe) using first-principles methods. We calculated formation energy and binding energy of He–He pair as function of distance within the host lattices. The strengths of He–He attraction in Cr, Mo, W, and Fe (0.37–1.11 eV) are significantly stronger than those in V, Nb, and Ta (0.06–0.17 eV). Such strong attractions mean that He atoms would spontaneously aggregate inside perfect Cr, Mo, W, and Fe host lattices in absence of defects like vacancies. The most stable configuration of He–He pair is <100> dumbbell in groups VB metals, whereas it adopts close <110> configuration in Cr, Mo, and Fe, and close <111> configuration in W. Overall speaking, the He–He equilibrium distances of 1.51–1.55 Å in the group VIB metals are shorter than 1.65–1.70 Å in the group VB metals. Moreover, the presence of interstitial He significantly facilitates vacancy formation and this effect is more pronounced in the group VIB metals. The present calculations help understand the He-metal/He–He interaction mechanism and make a prediction that He is easier to form He cluster and bubbles in the groups VIB metals and Fe.

  19. Dynamics of the HCP/BCC phase transition and of the diffusion in zirconium: a model based on a tight-binding potential

    International Nuclear Information System (INIS)

    Willaime, F.

    1991-09-01

    We have developed an N-body interatomic potential, based on the second moment approximation of the tight-binding scheme, by fitting its four adjustable parameters to the cohesive energy, atomic volume, and elastic constants of hcp-Zr. We then showed that various properties of this potential compare favorably with those of zirconium in both the low temperatures hcp phase and the high temperature bcc phase. Such is the case in particular for the elastic constants, the phonon dispersion curves, the thermal expansion, and the melting temperature. We reproduced by molecular dynamics (MD) simulations on this potential the hcp/bcc phase transformation in both ways. It indeed occurs following the mechanism predicted by Burgers. We find a vibrational entropy of transformation equal to 0.13 k B . Our calculations suggest that in real zirconium the electronic contribution to the transformation entropy is important. We show that some interatomic potential lead to a higher value of the vibrational entropy in the hcp phase than in the bcc phase. We specified the dynamics of the vacancy migration in the bcc phase. The atomic jumps are almost exclusively nearest neighbour ones. The walk of the vacancy becomes strongly correlated at high temperatures. The vacancy jump frequency is very large and has a perfectly arrhenian behaviour. There is no evicence of a dynamical lowering of the vacancy migration barrier: the static and dynamic values of the vacancy migration energy are almost equal, both being unusually small (0.3 eV). The self diffusion coefficent of our model for the vacancy mechanism reproduces an anomalous fast diffusion close to that measured experimentally in bcc-Zr. In our model at high temperatures the time interval between successive jumps is almost equal to the time of flight. The migration events will therefore influence the formation of the vacancies [fr

  20. Investigation of the structural and hydrogenation properties of disordered Ti-V-Cr-Mo BCC solid solutions

    International Nuclear Information System (INIS)

    Raufast, C.; Planté, D.; Miraglia, S.

    2014-01-01

    Highlights: • Materials synthesis and structural analysis of selected compositions of TiVCr(Mo) bcc samples. • Extraction of the thermodynamics relevant parameters for hydride formation and dissociation state of Ti 0.3 V 1.7 Cr 0.7 Mo 0.3 sample. • Discussion of the hydrides practicability. - Abstract: Selected compositions in the Ti-Cr-V-Mo system (with the BCC structure-type) have been synthesized and characterized for structural (crystalline structure, solidification microstructure) and thermodynamic properties (equilibrium and reversible hydrogen storage capacity). We present as well the effect of co-melting with a so-called activating phase that results in a secondary phase development and a subsequent enhancement of the hydrogen sorption kinetics. Ageing properties and applicability of such materials for hybrid hydrogen storage systems are also discussed

  1. In-situ transmission electron microscopy study of ion-irradiated copper : comparison of the temperature dependence of cascade collapse in FCC- and BCC- metals.

    Energy Technology Data Exchange (ETDEWEB)

    Daulton, T. L.

    1998-10-23

    The kinetics which drive cascade formation and subsequent collapse into point-defect clusters is investigated by analyzing the microstructure produced in situ by low fluence 100 keV Kr ion irradiations of fcc-Cu over a wide temperature range (18-873 K). The yield of collapsed point-defect clusters is demonstrated unequivocally to be temperature dependent, remaining approximately constant up to lattice temperatures of 573 K and then abruptly decreasing with increasing temperature. This drop in yield is not caused by defect loss during or following ion irradiation. This temperature dependence can be explained by a thermal spike effect. These in-situ yield measurements are compared to previous ex-situ yield measurements in fcc-Ni and bcc-Mo.

  2. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  3. Limitations of BCC_CSM's ability to predict summer precipitation over East Asia and the Northwestern Pacific

    KAUST Repository

    Gong, Zhiqiang; Dogar, Muhammad Mubashar; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-01-01

    This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection

  4. Point defect stability in a semicoherent metallic interface

    Science.gov (United States)

    González, C.; Iglesias, R.; Demkowicz, M. J.

    2015-02-01

    We present a comprehensive density functional theory (DFT) -based study of different aspects of one vacancy and He impurity atom behavior at semicoherent interfaces between the low-solubility transition metals Cu and Nb. Such interfaces have not been previously modeled using DFT. A thorough analysis of the stability and mobility of the two types of defects at the interfaces and neighboring internal layers has been performed and the results have been compared to the equivalent cases in the pure metallic matrices. The different behavior of fcc and bcc metals on both sides of the interface has been specifically assessed. The modeling effort undertaken is the first attempt to study the stability and defect energetics of noncoherent Cu/Nb interfaces from first principles, in order to assess their potential use in radiation-resistant materials.

  5. About oxide dispersion particles chemical compatibility with areas coherent dissipation/sub-grains of bcc-alloys in Fe - (Cr, V, Mo, W systems

    Directory of Open Access Journals (Sweden)

    Udovsky A.

    2016-01-01

    Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed

  6. bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: Coupled shuffle and shear modes

    Science.gov (United States)

    Liu, J. B.; Johnson, D. D.

    2009-04-01

    Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.

  7. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  8. In situ transmission electron microscopy study of ion-irradiated copper: comparison of the temperature dependence of cascade collapse in fcc- and bcc-metals

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Rehn, L.E.

    2000-01-01

    The kinetics which drive cascade formation and subsequent collapse into point-defect clusters are investigated by analyzing the microstructure produced in situ by low fluence 100 keV Kr ion irradiations of fcc-Cu over a wide temperature range (18-873 K). The yield of collapsed point-defect clusters is demonstrated unequivocally to be temperature dependent, remaining approximately constant up to lattice temperatures of 573 K and then abruptly decreasing with increasing temperature. This drop in yield is not caused by defect loss during or following ion irradiation. In addition, this temperature dependence can be explained by a thermal spike effect. These in situ yield measurements are compared to previous ex situ yield measurements in fcc-Ni and bcc-Mo

  9. Quantum-mechanical approach to the state of hydrogen in b. c. c. metals

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Y; Sugimoto, H

    1980-01-01

    A first step towards consistent understanding of various properties of interstitial hydrogen in b.c.c. metals has been made by solving a Schroedinger equation for hydrogen atoms in the field of interaction with surrounding metal atoms. Properties investigated include the nature of self-trapped states, the relative stability of self-trapped configurations, the average stress field (P-tensor), the excitation energy to be determined by neutron spectroscopy, etc. Calculations were performed on hydrogen isotopes (H, D, T) in group-V metals (V, Nb, Ta), and good agreement was obtained with many different kinds of observations. Some predictions and tentative explanations are also presented.

  10. Quantum-mechanical approach to the state of hydrogen in B. C. C. metals

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Y; Sugimoto, H [Chuo Univ., Tokyo (Japan). Dept. of Physics

    1980-01-01

    A first step towards consistent understanding of various properties of interstitial hydrogen in B.C.C. metals has been made by solving a Schroedinger equation for hydrogen atoms in the field of interaction with surrounding metal atoms. Properties investigated include a nature of self-trapped states, a relative stability of self-trapped configurations, the average stress field (P-tensor), the excitation energy to be determined by neutron spectroscopy, etc. Calculations were performed on hydrogen isotopes (H, D, T) in group-V metals (V, Nb, Ta), and good agreement was obtained with many different kinds of observations. Some predictions and tentative explanations are also presented.

  11. Specific oriented metal-organic framework membranes and their facet-tuned separation performance.

    Science.gov (United States)

    Mao, Yiyin; Su, Binbin; Cao, Wei; Li, Junwei; Ying, Yulong; Ying, Wen; Hou, Yajun; Sun, Luwei; Peng, Xinsheng

    2014-09-24

    Modulating the crystal morphology, or the exposed crystal facets, of metal-organic frameworks (MOFs) expands their potential applications in catalysis, adsorption, and separation. In this article, by immobilizing the citrate modulators on Au nanoparticles and subsequently being fixed on solid copper hydroxide nanostrands, a well-intergrown and oriented HKUST-1 cube crystal membrane was formed at room temperature. In contrast, in the absence of Au nanoparticles, well-intergrown and oriented cuboctahedron and octahedron membranes were formed in water/ethanol and ethanol, respectively. The gas separation performances of these HKUST-1 membranes were tuned via their exposed facets with defined pore sizes. The HKUST-1 cube membrane with exposed {001} facets demonstrated the highest permeance but lowest gas binary separation factors, while the octahedron membrane with exposed {111} facets presented the highest separation factors but lowest permeance, since the window size of {111} facets is 0.46 nm which is smaller than 0.9 nm of {001} facets. Separation of 0.38 nm CO2 from 0.55 nm SF6 was realized by the HKUST-1 octahedron membrane. As a proof of concept, this will open a new way to design MOF-related separation membranes by facet controlling.

  12. Curie temperatures of fcc and bcc Nickel and Permalloy: Supercell and Green's function methods

    Czech Academy of Sciences Publication Activity Database

    Yu, P.; Jin, X.F.; Kudrnovský, Josef; Wang, D. S.; Bruno, P.

    2008-01-01

    Roč. 77, č. 5 (2008), 054431/1-054431/8 ISSN 1098-0121 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616 Institutional research plan: CEZ:AV0Z10100520 Keywords : fcc - and bcc-Ni * Permalloy * magnetic moments * Curie temperatures Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008

  13. BDA: A novel method for identifying defects in body-centered cubic crystals.

    Science.gov (United States)

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  14. The behavior of hydrogen in metals

    International Nuclear Information System (INIS)

    Hirabayashi, Makoto

    1975-01-01

    Explanation is made on the equilibrium diagrams of metal-hydrogen systems and the state of hydrogen in metals. Some metals perform exothermic reaction with hydrogen, and the others endothermic reaction. The former form stable hydrides and solid solutions over a wide range of composition. Hydrogen atoms in fcc and bcc metals are present at the interstitial positions of tetrahedron lattice and octahedron lattice. For example, hydrogen atoms in palladium are present at the intersititial positions of octahedron. When the ratio of the composition of hydrogen and palladium is 1:1, the structure becomes NaCl type. Hydrogen atoms in niobium and vanadium and present interstitially in tetrahedron lattice. Metal hydrides with high hydrogen concentration are becoming important recently as the containers of hydrogen. Hydrogen atoms diffuse in metals quite easily. The activation energy of the diffusion of hydrogen atoms in Nb and V is about 2-3 kcal/g.atom. The diffusion coefficient is about 10 -5 cm 2 /sec in alpha phase at room temperature. The number of jumps of a hydrogen atom between neighboring lattice sites is 10 11 --10 12 times per second. This datum is almost the same as that of liquid metals. Discussion is also made on the electronic state of hydrogen in metals. (Fukutomi, T.)

  15. Dislocations in materials with mixed covalent and metallic bonding

    International Nuclear Information System (INIS)

    Nguyen-Manh, D.; Cawkwell, M.J.; Groeger, R.; Mrovec, M.; Porizek, R.; Pettifor, D.G.; Vitek, V.

    2005-01-01

    Environment-dependent bond-order potentials have been developed for L1 0 TiAl, bcc Mo and fcc Ir. They comprise both the angular character of bonding and the screening effect of nearly free electrons. These potentials have been employed in atomistic studies of screw dislocations that revealed the non-planar character of their cores. It is argued that both covalent as well as metallic character of bonding govern these structures, which in turn control the mechanical behaviour

  16. Deposition of metal-organic frameworks by liquid-phase epitaxy: The influence of substrate functional group density on film orientation

    KAUST Repository

    Liu, J.

    2012-09-05

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4\\'-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  17. Deposition of metal-organic frameworks by liquid-phase epitaxy: The influence of substrate functional group density on film orientation

    KAUST Repository

    Liu, J.; Shekhah, O.; Stammer, X.; Arslan, H.K.; Liu, B.; Schupbach, B.; Terfort, A.; Woll, C.

    2012-01-01

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4'-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  18. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation

    Science.gov (United States)

    Liu, Jinxuan; Shekhah, Osama; Stammer, Xia; Arslan, Hasan K.; Liu, Bo; Schüpbach, Björn; Terfort, Andreas; Wöll, Christof

    2012-01-01

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4’-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  19. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr

    2011-01-01

    Roč. 33, č. 9 (2011), s. 1182-1188 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : 3D molecular dynamics * fatigue * bcc iron * mode I Subject RIV: JG - Metallurgy Impact factor: 1.546, year: 2011 http://www.sciencedirect.com/science/article/pii/S0142112311000600

  20. Quantum-based Atomistic Simulation of Transition Metals

    International Nuclear Information System (INIS)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-01-01

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials

  1. Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering.

    Science.gov (United States)

    Mengucci, P; Gatto, A; Bassoli, E; Denti, L; Fiori, F; Girardin, E; Bastianoni, P; Rutkowski, B; Czyrska-Filemonowicz, A; Barucca, G

    2017-07-01

    Direct Metal Laser Sintering (DMLS) technology was used to produce tensile and flexural samples based on the Ti-6Al-4V biomedical composition. Tensile samples were produced in three different orientations in order to investigate the effect of building direction on the mechanical behavior. On the other hand, flexural samples were submitted to thermal treatments to simulate the firing cycle commonly used to veneer metallic devices with ceramics in dental applications. Roughness and hardness measurements as well as tensile and flexural mechanical tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate sample microstructure. Results evidenced a difference in the mechanical response of tensile samples built in orthogonal directions. In terms of microstructure, samples not submitted to the firing cycle show a single phase acicular α' (hcp) structure typical of metal parts subject to high cooling rates. After the firing cycle, samples show a reduction of hardness and strength due to the formation of laths of the β (bcc) phase at the boundaries of the primary formed α' plates as well as to lattice parameters variation of the hcp phase. Element partitioning during the firing cycle gives rise to high concentration of V atoms (up to 20wt%) at the plate boundaries where the β phase preferentially forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Atomic defects and diffusion in metals

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1981-11-01

    The tracer self-diffusion data for fcc and refractory bcc metals are briefly reviewed with respect to (i) the available monovacancy formation and migration properties and (ii) the high-temperature diffusion enhancement above that expected for mass transport via atomic exchange with monovacancies. While the atomic-defect mechanism for low-temperature self-diffusion can be reliably attributed to monovacancies, the mechanisms responsible for high-temperature mass transport are not so easily defined at this time; both divacancies and interstitials must be seriously considered. Possibilities for improving our understanding in this area are discussed. 68 references, 7 figures

  3. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation

    Directory of Open Access Journals (Sweden)

    Christof Wöll

    2012-09-01

    Full Text Available The liquid phase epitaxy (LPE of the metal-organic framework (MOF HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA, 4’-carboxyterphenyl-4-methanethiol (TPMTA and 9-carboxy-10-(mercaptomethyltriptycene (CMMT. The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100 direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111 direction.

  4. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  5. Metastable Structural Phases of Metals in Columns IVB to Vib, and Rows 4 TO 6 OF the Periodic Table

    Science.gov (United States)

    Nnolim, Neme; Tyson, Trevor

    2002-03-01

    Total energy calculations as a function of strain along the direction have been carried out for the bcc metals V, Nb, Ta, Cr, Mo and W, and the hcp metals Ti, Zr and Hf, all in the block of the periodic table defined by columns IVB to VIB, and rows 4 to 6. Since strain along the direction corresponds to variation of the c lattice constant with respect to the a lattice constant, the total energy per unit cell has being calculated as a function of the c/a ratio. The highly accurate FP-LAPW (Full Potential Linearized Augmented Plane Wave) band structure method in the DFT (Density Functional Theory) formalism has been used for the calculations. In all cases except for the hcp column IVB elements, Zr, Hf and Ti, a metastable state was predicted from the calculations. Electronic properties are computed for all structures and are correlated with electrical and mechanical properties of metastable phases that have been observed experimentally. Properties of metastable phases, which were predicted in this work but which as of yet have not been observed experimentally, have also been predicted. Special attention is paid to the phases of tantalum and calculated transport properties are used to show that the observed high resistivity of the beta phase of tantalum relative to the alpha bcc phase cannot be explained solely by simple tetragonal distortions of the bcc phase.

  6. Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys

    International Nuclear Information System (INIS)

    Nishihara, Y.; Yamaguchi, Y.; Kohara, T.; Tokumoto, M.

    1985-01-01

    The magnetic and superconducting properties of bcc Cr-Re alloys with up to 40 at. % Re were studied via measurements of the magnetic susceptibility, electrical resistivity, and nuclear magnetic resonance of the Re nuclei. Antiferromagnetic order coexists with superconductivity above 18 at. % Re. The results were analyzed with the coexistence model of spin-density waves and superconductivity. In the Re-concentration range greater than 18 at. %, about 10% of the Fermi surface satisfies the nesting condition and the rest of it contributes to form the superconducting gap. This model also explains the increase in the superconducting transition temperature and the decrease in the magnetic susceptibility by annealing as a competing effect between spin-density waves and superconductivity

  7. Converting hcp Mg-Al-Zn alloy into bcc Mg-Li-Al-Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl-KCl

    International Nuclear Information System (INIS)

    Lin, M.C.; Tsai, C.Y.; Uan, J.Y.

    2007-01-01

    A body-centered cubic (bcc) Mg-12Li-9Al-1Zn (wt.%) alloy was fabricated in air by electrolysis from LiCl-KCl molten salt at 500 deg. C. Electrolytic deposition of Li atoms on cathode (Mg-Al-Zn alloy) and diffusion of the Li atoms formed the bcc Mg-Li-Al-Zn alloy with 12 wt.% Li and only 0.264 wt.% K. Low K concentration in the bcc Mg alloy strip after the electrolysis process resulted from 47% atomic size misfit between K and Mg atoms and low solubility of K in Mg matrix

  8. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.

    Science.gov (United States)

    Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J

    2014-10-17

    An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.

  9. Crack-induced stress, dislocations and acoustic emission by 3-D atomistic simulation in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Spielmannová, Alena; Machová, Anna; Hora, Petr

    2009-01-01

    Roč. 57, č. 14 (2009), s. 4065-4073 ISSN 1359-6454 R&D Projects: GA ČR GA101/09/1630; GA AV ČR KJB200760802; GA ČR(CZ) GA101/07/0789 Institutional research plan: CEZ:AV0Z20760514 Keywords : bcc iron * crack * dislocation emisision Subject RIV: JG - Metallurgy Impact factor: 3.760, year: 2009

  10. Assessment and correction of BCC_CSM's performance in capturing leading modes of summer precipitation over North Asia

    KAUST Repository

    Gong, Zhiqiang; Dogar, Muhammad Mubashar; Qiao, Shaobo; Hu, Po; Feng, Guolin

    2017-01-01

    in the tropical East Pacific. Nevertheless, BCC_CSM exhibits limited prediction skill over most part of NA and presents a deficiency in reproducing the EOF1's and EOF2's spatial pattern over central NA and EOF2's interannual variability. This can be attributed

  11. Orientation Characterisation of Aerospace Materials by Spatially Resolved Acoustic Spectroscopy

    International Nuclear Information System (INIS)

    Li, Wenqi; Coulson, Jethro; Smith, Richard J; Clark, Matt; Somekh, Michael G; Sharples, Steve D; Aveson, John W

    2014-01-01

    Material characteristics in metals such as strength, stiffness and fracture resistance are strongly related to the underlying microstructure. The crystallographic structure and orientation are related to the ultrasonic properties through the stiffness matrix. In individual grains it is possible to analytically determine the ultrasonic velocity from the orientation and stiffness, or determine the stiffness from the known orientation and measured velocity. In this paper we present a technique for imaging the crystallographic orientation of grains in metals using spatially resolved acoustic spectroscopy (SRAS) and a novel inverse solver that can determine the crystallographic orientation from the known stiffness matrix for the material and the SRAS velocity measurement. Previously we have shown the ability of this technique to determine the orientation on single crystal nickel samples; we extended the technique to multigrain industrial metals, such as aluminium, nickel and Inconel. The comparison between SRAS and electron backscatter diffraction (EBSD) on the nickel sample is presented. SRAS is a fast, accurate, quantitative and robust technique for imaging material microstructure and orientation over a wide range of scales and industrial materials

  12. Modelling of initial stages of interstitial solid solution decomposition in bcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Blanter, M S

    1982-01-01

    By means of a model of deformation interaction of interstitial atoms added by interlocking of the nearest positions the configuration of cluster of alien atoms intruded into octahedral ..cap alpha..-Fe, V, Nb and Ta interstitially sites is computerized. The cluster structure is determined by elastic properties, of the crystal lattice of the metal-solvent. Clusters in ..cap alpha..-Fe have a plate form in a plane (001) of half lattice period width, in V, Nb and Ta - of monatomic plate in a plane (110). Clusters of interstitials must be sufficiently stable and arise even in solutions low concentration.

  13. Emergence of the bcc Phase and Phase Transition in Be through Phonon Quasiparticle Calculations

    Science.gov (United States)

    Zhang, D. B., Sr.; Wentzcovitch, R. M.

    2016-12-01

    Beryllium (Be) is an important material with applications in a number of areas ranging from aerospace components to X-ray equipment. Yet a precise understanding of the phase diagram of Be remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticle properties. We find that the hcp to bcc transition occurs near the melting curve at 0

  14. Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations

    Science.gov (United States)

    Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.

    2018-06-01

    In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111} orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001} orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123} slip systems were preferentially activated in these single crystals during deformation as well as {112} slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction ( orientation, associated with {123} slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.

  15. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    Science.gov (United States)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal

  16. Effect of the coupling between electronic structure and crystalline structure on some properties of transition metals

    International Nuclear Information System (INIS)

    Nastar, M.

    1994-01-01

    The elastic constants, energetic stabilities and vacancy formation energies in transition metals are calculated within a Tight Binding model. In order to outline the effect of the electronic structure, these properties are represented as functions of band filling. The variation of the shear elastic constants of hexagonal close packed (HCP), body centered cubic (BCC) and face centered cubic (FCC) structures, is in contrast with the roughly parabolic behavior of bulk modulus. The general trends are in very good agreement with available experimental and 'ab initio' data. The vacancy formation energy in the BCC structure shows strong deviations from bell shape behavior with a maximum corresponding approximately to the band filling of group 6. This band filling effect contributes to the noticeable decrease of the self diffusion rate between group 4 and group 6. We demonstrate that the abrupt increase of the C' elastic constant, the NT 1 (0.-1.1) phonon frequency, the energy differences between BCC and HCP and between FCC and HCP as well as the vacancy formation energy, that occurs when going from Zr to Mo, is related to the presence of a pseudo-gap in the density of states of the BCC structure. Using the recursion method, we show that the general trends of these properties are correctly reproduced when considering only a few moments of the density of states (about 6). On the other hand, details such as the elastic constant singularities, are displayed only with an exact calculation of the density of states. (Author). 173 refs., 84 figs., 5 tabs

  17. Anelastic relaxation of interstitial foreign atoms and their complexes with intrinsic defects in B.C.C. metals

    International Nuclear Information System (INIS)

    Weller, M.

    1985-01-01

    In body-centred cubic metals, heavy interstitial foreign atoms (IFA) O, N and C give rise to relaxations of Snoek type. For dilute alloys, relaxation parameters are summarized. In concentrated alloys (group Va metals containing O or N) Snoek relaxations are influenced by the interaction of IFA. The recent controversy is discussed as to whether this interaction is based on clustering or anticlustering. In irradiated metals complexes of IFA with intrinsic atomic defects (vacancies or self interstitial atoms) also give rise to relaxations

  18. Geometric factors in f.c.c. and b.c.c. metal-on-metal epitaxy

    International Nuclear Information System (INIS)

    Bruce, L.A.; Jaeger, H.

    1978-01-01

    Deposits of Ni, Au and Ag formed by condensing metal vapour in U.H.V. onto (001)W, held at a temperature Tsub(s) in the range 300K< Tsub(s)<1200 K, always form epitaxial layers. However, while Au and Ag form (001) epitaxial layers of f.c.c. single crystals, (001)d parallel to (001)s with, say, [110]d parallel to [010]s, Ni and Cu occur in two orthogonal domains, each characterized by an exclusive set of fault (or twin) planes. Within a fault plane, atoms are hexagonally close-packed and, within a domain, fault planes are normal to either [1-1-0]s or [1-10]s and a close-packed direction in the planes is normal to the substrate. The lateral stacking of the fault planes may range from random at low values of Tsub(s) to that of, say, (11-1-) planes in heavily faulted and/or twinned (110) epitaxed f.c.c. material, or of basal planes in (110) epitaxed h.c.p. material at high values of Tsub(s). The results are readily explained on the basis of a growth model developed for deposits of Ni and Cu on (001) Ag. (author)

  19. First-principles calculation for the effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Endo, Tatsuro; Higuchi, Kenji; Ogata, Shigenobu; Kimizuka, Hajime

    2012-01-01

    Effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron has been evaluated using the first-principles calculation. The stable position of a hydrogen atom is found to be near the screw dislocation core and inside the core respectively when the dislocation is at the easy-core or hard-core configuration in BCC iron. The intrinsically unstable hard-core configuration of the screw dislocation is stabilized when a hydrogen atom is trapped inside the core. On the basis of this first-principles result, an elastic string model of a dislocation is developed to predict the kink motion in the presence of a hydrogen atom. It is found that a double-kink formation is facilitated when a hydrogen atom is located near a dislocation line, however, a kink motion is retarded when a hydrogen atom is behind the kink. (author)

  20. Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3

    OpenAIRE

    Sorkin, V.; Polturak, E.; Adler, Joan

    2006-01-01

    Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid He-3 in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21.5 cm^3. From the single phonon dynamic structure factor, we obtain both the longitudinal and transverse phonon branches along the main crystalline directions, [001], [011] and [111]. Our results are compared with other theoretical predictions and available experimental data.

  1. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  2. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  3. In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS-b-P4VP Block Copolymer Thin Films

    International Nuclear Information System (INIS)

    Gowd, E Bhoje; Boehme, Marcus; Stamm, Manfred

    2010-01-01

    We investigated the orientation changes of cylindrical P4VP microdomains in PS-b-P4VP thin films upon annealing in different solvent vapours using the time-resolved in situ grazing-incidence small-angle X-ray scattering (GISAXS) for the first time. Swelling of perpendicular cylinders (C perpendicular) in a non-selective solvent vapours (chloroform) leads to the orientation change to in-plane cylinders (C//) and it occurs through a disordered state. On the other hand, swelling of perpendicular cylinders (C perpendicular) in a selective solvent vapours (1,4-dioxane) leads the morphological change from cylindrical to BCC spherical morphology. Solvent evaporation results in shrinkage of the matrix in the vertical direction and subsequently merges the spheres into the perpendicularly aligned cylinders. The selectivity of the solvent to constituting blocks and the solvent evaporation rate may be mainly responsible for such orientation change of cylindrical P4VP microdomains in PS-b-P4VP thin films.

  4. In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS-b-P4VP Block Copolymer Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Gowd, E Bhoje; Boehme, Marcus; Stamm, Manfred, E-mail: gowd@ipfdd.de, E-mail: bhojegowd@yahoo.com [Department of Nanostructured Materials Leibniz Institute of Polymer Research Dresden Hohe Strasse 6, 01069, Dresden (Germany)

    2010-11-15

    We investigated the orientation changes of cylindrical P4VP microdomains in PS-b-P4VP thin films upon annealing in different solvent vapours using the time-resolved in situ grazing-incidence small-angle X-ray scattering (GISAXS) for the first time. Swelling of perpendicular cylinders (C perpendicular) in a non-selective solvent vapours (chloroform) leads to the orientation change to in-plane cylinders (C//) and it occurs through a disordered state. On the other hand, swelling of perpendicular cylinders (C perpendicular) in a selective solvent vapours (1,4-dioxane) leads the morphological change from cylindrical to BCC spherical morphology. Solvent evaporation results in shrinkage of the matrix in the vertical direction and subsequently merges the spheres into the perpendicularly aligned cylinders. The selectivity of the solvent to constituting blocks and the solvent evaporation rate may be mainly responsible for such orientation change of cylindrical P4VP microdomains in PS-b-P4VP thin films.

  5. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  6. An overview on the Bauschinger effect in metallic materials

    International Nuclear Information System (INIS)

    Wang Yanfeng; Li Cong; Ling Xuyu; Shen Baoluo; Gao Shengji

    2002-01-01

    The Bauschinger effect in metallic materials including f.c.c. (face-centered cubic) and b.c.c. (body-centered cubic) materials such as pure alloys, casting alloys, copper alloys, aluminium alloys and metal matrix composite materials, and h.c.p. (hexagonal close packed) materials such as zirconium alloys and titanium alloys have been summarized comprehensively. The mechanism of Bauschinger effect is reviewed from the point of dislocation theory and internal stress (or back stress) that is responsible for the effect. Based upon these theories, the methods for calculating internal stress and models for simulating the effect are described briefly, which could explain the effect quantitatively. Finally, the measures to reduce or eliminate the effect have been pointed out, along with the issues to be researched in the future

  7. Fission neutron damage rates and efficiencies in several metals

    International Nuclear Information System (INIS)

    Klabunde, C.E.; Coltman, R.R. Jr.

    1981-11-01

    Initial rates of resistivity-measured low-temperature damage production by fission-spectrum fast neutrons have been determined for 14 metals in the same very well characterized irradiation facility. Six of these metals were fcc, 5 bcc, and 3 hcp. Most were of quite high purity. Observed damage rates, after correction for all known extraneous resistivity-producing effects, were compared with rates predicted by the damage calculation code RECOIL, using parameters chosen from the literature. These parameters, effective displacement threshold energy, E/sub d/, and Frenkel-pair resistivity, rho/sub F/, were in many cases only best estimates, the further refinement of which may be aided by the present results. Damage efficiencies (measured/predicted rates) follow the same trends by crystal classes as seen in other fast-neutron studies

  8. Anharmonic correlated Debye model high-order expanded interatomic effective potential and Debye-Waller factors of bcc crystals

    Energy Technology Data Exchange (ETDEWEB)

    Van Hung, Nguyen, E-mail: hungnv@vnu.edu.vn [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Hue, Trinh Thi [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Khoa, Ha Dang [School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Vuong, Dinh Quoc [Quang Ninh Education & Training Department, Nguyen Van Cu, Ha Long, Quang Ninh (Viet Nam)

    2016-12-15

    High-order expanded interatomic effective potential and Debye-Waller factors (DWFs) for local vibrational amplitudes in X-ray absorption fine structure (XAFS) of bcc crystals have been studied based on the anharmonic correlated Debye model. DWFs are presented in terms of cumulant expansion up to the fourth order and the many-body effects are taken into account in the present one-dimensional model based on the first shell near neighbor contribution approach used in the derivations of the anharmonic effective potential and XAFS cumulants where Morse potential is assumed to describe the single-pair atomic interaction. Analytical expressions for the dispersion relation, correlated Debye frequency and temperature and four first temperature-dependent XAFS cumulants have been derived based on the many-body perturbation approach. Thermodynamic properties and anharmonic effects in XAFS of bcc crystals described by the obtained cumulants have been in detail discussed. The advantage and efficiency of the present theory are illustrated by good agreement of the numerical results for Mo, Fe and W with experiment.

  9. Epitaxial growth of bcc-FexCo100-x thin films on MgO(1 1 0) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nishiyama, Tsutomu; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2010-01-01

    Fe x Co 100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe x Co 100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe x Co 100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe 50 Co 50 /MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  10. Relaxation volumes of self-interstitial-atoms and vacancies in metals

    International Nuclear Information System (INIS)

    Ehrhart, P.

    1983-01-01

    Experimental results for the relaxation volumes of self-interstitial-atoms and vacancies as obtained after low temperature irradiation of different metals are reviewed. For fcc metals the relaxation volumes of the SIA's are very similar: ΔVsup(rel) = 1.6 +- 0.3 atomic volumes. This value is valid as well for the pure fcc metals (Al, Cu, Ni) as for different alloys. Vacancy relaxation volumes are small and vary between: ΔVsup(rel) = -0.05 and -0.25 atomic volumes. For bcc metals (Fe, Mo) the relaxation volume of the SIA is significantly smaller: ΔVsup(rel) = 1.1 +- 0.2 atomic volumes. In spite of the obvious similarity of the close-packed fcc and hcp structures, the SIA parameters for hcp metals are much different: ΔVsup(rel) = 3.5 for Zn, ΔVsup(rel) = 1.5 for Co and ΔVsup(rel) = 0.6 at. vol. for Zr. Vacancy relaxation volumes seem to be small as in cubic metals. The influence of lattice nonharmonicity on the validity of an extrapolation of the values determined at 6 K to higher temperatures is discussed. (author)

  11. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    Science.gov (United States)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  12. Machine Learning and Infrared Thermography for Fiber Orientation Assessment on Randomly-Oriented Strands Parts.

    Science.gov (United States)

    Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Malheiros, Fernando; Ignacio, Luis Henrique; Sfarra, Stefano; Ibarra-Castanedo, Clemente; Guimaraes, Gilmar; Maldague, Xavier

    2018-01-19

    The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed.

  13. Properties of grain boundaries in BCC iron and iron-based alloys

    International Nuclear Information System (INIS)

    Terentyev, D.; He, Xinfu

    2010-01-01

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  14. Properties of grain boundaries in BCC iron and iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D.; He, Xinfu

    2010-08-15

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  15. Refractory metal particles in refractory inclusions in the Allende meteorite

    International Nuclear Information System (INIS)

    Fuchs, L.H.; Blander, M.

    1980-01-01

    An examination of refractory metal particles in five calcium-aluminum-rich inclusions in the Allende meteorite indicates a complex variety of compositions and large departures from equilibrium. These particles appear to have been primordial condensates which were isolated from the nebula and from each other at different times by cocondensing oxides. Selective diffusion and/or oxidation of the more oxidizable metals (Mo, W, Fe and Ni), phase segregations into different alloy phases (fcc, bcc, hcp and perhaps ordered phases) and the formation of metastable condensates appears to have been involved in the modification of these materials to their present state. Only a small fraction of our observations cannot be reconciled with this picture because of a lack of knowledge of some of the phase equilibria which might have bee involved

  16. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga

    2014-01-01

    Roč. 83, February (2014), s. 229-234 ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575

  17. SCC, Bowen's disease and BCC arising on chronic radiation dermatitis due to radiation therapy for tinea pedis

    International Nuclear Information System (INIS)

    Aoki, Eri; Aoki, Mikako; Ikemura, Akiko; Igarashi, Tsukasa; Suzuki, Kayano; Kawana, Seiji

    2000-01-01

    We reported a case who developed three different types of skin cancers: SCC, BCC, and Bowen's disease, on the chronic radiation dermatitis. He had been treated for his tinea pedis et palmaris with radiotherapy in 1940's. It is very ratre that three different types of skin cancers arise in the same patient. This is a second case reported in Japan. (author)

  18. Pre-melting hcp to bcc Transition in Beryllium: A Study by First-Principles Phonon Quasiparticle Approach

    Science.gov (United States)

    Zhang, D. B., Sr.

    2017-12-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to X-ray equipments. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp to bcc transition occurs near the melting curve at 0

  19. Electronic structure of metastable bcc Cu–Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liebscher, C.H.; Freysoldt, C. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany); Dennenwaldt, T. [Institute of Condensed Matter Physics and Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Harzer, T.P.; Dehm, G. [Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf (Germany)

    2017-07-15

    Metastable Cu–Cr alloy thin films with nominal thickness of 300 nm and composition of Cu{sub 67}Cr{sub 33} (at%) are obtained by co-evaporation using molecular beam epitaxy. The microstructure, chemical phase separation and electronic structure are investigated by transmission electron microscopy (TEM). The thin film adopts the body-centered cubic crystal structure and consists of columnar grains with ~50 nm diameter. Aberration-corrected scanning TEM in combination with energy dispersive X-ray spectroscopy confirms compositional fluctuations within the grains. Cu- and Cr-rich domains with composition of Cu{sub 85}Cr{sub 15} (at%) and Cu{sub 42}Cr{sub 58} (at%) and domain size of 1–5 nm are observed. The alignment of the interface between the Cu- and Cr-rich domains shows a preference for {110}-type habit plane. The electronic structure of the Cu–Cr thin films is investigated by electron energy loss spectroscopy (EELS) and is contrasted to an fcc-Cu reference sample. The experimental EEL spectra are compared to spectra computed by density functional theory. The main differences between bcc-and fcc-Cu are related to differences in van Hove singularities in the electron density of states. In Cu–Cr solid solutions with bcc crystal structure a single peak after the L{sub 3}-edge, corresponding to a van Hove singularity at the N-point of the first Brillouin zone is observed. Spectra computed for pure bcc-Cu and random Cu–Cr solid solutions with 10 at% Cr confirm the experimental observations. The calculated spectrum for a perfect Cu{sub 50}Cr{sub 50} (at%) random structure shows a shift in the van Hove singularity towards higher energy by developing a Cu–Cr d-band that lies between the delocalized d-bands of Cu and Cr. - Highlights: • Compositional fluctuations on the order of 1–5 nm in Cu- and Cr-rich domains are observed. • EELS determines a single van Hove singularity for bcc Cu–Cr solid solutions. • The electronic structure is dominated by d

  20. Crystallographic phase transitions in actinide metals as a function of pressure

    International Nuclear Information System (INIS)

    Eriksson, O.; Soederlind, P.; Melsen, J.; Ahuja, R.; Johansson, B.

    1993-01-01

    We present first-principles calculations of the equilibrium volumes and crystal structures of the light actinides (Th--Pu). The calculated equilibrium volumes for fcc Th, bct Pu, α-U, and β-Np are found to agree reasonably well with the experimental data, and when comparing the total energies of the bcc, fcc, bct, α-U, and β-Np structures we obtain the correct crystal structures for all studied systems. Equilibrium volumes for Th--Pu, using a hypothetical fcc structure, have been calculated; although spin-orbit coupling is included in these calculations, the calculated equilibrium volume of Pu is smaller than for Np, in disagreement with experiment. Moreover, the calculated tetragonal elastic constant, C', is shown to be negative for bcc U, bcc Np, bcc Pu, and fcc Pu. Thus, our zero temperature calculations suggest that the bcc structure is unstable for these elements and that fcc Pu is also unstable. This is in conflict with experiment and we are led to the conclusion that temperature effects must be of crucial importance for stabilizing cubic structures in U, Np, and Pu. Further, as a function of decreasing volume we predict a crystal structure sequence fcc → bct → fcc in Th, a sequence α-U → bct → bcc in U, and a sequence β-Np → bct → bcc in Np. Also, a sequence of transitions in Sc as a function of decreasing volume have been calculated, namely hcp → fcc → ω → β-Np → bcc

  1. Deformation-induced microstructural evolution at grain scale

    DEFF Research Database (Denmark)

    Winther, Grethe

    During plastic deformation metals develop microstructures which may be analysed on several scales,spanning from crystallographic textures averaged over the entire sample to the scale of individualgrains. Even within individual grains, intragranular phenomena in the form of orientation gradients...... aswell as dislocation patterning by formation of dislocation boundaries occur. Experimental data andassociated data analysis at the grain scale and below will be presented to illustrate our current level ofunderstanding. The basis for the analysis is the crystallographic orientation of the grain as well...... is presented for both fcc and bcc materials inseveral deformation modes, demonstrating a clear grain orientation dependence [Huang & Winther,2007]. This dependence has its origin in a dependence on the slip systems [Winther & Huang, 2007].This further implies that the dislocations in the boundaries come from...

  2. Thermal-hydraulic study of fixed bed nuclear reactor (FBNR), in FCC, BCC and pseudo-random configurations of the core through CFD method

    International Nuclear Information System (INIS)

    Luna, M.; Chavez, I.; Cajas, D.; Santos, R.

    2015-01-01

    The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m 2 *K, 3718 W/m 2 *K and 3042 W/m 2 *K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)

  3. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted...... instability of vicinal metal surfaces is at variance with the almost generally observed stability of these surfaces. We argue that the unstable orientations undergo a defaceting transition at relatively low temperatures, driven by the high vibrational entropy of steps....

  4. Machine Learning and Infrared Thermography for Fiber Orientation Assessment on Randomly-Oriented Strands Parts

    Science.gov (United States)

    Maldague, Xavier

    2018-01-01

    The use of fiber reinforced materials such as randomly-oriented strands has grown in recent years, especially for manufacturing of aerospace composite structures. This growth is mainly due to their advantageous properties: they are lighter and more resistant to corrosion when compared to metals and are more easily shaped than continuous fiber composites. The resistance and stiffness of these materials are directly related to their fiber orientation. Thus, efficient approaches to assess their fiber orientation are in demand. In this paper, a non-destructive evaluation method is applied to assess the fiber orientation on laminates reinforced with randomly-oriented strands. More specifically, a method called pulsed thermal ellipsometry combined with an artificial neural network, a machine learning technique, is used in order to estimate the fiber orientation on the surface of inspected parts. Results showed that the method can be potentially used to inspect large areas with good accuracy and speed. PMID:29351240

  5. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Pokluda, J.; Machová, Anna; Hora, Petr

    2012-01-01

    Roč. 61, AUG 2012 (2012), s. 12-19 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : fatigue * mode II * bcc iron * molecular dynamic simulations Subject RIV: JG - Metallurgy Impact factor: 1.878, year: 2012 http://www.sciencedirect.com/science/article/pii/S0927025612001929

  6. Low-temperature nuclear orientation

    International Nuclear Information System (INIS)

    Stone, N.J.; Postma, H.

    1986-01-01

    This book comprehensively surveys the many aspects of the low temperature nuclear orientation method. The angular distribution of radioactive emissions from nuclei oriented by hyperfine interactions in solids, is treated experimentally and theoretically. A general introductory chapter is followed by formal development of the theory of the orientation process and the anisotropic emission of decay products from oriented nuclei, applied to radioactive decay and to reactions. Five chapters on applications to nuclear physics cover experimental studies of alpha, beta and gamma emission, nuclear moment measurement and level structure information. Nuclear orientation studies of parity non-conservation and time reversal asymmetry are fully described. Seven chapters cover aspects of hyperfine interactions, magnetic and electric, in metals, alloys and insulating crystals, including ordered systems. Relaxation phenomena and the combined technique of NMR detection using oriented nuclei are treated at length. Chapters on the major recent development of on-line facilities, giving access to short lived nuclei far from stability, on the use of nuclear orientation for thermometry below 1 Kelvin and on technical aspects of the method complete the main text. Extensive appendices, table of relevant parameters and over 1000 references are included to assist the design of future experiments. (Auth.)

  7. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd.

    NARCIS (Netherlands)

    Lu, P.; Asseri, A.H.O.; Kremer, Martijn; Maaskant, Janneke; Ummels, Roy; Lill, H.; Bald, D.

    2018-01-01

    Mycobacterial energy metabolism currently attracts strong attention as new target space for development of anti-tuberculosis drugs. The imidazopyridine Q203 targets the cytochrome bcc complex of the respiratory chain, a key component in energy metabolism. Q203 blocks growth of Mycobacterium

  8. Geometrical characterization of perlite-metal syntactic foam

    Energy Technology Data Exchange (ETDEWEB)

    Borovinšek, Matej, E-mail: matej.borovinsek@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Taherishargh, Mehdi, E-mail: mehdi.taherishargh@newcastle.edu.au [The University of Newcastle, School of Engineering, University Drive, Callaghan, NSW 2308 (Australia); Vesenjak, Matej, E-mail: matej.vesenjak@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Ren, Zoran, E-mail: zoran.ren@um.si [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor (Slovenia); Fiedler, Thomas, E-mail: thomas.fiedler@newcastle.edu.au [The University of Newcastle, School of Engineering, University Drive, Callaghan, NSW 2308 (Australia)

    2016-09-15

    This paper introduces an improved method for the detailed geometrical characterization of perlite-metal syntactic foam. This novel metallic foam is created by infiltrating a packed bed of expanded perlite particles with liquid aluminium alloy. The geometry of the solidified metal is thus defined by the perlite particle shape, size and morphology. The method is based on a segmented micro-computed tomography data and allows for automated determination of the distributions of pore size, sphericity, orientation and location. The pore (i.e. particle) size distribution and pore orientation is determined by a multi-criteria k-nearest neighbour algorithm for pore identification. The results indicate a weak density gradient parallel to the casting direction and a slight preference of particle orientation perpendicular to the casting direction. - Highlights: •A new method for identification of pores in porous materials was developed. •It was applied on perlite-metal syntactic foam samples. •A porosity decrease in the axial direction of the samples was determined. •Pore shape analysis showed a high percentage of spherical pores. •Orientation analysis showed that more pores are oriented in the radial direction.

  9. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    Science.gov (United States)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  10. Structural properties and stability of the bcc and omega phases in the Zr-Nb system. Pt. II. Composition dependence of the lattice parameters

    International Nuclear Information System (INIS)

    Grad, G.B.; Guillermet, A.F.; Pieres, J.J.; Cuello, G.J.; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires; Universidad Nacional del Comahue

    1996-01-01

    For pt.I see Guillermet, A.F., J. Nucl. Mater., vol.218, p.236-46, 1995. This paper deals with the composition dependence of the lattice parameters of the bcc and omega phases of the Zr-Nb system. The experimental part of the work comprises neutron scattering experiments on a Zr-10 at.% Nb alloy in the as-quenched state and after successive aging treatments at 773 K. This new information is combined with an extensive review of the available data, and a detailed analysis is performed of the effects of composition and heat-treatment upon the lattice parameters a Ω and c Ω of the omega phase and the lattice-parameter relations between bcc and omega. A striking behaviour is detected in the variation of a Ω with composition in low-Nb alloys. (orig.)

  11. Dislocation Line Tensions in the Noble Metals, the Alkali Metals and beta-Brass

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, B; Malen, K

    1971-06-15

    The line tension for a straight partial dislocation which can produce the necessary slip for a martensitic phase transformation of the bcc-fcc or bcc-hcp type has been calculated in ordered 6-brass and in Li, Na and K. Also the line tension for a Shockley partial dislocation in Cu, Ag and Au has been calculated. Negative line tension is found for certain dislocation directions, and the possible influence of this on the stability of a stacking fault bounded by these partials is discussed

  12. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  13. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  14. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W.

    Science.gov (United States)

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-06-03

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W 1-x-y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11 , the other elastic parameters including C 12 , C 44 , Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W 1-y  Os y than in W 1-x  Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W 1-x-y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  15. An atomistic analysis of the interface mobility in a massive transformation

    International Nuclear Information System (INIS)

    Bos, C.; Sommer, F.; Mittemeijer, E.J.

    2005-01-01

    A new multi-lattice kinetic Monte Carlo method has been used for an atomistic study on the interpretation of the interface mobility parameter for a massive face-centred cubic (fcc) to body-centred cubic (bcc) transformation in a single element system. For lateral growth of bcc in a system with an fcc(111)//bcc(110) and fcc[112-bar ]//bcc[001-bar ] interface orientation the overall activation energy for the interface mobility parameter is governed by energetically unfavourable atomic jumps. The atoms on the fcc lattice often cannot jump directly to bcc lattice sites because neighbouring atoms block the empty bcc sites. By single unfavourable jumps and by groups of unfavourable jumps a path from fcc to bcc is created. The necessity of these unfavourable jumps leads to an overall activation energy considerably larger than the activation energy barrier for a single atomic jump

  16. The growth of noble metals in (112-bar0)-oriented hexagonal close-packed nano-films by epitaxy on Nb(001)

    International Nuclear Information System (INIS)

    Hueger, E.; Osuch, K.

    2005-01-01

    The morphology and crystal structure of noble metal nano-films deposited on oxygen contaminated and oxygen-free Nb(001) surfaces have been studied with angle-resolved ultraviolet photoelectron spectroscopy, X-ray photo-electron diffraction, and reflection high energy electron diffraction. In the both cases a deposited noble metal film aligns its direction with the [110] direction of the Nb(001) surface. But, while a noble metal grows on an oxygen contaminated Nb(001) surface with the hexagonal close-packed (hcp) (111) planes parallel to the surface (i.e. in the (111)-oriented face centred cubic phase (fcc)), on a non-contaminated Nb(001) it grows with its hcp planes perpendicular to the surface. The latter happens because in the initial stages of the epitaxy the first two monolayers (MLs) of the noble metal grow pseudomorphically on a contamination-free Nb(001). The pseudomorphic layer is strongly extended parallel to the Nb(001) surface in comparison to its natural fcc (001) plane. As a consequence of the atomic volume conservation principle the out-of-plane lattice of the pseudomorphic layer is contracted. Thus, its body centred tetragonal (110) planes, which stay perpendicular to the surface, contract into denser-packed planes, i.e. in hcp ones. In the direction perpendicular to the surface, where the substrate does not have a direct influence on the film, the pseudomorphic layer relaxes into its natural close-packed phase, i.e. into hcp atomic planes. These planes appear as soon as the third pseudomorphic ML begins to grow. The stacking axis of the planes lies in the (100) surface of Nb and is locked by it. The fact that thick nano-films of Cu (up to 50 MLs), Ag and Au (up to 100 MLs) grow in the (112-bar0)-oriented hcp phase can be attributed to a much better fit of the hcp than of fcc stacking sequence to the four-fold symmetry of the Nb(001) surface

  17. Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films

    Science.gov (United States)

    Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.

    2016-08-01

    The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.

  18. Study of the multiple exchange frequencies in bcc 3He by thermodynamic measurements

    International Nuclear Information System (INIS)

    Bernier, M.; Suaudeau, E.; Roger, M.

    1987-08-01

    To study the multiple exchange hamiltonian of solid 3 He we measured the contribution of the spin exchange to the pressure of bcc solid in various magnetic fields (O≤ H≤ 7.5T). Due to the nature of the atomic exchange of a fermion system this contribution is a strong function of the spin polarization. The characteristic frequencies of the exchange hamiltonian are obtained by fitting the pressure measurements with the results of a statistical calculation using a high temperature series expansion of the hamiltonian in a temperature range where both the magnetic effect is significant and the expansion converges (7mK < T < 30mK). We discuss the results obtained for two molar volumes

  19. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Hinata, Shintaro [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Japan Society for the Promotion of Science Research Fellow (PD), 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  20. Study of the embedded atom method of atomistic calculations for metals and alloys: Progress report, March 1, 1987-February 28, 1988

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1987-11-01

    The relationships between the physical input and output of the Embedded Atom Method (EAM) used in atomistic calculations for metals and alloys and the model functions and parameters are being investigated. An analytic fcc EAM model has been derived based on short range approximations to the input functions in EAM and has been studied both analytically and numerically for the fcc lattice. This model has been extended to longer ranges and applied to both fcc and hcp metals. The correspondence between models based on density functional theory (EAM), tight binding methods, and effective medium theory has been reported. The reasons for difficulty in applying EAM to bcc metals is under study and a new form of alloy potential which retains general properties of pure metal potentials has been developed. 8 refs

  1. Ab initio modeling of interactions between screw dislocations and interstitial solutes in body-centered cubic transition metals

    International Nuclear Information System (INIS)

    Luthi, Berengere

    2017-01-01

    In order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals in presence of interstitial solute atoms, in particular the Fe-C system. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=1/2<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction is evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy: the dislocation goes from easy to hard configuration where the solute atoms are at the center of trigonal prisms along the dislocation line. A different behavior is observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency is linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Over a wide temperature range, from 200 to 700 K, a strong segregation is predicted with every other prismatic site occupied by a carbon atom. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy. The activation energy obtained for this atomic scale mechanism is in good agreement with experimental values for the dynamic strain aging. (author) [fr

  2. Designing biocompatible Ti-based metallic glasses for implant applications

    International Nuclear Information System (INIS)

    Calin, Mariana; Gebert, Annett; Ghinea, Andreea Cosmina; Gostin, Petre Flaviu; Abdi, Somayeh; Mickel, Christine; Eckert, Jürgen

    2013-01-01

    Ti-based metallic glasses show high potential for implant applications; they overcome in several crucial respects their well-established biocompatible crystalline counterparts, e.g. improved corrosion properties, higher fracture strength and wear resistance, increased elastic strain range and lower Young's modulus. However, some of the elements required for glass formation (e.g. Cu, Ni) are harmful for the human body. We critically reviewed the biological safety and glass forming tendency in Ti of 27 elements. This can be used as a basis for the future designing of novel amorphous Ti-based implant alloys entirely free of harmful additions. In this paper, two first alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15 . The overheating temperature of the melt before casting can be used as the controlling parameter to produce fully amorphous materials or bcc-Ti-phase reinforced metallic glass nano-composites. The beneficial effect of Nb addition on the glass-formation and amorphous phase stability was assessed by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Crystallization and mechanical behavior of ribbons are influenced by the amount and distribution of the nano-scaled bcc phase existing in the as-cast state. Their electrochemical stability in Ringer's solution at 310 K was found to be significantly better than that of commercial Ti-based biomaterials; no indication for pitting corrosion was recorded. Highlights: ► Link between biocompatibility and glass-forming ability of alloying additions in Ti ► Selection of Ti–Zr–Si and Ti–Zr–Nb–Si glass-forming alloys ► Two novel glassy alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15. ► Glass-formation, thermal stability, corrosion and mechanical behavior were studied. ► Assessing the suitability for orthopedic applications.

  3. Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal-organic framework (ZMOF) with rho topology

    KAUST Repository

    Shekhah, Osama

    2015-01-01

    Here we report the fabrication of the first thin film of a zeolite-like metal-organic framework (ZMOF) with rho topology (rho-ZMOF-1, ([In48(HImDC)96]48-)n) in a highly oriented fashion on a gold-functionalized substrate. The oriented rho-ZMOF-1 film was functionalized by non-covalent modification via post-synthetic exchange of different probe molecules, such as acridine yellow, methylene blue, and Nile red. In addition, encapsulation of a porphyrin moiety was achieved via in situ synthesis and construction of the rho-ZMOF. Adsorption kinetics of volatile organic compounds on rho-ZMOF-1 thin films was also investigated. This study suggests that rho-ZMOF-1 thin films can be regarded as a promising platform for various applications such as sensing and catalysis. This journal is

  4. Boron doped bcc-W films: Achieving excellent mechanical properties and tribological performance by regulating substrate bias voltage

    Science.gov (United States)

    Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao

    2017-11-01

    Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.

  5. Magnetostrictive performance of additively manufactured CoFe rods using the LENSTM system

    Science.gov (United States)

    Jones, Nicholas J.; Yoo, Jin-Hyeong; Ott, Ryan T.; Lambert, Paul K.; Petculescu, Gabriela; Simsek, Emrah; Schlagel, Deborah; Lograsso, Thomas A.

    2018-05-01

    Magnetostrictive materials exhibit a strain in the presence of a variable magnetic field. While they normally require large, highly oriented crystallographic grains for high strain values, metal additive manufacturing (3D printing) may be able to produce highly textured polycrystalline rods, with properties comparable to those manufactured using the more demanding free standing zone melting (FSZM) technique. Rods of Co75.8Fe24.2 and Co63.7Fe36.3 have been fabricated using the Laser engineered net shaping (LENSTM) system to evaluate the performance of additively manufactured magnetic and magnetostrictive materials. The 76% Co sample showed an average magnetostriction (λ) of 86 ppm at a stress of 124 MPa; in contrast, the 64% Co sample showed only 27 ppm at the same stress. For direct comparison, a Co67Fe33 single crystal disk, also measured as part of this study, exhibited a magnetostriction value of 131 and 91 microstrain in the [100] and [111] directions, respectively, with a calculated polycrystalline value (λs) of 107 microstrain. Electron back scattered diffraction (EBSD) has been used to qualitatively link the performance with crystallographic orientation and phase information, showing only the BCC phase in the 76% Co sample, but three different phases (BCC, FCC, and HCP) in the 64% Co sample.

  6. Magnetostrictive performance of additively manufactured CoFe rods using the LENSTM system

    Directory of Open Access Journals (Sweden)

    Nicholas J. Jones

    2018-05-01

    Full Text Available Magnetostrictive materials exhibit a strain in the presence of a variable magnetic field. While they normally require large, highly oriented crystallographic grains for high strain values, metal additive manufacturing (3D printing may be able to produce highly textured polycrystalline rods, with properties comparable to those manufactured using the more demanding free standing zone melting (FSZM technique. Rods of Co75.8Fe24.2 and Co63.7Fe36.3 have been fabricated using the Laser engineered net shaping (LENSTM system to evaluate the performance of additively manufactured magnetic and magnetostrictive materials. The 76% Co sample showed an average magnetostriction (λ of 86 ppm at a stress of 124 MPa; in contrast, the 64% Co sample showed only 27 ppm at the same stress. For direct comparison, a Co67Fe33 single crystal disk, also measured as part of this study, exhibited a magnetostriction value of 131 and 91 microstrain in the [100] and [111] directions, respectively, with a calculated polycrystalline value (λs of 107 microstrain. Electron back scattered diffraction (EBSD has been used to qualitatively link the performance with crystallographic orientation and phase information, showing only the BCC phase in the 76% Co sample, but three different phases (BCC, FCC, and HCP in the 64% Co sample.

  7. Statistical study of defects caused by primary knock-on atoms in fcc Cu and bcc W using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warrier, M., E-mail: Manoj.Warrier@gmail.com [Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, 530012 (India); Bhardwaj, U.; Hemani, H. [Computational Analysis Division, BARC, Visakhapatnam, Andhra Pradesh, 530012 (India); Schneider, R. [Computational Science, Ernst-Moritz-Arndt University, D-17489 Greifswald (Germany); Mutzke, A. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Valsakumar, M.C. [School for Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad, Telangana State, 500046 (India)

    2015-12-15

    We report on molecular Dynamics (MD) simulations carried out in fcc Cu and bcc W using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code to study (i) the statistical variations in the number of interstitials and vacancies produced by energetic primary knock-on atoms (PKA) (0.1–5 keV) directed in random directions and (ii) the in-cascade cluster size distributions. It is seen that around 60–80 random directions have to be explored for the average number of displaced atoms to become steady in the case of fcc Cu, whereas for bcc W around 50–60 random directions need to be explored. The number of Frenkel pairs produced in the MD simulations are compared with that from the Binary Collision Approximation Monte Carlo (BCA-MC) code SDTRIM-SP and the results from the NRT model. It is seen that a proper choice of the damage energy, i.e. the energy required to create a stable interstitial, is essential for the BCA-MC results to match the MD results. On the computational front it is seen that in-situ processing saves the need to input/output (I/O) atomic position data of several tera-bytes when exploring a large number of random directions and there is no difference in run-time because the extra run-time in processing data is offset by the time saved in I/O. - Highlights: • MD simulations of collision cascades in 200 random directions explored in the energy range of 1–5 keV for fcc Cu and bcc W. • 60–80 random directions must be sampled for the number of displacements produced in a collision cascade to stabilize. • In-cascade clustering of interstitials and vacancies occur. • Direction averaged distribution of interstitials and vacancies around the origin of a PKA is presented. • Comparisons with MD indicate that the recoils produced in BCA-MC simulations be checked for recombination against all vacancies created.

  8. New orientation formation and growth during primary recrystallization in stable single crystals of three face-centred cubic metals

    International Nuclear Information System (INIS)

    Miszczyk, M.; Paul, H.; Driver, J.H.; Maurice, C.

    2015-01-01

    Graphical abstract: For Ni, Cu and Cu-2%Al and (1 1 0)[0 0 −1] and (1 1 0)[1 −1 −2] initial orientations at the initial stages of recrystallization, the appearance of a specific number of new orientation groups of new grains has been demonstrated. The orientation relations across the recrystallization front are characterized by a high proportion of angles in the range 25–35° and 45–55° around axes mostly grouped about the 〈1 2 2〉, 〈1 1 1〉, 〈1 2 3〉 and 〈1 1 2〉 directions. A local minimum was noted for the disorientation angle densities close to 40° in all cases. For a single isolated nucleus of uniform orientation, the rotation axes are usually grouped around one of the normals of all four {1 1 1} planes but do not (or only rarely) coincide with them. The orientation of the growing new grain quickly transforms through the formation of a first generation twins. The most frequent situation occurs when the normal of the twinning face plane is situated near the rotation axis, around which the crystal lattice of the ‘primary nuclei’ rotates. Based on the anisotropy of grain growth a possible mechanism of orientation generation and grain growth by thermally activation movement of dislocation families, on {1 1 1} planes is proposed. - Abstract: The early stages of recrystallization have been systematically characterized in single crystal metals of medium and low stacking fault energy. Goss {1 1 0}〈0 0 1〉 and brass {1 1 0}〈1 1 2〉 oriented samples of Ni, Cu and Cu–2 wt.% Al alloy were deformed in a channel die to a logarithmic strain of 0.51 to develop a homogeneous structure composed of two sets of symmetrical primary microbands and then lightly annealed. Scanning electron microscopy/electron backscattered diffraction analyses demonstrate a strong relation between as-deformed orientations and the limited number of recrystallized grain orientations. The disorientation angles across the recrystallization front are mostly grouped in

  9. Anisotropy of electron work function and reticular compacting of friable faces of metallic crystals

    International Nuclear Information System (INIS)

    Vladimirov, A.F.

    1999-01-01

    The review and statistical estimate of experimental data on work functions for BCC-, FCC- and HCP - metals (W, Mo, Ta, Nb, Cr, V, Ni, Y) as well as the earlier developed quantum-mechanical statistical model of double electrical layer formation at metal surface and the calculation of an electron work function dipole constituent serve as a basis for the development of a semi-empirical theory of electron work function anisotropy. A coefficient of reticular compacting of friable crystal faces is introduced and statistically estimated. A coefficient of crystal emission anisotropy is also introduced and estimated both theoretically and empirically. The theory permits calculating work functions for all crystal faces and a volumetric constituent of the work function from the measured value of electron work function for a single face [ru

  10. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe(110) surface

    International Nuclear Information System (INIS)

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-01-01

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C 2 H 2 molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C 2 H 2 molecules. The most stable site for C 2 H 2 on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C 2 H 2 molecule, the barrier height energies for the C atom, C 2 -dimer and CH as well as the C 2 H 2 molecule are estimated using the nudged elastic band method. The barrier height energy for C 2 H 2 is 0.71 eV and this indicates that the C 2 H 2 diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C 2 H 2 on Fe. The first step is the dissociation of C 2 H 2 into C 2 H and H, and the second step is that of C 2 H into C 2 and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C 2 H 2 into C 2 H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C 2 H 2 . The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C 2 H 2 which characterizes the beginning of the formation of the graphene.

  11. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe110 surface.

    Science.gov (United States)

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-09-29

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C(2)H(2) molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C(2)H(2) molecules. The most stable site for C(2)H(2) on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C(2)H(2) molecule, the barrier height energies for the C atom, C(2)-dimer and CH as well as the C(2)H(2) molecule are estimated using the nudged elastic band method. The barrier height energy for C(2)H(2) is 0.71 eV and this indicates that the C(2)H(2) diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C(2)H(2) on Fe. The first step is the dissociation of C(2)H(2) into C(2)H and H, and the second step is that of C(2)H into C(2) and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C(2)H(2) into C(2)H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C(2)H(2). The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C(2)H(2) which characterizes the beginning of the formation of the graphene.

  12. Compositional Variation of the Phonon Dispersion Curves of bcc Fe-Ga Alloys

    International Nuclear Information System (INIS)

    Zarestky, Jerel L.; Garlea, Vasile O.; Lograsso, Tom; Schlagel, D.L.; Stassis, C.

    2005-01-01

    Inelastic neutron scattering techniques have been used to measure the phonon dispersion curves of bcc Fe1-xGax x=10.8, 13.3, 16.0, 22.5 alloys as a function of Ga concentration. The phonon frequencies of every branch were found to decrease significantly with increasing Ga concentration. The softening was most pronounced for the T2 0 branch and, to a lesser extent, the L branch in the vicinity of = 2 3. The concentration dependence of the shear elastic constant C =1/2 C11-C12 , calculated from the slope of the T2 0 branch, was found to agree with the results of sound velocity measurements. For the higher concentration sample measured, 22.5 at. % Ga, new branches appeared, an effect associated with the increase in the number of atoms per unit cell.

  13. Designs of Plasmonic Metamasks for Photopatterning Molecular Orientations in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yubing Guo

    2016-12-01

    Full Text Available Aligning liquid crystal (LC molecules into spatially non-uniform orientation patterns is central to the functionalities of many emerging LC devices. Recently, we developed a new projection photopatterning technique by using plasmonic metamasks (PMMs, and demonstrated high-resolution and high-throughput patterning of molecular orientations into arbitrary patterns. Here we present comparisons between two different types of metamask designs: one based on curvilinear nanoslits in metal films; the other based on rectangular nanoapertures in metal films. By using numerical simulations and experimental studies, we show that the PMMs based on curvilinear nanoslits exhibit advantages in their broadband and high optical transmission, while face challenges in mask designing for arbitrary molecular orientations. In contrast, the PMMs based on nanoapertures, though limited in optical transmission, present the great advantage of allowing for patterning arbitrary molecular orientation fields.

  14. Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: a transmission electron microscope study

    International Nuclear Information System (INIS)

    Staudhammer, K.P.; Hecker, S.S.; Murr, L.E.

    1983-01-01

    The deformation of type 304 stainless steel produces a preponderance of strain-induced /chi/ (b.c.c.) martensite, which nucleates as stable embryos at micro-shear band or twin-fault intersections as proposed by Olson and Cohen. The two intersecting micro-shear bands must have a specific defect (fault-displacement) structure, and for stable martensite embryos to form requires a minimal micro-shear band thickness ranging from 50-70 A. The critical nature of nucleation is influenced by the local temperature and strain. The structure, geometry, and morphology of strain-induced martensite embryos is essentially invariant regardless of the strain rate, strain state or temperature. Larger volume fractions of martensite evolve at large strains (greater than or equal to 20%) as a result of embryo coalescence to produce a blocky-type morphology. Martensite embryos and coalesced volume elements of /chi/ are frequently characterized by an irregular non-homogeneous distribution of smaller b.c.c. regimes which result from the irregular satisfaction of the necessary and specific fault-displacement requirements within a larger intersection volume

  15. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang; Bü rck, Jochen; Bihlmeier, Angela; Liu, Jinxuan; Shekhah, Osama; Weidler, Peter G.; Azucena, Carlos; Wang, Zhengbang; Heiß ler, Stefan; Gliemann, Hartmut; Klopper, Wim; Ulrich, Anne S.; Wö ll, Christof H.

    2014-01-01

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Chaotic Fluid Mixing in Crystalline Sphere Arrays

    Science.gov (United States)

    Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.

    2017-12-01

    We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insight are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.

  18. Optical orientation of atoms in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhitnikov, R

    1979-06-01

    The results are summed up of experimental work on the optical orientation of atoms in a plasma conducted by the Atomic Radiospectroscopy Group at the AN SSSR Physical Technology Institute. The main methods of forming and observing the optical orientation of atoms in a helium plasma and an alkali metal plasma are described in detail. A quantum mechanical explanation is given of all observed phenomena. The most significant results include the discovery of the effect of the optical orientation of atoms in a plasma on the plasma optical and electrical properties, such as electric conductivity, emitted light intensity, ionization degree, and electron density. The phenomenon applies generally and is inherent to plasmas of different chemical compositions, at the optical orientation of atoms of different elements. The methods are indicated of the practical application of the phenomenon in designing principally new precision quantum magnetometers.

  19. Electron core ionization in compressed alkali metal cesium

    Science.gov (United States)

    Degtyareva, V. F.

    2018-01-01

    Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.

  20. Impacts of Interface Energies and Transformation Strain from BCC to FCC on Massive-like δ-γ Transformation in Steel

    International Nuclear Information System (INIS)

    Yoshiya, M; Sato, M; Watanabe, M; Nakajima, K; Yokoi, T; Ueshima, N; Nagira, T; Yasuda, H

    2015-01-01

    Interface energies of δ/γ, γ/γ, δ/δ, L/δ, and L/γ interfaces, at first, as a function of misorientation were evaluated with an aid of atomistic simulations with embedded atom method. Then, under geometric constraints where grains or interfaces compete each other to minimize overall free energy, effective interface energies for those interfaces were quantified. It is found that neither the minimum nor effective δ/γ interface energies, 0.41 or 0.56 J/m 2 , respectively, is significantly higher than those of other interfaces including liquid/solid interfaces, but the δ/γ interface energy is significantly high for the small entropy change upon δ-γ massive-like transformation, resulting in significantly higher undercooling required for γ nucleation in the δ phase matrix than in solidification. Detachment of δ-phase dendrite tips away from γ-phase dendrite trunks can be explained only from a viewpoint of interface energy if small misorientationis introduced at the δ/γ interface from the perfect lattice matching between BCC and FCC crystal structures. Examining the BCC-to-FCC transformation strain on the γ nucleation in the massive-like transformation, the γ nucleation is prohibited 170 K or more undercooling is achieved unless any relaxation mechanism for the transformation strain is taken into account. (paper)

  1. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  2. Epitaxial growth of bcc-Fe{sub x}Co{sub 100-x} thin films on MgO(1 1 0) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Nishiyama, Tsutomu; Shikada, Kouhei [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2010-07-15

    Fe{sub x}Co{sub 100-x} (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe{sub x}Co{sub 100-x} film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe{sub x}Co{sub 100-x} crystals with very small errors less than +-0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe{sub 50}Co{sub 50}/MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  3. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    International Nuclear Information System (INIS)

    Li, Xiantao

    2014-01-01

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  4. Bump Bonding Using Metal-Coated Carbon Nanotubes

    Science.gov (United States)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases.

  5. 3D atomistic studies of fatigue behaviour of edge crack (0 0 1) in bcc iron loaded in mode i and II

    Czech Academy of Sciences Publication Activity Database

    Machová, Anna; Pokluda, J.; Uhnáková, Alena; Hora, Petr

    2014-01-01

    Roč. 66, September (2014), s. 11-19 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional support: RVO:61388998 Keywords : fatigue crack growth * bcc iron * 3D atomistic simulations * molecular dynamics Subject RIV: JQ - Machines ; Tools Impact factor: 2.275, year: 2014 www.elsevier.com/locate/ijfatigue

  6. A constitutive description of the thermo-viscoplastic behavior of body-centered cubic metals

    International Nuclear Information System (INIS)

    Gao, C.Y.; Lu, W.R.; Zhang, L.C.; Yan, H.X.

    2012-01-01

    Highlights: ► Established a new physics-based constitutive model for the plasticity of BCC crystals. ► The new model is better than the R–K, Abed, Z–A and J–C models. ► The new model is simpler and easier to use than the original MTS model. ► The material parameters are determined by a global optimization algorithm. ► Provided a precise description of the flow stress of HSLA-65 steel as well as Tantalum. -- Abstract: The Johnson–Cook (J–C) equation, which is obtained from the phenomenological observations of experimental data at relatively low strain rates, cannot well describe the dynamic thermo-mechanical response of many materials at high strain rates, especially under the situations of high or low temperatures. This paper develops a new physics-based model for the constitutive description of BCC metals through a thermal activation analysis of the dislocation motion in the plastic deformation of crystalline materials with the use of the mechanical threshold stress (MTS) as an internal state variable. It was found that the new model can effectively reflect the plastic deformation mechanism of BCC crystals because it directly relates the macroscopic state variables in the constitutive model with the micromechanical characteristics of materials. The material parameters of the model are efficiently determined by an optimization method to guarantee that the material parameters are globally optimal in their theoretically allowed ranges. The application of the model to HSLA-65 steel and Tantalum shows that it is much easier to apply than the MTS model, that its flow stress predictions are better than the Rusinek and Klepaczko (R–K), Abed, Zerilli and Armstrong (Z–A) and J–C models, and that the present model predictions are in good agreement with the experimental data in a broad range of strain rate, temperature and strain.

  7. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    Science.gov (United States)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  8. Clinical characteristics of basal cell carcinoma in a tertiary hospital in Sarawak, Malaysia.

    Science.gov (United States)

    Yap, Felix Boon Bin

    2010-02-01

    Basal cell carcinoma (BCC) is the most common skin cancer among Orientals. Data on this malignancy is lacking in Malaysia, prompting a retrospective study to determine the clinical characteristics in the skin clinic, Sarawak General Hospital between 2000 and 2008. Demographic data and clinical features of 64 histopathologically proven BCC from 43 patients were retrieved. Statistical analysis was performed comparing the clinical characteristics based on the region of involvement and gender. The mean age of presentation was 60.9 years. Male to female ratio was 1.05. Majority of the patients were Chinese (44.2%) followed by Malays (32.6%), Bidayuhs (14.0%) and Ibans (6.9%). Nodular BCC accounted for 95.3% of cases while 4.7% were superficial BCC. All the nodular BCC were pigmented. Ulceration was noted in 18%. There were 82.8% of BCC on the head and neck region and 17.2% on the trunk and limb region. BCC on the latter region were larger (mean 35.0 cf. 14.4 mm, p Sarawak were similar to other Asian studies. Additionally, BCC on the trunk and limbs and in men were larger, ulcerative and long standing warranting better efforts for earlier detection.

  9. Optical orientation of atoms in plasma

    International Nuclear Information System (INIS)

    Zhitnikov, R.

    1979-01-01

    The results are summed up of experimental work on the optical orientation of atoms in a plasma conducted by the Atomic Radiospectroscopy Group at the AN SSSR Physical Technology Institute. The main methods of forming and observing the optical orientation of atoms in a helium plasma and an alkali metal plasma are described in detail. A quantum mechanical explanation is given of all observed phenomena. The most significant results include the discovery of the effect of the optical orientation of atoms in a plasma on the plasma optical and electrical properties, such as electric conductivity, emitted light intensity, ionization degree, and electron density. The phenomenon applies generally and is inherent to plasmas of different chemical compositions, at the optical orientation of atoms of different elements. The methods are indicated of the practical application of the phenomenon in designing principally new precision quantum magnetometers. (J.U.)

  10. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application

    Science.gov (United States)

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-01-01

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. PMID:28773757

  11. TOPICAL REVIEW Progress in cold roll bonding of metals

    Directory of Open Access Journals (Sweden)

    Long Li, Kotobu Nagai and Fuxing Yin

    2008-01-01

    Full Text Available Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB, as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described.

  12. Structural and magnetic properties of Fe{sub x}Ni{sub 100−x} alloys synthesized using Al as a reducing metal

    Energy Technology Data Exchange (ETDEWEB)

    Srakaew, N. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Jantaratana, P., E-mail: fscipsj@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Nipakul, P. [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sirisathitkul, C. [Molecular Technology Research Unit, School of Science, Walailak University, Nakhon Si Thammarat 80161 (Thailand)

    2017-08-01

    Highlights: • Reduction by aluminum is a simple and safe route to synthesize iron-nickel alloys. • Alloy compositions with up to 90 at.% Fe can be obtained with minimal oxidation. • Morphology and magnetic properties are varied with the alloy composition. - Abstract: Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%–30%) Fe content the single face-centered cubic (FCC) FeNi{sub 3} phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%–70% with the alloy structure possessing a mixture of FCC FeNi{sub 3} and body-centered cubic (BCC) Fe{sub 7}Ni{sub 3}. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%–90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  13. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  14. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  15. Atomistic studies of nucleation of He clusters and bubbles in bcc iron

    International Nuclear Information System (INIS)

    Yang, L.; Deng, H.Q.; Gao, F.; Heinisch, H.L.; Kurtz, R.J.; Hu, S.Y.; Li, Y.L.; Zu, X.T.

    2013-01-01

    Atomistic simulations of the nucleation of He clusters and bubbles in bcc iron at 800 K have been carried out using the newly developed Fe–Fe interatomic potential, along with Ackland potential for the Fe–Fe interactions. Microstructure changes were analyzed in detail. We found that a He cluster with four He atoms is able to push out an iron interstitial from the cluster, creating a Frenkel pair. Small He clusters and self-interstitial atom (SIA) can migrate in the matrix, but He-vacancy (He-V) clusters are immobile. Most SIAs form clusters, and only the dislocation loops with a Burgers vector of b = 1/2 appear in the simulations. SIA clusters (or loops) are attached to He-V clusters for He implantation up to 1372 appm, while the He-V cluster–loop complexes with more than one He-V cluster are formed at the He concentration of 2057 appm and larger

  16. Investigation of point defects diffusion in bcc uranium and U–Mo alloys

    International Nuclear Information System (INIS)

    Smirnova, D.E.; Kuksin, A.Yu.; Starikov, S.V.

    2015-01-01

    We present results of investigation of point defects formation and diffusion in pure γ-U and γ-U–Mo fuel alloys. The study was performed using molecular dynamics simulation with the different interatomic potentials. The point defects formation and migration energies were estimated for bcc γ-U and U–9 wt.%Mo alloy. The calculated diffusivities of atoms via defects are provided for pure γ-U and for the alloy components. Analysis of simulation results shows that self-interstitial atoms play a leading role in the self-diffusion processes in the materials studied. This fact can explain a remarkably high self-diffusion mobility observed experimentally for γ-U. The self-diffusion coefficients in γ-U calculated in this assumption agree with the data measured experimentally. It is shown that alloying of γ-U with Mo increase formation energy for self-interstitial atoms and decelerate their mobility. These changes lead to decrease of self-diffusion coefficients in U–Mo alloy compared to pure U

  17. Effect of the coupling between electronic structure and crystalline structure on some properties of transition metals; Couplage entre structure electronique et structure cristalline: effet sur quelques proprietes des metaux de transition

    Energy Technology Data Exchange (ETDEWEB)

    Nastar, M

    1994-10-14

    The elastic constants, energetic stabilities and vacancy formation energies in transition metals are calculated within a Tight Binding model. In order to outline the effect of the electronic structure, these properties are represented as functions of band filling. The variation of the shear elastic constants of hexagonal close packed (HCP), body centered cubic (BCC) and face centered cubic (FCC) structures, is in contrast with the roughly parabolic behavior of bulk modulus. The general trends are in very good agreement with available experimental and `ab initio` data. The vacancy formation energy in the BCC structure shows strong deviations from bell shape behavior with a maximum corresponding approximately to the band filling of group 6. This band filling effect contributes to the noticeable decrease of the self diffusion rate between group 4 and group 6. We demonstrate that the abrupt increase of the C` elastic constant, the NT{sub 1} (0.-1.1) phonon frequency, the energy differences between BCC and HCP and between FCC and HCP as well as the vacancy formation energy, that occurs when going from Zr to Mo, is related to the presence of a pseudo-gap in the density of states of the BCC structure. Using the recursion method, we show that the general trends of these properties are correctly reproduced when considering only a few moments of the density of states (about 6). On the other hand, details such as the elastic constant singularities, are displayed only with an exact calculation of the density of states. (Author). 173 refs., 84 figs., 5 tabs.

  18. Fixed Orientation Interconnection Problems: Theory, Algorithms and Applications

    DEFF Research Database (Denmark)

    Zachariasen, Martin

    Interconnection problems have natural applications in the design of integrated circuits (or chips). A modern chip consists of billions of transistors that are connected by metal wires on the surface of the chip. These metal wires are routed on a (fairly small) number of layers in such a way...... that electrically independent nets do not intersect each other. Traditional manufacturing technology limits the orientations of the wires to be either horizontal or vertical — and is known as Manhattan architecture. Over the last decade there has been a growing interest in general architectures, where more than two...... a significant step forward, both concerning theory and algorithms, for the fixed orientation Steiner tree problem. In addition, the work maintains a close link to applications and generalizations motivated by chip design....

  19. The influence of crystal defects on the elastic properties of tungsten metals

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hongyan [School of Physical Science Technology, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Zheng, E-mail: zhhuang@home.swjtu.edu.cn [School of Physical Science Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wen, Shulong [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Chen, Ji ming; Liu, Xiang [Fusion Science of Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Pan, Min, E-mail: mpan@home.swjtu.edu.cn [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Western Superconducting Technologies Co., Ltd., Xi’an, Shanxi 710018 (China); Zhao, Yong [Laboratory of Advanced Technology of Materials (Ministry of Education),Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-01

    Highlights: • The energy of FCC structure generated during the plastic deformation was higher than that of the BCC structure, thus the system energy was consumed. • The energy of HCP lattice was higher than that of FCC lattices. The two kinds of lattices form the twin belt with a long range periodic order, and so the system stress changed periodically with the strain. • The growth of the disordered structure not only destroyed the long range periodic structure of the twin belt, but also produced a cavity, which absorbed a large amount of energy and finally made the system fractured. • The effect of temperature on the fracture was equivalent to the effect of the vacancy, and the correlation between temperature and vacancy was quadratic. - Abstract: The four stretching process stages of the elastic, plastic, stalemate, and fracture were represented for the metal tungsten by using molecular dynamics method. The young's modulus, yield strain and yield stress were calculated. The microscopic mechanics of the stretching process is analyzed. The energy of FCC and HCP generated was higher than that of BCC, so that the energy of the system increased, and the stress level was lower in the plastic deformation stage. In the late stage of plastic deformation, the growth of the twin belt was of long range ordered periodic structure, which made the system stress change periodically. In the Stalemate Stage of deformation, the other disordered structure, setting in the HCP structure of the twin belt, growed to absorb energy and generate cavity under stress and makes the lattice fracture. The yield stress of metal tungsten decreases monotonically with temperature and vacancy. The effects of temperature and vacancy on the lattice fracture were discussed.

  20. Anisotropy migration of self-point defects in dislocation stress fields in BCC Fe and FCC Cu

    International Nuclear Information System (INIS)

    Sivak, A.B.; Chernov, V.M.; Dubasova, N.A.; Romanov, V.A.

    2007-01-01

    Spatial dependence of the interaction energies of self-point defects (vacancies and self interstitial atoms in stable, metastable and saddle point configurations) with edge dislocations in slip systems {1 1 0} and {1 0 0} in BCC Fe and {1 1 1} in FCC Cu was calculated using the anisotropic theory of elasticity and molecular statics (hybrid method). The migration pathways of vacancies and SIA ( dumbbell in Fe and dumbbell in Cu) along which the migration of the defects with the lowest energy barriers were defined in the presence of the dislocation stress fields. These pathways are significantly different in the stress fields of dislocations

  1. Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haohua; Woo, C.H., E-mail: chungho@cityu.edu.hk

    2014-12-15

    Entropies and enthalpies of vacancy formation and diffusion in BCC iron are calculated for each temperature directly from free-energies using phase-space trajectories obtained from spin–lattice dynamics simulations. Magnon contributions are found to be particularly substantial in the temperature regime near the α−β (ferro/para-magnetic) transition. Strong temperature dependence and singular behavior can be seen in this temperature regime, reflecting magnon softening effects. Temperature dependence of the lattice component in this regime is also much more significant compared to previous estimations based on Arrhenius-type fitting. Similar effects on activation processes involving other irradiation-produced defects in magnetic materials are expected.

  2. Retraction of 'Composition design and mechanical properties of BCC Ti solid solution alloys with low Young's modulus'

    International Nuclear Information System (INIS)

    Tulugan, Keli Mu; Park, Cheol Hong; Park, Won Jo; Qing, Wang

    2012-01-01

    The article 'Composition design and mechanical properties of BCC Ti solid solution alloys with low Young's modulus' has been retracted upon the request of the third author (Prof. Wang Qing, the first author's former advisor during his internship at DaLian University of Technology). The article was published without the third author's knowledge and consent. The corresponding author (Prof. Wonjo Park) apologizes to the third author, to the readers, and to the editorial staff of the JMST. The JMST editorial board does not tolerate such actions from authors and we will take appropriate action to prevent this from happening in the future

  3. Phase mapping of iron-based rapidly quenched alloys using precession electron diffraction

    International Nuclear Information System (INIS)

    Svec, P.; Janotova, I.; Hosko, J.; Matko, I.; Janickovic, D.; Svec, P. Sr.; Kepaptsoglou, D. M.

    2013-01-01

    The present contribution is focused on application of PED and phase/orientation mapping of nanocrystals of bcc-Fe formed during the first crystallization stage of amorphous Fe-Co-Si-B ribbon. Using precession electron diffraction and phase/orientation mapping the formation of primary crystalline phase, bcc-Fe, from amorphous Fe-Co-Si-B has been analyzed. Important information about mutual orientation of the phase in individual submicron grains as well as against the sample surface has been obtained. This information contributes to the understanding of micromechanisms controlling crystallization from amorphous rapidly quenched structure and of the structure of the original amorphous state. The presented technique due to its high spatial resolution, speed and information content provided complements well classical techniques, especially in nanocrystalline materials. (authors)

  4. Bond orientational ordering in a metastable supercooled liquid: a shadow of crystallization and liquid–liquid transition

    International Nuclear Information System (INIS)

    Tanaka, Hajime

    2010-01-01

    It is widely believed that a liquid state can be characterized by a single order parameter, density, and that a transition from a liquid to solid can be described by density ordering (translational ordering). For example, this type of theory has had great success in describing the phase behaviour of hard spheres. However, there are some features that cannot be captured by such theories. For example, hard spheres crystallize into either hcp or fcc structures, without a tendency of bcc ordering which is expected by the Alexander–McTague theory based on the Landau-type free energy of the density order parameter. We also found hcp-like bond orientational ordering in a metastable supercooled liquid, which promotes nucleation of hcp crystals. Furthermore, theories based on the single order parameter cannot explain water-like thermodynamic and kinetic anomalies of a liquid and liquid–liquid transition in a single-component liquid. Based on these facts, we argue that we need an additional order parameter to describe a liquid state. It is bond orientational order, which is induced by dense packing in hard spheres or by directional bonding in molecular and atomic liquids. Bond orientational order is intrinsically of local nature, unlike translational order which is of global nature. This feature plays a unique role in crystallization and quasicrystal formation. We also reveal that bond orientational ordering is a cause of dynamic heterogeneity near a glass transition and is linked to slow dynamics. In relation to this, we note that, for describing the structuring of a highly disordered liquid, we need a structural signature of low configurational entropy, which is more general than bond orientational order. Finally, the water-like anomaly and liquid–liquid transition can be explained by bond orientational ordering due to hydrogen or covalent bonding and its cooperativity, respectively. So we argue that bond orientational ordering is a key to the physical understanding

  5. Interactions of foreign interstitial and substitutional atoms in bcc iron from ab initio calculations

    Science.gov (United States)

    You, Y.; Yan, M. F.

    2013-05-01

    C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.

  6. Chaotic Fluid Mixing in Crystalline Sphere Arrays

    Science.gov (United States)

    Turuban, Regis; Lester, Daniel; Meheust, Yves; Le Borgne, Tanguy

    2017-11-01

    We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insights are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures. The authors acknowledge the support of ERC project ReactiveFronts (648377).

  7. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver ... able content of metal nanoparticles would be of considerable value from an appli- ... polar chain and perpendicular to it [10].

  8. Progress in cold roll bonding of metals

    International Nuclear Information System (INIS)

    Li Long; Nagai, Kotobu; Yin Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version. (topical review)

  9. Effects of additive Pd on the structures and electrochemical hydrogen storage properties of Mg{sub 67}Co{sub 33}-based composites or alloys with BCC phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao; Zhuang, Xiangyang [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Zhu, Yunfeng [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Zhan, Leyu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Pu, Zhenggan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China); Li, Liquan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China)

    2015-02-15

    Highlights: • Additive Pd in Mg{sub 67}Co{sub 33} benefits to form a ternary BCC alloy. • Introducing 5.0 at.% Pd in Mg{sub 67}Co{sub 33} lifts the initial discharge capacity from 10 mAh/g to maximum 530 mAh/g. • Exchange current density was increased due to the homogeneously dispersed Pd. • Additive Pd slightly enhances the hydrogen diffusion coefficient of Mg-Co-Pd composites or alloys. - Abstract: Mg{sub 67}Co{sub 33} and Mg{sub 67}Co{sub 33}-Pd composites/alloys prepared by ball milling for 120 h possess nano-crystalline with body-centered cubic (BCC) structure, which was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The introduced 5.0 at.% Pd significantly lifts the initial discharge capacity from 10 mAh g{sup -1} of Mg{sub 67}Co{sub 33} to maximum 530 mAh g{sup -1}. Pd also drives the Mg{sub 67}Co{sub 33}-Pd composite forming a full BCC alloy during ball milling. The distribution of Pd gradually becomes homogeneous with the augmentation of the ball milling time according to the analyses by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Exchange current density increased with the milling time and can be ascribed to the homogeneously dispersion of Pd over the surface. The introduced Pd also enhances the hydrogen diffusion coefficient of the Mg{sub 67}Co{sub 33}-Pd composites/alloys.

  10. Symmetry-selected spin-split hybrid states in C-60/ferromagnetic interfaces

    DEFF Research Database (Denmark)

    Li, Dongzhe; Barreteau, Cyrille; Kawahara, Seiji Leo

    2016-01-01

    ferromagnetic surfaces: bcc-Cr(001), bcc-Fe(001), bcc-Co(001), fcc-Co(001), and hcp-Co(0001). We show that the adsorption geometry of the molecule with respect to the surface crystallographic orientation of the magnetic substrate as well as the strength of the interaction play a crucial role in the spin...... tunneling spectroscopy measurements on single C60 adsorbed on Cr(001) and Co/Pt(111) also confirm that the symmetry both of the substrate and of the molecular conformation has a strong influence on the induced spin polarization. Our finding may give valuable insights for further engineering of spin...

  11. Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation

    International Nuclear Information System (INIS)

    Nagasako, Naoyuki; Asahi, Ryoji; Isheim, Dieter; Seidman, David N.; Kuramoto, Shigeru; Furuta, Tadahiko

    2016-01-01

    A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations.

  12. Spin dependent transport of hot electrons through ultrathin epitaxial metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel

    2010-06-23

    In this work relaxation and transport of hot electrons in thin single crystalline metallic films is investigated by Ballistic Electron Emission Microscopy. The electron mean free paths are determined in an energy interval of 1 to 2 eV above the Fermi level. While fcc Au-films appear to be quite transmissive for hot electrons, the scattering lengths are much shorter for the ferromagnetic alloy FeCo revealing, furthermore, a strong spin asymmetry in hot electron transport. Additional information is gained from temperature dependent studies in combination with golden rule approaches in order to disentangle the impact of several relaxation and transport properties. It is found that bcc Fe-films are much less effective in spin filtering than films made of the FeCo-alloy. (orig.)

  13. Superelastic load cycling of Gum Metal

    International Nuclear Information System (INIS)

    Vorontsov, V.A.; Jones, N.G.; Rahman, K.M.; Dye, D.

    2015-01-01

    The superelastic beta titanium alloy, Gum Metal, has been found to accumulate plastic strain during tensile load cycling in the superelastic regime. This is evident from the positive drift of the macroscopic stress vs. strain hysteresis curve parallel to the strain axis and the change in its geometry subsequent to every load–unload cycle. In addition, there is a progressive reduction in the hysteresis loop width and in the stress at which the superelastic transition occurs. In situ synchrotron X-ray diffraction has shown that the lattice strain exhibited the same behaviour as that observed in macroscopic measurements and identified further evidence of plastic strain accumulation. The mechanisms responsible for the observed behaviour have been evaluated using transmission electron microscopy, which revealed a range of different defects that formed during load cycling. The formation of these defects is consistent with the classical mathematical theory for the bcc to orthorhombic martensitic transformation. It is the accumulation of these defects over time that alters its superelastic behaviour

  14. A theoretical study of the omega-phase transformation in metals

    Science.gov (United States)

    Sanati, Mahdi

    I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.

  15. Properties of heavy alkali metals under pressure

    International Nuclear Information System (INIS)

    Eremenko, T.M.; Zarochentsev, E.V.

    1980-01-01

    Zero isotherms, polymorphic phase body-centered cubic (BCC)-faced-centered cubic (FCC) transitions and K, Rb and Cs phonon spectra have been calculated within the framework of a pseudopotential model added with a short-range repulsion of frames in the Born-Mayer form. It is shown that taking into account Esub(SR) zero isotherms and phonon frequencies change insignificantly; microscopic Grueneisen parameters change by 10-20 % and BCC-FCC transition pressure decreases several times. The agreement of theoretic and experimentally observed characteristics of the transition in Cs and K and Rb phonon spectra is quite satisfactory

  16. METAL COMPLEXES OF SALICYLHYDROXAMIC ACID AND 1,10 ...

    African Journals Online (AJOL)

    Preferred Customer

    Metal complexes which are formed in biological systems between a ligand and a metal ion are in dynamic ... In a continuation of our research work oriented towards studying the .... Antimicrobial activity techniques. Preparation of test samples.

  17. Liquid metal reactor core material HT9

    International Nuclear Information System (INIS)

    Kim, S. H.; Kuk, I. H.; Ryu, W. S. and others

    1998-03-01

    A state-of-the art is surveyed on the liquid metal reactor core materials HT9. The purpose of this report is to give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is planned for the year of 2010. In-core stability of cladding materials is important to the extension of fuel burnup. Austenitic stainless steel (AISI 316) has been used as core material in the early LMR due to the good mechanical properties at high temperatures, but it has been found to show a poor swelling resistance. So many efforts have been made to solve this problem that HT9 have been developed. HT9 is 12Cr-1MoVW steel. The microstructure of HT9 consisted of tempered martensite with dispersed carbide. HT9 has superior irradiation swelling resistance as other BCC metals, and good sodium compatibility. HT9 has also a good irradiation creep properties below 500 dg C, but irradiation creep properties are degraded above 500 dg C. Researches are currently in progress to modify the HT9 in order to improve the irradiation creep properties above 500 dg C. New design studies for decreasing the core temperature below 500 dg C are needed to use HT9 as a core material. On the contrary, decrease of the thermal efficiency may occur due to lower-down of the operation temperature. (author). 51 refs., 6 tabs., 19 figs

  18. Grain orientation, deformation microstructure and flow stress

    International Nuclear Information System (INIS)

    Hansen, N.; Huang, X.; Winther, G.

    2008-01-01

    Dislocation structures in deformed metals have been analyzed quantitatively by transmission electron microscopy, high-resolution electron microscopy and Kikuchi line analysis. A general pattern for the microstructural evolution with increasing strain has been established and structural parameters have been defined and quantified. It has been found that two dislocation patterns co-exist in all grains, however, with very different characteristics dependent on grain orientation. This correlation with the grain orientation has been applied in modeling of the tensile flow stress and the flow stress anisotropy of fcc polycrystals. In conclusion some future research areas are briefly outlined

  19. Helium bubbles in bcc Fe and their interactions with irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Xiao, E-mail: X.Gai@lboro.ac.uk; Lazauskas, Tomas; Smith, Roger; Kenny, Steven D.

    2015-07-15

    The properties of helium bubbles in a body-centred cubic (bcc) Fe lattice have been examined. The atomic configurations and formation energies of different He–vacancy complexes were determined. The 0 K results show that the most energetically favourable He to Fe vacancy ratio increases from about 1:1 for approximately 5 vacancies up to about 4:1 for 36 vacancies. The formation mechanisms for small He clusters have also been considered. Isolated interstitials and small clusters can diffuse quickly through the lattice. MD simulations of randomly placed interstitial He atoms at 500 K showed clustering over the time scale of nanoseconds with He clusters containing up to 4 atoms being mobile over this time scale. He clusters containing 4 or 5 atoms were shown to eject an Fe dumbbell interstitial which could then detach from the He cluster and diffuse with the remaining He–vacancy complex being effectively immobile. Collision cascades initiated near larger bubbles showed that Fe vacancies produced by the cascades readily become part of the He–vacancy complexes. Energy barriers for He to join an existing bubble as a function of the He–vacancy ratio are also calculated. These can be larger than the diffusion barrier in the pristine lattice, but are lower when the bubbles contain excess vacancies, thus indicating that bubble growth may be kinetically constrained.

  20. Improved oxidation resistance of group VB refractory metals by Al+ ion implantation

    International Nuclear Information System (INIS)

    Hampikian, J.M.

    1996-01-01

    Aluminum ion implantation of vanadium, niobium, and tantalum improved the metals' oxidation resistances at 500 C and 735 C. Implanted vanadium oxidized only to one-third the extent of unimplanted vanadium when exposed at 500 C to air. The oxidative weight gains of implanted niobium and tantalum proved negligible when measured at 500 C and for times sufficient to fully convert the untreated metals to their pentoxides. At 735 C, implantation of vanadium only slightly retarded its oxidation, while oxidative weight gains of niobium and tantalum were reduced by factors of 3 or more. Implanted niobium exhibited weight gain in direct proportion to oxidation time squared at 735 C. Microstructural examination of the metals implanted with selected fluences of the 180 kV aluminum ions showed the following. The solubility limit of aluminum is extended by implantation, the body centered cubic (bcc) phases being retained to ∼60 at. pct Al in all three metals. The highest fluence investigated, 2.4 x 10 22 ions/m 2 , produced an ∼400-nm layer of VAl 3 beneath the surface of vanadium, and ∼300-nm layers of an amorphous phase containing ∼70 at. pct Al beneath the niobium and tantalum surfaces. All three metals, implanted to this fluence and annealed at 600 C, contained tri-aluminides, intermetallic compounds known for their oxidation resistances. Specimens implanted to this fluence were thus selected for the oxidation measurements

  1. Research on refractory, reactive and rare metals in BARC

    International Nuclear Information System (INIS)

    Banerjee, Srikumar

    2016-01-01

    Material processing activities were given a due thrust in Atomic Energy Programme right from the beginning. Initially research was primarily focused on metals such as uranium, thorium and zirconium which are of direct relevance to the nuclear programme. Having attained the success in processing these metals from the indigenous resources, the scope and range of material processing activities were enhanced and broadened considerably in the subsequent years. Having mastered the Kroll process for zirconium extraction, the same process was adopted in laboratory and in pilot scales for the extraction of titanium. With the experience gained in processing and handling reactive metals, flow sheet development of group V-A and VI-A metals was taken up. This presentation will summarise how different unit operations for the processing of Mo, V, Ta, W and Nb were developed and optimized. These elements have the same crystal structure (bcc), high melting points, similar chemical interactions with other elements, generally exhibiting high ductile to brittle transition temperatures and have similar alloying behavior. The general approach of processing and purification of these metals for improving the strength and ductability are discussed. The principles for the development of protective coatings on these reactive metals are also covered. The manufacturing process for the multi-filamentary superconducting cable made out of Niobium is described to illustrate the success story of the development of entire chain of operations leading to the final deployable product meeting the exacting specifications. The challenges faced in the development of beryllium, another reactive and toxic metal is briefly discussed. In order to exploit the sizeable resources of rare earth elements in India, research on processing of rare earths was initiated quite early. In the recent past there have been efforts on separation of individual rare earth elements and in preparing rare earth compounds and inter-metallics

  2. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  3. Ion irradiation effects on high purity bcc Fe and model FeCr alloys

    International Nuclear Information System (INIS)

    Bhattacharya, Arunodaya

    2014-01-01

    FeCr binary alloys are a simple representative of the reduced activation ferritic/martensitic (F-M) steels, which are currently the most promising candidates as structural materials for the sodium cooled fast reactors (SFR) and future fusion systems. However, the impact of Cr on the evolution of the irradiated microstructure in these materials is not well understood in these materials. Moreover, particularly for fusion applications, the radiation damage scenario is expected to be complicated further by the presence of large quantities of He produced by the nuclear transmutation (∼ 10 appm He/dpa). Within this context, an elaborate ion irradiation study was performed at 500 C on a wide variety of high purity FeCr alloys (with Cr content ranging from ∼ 3 wt.% to 14 wt.%) and a bcc Fe, to probe in detail the influence of Cr and He on the evolution of microstructure. The irradiations were performed using Fe self-ions, in single beam mode and in dual beam mode (damage by Fe ions and co-implantation of He), to separate ballistic damage effect from the impact of simultaneous He injection. Three different dose ranges were studied: high dose (157 dpa, 17 appm He/dpa for the dual beam case), intermediate dose (45 dpa, 57 appm He/dpa for dual beam case) and in-situ low dose (0.33 dpa, 3030 appm He/dpa for the dual beam case). The experiments were performed at the JANNuS triple beam facility and dual beam in situ irradiation facility at CEA-Saclay and CSNSM, Orsay respectively. The microstructure was principally characterized by conventional TEM, APT and EDS in STEM mode. The main results are as follows: 1) A comparison of the cavity microstructure in high dose irradiated Fe revealed strong swelling reduction by the addition of He. It was achieved by a drastic reduction in cavity sizes and an increased number density. This behaviour was observed all along the damage depth, up to the damage peak. 2) Cavity microstructure was also studied in the dual beam high dose

  4. Development of Mo base alloys for conductive metal-alumina cermet applications

    International Nuclear Information System (INIS)

    Stephens, J.J.; Damkroger, B.K.; Monroe, S.L.

    1996-01-01

    A study of thermal expansion for binary Mo-V and ternary Mo-V-Fe/Mo-V-Co alloys has been conducted, with the aim of finding a composition which matches the CTE of 94% alumina ceramic. The overall goal was to identify an alloy which can be used in conductive 27 vol.% metal/73 vol.% alumina cermets. Besides thermal expansion properties, two additional requirements exist for this alloy: (1) compatibility with a hydrogen sinter fire atmosphere and (2) a single phase BCC microstructure. They have identified a ternary alloy with a nominal composition of Mo-22wt.% V-3Fe for use in cermet fabrication efforts. This paper summarizes thermal expansion properties of the various alloys studied, and compares the results with previous CTE data for Mo-V binary alloys

  5. Theory of defect interactions in metals

    International Nuclear Information System (INIS)

    Thetford, Roger.

    1989-09-01

    The state relaxation program DEVIL has been updated to use N-body Finnis-Sinclair potentials. Initial calculations of self-interstitial and monovacancy formation energies confirm that the modified program is working correctly. An extra repulsive pair potential (constructed to leave the original fitting unaltered) overcomes some deficiencies in the published Finnis-Sinclair potentials. The modified potentials are used to calculate interstitial energies and relaxation in the b.c.c. transition metals vanadium, niobium, tantalum, molybdenum and tungsten. Further adaptation enables DEVIL to model dislocations running parallel to any lattice vector. Periodic boundary conditions are applied in the direction of the dislocation line, giving an infinite straight dislocation. The energies per unit length of two different dislocations are compared with experiment. A study of migration of point defects in the perfect lattice provides information on the mobility of interstitials and vacancies. The total energy needed to form and migrate an interstitial is compared with that required for a vacancy. The interaction between point defects and dislocations is studied in detail. Binding energies for both self-interstitials and monovacancies at edge dislocations are calculated for the five metals. Formation energies of the point defects in the neighbourhood of the edge dislocation are calculated for niobium, and the extend of the regions from which the defects are spontaneously absorbed are found. (author)

  6. The flow stress of high-purity refractory body-centred cubic metals and its modification by atomic defects

    International Nuclear Information System (INIS)

    Seeger, A.

    1995-01-01

    The strong temperature and strain-rate dependence of the flow stress of high-purity refractory body-centred cubic metals has been shown to be an intrinsic property and is usually ascribed to a high Peierls barrier of a o left angle 111 right angle /2 screw dislocations. These barriers are overcome by the formation of kink pairs on the screw dislocations. The paper reports on recent, very complete flow-stress data on ultra-high purity Mo crystals obtained by two different experimental techniques and covering the temperature range 4 K to 460 K. The results are in accord with earlier work of Brunner and Diehl on α-Fe, who showed that below the so-called knee temperature, T K , three regimes in the temperature variation of the flow-stress should be distinguished. Two of them are fully accounted for by the same glide mechanism, namely elementary glide steps on {211} planes. The so-called upper bend separating these two regimes in an inherent feature of the theory of kink-pair formation and does not indicate a change in the glide mechanism. There is, however, strong evidence that the so-called lower bend, separating the range of {211} elementary glide steps from the low-temperature flow-stress regime, is due to a change in the glide mechanism. It is argued that at the lower bend the screw-dislocation cores undergo a ''first-order phase transition'' from a low-temperature configuration that allows glide of a given screw dislocation on any of its three {110} glide planes to a high-temperature configuration that can glide only on one definite {211} plane. Between T K and the lower-bend temperature, T, bcc metals may show the unique phenomena of alloy and irradiation softening. With regard to the latter phenomenon, Brunner and Diehl distinguish between ''primary'' and ''secondary'' softening. It is shown that alloy softening and the ''secondary irradiation softening'' of bcc metals may be explained by an ''overheating'' of the phase transition in the dislocation core. (orig./WL)

  7. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    International Nuclear Information System (INIS)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    FeCo epitaxial films were prepared on MgO(111), SrTiO 3 (111), and Al 2 O 3 (0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110) bcc films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO 3 and Al 2 O 3 substrates include FeCo(111) bcc crystal in addition to the FeCo(110) bcc crystals with NW and KS relationships. The FeCo(111) bcc crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110) bcc and FeCo(111) bcc crystals formed on the insulating substrates are in agreement with those of the bulk Fe 50 Co 50 (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  8. Magnetic ordering of four particle exchange model in BCC 3He

    International Nuclear Information System (INIS)

    Ishikawa, Koji; Okada, Isamu

    1978-01-01

    The low temperature magnetic ordering of BCC 3 He within the mean field approximation was studied. A model including four particle exchange interactions was considered. Two types of cyclic quadrupole exchange process, planar and folded, were taken into account. Assuming four sublattices, it was considered to minimize the spin energy with respect to the classical spin vector and to find out four ordered states at the absolute zero point. They are antiferromagnetic (AF), weak ferromagnetic (WF) and two kinds of simple cubic antiferromagnetic states (SCAF). The condition for the existence of each ordered state is given, and the free energies of the ordered states are calculated in the mean field approximation. The transition between AF or SCAF and the paramagnetic states is of the first order. The phase diagram is drawn in the parameter space. The phase diagram was obtained numerically at Hetherington and Willard's value and at its neighbouring values. The difference between the present result and HW's is that of magnetic field direction in the perpendicular simple cubic antiferromagnetic states. The second order transition disappears, and the WF state changes gradually into AF state. With respect to the first order transition, the transition temperature increases with magnetic field. In this case, a critical magnetic field exists. (Kato, T

  9. Recycling-Oriented Product Characterization for Electric and Electronic Equipment as a Tool to Enable Recycling of Critical Metals

    Science.gov (United States)

    Rotter, Vera Susanne; Chancerel, Perrine; Ueberschaar, Maximilian

    To establish a knowledge base for new recycling processes of critical elements, recycling-orientated product characterization for Electric and Electronic Equipment (EEE) can be used as a tool. This paper focuses on necessary data and procedures for a successful characterization and provides information about existing scientific work. The usage of this tool is illustrated for two application: Hard Disk Drives (HDD) and Liquid Crystal Display (LCD) panels. In the first case it could be shown that Neodymium and other Rare Earth Elements are concentrated in magnets (25% by weight) and contribute largely to the end demand of Neodymium. Nevertheless, recycling is limited by the difficult liberation and competing other target metals contained in HDD. In the second case it could be shown that also for this application the usage of Indium is concentrated in LCDs, but unlike in magnets the concentration is lower (200 ppm). The design of LCDs with two glued glass layers and the Indium-Tin-Oxide layer in between make the Indium inaccessible for hydro-metallurgical recovery, the glass content puts energetic limitations on pyro-metallurgical processes. For the future technical development of recycling infrastructure we need an in depth understanding of product design and recycling relevant parameters for product characterization focusing on new target metals. This product-centered approach allows also re-think traditional "design for recycling" approaches.

  10. Diffusion of Y and Ti/Zr in bcc iron: A first principles study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Sundar, C.S.

    2011-01-01

    The diffusion of yttrium plays an important role in the kinetics of formation of oxide nanoclusters in oxide dispersion strengthened alloys. Also, the diffusivity of minor alloying elements like Ti and Zr are of special interest as they are crucial for fine dispersion of oxide nanoclusters in the ferritic matrix. These solute atoms occupy substitutional sites in bcc Fe. The diffusion coefficients of these solute atoms were calculated using Le Claire’s nine frequency model involving the vacancy mechanism. We have done detailed density functional theory calculation of the interaction of these solute atoms with vacancies (□) and estimated various migration energy barriers of the vacancies in the presence of these solute atoms using nudged elastic band method. Strikingly, compared with Zr and Ti, Y shows a very large relaxation towards first neighbor vacancy resulting in strong binding with the vacancy. The Y-□ binding energy of 1.45 eV is almost double that of Zr-□ binding energy of 0.78 eV. We have also compared the calculated diffusion coefficients of these solute atoms with the experimental values.

  11. The physical and mechanical metallurgy of advanced O+BCC titanium alloys

    Science.gov (United States)

    Cowen, Christopher John

    deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.

  12. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    Science.gov (United States)

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  13. Failure Behaviour of Aluminium/CFRP Laminates with Varying Fibre Orientation in Quasi-static Indentation Test

    Science.gov (United States)

    Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd; Merzuki, M. N. M.

    2018-03-01

    The response of the aluminium/carbon laminate was examined by an experimental work. The investigation on fibre metal laminate behaviour was done through an indentation test in a quasi-static loading. The hybrid laminate was fabricated by a compression moulding technique and used two types of carbon fibre orientations; plain weave and unidirectional. The plain weave orientation is dry fibre, and unidirectional orientation is prepreg type fibre. The plain weave carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy while the unidirectional carbon fibre was pressed by using a hot press machine and cured under a specific temperature and pressure. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variation of the crosshead speeds in the quasi-static loading. Based on the experimental data of the test, the result of 1 mm/min in the plain weave CFRP has lower loading than unidirectional fibre which the value of both was 4.11 kN and 4.69 kN, respectively.

  14. Deformation microstructure and orientation of F.C.C. crystals

    DEFF Research Database (Denmark)

    Liu, Q.; Hansen, N.

    1995-01-01

    The effect of crystallographic orientation on the microstructural evolution in f.c.c. metals with medium to high stacking fault energy is analyzed. This analysis is based on a literature review of the behaviour of single crystals and polycrystals supplemented with an experimental study of cold...

  15. Observation of changing crystal orientations during grain coarsening

    International Nuclear Information System (INIS)

    Sharma, Hemant; Huizenga, Richard M.; Bytchkov, Aleksei; Sietsma, Jilt; Offerman, S. Erik

    2012-01-01

    Understanding the underlying mechanisms of grain coarsening is important in controlling the properties of metals, which strongly depend on the microstructure that forms during the production process or during use at high temperature. Grain coarsening of austenite at 1273 K in a binary Fe–2 wt.% Mn alloy was studied using synchrotron radiation. Evolution of the volume, average crystallographic orientation and mosaicity of more than 2000 individual austenite grains was tracked during annealing. It was found that an approximately linear relationship exists between grain size and mosaicity, which means that orientation gradients are present in the grains. The orientation gradients remain constant during coarsening and consequently the character of grain boundaries changes during coarsening, affecting the coarsening rate. Furthermore, changes in the average orientation of grains during coarsening were observed. The changes could be understood by taking the observed orientation gradients and anisotropic movement of grain boundaries into account. Five basic modes of grain coarsening were deduced from the measurements, which include: anisotropic (I) and isotropic (II) growth (or shrinkage); movement of grain boundaries resulting in no change in volume but a change in shape (III); movement of grain boundaries resulting in no change in volume and mosaicity, but a change in crystallographic orientation (IV); no movement of grain boundaries (V).

  16. Cohesion and coordination effects on transition metal surface energies

    Science.gov (United States)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  17. Tensile properties of several 800 MeV proton-irradiated bcc metals and alloys

    International Nuclear Information System (INIS)

    Brown, R.D.; Wechsler, M.S.; Tschalar, C.

    1987-01-01

    A spallation neutron source for the 600-MeV proton accelerator facility at the Swiss Institute for Nuclear Research (SIN) consists of a vertical cylinder filled with molten Pb-Bi. The proton beam enters the cylinder, passing upward through a window in contact with the Pb-Bi eutectic liquid that must retain reasonable strength and ductility upon irradiation at about 673 K to fluence of about 1 x 10/sup 25/ protons/m/sup 2/. Investigations are underway at the 800-MeV proton accelerator at the Los Alamos Meson Physics Facility (LAMPF) to test the performance of candidate SIN window materials under appropriate conditions of temperature, irradiation, and environment. Based on considerations of chemical compatibility with molten Pb-Bi, as well as interest in identifying fundamental radiation damage mechanisms, Fe, Ta, Fe-2.25Cr-1Mo, and Fe-12Cr-1Mo(HT-9) were chosen as candidate materials. Sheet tensile samples, 0.5-mm thick, of the four materials were fabricated and heat treated. The samples were sealed inside capsules containing Pb-Bi and were proton-irradiated at LAMPF to two fluences, 4.8 and 54 x 10/sup 23/ p/m/sup 2/. The beam current was approximately equal to the 1 mA anticipated for the upgraded SIN accelerator. The power deposited by the proton beam in the capsules was sufficient to maintain sample temperatures of about 673 K. Post-irradiation tensile tests were conducted at room temperature at a strain rate of 9 x 10/sup -4/s/sup -1/. The yield and ultimate strengths increased upon irradiation in all materials, while the ductility decreased, as indicated by the uniform strain. The pure metals, Ta and Fe, exhibited the greatest radiation hardening and embrittlement. The HT-9 alloy showed the smallest changes in strength and ductility. The increase in strength following irradiation is discussed in terms of a dispersed-barrier hardening model, for which the barrier sizes and formation cross sections are calculated

  18. Orientations of dendritic growth during solidification

    Science.gov (United States)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  19. Electrical characterization of Ω-gated uniaxial tensile strained Si nanowire-array metal-oxide-semiconductor field effect transistors with - and channel orientations

    International Nuclear Information System (INIS)

    Habicht, Stefan; Feste, Sebastian; Zhao, Qing-Tai; Buca, Dan; Mantl, Siegfried

    2012-01-01

    Nanowire-array metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated along and crystal directions on (001) un-/strained silicon-on-insulator substrates. Lateral strain relaxation through patterning was employed to transform biaxial tensile strain into uniaxial tensile strain along the nanowire. Devices feature ideal subthreshold swings and maximum on-current/off-current ratios of 10 11 for n and p-type transistors on both substrates. Electron and hole mobilities were extracted by split C–V method. For p-MOSFETs an increased mobility is observed for channel direction devices compared to devices. The n-MOSFETs showed a 45% increased electron mobility compared to devices. The comparison of strained and unstrained n-MOSFETs along and clearly demonstrates improved electron mobilities for strained channels of both channel orientations.

  20. Anomalous electrical conduction in disordered and non-crystalline metallic conductors

    International Nuclear Information System (INIS)

    Tsuei, C.C.

    1978-01-01

    Many disordered and non-crystalline metallic conductors are characterized by both a negative temperature coefficient (α = rho -1 drho/dT) of resistivity rho over a wide range of temperatures T and a gradual leveling-off of rho at low temperatures. Experimental results will be presented to show that rho varies as -ln T (for T >approximately the Debye temperature) in contrast to the predication of existing theories. This anomalous electron transport can be understood in terms of an attractive interaction between conduction electrons and localized excitations arising from a structural indeterminacy in the atomic arrangement. The possibility of using this scattering mechanism to explain the unusual deviation from linear T dependence of resistivity (the bulge effect) in many structurally unstable superconductors such as A-15 Nb 3 Ge, V 3 Si, bcc Nb and alloys containing the ω-phase is also discussed. (author)

  1. Orientation sensors by defocused imaging of single gold nano-bipyramids

    Science.gov (United States)

    Zhang, Fanwei; Li, Qiang; Rao, Wenye; Hu, Hongjin; Gao, Ye; Wu, Lijun

    2018-01-01

    Optical probes for nanoscale orientation sensing have attracted much attention in the field of single-molecule detections. Noble metal especially Au nanoparticles (NPs) exhibit extraordinary plasmonic properties, great photostability, excellent biocompatibility and nontoxicity, and thereby could be alternative labels to conventional applied organic dyes or quantum dots. One type of the most interesting metallic NPs is Au nanorods (AuNRs). Its anisotropic emission accompanied with anisotropic shape is potentially applicable in orientation sensing. Recently, we resolved the 3D orientation of single AuNRs within one frame by deliberately introducing an aberration (slight shift of the dipole away from the focal plane) to the imaging system1 . This defocused imaging technique is based on the electron transition dipole approximation and the fact that the dipole radiation exhibits an angular anisotropy. Since the photoluminescence quantum yield (PLQY) can be enhanced by the "lightning rod effect" (at a sharp angled surface) and localized SPR modes, that of the single Au nano-bipyramid (AuNB) with more sharp tips or edges was found to be doubled comparing to AuNRs with a same effective size2. Here, with a 532 nm excitation, we find that the PL properties of individual AuNBs can be described by three perpendicularly-arranged dipoles (with different ratios). Their PL defocused images are bright, clear and exhibit obvious anisotropy. These properties suggest that AuNBs are excellent candidates for orientation sensing labels in single molecule detections.

  2. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    Science.gov (United States)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to

  3. Orientation correlations in metal structures from the micrometer to nanometer range

    DEFF Research Database (Denmark)

    Juul Jensen, D.; Bowen, Jacob R.; Mishin, Oleg

    2005-01-01

    Distributions of boundary misorientations in aluminium are measured as a function of deformation for strains up to 10. These experimental distributions are compared to misorientation distributions generated from a random mix of orientations present in the microstructure. It is found that for all ...

  4. Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

    Directory of Open Access Journals (Sweden)

    Surma S.A.

    2015-06-01

    Full Text Available Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.

  5. A kinetic Monte Carlo method for the simulation of massive phase transformations

    International Nuclear Information System (INIS)

    Bos, C.; Sommer, F.; Mittemeijer, E.J.

    2004-01-01

    A multi-lattice kinetic Monte Carlo method has been developed for the atomistic simulation of massive phase transformations. Beside sites on the crystal lattices of the parent and product phase, randomly placed sites are incorporated as possible positions. These random sites allow the atoms to take favourable intermediate positions, essential for a realistic description of transformation interfaces. The transformation from fcc to bcc starting from a flat interface with the fcc(1 1 1)//bcc(1 1 0) and fcc[1 1 1-bar]//bcc[0 0 1-bar] orientation in a single component system has been simulated. Growth occurs in two different modes depending on the chosen values of the bond energies. For larger fcc-bcc energy differences, continuous growth is observed with a rough transformation front. For smaller energy differences, plane-by-plane growth is observed. In this growth mode two-dimensional nucleation is required in the next fcc plane after completion of the transformation of the previous fcc plane

  6. Electronic and thermodynamic properties of transition metal elements and compounds

    International Nuclear Information System (INIS)

    Haeglund, J.

    1993-01-01

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC 1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  7. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  8. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  9. Determinants of adherence to therapies among Malaysian women with breast cancer: MyBCC Cohort

    Directory of Open Access Journals (Sweden)

    Mao Li Cheng

    2017-12-01

    Full Text Available Background: Breast cancer therapies have been progressively advancing to improve the breast cancer survival over the last few decades. However, non-adherence to cancer treatments has shown to be associated with reduced treatment effectiveness, increased mortality, and increased health care costs. The aim of the study is to understand the determinants of adherence to therapies among Malaysian breast cancer patients. Methods: This was a secondary analysis of all newly diagnosed Malaysian breast cancer patients recruited into a prospective cohort study in Universiti Malaya Medical Centre, MyBCC cohort, from 1st February 2012 to 31st December 2015. The MyBCC cohort study has ethics approval, MEC number 896.150. The treatment options (surgery, chemotherapy, radiotherapy, and overall therapies, surgical options, socio-demographic characteristics, clinical signs and symptoms, traditional and complementary medicine, and psychosocial assessments were measured using Hospital Anxiety and Depression Scale (HADS and Multidimensional Scale of Perceived Social Support (MSPSS. Results: In total, 467 patients were analysed. The adherence to surgery was 93.8%, chemotherapy 87.7%, radiotherapy 89.1%, and overall therapies 65.8% respectively. Breast conserving surgery was associated with adherence to surgery compared to mastectomy (adjusted OR 5.48 [95% CI 1.00, 30.09], p = 0.034, radiotherapy (adjusted OR 5.44 [95% CI 1.17, 25.16], p = 0.030 and overall therapies (adjusted OR 2.45 [95% CI 1.04, 5.78], p = 0.041. Time from diagnosis to surgery of less than 60 days was associated with adherence to surgery (adjusted OR 49.98 [95% CI 8.47, 289.05], p less than 0.0001 and overall therapies (adjusted OR 9.38 [95% CI 1.26, 69.73], p = 0.029. Adherence to chemotherapy associated with no surgery (adjusted OR 0.15 [95% CI 0.03, 0.70], p = 0.016. Adherence to radiotherapy was associated with financial reimbursement (adjusted OR 4.34 [95% CI 1.03, 18.26], p = 0.045 and

  10. Impact of incomplete metal coverage on the electrical properties of metal-CNT contacts: A large-scale ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Fediai, Artem, E-mail: artem.fediai@nano.tu-dresden.de; Ryndyk, Dmitry A. [Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Seifert, Gotthard [Theoretical Chemistry, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden (Germany); Mothes, Sven; Schroter, Michael; Claus, Martin [Chair for Electron Devices and Integrated Circuits, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden (Germany)

    2016-09-05

    Using a dedicated combination of the non-equilibrium Green function formalism and large-scale density functional theory calculations, we investigated how incomplete metal coverage influences two of the most important electrical properties of carbon nanotube (CNT)-based transistors: contact resistance and its scaling with contact length, and maximum current. These quantities have been derived from parameter-free simulations of atomic systems that are as close as possible to experimental geometries. Physical mechanisms that govern these dependences have been identified for various metals, representing different CNT-metal interaction strengths from chemisorption to physisorption. Our results pave the way for an application-oriented design of CNT-metal contacts.

  11. Effective Technology for Recycling Metal. Proceedings of Two Special Workshops.

    Science.gov (United States)

    National Association of Secondary Material Industries, Inc., New York, NY.

    The National Association of Secondary Material Industries (NASMI) and the Bureau of Mines have cooperated to sponsor two technically-oriented workshops related to the role of metals recycling and air pollution control technology. The proceedings of these workshops, "Effective Technology and Research for Scrap Metal Recycling" and "Air Pollution…

  12. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Science.gov (United States)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  13. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  14. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    Science.gov (United States)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-03-01

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  15. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    International Nuclear Information System (INIS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-01-01

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain

  16. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-03-28

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  17. Radiation hardening and embrittlement of some refractory metals and alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.; Pokrovskyb

    2007-01-01

    Tungsten is proposed for application in the ITER divertor and limiter as plasma facing material. The tungsten operation temperature in the ITER divertor is relatively high. Hence, the ductile properties of tungsten will be controlled by the low temperature radiation embrittlement. The mechanism of radiation hardening and embrittlement under neutron irradiation at low temperature is well studied for FCC metals, in particular for copper. At the same time, low-temperature radiation hardening of BCC materials, in particular for refractory metals, is less studied. This study presents the results of investigation into radiation hardening and embrittlement of pure metals: W, Mo and Nb, and W-Re and Ta-4W alloys. The materials were in the annealed conditions. The specimens were irradiated in the SM-2 reactor to doses of 10 -4 -10 -1 dpa at 80 C and then tested for tension at 80 C. The study of the stress-strain curves of unirradiated specimens revealed a yield drop for W, Mo, Nb, Ta-4W, W-Re. After the yield drop some metals (Mo,Nb) retain their capability for strain hardening and demonstrate a high elongation (20-50%). Radiation hardening is maximum in Mo (∝400MPa) and minimum in Nb (∝100 MPa). In this case the dependence slope for Nb is similar to that for pure copper irradiated in SM-2 under the same conditions. Ii and Ta-4W have a higher slope. Measurement of electrical resistivity of irradiated specimens showed that for all materials it is increased monotonously with an increase in the irradiation dose. A minimum gain in electrical resistivity with a dose was observed for Nb (∝3% at 0.1 dpa). As for Mo it was essentially higher, i.e. ∝ 30%. The gain was maximum for W-Re alloy. Comparison of radiation hardening dose dependencies obtained in this study with the data for FCC metals (Cu) showed that in spite of the quantitative difference the qualitative behavior of these two classes of metals is similar. (orig.)

  18. Twinning anisotropy of tantalum during nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Saurav, E-mail: S.GOEL@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom); Beake, Ben [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dalton Research Institute, Manchester Metropolitan University, Manchester, M15GD (United Kingdom); Chan, Chi-Wai [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom); Haque Faisal, Nadimul [School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ (United Kingdom); Dunne, Nicholas [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom)

    2015-03-11

    Unlike other BCC metals, the plastic deformation of nanocrystalline Tantalum (Ta) during compression is regulated by deformation twinning. Whether or not this twinning exhibits anisotropy was investigated through simulation of displacement-controlled nanoindentation test using molecular dynamics (MD) simulation. MD data was found to correlate well with the experimental data in terms of surface topography and hardness measurements. The mechanism of the transport of material was identified due to the formation and motion of prismatic dislocations loops (edge dislocations) belonging to the 1/2〈111〉 type and 〈100〉 type Burgers vector family. Further analysis of crystal defects using a fully automated dislocation extraction algorithm (DXA) illuminated formation and migration of twin boundaries on the (110) and (111) orientation but not on the (010) orientation and most importantly after retraction all the dislocations disappeared on the (110) orientation suggesting twinning to dominate dislocation nucleation in driving plasticity in tantalum. A significant finding was that the maximum shear stress (critical Tresca stress) in the deformation zone exceeded the theoretical shear strength of Ta (Shear modulus/2π~10.03 GPa) on the (010) orientation but was lower than it on the (110) and the (111) orientations. In light of this, the conventional lore of assuming the maximum shear stress being 0.465 times the mean contact pressure was found to break down at atomic scale.

  19. Organic/metal interfaces. Electronic and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Duhm, Steffen

    2008-07-17

    This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron acceptors, (iii) the role of thermodynamic equilibrium at organic/ organic homo-interfaces and (iv) the correlation of interfacial electronic structure and bonding distance. To address these issues a broad experimental approach was necessary: mainly ultraviolet photoelectron spectroscopy was used, supported by X-ray photoelectron spectroscopy, metastable atom electron spectroscopy, X-ray diffraction and X-ray standing waves, to examine vacuum sublimed thin films of conjugated organic molecules (COMs) in ultrahigh vacuum. (i) A novel approach is presented to explain the phenomenon that the ionization energy in molecular assemblies is orientation dependent. It is demonstrated that this is due to a macroscopic impact of intramolecular dipoles on the ionization energy in molecular assemblies. Furthermore, the correlation of molecular orientation and conformation has been studied in detail for COMs on various substrates. (ii) A new approach was developed to tune hole injection barriers ({delta}{sub h}) at organic/metal interfaces by adsorbing a (sub-) monolayer of an organic electron acceptor on the metal electrode. Charge transfer from the metal to the acceptor leads to a chemisorbed layer, which reduces {delta}{sub h} to the COM overlayer. This concept was tested with three acceptors and a lowering of {delta}{sub h} of up to 1.2 eV could be observed. (iii) A transition from vacuum-level alignment to molecular level pinning at the homo-interface between a lying monolayer and standing multilayers of a COM was observed, which depended on the amount of a pre-deposited acceptor. The

  20. Orientation control of chemical solution deposited LaNiO3 thin films

    International Nuclear Information System (INIS)

    Ueno, Kengo; Yamaguchi, Toshiaki; Sakamoto, Wataru; Yogo, Toshinobu; Kikuta, Koichi; Hirano, Shin-ichi

    2005-01-01

    High quality LaNiO 3 (LNO) thin films with preferred orientation could be synthesized on Pt/Ti/SiO 2 /Si substrates at 700 deg. C using the chemical solution deposition method. The homogeneous and stable LNO precursor solutions were prepared using lanthanum isopropoxide and nickel (II) acetylacetonate in a mixed solvent of absolute ethanol and 2-methoxyethanol. The oriented LNO thin films exhibit metallic electro-conduction, and their resistivity at room temperature is sufficiently low for making them an alternative electrode material for functional ceramic thin films

  1. Growth of vertically oriented InN nanorods from In-rich conditions on unintentionally patterned sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Terziyska, Penka T., E-mail: pterziy1@lakeheadu.ca [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); Butcher, Kenneth Scott A. [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); MEAglow Ltd., Box 398, 2400 Nipigon Road, Thunder Bay, ON P7C4W1 (Canada); Rafailov, Peter [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Alexandrov, Dimiter [Semiconductor Research Laboratory, Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 (Canada); MEAglow Ltd., Box 398, 2400 Nipigon Road, Thunder Bay, ON P7C4W1 (Canada)

    2015-10-30

    Highlights: • Vertical InN nanorods are grown on selective areas of sapphire substrates. • In metal droplets nucleate on the sharp needle apexes on the selective areas. • The preferred orientation and the growth direction of the nanorods are (0 0 0 1). • The nanorods grow from the supersaturated indium melt on their tops. - Abstract: Vertically oriented InN nanorods were grown on selective areas of unintentionally patterned c-oriented sapphire substrates exhibiting sharp needles that preferentially accommodate In-metal liquid droplets, using Migration Enhanced Afterglow (MEAglow) growth technique. We point out that the formation of AlN needles on selected areas can be reproduced intentionally by over-nitridation of unmasked areas of sapphire substrates. The liquid indium droplets serve as a self-catalyst and the nanorods grow from the supersaturated indium melt in the droplet in a vertical direction. X-ray diffraction measurements indicate the presence of hexagonal InN only, with preferred orientation along (0 0 0 1) crystal axis, and very good crystalline quality. The room temperature Raman spectrum shows the presence of the A{sub 1}(TO), E{sub 2}(high) and A{sub 1}(LO) phonon modes of the hexagonal InN.

  2. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    International Nuclear Information System (INIS)

    Kikel, J.M.; Parker, D.M.

    1998-01-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC

  3. Study of the embedded atom method of atomistic calculations for metals and alloys. Final report, March 1, 1986--February 29, 1992

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1992-04-01

    Solids have been studied by atomistic modeling since the earliest availability of computers for scientific research. By the mid sixties, it was understood that models for metals based on reasonably short ranged two-body forces coupled with a global volume dependent contribution to the crystal energy yielded surprisingly good results for bulk calculations, but were unsatisfactory at surfaces. Little progress was made until the early eighties, when Daw and Baskes developed the Embedded-Atom Method (EAM) based on density functional theory and intended primarily for tight-packed transitional metals, and Finnis and Sinclair developed a model based on tight binding theory and intended primarily for bcc transition metals. The underlying mathematical format of both approaches is the same, and provides an extension of the earlier models through a function which in practice provides a measure of local volume dependence. The primary purpose of this research project was to investigate the implications of this mathematical format and to use the resulting insight to correlate the known physical input data with computed results of properties that are difficult to access experimentally. Embedded-Atom Method terminology is used, but this research is applicable as well to the Finnis-Sinclair model

  4. The electronic structure and bonding of a H-H pair in the vicinity of a BCC Fe bulk vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Juan, A.; Pistonesi, C.; Brizuela, G. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Departamento de Fisica; Garcia, A.J. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Departamento de Ciencias de la Computacion

    2003-09-01

    The H-Fe interaction near a bcc Fe vacancy is analysed using a semi-empirical theoretical method. Calculations were performed using a Fe{sub 86} cluster with a vacancy. Hydrogen atoms are positioned in their local energy minima configurations. Changes in the electronic structure of Fe atoms near a vacancy were analysed for the system without H, with one H and with two H atoms. Fe atoms surrounding the vacancy weaken their bond when hydrogen is present. This is due to the formation of H-Fe bonds. Hydrogen influences only its nearest-neighbour Fe atoms. The H-H interaction was also analysed. For H-H distance of 0.82 Angstrom an H-H association is formed, while H-Fe interaction and Fe-Fe weakening is markedly reduced, when compared with other H-H interactions. (author)

  5. Effect of thermal friction on the generation and transport of interstitial defects in irradiated metals

    CERN Document Server

    Dudarev, S L

    2002-01-01

    Generation of interstitial and vacancy defects under 14.1 MeV neutron irradiation is expected to drive the evolution of microstructure of materials in a future fusion power station. We investigate effects of thermal friction associated with the interaction between mobile clusters of interstitial atoms produced in collision cascades and phonon excitations. Phonons give rise to the random Brownian motion of clusters in the crystal lattice. Phonon excitations are also responsible for the dissipation of energy of rapidly moving clusters formed at the periphery of collision cascades. We investigate how the coefficient of thermal friction depends on the structure of clusters. We also discuss implications of our findings for understanding the origin of higher resistance of bcc metals to irradiation and the connection between this phenomenon and the long-range effect observed in experiments on ion implantation.

  6. Cr interaction in the formation of nano cluster of Y, Ti and O in bcc Fe an ab initio study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharath; Sundar, C.S.

    2008-01-01

    Nanostructured ferritic alloys containing highly stable fine dispersion of yttrium oxide nano particles, produced by mechanical alloying, are promising structural materials for fast fission and fusion environments. Formation of Cr depleted and O enriched Y-Ti-O nanoclusters are observed in the atom probe analysis. Ab initio calculations based on density functional theory are carried out to understand the role of Cr atom interactions with other solute atoms (Y, Ti, O) and vacancies in the formation of nanocluster. The binding energy of clusters of Y-Ti-O in bcc Fe is found to be very high in the presence of vacancies. Our calculations are consistent with the atom probe observation of depletion of Cr atoms and enrichment of O atoms in the nanoclusters. (author)

  7. Beyond chemical accuracy: The pseudopotential approximation in diffusion Monte Carlo calculations of the HCP to BCC phase transition in beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Shulenburger, Luke [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Motivated by the disagreement between recent diffusion Monte Carlo calculations of the phase transition pressure between the ambient and beta-Sn phases of silicon and experiments, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an opportunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation and after removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.

  8. The crystallographic structure of the air-grown oxide on depleted uranium metal

    International Nuclear Information System (INIS)

    Jones, Christopher P.; Petherbridge, James R.; Davis, Sean A.; Jones, Jonathon A.; Scott, Thomas B.

    2016-01-01

    Highlights: • Oxidation of depleted uranium coupons under ambient conditions and 150 °C. • Oxide characterised using SEM, TEM and electron backscatter diffraction analysis, • Layer comprises of UO 2 crystallites 12 nm in diameter. • Preferred [110] growth direction normal to the surface of the metal. • Oxide growth direction is independent of the underlying crystal orientation. - Abstract: Oxide formation on depleted uranium metal was investigated using a combination of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) characterisation. Diffraction analysis of the oxide revealed an FCC crystalline formation of UO 2 crystallites whilst TEM data indicated an average grain size of 12 nm with a standard deviation of 3.8 nm. EBSD analysis revealed a preferential texture of [110] normal to the surface of the metal. This data implied that lattice matching between the oxide and the underlying metal did not occur, therefore, the observed preferential growth direction is independent of the underlying crystal orientation.

  9. Standard practice for detection sensitivity mapping of In-Plant Walk-through metal detectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This standard practice covers a procedure for determining the weakest detection path through the portal aperture and the worst-case orthogonal orientation of metallic test objects. It results in detection sensitivity maps, which model the detection zone in terms related to detection sensitivity and identify the weakest detection paths. Detection sensitivity maps support sensitivity adjustment and performance evaluation procedures (see Practices C1269 and C1309). Note 1—Unsymmetrical metal objects possessing a primary longitudinal component, such as handguns and knives, usually have one particular orientation that produces the weakest detection signal. The orientation and the path through the detector aperture where the weakest response is produced may not be the same for all test objects, even those with very similar appearance. Note 2—In the case of multiple specified test objects or for test objects that are orientation sensitive, it may be necessary to map each object several times to determine ...

  10. Neutron and PIMC determination of the longitudinal momentum distribution of HCP, BCC and normal liquid 4He

    International Nuclear Information System (INIS)

    Blasdell, R.C.; Ceperley, D.M.; Simmons, R.O.

    1993-07-01

    Deep inelastic neutron scattering has been used to measure the neutron Compton profile (NCP) of a series of condensed 4 He samples at densities from 28.8 atoms/nm 3 (essentially the minimum possible density in the solid phase) up to 39.8 atoms/nm 3 using a chopper spectrometer at the Argonne National Laboratory Intense Pulsed Neutron Source. At the lowest density, the NCP was measured along an isochore through the hcp, bcc, and normal liquid phases. Average atomic kinetic energies are extracted from each of the data sets and are compared to both published and new path integral Monte-Carlo (PIMC) calculations as well as other theoretical predictions. In this preliminary analysis of the data, account is taken of the effects of instrumental resolution, multiple scattering, and final-state interactions. Both our measurements and the PIMC theory show that there are only small differences in the kinetic energy and longitudinal momentum distribution of isochoric helium samples, regardless of their phase or crystal structure

  11. Method for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  12. Crystallographic Orientation Determination of Hexagonal Structure Crystals by Laser Ultrasonic Technique

    International Nuclear Information System (INIS)

    Li, W; Coulson, J; Marrow, P; Smith, R J; Clark, M; Sharples, S D; Lainé, S J

    2016-01-01

    Spatially resolved acoustic spectroscopy (SRAS) is a laser ultrasonic technique that shows qualitative contrast between grains of different orientation, illustrating the sensitivity of acoustic waves to the material structure. The technique has been improved significantly on determining the full orientation of multigrain cubic metals, by comparing the measured surface acoustic wave (SAW) velocity to a pre-calculated model. In this paper we demonstrate the ability of this technique to determine the orientation of hexagonal structure crystals, such as magnesium and titanium based alloys. Because of the isotropy of the SAW velocity on the basal plane (0001) of hexagonal crystals, the slowness surface is shown as a circle. As the plane moves from (0001) towards (112-bar0) or towards (101-bar0), the slowness surface gradually turns into an oval. These acoustic properties increase the difficulty in orientation determination. The orientation results of a grade 1 commercially pure titanium by SRAS is presented, with comparison with electron backscattered diffraction (EBSD) results. Due to the nature of SAWs on hexagonal structure crystals, only the results of Euler angles 1 and 2 are discussed. The error between SRAS and EBSD is also investigated. (paper)

  13. Evolution of Non-metallic Inclusions and Precipitates in Oriented Silicon Steel

    Science.gov (United States)

    Luo, Yan; Yang, Wen; Ren, Qiang; Hu, Zhiyuan; Li, Ming; Zhang, Lifeng

    2018-06-01

    The evolution of inclusions in oriented silicon steel during the manufacturing process was carried out by chemical composition analysis, non-aqueous electrolytic corrosion, and thermodynamic calculation. The morphology, composition, and size of inclusions were analyzed introducing field emission scanning electron microscope. The oxides were mainly formed during the secondary refining, and the nitrides, sulfides, and compounds were formed during the solidification and cooling of steel in the processes of continuous casting and hot rolling.

  14. Entrepreneurial orientation, market orientation, and competitive environment

    DEFF Research Database (Denmark)

    Sørensen, Hans Eibe; Cadogan, John W.

    This study sheds light on the role that the competitive environment plays in determining how elements of market orientation and elements of entrepreneurial orientation interact to influence business success. We develop a model in which we postulate that market orientation, entrepreneurial...... orientation, and competitive environment shape business performance via a three-way interaction. We test the model using primary data from the CEOs of 270 CEO of manufacturing firms, together with secondary data on these firms' profit performance. An assessment of the results indicates that customer...... orientation moderates the positive relationships between the competitiveness element of entrepreneurial orientation and market share and return on assets (ROA): the positive relationships between competitiveness and market share and competitiveness and ROA become stronger the greater the firms' customer...

  15. Development of a new formulation of interferons (HEBERPAG for BCC treatment

    Directory of Open Access Journals (Sweden)

    Bello-Rivero I

    2013-12-01

    Full Text Available Purpose: This work is aimed to show briefly, the clinical development of a new pharmaceutical formulation of interferons for the treatment of basal cell carcinoma. Methods: A rationale design of the combination of IFN-α2b and -γ based in their anti-proliferative synergism on several tumors cell lines identified adequate proportions to be combined to obtain the best clinical results. The potential mechanism of antitumoral effect was studied by qPCR mRNA quantification. HEBERPAG (anti-proliferative synergistic combination of co-formulated recombinant interferons-α2b and –γ was used in clinical trials in adult patients with non-melanoma skin cancer. Trials were conducted after approval by the ethics review boards of the institutions participating in trials; and the patients gave their written informed consent to be enrolled in the studies and receive HEBERPAG. Results: HEBERPAG inhibits the proliferation of several tumor cell lines in vitro and in vivo. The combination has improved pharmacodinamic properties. Several clinical trials have demonstrated the efficacy of HEBERPAG in BCC, with excellent cosmetic effect and well tolerable, mild side effects. HEBERPAG was approved by State Control Center for Drug, Medical Equipment and Devises in Cuba, for the treatment of basal cell carcinoma of any subtype, size and localization, and adjuvant to other treatments, surgical or not. After 3-year follow-up, a recurrence rate of 0.03% was detected in treated patients. Conclusions: HEBERPAG is a novel formulation of IFNs, more potent than separated IFNs for the treatment of basal cell carcinoma, with more rapid and prolonged clinical effect and excellent cosmetic effect and safety profile.

  16. The new nuclear orientation facility at Charles University Prague

    International Nuclear Information System (INIS)

    Rotter, M.; Hubalovsky, S.; Trhlik, M.; Janotova, J.; Dupak, J.; Srnka, A.; Forget, P.; Pari, P.

    1996-01-01

    The Nuclear Orientation facility for solid state physics investigations was installed at the Department of Low Temperature Physics of the Faculty of Mathematics and Physics, Charles University. The small 'top loaded' dilution refrigerator is used for cooling radioactive metallic samples to 10 mK in 4 T magnetic field. The construction and thermodynamic parameters of the 'French type' refrigerator working without 1 K precooling stage are described. (author)

  17. Proceedings of the 4th seminar of R and D on advanced ORIENT 'strategy and technical requirement for new resource of noble metals in advanced atomic energy science'

    International Nuclear Information System (INIS)

    Sasaki, Yuji; Koyama, Shinichi; Ozawa, Masaki

    2010-12-01

    The 4th Seminar of R and D on advanced ORIENT, 'Strategy and technical requirement for new resource of noble metals in advanced atomic energy science' was held in Swany hall, Rokkasho-Mura, on July 30th, 2010 organized by Japan Atomic Energy Agency. The first meeting of this seminar was held at Oarai, Ibaraki on May, 2007, the second seminar was held at Tokai, on November, 2008, and the third seminar was held at Sendai, on October, 2009. Spent nuclear fuel should be recognized as not only mass of radioactive elements but also potentially useful materials including platinum metals and rare earth elements. Taking the cooperation with universities related companies and research institutes, into consideration, we aimed at expanding and progressing the basic researches. In this seminar, there are many poster presentation included, and the useful discussion with many students are performed. This report records abstracts and figures submitted from the oral speakers in this seminar. (author)

  18. Proceedings of the 4th seminar of R and D on advanced ORIENT 'strategy and technical requirement for new resource of noble metals in advanced atomic energy science'

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yuji; Koyama, Shinichi; Ozawa, Masaki [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, Tokai, Ibaraki (Japan)

    2010-12-15

    The 4th Seminar of R and D on advanced ORIENT, 'Strategy and technical requirement for new resource of noble metals in advanced atomic energy science' was held in Swany hall, Rokkasho-Mura, on July 30th, 2010 organized by Japan Atomic Energy Agency. The first meeting of this seminar was held at Oarai, Ibaraki on May, 2007, the second seminar was held at Tokai, on November, 2008, and the third seminar was held at Sendai, on October, 2009. Spent nuclear fuel should be recognized as not only mass of radioactive elements but also potentially useful materials including platinum metals and rare earth elements. Taking the cooperation with universities related companies and research institutes, into consideration, we aimed at expanding and progressing the basic researches. In this seminar, there are many poster presentation included, and the useful discussion with many students are performed. This report records abstracts and figures submitted from the oral speakers in this seminar. (author)

  19. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  20. On the Secrecy Capacity Region of the Block-Fading BCC with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2017-02-07

    In this work, we examine the secrecy capacity region of the block-fading broadcast channel with confidential messages (BCC) when the transmitter has limited knowledge of the channel. In particular, we consider a two-user communication system where the transmitter has one common message to be transmitted to both users and one confidential message intended to only one of them. The confidential message has to be kept secret from the other user to whom the information is not intended. The transmitter is not aware of the channel state information (CSI) of neither channel and is only provided by limited CSI feedback sent at the beginning of each fading block. Assuming an error-free feedback link, we characterize the secrecy capacity region of this channel and show that even with a 1-bit CSI feedback, a positive secrecy rate can still be achieved. Then, we look at the case where the feedback link is not error- free and is rather a binary erasure channel (BEC). In the latter case, we provide an achievable secrecy rate region and show that as long as the erasure event is not a probability 1 event, the transmitter can still transmit the confidential information with a positive secrecy rate.

  1. Strain Fields And Crystallographic Characteristics Of Interstitial Dislocation Loops of Various Geometry In BCC Iron

    International Nuclear Information System (INIS)

    Sivak, Alexander B.; Chernov, Viatcheslav M.; Romanov, Vladimir A.

    2008-01-01

    The formation energy, the relaxation volume, the dipole-force tensor, the self strain tensor and strain fields of interstitial dislocation loops in bcc iron (clusters of self interstitial atoms) have been calculated by molecular statics. Hexagonal and square dislocation loops of different types with different Burgers vectors, directions of dislocation segments and habit planes containing up to ∼2500 self-interstitials have been considered. Analytical expressions describing size dependence of the formation energy, the relaxation volume and the self strain tensor for the loops stated have been obtained. The most energetically favorable loops are hexagonal loops with Burgers vector a/2 and habit plane {11x}, where x takes values in the range from 0 to 1 depending on the loop size. The formation energy of a loops with and dislocation segments is ∼14% and 23% greater than that of hexagonal a/2 loops at N>500, respectively. The analysis of the formation energies of a/2 and a loops demonstrated that the nucleation of an a loop by joining of two a/2 loops is possible when the total number of constituent self-interstitials in these loops is larger than 13

  2. In situ control of As dimer orientation on Ge(100) surfaces

    International Nuclear Information System (INIS)

    Brückner, Sebastian; Döscher, Henning; Supplie, Oliver; Luczak, Johannes; Barrigón, Enrique; Rey-Stolle, Ignacio; Kleinschmidt, Peter; Hannappel, Thomas

    2012-01-01

    We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As 4 during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100):As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100):As surfaces.

  3. In situ control of As dimer orientation on Ge(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, Sebastian; Doescher, Henning [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Technische Universitaet Ilmenau, Institut fuer Physik, Postfach 10 05 65, 98684 Ilmenau (Germany); Supplie, Oliver; Luczak, Johannes [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Barrigon, Enrique; Rey-Stolle, Ignacio [Instituto de Energia Solar, Universidad Politecnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Kleinschmidt, Peter [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); CiS Forschungsinstitut fuer Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Strasse 14, 99099 Erfurt (Germany); Hannappel, Thomas [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Technische Universitaet Ilmenau, Institut fuer Physik, Postfach 10 05 65, 98684 Ilmenau (Germany); CiS Forschungsinstitut fuer Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Strasse 14, 99099 Erfurt (Germany)

    2012-09-17

    We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As{sub 4} during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100):As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100):As surfaces.

  4. Investigation of the role of grain boundary on the mechanical properties of metals

    International Nuclear Information System (INIS)

    Kheradmand, Nousha; Barnoush, Afrooz; Vehoff, Horst

    2010-01-01

    Compression testing of micropillars was used to investigate the gain boundary effect on the strength of metals which is especially interesting in ultra fine grained and nanocrystalline metals. Single and bicrystal micropillars of different sizes and crystallographic orientations were fabricated using a focused ion beam system and the compression test was performed with a nanoindenter. A reduction of the pillar size as well as the introduction of a grain boundary results in an increase in the yield strength. The results show that the size and the orientation of different adjoining crystals in bicrystalline pillars have an obvious effect on dislocation nucleation and multiplication.

  5. Trees as bioindicator of heavy metal pollution in three European cities

    Energy Technology Data Exchange (ETDEWEB)

    Sawidis, T. [Department of Botany, University of Thessaloniki, 54124 Thessaloniki (Greece); Breuste, J., E-mail: juergen.breuste@sbg.ac.at [Department of Geography and Geology, University of Salzburg, 5010 Salzburg (Austria); Mitrovic, M.; Pavlovic, P. [Department of Ecology, Institute for Biological Research ' Sinisa Stankovic' , University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade (Serbia); Tsigaridas, K. [Department of Botany, University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-12-15

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution. - Highlights: > Oriental plane and Austrian pine are suitable for comparative urban air quality biomonitoring of heavy metal pollution. > Pine tree is excellently suitable as urban bioindicator as it accumulates high concentrations of trace metals. > The highest heavy metal pollution was found in Belgrade followed by Thessaloniki and Salzburg. - Oriental plane (Platanus orientalis L.) and Austrian pine (Pinus nigra Arn.), widespread in urban northern and southern Europe, are suitable for comparative biomonitoring of urban air pollution.

  6. Trees as bioindicator of heavy metal pollution in three European cities

    International Nuclear Information System (INIS)

    Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K.

    2011-01-01

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution. - Highlights: → Oriental plane and Austrian pine are suitable for comparative urban air quality biomonitoring of heavy metal pollution. → Pine tree is excellently suitable as urban bioindicator as it accumulates high concentrations of trace metals. → The highest heavy metal pollution was found in Belgrade followed by Thessaloniki and Salzburg. - Oriental plane (Platanus orientalis L.) and Austrian pine (Pinus nigra Arn.), widespread in urban northern and southern Europe, are suitable for comparative biomonitoring of urban air pollution.

  7. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  8. SEM evaluation of metallization on semiconductors. [Scanning Electron Microscope

    Science.gov (United States)

    Fresh, D. L.; Adolphsen, J. W.

    1974-01-01

    A test method for the evaluation of metallization on semiconductors is presented and discussed. The method has been prepared in MIL-STD format for submittal as a proposed addition to MIL-STD-883. It is applicable to discrete devices and to integrated circuits and specifically addresses batch-process oriented defects. Quantitative accept/reject criteria are given for contact windows, other oxide steps, and general interconnecting metallization. Figures are provided that illustrate typical types of defects. Apparatus specifications, sampling plans, and specimen preparation and examination requirements are described. Procedures for glassivated devices and for multi-metal interconnection systems are included.

  9. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  10. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  11. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close...

  12. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys

    International Nuclear Information System (INIS)

    Chou, H.-P.; Chang, Y.-S.; Chen, S.-K.; Yeh, J.-W.

    2009-01-01

    Al x CoCrFeNi (0 ≤ x ≤2) alloys were prepared by an arc remelter and investigated. With increasing x, the Al x CoCrFeNi alloys change from single FCC phase to single BCC phase with a transition duplex FCC/BCC region. The weak X-ray diffraction intensities indicate severe X-ray scattering effect of lattice in these high-entropy alloys. Electrical conductivity and thermal conductivity much smaller than those of pure component metals is ascribed as due to this lattice effect. The behavior of electrical conductivity and thermal conductivity can be divided into three parts according to microstructure. Both values of electrical conductivity and thermal conductivity decrease with increasing x in single-phase regions. Values of electrical conductivity and thermal conductivity are even higher than those in the duplex phase region because of the additional scattering effect of FCC/BCC phase boundaries in the alloys. Relative contribution of electron and phonon to electrical resistivity and thermal conductivity is evaluated in this study. It is shown that both electron and phonon components are comparable in these high-entropy alloys, and their transport properties are similar to that of semi-metal.

  13. Electroplastic effect in metals

    International Nuclear Information System (INIS)

    Sprecher, A.F. Jr.

    1984-01-01

    This report presents the effects of single d-c current pulses (1000-6000 A/mm 2 approx.60 μs) on plastically deforming metals. Polycrystalline wire specimens (D 0 approx. 1/2 mm, L 0 approx. 50 mm) representing the three more common crystal structures were employed: Ti from the HCP structures; Fe, Nb, and W from the bcc structure; and Al, Cu, and Ni from the fcc structure. The tests were carried out under uniaxial tension with an applied strain rate of 1.7 x 10 -4 sec -1 at room temperature. Forced air cooling was employed in order to reduce the principal side effect, heating. As a result of applying a current pulse, there were significant drops in the flow stress (1-35%). These drops not only included an electron dislocation interaction but all side effects as well. The main side effect due to the temperature rise was thermal expansion and could account for 60-90% of the drops. In addition to thermal expansion, some thermally induced plastic flow occurred as indicated by computer simulations. The total side effects (thermal expansion and plastic flow) approximately accounted for the stress drops in Ti, W, and Nb. However, a strong electron dislocation (ed) interaction was observed in Cu and Al since plastic flow from thermal effects was negligible. In Ni and Fe the portion of the stress drops due to (ed) was unclear due to some dynamic aging effects present

  14. Chemicals, metals, and pesticide pits waste unit low induction number electromagnetic survey

    Energy Technology Data Exchange (ETDEWEB)

    Cumbest, R.J.; Mohon, D.

    1995-06-01

    An electromagnetic survey was conducted at the Chemicals, Metals, and Pesticide Waste Unit to identify any buried metallic objects that may be present in the materials used to fill and cover the pits after removal of pit debris. The survey was conducted with a Geonics EM-31 Terrain Conductivity Meter along north - south oriented traverses with 5-ft station intervals to produce a 5-ft by 5-ft square grid node pattern. Both conductivity and in-phase components were measured at each station for vertical dipole orientation with the common axis of the dipoles in the north - south and east - west orientations. The conductivity data clearly show elevated conductivities (2.1 to 7.0 mS/m) associated with the material over the pits, as compared with the surrounding area that is characterized by lower conductivities (1 to 2 mS/m). This is probably the result of the higher clay content of the fill material relative to the surrounding area, which has a higher sand to clay ratio and the presence of a plastic cover beneath the fill that has probably trapped water. Many metal objects are present in the survey area including manhole covers, monitoring well heads, metal, signs, drain culverts, abandoned wells, and BP waste unit marker balls. AU of these exhibit associated conductivity and in-phase anomalies of various magnitude. In addition to these anomalies that can be definitely associated with surface sources, conductivity and in-phase anomalies are also present with no obvious surface source. These anomalies are probably indicative of subsurface buried metallic objects. A high concentration of these objects appears to be present in the southwest corner of the survey area.

  15. Shear-induced partial translational ordering of a colloidal solid

    Science.gov (United States)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  16. A multi-component Zr alloy with comparable strength and Higher plasticity than Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Ma, M.Z.; Jing, R.; Yu, P.F.; Zhang, Y.F.; Wang, B.A.; Liu, R.P.

    2013-01-01

    Zirconium (Zr)-based bulk metallic glass possesses the highest potential as a structural material among metallic glasses. Although Zr-based bulk metallic glass exhibits extremely high strength, its potential application has been restricted by a number of issues, such as fragility, small size, difficult fabrication into different shapes and poisonous beryllium content, among others. In this paper, a Zr-based crystal alloy with comparable strength and higher plasticity than Zr-based bulk metallic glass is presented. The proposed Zr-based alloy has a tensile strength greater than 1600 MPa. That value is comparable to the 1500 MPa to 2000 MPa strength of Zr-based bulk metallic glasses (BMGs). The ductility in terms of elongation reached 6.2%; at the same time, the 1400 MPa tensile strength was retained. This phenomenon is not possible for Zr-based BMGs. XRD results show that the proposed ultrahigh-strength Zr-based crystal alloy has two-phase structures: an hcp-structured α phase and a bcc-structured β phase. The forged specimen exhibits a typical basket-weave microstructure, which is characterised by the interlaced plate α phase separated from the β phase matrix. Fine, short bar-shaped α phases precipitated along the original β grain boundary together with ultrafine dot-shaped α phases that presented inside the original β grain when the ageing temperature was between 500 °C and 525 °C. As the ageing temperature increased, the dot-shaped α phase grew into plate shapes, decreasing the material's strength and increasing its plasticity. The ultrafine dot-shaped and short bar-shaped α phases in the original β phase matrix are the main strengthening mechanisms of the ultrahigh-strength Zr-based crystal alloy.

  17. SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach

    Science.gov (United States)

    Dendisová-Vyškovská, Marcela; Kokaislová, Alžběta; Ončák, Milan; Matějka, Pavel

    2013-04-01

    Surface-enhanced Raman scattering and in situ surface-enhanced Raman scattering spectra have been collected to study influences of (i) used metal and (ii) applied electrode potential on orientation of adsorbed riboflavin molecules. Special in situ SERS spectroelectrochemical cell was used to obtain in situ SERS spectra of riboflavin adsorbed on silver, gold and copper nanostructured surfaces. Varying electrode potential was applied in discrete steps forming a cycle from positive values to negative and backward. Observed spectral features in in situ SERS spectra, measured at alternate potentials, have been changing very significantly and the spectra have been compared with SERS spectra of riboflavin measured ex situ. Raman spectra of single riboflavin molecule in the vicinity to metal (Ag, Au and Cu) clusters have been calculated for different mutual positions. The results demonstrate significant changes of bands intensities which can be correlated with experimental spectra measured at different potentials. Thus, the orientation of riboflavin molecules adsorbed on metal surfaces can be elucidated. It is influenced definitely by the value of applied potential. Furthermore, the riboflavin adsorption orientation on the surface depends on the used metal. Adsorption geometries on the copper substrates are more diverse in comparison with the orientations on silver and gold substrates.

  18. Direct Observation on Spin-Coating Process of PS- b -P2VP Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiroki; Takenaka, Mikihito; Miyazaki, Tsukasa; Fujiwara, Akihiko; Lee, Byeongdu; Shimokita, Keisuke; Nishibori, Eiji; Takata, Masaki

    2016-05-10

    We studied the structural development of symmetric poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) block copolymers during spin-coating using in situ grazing incidence small angle X-ray scattering (GISAXS) measurements. During the spin-coating process, after the formation of the micelles in dilute solution, the selective solvent induced two kinds of the morphological transition. Firstly, the disordered spherical micelles were transformed into a BCC lattice of spheres of which the (110) plane was oriented perpendicularly to the substrate surface. Secondly, further evaporation induced a transition from spheres on the BCC lattice into cylindrical structures. The orientation of the cylinders perpendicular to the substrate surface was induced by solvent convection perpendicular to the substrate, which occurs during rapid solvent evaporation. After this transition, vitrification of PS and P2VP prevented any further transition from cylinders to the more thermodynamically stable lamellar structures, as are generally observed as the bulk equilibrium state.

  19. Crack growth in Fe-2.7 wt% Si single crystals under cyclic loading and 3D atomistic results in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Landa, Michal; Machová, Anna; Uhnáková, Alena; Pokluda, J.; Lejček, Pavel

    2016-01-01

    Roč. 87, June (2016), s. 63-70 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698; GA ČR GAP108/12/0144; GA ČR(CZ) GA15-20666S; GA ČR GA13-13616S Institutional support: RVO:61388998 ; RVO:68378271 Keywords : grack growth * cyclic loading * Bcc iron Subject RIV: JL - Materials Fatigue, Friction Mechanics; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.899, year: 2016 http://ac.els-cdn.com/S014211231500448X/1-s2.0-S014211231500448X-main.pdf?_tid=96e3e5a0-fb08-11e5-92cb-00000aab0f02&acdnat=1459845181_19fcdd93d31b1f140714e52b835b33d8

  20. Magnetic metallic multilayers

    International Nuclear Information System (INIS)

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons

  1. Purely hopping conduction in c-axis oriented LiNbO3 thin films

    Science.gov (United States)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.

  2. Thermal decomposition of the b.c.c. β-solid solution of titanium alloy containing 6.7 at% Mo, 3 at% Zr, and 1.8 at% Sn. 1

    International Nuclear Information System (INIS)

    Zakharova, M.I.; Khundzhua, A.K.; Kertesz, L.; Szasz, A.

    1981-01-01

    Changes in the crystal structure of the titanium alloy, containing 6.7 at% Mo, 3 at% Zr, and 1.8 at% Sn, during thermal decomposition are followed by means of X-ray and electron diffraction methods. Parallel to these tests the alteration in the electron structure and chemical bonds of the alloy are investigated with the help of the soft-x-ray emission (SXES) method. Attention is focussed on the at room temperature not equilibrated b.c.c. β-solid solution, on the metastable transition phase ω, and on the equilibrium phase α. (author)

  3. Influence of strain and metal thickness on metal-MoS₂ contacts.

    Science.gov (United States)

    Saidi, Wissam A

    2014-09-07

    MoS2 and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS2 contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS2(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS2 heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS2 exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS2 with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  4. Investigation of the origin and distribution of heavy metals around ...

    African Journals Online (AJOL)

    2010-04-28

    Apr 28, 2010 ... JS Ogola1*, HR Mundalamo1 and G Brandl2. 1Department of Mining and ..... CSIR, Environmental Services, Pretoria,. South Africa. ... chemical orientation studies and the platinum potential of Jamaica. Trans. Inst. Min. Metall.

  5. Realization of diverse displays for multiple color patterns on metal surfaces

    International Nuclear Information System (INIS)

    Li, Guoqiang; Li, Jiawen; Hu, Yanlei; Zhang, Chenchu; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao

    2014-01-01

    Highlights: • We have demonstrated that the combined influence of incident white light angle and the ripples orientation on the diversity of structural colors. • Our investigation revealed that multi-patterns constituted by ripples with different orientations could be precisely designed on metal surfaces. • The diverse display for the desired ones can be realized by exquisitely varying the incident light angle and rotating sample angle. - Abstract: Enhanced colors can be formed when white light is irradiated on the surface ripples induced by femtosecond laser. In this paper, we have demonstrated the ability to display the diverse colors by simultaneously adjusting the incident white light angle and the ripples orientation. Furthermore, our investigation revealed that multi-patterns constituted by ripples with different orientations could be designed on metal surfaces. The diverse display for the desired ones can be realized by exquisitely varying the incident light angle and rotating sample angle. More interestingly, it is found that, although the same patterns could be displayed under different conditions, the colors might be different. These findings can provide a novel method to carry and identify high quantity of information, which may find potential applications in the fields of information storage, identifying codes and anti-counterfeiting patterns

  6. History-independent cyclic response of nanotwinned metals

    Science.gov (United States)

    Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei

    2017-11-01

    Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.

  7. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  8. Mechanistic Insights into Growth of Surface-Mounted Metal-Organic Framework Films Resolved by Infrared (Nano-) Spectroscopy

    NARCIS (Netherlands)

    Delen, Guusje; Ristanovic, Zoran; Mandemaker, Laurens D. B.; Weckhuysen, Bert M.

    2018-01-01

    Control over assembly, orientation, and defect-free growth of metal-organic framework (MOF) films is crucial for their future applications. A layer-by-layer approach is considered a suitable method to synthesize highly oriented films of numerous MOF topologies, but the initial stages of the film

  9. Realization of highly crystallographic three-dimensional nanosheets by a stress-induced oriented-diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Gharooni, M.; Hosseini, M.; Mohajerzadeh, S., E-mail: mohajer@ut.ac.ir; Taghinejad, M.; Taghinejad, H. [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of); Abdi, Y. [Nano-Physics Research Lab, Department of Physics, University of Tehran, Tehran 1439955961 (Iran, Islamic Republic of)

    2014-07-28

    Morphologically controlled nanostructures have been increasingly important because of their strongly shape dependent physical and chemical properties. Formation of nanoscale silicon based structures that employ high levels of strain, intentional, and unintentional twins or grain boundaries can be dramatically different from the commonly conceived bulk processes. We report, realization of highly crystallographic 3D nanosheets with unique morphology and ultra-thin thickness by a stress-induced oriented-diffusion method, based on plasma processing of metal layer deposited on Si substrate and its post deep reactive ion etching. Annealing in plasma ambient creates rod-like metal alloy precursors which induce stress at its interface with Si substrate due to the mismatch of lattice constants. This stress opens facilitated gateways for orientated-diffusion of metal atoms in 〈110〉 directions and leads to formation of NSs (nanosheets) with [111] crystalline essence. Nanosheets are mainly triangular, hexagonal, or pseudo hexagonal in shape and their thicknesses are well controlled from several to tens of nanometers. The structural and morphological evolution of features were investigated in detail using transmission electron microscope, atomic force microscope, scanning electron microscope and possible mechanism is proposed to explain the formation of the thermodynamically unfavorable morphology of nanosheets. Significant photoemission capability of NSs was also demonstrated by photoluminescence spectroscopy.

  10. Plastic flow and preferred orientation in molybdenum and zirconium films

    International Nuclear Information System (INIS)

    Window, B.

    1989-01-01

    X-ray diffraction measurements on samples of molybdenum and zirconium growth with ion assistance at low temperatures support the occurrence of plastic flow during growth, provided the level of bombardment is high enough. As the energy of the argon ions was increased, the lattice strain in the growth direction increased to a maximum before decreasing slowly. That this is a plastic flow transition is shown by the independence of the maximum strain on preparation conditions and by the changes in microstructure. In particular, the grain size in the growth direction decreased and the preferred orientation favored the usual wire drawing textures of these metals. For the zirconium films this involved a change in preferred orientation from a (00.2) to a (10.0) texture. A reduction in strain is observed at high bombardment levels

  11. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken from a billet of an experimental alloy (alloy 1 and were subsequently hot-rolled and cold-rolled (height reduction, 72% and 70%, respectively. The other used samples, alloys 2 and 3, were taken from cylinders liners. The results from the Laue camera showed texture just in the axial direction of alloy 3. The pole figures also indicated the presence of a typical low intensity deformation texture, especially for alloy 3. The spray formed microstructure, which is very fine, hinders the Al-Si texture formation during mechanical work.

  12. Reprocessing of radioactive waste, toward recycling of nuclear rare metals

    International Nuclear Information System (INIS)

    Ozawa, M.

    2010-01-01

    Conclusions: Rare metals are inevitable in the leading industries and hold the national GDP. Industry-oriented, light PGM and Ln, etc, are localized and must be exhausted. They will become “strategic material”like oils by producing countries. Nuclear fission reaction will create 31 rare metals as well as energy. Now, SF should be considered as nota waste but a new artificial ore.In the flame of Adv.-ORIENT Cycle research, hydrometallurgical, soft and salt-free, separation processes are under developing. A hybrid system of CEE and IXC, in HNO3/HCl media with CH3OH, is promising in separation chemistry. Radio-toxicity of eventually vitrified HLLW is expected to be significantly decreased. To increase the reality, active tests on the separation system are planed in this year. Investigation on engineering issue, safety and costs will be the key

  13. The study of structural phase transitions and static properties using transition metal model pseudopotential (TMMP) for Ca and Sr

    Energy Technology Data Exchange (ETDEWEB)

    Rakhecha, Shalu, E-mail: shalurakhecha@yahoo.com; Vyas, P. R.; Gohel, V. B. [Department of Physics, School of Sciences, Gujarat University, Ahmedabad - 380009, Gujarat (India); Bhatt, N. K. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat (India)

    2016-05-06

    In the present communication, we have computed static and dynamic properties (binding energy-E, bulk modulus-B and second moment- <ω{sup 2}>) as well as first order pressure induced phase transition (FCC-BCC) using local form of pseudopotential for Calcium and Strontium. The form of pseudopotential used for the computation is directly extracted from Generalized Pseudopotential Theory (GPT) which contains three parameters (r{sub c}, r{sub d} and β). We have suggested a simple method using which pseudopotential is determined by single parameter (β). Our computed results for binding energy and bulk modulii are in excellent agreement with experimental findings and are better than other theoretical results. The present study confirms that s-d hybridization is accounted properly in the presently used pseudopotential and can be extended for the study of lattice mechanical properties of these metals.

  14. Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition Metal Dichalcogenides

    KAUST Repository

    Aljarb, Areej; Cao, Zhen; Tang, Hao-Ling; Huang, Jing-Kai; Li, Mengliu; Hu, Weijin; Cavallo, Luigi; Li, Lain-Jong

    2017-01-01

    affecting the seed formation and orientation becomes an important issue for controlling the growth. Here, we systematically study the growth of molybdenum disulfide (MoS2) monolayer on c-plane sapphire with chemical vapor deposition (CVD) to discover

  15. Characterization of the whiskerlike products formed by hydriding magnesium metal powders

    DEFF Research Database (Denmark)

    Herley, P. J.; Jones, W.; Vigeholm, Bjørn

    1985-01-01

    The structure of filamentary crystals produced during the hydriding of magnesium powder has been studies in detail. The needles of small dimensions (typically 0.5 μm in diameter) have been identified by electron analytical techniques to be oriented microcrystals of metallic magnesium. Their forma......The structure of filamentary crystals produced during the hydriding of magnesium powder has been studies in detail. The needles of small dimensions (typically 0.5 μm in diameter) have been identified by electron analytical techniques to be oriented microcrystals of metallic magnesium....... Their formation has been ascribed to the melting of localized aluminum impurities within the bulk magnesium to form a liquid eutectic. In the presence of sublimed magnesium vapor and hydrogen (as a carrier gas) a vapor-liquid-solid mechanism operates to produce a rapid unidirectional extension followed...

  16. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids

    Science.gov (United States)

    Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.

    2018-01-01

    The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems

  17. A New Approach to Reducing Search Space and Increasing Efficiency in Simulation Optimization Problems via the Fuzzy-DEA-BCC

    Directory of Open Access Journals (Sweden)

    Rafael de Carvalho Miranda

    2014-01-01

    Full Text Available The development of discrete-event simulation software was one of the most successful interfaces in operational research with computation. As a result, research has been focused on the development of new methods and algorithms with the purpose of increasing simulation optimization efficiency and reliability. This study aims to define optimum variation intervals for each decision variable through a proposed approach which combines the data envelopment analysis with the Fuzzy logic (Fuzzy-DEA-BCC, seeking to improve the decision-making units’ distinction in the face of uncertainty. In this study, Taguchi’s orthogonal arrays were used to generate the necessary quantity of DMUs, and the output variables were generated by the simulation. Two study objects were utilized as examples of mono- and multiobjective problems. Results confirmed the reliability and applicability of the proposed method, as it enabled a significant reduction in search space and computational demand when compared to conventional simulation optimization techniques.

  18. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-01-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n_A"u"-"v) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_A"u"-"v represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n_A"u"-"v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  19. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xishan [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China); Xie, Zonghong [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); Jing, Yongjuan [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China)

    2017-07-15

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n{sub A}{sup u-v}) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n{sub A}{sup u-v} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n{sub A}{sup u-v} showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  20. Low field orientation magnetic separation methods for magnetotactic bacteria

    International Nuclear Information System (INIS)

    Moeschler, F.D.

    1999-01-01

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the

  1. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  2. Method and mold for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  3. Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-01-28

    Embodiments include a method of making a metal organic framework membrane comprising contacting a substrate with a solution including a metal ion and contacting the substrate with a solution including an organic ligand, sufficient to form one or more layers of a metal organic framework on a substrate. Embodiments further include a defect-free metal organic framework membrane comprising MSiF6(pyz)2, wherein M is a metal, wherein the thickness of the membrane is less than 1,000 µm, and wherein the metal organic has a growth orientation along the [110] plane relative to a substrate.

  4. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  5. Understanding voter orientation in the context of political market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.; Henneberg, Stephan C.

    2010-01-01

    This article develops a conceptual framework and measurement model of political market orientation. The relationships between different behavioural aspects of political market orientation and the attitudinal influences of such behaviour are analysed, and the study includes structural equation...... modelling to test several hypotheses. While the results show that political parties focus on several different aspects of market-oriented behaviour, especially using an internal and societal orientation as cultural antecedents, a more surprising result is the inconclusive effect of a voter orientation...... on political market orientation. This lends support to the argument of 'looking beyond the customer' in political marketing research and practice. The article discusses the findings in the context of the existing literature on political marketing and commercial market orientation....

  6. Conducting Layered Organic-inorganic Halides Containing -Oriented Perovskite Sheets.

    Science.gov (United States)

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  7. The scope and practice of behaviour change communication to improve infant and young child feeding in low- and middle-income countries: results of a practitioner study in international development organizations.

    Science.gov (United States)

    Pelto, Gretel H; Martin, Stephanie L; Van Liere, Marti; Fabrizio, Cecilia S

    2016-04-01

    We describe features of the landscape of behaviour change communication (BCC) practice devoted to infant and young child feeding (IYCF) in low- and middle-income countries by practitioners in international development organizations. We used an iterative, snowball sampling procedure to identify participants, and the self-administered questionnaire contained pre-coded questions and open-ended questions, relying primarily on content analysis to derive generalizations. Highlights of findings include (i) IYCF-specific BCC is usually delivered within the context of other public health messages and programmes; (ii) technical assistance with programme development and implementation are primary activities, and evaluation-related work is also common; and (iii) formative research and evaluation is universal, but process evaluation is not. With respect to scaling up nutrition: (i) use of mass media and digital technology generally play only a minor role in BCC activities and are not currently an integral part of BCC programming strategies and (ii) only 58% of the participants report activities related to communication with policy makers. The individuals who comprise the community of BCC leaders in the area of IYCF are a diverse group from the perspective of academic backgrounds and nationalities. In addition to nutrition, public health, agriculture and adult learning are common disciplinary backgrounds. In our view, this diversity is a source of strength. It facilitates continuing growth and maturation in the field by assuring inputs of different perspectives, theoretical orientations and experiences. © 2015 John Wiley & Sons Ltd.

  8. Two-Channel Metal Detector Using Two Perpendicular Antennas

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Two-channel metal detector, having two sets of perpendicularly oriented sensor antennas, is proposed to expand detectable size, ranging from mm through cm scale, of metal sensor, while conventional metal sensor is dedicated for detection only in mm or cm scale. The characteristics of the two metal detection sensor channels were investigated, respectively, and the interference effect, while in simultaneous operation, between two sensor channels was discussed. Metal detection channel, having sensitivity in mm scale, showed detectable sensitivity to moving ferrous sphere, with diameter down to 0.7 mm, at 50 kHz exciting frequency and enhanced sensitivity distribution. And metal detection channel having sensitivity in cm scale showed more uniform sensitivity distribution with the flexibility for future modular construction. The effect of interference, while in simultaneous operation of two sensors, resulted in reduced output response, but still within usable detection range. Thus it was feasible to operate two sensors, having different sensitivity range, simultaneously and to extend detection range from mm to cm scale, within practically acceptable interference.

  9. Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals

    NARCIS (Netherlands)

    Wouters, Onne; Vellinga, WP; van Tijum, Redmer; De Hosson, JTM

    Surface roughening during tensile deformation of polycrystalline aluminum, iron and zinc is investigated using white light confocal microscopy and orientation imaging microscopy. A height-height correlation technique is used to analyze the data. The surface obeys self-affine scaling on length scales

  10. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    International Nuclear Information System (INIS)

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-01-01

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  11. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  12. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Dutta, P.; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-01-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10 7  cm −2 . Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm 2 /V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  13. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  14. Atomistic simulations of screw dislocations in bcc tungsten: From core structures and static properties to interaction with vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ke [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Niu, Liang-Liang [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI 48109 (United States); Jin, Shuo, E-mail: jinshuo@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Shu, Xiaolin [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Xie, Hongxian [School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132 (China); Wang, Lifang; Lu, Guang-Hong [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China)

    2017-02-15

    Atomistic simulations have been used to investigate the core structures, static properties of isolated 1/2 <1 1 1> screw dislocations, and their interaction with vacancies in bcc tungsten (W) based on three empirical interatomic potentials. Differential displacement maps show that only one embedded atom method potential is able to reproduce the compact non-degenerate core as evidenced by ab initio calculations. The obtained strain energy and stress distribution from atomistic simulations are, in general, consistent with elasticity theory predictions. In particular, one component of the calculated shear stress, which is not present according to elasticity theory, is non-negligible in the core region of our dislocation model. The differences between the results calculated from three interatomic potentials are in details, such as the specific value and the symmetry, but the trend of spatial distributions of static properties in the long range are close to each other. By calculating the binding energies between the dislocations and vacancies, we demonstrate that the dislocations act as vacancy sinks, which may be important for the nucleation and growth of hydrogen bubbles in W under irradiation.

  15. Experimental study of the features of the running part liquid metal target on lead-bismuth alloy

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Meluzov, A.G.; Novozhilova, O.O.; Efanov, A.D.

    2007-01-01

    The results of experimental investigations of the through part of a full-scale liquid metal target of an accelerator-control system, where the working cavity of the target communicates directly with the particle accelerator cavity, are presented. Two design variants were investigated - with vertical and horizontal orientation of the target axis in space and spinning of the flow in front of the nozzle adapter located in front of the entrance of the eutectic into the working cavity of the target. The profiles obtained for the free coolant surface with liquid metal flowing through vertically and horizontally positioned targets are presented. It is confirmed that when the pressure of the free surface of the liquid metal corresponds to the pressure in the accelerator cavity it is possible that liquid metal will not flow into the cavity simulating the connecting piece for inflow of accelerated particles with the piece oriented vertically or horizontally [ru

  16. Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment

    Directory of Open Access Journals (Sweden)

    Altaf Ahmed Simair

    2017-06-01

    Full Text Available The high cost of fermentation media is one of the technical barriers in amylase production from microbial sources. Amylase is used in several industrial processes or industries, for example, in the food industry, the saccharification of starchy materials, and in the detergent and textile industry. In this study, marine microorganisms were isolated to identify unique amylase-producing microbes in starch agar medium. More than 50 bacterial strains with positive amylase activity, isolated from marine water and soil, were screened for amylase production in starch agar medium. Bacillus sp. BCC 021-50 was found to be the best amylase-producing strain in starch agar medium and under submerged fermentation conditions. Next, fermentation conditions were optimized for bacterial growth and enzyme production. The highest amylase concentration of 5211 U/mL was obtained after 36 h of incubation at 50 °C, pH 8.0, using 20 g/L molasses as an energy source and 10 g/L peptone as a nitrogen source. From an application perspective, crude amylase was characterized in terms of temperature and pH. Maximum amylase activity was noted at 70 °C and pH 7.50. However, our results show clear advantages for enzyme stability in alkaline pH, high-temperature, and stability in the presence of surfactant, oxidizing, and bleaching agents. This research contributes towards the development of an economical amylase production process using agro-industrial residues.

  17. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Energy Technology Data Exchange (ETDEWEB)

    Nemla, Fatima [LEPCM, Department of Physics, University of Batna (Algeria); Cherrad, Djellal, E-mail: cherradphisic@yahoo.fr [Laboratory for Developing New Materials and Their Characterizations, University of Setif (Algeria)

    2016-07-01

    Graphical abstract: - Highlights: • Although difficulties related to electrodeposition of Mo films, we have successfully coated onto a cooper substrate. • A good formation of bcc Mo phase and lattice parameter was very accurate. • It seems that electrical properties of our samples are good and suitable as back contact for thin film solar cells. • It seems that grain size, microstrain and dislocation density are all managed and correlated to retain the resistivity to a considerable minimum value. - Abstract: Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98–2.9 μm) and of moderate surface roughness RMS (∼47–58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  18. Radiation blistering in metals and alloys

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1975-01-01

    Radiation blistering in solids has been identified as a process leading to damage and erosion of irradiated surfaces. Some of the major parameters governing the blistering process in metals and some metallic alloys are the type of projectile and its energy, total dose, dose rate, target temperature, channeling condition of the projectile, orientation of the irradiated surface plane, and target material and its microstructure. Experimental results and models proposed for blister formation and rupture are reviewed. The blistering phenomenon is important as an erosion process in applications such as fusion reactor technology (plasma-wall interactions) and accelerator technology (erosion of components and targets). A description of methods for the reduction of surface erosion caused by blistering is included

  19. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae).

    Science.gov (United States)

    Itoh, Hideomi; Aita, Manabu; Nagayama, Atsushi; Meng, Xian-Ying; Kamagata, Yoichi; Navarro, Ronald; Hori, Tomoyuki; Ohgiya, Satoru; Kikuchi, Yoshitomo

    2014-10-01

    The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Phase coexistence in the metal-insulator transition of a VO2 thin film

    International Nuclear Information System (INIS)

    Chang, Y.J.; Koo, C.H.; Yang, J.S.; Kim, Y.S.; Kim, D.H.; Lee, J.S.; Noh, T.W.; Kim, Hyun-Tak; Chae, B.G.

    2005-01-01

    Vanadium dioxide (VO 2 ) shows a metal-insulator transition (MIT) near room temperature, accompanied by an abrupt resistivity change. Since the MIT of VO 2 is known to be a first order phase transition, it is valuable to check metallic and insulating phase segregation during the MIT process. We deposited (100)-oriented epitaxial VO 2 thin films on R-cut sapphire substrates. From the scanning tunneling spectroscopy (STS) spectra, we could distinguish metallic and insulating regions by probing the band gap. Optical spectroscopic analysis also supported the view that the MIT in VO 2 occurs through metal and insulator phase coexistence

  1. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    International Nuclear Information System (INIS)

    Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej

    2014-01-01

    The local atomic structure of the Fe 80 B 20 , Fe 70 Nb 10 B 20 and Fe 62 Nb 8 B 30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe 3 B, Fe 23 B 6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe 80 B 20 (b), Fe 70 Nb 10 B 20 (c) and Fe 62 Nb 8 B 30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed

  2. Activation volume and interaction of metal particulate media

    Energy Technology Data Exchange (ETDEWEB)

    Tetsukawa, Hiroki [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)]. E-mail: tetsukaw@arc.sony.co.jp; Kondo, Hirofumi [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)

    2005-09-15

    We have investigated the activation volume (V{sub ac}) and magnetostatic interaction of metal particulate (MP) media. The activation volume of MP media decreases with the decrease of physical volume (V{sub phy}) of metal particles. The activation volume and the ratio of V{sub phy}/V{sub ac} of advanced metal particles are 6x10{sup -24}m{sup 3} and 1.5, respectively. It can be predicted that the physical volume of metal particle is about 3x10{sup -24}m{sup 3} when the physical volume is equal to the activation volume. This value is agreement with the practical lower limit of physical volume of metal particle predicted by Sharrock. The negative interaction (demagnetization effect) in MP media decreases with low saturation magnetization of the metal particles, a thin magnetic layer, a high orientation of MP media, and a low packing fraction of metal particles in the MP media. The activation volume of the MP media decreased as the negative interactions decreased. In advanced MP media with low M{sub r}.t (M{sub r}=remanent magnetization and t=thickness), the influence of interaction on the activation volume is reduced.

  3. Activation volume and interaction of metal particulate media

    International Nuclear Information System (INIS)

    Tetsukawa, Hiroki; Kondo, Hirofumi

    2005-01-01

    We have investigated the activation volume (V ac ) and magnetostatic interaction of metal particulate (MP) media. The activation volume of MP media decreases with the decrease of physical volume (V phy ) of metal particles. The activation volume and the ratio of V phy /V ac of advanced metal particles are 6x10 -24 m 3 and 1.5, respectively. It can be predicted that the physical volume of metal particle is about 3x10 -24 m 3 when the physical volume is equal to the activation volume. This value is agreement with the practical lower limit of physical volume of metal particle predicted by Sharrock. The negative interaction (demagnetization effect) in MP media decreases with low saturation magnetization of the metal particles, a thin magnetic layer, a high orientation of MP media, and a low packing fraction of metal particles in the MP media. The activation volume of the MP media decreased as the negative interactions decreased. In advanced MP media with low M r .t (M r =remanent magnetization and t=thickness), the influence of interaction on the activation volume is reduced

  4. Modern approaches to remediation of heavy metal polluted soils: A review

    Science.gov (United States)

    Koptsik, G. N.

    2014-07-01

    The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

  5. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    International Nuclear Information System (INIS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A.D.P.; Valsakumar, M.C.

    2017-01-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  6. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bukkuru, S., E-mail: srinivasaraobukkuru@gmail.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Bhardwaj, U., E-mail: haptork@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Warrier, M., E-mail: manoj.warrier@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Rao, A.D.P., E-mail: adp_rao_99@yahoo.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Valsakumar, M.C., E-mail: mc.valsakumar@gmail.com [IIT Palakkad, Kozhippara P.O., Palakkad 678557, Kerala (India)

    2017-02-15

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  7. Anomalous refraction of light through slanted-nanoaperture arrays on metal surface

    International Nuclear Information System (INIS)

    Kim, Myungji; Jung, Yun Suk; Xi, Yonggang; Kim, Hong Koo

    2015-01-01

    We report a nanoapertured metal surface that demonstrates anomalous refraction of light for a wide range of incident angles. A nanoslit aperture is designed to serve as a tilted vertical-dipole whose radiation pattern orients to a glancing angle direction to substrate. An array of such slanted nanoslits formed in a metal film redirects an incident beam into the direction of negative refraction angle: the aperture-transmitted wave makes a far-field propagation to the tilt-oriented direction of radiation pattern. The thus-designed nanoaperture array demonstrates the −1st order diffraction (i.e., to the negative refraction-angle direction) with well-suppressed background transmission (the zero-order direct transmission and other higher-order diffractions). Engineering the radiation pattern of nanoaperture offers an approach to overcoming the limits of conventional diffractive/refractive optics and complementing metasurface-based nano-optics

  8. The electronic structure of normal metal-superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Halterman, Klaus; Elson, J Merle [Sensor and Signal Sciences Division, Naval Air Warfare Center, China Lake, CA 93355 (United States)

    2003-09-03

    We study the electronic properties of ballistic thin normal metal-bulk superconductor heterojunctions by solving the Bogoliubov-de Gennes equations in the quasiclassical and microscopic 'exact' regimes. In particular, the significance of the proximity effect is examined through a series of self-consistent calculations of the space-dependent pair potential {delta}(r). It is found that self-consistency cannot be neglected for normal metal layer widths smaller than the superconducting coherence length {xi}{sub 0}, revealing its importance through discernible features in the subgap density of states. Furthermore, the exact self-consistent treatment yields a proximity-induced gap in the normal metal spectrum, which vanishes monotonically when the normal metal length exceeds {xi}{sub 0}. Through a careful analysis of the excitation spectra, we find that quasiparticle trajectories with wavevectors oriented mainly along the interface play a critical role in the destruction of the energy gap.

  9. Chemical bonding of water to metal surfaces studied with core-level spectroscopies

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; Pettersson, L.G.M.

    2010-01-01

    The nature of the contact layer of water on surfaces is of relevance for many practical fields, including corrosion, electrochemistry, environmental science and heterogeneous catalysis. Here we focus on the geometric and electronic structure of the water contact layer on transition metal surfaces......-specific information on the partial local density of states, local atomic structure, geometrical parameters and molecular orientation, allowing general principles for water-metal interaction to be derived....

  10. Orientation-dependent microstructure and shear flow behavior of extruded Mg–Li–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Karami, M.; Mahmudi, R., E-mail: mahmudi@ut.ac.ir

    2015-06-11

    The microstructural and textural evolutions together with the orientation dependencies of mechanical properties of the extruded Mg–6Li–1Zn (LZ61), Mg–8Li–1Zn (LZ81) and Mg–12Li–1Zn (LZ121) alloys were investigated. The shear punch testing (SPT) method was employed to evaluate the room- and high-temperature (200–300 °C) mechanical anisotropy of the extruded materials. Microstructural analysis revealed that, despite a great discontinuous dynamic recrystallization (DDRX) occurred in the extrusion direction (ED) and normal direction (ND), the microstructural anisotropy was observed in all extruded materials, the effect which was more pronounced in the LZ81 alloy by developing banded structure in the ND condition. Textural studies in both hcp LZ61 and LZ81-α phase showed a fiber-type texture with the basal planes being parallel to the ED after extrusion. For the LZ81 alloy, however, the interfering presence of β phase affects the LZ81-α-phase texture by reducing the intensity of the maximum orientations of the basal and prismatic planes. Similar weakened bimodal type texture was formed in the bcc-structured LZ81-β phase, where some <110> poles were located parallel to the ED along with developing some other poles of a fiber-type character. It was also found that the abnormal grain growth might have been encouraged by the strong texture developed in the extruded LZ121 alloy. The SPT results indicated that the texture-dependent hcp LZ61 alloy showed higher shear strength in the ND condition than the ED condition, caused by the texture strengthening effect. As the Li content and deformation temperature increase, the texture dependence of strength properties, and thus, the mechanical anisotropy, decrease so that the LZ121-ND sample showed lower shear strength than the ED specimen due to the greater grain sizes achieved in the ND condition.

  11. Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2018-02-01

    Full Text Available An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of an infinitely thin metal plate in the lower terahertz (THz frequency region. In this region, the metal plate can be viewed as a perfect electrically conductive object with a marginally rough surface. Hence, the THz scattered field from the metal plate can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are used to compute the coherent part, whereas the small perturbation method is used to compute the incoherent part. Then, the radar cross section of the rough metal plate surface is computed by the multilevel fast multipole and proposed hybrid algorithms. The numerical results show that the proposed algorithm has a good accuracy when rapidly simulating the scattering properties in the lower THz region.

  12. [Action-oriented versus state-oriented reactions to experimenter-induced failures].

    Science.gov (United States)

    Brunstein, J C

    1989-01-01

    The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.

  13. Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates

    Science.gov (United States)

    Liu, Yanxiong; Liaw, Benjamin

    2010-02-01

    Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.

  14. Influence of strain and metal thickness on metal-MoS{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-07

    MoS{sub 2} and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS{sub 2} contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS{sub 2}(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS{sub 2} heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS{sub 2} exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS{sub 2} with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  15. Bending and tensile deformation of metallic nanowires

    International Nuclear Information System (INIS)

    McDowell, Matthew T; Leach, Austin M; Gall, Ken

    2008-01-01

    Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects

  16. Investigation of Friction Behaviors of Brake Shoe Materials using Metallic Filler

    Directory of Open Access Journals (Sweden)

    E. Surojo

    2015-12-01

    Full Text Available Some vehicles use brake shoe made from semi-metallic materials. Semi-metallic brake shoes are made from a combination of metallic and non-metallic materials. Metallic particles are added in the formulation of brake shoe material to improve composites characteristics. In this paper, friction behaviors of brake shoe material using metallic filler were investigated. Machining chips of cast iron and copper wire of electric motor used were incorporated in composite as metallic fillers with amount 0, 2, and 4 vol. %. Friction testing was performed to measure coefficient of friction by pressing surface specimen against the surface of rotating disc. The results show that cast iron chip and Cu short wire have effect on increasing coefficient of friction of brake shoe material. They form contact plateau at contact surface. At contact surface, the Cu short wires which have parallel orientation to the sliding contact were susceptible to detach from the matrix.

  17. Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations.

    Science.gov (United States)

    Hart, Lewis; Dale, Sara; Hoye, Sarah; Webb, James L; Wolverson, Daniel

    2016-02-10

    The rhenium and technetium diselenides and disulfides are van der Waals layered semiconductors in some respects similar to more well-known transition metal dichalcogenides (TMD) such as molybdenum sulfide. However, their symmetry is lower, consisting only of an inversion center, so that turning a layer upside-down (that is, applying a C2 rotation about an in-plane axis) is not a symmetry operation, but reverses the sign of the angle between the two nonequivalent in-plane crystallographic axes. A given layer thus can be placed on a substrate in two symmetrically nonequivalent (but energetically similar) ways. This has consequences for the exploitation of the anisotropic properties of these materials in TMD heterostructures and is expected to lead to a new source of domain structure in large-area layer growth. We produced few-layer ReS2 and ReSe2 samples with controlled "up" or "down" orientations by micromechanical cleavage and we show how polarized Raman microscopy can be used to distinguish these two orientations, thus establishing Raman as an essential tool for the characterization of large-area layers.

  18. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  19. Observation and analysis of defect cluster production and interactions with dislocations

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Matsukawa, Y.

    2004-01-01

    The current understanding of defect production fundamentals in neutron-irradiated face centered cubic (FCC) and body centered cubic (BCC) metals is briefly reviewed, based primarily on transmission electron microscope observations. Experimental procedures developed by Michio Kiritani and colleagues have been applied to quantify defect cluster size, density, and nature. Differences in defect accumulation behavior of irradiated BCC and FCC metals are discussed. Depending on the defect cluster obstacle strength, either the dispersed barrier hardening model or the Friedel-Kroupa-Hirsch weak barrier model can be used to describe major aspects of radiation hardening. Irradiation at low temperature can cause a change in deformation mode from dislocation cell formation at low doses to twinning or dislocation channeling at higher doses. The detailed interaction between dislocations and defect clusters helps determine the dominant deformation mode. Recent observations of the microstructure created by plastic deformation of quenched and irradiated metals are summarized, including in situ deformation results. Examples of annihilation of stacking fault tetrahedra by gliding dislocations and subsequent formation of mobile superjogs are shown

  20. Low temperature radiation embrittlement for reactor vessel steels

    International Nuclear Information System (INIS)

    Ginding, I.A.; Chirkina, L.A.

    1978-01-01

    General conceptions of cold brittleness of bcc metals are in a review. Considered are experimental data and theoretical representations about the effect of irradiation conditions, chemical composition, phase and structural constitutions, grain size, mechanical and thermomechanical treatments on low-temperature irradiation embrittlement of reactor vessel steels. Presented are the methods for increasing radiation stability of metals (carbon and Cr-Mo steels) used in manufacturing reactor vessels

  1. Market Orientation Capabilities: A Study of Learning Processes in Market-Oriented Companies

    OpenAIRE

    Silkoset, Ragnhild

    2009-01-01

    The literature operates with three perspectives on market orientation. These include market orientation as behavior (Kohli and Jaworski 1990; Narver and Slater 1990), market orientation as a unique resource (Hunt and Morgan 1995) and market orientation as a dynamic learning capability (Sinkula 1994; Day 1994b). A company's level of market orientation will vary with regard to the perspectives, including factors affecting a company’s degree of market orientation and the effect...

  2. De novo design of ligands for metal separation. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    1997-01-01

    'The specific aim of this report is to parameterize force field to reproduce geometries and relative energetics of metal-ligand complexes for cesium, strontium, plutonium, uranium, americium and other relevent alkali, transition, lanthanide and actinide metals. As an initial attempt to examine parametrization, Dr. Yasuo Takeuchi has examined parameters for iron in combination with the molecular mechanics force field. The authors realize that most of the current ad hoc methodologies used to model metal interactions in the past do not have a firm theoretical foundation for modeling the d and f orbitals. They have, therefore, started a collaboration with Prof. Anders Carlsson of the Department of Physics to provide a theoretically correct functional form for the metal force field. Prof. Carlsson has an extensive track record in the derivation of the form of angular force fields from analysis of the quantum-mechanical electronic structure. His most important related works have treated the angular forces around transition-metal (TM) atoms in an aluminum host, the angular forces in elemental bcc transition metals, and the origins of angular and torsional forces in well-bonded s-p systems. They propose to apply the basic ideas of these calculations to developing force laws for transition metal ions in biomolecules. Of particular relevance to the proposed work is his study analyzing angular forces around transition metal (TM) atoms embedded in an aluminum host. Such TM atoms have a profound effect on the host structure, often entirely reassembling the host structure in order to satisfy the angular bonding constraints around the TM atoms. For example, at a concentration of only 1 ∼ TM to 12 ∼ Al, the transition metals Mn, Mo, Tc, W, and Re form the Al 12 W structure, in which the underlying fcc aluminum lattice is disassembled and reassembled into icosahedra which surround the transition-metal atoms. The Al 12 W structure is a body-centered cubic arrangement of such

  3. Bacterial Biofilm Communities and Coral Larvae Settlement at Different Levels of Anthropogenic Impact in the Spermonde Archipelago, Indonesia

    Directory of Open Access Journals (Sweden)

    Pia Kegler

    2017-08-01

    Full Text Available Populations on small islands surrounded by coral reefs often heavily depend on the services provided by these reefs. The health and recovery of reefs are strongly influenced by recruitment of coral larvae. Their settlement relies on cues such as those emitted from bacterial communities forming biofilms on reef surfaces. Environmental conditions can change these bacterial community compositions (BCC and may in turn affect settlement of coral larvae. At three small inhabited islands in the Spermonde Archipelago, Indonesia, with different distance from the mainland, BCC and coral recruitment were investigated on artificial ceramic tiles after 2–8 weeks exposure time and on natural reef substrate. Water parameters showed a clear separation between inshore and near-shore/mid-shelf sites, with distinct benthic communities at all three sites. No coral recruitment was observed at the inshore site with highest natural and anthropogenic stressors. At the other two sites coral recruitment occurred on natural surfaces (recruits per 100 cm2: 0.73 ± 1.75 near-shore, 0.90 ± 1.97 mid-shelf, but there was no significant difference between the two sites. On artificial substrates coral recruitment differed between these two sites, with tile orientation and with exposure time of the tiles in the reef. The most abundant bacteria on both substrates were Gammaproteobacteria, Alphaproteobacteria, and Cyanobacteria. BCC was strongly correlated with water quality and significant differences in BCC between the inshore site and near-shore/mid-shelf were found. On artificial substrates there was a significant difference in BCC also with exposure time in the reef. Our study highlights the value of taking both BCC and coral recruitment into account, in addition to the environmental conditions, when considering the recovery potential of coral reefs.

  4. Electric quadrupole interaction in cubic BCC α-Fe

    International Nuclear Information System (INIS)

    Błachowski, A.; Komędera, K.; Ruebenbauer, K.; Cios, G.; Żukrowski, J.; Górnicki, R.

    2016-01-01

    Mössbauer transmission spectra for the 14.41-keV resonant line in "5"7Fe have been collected at room temperature by using "5"7Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V_z_z = +1.61(4) × 10"1"9 Vm"−"2 for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the "5"7Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the "5"7Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V_z_z = +1.92(4) × 10"1"9 Vm"−"2. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge for ab initio calculations

  5. MD and BCA simulations of He and H bombardment of fuzz in bcc elements

    Science.gov (United States)

    Klaver, T. P. C.; Zhang, S.; Nordlund, K.

    2017-08-01

    We present results of MD simulations of low energy He ion bombardment of low density fuzz in bcc elements. He ions can penetrate several micrometers into sparse fuzz, which allows for a sufficient He flux through it to grow the fuzz further. He kinetic energy falls off exponentially with penetration depth. A BCA code was used to carry out the same ion bombardment on the same fuzz structures as in MD simulations, but with simpler, 10 million times faster calculations. Despite the poor theoretical basis of the BCA at low ion energies, and the use of somewhat different potentials in MD and BCA calculations, the ion penetration depths predicted by BCA are only ∼12% less than those predicted by MD. The MD-BCA differences are highly systematic and trends in the results of the two methods are very similar. We have carried out more than 200 BCA calculation runs of ion bombardment of fuzz, in which parameters in the ion bombardment process were varied. For most parameters, the results show that the ion bombardment process is quite generic. The ion species (He or H), ion mass, fuzz element (W, Ta, Mo, Fe) and fuzz element lattice parameter turned out to have a modest influence on ion penetration depths at most. An off-normal angle of incidence strongly reduces the ion penetration depth. Increasing the ion energy increases the ion penetration, but the rate by which ion energy drops off at high ion energies follows the same exponential pattern as at lower energies.

  6. Sexual Orientation (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Sexual Orientation KidsHealth / For Parents / Sexual Orientation What's in this ... orientation is part of that process. What Is Sexual Orientation? The term sexual orientation refers to the gender ( ...

  7. Social use of metal from the Late Chalcolithic to the Early Bronze Age in the Upper Euphrates Valley

    OpenAIRE

    Stork, Leigh A.

    2013-01-01

    Previous work on the early use of metal draws heavily upon the work of V. Gordon Childe, particularly his 1944 ‘Archaeological ages as technological stages’ article which outlined the development and social impact of metal in prehistory. Subsequent work, especially in the European paradigm, in the field of archaeometallurgy and material culture studies of metal have been oriented towards the typological definition and description of metal objects and how these typologies changed over time. Ra...

  8. Subcortical orientation biases explain orientation selectivity of visual cortical cells.

    Science.gov (United States)

    Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V

    2015-04-01

    The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. SO-limited mobility in a germanium inversion channel with non-ideal metal gate

    International Nuclear Information System (INIS)

    Shah, Raheel; De Souza, M.M.

    2008-01-01

    Germanium is an attractive candidate for ultra fast CMOS technology due to its potential for doubling electron mobility and quadrupling hole mobility in comparison to silicon. To maintain the requirements of the International Technology Roadmap for Semiconductors (ITRS), high-κ insulators and metal gates will be required in conjunction with Ge technology. Key issues which will have to be addressed in achieving Ge technology are: trap free insulators, assessment of appropriate crystallographic orientations and the selection of gate metals for the best mobility. In this work mobilities are evaluated for Ge-nMOSFET with two metal gates (Al and TiN) and high-κ (HfO 2 ) insulator. Scattering with bulk phonons, surface roughness and high-κ phonons are taken into account. It is predicted that Al as the gate material on Ge {100} substrate performs 50% better than Ge {111} orientation at a sheet concentration of 1 x 10 13 cm -2 . Surface roughness is likely to be the most damaging mobility degradation mechanism at high fields for Ge {111}

  10. The relationships between market orientation and alternative strategic orientations : A meta-analysis

    NARCIS (Netherlands)

    Grinstein, A.

    2008-01-01

    Purpose - One of the strongest convictions in marketing is that market orientation contributes to firms' performance substantially more than alternative strategic orientations such as innovation and entrepreneurial orientations. Still, some studies show that alternative orientations can also

  11. Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

    Directory of Open Access Journals (Sweden)

    Grégory Landelle

    2013-11-01

    Full Text Available In the last few years, transition metal-mediated reactions have joined the toolbox of chemists working in the field of fluorination for Life-Science oriented research. The successful execution of transition metal-catalyzed carbon–fluorine bond formation has become a landmark achievement in fluorine chemistry. This rapidly growing research field has been the subject of some excellent reviews. Our approach focuses exclusively on transition metal-catalyzed reactions that allow the introduction of –CFH2, –CF2H, –CnF2n+1 and –SCF3 groups onto sp² carbon atoms. Transformations are discussed according to the reaction-type and the metal employed. The review will not extend to conventional non-transition metal methods to these fluorinated groups.

  12. Strong orientational coordinates and orientational order parameters for symmetric objects

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Glotzer, Sharon C

    2015-01-01

    Recent advancements in the synthesis of anisotropic macromolecules and nanoparticles have spurred an immense interest in theoretical and computational studies of self-assembly. The cornerstone of such studies is the role of shape in self-assembly and in inducing complex order. The problem of identifying different types of order that can emerge in such systems can, however, be challenging. Here, we revisit the problem of quantifying orientational order in systems of building blocks with non-trivial rotational symmetries. We first propose a systematic way of constructing orientational coordinates for such symmetric building blocks. We call the arising tensorial coordinates strong orientational coordinates (SOCs) as they fully and exclusively specify the orientation of a symmetric object. We then use SOCs to describe and quantify local and global orientational order, and spatiotemporal orientational correlations in systems of symmetric building blocks. The SOCs and the orientational order parameters developed in this work are not only useful in performing and analyzing computer simulations of symmetric molecules or particles, but can also be utilized for the efficient storage of rotational information in long trajectories of evolving many-body systems. (paper)

  13. Ion microprobe analysis of metallic pigments

    International Nuclear Information System (INIS)

    Pelicon, P.; Simcic, J.; Budnar, M.; Klanjsek-Gunde, M.; Kunavaer, M.

    2001-01-01

    Full text: Metallic paints consist of metallic flakes dispersed m a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flake has been performed to test the ability of the ion microbeam spectroscopic methods on this type of samples. The average sizes of the aluminium flakes were 23 (size distribution 10-37) and 49 (size distribution 34-75) micrometers, respectively. The proton beam with the size of 2x2 micrometers at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomographic image of the flakes in uppermost 5 micrometers of the pigment layer. The flake distribution in the larger layer depths has been accessed by RBS analysis in a point mode. (author)

  14. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  15. Thin HTSC films produced by a polymer metal precursor technique

    Science.gov (United States)

    Lampe, L. v.; Zygalsky, F.; Hinrichsen, G.

    In precursors the metal ions are combined with acid groups of polymethacrylic acid (PMAA), polyacrylic acid (PAA) or novolac. Compared to thermal degradation temperature of pure polymers those of precursors are low. Precursors films were patterned by UV lithography. Diffractometric investigations showed that the c-axis oriented epitaxial films of YBa 2Cu 3O x and Bi 2Sr 2CaCu 2O x originated from amorphous metal oxide films, which were received after thermal degradation of the precursor. Transition temperatures and current densities were determined by electric resistivity measurements.

  16. Influence of neutron irradiation on ferromagnetic metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Nasu, Saburo; Sitek, J.

    1992-01-01

    Transmission 57 Fe Moessbauer spectroscopy is used to study effects of neutron irradiation on magnetic properties of Fe-based ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transformation from ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. Presence of Ni in the samples reduces the effects of radiation damage. (orig.)

  17. Greatly enhanced flux pinning properties of fluorine-free metal-organic decomposition YBCO films by co-addition of halogens (Cl, Br) and metals (Zr, Sn, Hf)

    Science.gov (United States)

    Motoki, Takanori; Ikeda, Shuhei; Nakamura, Shin-ichi; Honda, Genki; Nagaishi, Tatsuoki; Doi, Toshiya; Shimoyama, Jun-ichi

    2018-04-01

    Additive-free YBCO films, as well as those with halogen (X) added, metal (M) added and (X, M) co-added, have been prepared by the fluorine-free metal-organic decomposition method on SrTiO3(100) single crystalline substrates, where X = Cl, Br and M = Zr, Sn, Hf. It was revealed that the addition of both Cl and Br to the starting solution resulted in the generation of oxyhalide, Ba2Cu3O4 X 2, in the YBCO films, and that the oxyhalide was found to promote the bi-axial orientation of the YBCO crystals. By adding a decent amount of Cl or Br, highly textured YBCO films with high J c were reproducibly obtained, even when an impurity metal, M, was co-added, while the addition of M without X did not greatly improve J c owing to the poor bi-axial orientation of the YBCO crystals. Our results suggest that the addition of Br more effectively enhances J c than the addition of Cl. The pinning force density at 40 K in 4.8 T reached ˜55 GN m-3 with the co-addition of (Br, M). This value is much larger than that of the pure YBCO film, reaching ˜17 GN m-3.

  18. The Service Orientation and Employee’s Customer Orientation in Public Services Organizations

    OpenAIRE

    Andrada Iacob

    2015-01-01

    This paper explores the relationships between service orientation and employees’ customer orientation in public services organizations. First, we will review the relevant literature on service orientation and employee’s customer orientation. Based on this theory, the research hypothesis is formulated. The research results will be followed by conclusions, limitations and future directions. At the construct level, we found positive direct relationships between service orientation and employees’...

  19. Molecular dynamics study of dual-phase microstructure of Titanium and Zirconium metals during the quenching process

    Science.gov (United States)

    Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji

    Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.

  20. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals

    International Nuclear Information System (INIS)

    Lynden-Bell, R.M.; Michel, K.H.

    1994-01-01

    Many of the properties of orientationally disordered crystals are profoundly affected by the coupling (known as translation-rotation coupling) between translation displacements and molecular orientation. The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary throughout the Brillouin zone. One result is an indirect coupling between the orientations of different molecules, which plays an important role in the order/disorder phase transition, especially in ionic orientationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants and affects phonon spectra. This article describes the theory of the coupling from the point of view of the microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding of experimental observations. The application of the theory to phase transitions is described. The softening of elastic constants is discussed and shown to be universal. However, anomalies associated with the order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order parameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the recently observed dielectric behavior of ammonium compounds is discussed. Throughout the article examples from published experiments are used to illustrate the application of the theory including well known examples such as the alkali metal cyanides and more recently discovered orientationally disordered crystals such as the fullerite, C 60