Lattice dynamical calculations for bcc caesium chloride | Taura ...
African Journals Online (AJOL)
We present a lattice dynamical calculation of Caesium Chloride (CsCl) whose atoms form a bcc lattice having one type of atom at the cube centre and the other type on the corners of the cube. Dispersion curves, density of state, and lattice specific heat of bcc Caesium Chloride were computed. The code used in the ...
Lattice dynamical calculations for bcc caesium chloride | Taura ...
African Journals Online (AJOL)
In general, the obtained results agree reasonably well with the experimental data of the bcc Caesium Chloride. Keywords: Bcc caesium chloride; Lattice dynamics; Phonon dispersion; Density of state; Specific heat. Journal of the Nigerian Association of Mathematical Physics, Volume 20 (March, 2012), pp 261 – 266 ...
Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing
Vad, Viktor
2014-06-01
In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Elisabeth Schold Linnér
2016-01-01
Full Text Available In this paper, we present LatticeLibrary, a C++ library for general processing of 2D and 3D images sampled on arbitrary lattices. The current implementation supports the Cartesian Cubic (CC, Body-Centered Cubic (BCC and Face-Centered Cubic (FCC lattices, and is designed to facilitate addition of other sampling lattices. We also introduce BccFccRaycaster, a plugin for the existing volume renderer Voreen, making it possible to view CC, BCC and FCC data, using different interpolation methods, with the same application. The plugin supports nearest neighbor and trilinear interpolation at interactive frame rates. These tools will enable further studies of the possible advantages of non-Cartesian lattices in a wide range of research areas.
FCC, BCC and SC Lattices Derived from the Coxeter-Weyl groups and quaternions
Directory of Open Access Journals (Sweden)
Nazife Özdeş Koca
2014-06-01
Full Text Available We construct the fcc (face centered cubic, bcc (body centered cubic and sc (simple cubic lattices as the root and the weight lattices of the affine extended Coxeter groups W(A3 and W(B3=Aut(A3. It is naturally expected that these rank-3 Coxeter-Weyl groups define the point tetrahedral symmetry and the octahedral symmetry of the cubic lattices which have extensive applications in material science. The imaginary quaternionic units are used to represent the root systems of the rank-3 Coxeter-Dynkin diagrams which correspond to the generating vectors of the lattices of interest. The group elements are written explicitly in terms of pairs of quaternions which constitute the binary octahedral group. The constructions of the vertices of the Wigner-Seitz cells have been presented in terms of quaternionic imaginary units. This is a new approach which may link the lattice dynamics with quaternion physics. Orthogonal projections of the lattices onto the Coxeter plane represent the square and honeycomb lattices.
Towards true 3-dimensional BCC colloidal crystals with controlled lattice orientation
Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.
2009-01-01
A fabrication method of colloidal crystals possessing the BCC crystal structure is described. BCC colloidal crystals with a thickness of up to seven colloidal layers were grown in the direction of the (100) crystal plane. Defect free colloidal crystals with a homogeneous surface coverage were
Energy Technology Data Exchange (ETDEWEB)
Wen, Haohua; Woo, C.H., E-mail: chung.woo@polyu.edu.hk
2016-03-15
Contributions from the vibrational thermodynamics of phonons and magnons in the dynamic simulations of thermally activated atomic processes in crystalline materials were considered within the framework of classical statistics in conventional studies. The neglect of quantum effects produces the wrong lattice and spin dynamics and erroneous activation characteristics, sometimes leading to the incorrect results. In this paper, we consider the formation and migration of mono-vacancy in BCC iron over a large temperature range from 10 K to 1400 K, across the ferro/paramagnetic phase boundary. Entropies and enthalpies of migration and formation are calculated using quantum heat baths based on a Bose–Einstein statistical description of thermal excitations in terms of phonons and magnons. Corrections due to the use of classical heat baths are evaluated and discussed.
Texture formation in metals with bcc lattice during drawing in dead rollers
International Nuclear Information System (INIS)
Gubchevskij, V.P.; Zemlyanskov, V.A.; Zlatoustovskij, D.M.; Nemkina, Eh.D.
1976-01-01
The texture of low-carbon steel, molybdenum and tungsten wires subjected to intermediate and finish drawing were studied to find whether it is common to metals with a body-centered lattice. Experimental data tend to indicate that both the intermediate drawing and the finish drawing give rise to two axial textures, or (110) and (114), parallel to the axis of drawing. It was inferred that the mechanism of the formation of texture in drawing is common to all the metals of a VCC lattice
Energy Technology Data Exchange (ETDEWEB)
Neto, Minos A., E-mail: minos@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); Roberto Viana, J., E-mail: vianafisica@bol.com.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); Ricardo de Sousa, J., E-mail: jsousa@edu.ufam.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, Manaus, 69077-000 AM (Brazil)
2012-08-15
In this work we study the critical behavior of the quantum spin-1/2 anisotropic Heisenberg antiferromagnet in the presence of a longitudinal field on a body centered cubic (bcc) lattice as a function of temperature, anisotropy parameter ({Delta}) and magnetic field (H), where {Delta}=0 and 1 correspond the isotropic Heisenberg and Ising models, respectively. We use the framework of the differential operator technique in the effective-field theory with finite cluster of N=4 spins (EFT-4). The staggered m{sub s}=(m{sub A}-m{sub B})/2 and total m=(m{sub A}+m{sub B})/2 magnetizations are numerically calculated, where in the limit of m{sub s}{yields}0 the critical line T{sub N}(H,{Delta}) is obtained. The phase diagram in the T-H plane is discussed as a function of the parameter {Delta} for all values of H Element-Of [0,H{sub c}({Delta})], where H{sub c}({Delta}) correspond the critical field (T{sub N}=0). Special focus is given in the low temperature region, where a reentrant behavior is observed around of H=H{sub c}({Delta}){>=}H{sub c}({Delta}=1)=8J in the Ising limit, results in accordance with Monte Carlo simulation, and also was observed for all values of {Delta} Element-Of [0,1]. This reentrant behavior increases with increase of the anisotropy parameter {Delta}. In the limit of low field, our results for the Heisenberg limit are compared with series expansion values. - Highlights: Black-Right-Pointing-Pointer In the lat decade there has been a great interest in the physics of the quantum phase transition in spins system. Black-Right-Pointing-Pointer Effective-field theory in cluster with N=4 spins is generalized to treat the quantum spin-1/2 Heisenberg model. Black-Right-Pointing-Pointer We have obtained phase diagram at finite temperature for the quantum spin-1/2 antiferromagnet Heisenberg model as a bcc lattice.
Atomic displacements in bcc dilute alloys
Indian Academy of Sciences (India)
We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and ...
Atomic displacements in bcc dilute alloys
Indian Academy of Sciences (India)
Abstract. We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc. (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method.
Metastable bcc phase formation in the Nb-Cr system
Energy Technology Data Exchange (ETDEWEB)
Thoma, D.J.; Schwarz, R.B. [Los Alamos National Lab., NM (United States); Perepezko, J.H. [Wisconsin Univ., Madison, WI (United States). Dept. of Materials Science and Engineering; Plantz, D.H. [Coast Guard Academy, New London, CT (United States). Dept. of Engineering
1993-08-01
Extended metastable bcc solid solutions of Nb-Xat.%Cr (X = 35, 50, 57, 77, 82, and 94) were synthesized by two-anvil splat-quenching. In addition, bcc (Nb-67at.%Cr) was prepared by mechanically alloying mixtures of niobium and chromium powders. The lattice parameters were measured by X-ray diffraction and the Young`s moduli were measured by low-load microindentation. The composition dependence of the lattice parameters and elastic moduli show a positive deviation with respect to a rule of mixtures. During continuous heating at 15C/min., the metastable precursor bcc phases decomposed at temperatures above 750C to uniformly refined microstructures.
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Ahadpanah, A.; Borumand Saeid, A.
2011-01-01
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.
Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies
International Nuclear Information System (INIS)
Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.
2006-01-01
Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)
International Nuclear Information System (INIS)
Ohtake, Mitsuru; Higuchi, Jumpei; Yabuhara, Osamu; Kirino, Fumiyoshi; Futamoto, Masaaki
2011-01-01
Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011) B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar] bcc || GaAs(011)[011-bar] B3 . The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011) B3 substrates.
BCC and Childhood Low Dose Radiation
Directory of Open Access Journals (Sweden)
Arash Beiraghi Toosi
2014-10-01
Full Text Available Skin cancer is a late complication of ionizing radiation. Two skin neoplasms prominent Basal Cell Carcinoma (BCC and Squamous Cell Carcinoma (SCC are the most famous complications of radiotherapy. Basal Cell Carcinoma (BCC is the most common human malignant neoplasm. Many genetic and environmental factors are involved in its onset. BCC is observed in sun-exposed areas of skin. Some patients with scalp BCC have had a history of scalp radiation for the treatment of tinea capitis in childhood. Evidence that ionizing radiation is carcinogenic first came from past reports of nonmelanoma skin cancers on the hands of workers using radiation devices. The total dose of radiation and irradiated site exposed to sunlight can lead to a short incubation period. It is not clear whether BCC in these cases has a more aggressive nature and requires a more aggressive resection of the lesion. The aim of this review was to evaluate the differences between BCC specification and treatment results between irradiated and nonirradiated patients.
Displacive processes in systems with bcc patent lattice
Czech Academy of Sciences Publication Activity Database
Paidar, Václav
2011-01-01
Roč. 56, č. 6 (2011), s. 841-851 ISSN 0079-6425 R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : diffusionless phase transformations * displacive processes * gamma surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 18.216, year: 2011
Ab initio search for a high permeability material based on bcc iron
Ostanin, S.; Staunton, J. B.; Razee, S. S.; Demangeat, C.; Ginatempo, B.; Bruno, Ezio
2004-02-01
Using the fully relativistic spin-polarized Korringa-Kohn-Rostoker method, we study the prototypical soft magnet, bcc iron. We investigate how its magnetic anisotropy (MAE) varies as a function of volume, band filling, and tetragonal distortions of the crystal lattice. We follow the trends of the linear magnetostriction and magnetic permeability. We find that a slight reduction in band filling and modest lattice expansion produces a significant magnetic softening of this model system. We explore whether this situation can be realized by doping bcc Fe with vanadium. Treating the compositional disorder with the coherent potential approximation, we calculate the magnetic anisotropy and magnetostriction trends of iron-rich Fe1-cVc disordered alloys and find the behavior to accord with the predictions from the bcc Fe model. In particular we find that for c≈0.1 the MAE is very small and the linear magnetostriction is zero. We propose Fe0.9V0.1 as a high permeability material. Fair agreement with experimental values for the MAE and magnetostriction of both Fe and FeV is found.
First-principles study of atomic ordering in bcc Cu-Al
Lanzini, F.; Gargano, P. H.; Alonso, P. R.; Rubiolo, G. H.
2011-01-01
The order-disorder transitions and phase stability in the body centered cubic structure of Cu-Al binary alloys are studied by means of theoretical methods. The total energy of different ordered compounds sharing a common bcc Bravais lattice was calculated within the framework of density functional theory. A set of effective cluster interactions was calculated through a cluster expansion (CE) of the total energies. The finite temperature phase diagram of bcc Cu-Al was obtained using the CE formalism coupled with the cluster variation method calculation of the configurational entropy. These results are confronted with a simpler semi-empirical approach based on effective pair interactions obtained from experiment. Both approaches predict a single first-order A2/DO3 transition for compositions close to Cu3Al, in agreement with the most recent experimental results.
International Nuclear Information System (INIS)
Aurelio, G.; Guillermet, A.F.
2000-01-01
The name omega (Ω) phase refers to a high-pressure structural modification of the transition metals (TMs) Ti, Zr, and Hf. In alloys of Ti, Zr and Hf with other TMs, the Ω phase can be formed and retained metastably at room temperature by quenching the bcc structure, which is usually the stable high-temperature phase in these alloy systems. As a part of a systematic investigation of the structural and bonding properties of the bcc and Ω phases, and of the bcc → Ω phase transformation in TMs and alloys, we present in this paper a detailed analysis of the structural relations between these phases in Ti, Zr, Hf and in other TMs. The approach is as follows. First, we establish the most general geometrical relations connecting the lattice parameters and interatomic distances (IDs) of the bcc and Ω structures. Next, we focus on the ratio between the relevant IDs of these phases, which are assessed on the basis of an extensive database with experimental and theoretical information. Both stable and metastable structures are considered, and various remarkable regularities in ID ratios are discussed. Finally, in the light of the systematics of ID ratios established in the present work, a discussion is made of the probable lattice parameters for the Ω phase of Hf, which are not yet accurately known from direct measurements. (orig.)
International Nuclear Information System (INIS)
Talati, Mina; Posselt, Matthias; Al-Motasem, Ahmed; Bergner, Frank; Bonny, Giovanni
2012-01-01
The effects of lattice vibration on the thermodynamics of nanosized coherent clusters in bcc-Fe consisting of vacancies and/or copper are investigated within the harmonic approximation. A combination of on-lattice simulated annealing based on Metropolis Monte Carlo simulations and off-lattice relaxation by molecular dynamics is applied to obtain the most stable cluster configurations at T = 0 K. The most recent interatomic potential built within the framework of the embedded-atom method for the Fe-Cu system is used. The total free energy of pure bcc-Fe and fcc-Cu as well as the total formation free energy and the total binding free energy of the vacancy-copper clusters are determined for finite temperatures. Our results are compared with the available data from previous investigations performed using many-body interatomic potentials and first-principles methods. For further applications in rate theory and object kinetic Monte Carlo simulations, the vibrational effects evaluated in the present study are included in the previously developed analytical fitting formulae. (paper)
Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content
International Nuclear Information System (INIS)
Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.
2005-01-01
The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V
International Nuclear Information System (INIS)
Rao, S.I.; Varvenne, C.; Woodward, C.; Parthasarathy, T.A.; Miracle, D.; Senkov, O.N.; Curtin, W.A.
2017-01-01
Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2〈111〉 dislocations in a randomly-distributed model-BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. Core structure variations along an individual dislocation line are found for a/2〈111〉 screw and edge dislocations. One reason for the core structure variations is the local variation in composition along the dislocation line. Calculated unstable stacking fault energies on the (110) plane as a function of composition vary significantly, consistent with this assessment. Molecular dynamics simulations of the critical glide stress as a function of temperature show significant strengthening, and much shallower temperature dependence of the strengthening, as compared to pure BCC Fe as well as a reference mean-field BCC alloy material of the same overall composition, lattice and elastic constants as the target alloy. Interpretation of the strength versus temperature in terms of an effective kink-pair activation model shows the random alloy to have a much larger activation energy than the mean-field alloy or BCC Fe. This is interpreted as due to the core structure variations along the dislocation line that are often unfavorable for glide in the direction of the load. The configuration of the gliding dislocation is wavy, and significant debris is left behind, demonstrating the role of local composition and core structure in creating kink pinning (super jogs) and/or deflection of the glide plane of the dislocation. - Graphical abstract: Measured critical resolved shear stress scaled by the (111) shear modulus (39 GPa) necessary to achieve on-going glide as a function of temperature, for the a/2[111] screw dislocation in the model BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. The upper and lower bounds of the critical resolved shear stress is shown in the plot. Also shown in is the measured strength for the mean-field A-atom material and BCC Fe as a function of
Fast computed tomography and volume rendering using the body-centered cubic lattice
Finkbeiner, Bernhard
2009-01-01
Two main tasks in the field of volumetric image processing are acquisition and visualization of 3D data. The main challenge is to reduce processing costs, while maintaining high accuracy. To achieve these goals for volume rendering (visualization), we demonstrate that non-separable box splines for body-centered cubic (BCC) lattices can be adapted to fast evaluation on graphics hardware. Thus, the BCC lattice can be used for interactive volume rendering leading to better image quality than com...
Directory of Open Access Journals (Sweden)
Udovsky A.
2016-01-01
Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed
Ideal strength of bcc molybdenum and niobium
Luo, Weidong; Roundy, D.; Cohen, Marvin L.; Morris, J. W.
2002-09-01
The behavior of bcc Mo and Nb under large strain was investigated using the ab initio pseudopotential density-functional method. We calculated the ideal shear strength for the {211} and {011} slip systems and the ideal tensile strength in the direction, which are believed to provide the minimum shear and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to this tetragonal ``saddle-point'' structure sets the ideal shear strength. When either material is strained in tension along , it initially follows the tetragonal, ``Bain,'' path toward a stress-free fcc structure. However, before the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc extremum as in W. However, a Nb crystal strained in becomes orthorhombic at tensile stress below the ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (τ*=τm/G111=0.12, σ*=σm/E100=0.078) are essentially identical to those previously calculated for W. Nb is anomalous. Its dimensionless shear strength is unusually high, τ*=0.15, even though the saddle-point structure that causes it is similar to that in Mo and W, while its dimensionless tensile strength, σ*=0.079, is almost the same as that of Mo and W, even though the saddle-point structure is quite different.
BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices
Janse van Rensburg, E. J.; Rechnitzer, A.
2011-04-01
In this paper, the elementary moves of the BFACF-algorithm (Aragão de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragão de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
Sekulic, Aleksandar; Migden, Michael R; Lewis, Karl; Hainsworth, John D; Solomon, James A; Yoo, Simon; Arron, Sarah T; Friedlander, Philip A; Marmur, Ellen; Rudin, Charles M; Chang, Anne Lynn S; Dirix, Luc; Hou, Jeannie; Yue, Huibin; Hauschild, Axel
2015-06-01
Primary analysis from the pivotal ERIVANCE BCC study resulted in approval of vismodegib, a Hedgehog pathway inhibitor indicated for treatment of adults with metastatic or locally advanced basal cell carcinoma (BCC) that has recurred after surgery or for patients who are not candidates for surgery or radiation. An efficacy and safety analysis was conducted 12 months after primary analysis. This was a multinational, multicenter, nonrandomized, 2-cohort study in patients with measurable and histologically confirmed locally advanced or metastatic BCC taking oral vismodegib (150 mg/d). Primary outcome measure was objective response rate (complete and partial responses) assessed by independent review facility. After 12 months of additional follow-up, median duration of exposure to vismodegib was 12.9 months. Objective response rate increased from 30.3% to 33.3% in patients with metastatic disease, and from 42.9% to 47.6% in patients with the locally advanced form. Median duration of response in patients with locally advanced BCC increased from 7.6 to 9.5 months. No new safety signals emerged with extended treatment duration. Limitations include low prevalence of advanced BCC and challenges of designing a study with heterogenous manifestations. The 12-month update of the study confirms the efficacy and safety of vismodegib in management of advanced BCC. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method
Energy Technology Data Exchange (ETDEWEB)
Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics, Geology, and Engineering Technology (United States)
2016-12-15
With the aim of developing a transferable potential set capable of predicting defect formation, defect association, and diffusion properties in a wide range of intermetallic compounds, the present study was undertaken to test parameterization strategies for determining empirical pair-wise interaction parameters in the modified embedded atom method (MEAM) developed by Baskes and coworkers. This report focuses on indium-solute and indium-vacancy interactions in FCC and BCC metals, for which a large set of experimental data obtained from perturbed angular correlation measurements is available for comparison. Simulation results were found to be in good agreement with experimental values after model parameters had been adjusted to reproduce as best as possible the following two sets of quantities: (1) lattice parameters, formation enthalpies, and bulk moduli of hypothetical equiatomic compounds with the NaCl crystal structure determined using density functional theory and (2) dilute solution enthalpies in metals as predicted by Miedema’s semi-empirical model.
Calculation Of Phonon Dispersion Frequencies For Bcc Tantalum ...
African Journals Online (AJOL)
The phonon dispersion frequencies are calculated from first principles for bcc Tantalum using a resonance pseudopotential model. It was also possible, using this scheme, to account for the anomalous feature of the Ta dispersion curve observed experimentally in the (ε,o,o,) direction where the frequencies of the transverse ...
Point defect relaxation in irraddiated B.C.C. metals
International Nuclear Information System (INIS)
Moser, P.
1977-01-01
Improvements in the preparation of samples has led to substantial progress in the field of point defect relaxation processes in b.c.c. irradiated metals. The recent well established experimental phenomena and current interpretations are reviewed, with a special emphasis on iron, which allows simultaneous study of anelastic and magnetic relaxations
Vibrational properties of vacancy in bcc transition metals using ...
Indian Academy of Sciences (India)
The embedded atom method (EAM) potentials, with the universal form of the embedding function along with the Morse form of pair potential, have been employed to determine the potential parameters for three bcc transition metals: Fe, Mo, and W, by fitting to Cauchy pressure (C12−C44)/2, shear constants ...
Vibrational properties of vacancy in bcc transition metals using ...
Indian Academy of Sciences (India)
By introducing a few modifications in the Johnson and. Oh model, Guellil and Adams [5] have applied the EAM model for studying phonon dis- persion, thermal and surface properties of alkali and transition metals and their alloys. An empirical many-body interaction potential for the bcc transition metals Nb, Fe and Cr was.
Shear instabilities in perfect bcc crystals during simulated tensile tests
Czech Academy of Sciences Publication Activity Database
Černý, M.; Šesták, P.; Pokluda, J.; Šob, Mojmír
2013-01-01
Roč. 87, č. 1 (2013), 014117/1-014117/4 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : instabilities * tensile test * bcc metals * ab initio calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013
Comparison of different displacive processes in bcc crystals
Czech Academy of Sciences Publication Activity Database
Ostapovets, Andrej; Paidar, Václav
2009-01-01
Roč. 73, č. 9 (2009), s. 1188-1192 ISSN 1062-8738 R&D Projects: GA MŠk OC 149 Institutional research plan: CEZ:AV0Z10100520 Keywords : twinning * bcc-hcp transition * many-body potential Subject RIV: BM - Solid Matter Physics ; Magnetism
Practical box splines for reconstruction on the body centered cubic lattice.
Entezari, Alireza; Van De Ville, Dimitri; Möeller, Torsten
2008-01-01
We introduce a family of box splines for efficient, accurate and smooth reconstruction of volumetric data sampled on the Body Centered Cubic (BCC) lattice, which is the favorable volumetric sampling pattern due to its optimal spectral sphere packing property. First, we construct a box spline based on the four principal directions of the BCC lattice that allows for a linear C(0) reconstruction. Then, the design is extended for higher degrees of continuity. We derive the explicit piecewise polynomial representation of the C(0) and C(2) box splines that are useful for practical reconstruction applications. We further demonstrate that approximation in the shift-invariant space---generated by BCC-lattice shifts of these box splines---is {twice} as efficient as using the tensor-product B-spline solutions on the Cartesian lattice (with comparable smoothness and approximation order, and with the same sampling density). Practical evidence is provided demonstrating that not only the BCC lattice is generally a more accurate sampling pattern, but also allows for extremely efficient reconstructions that outperform tensor-product Cartesian reconstructions.
International Nuclear Information System (INIS)
Chadderton, L.T.; Johnson, E.; Wohlenberg, T.
1976-01-01
Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
Comparison of mechanical and thermodynamic properties of fcc and bcc titanium under high pressure
Zhang, Yongmei; Zhao, Yuhong; Hou, Hua; Wen, Zhiqin; Duan, Meiling
2018-02-01
The mechanical and thermodynamic properties of fcc and bcc Ti have been discussed based on the first-principles calculation combined with the quasi-harmonic Debye model. We find that the bulk modulus B, shear modulus G, Young’s modulus E of fcc Ti are larger, while Poisson’s ratio σ is smaller than that of bcc Ti under the same pressure, which indicates the better mechanical performance of fcc Ti compared with bcc Ti. The values of B/G and σ indicate that mechanically stable fcc structure is much less ductile than the bcc structure, while mechanically metastable fcc structure has better ductility than stable bcc structure under high pressure. The normalized volume, isothermal bulk modulus, heat capacity, volume thermal expansion coefficient and Debye temperature under pressure and temperature for fcc and bcc Ti are predicted.
Transonic twins in 3D bcc iron crystal
Czech Academy of Sciences Publication Activity Database
Spielmannová, Alena; Machová, Anna; Hora, Petr
2010-01-01
Roč. 48, č. 2 (2010), s. 296-302 ISSN 0927-0256 R&D Projects: GA AV ČR KJB200760802; GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : transonic twins * bcc iron * molecular dynamic simulation Subject RIV: JG - Metallurgy Impact factor: 1.458, year: 2010 http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=V1mj77dMKmjeKefm7Db&page=1&doc=1
Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study
Seppälä, Eira
2004-03-01
In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.
Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente
2016-06-03
To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W 1-x-y Re x Os y (0 ⩽ x, y ⩽ 6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11 , the other elastic parameters including C 12 , C 44 , Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W 1-y Os y than in W 1-x Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W 1-x-y Re x Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.
International Nuclear Information System (INIS)
Boghosian, B.M.
1990-01-01
In recent years an important class of cellular automata known as lattice gases have been successfully used to model a variety of physical systems, traditionally modeled by partial differential equations. The 2-D and 3-D Navier Stokes equations for single-phase and multiphase flow, Burgers' equation, and various types of diffusion equations are all examples. The first section of this chapter is meant to be a survey of the different ideas and techniques used in this simulations. In the second section, using lattice gases for the diffusion equation and for Burgers' equation as examples, the discrete Chapman-Enskog method is demonstrated. Beginning with rules governing particle motion on a lattice, the lattice Boltzmann equation is derived, and the Chapman-Enskog method is used to derive hydrodynamical equations for the conserved quantities. The approximations used at each step are discussed in detail. The intent is to provide an introduction to the Chapman-Enskog analysis for simple lattice gases in order to prepare the reader to better understand that for the (generally more complicated) models proposed for the simulation of the Navier-Stokes equations. 29 refs., 5 figs., 4 tabs
The role of edge dislocations in the deformation of BCC metals
International Nuclear Information System (INIS)
Lung, C.W.
1994-08-01
It was widely accepted that the screw dislocation is responsible for the strong temperature dependence of the yield stresses observed in bcc metals. In this paper, we show the role of edge dislocations in the deformation of bcc metals and point out that in some cases, its main contribution to the yield stress cannot be ignored. (author). 15 refs, 2 figs, 1 tab
International Nuclear Information System (INIS)
Mackenzie, Paul
2007-01-01
Modern lattice gauge theory calculations are making it possible for lattice QCD to play an increasingly important role in the quantitative investigation of the Standard Model. The fact that QCD is strongly coupled at large distances has required the development of nonperturbative methods and large-scale computer simulations to solve the theory. The development of successful numerical methods for QCD calculations puts us in a good position to be ready for the possible discovery of new strongly coupled forces beyond the Standard Model in the era of the Large Hadron Collider. (author)
International Nuclear Information System (INIS)
Bender, C.M.
1984-01-01
The finite-element method enables us to convert the operator differential equations of a quantum field theory into operator difference equations. These difference equations are consistent with the requirements of quantum mechanics and they do not exhibit fermion doubling, a problem that frequently plagues lattice treatments of fermions. Guage invariance can also be incorporated into the difference equations. On a finite lattice the operator difference equations can be solved in closed form. For the case of the Schwinger model the anomaly is computed and results in excellent agreement are obtained with the known continuum value
Magnetism and disorder in BCC AlCuFe intermetallics
International Nuclear Information System (INIS)
Meyer, M.; Sanchez, F.; Mendoza-Zelis, L.
2007-01-01
We present here a systematic study of the structural and magnetic properties of a series of alloys around a central composition Al 50 Cu 20 Fe 30 , obtained by mechanical alloying. The samples have BCC crystalline structure with partial B2 order. Thermal annealing, through differential scanning calorimetry measurements, just removes some defects but does not change the crystalline structure. AC susceptibility measurements show that in spite of their structural similarity these samples have quite different magnetic behaviors. Furthermore, most of the samples show a complex magnetic evolution with temperature. Some samples have a cluster glass-like behavior at low temperatures and a superparamagnetic-like one at higher temperatures. A model of magnetic clusters originating in composition fluctuations across the alloy is proposed to explain the observed magnetic properties
Stability of void lattices under irradiation: a kinetic model
International Nuclear Information System (INIS)
Benoist, P.; Martin, G.
1975-01-01
Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice
The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997-2010.
Nguyen-Nielsen, Mary; Wang, Lisa; Pedersen, Lars; Olesen, Anne Braae; Hou, Jeannie; Mackey, Howard; McCusker, Margaret; Basset-Seguin, Nicole; Fryzek, Jon; Vyberg, Mogens
2015-01-01
Few data exist on the occurrence of metastatic basal cell carcinoma (mBCC). To identify all cases of mBCC in Denmark over a 14-year period. We searched the Danish National Patient Registry covering all Danish hospitals, the Danish Cancer Registry, the National Pathology Registry and the Causes of Death Registry during the period 1997 to 2010 for potential cases of mBCC registered according to the International classification of diseases ICD-10 and the International Systemized Nomenclature of Medicine (SNOMED). We identified 126,627 patients with a history of primary basal cell carcinoma (BCC) in the registries during the 14-year study period. Using case identifications from the four registries, a total of 170 potential mBCC cases were identified. However, after a pathology review, only five cases could be confirmed, of which three were basosquamous carcinomas. The 14-year cumulative incidence proportion of mBCC was 0.0039% (95% CI 0.0016-0.0083) among individuals with a history of previous BCC (n = 126,627) and 0.0001% (95% CI 0.0000-0.0002) in the general population. MBCC is a rare disease and only a small proportion of potential cases identified in automated clinical databases or registries can be confirmed by pathology and medical record review.
Alling, B.; Kormann, F.H.W.; Grabowski, B; Glensk, A; Abrikosov, I.A.
2016-01-01
We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite
Dislocations and Plasticity in bcc Transition Metals at High Pressure
Energy Technology Data Exchange (ETDEWEB)
Yang, L H; Tang, M; Moriarty, J A
2009-01-23
Using first-principles electronic structure calculations, quantum-based atomistic simulations and atomistically informed dislocation dynamics (DD) simulations, we have studied individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the prototype bcc transition metals Ta, Mo and V under both ambient and high pressure conditions. The primary focus in this work is on the pressure-dependent structure, mobility and interaction of a/2<111> screw dislocations, which dominate the plastic deformation properties of these materials. At the electronic scale, first-principles calculations of elasticity, ideal strength and generalized stacking fault energy surfaces have been used to validate quantum-based multi-ion interatomic potentials. At the atomistic scale, these potentials have been used in flexible Green's function boundary condition simulations to study the core structure, Peierls stress {tau}{sub P}, thermally activated kink-pair formation and mobility below {tau}{sub P}, and phonon-drag mobility above {tau}{sub P}. These results have then been distilled into analytic velocity laws and used directly in predictive microscale DD simulations of flow stress and resolved yield stress over wide ranges of pressure, temperature and strain rate.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
International Nuclear Information System (INIS)
Lee, S.Y.; Claus, J.; Courant, E.D.; Hahn, H.; Parzen, G.
1985-01-01
An antisymmetric lattice for the proposed Relativistic Heavy Ion Collider at Brookhaven National Laboratory is presented, which has been designed to have (1) and energy range from 7 GeV/amu up to 100 GeV/amu; (2) a good tunability of β and betatron tune; (3) freedom in the choice of crossing angle between beams; and (4) capability of operating unequal species, for example, proton on gold. Suppression of structure resonances is achieved by a proper choice of the phase advances across the insertion and the arc cells. 8 refs., 7 figs
Csébfalvi, Balázs
2010-01-01
In this paper, we demonstrate that quasi-interpolation of orders two and four can be efficiently implemented on the Body-Centered Cubic (BCC) lattice by using tensor-product B-splines combined with appropriate discrete prefilters. Unlike the nonseparable box-spline reconstruction previously proposed for the BCC lattice, the prefiltered B-spline reconstruction can utilize the fast trilinear texture-fetching capability of the recent graphics cards. Therefore, it can be applied for rendering BCC-sampled volumetric data interactively. Furthermore, we show that a separable B-spline filter can suppress the postaliasing effect much more isotropically than a nonseparable box-spline filter of the same approximation power. Although prefilters that make the B-splines interpolating on the BCC lattice do not exist, we demonstrate that quasi-interpolating prefiltered linear and cubic B-spline reconstructions can still provide similar or higher image quality than the interpolating linear box-spline and prefiltered quintic box-spline reconstructions, respectively.
Congruence amalgamation of lattices
Grätzer, G; Wehrung, F; Gr\\"{a}tzer, George; Lakser, Harry; Wehrung, Friedrich
2000-01-01
J. Tuma proved an interesting "congruence amalgamation" result. We are generalizing and providing an alternate proof for it. We then provide applications of this result: --A.P. Huhn proved that every distributive algebraic lattice $D$ with at most $\\aleph\\_1$ compact elements can be represented as the congruence lattice of a lattice $L$. We show that $L$ can be constructed as a locally finite relatively complemented lattice with zero. --We find a large class of lattices, the $\\omega$-congruence-finite lattices, that contains all locally finite countable lattices, in which every lattice has a relatively complemented congruence-preserving extension.
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
Staples, J.
1976-10-01
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
International Nuclear Information System (INIS)
Luo Yun; Li Yanling; Xue Yilong; Guo Shulong; Gao Yuhong; Cui Xin
2005-01-01
To explore the changes of alginate-polylysine-alginate microcapsulated bovine adrenal medullary chromaffin cells (APA-BCC microcapsules) in morphology, survival rate and leucine- enkephalin secretion after they were transplanted into CSF of cancerpain patients, the APA- BCC microcapsules were Implanted into cavitas subarachnoidealis of cancer-pain patients by conventional lumbar puncture. After 7 or 8 days, cerebrospinal fluid was collected and the morphology of the APA-BCC microcapsule, the survival rate of cells were observed and secretory volume of leucine-enkephalin was assayed by radioimmunity method. Seven days after trans- plantation, the mean VAS decreased from 8.8 to 2.4, the survival rate of cells averagely reduced from 91.2% to 89.1%, morphology of APA-BCC microcapsules did not change obviously and secretory volume of leucine-enkephalin went up 1.65 times compared with that at pretrans- plantation. In conclusion, APA-BCC can survive, secret leucine-enkephalin and produce analgesic effect after transplanted into CSF of cancer-patients. (authors)
Lattices for the lattice Boltzmann method.
Chikatamarla, Shyam S; Karlin, Iliya V
2009-04-01
A recently introduced theory of higher-order lattice Boltzmann models [Chikatamarla and Karlin, Phys. Rev. Lett. 97, 190601 (2006)] is elaborated in detail. A general theory of the construction of lattice Boltzmann models as an approximation to the Boltzmann equation is presented. New lattices are found in all three dimensions and are classified according to their accuracy (degree of approximation of the Boltzmann equation). The numerical stability of these lattices is argued based on the entropy principle. The efficiency and accuracy of many new lattices are demonstrated via simulations in all three dimensions.
Energy Technology Data Exchange (ETDEWEB)
Daulton, T. L.
1998-10-23
The kinetics which drive cascade formation and subsequent collapse into point-defect clusters is investigated by analyzing the microstructure produced in situ by low fluence 100 keV Kr ion irradiations of fcc-Cu over a wide temperature range (18-873 K). The yield of collapsed point-defect clusters is demonstrated unequivocally to be temperature dependent, remaining approximately constant up to lattice temperatures of 573 K and then abruptly decreasing with increasing temperature. This drop in yield is not caused by defect loss during or following ion irradiation. This temperature dependence can be explained by a thermal spike effect. These in-situ yield measurements are compared to previous ex-situ yield measurements in fcc-Ni and bcc-Mo.
Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2018-03-01
We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.
Systematic group-specific trends for point defects in bcc transition metals: An ab initio study
International Nuclear Information System (INIS)
Nguyen-Manh, D.; Dudarev, S.L.; Horsfield, A.P.
2007-01-01
Density functional theory calculations have been performed to study the systematic trends of point defect behaviours in bcc transition metals. We found that in all non-magnetic bcc transition metals, the most stable self-interstitial atom (SIAs) defect configuration has the symmetry. The calculated formation energy differences between the dumbbell and the lowest-energy configuration of metals in group 5B (V, Nb, Ta) are consistently larger than those of the corresponding element in group 6B (Cr, Mo, W). The predicted trends of SIA defects are fundamentally different from those in ferromagnetic α-Fe and correlate very well with the pronounced group-specific variation of thermally activated migration of SIAs under irradiation depending on the position of bcc metals in the periodic table
International Nuclear Information System (INIS)
1977-01-01
Progress is reported in the areas of (a) the effect of neutron damage on the dislocation kinetics in bcc metals and their alloys, and (b) the effect of 3 He on the deformation characteristics of body centered cubic metals and their alloys. Results obtained from these projects are discussed
Czech Academy of Sciences Publication Activity Database
Gröger, Roman; Vítek, V.
2015-01-01
Roč. 643, SEP (2015), s. 203-210 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Screw dislocation * BCC metal * Dislocation pathway Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015
First-principles study of ternary bcc alloys using special quasi-random structures
International Nuclear Information System (INIS)
Jiang Chao
2009-01-01
Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.
NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers
International Nuclear Information System (INIS)
Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki
2011-01-01
NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.
Solubility of hydrogen and deuterium in bcc-uranium-titanium alloys
International Nuclear Information System (INIS)
Powell, G.L.; Kirkpatrick, J.R.
1996-01-01
For the bcc-U-Ti alloy system, H and D solubility measurements have been made on 12 alloy specimens ranging in composition from pure U to pure Ti and temperature range bounded by 900 K to 1,500 K. The results are described by a model within a standard error of 3%
Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe
Kvashnin, Y.O.; Cardias, R.; Szilva, A.; Di Marco, I.; Katsnelson, M.I.; Lichtenstein, A.I.; Nordstrom, L.; Klautau, A.B.; Eriksson, O.
2016-01-01
By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E-g and T-2g symmetries. The latter ones define the shape of the
High Temperature Magneto-Elastic Instability of Dislocations in bcc Iron
International Nuclear Information System (INIS)
Dudarev, S.; Bullough, R.; Gilbert, M.; Derlet, P.
2007-01-01
Full text of publication follows: Density functional calculations show that the low temperature structure of self-interstitial defects in iron is fundamentally different from the structure of self-interstitial defects in all the other bcc metals. The origin of this anomaly is associated with the magnetic part of the cohesive energy of iron, where the Stoner exchange term stabilizes the body centred cubic phase, and where the magnetic part of energy is strongly affected by the large strain associated with the core region of an interstitial defect. At elevated temperatures magnetic excitations erode the stability of the bcc phase, giving rise to the gradual softening of the 110 transverse acoustic phonon modes and to the α-γ bcc-fcc martensitic phase transition occurring at 912 deg. C at normal pressure. Elastic moduli of bcc iron vary as a function of temperature with c' = (C 11 - c 12 )/2 vanishing at the α-γ transition point. This has significant effects on the magnitude of both the elastic interactions between dislocations and other defects in the material and on the intrinsic structural stability of the dislocations and other defects themselves. To evaluate structural stability of defects at elevated temperatures we investigate elastic self-energies of dislocations in the continuum anisotropic elasticity approximation. We also develop atomistic models of dislocations and point defects based on a generalised form of the magnetic potential. By varying the magnetic part of the potential we are able to reproduce the experimentally observed variation of elastic moduli as a function of temperature, and assess relative stability of various types of defect structures. Our analysis shows that, in complete contrast to other straight dislocations, the elastic self-energy of straight 100 edge dislocations actually sharply decreases as we approach the α-γ transition, indicating that this surprising fact is a probable explanation of the frequent observation of the 100
Bachoc, Christine
2005-01-01
We study the Grassmannian 4-designs contained in lattices, in connection with the local property of the Rankin constant. We prove that the sequence of Barnes-Wall lattices contain Grassmannian 6-designs.
Residuation in orthomodular lattices
Directory of Open Access Journals (Sweden)
Chajda Ivan
2017-04-01
Full Text Available We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.
DEFF Research Database (Denmark)
Boone, Marc; Suppa, Mariano; Miyamoto, Makiko
2016-01-01
High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot...
Atkinson, D; van Steenwijk, F.J.
The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American
Epitaxial growth of bcc-FexCo100-x thin films on MgO(1 1 0) single-crystal substrates
International Nuclear Information System (INIS)
Ohtake, Mitsuru; Nishiyama, Tsutomu; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki
2010-01-01
Fe x Co 100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe x Co 100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe x Co 100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe 50 Co 50 /MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.
Energy Technology Data Exchange (ETDEWEB)
Ferng, Yuh Ming, E-mail: ymferng@ess.nthu.edu.tw [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsingchu 30013, Taiwan, ROC (China); Lin, Kun-Yueh [Department of Engineering and System Science, Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2. Kuang-Fu Rd., Hsingchu 30013, Taiwan, ROC (China)
2013-05-15
Highlights: ► An HTGR would be one of the possible energy generation sources. ► We propose a CFD model to study effects of pebble arrangements for a PRB core. ► The entrance effect on the Nu number can be reasonably captured. ► The present predicted Nu versus Re{sub p} shows good agreement with data and correlation. ► Using FCC lattice in a core, simulation results may be non-conservative. -- Abstract: A high temperature gas cooled reactor (HTGR) would be one of the possible energy generation sources due to its advantages of inherently safety performance and higher conversion efficiency, etc. However, safety is the most important issue for its commercialization in energy industry. It is very crucial for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, a computational fluid dynamics (CFD) methodology is proposed to investigate effects of different arrangements on these characteristics for an HTGR with a pebble bed (PB) core. Two kinds of arrangement: body-centered cubic (BCC) and face-centered cubic (FCC) are studies herein. Based on the simulation results, higher heat transfer capability and lower pebble temperature are predicted in the pebbles with the FCC-arrangement. The thermally fully-developed flow condition may be reached, which is shown in the result that the predicted average Nussel (Nu) number decreases from the 1st layer and reaches to an asymptotic value as the gas passes through the 6th layer of pebbles. This entrance effect reveals that the system codes using the correlations developed from the fully-developed flow condition can be appropriately applied in the entire PBR core. In addition, the present predicted dependence of Nu number on the inlet Reynolds (Re) number shows good agreement with that obtained from the well-known KTA. Measured data of Nu number versus Re number are also used to validate the CFD model.
Directory of Open Access Journals (Sweden)
Shinichi Sakurai
2010-12-01
Full Text Available Block copolymers forming glassy spheres in the matrix of rubbery chains can exhibit elastomeric properties. It is well known that the spherical microdomains are arranged in the body-center cubic (bcc lattice. However, recently, we have found packing in the face-centered cubic (fcc lattice, which is easily transformed into the bcc lattice upon uniaxial stretching. In the same time, the packing regularity of the spheres in the bcc lattice was found to be enhanced for samples completely recovered from the stretched state. This reminds us that a cycle of stretching-and-releasing plays an important role from analogy of densification of the packing in granules upon shaking. In the current paper, we quantify the enhancement of packing regularity of spherical microdomains in the bcc lattice upon uniaxial stretching of the same elastomeric triblock copolymer as used in our previous work by conducting small-angle X-ray scattering (SAXS measurements using high brilliant synchrotron radiation. Isotropically circular rings of the lattice peaks observed for the unstretched sample turned into deformed ellipsoidal rings upon the uniaxial stretching, with sharpening of the peaks in the direction parallel to the stretching direction and almost disappearing of the peaks in the perpendicular direction. By quantitatively analyzing the SAXS results, it was found that the packing regularity of the spherical microdomains was enhanced in the parallel direction while it was spoiled in the perpendicular direction under the stretched state. The enhanced regularity of packing was unchanged even if the stretching load was completely removed.
Generalized isothermic lattices
International Nuclear Information System (INIS)
Doliwa, Adam
2007-01-01
We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem
Twin nucleation in Fe-based bcc alloys—modeling and experiments
Ojha, A.; Sehitoglu, H.; Patriarca, L.; Maier, H. J.
2014-10-01
We develop an analytical expression for twin nucleation stress in bcc metal and alloys considering generalized planar fault energy and the dislocations bounding the twin nucleus. We minimize the total energy to predict the twinning stress relying only on parameters that are obtained through atomistic calculations, thus excluding the need for any empirical constants. We validate the present approach by means of precise measurements of the onset of twinning in bcc Fe-50at% Cr single crystals showing excellent agreement. The experimental observations of the three activated slip systems of symmetric configuration in relation to the twinning mechanism are demonstrated via transmission electron microscopy techniques along with digital image correlation. We then confirm the validity of the model for Fe, Fe-25at% Ni and Fe-3at% V alloys compared with experiments from the literature to show general applicability.
Simulation of He embrittlement at grain boundaries in bcc transition metals
International Nuclear Information System (INIS)
Suzudo, Tomoaki; Yamaguchi, Masatake
2015-01-01
To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.
Stress dependence of the Peierls barrier of 1/2111 screw dislocations in BCC metals
Czech Academy of Sciences Publication Activity Database
Gröger, Roman; Vitek, V.
2013-01-01
Roč. 61, č. 17 (2013), s. 6362-6371 ISSN 1359-6454 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GAP204/10/0255 Institutional support: RVO:68081723 Keywords : Screw dislocation * Peierls barrier * Nudged elastic band * BCC metals * Peierls stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013
Which stresses affect the glide of screw dislocations in bcc metals?
Czech Academy of Sciences Publication Activity Database
Gröger, Roman
2014-01-01
Roč. 94, č. 18 (2014), s. 2021-2030 ISSN 1478-6435 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Grant - others:Marie Curie Actions(CZ) 247705 MesoPhysDel Institutional support: RVO:68081723 Keywords : Peierls stress * screw dislocation * bcc metal * non-glide stress * yield criterion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.825, year: 2014
18-Electron Resonance Structures in the BCC Transition Metals and Their CsCl-type Derivatives.
Vinokur, Anastasiya I; Fredrickson, Daniel C
2017-03-06
Bonding in elemental metals and simple alloys has long been thought of as involving intense delocalization, with little connection to the localized bonds of covalent systems. In this Article, we show that the bonding in body-centered cubic (bcc) structures of the group 6 transition metals can in fact be represented, via the concepts of the 18-n rule and isolobal bonding, in terms of two balanced resonance structures. We begin with a reversed approximation Molecular Orbital (raMO) analysis of elemental Mo in its bcc structure. The raMO analysis indicates that, despite the low electron count (six valence electrons per Mo atom), nine electron pairs can be associated with any given Mo atom, corresponding to a filled 18-electron configuration. Six of these electron pairs take part in isolobal bonds along the second-nearest neighbor contacts, with the remaining three (based on the t 2g d orbitals) interacting almost exclusively with first-nearest neighbors. In this way, each primitive cubic network defined by the second-nearest neighbor contacts comprises an 18-n electron system with n = 6, which essentially describes the full electronic structure of the phase. Of course, either of the two interpenetrating primitive cubic frameworks of the bcc structure can act as a basis for this discussion, leading us to write two resonance structures with equal weights for bcc-Mo. The electronic structures of CsCl-type variants with the same electron count can then be interpreted in terms of changing the relative weights of these two resonance structures, as is qualitatively confirmed with raMO analysis. This combination of raMO analysis with the resonance concept offers an avenue to extend the 18-n rule into other transition metal-rich structures.
Atomistic model application to the problem of magnetite adhesion on iron BCC
International Nuclear Information System (INIS)
Forti; M; Alonso, P; Gargano, P; Rubiolo, G
2012-01-01
Oxide scale adhesion on a metal substrate has been investigated in the Magnetite - BCC Iron system. An Universal Binding Energy Relation (UBER) has been applied to obtain the interface energy from a fitting parameter. The interface energy thus calculated is in a reasonable order of magnitude when compared to experimental data for similar systems. This result allows this technique to be used to develop a comparative scale based on quantitative data which otherwise would require complex experiments to be obtained (author)
Crack-induced stress, dislocations and acoustic emission by 3-D atomistic simulation in bcc iron
Czech Academy of Sciences Publication Activity Database
Spielmannová, Alena; Machová, Anna; Hora, Petr
2009-01-01
Roč. 57, č. 14 (2009), s. 4065-4073 ISSN 1359-6454 R&D Projects: GA ČR GA101/09/1630; GA AV ČR KJB200760802; GA ČR(CZ) GA101/07/0789 Institutional research plan: CEZ:AV0Z20760514 Keywords : bcc iron * crack * dislocation emisision Subject RIV: JG - Metallurgy Impact factor: 3.760, year: 2009
3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron
Czech Academy of Sciences Publication Activity Database
Uhnáková, Alena; Machová, Anna; Hora, Petr
2011-01-01
Roč. 33, č. 9 (2011), s. 1182-1188 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : 3D molecular dynamics * fatigue * bcc iron * mode I Subject RIV: JG - Metallurgy Impact factor: 1.546, year: 2011 http://www.sciencedirect.com/science/article/pii/S0142112311000600
Diffusion behavior of Cr diluted in bcc and fcc Fe: Classical and quantum simulation methods
Energy Technology Data Exchange (ETDEWEB)
Ramunni, Viviana P., E-mail: vpram@cnea.gov.ar [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Gerencia Materiales, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina); Rivas, Alejandro M.F. [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Departamento de Física Teórica, Tandar, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina)
2015-07-15
We characterize the atomic mobility behavior driven by vacancies, in bcc and fcc Fe−Cr diluted alloys, using a multi-frequency model. We calculate the full set of the Onsager coefficients and the tracer self and solute diffusion coefficients in terms of the mean jump frequencies. The involved jump frequencies are calculated using a classical molecular static (CMS) technique. For the bcc case, we also perform quantum calculations based on the density functional theory (DFT). There, we show that, in accordance with Bohr's correspondence principle, as the size of the atomic cell (total number of atoms) is increased, quantum results with DFT recover the classical ones obtained with CMS calculations. This last ones, are in perfect agreement with available experimental data for both, solute and solvent diffusion coefficients. For high temperatures, in the fcc phase where no experimental data are yet available, our CMS calculations predict the expected solute and solvent diffusion coefficients. - Graphical abstract: Display Omitted - Highlights: • Comparison of diffusion coefficients obtained from classical and quantum methods. • We perform our calculations in diluted bcc/fcc Fe–Cr alloy. • Magnetic and phonon effects must be taken into account. • Classical calculations are in perfect agreement with experimental data.
Modelling plastic deformation in BCC metals: Dynamic recovery and cell formation effects
International Nuclear Information System (INIS)
Galindo-Nava, E.I.; Rivera-Díaz-del-Castillo, P.E.J.
2012-01-01
A recently developed model for describing plasticity in FCC metals (E.I., Galindo-Nava, P.E.J., Rivera-Díaz-del-Castillo, Mater. Sci. Eng. A 543 (2012) 110–116; E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 60 (2012) 4370–4378) has now been applied to BCC. The core of the theory is the thermostatistical description of dislocation annihilation paths, which determines the dynamic recovery rate of the material. Input to this is the energy for the formation, migration and ordering of dislocation paths; the latter term corresponds to the statistical entropy which features strongly on the solution. The distinctions between FCC and BCC stem primarily from the possible directions and planes for dislocation slip and cross-slip, as well as from the presence of the kink-pair mechanism for dislocation migration in BCC, which are incorporated to the mathematical formulation of the model. The theory is unique in describing the stress–strain response for pure iron, molybdenum, tantalum, vanadium and tungsten employing physical parameters as input; the description is made for wide ranges of temperature and strain rate. Additionally, succinct equations to predict dislocation cell size variation with strain, strain rate and temperature are provided and validated for pure iron.
bcc-iron as a promising new monochromator material for thermal neutrons
Kirscht, Patrick; Sobolev, Oleg; Eckold, Götz
2018-04-01
The development of high-performance neutron monochromators is a long-standing and still actual topic in neutron instrumentation. Due to its high scattering cross section, iron is a particularly interesting material since it offers the possibility to obtain high reflectivities at small wavelength and good resolution. Phase transitions between bcc- and fcc-phases hindered the growth of large and high-quality single crystals in the past and only recently bcc-crystals became commercially available. We have characterized the reflecting properties of as-grown and deformed crystals using γ-rays and thermal neutrons. Absolute reflectivities well above 30% for neutron wavelengths near 1 Å could be obtained that are superior to that of all other existing monochromator materials. Hence, the progress in crystal growth along with the knowledge of directed plastic deformation makes the development of bcc-Fe neutron monochromators feasible. Their application in crystal-monochromator instruments is suitable to increase the useful neutron flux at large energies considerably.
Wentworth-Nice, Prairie; Graves, Amy
Numerical methods are used in two dimensions to find the minimum energy configuration of soft bidisperse spheres, in the presence of lattices of fixed, pointlike particles. The lattice provides a supporting structure for the jammed configuration, resulting in changes in the jamming threshold. The excess coordination number and other properties of interest near jamming are calculated as a function of the lattice structure and number density. Acknowledgement is made to the donors of the Petrolium Research Fund, administered by the American Chemical Society.
Metaharmonic Lattice Point Theory
Freeden, Willi
2011-01-01
Metaharmonic Lattice Point Theory covers interrelated methods and tools of spherically oriented geomathematics and periodically reflected analytic number theory. The book establishes multi-dimensional Euler and Poisson summation formulas corresponding to elliptic operators for the adaptive determination and calculation of formulas and identities of weighted lattice point numbers, in particular the non-uniform distribution of lattice points. The author explains how to obtain multi-dimensional generalizations of the Euler summation formula by interpreting classical Bernoulli polynomials as Green
Gong, Zhiqiang
2017-04-05
This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts\\' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM\\'s summer precipitation forecasting ability over EA-NWP.
National Research Council Canada - National Science Library
McGuire, Dennis
1998-01-01
... invariance present in concrete morphology theories. The other, developed by Banon and Barrera, analyzes general mappings between complete lattices and develops morphological decomposition formulas for such mappings...
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Lattice degeneracies of fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-10-01
We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)
Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study
Perera, Dilina; Vogel, Thomas; Landau, David P.
2016-10-01
Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
On singularities of lattice varieties
Mukherjee, Himadri
2013-01-01
Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.
All-Digital Galvanically-Coupled BCC Receiver Resilient to Frequency Misalignment.
Chen, Pengpeng; Yang, Huazhong; Luo, Rong; Zhao, Bo
2017-06-01
It is promising for wearable devices to go to a miniature size to alleviate the load of human body. One way to miniaturize the communication nodes on human body is to remove the bulky components such as antenna and crystal. Galvanically-coupled body channel communication (GC-BCC) has a great advantage over conventional wireless communications in reducing the size of wearable devices because it reuses the monitoring electrodes for signal transmission in place of antennas. To remove the crystal as well, the receiver must be immune to different types of frequency misalignments. This paper presents a GC-BCC receiver based on low power all-digital Gaussian frequency shift keying (GFSK) demodulation and clock-data recovery (CDR). A carrier tracking technique is proposed to detect and automatically adapt to the misalignment of carrier frequency. In addition, we also propose a circle-index CDR circuit to deal with the inaccuracy or drift of the clock frequency. The proposed circuit is implemented with 0.18 μm CMOS technology, and it operates at 200 kHz with a BFSK/GFSK modulation index of 1.0. Measured results show that the chip consumes 0.53 mA at a data rate of 100 kb/s. At a 10 cm body channel length, the GC-BCC receiver can tolerate a carrier misalignment up to [Formula: see text] and a clock error up to [Formula: see text], while keeping the bit error rate (BER) below 0.1%.
Calculation of thermodynamic equilibrium between bcc disordered solid solutions U and Mo
International Nuclear Information System (INIS)
Alonso, Paula R.; Rubiolo, Gerardo H.
2003-01-01
There is actually an interest to develop a new fuel with higher density for research reactors. Fuel plates would be obtained by dispersion, a method that requires both a very dense fuel dispersant (>15.0 g U/cm 3 ) and a very high volume loading of the dispersant (>55%). Dispersants based in gamma (BCC) stabilized uranium alloys are being investigated, as they are able to reach uranium densities of 17.0 g U/cm 3 . Among them, we focus in U(Mo) bcc solid solutions with the addition of ternary elements to stabilize gamma phase. Transition metals, 4d and 5d, of groups VII and VIII are good candidates for the ternary alloy U - Mo - X. Their relative power to stabilize gamma phase seems to be in close relation with bonding energies between atoms in the alloy. A first approach to the calculation of these energies has been performed by the semi empiric method of Miedema where only bonds between pairs are considered, neglecting ternary and quaternary bonds. There is also a lack of information concerning solubilities of the ternary elements in the ternary cubic phase. In this work we aim to calculate bonding energies between atoms in the alloy using a cluster expansion of the formation energy (T=0 K) of a series of bcc ordered compounds in the systems U-Mo-X. Then the calculation of the equilibrium phase diagram by the Cluster Variation Method will be done (CVM). We show here the first part of the investigation devoted to calculation of phases equilibria in the U Mo system Formation energies of the ordered compounds were obtained by the first principles methods TB-LMTO-ASA and FP-LAPW. Another set of bonding energies was calculated in order to fit the known experimental diagram and new formation energies for the ordered compounds were derived from them. Discrepancies between both sets are discussed. (author)
Defect-induced change of temperature-dependent elastic constants in BCC iron
Energy Technology Data Exchange (ETDEWEB)
Gao, N.; Setyawan, W.; Zhang, S. H.; Wang, Z. G.
2017-07-01
The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.
X-ray diffraction analysis of substructures in plastically deformed BCC materials
International Nuclear Information System (INIS)
Klimanek, P.
1993-01-01
A procedure for line-shape analysis of broadened X-ray (or neutron) diffraction peaks is presented and specified for b.c.c. materials, which takes into account the effect of interfaces, internal stress of the 2nd kind and a dislocation distribution with weak defect correlation. Application of the technique is demonstrated by the estimation of dislocation densities in plastically deformed α-iron and steel. The results confirm that X-ray line-broadening analysis is suitable for integrated substructure characterization, but it becomes also evident that local structural inhomogeneity and the texture of the sample material must carefully included into the interpretation of experimental data. (orig.)
A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory
International Nuclear Information System (INIS)
Li, Xiantao
2014-01-01
Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].
International Nuclear Information System (INIS)
Ghosh, G.; Walle, A. van de; Asta, M.
2008-01-01
The thermodynamic properties of solid solutions with body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures in the Al-TM (TM = Ti, Zr and Hf) systems are calculated from first-principles using cluster expansion (CE), Monte-Carlo simulation and supercell methods. The 32-atom special quasirandom structure (SQS) supercells are employed to compute properties at 25, 50 and 75 at.% TM compositions, and 64-atom supercells have been employed to compute properties of alloys in the dilute concentration limit (one solute and 63 solvent atoms). In general, the energy of mixing (Δ m E) calculated by CE and dilute supercells agree very well. In the concentrated region, the Δ m E values calculated by CE and SQS methods also agree well in many cases; however, noteworthy discrepancies are found in some cases, which we argue originate from inherent elastic and dynamic instabilities of the relevant parent lattice structures. The importance of short-range order on the calculated values of Δ m E for hcp Al-Ti alloys is demonstrated. We also present calculated results for the composition dependence of the atomic volumes in random solid solutions with bcc, fcc and hcp structures. The properties of solid solutions reported here may be integrated within the CALPHAD formalism to develop reliable thermodynamic databases in order to facilitate: (i) calculations of stable and metastable phase diagrams of binary and multicomponent systems, (ii) alloy design, and (iii) processing of Al-TM-based alloys
Zhou, Xin; Jun, Sun; Zhang, Bing; Jun, Wu
2017-07-01
In order to improve the reliability of the spectrum feature extracted by wavelet transform, a method combining wavelet transform (WT) with bacterial colony chemotaxis algorithm and support vector machine (BCC-SVM) algorithm (WT-BCC-SVM) was proposed in this paper. Besides, we aimed to identify different kinds of pesticide residues on lettuce leaves in a novel and rapid non-destructive way by using fluorescence spectra technology. The fluorescence spectral data of 150 lettuce leaf samples of five different kinds of pesticide residues on the surface of lettuce were obtained using Cary Eclipse fluorescence spectrometer. Standard normalized variable detrending (SNV detrending), Savitzky-Golay coupled with Standard normalized variable detrending (SG-SNV detrending) were used to preprocess the raw spectra, respectively. Bacterial colony chemotaxis combined with support vector machine (BCC-SVM) and support vector machine (SVM) classification models were established based on full spectra (FS) and wavelet transform characteristics (WTC), respectively. Moreover, WTC were selected by WT. The results showed that the accuracy of training set, calibration set and the prediction set of the best optimal classification model (SG-SNV detrending-WT-BCC-SVM) were 100%, 98% and 93.33%, respectively. In addition, the results indicated that it was feasible to use WT-BCC-SVM to establish diagnostic model of different kinds of pesticide residues on lettuce leaves.
Optical lattices: Orbital dance
Lewenstein, Maciej; Liu, W. Vincent
2011-02-01
Emulating condensed-matter physics with ground-state atoms trapped in optical lattices has come a long way. But excite the atoms into higher orbital states, and a whole new world of exotic states appears.
Root lattices and quasicrystals
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
DEFF Research Database (Denmark)
Risager, Morten S.; Södergren, Carl Anders
2017-01-01
It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...
International Nuclear Information System (INIS)
Mackenzie, Paul
1989-01-01
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab
Grain boundaries in bcc-Fe: a density-functional theory and tight-binding study
Wang, Jingliang; Madsen, Georg K. H.; Drautz, Ralf
2018-02-01
Grain boundaries (GBs) have a significant influence on material properties. In the present paper, we calculate the energies of eleven low-Σ ({{Σ }}≤slant 13) symmetrical tilt GBs and two twist GBs in ferromagnetic bcc iron using first-principles density functional theory (DFT) calculations. The results demonstrate the importance of a sufficient sampling of initial rigid body translations in all three directions. We show that the relative GB energies can be explained by the miscoordination of atoms at the GB region. While the main features of the studied GB structures were captured by previous empirical interatomic potential calculations, it is shown that the absolute values of GB energies calculated were substantially underestimated. Based on DFT-calculated GB structures and energies, we construct a new d-band orthogonal tight-binding (TB) model for bcc iron. The TB model is validated by its predictive power on all the studied GBs. We apply the TB model to block boundaries in lath martensite and demonstrate that the experimentally observed GB character distribution can be explained from the viewpoint of interface energy.
Co thin film with metastable bcc structure formed on GaAs(111 substrate
Directory of Open Access Journals (Sweden)
Minakawa Shigeyuki
2014-07-01
Full Text Available Co thin films are prepared on GaAs(111 substrates at temperatures ranging from room temperature to 600 ºC by radio-frequency magnetron sputtering. The growth behavior and the detailed resulting film structure are investigated by in-situ reflection high-energy electron diffraction and X-ray diffraction. In early stages of film growth at temperatures lower than 200 ºC, Co crystals with metastable A2 (bcc structure are formed, where the crystal structure is stabilized through hetero-epitaxial growth. With increasing the film thickness beyond 2 nm, the metastable structure starts to transform into more stable A1 (fcc structure through atomic displacements parallel to the A2{110} close-packed planes. The crystallographic orientation relationship between the A2 and the transformed A1 crystals is A1{111} || A2{110}. When the substrate temperature is higher than 400 ºC, Ga atoms of substrate diffuse into the Co films and a Co-Ga alloy with bcc-based ordered structure of B2 is formed.
Dudarev, S. L.; Ma, Pui-Wai
2018-03-01
Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a orientation of the defect.
Twin migration in Fe-based bcc crystals: theory and experiments
Ojha, A.; Sehitoglu, H.; Patriarca, L.; Maier, H. J.
2014-06-01
We establish an overall energy expression to determine the twin migration stress in bcc metals. Twin migration succeeds twin nucleation often after a load drop, and a model to establish twin migration stress is of paramount importance. We compute the planar fault energy barriers and determine the elastic energies of twinning dislocations including the role of residual dislocations (br) and twin intersection types such as ?1 1 0?, ?1 1 3? and ?2 1 0?. The energy expression derived provides the twin migration stress in relation to the twin nucleation stress with a ratio of 0.5-0.8 depending on the resultant residual burgers vector and the intersection types. Utilizing digital image correlation, it was possible to differentiate the twin nucleation and twin advancement events experimentally, and transmission electron microscopy observations provided further support to the modelling efforts. Overall, the methodology developed provides an enhanced understanding of twin progression in bcc metals, and most importantly the proposed model does not rely on empirical constants. We utilize Fe-50at.%Cr in our experiments, and subsequently predict the twin migration stress for pure Fe, and Fe-3at.%V from the literature showing excellent agreement with experiments.
Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe.
Kvashnin, Y O; Cardias, R; Szilva, A; Di Marco, I; Katsnelson, M I; Lichtenstein, A I; Nordström, L; Klautau, A B; Eriksson, O
2016-05-27
By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E_{g} and T_{2g} symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly interacting impurity levels. We demonstrate that, as a result of this, in Fe the T_{2g} orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the E_{g} states, the Heisenberg picture breaks down since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbor coupling indicates that the interactions among E_{g} states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin. By making a comparison to other magnetic transition metals, we put the results of bcc Fe into context and argue that iron has a unique behavior when it comes to magnetic exchange interactions.
Automated Lattice Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Kiefel, Martin; Jampani, Varun; Gehler, Peter V.
2014-01-01
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....
Vortex lattices in layered superconductors
International Nuclear Information System (INIS)
Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.
1995-01-01
We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear
Gong, Zhiqiang
2017-11-07
This article examines the ability of Beijing Climate Center Climate System Model (BCC_CSM) in demonstrating the prediction accuracy and the leading modes of the summer precipitation over North Asia (NA). A dynamic-statistic combined approach for improving the prediction accuracy and the prediction of the leading modes of the summer precipitation over NA is proposed. Our results show that the BCC_CSM can capture part of the spatial anomaly features of the first two leading modes of NA summer precipitation. Moreover, BCC_CSM regains relationships such that the first and second mode of the empirical orthogonal function (EOF1 and EOF2) of NA summer precipitation, respectively, corresponds to the development of the El Niño and La Niña conditions in the tropical East Pacific. Nevertheless, BCC_CSM exhibits limited prediction skill over most part of NA and presents a deficiency in reproducing the EOF1\\'s and EOF2\\'s spatial pattern over central NA and EOF2\\'s interannual variability. This can be attributed as the possible reasons why the model is unable to capture the correct relationships among the basic climate elements over the central NA, lacks in its ability to reproduce a consistent zonal atmospheric pattern over NA, and has bias in predicting the relevant Sea Surface Temperature (SST) modes over the tropical Pacific and Indian Ocean regions. Based on the proposed dynamic-statistic combined correction approach, compared with the leading modes of BCC_CSM\\'s original prediction, anomaly correlation coefficients of corrected EOF1/EOF2 with the tropical Indian Ocean SST are improved from 0.18/0.36 to 0.51/0.62. Hence, the proposed correction approach suggests that the BCC_CSM\\'s prediction skill for the summer precipitation prediction over NA and its ability to capture the dominant modes could be certainly improved by choosing proper historical analogue information.
Local covering optimality of lattices: Leech lattice versus root lattice $E_8$
A. Schuermann; F. Vallentin (Frank)
2005-01-01
textabstractWe show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice $E_8$. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the
Compositional Variation of the Phonon Dispersion Curves of bcc Fe-Ga Alloys
International Nuclear Information System (INIS)
Zarestky, Jerel L.; Garlea, Vasile O.; Lograsso, Tom; Schlagel, D.L.; Stassis, C.
2005-01-01
Inelastic neutron scattering techniques have been used to measure the phonon dispersion curves of bcc Fe1-xGax x=10.8, 13.3, 16.0, 22.5 alloys as a function of Ga concentration. The phonon frequencies of every branch were found to decrease significantly with increasing Ga concentration. The softening was most pronounced for the T2 0 branch and, to a lesser extent, the L branch in the vicinity of = 2 3. The concentration dependence of the shear elastic constant C =1/2 C11-C12 , calculated from the slope of the T2 0 branch, was found to agree with the results of sound velocity measurements. For the higher concentration sample measured, 22.5 at. % Ga, new branches appeared, an effect associated with the increase in the number of atoms per unit cell.
Stress wave radiation from the cleavage crack extension in 3D bcc iron crystals
Czech Academy of Sciences Publication Activity Database
Uhnáková, Alena; Machová, Anna; Hora, Petr; Červ, Jan; Kroupa, Tomáš
2010-01-01
Roč. 50, č. 2 (2010), s. 678-685 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GA101/09/1630; GA AV ČR(CZ) IAA200760611 Institutional research plan: CEZ:AV0Z20760514 Keywords : bcc iron * cleavage * acoustic emission sources * FEM * MD Subject RIV: BI - Acoustics Impact factor: 1.458, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6TWM-5196KMK-3-16&_cdi=5566&_user=640952&_pii=S0927025610005379&_origin=search&_zone=rslt_list_item&_coverDate=12%2F31%2F2010&_sk=999499997&wchp=dGLbVtb-zSkWA&md5=d89705973ea4893248499205ae317b76&ie=/sdarticle.pdf
Calculation of elastic constants of BCC transition metals: tight-binding recursion method
International Nuclear Information System (INIS)
Masuda, K.; Hamada, N.; Terakura, K.
1984-01-01
The elastic constants of BCC transition metals (Fe, Nb, Mo and W) are calculated by using the tight-binding d band and the Born-Mayer repulsive potential. Introducing a small distortion characteristic to C 44 (or C') elastic deformation and calculating the energy change up to second order in the atomic displacement, the shear elastic constants C 44 and C' are determined. The elastic constants C 11 and C 12 are then calculated by using the relations B=1/3(C 11 + 2C 12 ) and C'=1/2(C 11 -C 12 ), where B is the bulk modulus. In general, the agreement between the present results and the experimental values is satisfactory. The characteristic elasticity behaviour, i.e. the strong Nsub(d) (number of d electrons) dependence of the observed anisotropy factor A=C 44 /C', will also be discussed. (author)
Properties of grain boundaries in BCC iron and iron-based alloys
Energy Technology Data Exchange (ETDEWEB)
Terentyev, D.; He, Xinfu
2010-08-15
The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.
Atomistic studies of nucleation of He clusters and bubbles in bcc iron
International Nuclear Information System (INIS)
Yang, L.; Deng, H.Q.; Gao, F.; Heinisch, H.L.; Kurtz, R.J.; Hu, S.Y.; Li, Y.L.; Zu, X.T.
2013-01-01
Atomistic simulations of the nucleation of He clusters and bubbles in bcc iron at 800 K have been carried out using the newly developed Fe–Fe interatomic potential, along with Ackland potential for the Fe–Fe interactions. Microstructure changes were analyzed in detail. We found that a He cluster with four He atoms is able to push out an iron interstitial from the cluster, creating a Frenkel pair. Small He clusters and self-interstitial atom (SIA) can migrate in the matrix, but He-vacancy (He-V) clusters are immobile. Most SIAs form clusters, and only the dislocation loops with a Burgers vector of b = 1/2 appear in the simulations. SIA clusters (or loops) are attached to He-V clusters for He implantation up to 1372 appm, while the He-V cluster–loop complexes with more than one He-V cluster are formed at the He concentration of 2057 appm and larger
Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron
Energy Technology Data Exchange (ETDEWEB)
Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang
2017-09-01
The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of
The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations
International Nuclear Information System (INIS)
Chaussidon, Julien; Fivel, Marc; Rodney, David
2006-01-01
We present atomic-scale simulations of screw dislocation glide in bcc iron. Using two interatomic potentials that, respectively, predict degenerate and non-degenerate core structures, we compute the static 0 K dependence of the screw dislocation Peierls stress on crystal orientation and show strong boundary condition effects related to the generation of non-glide stress components. At finite temperatures we show that, with a non-degenerate core, glide by nucleation/propagation of kink-pairs in a {1 1 0} glide plane is obtained at low temperatures. A transition in the twinning region, towards an average {1 1 2} glide plane, with the formation of debris loops is observed at higher temperatures
Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron
Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang
2017-09-01
The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (dumbbells and 〈 111 〉 crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [ hkl ] interstitial loop within the family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.
Study of loop-loop and loop-edge dislocation interactions in bcc iron
DEFF Research Database (Denmark)
Osetsky, Y.N.; Bacon, D.J.; Gao, F.
2000-01-01
Recent theoretical calculations and atomistic computer simulations have shown that one-dimensional glissile clusters of self-interstitial atoms (SIAs) play an important role in the evolution of microstructure in metals and alloys under cascade damage conditions. Recently, it has been proposed...... that the evolution of heterogeneities such as dislocation decoration and rafts has serious impacts on the mechanical properties on neutron-irradiated metals. In the present work, atomic-scale computer modelling (ASCM) has been applied to study the mechanisms for the formation of such microstructure in bcc iron....... It is shown that glissile clusters with parallel Burgers vectors interact strongly and can form extended immobile complexes, i.e., rafts. Similar attractive interaction exists between dislocation loops and an edge dislocation. These two mechanisms may be responsible for the formation of extended complexes...
Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Ultra-light hierarchical meta-materials on a body-centred cubic lattice
Rayneau-Kirkhope, Daniel; Mao, Yong; Farr, Robert
2017-07-01
Modern fabrication techniques offer the freedom to design and manufacture structures with complex geometry on many lengthscales, offering many potential advantages. For example, fractal/hierarchical struts have been shown to be exceptionally strong and yet light (Rayneau-Kirkhope D. et al., Phys. Rev. Lett., 109 (2012) 204301). In this letter, we propose a new class of meta-material, constructed from fractal or hierarchical struts linking a specific set of lattice points. We present a mechanical analysis of this meta-material resulting from a body-centred cubic (BCC) lattice. We show that, through the use of hierarchy, the material usage follows an enhanced scaling relation, and both material property and overall efficiency can be optimised for a specific applied stress. Such a design has the potential of providing the next generation of lightweight, buckling-resistant meta-materials.
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
International Nuclear Information System (INIS)
1976-01-01
Research on irradiation of bcc metals and alloys is reported. Data and information are presented in appendixes on low temperature neutron irradiation of Nb, effects of tritium on the yield stress of Nb, multiple dislocation motion, dislocation group motion, dislocation kinetics, and computer simulation of dislocation motion
International Nuclear Information System (INIS)
Fromont, M.
1976-01-01
It is shown that neither the dislocations resulting from the phase transformation (closed packed structure-body cubic centered structure), nor the grain boundaries are responsible for the high values of the diffusion coefficients in the b.c.c. structures of the rare earth metals [fr
Hu, Wan-Ping; Kuo, Kung-Kai; Senadi, Gopal Chandru; Chang, Long-Sen; Wang, Jeh-Jeng
2017-10-01
Cancer is one of the most dreadful diseases in humans and among them non-melanoma skin cancer (NMSC) is an increasing problem in the world, that occurs more frequently in people with fair skin. Photodynamic therapy (PDT), a non-invasive treatment is widely used for the prevention and treatment of BCC cells. We previously reported an efficient synthesis of novel indolines-fused-triazoles and studied their photophysical studies. This study delineated the signaling pathways involved in the PDT effect of triazoles on BCC cells under UVA irradiation. Cell survival was evaluated by the MTT assay. The uptake of 1j in BCC cells was determined by using its fluorescence properties. Intracellular ROS and mitochondrial membrane potential (ΔΨ mt ) were measured using DCFH-DA probe and DiOC 6 dye, respectively. Cytochrome c release was determined using immunofluorescent staining. Our data disclosed that treatment of BCC cells with 1j -UVA resulted in increased ROS generation, loss of mmp (ΔΨ mt ), decreased levels of Bcl-2 and Bcl-xL, increased levels of Bax and Bad, cytochrome c release, and caspase-3/PARP degradation to identify apoptotic cell death. The present study suggest that 1j -PDT may serve as a potential ancillary modality for the treatment of NMSC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Weidner, Carrie; Yu, Hoon; Anderson, Dana
2015-05-01
This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
Energy Technology Data Exchange (ETDEWEB)
Maturana, G.; Vanden Doel, C.P. (California Univ., Santa Cruz (USA). Physics Dept.)
1983-04-07
We study spin 3/2 fields on the lattice. Species doubling is found to be totally curable with an analogue of Wilson's method and partially with an analogue of the Kogut-Susskind formalism. Only the latter preserves local supersymmetry but describes at least four species.
Baiesi, M.; Barkema, G.T.; Carlon, E.
2010-01-01
We study a model of “elastic” lattice polymer in which a fixed number of monomers m is hosted by a self-avoiding walk with fluctuating length l. We show that the stored length density m 1− l /m scales asymptotically for large m as m= 1− /m+. . . , where is the polymer entropic exponent, so that can
International Nuclear Information System (INIS)
Krojts, M.
1987-01-01
The book by the known american physicist-theoretist M.Kreuts represents the first monography in world literature, where a new perspective direction in elementary particle physics and quantum field theory - lattice formulation of gauge theories is stated systematically. Practically all main ideas of this direction are given. Material is stated in systematic and understandable form
International Nuclear Information System (INIS)
Autin, B.
1984-01-01
After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)
Indian Academy of Sciences (India)
activities in non-perturbative QCD. Keywords. Deflation; overlap operator; GPU; CUDA. PACS Nos 11.15.Ha; 12.38.-t. 1. Introduction. The lattice gauge theory subgroup of the working group in non-perturbative QCD consisted of Mridupavan Deka, Sourendu Gupta, N D Hari Dass, Rajarshi Roy, Sayantan Sharma and.
Noetherian and Artinian Lattices
Directory of Open Access Journals (Sweden)
Derya Keskin Tütüncü
2012-01-01
Full Text Available It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L/0 is Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L satisfies DCC on small elements.
Decidability in Orthomodular Lattices
Hyčko, Marek; Navara, Mirko
2005-12-01
We discuss the possibility of automatic simplification of formulas in orthomodular lattices. We describe the principles of a program which decides the validity of equalities and inequalities, as well as implications between them and other important relations significant in quantum mechanics.
Conical diffraction in honeycomb lattices
International Nuclear Information System (INIS)
Ablowitz, Mark J.; Nixon, Sean D.; Zhu Yi
2009-01-01
Conical diffraction in honeycomb lattices is analyzed. This phenomenon arises in nonlinear Schroedinger equations with honeycomb lattice potentials. In the tight-binding approximation the wave envelope is governed by a nonlinear classical Dirac equation. Numerical simulations show that the Dirac equation and the lattice equation have the same conical diffraction properties. Similar conical diffraction occurs in both the linear and nonlinear regimes. The Dirac system reveals the underlying mechanism for the existence of conical diffraction in honeycomb lattices.
Basis reduction for layered lattices
Torreão Dassen, Erwin
2011-01-01
We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be
Basis reduction for layered lattices
E.L. Torreão Dassen (Erwin)
2011-01-01
htmlabstractWe develop the theory of layered Euclidean spaces and layered lattices. With this new theory certain problems that usually are solved by using classical lattices with a "weighting" gain a new, more natural form. Using the layered lattice basis reduction algorithms introduced here these
An alternative lattice field theory formulation inspired by lattice supersymmetry
D'Adda, Alessandro; Kawamoto, Noboru; Saito, Jun
2017-12-01
We propose an unconventional formulation of lattice field theories which is quite general, although originally motivated by the quest of exact lattice supersymmetry. Two long standing problems have a solution in this context: 1) Each degree of freedom on the lattice corresponds to 2 d degrees of freedom in the continuum, but all these doublers have (in the case of fermions) the same chirality and can be either identified, thus removing the degeneracy, or, in some theories with extended supersymmetry, identified with different members of the same supermultiplet. 2) The derivative operator, defined on the lattice as a suitable periodic function of the lattice momentum, is an addittive and conserved quantity, thus assuring that the Leibniz rule is satisfied. This implies that the product of two fields on the lattice is replaced by a non-local "star product" which is however in general non-associative. Associativity of the "star product" poses strong restrictions on the form of the lattice derivative operator (which becomes the inverse Gudermannian function of the lattice momentum) and has the consequence that the degrees of freedom of the lattice theory and of the continuum theory are in one-to-one correspondence, so that the two theories are eventually equivalent. We can show that the non-local star product of the fields effectively turns into a local one in the continuum limit. Regularization of the ultraviolet divergences on the lattice is not associated to the lattice spacing, which does not act as a regulator, but may be obtained by a one parameter deformation of the lattice derivative, thus preserving the lattice structure even in the limit of infinite momentum cutoff. However this regularization breaks gauge invariance and a gauge invariant regularization within the lattice formulation is still lacking.
Measurement of shear strength and texture evolution in BCC materials subjected to high pressures
Escobedo, Juan Pablo
Deformation modeling of metals subjected to extreme pressures and strain rates requires an understanding of the pressure-dependent dislocation core structure and its effect upon dislocation mobility. The core structure and dislocation mobilities can be predicted as a function of applied pressure from sophisticated interatomic potentials calculations and first-principles based atomistic simulations. The goal of the thesis is to develop and implement a testing procedure that experimentally determines pressure-dependent dislocation mobilities in oriented single crystals of the BCC transition metals. These experiments provide calibration data for models of materials subjected to extreme pressures and assist in model validation such as the Steinberg-Guinan hardening model or discrete dislocation dynamics simulations. An experimental procedure is reported to perform shear tests on specimens held under moderately high hydrostatic pressures (on the order of 10 GPa). A thin foil of polycrystalline Ta was used to perform experiments under hydrostatic pressures ranging from 2.1 to 4.2 GPa. A change in texture due to accumulation of slip was observed. Close to a strain of 1, the texture is predicted to change from {111} + {100} to {101}+{121}+{123}, the primary and secondary slip planes in BCC. These {101}+{121}+{123} textures were present in all the samples subjected to pressures greater than the threshold pressure to have internal shearing. The experimental (TEM) evidence shows different microstructures with the pressure being the only variable. At low pressures (2 GPa), an expected microstructure containing only dislocations was found to be responsible for the plastic deformation. At higher pressures (4 GPa) the dislocations appear to arrange themselves into elongated cell walls, with widths of 50-100 nm and lengths close to a micron. Testing on Mo single crystals were carried out. Two different orientations {110} and {121} were tested such that simple shear deformation was
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
Energy Technology Data Exchange (ETDEWEB)
Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)
2006-04-01
As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.
Energy Technology Data Exchange (ETDEWEB)
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Jipsen, Peter
1992-01-01
The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
International Nuclear Information System (INIS)
1962-01-01
The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs
International Nuclear Information System (INIS)
Bowler, Ken
1990-01-01
One of the major recent developments in particle theory has been the use of very high performance computers to obtain approximate numerical solutions of quantum field theories by formulating them on a finite space-time lattice. The great virtue of this new technique is that it avoids the straitjacket of perturbation theory and can thus attack new, but very fundamental problems, such as the calculation of hadron masses in quark-gluon field theory (quantum chromodynamics - QCD)
Automated lattice data generation
Directory of Open Access Journals (Sweden)
Ayyar Venkitesh
2018-01-01
Full Text Available The process of generating ensembles of gauge configurations (and measuring various observables over them can be tedious and error-prone when done “by hand”. In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Investigation of point defects diffusion in bcc uranium and U–Mo alloys
International Nuclear Information System (INIS)
Smirnova, D.E.; Kuksin, A.Yu.; Starikov, S.V.
2015-01-01
We present results of investigation of point defects formation and diffusion in pure γ-U and γ-U–Mo fuel alloys. The study was performed using molecular dynamics simulation with the different interatomic potentials. The point defects formation and migration energies were estimated for bcc γ-U and U–9 wt.%Mo alloy. The calculated diffusivities of atoms via defects are provided for pure γ-U and for the alloy components. Analysis of simulation results shows that self-interstitial atoms play a leading role in the self-diffusion processes in the materials studied. This fact can explain a remarkably high self-diffusion mobility observed experimentally for γ-U. The self-diffusion coefficients in γ-U calculated in this assumption agree with the data measured experimentally. It is shown that alloying of γ-U with Mo increase formation energy for self-interstitial atoms and decelerate their mobility. These changes lead to decrease of self-diffusion coefficients in U–Mo alloy compared to pure U
Amylase Production from Thermophilic Bacillus sp. BCC 021-50 Isolated from a Marine Environment
Directory of Open Access Journals (Sweden)
Altaf Ahmed Simair
2017-06-01
Full Text Available The high cost of fermentation media is one of the technical barriers in amylase production from microbial sources. Amylase is used in several industrial processes or industries, for example, in the food industry, the saccharification of starchy materials, and in the detergent and textile industry. In this study, marine microorganisms were isolated to identify unique amylase-producing microbes in starch agar medium. More than 50 bacterial strains with positive amylase activity, isolated from marine water and soil, were screened for amylase production in starch agar medium. Bacillus sp. BCC 021-50 was found to be the best amylase-producing strain in starch agar medium and under submerged fermentation conditions. Next, fermentation conditions were optimized for bacterial growth and enzyme production. The highest amylase concentration of 5211 U/mL was obtained after 36 h of incubation at 50 °C, pH 8.0, using 20 g/L molasses as an energy source and 10 g/L peptone as a nitrogen source. From an application perspective, crude amylase was characterized in terms of temperature and pH. Maximum amylase activity was noted at 70 °C and pH 7.50. However, our results show clear advantages for enzyme stability in alkaline pH, high-temperature, and stability in the presence of surfactant, oxidizing, and bleaching agents. This research contributes towards the development of an economical amylase production process using agro-industrial residues.
Trends in exchange interactions for bcc Fe/TaW(001)
Energy Technology Data Exchange (ETDEWEB)
Ondracek, Martin; Kudrnovsky, Josef; Maca, Frantisek [Institute of Physics, ASCR, Prague (Czech Republic); Bengone, Olivier [University of Strasbourg, IPCM, Strasbourg (France); Turek, Ilja [Institute of Physics of Materials, ASCR, Brno (Czech Republic); Department of Condensed Matter Physics, Charles University, Prague (Czech Republic)
2009-07-01
A recent study of Ferriani et al. investigated the possibility of tuning the magnetic order of the Fe monolayer on the disordered bcc-Ta(x)W(1-x)[001] surface. We will further extend this study by constructing the effective two-dimensional Heisenberg Hamiltonian, which describes exchange interactions in the iron monolayer in detail. We investigate the behavior of exchange integrals as a function of the composition of the alloy substrate, but also as a function of distance (damping due to disorder) and the dependence on the crystallographic directions in the overlayer. The calculated exchange integrals allow us to estimate the spin stiffness and the corresponding critical temperatures. We also wish to investigate the crossover between the ferromagnetic and antiferromagnetic state from the point of view of the stability of the Heisenberg Hamiltonian with respect to magnon excitations. The present study will help us to deeper understand the character of magnetic phase transition of the Fe overlayer due to disorder in the alloy substrate.
Saetang, Jenjira; Babel, Sandhya
2012-12-01
Immobilized Trametes versicolor BCC 8725 was evaluated for the biodegradation of the organic components of four different types of landfill leachate collected at different time periods and locations from the Nonthaburi landfill site of Thailand in batch treatment. The effects of carbon source, ammonia and organic loading on colour, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal, and the reuse of immobilized fungi were investigated. It was found that fungi can remove 78% of colour, reduce BOD by 68% and reduce COD by 57% in leachate within 15 days at optimum conditions. Organic loading and ammonia were the factors that affected the biodegradation. When immobilized T versicolor on polyurethane foam (PUF) was subjected to repeated use for treatment over the course of three cycles, the decolourization efficiency of the first and the second cycle was very similar, whereas the third cycle was about 20% lower than the first cycle under similar conditions. The obtained removal of colour, BOD and COD indicates the effectiveness of fungi for leachate treatment with high organic loading and varied leachate characteristics.
On the Secrecy Capacity Region of the Block-Fading BCC with Limited CSI Feedback
Hyadi, Amal
2017-02-07
In this work, we examine the secrecy capacity region of the block-fading broadcast channel with confidential messages (BCC) when the transmitter has limited knowledge of the channel. In particular, we consider a two-user communication system where the transmitter has one common message to be transmitted to both users and one confidential message intended to only one of them. The confidential message has to be kept secret from the other user to whom the information is not intended. The transmitter is not aware of the channel state information (CSI) of neither channel and is only provided by limited CSI feedback sent at the beginning of each fading block. Assuming an error-free feedback link, we characterize the secrecy capacity region of this channel and show that even with a 1-bit CSI feedback, a positive secrecy rate can still be achieved. Then, we look at the case where the feedback link is not error- free and is rather a binary erasure channel (BEC). In the latter case, we provide an achievable secrecy rate region and show that as long as the erasure event is not a probability 1 event, the transmitter can still transmit the confidential information with a positive secrecy rate.
Influence of point defects on grain boundary mobility in bcc tungsten.
Borovikov, Valery; Tang, Xian-Zhu; Perez, Danny; Bai, Xian-Ming; Uberuaga, Blas P; Voter, Arthur F
2013-01-23
Atomistic computer simulations were performed to study the influence of radiation-induced damage on grain boundary (GB) sliding processes in bcc tungsten (W), the divertor material in the ITER tokamak and the leading candidate for the first wall material in future fusion reactors. In particular, we calculated the average sliding-friction force as a function of the number of point defects introduced into the GB for a number of symmetric tilt GBs. In all cases the average sliding-friction force at fixed shear strain rate depends on the number of point defects introduced into the GB, and in many cases introduction of these defects reduces the average sliding-friction force by roughly an order of magnitude. We have also observed that as the number of interstitials in the GB is varied, the direction of the coupled GB motion sometimes reverses, causing the GB to migrate in the opposite direction under the same applied shear stress. This could be important in the microstructural evolution of polycrystalline W under the harsh radiation environment in a fusion reactor, in which high internal stresses are present and frequent collision cascades generate interstitials and vacancies.
International Nuclear Information System (INIS)
Raufast, C.; Planté, D.; Miraglia, S.
2014-01-01
Highlights: • Materials synthesis and structural analysis of selected compositions of TiVCr(Mo) bcc samples. • Extraction of the thermodynamics relevant parameters for hydride formation and dissociation state of Ti 0.3 V 1.7 Cr 0.7 Mo 0.3 sample. • Discussion of the hydrides practicability. - Abstract: Selected compositions in the Ti-Cr-V-Mo system (with the BCC structure-type) have been synthesized and characterized for structural (crystalline structure, solidification microstructure) and thermodynamic properties (equilibrium and reversible hydrogen storage capacity). We present as well the effect of co-melting with a so-called activating phase that results in a secondary phase development and a subsequent enhancement of the hydrogen sorption kinetics. Ageing properties and applicability of such materials for hybrid hydrogen storage systems are also discussed
Directory of Open Access Journals (Sweden)
Gérald Franz
2013-11-01
Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.
A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals
Energy Technology Data Exchange (ETDEWEB)
Wilson, S. R.; Mendelev, M. I., E-mail: mendelev@ameslab.gov [Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States)
2016-04-14
We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).
Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle
Czech Academy of Sciences Publication Activity Database
Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga
2014-01-01
Roč. 83, February (2014), s. 229-234 ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575
Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite
Directory of Open Access Journals (Sweden)
Sun Guoyuan
2013-03-01
Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.
3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II
Czech Academy of Sciences Publication Activity Database
Uhnáková, Alena; Pokluda, J.; Machová, Anna; Hora, Petr
2012-01-01
Roč. 61, AUG 2012 (2012), s. 12-19 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : fatigue * mode II * bcc iron * molecular dynamic simulations Subject RIV: JG - Metallurgy Impact factor: 1.878, year: 2012 http://www.sciencedirect.com/science/article/pii/S0927025612001929
Czech Academy of Sciences Publication Activity Database
Uhnáková, Alena; Pokluda, J.; Machová, Anna; Hora, Petr
2011-01-01
Roč. 33, č. 12 (2011), s. 1564-1573 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : fatigue * mode III * bcc iron * molecular dynamic simulations Subject RIV: JG - Metallurgy Impact factor: 1.546, year: 2011 http://www.sciencedirect.com/science/article/pii/S0142112311001708
Fang, Yihe; Chen, Haishan; Gong, Zhiqiang; Xu, Fangshu; Zhao, Chunyu
2017-12-01
Based on summer precipitation hindcasts for 1991-2013 produced by the Beijing Climate Center Climate System Model (BCC_CSM), the relationship between precipitation prediction error in northeastern China (NEC) and global sea surface temperature is analyzed, and dynamic-analogue prediction is carried out to improve the summer precipitation prediction skill of BCC_CSM, through taking care of model historical analogue prediction error in the real-time output. Seven correction schemes such as the systematic bias correction, pure statistical correction, dynamic-analogue correction, and so on, are designed and compared. Independent hindcast results show that the 5-yr average anomaly correlation coefficient (ACC) of summer precipitation is respectively improved from -0.13/0.15 to 0.16/0.24 for 2009-13/1991-95 when using the equally weighted dynamic-analogue correction in the BCC_CSM prediction, which takes the arithmetical mean of the correction based on regional average error and that on grid point error. In addition, probabilistic prediction using the results from the multiple correction schemes is also performed and it leads to further improved 5-yr average prediction accuracy.
Dynamical feedback between synoptic eddy and low-frequency flow as simulated by BCC_CSM1.1(m)
Zhou, Fang; Ren, Hong-Li
2017-11-01
Since the interaction between atmospheric synoptic eddy (SE) (2-8 days) activity and low-frequency (LF) (monthly) flow (referred to as SELF) plays an essential role in generating and maintaining dominant climate modes, an evaluation of the performance of BCC_CSM1.1(m) in simulating the SE feedback onto the LF flow is given in this paper. The model captures well the major spatial features of climatological eddy vorticity forcing, eddy-induced growth rate, and patterns of SELF feedback for the climate modes with large magnitudes in cold seasons and small magnitudes in warm seasons for both the Northern and Southern Hemisphere. As in observations, the eddy-induced growth rate and SELF feedback patterns in the model also show positive SE feedback. Overall, the relationships between SE and LF flow show that BCC_CSM1.1(m) satisfactorily captures the basic features of positive SE feedback, which demonstrates the simulation skill of the model for LF variability. Specifically, such an evaluation can help to find model biases of BCC_CSM1.1(m) in simulating SE feedback, which will provide a reference for the model's application.
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
International Nuclear Information System (INIS)
Vidovsky, I.; Kereszturi, A.
1991-11-01
The results of experiments and calculations on Gd lattices are presented, and a comparison of experimental and calculational data is given. This latter can be divided into four groups. The first belongs to the comparison of criticality parameters, the second group is related with the comparison of 2D distributions, the third one relates the comparison of intra-macrocell distributions, whereas the fourth group is devoted for the comparison of spectral parameters. For comparison, the computer code RFIT based on strict statistical criteria has been used. The calculated and measured results agree, in most cases, sufficiently. (R.P.) 11 refs.; 13 figs.; 9 tabs
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...
Lattice of quantum predictions
Drieschner, Michael
1993-10-01
What is the structure of reality? Physics is supposed to answer this question, but a purely empiristic view is not sufficient to explain its ability to do so. Quantum mechanics has forced us to think more deeply about what a physical theory is. There are preconditions every physical theory must fulfill. It has to contain, e.g., rules for empirically testable predictions. Those preconditions give physics a structure that is “a priori” in the Kantian sense. An example is given how the lattice structure of quantum mechanics can be understood along these lines.
Drashkovicheva, Kh; Igoshin, V I; Katrinyak, T; Kolibiar, M
1989-01-01
This book is another publication in the recent surveys of ordered sets and lattices. The papers, which might be characterized as "reviews of reviews," are based on articles reviewed in the Referativnyibreve Zhurnal: Matematika from 1978 to 1982. For the sake of completeness, the authors also attempted to integrate information from other relevant articles from that period. The bibliography of each paper provides references to the reviews in RZhMat and Mathematical Reviews where one can seek more detailed information. Specifically excluded from consideration in this volume were such topics as al
Lattice cell burnup calculation
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1977-01-01
Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics
Determinants of adherence to therapies among Malaysian women with breast cancer: MyBCC Cohort
Directory of Open Access Journals (Sweden)
Mao Li Cheng
2017-12-01
Full Text Available Background: Breast cancer therapies have been progressively advancing to improve the breast cancer survival over the last few decades. However, non-adherence to cancer treatments has shown to be associated with reduced treatment effectiveness, increased mortality, and increased health care costs. The aim of the study is to understand the determinants of adherence to therapies among Malaysian breast cancer patients. Methods: This was a secondary analysis of all newly diagnosed Malaysian breast cancer patients recruited into a prospective cohort study in Universiti Malaya Medical Centre, MyBCC cohort, from 1st February 2012 to 31st December 2015. The MyBCC cohort study has ethics approval, MEC number 896.150. The treatment options (surgery, chemotherapy, radiotherapy, and overall therapies, surgical options, socio-demographic characteristics, clinical signs and symptoms, traditional and complementary medicine, and psychosocial assessments were measured using Hospital Anxiety and Depression Scale (HADS and Multidimensional Scale of Perceived Social Support (MSPSS. Results: In total, 467 patients were analysed. The adherence to surgery was 93.8%, chemotherapy 87.7%, radiotherapy 89.1%, and overall therapies 65.8% respectively. Breast conserving surgery was associated with adherence to surgery compared to mastectomy (adjusted OR 5.48 [95% CI 1.00, 30.09], p = 0.034, radiotherapy (adjusted OR 5.44 [95% CI 1.17, 25.16], p = 0.030 and overall therapies (adjusted OR 2.45 [95% CI 1.04, 5.78], p = 0.041. Time from diagnosis to surgery of less than 60 days was associated with adherence to surgery (adjusted OR 49.98 [95% CI 8.47, 289.05], p less than 0.0001 and overall therapies (adjusted OR 9.38 [95% CI 1.26, 69.73], p = 0.029. Adherence to chemotherapy associated with no surgery (adjusted OR 0.15 [95% CI 0.03, 0.70], p = 0.016. Adherence to radiotherapy was associated with financial reimbursement (adjusted OR 4.34 [95% CI 1.03, 18.26], p = 0.045 and
Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating
International Nuclear Information System (INIS)
Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.
2007-01-01
X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties
Structural-Phase Low-Stability States of BCC-Intermetallic Compounds with APB Complexes
Potekaev, A. I.; Chaplygina, A. A.; Chaplygin, P. A.; Starostenkov, M. D.; Kulagina, V. V.; Klopotov, A. A.
2018-02-01
Using a mono-nickel aluminide (NiAl) as an example, the influence of APB complexes (a pair of shear APBs along the direction and a pair of APBs along the direction) on the low-stability pre-transitional states of BCC-intermetallic compounds is investigated by the Monte Carlo method. It is shown that in the region of the low-stability states of this compound the formation energy of a complex of thermal APBs is higher than that of a complex of shear APBs. The contribution of APBs into disordering is essential up to the structural-phase transformation temperature. The most significant factor for the long-range ordering in the system is the appearance of a defect in the form of an APB itself, while the differences in the APB types and planes of their occurrence do not so essentially affect the long-range order behavior with the temperature variations. A system with structural defects is obviously less ordered compared to a defect-free system. The presence of a defect in the form of an APB promotes disordering of the system at lower temperatures: the degree of ordering starts to decrease in the case of thermal APBs at a lower temperature compared to the case of shear APBs. In the NiAl alloy with a complex of APBs, the first distortions of the structural order invariably appear near the Al-Al boundary. In the alloy with a complex of shear APBs, the distortions of the structural order are observed only in the regions where the boundaries cross. The presence of antiphase boundaries affects the alloy stability during heating. It is shown that the process of disordering is accompanied by smearing of the boundaries and their faceting.
Development of a new formulation of interferons (HEBERPAG for BCC treatment
Directory of Open Access Journals (Sweden)
Bello-Rivero I
2013-12-01
Full Text Available Purpose: This work is aimed to show briefly, the clinical development of a new pharmaceutical formulation of interferons for the treatment of basal cell carcinoma. Methods: A rationale design of the combination of IFN-α2b and -γ based in their anti-proliferative synergism on several tumors cell lines identified adequate proportions to be combined to obtain the best clinical results. The potential mechanism of antitumoral effect was studied by qPCR mRNA quantification. HEBERPAG (anti-proliferative synergistic combination of co-formulated recombinant interferons-α2b and –γ was used in clinical trials in adult patients with non-melanoma skin cancer. Trials were conducted after approval by the ethics review boards of the institutions participating in trials; and the patients gave their written informed consent to be enrolled in the studies and receive HEBERPAG. Results: HEBERPAG inhibits the proliferation of several tumor cell lines in vitro and in vivo. The combination has improved pharmacodinamic properties. Several clinical trials have demonstrated the efficacy of HEBERPAG in BCC, with excellent cosmetic effect and well tolerable, mild side effects. HEBERPAG was approved by State Control Center for Drug, Medical Equipment and Devises in Cuba, for the treatment of basal cell carcinoma of any subtype, size and localization, and adjuvant to other treatments, surgical or not. After 3-year follow-up, a recurrence rate of 0.03% was detected in treated patients. Conclusions: HEBERPAG is a novel formulation of IFNs, more potent than separated IFNs for the treatment of basal cell carcinoma, with more rapid and prolonged clinical effect and excellent cosmetic effect and safety profile.
Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure
International Nuclear Information System (INIS)
Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.
2011-01-01
Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.
Numerical simulation of ductile-brittle behaviour of cracks in aluminium and bcc iron
International Nuclear Information System (INIS)
Zacharopoulos, Marios
2017-01-01
The principal aim of the present dissertation is to investigate the role of sharp cracks on the mechanical behaviour of crystals under load at the atomic scale. The question of interest is how a pure crystal, which contains a single crack in mechanical equilibrium, deforms. Two metals were considered: aluminium, ductile at any temperature below its melting point, and iron, being transformed from ductile to brittle upon decreasing temperature below T=77 K. Cohesive forces in both metals were modeled via phenomenological n-body potentials. A (010)[001] mode I nano-crack was introduced in the perfect crystalline lattice of each of the studied metals by using appropriate displacements ascribed by anisotropic elasticity. At T=0 K, equilibrium crack configurations were obtained via energy minimization with a mixed type of boundary conditions. Both models revealed that the crack configurations remained stable under a finite range of applied stresses due to the lattice trapping effect. The present thesis proposes a novel approach to interpret the intrinsic mechanical behaviour of the two metallic systems under loading. In particular, the ductile or brittle response of a crystalline system can be determined by examining whether the lattice trapping barrier of a pre-existing crack is sufficient to cause the glide of pre-existing static dislocations on the available slip systems. Simulation results along with experimental data demonstrate that, according to the model proposed, aluminium and iron are ductile and brittle at T=0 K, respectively. (author) [fr
Extreme lattices: symmetries and decorrelation
Andreanov, A.; Scardicchio, A.; Torquato, S.
2016-11-01
We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron
Directory of Open Access Journals (Sweden)
Surma S.A.
2015-06-01
Full Text Available Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.
Characterization of projection lattices of Hilbert spaces
Energy Technology Data Exchange (ETDEWEB)
Szambien, H.H.
1986-09-01
The classical lattices of projections of Hilbert spaces over the real, the complex or the quaternion number field are characterized among the totality of irreducible, complete, orthomodular, atomic lattices satisfying the covering property. To this end, so-called paratopological lattices are introduced, i.e, lattices carrying a topology that renders the lattice operations restrictedly continuous.
Directory of Open Access Journals (Sweden)
V.M. Chernov
2016-12-01
Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.
Lattices, supersymmetry and Kaehler fermions
International Nuclear Information System (INIS)
Scott, D.M.
1984-01-01
It is shown that a graded extension of the space group of a (generalised) simple cubic lattice exists in any space dimension, D. The fermionic variables which arise admit a Kaehlerian interpretation. Each graded space group is a subgroup of a graded extension of the appropriate Euclidean group, E(D). The relevance of this to the construction of lattice theories is discussed. (author)
Fast simulation of lattice systems
DEFF Research Database (Denmark)
Bohr, H.; Kaznelson, E.; Hansen, Frank
1983-01-01
A new computer system with an entirely new processor design is described and demonstrated on a very small trial lattice. The new computer simulates systems of differential equations of the order of 104 times faster than present day computers and we describe how the machine can be applied to lattice...
Quantum phases in optical lattices
Dickerscheid, Dennis Brian Martin
2006-01-01
An important new development in the field of ultracold atomic gases is the study of the properties of these gases in a so-called optical lattice. An optical lattice is a periodic trapping potential for the atoms that is formed by the interference pattern of a few laser beams. A reason for the
Lattice gauge theory: Present status
International Nuclear Information System (INIS)
Creutz, M.
1993-09-01
Lattice gauge theory is our primary tool for the study of non- perturbative phenomena in hadronic physics. In addition to giving quantitative information on confinement, the approach is yielding first principles calculations of hadronic spectra and matrix elements. After years of confusion, there has been significant recent progress in understanding issues of chiral symmetry on the lattice
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Constraint percolation on hyperbolic lattices
Lopez, Jorge H.; Schwarz, J. M.
2017-11-01
Hyperbolic lattices interpolate between finite-dimensional lattices and Bethe lattices, and they are interesting in their own right, with ordinary percolation exhibiting not one but two phase transitions. We study four constraint percolation models—k -core percolation (for k =1 ,2 ,3 ) and force-balance percolation—on several tessellations of the hyperbolic plane. By comparing these four different models, our numerical data suggest that all of the k -core models, even for k =3 , exhibit behavior similar to ordinary percolation, while the force-balance percolation transition is discontinuous. We also provide proof, for some hyperbolic lattices, of the existence of a critical probability that is less than unity for the force-balance model, so that we can place our interpretation of the numerical data for this model on a more rigorous footing. Finally, we discuss improved numerical methods for determining the two critical probabilities on the hyperbolic lattice for the k -core percolation models.
Lattice quantum chromodynamics practical essentials
Knechtli, Francesco; Peardon, Michael
2017-01-01
This book provides an overview of the techniques central to lattice quantum chromodynamics, including modern developments. The book has four chapters. The first chapter explains the formulation of quarks and gluons on a Euclidean lattice. The second chapter introduces Monte Carlo methods and details the numerical algorithms to simulate lattice gauge fields. Chapter three explains the mathematical and numerical techniques needed to study quark fields and the computation of quark propagators. The fourth chapter is devoted to the physical observables constructed from lattice fields and explains how to measure them in simulations. The book is aimed at enabling graduate students who are new to the field to carry out explicitly the first steps and prepare them for research in lattice QCD.
Thermal vacancies and phase separation in bcc mixtures of helium-3 and helium-4
Energy Technology Data Exchange (ETDEWEB)
Fraass, Benedick Andrew [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physics
1980-01-01
Thermal vacancy concentrations in crystals of ^{3}He-^{4}He mixtures have been determined. A new x-ray diffractometer-position sensitive detector system is used to make measurements of the absolute lattice parameter of the helium crystals with an accuracy of 300 ppM, and measurements of changes in lattice parameters to better than 60 ppM. The phase separation of the concentrated^{3}He-^{4}He mixtures has been studied in detail with the x-ray measurements. Vacancy concentrations in crystals with 99%, 51%, 28%, 12%, and 0% ^{3}He have been determined. Phase separation has been studied in mixed crystals with concentrations of 51%, 28%, and 12% ^{3}He and melting pressures between 3.0 and 6.1 MPa. The phase separation temperatures determined in this work are in general agreement with previous work. The pressure dependence of T_{c}, the phase separation temperature for a 50% mixture, is found to be linear: dT_{c}/dP = -34 mdeg/MPa. The x-ray measurements are used to make several comments on the low temperature phase diagram of the helium mixtures.
Local structure and phase transformation in Zr and Ti based bcc solutions
International Nuclear Information System (INIS)
Chang, A.L.J.
1975-01-01
High resolution direct lattice imaging and dark field electron microscopy were used to examine the omega phase transformation in Zr--Nb alloys. Direct lattice imaging demonstrates the existence of three subvariants within each omega variant. The kinematic intensity sum, which is evaluated based on the combination of certain atomic arrangements, was carried out to include both untransformed beta phase and the omega phase. An ordered sequence of subvariants was found to be responsible for the diffraction effects in high Nb content alloys. However, the existence of such an ordered sequence among omega subvariants could not be checked out because of the small size of the omega regions. Omega domains of different variant do not interweave. Isolated particles with diameters of 3 to 5 A also are present away from the domains. As the Nb content is increased the omega domains decrease in size while the isolated particles (3 to 5 A) are present over the entire range studied, from 8 to 30 wt percent Nb. It is suggested that fluctuations in structure occur between the beta and omega phases. The isolated particles, also changing with time, are believed to be images of single or small groups of displaced atoms. (Diss. Abstr. Int., B)
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
Tarasov, Vasily E
2014-01-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Lattice Methods for Quantum Chromodynamics
DeGrand, Thomas
2006-01-01
Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology. This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually do
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?
Gorondy-Novak, S.; Jomard, F.; Prima, F.; Lefaix-Jeuland, H.
2017-05-01
Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs+ primary ion beam coupled with CsHe+ molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, 4He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.
SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?
Energy Technology Data Exchange (ETDEWEB)
Gorondy-Novak, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Jomard, F. [Groupe d' Etude de la Matière Condensée, CNRS, UVSQ, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Prima, F. [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Lefaix-Jeuland, H., E-mail: helene.lefaix@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)
2017-05-01
Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs{sup +} primary ion beam coupled with CsHe{sup +} molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, {sup 4}He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.
Energy Technology Data Exchange (ETDEWEB)
Masuda-Jindo, K. [Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503 (Japan)], E-mail: kmjindo@issp.u-tokyo.ac.jp; Vu Van Hung; Hoa, N.T. [Department of Physics, Hanoi National Pedagogic University, km8 Hanoi-Sontay Highway, Hanoi (Viet Nam); Turchi, P.E.A. [Lawrence Livermore National Laboratory, PO Box 808, L-353 LLNL, Livermore, CA 94551 (United States)
2008-03-06
The thermodynamic quantities of high temperature metals and alloys are studied using the statistical moment method, going beyond the quasi-harmonic approximations. Including the power moments of the atomic displacements up to the fourth order, the Helmholtz free energies and the related thermodynamic quantities are derived explicitly in closed analytic forms. The configurational entropy term is taken into account by using the tetrahedron cluster approximation of the cluster variation method (CVM). The energetics of the binary (Ta-W and Mo-Ta) alloys are treated within the framework of the first-principles TB-LMTO (tight-binding linear muffin tin orbital) method coupled to CPA (coherent potential approximation) and GPM (generalized perturbation method). The equilibrium phase diagrams are calculated for the refractory Ta-W and Mo-Ta bcc alloys. In addition, the mechanical properties, i.e., temperature dependence of the elastic moduli C{sub 11}, C{sub 12} and C{sub 44} and those of the ideal tensile and shear strengths of the bcc Ta-W and Ta-Mo alloys have been also studied.
De Backer, A.; Mason, D. R.; Domain, C.; Nguyen-Manh, D.; Marinica, M.-C.; Ventelon, L.; Becquart, C. S.; Dudarev, S. L.
2018-01-01
In a fusion tokamak, the plasma of hydrogen isotopes is in contact with tungsten at the surface of a divertor. In the bulk of the material, the hydrogen concentration profile tends towards dynamic equilibrium between the flux of incident ions and their trapping and release from defects, either native or produced by ion and neutron irradiation. The dynamics of hydrogen exchange between the plasma and the material is controlled by pressure, temperature, and also by the energy barriers characterizing hydrogen diffusion in the material, trapping and de-trapping from defects. In this work, we extend the treatment of interaction of hydrogen with vacancy-type defects, and investigate how hydrogen is trapped by self-interstitial atom defects and dislocations. The accumulation of hydrogen on dislocation loops and dislocations is assessed using a combination of density functional theory (DFT), molecular dynamics with empirical potentials, and linear elasticity theory. The equilibrium configurations adopted by hydrogen atoms in the core of dislocations as well as in the elastic fields of defects, are modelled by DFT. The structure of the resulting configurations can be rationalised assuming that hydrogen atoms interact elastically with lattice distortions and that they interact between themselves through short-range repulsion. We formulate a two-shell model for hydrogen interaction with an interstitial defect of any size, which predicts how hydrogen accumulates at defects, dislocation loops and line dislocations at a finite temperature. We derive analytical formulae for the number of hydrogen atoms forming the Cottrell atmosphere of a mesoscopic dislocation loop or an edge dislocation. The solubility of hydrogen as a function of temperature, pressure and the density of dislocations exhibits three physically distinct regimes, dominated by the solubility of hydrogen in a perfect lattice, its retention at dislocation cores, and trapping by long-range elastic fields of
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Lattice Studies of Hyperon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Harmonic oscillator on a lattice
International Nuclear Information System (INIS)
Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.
1983-01-01
The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
Homomorphisms of complete distributive lattices | Pultr ...
African Journals Online (AJOL)
A survey of analogous results on algebraic universality of categories based on finitary distributive (0, 1)-lattices is included to motivate further questions about categories based on complete distributive lattices. Keywords: complete distributive lattice, complete lattice homomorphism, frame, Heyting algebra, continuous map, ...
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Embedded Lattice and Properties of Gram Matrix
Directory of Open Access Journals (Sweden)
Futa Yuichi
2017-03-01
Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].
Lattice dislocation in Si nanowires
Energy Technology Data Exchange (ETDEWEB)
Omar, M.S., E-mail: dr_m_s_omar@yahoo.co [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Taha, H.T. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)
2009-12-15
Modified formulas were used to calculate lattice thermal expansion, specific heat and Bulk modulus for Si nanowires with diameters of 115, 56, 37 and 22 nm. From these values and Gruneisen parameter taken from reference, mean lattice volumes were found to be as 20.03 A{sup 3} for the bulk and 23.63, 29.91, 34.69 and 40.46 A{sup 3} for Si nanowire diameters mentioned above, respectively. Their mean bonding length was calculated to be as 0.235 nm for the bulk and 0.248, 0.269, 0.282 and 0.297 nm for the nanowires diameter mentioned above, respectively. By dividing the nanowires diameter on the mean bonding length, number of layers per each nanowire size was found to be as 230, 104, 65 and 37 for the diameters mentioned above, respectively. Lattice dislocations in 22 nm diameter wire were found to be from 0.00324 nm for the 1st central lattice to 0.2579 nm for the last surface lattice. Such dislocation was smaller for larger wire diameters. Dislocation concentration found to change in Si nanowires according to the proportionalities of surface thickness to nanowire radius ratios.
Energy Technology Data Exchange (ETDEWEB)
Shulenburger, Luke [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Motivated by the disagreement between recent diffusion Monte Carlo calculations of the phase transition pressure between the ambient and beta-Sn phases of silicon and experiments, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an opportunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation and after removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.
Directory of Open Access Journals (Sweden)
Rafael de Carvalho Miranda
2014-01-01
Full Text Available The development of discrete-event simulation software was one of the most successful interfaces in operational research with computation. As a result, research has been focused on the development of new methods and algorithms with the purpose of increasing simulation optimization efficiency and reliability. This study aims to define optimum variation intervals for each decision variable through a proposed approach which combines the data envelopment analysis with the Fuzzy logic (Fuzzy-DEA-BCC, seeking to improve the decision-making units’ distinction in the face of uncertainty. In this study, Taguchi’s orthogonal arrays were used to generate the necessary quantity of DMUs, and the output variables were generated by the simulation. Two study objects were utilized as examples of mono- and multiobjective problems. Results confirmed the reliability and applicability of the proposed method, as it enabled a significant reduction in search space and computational demand when compared to conventional simulation optimization techniques.
The influence of defects in B.C.C. iron on simulated low-energy displacement cascades
International Nuclear Information System (INIS)
Brumovsky, M.
1975-01-01
The effect of b.c.c. iron defects on radiation damage characteristics was studied by numerical integration of equations of motion of a large set of atoms. The following defects were chosen: vacancy, and split interstitials, and interstitial carbon atoms in octahedral position. Threshold energy for the carbon atom displacement was found to be strongly dependent on the direction of the knock-on, similarly as for the case of iron atoms. The lowest threshold energy (less than 3 eV) was found in the direction, the highest in the direction. Channelling of carbon atoms was only observed in the direction. Defects may also affect the dynamics of radiation damage processes mainly collision chains. Vacancies strongly affected collision chains in the and the directions which resulted in defocusation. Split interstitials, if not parallel to collision chains, practically stopped their propagation. The most marked effect was produced by interstitial carbon atoms: they slowed down rapidly all types of collision chains. (author)
Belozerov, A. S.; Katanin, A. A.; Anisimov, V. I.
2017-08-01
We analyze the momentum and temperature dependences of the magnetic susceptibilities and magnetic exchange interaction in paramagnetic bcc iron by a combination of density functional theory and dynamical mean-field theory (DFT+DMFT). By considering a general derivation of the orbital-resolved effective model for spin degrees of freedom for Hund's metals, we relate momentum-dependent susceptibilities in the paramagnetic phase to the magnetic exchange. We then calculate nonuniform orbital-resolved susceptibilities at high-symmetry wave vectors by constructing appropriate supercells in the DMFT approach. Extracting the irreducible parts of susceptibilities with respect to Hund's exchange interaction, we determine the corresponding orbital-resolved exchange interactions, which are then interpolated to the whole Brillouin zone. Using the spherical model we estimate the temperature dependence of the resulting exchange between local moments.
Finite-lattice-spacing corrections to masses and g factors on a lattice
International Nuclear Information System (INIS)
Roskies, R.; Wu, J.C.
1986-01-01
We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice
Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys
Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär
2014-09-01
Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.
Szczęśniak, D.; Wrona, I. A.; Drzazga, E. A.; Kaczmarek, A. Z.; Szewczyk, K. A.
2017-11-01
Recent hydrides-driven advent in the high-pressure phonon-mediated superconductivity motivates research on chemical elements which compound with hydrogen. It is desired that such elements should allow chemical pre-compression of hydrogen to assure the induction of the superconducting phase with the high transition temperature (T C). Herein, we present detailed theoretical insight into the properties of the superconducting state induced under pressure (p) in two of such component elements, namely selenium (Se) and tellurium (Te) at p=250 GPa and p=70 GPa, respectively. The assumed external pressure conditions allow us to conduct our analysis just above previously theoretically predicted bcc-fcc structural phase transition of Se and Te, and identify the possible associated discontinuity effect of the critical temperature. In particular, our numerical analysis is conducted within Migdal-Eliashberg formalism, due to the confirmed electron-phonon pairing mechanism and relatively high electron-phonon coupling constant in the materials of interest. We predict that T C values in Se and Te equal 8.13 K and 5.96 K, respectively, and mark the highest critical temperature values for these elements within the postulated fcc phase. Additionally, we supplement these results by the estimated maximum values of the superconducting energy band gap and the effective mass of electrons. We predict that all these parameters can be used as a guidelines for experimental observation of the critical temperature discontinuity and the corresponding bcc-fcc phase transition in Se and Te superconductors. Moreover, we show that the thermodynamics of superconducting phase in both elements may exhibit deviations from the conventional estimates of the Bardeen-Cooper-Schrieffer theory, and suggest existence of the strong-coupling and retardation effects. Finally, we note that our results can be also instructive for future screening of chemical elements for applications in superconducting hydrides.
Frustrated lattices of Ising chains
International Nuclear Information System (INIS)
Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A
2012-01-01
The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)
Lattice QCD without topology barriers
Lüscher, Martin
2011-01-01
As the continuum limit is approached, lattice QCD simulations tend to get trapped in the topological charge sectors of field space and may consequently give biased results in practice. We propose to bypass this problem by imposing open (Neumann) boundary conditions on the gauge field in the time direction. The topological charge can then flow in and out of the lattice, while many properties of the theory (the hadron spectrum, for example) are not affected. Extensive simulations of the SU(3) gauge theory, using the HMC and the closely related SMD algorithm, confirm the absence of topology barriers if these boundary conditions are chosen. Moreover, the calculated autocorrelation times are found to scale approximately like the square of the inverse lattice spacing, thus supporting the conjecture that the HMC algorithm is in the universality class of the Langevin equation.
Soliton mobility in disordered lattices.
Sun, Zhi-Yuan; Fishman, Shmuel; Soffer, Avy
2015-10-01
We investigate soliton mobility in the disordered Ablowitz-Ladik (AL) model and the standard nonlinear Schrödinger (NLS) lattice with the help of an effective potential generalizing the Peierls-Nabarro potential. This potential results from a deviation from integrability, which is due to randomness for the AL model, and both randomness and lattice discreteness for the NLS lattice. The statistical properties of such a potential are analyzed, and it is shown how the soliton mobility is affected by its size. The usefulness of this effective potential in studying soliton dynamics is demonstrated numerically. Furthermore, we propose two ways to enhance soliton transport in the presence of disorder: one is to use specific realizations of randomness, and the other is to consider a specific soliton pair.
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Equations Holding in Hilbert Lattices
Mayet, René
2006-07-01
We produce and study several sequences of equations, in the language of orthomodular lattices, which hold in the ortholattice of closed subspaces of any classical Hilbert space, but not in all orthomodular lattices. Most of these equations hold in any orthomodular lattice admitting a strong set of states whose values are in a real Hilbert space. For some of these equations, we give conditions under which they hold in the ortholattice of closed subspaces of a generalised Hilbert space. These conditions are relative to the dimension of the Hilbert space and to the characteristic of its division ring of scalars. In some cases, we show that these equations cannot be deduced from the already known equations, and we study their mutual independence. To conclude, we suggest a new method for obtaining such equations, using the tensorial product.
3D atomistic studies of fatigue behaviour of edge crack (0 0 1) in bcc iron loaded in mode i and II
Czech Academy of Sciences Publication Activity Database
Machová, Anna; Pokluda, J.; Uhnáková, Alena; Hora, Petr
2014-01-01
Roč. 66, September (2014), s. 11-19 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional support: RVO:61388998 Keywords : fatigue crack growth * bcc iron * 3D atomistic simulations * molecular dynamics Subject RIV: JQ - Machines ; Tools Impact factor: 2.275, year: 2014 www.elsevier.com/locate/ijfatigue
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Chiral symmetry on the lattice
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Kondo length in bosonic lattices
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Graphene on graphene antidot lattices
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
[Lattice degeneration of the retina].
Boĭko, E V; Suetov, A A; Mal'tsev, D S
2014-01-01
Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.
Three Classes of Orthomodular Lattices
Greechie, Richard J.; Legan, Bruce J.
2006-02-01
Let mathcal{OML} denote the class of all orthomodular lattices and mathcal{C} denote the class of those that are commutator-finite. Also, let mathcal{C}1 denote the class of orthomodular lattices that satisfy the block extension property, mathcal{C}2 those that satisfy the weak block extension property, and mathcal{C}3 those that are locally finite. We show that the following strict containments hold: mathcal{C} subset mathcal{C}1 subset mathcal{C}2 subset mathcal{C}3 subset mathcal{OML}.
Unconventional superconductivity in honeycomb lattice
Directory of Open Access Journals (Sweden)
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
Machines for lattice gauge theory
International Nuclear Information System (INIS)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
International Nuclear Information System (INIS)
Willaime, F.
1991-09-01
We have developed an N-body interatomic potential, based on the second moment approximation of the tight-binding scheme, by fitting its four adjustable parameters to the cohesive energy, atomic volume, and elastic constants of hcp-Zr. We then showed that various properties of this potential compare favorably with those of zirconium in both the low temperatures hcp phase and the high temperature bcc phase. Such is the case in particular for the elastic constants, the phonon dispersion curves, the thermal expansion, and the melting temperature. We reproduced by molecular dynamics (MD) simulations on this potential the hcp/bcc phase transformation in both ways. It indeed occurs following the mechanism predicted by Burgers. We find a vibrational entropy of transformation equal to 0.13 k B . Our calculations suggest that in real zirconium the electronic contribution to the transformation entropy is important. We show that some interatomic potential lead to a higher value of the vibrational entropy in the hcp phase than in the bcc phase. We specified the dynamics of the vacancy migration in the bcc phase. The atomic jumps are almost exclusively nearest neighbour ones. The walk of the vacancy becomes strongly correlated at high temperatures. The vacancy jump frequency is very large and has a perfectly arrhenian behaviour. There is no evicence of a dynamical lowering of the vacancy migration barrier: the static and dynamic values of the vacancy migration energy are almost equal, both being unusually small (0.3 eV). The self diffusion coefficent of our model for the vacancy mechanism reproduces an anomalous fast diffusion close to that measured experimentally in bcc-Zr. In our model at high temperatures the time interval between successive jumps is almost equal to the time of flight. The migration events will therefore influence the formation of the vacancies [fr
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
susceptibility and the screening lengths. A short summary is provided at the end. 2. .... approximations but decreasing order of computer time, are (i) full QCD simulations on smaller lattices, (ii) partially quenched ... Theoretical expectations and simulation results for QCD phase diagram. over to different number of flavours.
Lattice dynamics of strontium tungstate
Indian Academy of Sciences (India)
earth atom). Using these models we could calculate [7,10–12] high pressure and temperature phase diagrams as well as thermodynamic properties for ASiO4, RPO4 and RVO4 in the ambient pressure as well as high pressure phases. Now in order to validate the lattice dynamical model developed for SrWO4 we have ...
Flavor extrapolation in lattice QCD
International Nuclear Information System (INIS)
Duffy, W.C.
1984-01-01
Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors
Lattice dynamics of lithium oxide
Indian Academy of Sciences (India)
Li2O finds several important technological applications, as it is used in solid-state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures around 1200 ...
Anisotropic dissipation in lattice metamaterials
Directory of Open Access Journals (Sweden)
Dimitri Krattiger
2016-12-01
Full Text Available Plane wave propagation in an elastic lattice material follows regular patterns as dictated by the nature of the lattice symmetry and the mechanical configuration of the unit cell. A unique feature pertains to the loss of elastodynamic isotropy at frequencies where the wavelength is on the order of the lattice spacing or shorter. Anisotropy may also be realized at lower frequencies with the inclusion of local resonators, especially when designed to exhibit directionally non-uniform connectivity and/or cross-sectional geometry. In this paper, we consider free and driven waves within a plate-like lattice−with and without local resonators−and examine the effects of damping on the isofrequency dispersion curves. We also examine, for free waves, the effects of damping on the frequency-dependent anisotropy of dissipation. Furthermore, we investigate the possibility of engineering the dissipation anisotropy by tuning the directional properties of the prescribed damping. The results demonstrate that uniformly applied damping tends to reduce the intensity of anisotropy in the isofrequency dispersion curves. On the other hand, lattice crystals and metamaterials are shown to provide an excellent platform for direction-dependent dissipation engineering which may be realized by simple changes in the spatial distribution of the damping elements.
Computers for lattice field theories
International Nuclear Information System (INIS)
Iwasaki, Y.
1994-01-01
Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)
Lattice dynamics of lithium oxide
Indian Academy of Sciences (India)
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. E-mail: knp@apsara.barc.ernet.in ... stants and equation of state have also been calculated which are in good agreement with the available ... Li2O crystallizes in the anti-fluorite structure with a face-centered cubic lattice and belongs to ...
Recent results from lattice calculations
Hashimoto, Shoji
2004-01-01
Recent results from lattice QCD calculations relevant to particle physics phenomenology are reviewed. They include the calculations of strong coupling constant, quark masses, kaon matrix elements, and D and B meson matrix elements. Special emphasis is on the recent progress in the simulations including dynamical quarks.
Lattice Calculations and Hadron Physics
Aoki, Sinya
1999-01-01
We review progress in lattice QCD, focusing on efforts to calculate weak matrix elements relevant for the determination of the Cabibbo-Kobayashi-Maskawa matrix. Topics we discuss include light hadron spectrum and quark masses, CP-violation in K meson decays and weak matrix elements of heavy-light mesons.
Synthesis of spatially variant lattices.
Rumpf, Raymond C; Pazos, Javier
2012-07-02
It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
For reasons of both time and interest, I have chosen to limit this review to some se- lected topics. I will begin with a lightning quick overview of the basic lattice gauge theory and then go on to discuss the recent results on the QCD phase diagram, quark number susceptibility and the screening lengths. A short summary is ...
Lattice dynamics of lithium oxide
Indian Academy of Sciences (India)
Abstract. Li2O finds several important technological applications, as it is used in solid- state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures ...
Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)
2017-08-01
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
RHICAGR a Most Simplified RHIC Lattice
Energy Technology Data Exchange (ETDEWEB)
Ruggiero, A. G. [Brookhaven National Lab. (BNL), Upton, NY (United States)
1991-08-01
In this report I describe an alternative approach to the design of the RHIC lattice. It is not my intention to propose an alternative lattice altogether, but I like to stress the differences in design methodology and philosophy.
International Nuclear Information System (INIS)
Jimenez-Saez, J C; Perez-MartIn, A M C; Jimenez-RodrIguez, J J
2007-01-01
The soft deposition of Cu and Au clusters on Au(001) and Cu(001) surfaces respectively is studied by constant-temperature molecular-dynamics simulations. The initial shape of the nanoclusters is icosahedral or truncated octahedral (Wulff type). Their number of atoms ranges between 12 and 1289 atoms. Bombardment energy is of the order of a few meV/atom. The atomic interactions are mimicked by a many-body potential based on the tightbinding model. The effect of the temperature as activation to get the complete epitaxy is analysed. We have found that Cu clusters manage to align their {002} planes with the substrate by increasing the temperature. However, there is not epitaxial growth in any case since the lattice becomes bcc or important stacking faults are generated. For Au clusters, the alignment of these planes is practically independent of the temperature
Lattice QCD. A critical status report
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl
2008-10-15
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Spatiotemporal complexity in coupled map lattices
International Nuclear Information System (INIS)
Kaneko, Kunihiko
1986-01-01
Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)
Clar sextets in square graphene antidot lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Possible lattice organs in Cretaceous Thylacocephala
Lange, Sven; Schram, Frederick R.
2002-01-01
Structures, reminiscent of the lattice organs in thecostracan crustaceans, are described from the carapace cuticle of Cretaceous thylacocephalans. The new lattice organ like structures occur in pairs along the dorsal midline. While these have a similar outline to true lattice organs, they seem to
Lattice gaugefixing and other optics in lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Yee, Ken [Brookhaven National Lab. (BNL), Upton, NY (United States)
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and ΔI = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N → ∞limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to ΔI = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are χ invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the Δ = -1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Lattice gaugefixing and other optics in lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Yee, Ken.
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Ab initio calculations of ideal strength and lattice instability in W-Ta and W-Re alloys
Yang, Chaoming; Qi, Liang
2018-01-01
An important theoretical criterion to evaluate the ductility of metals with a body-centered cubic (bcc) lattice is the mechanical failure mode of their perfect crystals under tension along ; directions. When the tensile stress reaches the ideal tensile strength, the pure W crystal fails by a cleavage fracture along the {100 } plane so that it is intrinsically brittle. To discover the strategy to improve its ductility, we performed density functional theory and density functional perturbation theory calculations to study the ideal tensile strength and the lattice instability under tension for both W-Ta and W-Re alloys. Anisotropic linear elastic fracture mechanics (LEFM) theory and Rice's criterion were also applied to analyze the mechanical instability at the crack tip under tension based on the competition between cleavage propagation and dislocation emission. The results show that the intrinsic ductility can be achieved in both W-Ta and W-Re, however, by different mechanisms. Even though W-Ta alloys with low Ta concentrations are still intrinsically brittle, the intrinsic ductility of W-Ta alloys with high Ta concentrations is promoted by elastic shear instability before the cleavage failure. The intrinsic ductility of W-Re alloys is produced by unstable transverse phonon waves before the cleavage failure, and the corresponding phonon mode is related to the generation of 1/2 {2 ¯11 } dislocation in bcc crystals. The ideal tensile calculations, phonon analyses, and anisotropic LEFM examinations are mutually consistent in the evaluation of intrinsic ductility. These results bring us physical insights on the ductility-brittle mechanisms of W alloys under extreme stress conditions.
Inexpensive chirality on the lattice
International Nuclear Information System (INIS)
Kamleh, W.; Williams, A.G.; Adams, D.
2000-01-01
Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic
International Nuclear Information System (INIS)
Lin, M.C.; Tsai, C.Y.; Uan, J.Y.
2007-01-01
A body-centered cubic (bcc) Mg-12Li-9Al-1Zn (wt.%) alloy was fabricated in air by electrolysis from LiCl-KCl molten salt at 500 deg. C. Electrolytic deposition of Li atoms on cathode (Mg-Al-Zn alloy) and diffusion of the Li atoms formed the bcc Mg-Li-Al-Zn alloy with 12 wt.% Li and only 0.264 wt.% K. Low K concentration in the bcc Mg alloy strip after the electrolysis process resulted from 47% atomic size misfit between K and Mg atoms and low solubility of K in Mg matrix
Aliasing modes in the lattice Schwinger model
International Nuclear Information System (INIS)
Campos, Rafael G.; Tututi, Eduardo S.
2007-01-01
We study the Schwinger model on a lattice consisting of zeros of the Hermite polynomials that incorporates a lattice derivative and a discrete Fourier transform with many properties. Such a lattice produces a Klein-Gordon equation for the boson field and the exact value of the mass in the asymptotic limit if the boundaries are not taken into account. On the contrary, if the lattice is considered with boundaries new modes appear due to aliasing effects. In the continuum limit, however, this lattice yields also a Klein-Gordon equation with a reduced mass
Computing nucleon EDM on a lattice
Abramczyk, Michael; Aoki, Sinya; Blum, Tom; Izubuchi, Taku; Ohki, Hiroshi; Syritsyn, Sergey
2018-03-01
I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.
Heavy water critical experiments on plutonium lattice
International Nuclear Information System (INIS)
Miyawaki, Yoshio; Shiba, Kiminori
1975-06-01
This report is the summary of physics study on plutonium lattice made in Heavy Water Critical Experiment Section of PNC. By using Deuterium Critical Assembly, physics study on plutonium lattice has been carried out since 1972. Experiments on following items were performed in a core having 22.5 cm square lattice pitch. (1) Material buckling (2) Lattice parameters (3) Local power distribution factor (4) Gross flux distribution in two region core (5) Control rod worth. Experimental results were compared with theoretical ones calculated by METHUSELAH II code. It is concluded from this study that calculation by METHUSELAH II code has acceptable accuracy in the prediction on plutonium lattice. (author)
Computing nucleon EDM on a lattice
Energy Technology Data Exchange (ETDEWEB)
Abramczyk, Michael; Izubuchi, Taku
2017-06-18
I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.
Active particles in periodic lattices
Chamolly, Alexander; Ishikawa, Takuji; Lauga, Eric
2017-11-01
Both natural and artificial small-scale swimmers may often self-propel in environments subject to complex geometrical constraints. While most past theoretical work on low-Reynolds number locomotion addressed idealised geometrical situations, not much is known on the motion of swimmers in heterogeneous environments. As a first theoretical model, we investigate numerically the behaviour of a single spherical micro-swimmer located in an infinite, periodic body-centred cubic lattice consisting of rigid inert spheres of the same size as the swimmer. Running a large number of simulations we uncover the phase diagram of possible trajectories as a function of the strength of the swimming actuation and the packing density of the lattice. We then use hydrodynamic theory to rationalise our computational results and show in particular how the far-field nature of the swimmer (pusher versus puller) governs even the behaviour at high volume fractions.
The lattice QCD grand challenge
International Nuclear Information System (INIS)
Kilcup, G.
1991-01-01
Until relatively recently, a taxonomist of science would divide most areas of physics into two types: theoretical and experimental. With the advent of large scale computing, however, there is now another recognized field: computational physics. For there is now another recognized field: computational physics. For High Energy Physics one of the most prominent manifestations of this phenomenon is the emergence of the discipline known as lattice Quantum Chromodynamics, or lattice QCD. Problems which a decade ago seemed intractable are not succumbing to large scale numerical simulations. These simulations are consuming vast amounts of computer time these days, and promise to do so for at least the next decade. To take but one example, in each of the last three years, the Department of Energy has allocated several thousand Cray-2 hours at NERSC for the computation of certain weak interaction matrix elements. In the following pages the author will give a brief overview of this and some other projects
Graphene antidot lattice transport measurements
DEFF Research Database (Denmark)
Mackenzie, David; Cagliani, Alberto; Gammelgaard, Lene
2017-01-01
We investigate graphene devices patterned with a narrow band of holes perpendicular to the current flow, a few-row graphene antidot lattice (FR-GAL). Theoretical reports suggest that a FR-GAL can have a bandgap with a relatively small reduction of the transmission compared to what is typical...... for antidot arrays devices. Graphene devices were fabricated using 100 keV electron beam lithography (EBL) for nanopatterning as well as for defining electrical contacts. Patterns with hole diameter and neck widths of order 30 nm were produced, which is the highest reported pattern density of antidot lattices...... in graphene reported defined by EBL. Electrical measurements showed that devices with one and five rows exhibited field effect mobility of ∼100 cm2/Vs, while a larger number of rows, around 40, led to a significant reduction of field effect mobility (
Innovations in Lattice QCD Algorithms
Energy Technology Data Exchange (ETDEWEB)
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
Shear Viscosity from Lattice QCD
Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán
2015-01-01
Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented
Symplectic maps for accelerator lattices
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs
Harmonic Lattice Dynamics of Germanium
International Nuclear Information System (INIS)
Nelin, G.
1974-01-01
The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field
Harmonic Lattice Dynamics of Germanium
Energy Technology Data Exchange (ETDEWEB)
Nelin, G.
1974-07-01
The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.
Apiary B Factory lattice design
International Nuclear Information System (INIS)
Donald, M.H.R.; Garren, A.A.
1991-04-01
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab
Screening in graphene antidot lattices
DEFF Research Database (Denmark)
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Lattice engineering technology and applications
Wang, Shumin
2012-01-01
This book contains comprehensive reviews of different technologies to harness lattice mismatch in semiconductor heterostructures and their applications in electronic and optoelectronic devices. While the book is a bit focused on metamorphic epitaxial growth, it also includes other methods like compliant substrate, selective area growth, wafer bonding and heterostructure nanowires etc. Basic knowledge on dislocations in semiconductors and innovative methods to eliminate threading dislocations are provided, and successful device applications are reviewed. It covers a variety of important semicon
Spin lattices of walking droplets
Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John
2017-11-01
We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.
Energy Technology Data Exchange (ETDEWEB)
He, C.W., E-mail: chenwei.he@cnrs-orleans.fr [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans (France); Barthe, M.F.; Desgardin, P. [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans (France); Akhmadaliev, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, BautznerLandstr. 400, D-01328 Dresden (Germany); Behar, M. [Instituto de Fisica, Av. Bento Gonçalves 9500, Agronomia, Porto Alegre (Brazil); Jomard, F. [GEMac, Univ. Versailles, 45 avenue des Etats Unis, 78035 Versailles cedex (France)
2014-12-15
The very high calculated binding energy of vacancy (V)–Y{sub sub} (1.45 eV) in Fe makes it be one possible earliest formation stage of (Y, Ti, O) nanoclusters in ODS alloy. Our direct slow positrons annihilation observations are used to valid the interaction between V and Y. The pure bcc iron samples have been implanted by 1.2 MeV Y ions at three fluences from 1 × 10{sup 14} to 3 × 10{sup 15} cm{sup −2}. Vacancy clusters are observed for all these three fluences. Their size and concentration decrease with Y concentration measured by using SIMS. Two hypotheses are proposed to explain the results, including the formation of complexes V{sub m}–Y{sub n} and/or of precipitates Y{sub m}–X{sub n} (X = Y, O, etc.). In addition, vacancy clusters are detected deeper than predicted by SRIM calculation due to, at least for a part, channelling which is confirmed by Marlowe calculation and SIMS measurements.
Directory of Open Access Journals (Sweden)
Altaf Ahmed Simair
2017-01-01
Full Text Available Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α-amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60–70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials.
Thakur, Jarnail Singh; Jaswal, Nidhi; Grover, Ashoo
2017-01-01
Health promotion (HP) has been an integral part of all national programs although it has been a low priority in India, which has resulted in a failure to achieve the desired results. Situation analysis of information education communication (IEC)/behavior change communication (BCC)/HP activities within the existing national health programs was undertaken in the district of Hoshiarpur in Punjab and the district of Ambala in Haryana during 2013-14. Facility-based assessments were done by conducting in-depth interviews with stakeholders, program officers, medical officers, health workers, and counselors. Household survey (332 individuals) and exit interview (102 interviews) were conducted to assess the knowledge of the community regarding key risk factors. There was a high vacancy in the mass media division with 40% (2 out of 5) and 89% (8 out of 9) of the sanctioned positions vacant in Hoshiarpur and Ambala, respectively, with low capacity of staff and budget. There was no annual calendar, logbook of activities with poor recording of IEC material received and disseminated. The knowledge of community members regarding key risk factors such as tobacco use, salt intake, blood pressure level, anemia, and tuberculosis was 77.3%, 26.4%, 16.4%, 32.7%, and 91.8%, respectively, in the district of Ambala as compared to 77.5%, 37.5%, 33.3%, 25.8%, and 88.3%, respectively, in the district of Hoshiarpur. The village health and sanitation committee (VHSC) in the district of Hoshiarpur and village level core committee (VLCC) in the district of Ambala were found to be nonfunctional with no Iec/Bcc activities in the covered villages in the last month. Monitoring and supervision of Iec/Bcc activities were poor in both the districts. Iec/Bcc/HP is a neglected area in national health programs in the selected districts with inadequate budget, human resources with poor implementation, and requires strengthening for better implementation of the national health programs.
Elsayed, Ayman; Shabaan Khalil, Nabil
2017-10-01
The competition among maritime ports is increasing continuously; the main purpose of Safaga port is to become the best option for companies to carry out their trading activities, particularly importing and exporting The main objective of this research is to evaluate and analyze factors that may significantly affect the levels of Safaga port efficiency in Egypt (particularly the infrastructural capacity). The assessment of such efficiency is a task that must play an important role in the management of Safaga port in order to improve the possibility of development and success in commercial activities. Drawing on Data Envelopment Analysis(DEA)models, this paper develops a manner of assessing the comparative efficiency of Safaga port in Egypt during the study period 2004-2013. Previous research for port efficiencies measurement usually using radial DEA models (DEA-CCR), (DEA-BCC), but not using non radial DEA model. The research applying radial - output oriented (DEA-CCR), (DEA-BCC) and non-radial (DEA-SBM) model with ten inputs and four outputs. The results were obtained from the analysis input and output variables based on DEA-CCR, DEA-BCC and SBM models, by software Max DEA Pro 6.3. DP World Sokhna port higher efficiency for all outputs were compared to Safaga port. DP World Sokhna position is below the southern entrance to the Suez Canal, on the Red Sea, Egypt, makes it strategically located to handle cargo transiting through one of the world's busiest commercial waterways.
Calculation of the permeability in porous media using the lattice Boltzmann method
International Nuclear Information System (INIS)
Eshghinejadfard, Amir; Daróczy, László; Janiga, Gábor; Thévenin, Dominique
2016-01-01
Highlights: • Lattice Boltzmann simulation of fluid flow in porous media delivers a high accuracy. • Domain size, relaxation time and force scheme affect the calculated permeability. • Multiple relaxation time model shows very low viscosity dependence as compared to single relaxation time. • The choice of relaxation time and force scheme is a trade-off between the required accuracy and computational cost. - Abstract: In this paper, the lattice Boltzmann method (LBM) is used to simulate three-dimensional laminar flows in porous media and to calculate the associated permeability. An in-house, parallelized code using the message passing interface technique is employed for the study. Three different flow configurations are studied: first, by manually specifying solid cells in a face-centered cube (FCC); then, doing the same in a body-centered cube (BCC); and finally by reading the solid cells for a real 3D geometry from a set of experimental 2D computed tomography images. In all simulations, the Reynolds number is kept well below 1. It was found that the current LBM simulations yield good estimates for the permeability value. The impact of the employed force scheme and single- or multiple-relaxation time (SRT, MRT) was also studied. Although each force scheme (Guo-SRT, Guo-MRT and Shan-Chen-SRT) may show better results in some regions, the strong dependency of SRT models on relaxation time suggests that the proper choice of the force scheme, relaxation time and domain resolution is a compromise between the required accuracy and computational cost. First, higher resolutions lead as expected to increasingly accurate results but requires more computational cost and time. Second, the MRT model shows a lower viscosity dependence in comparison with SRT models but is somewhat slower. Also, the results are more sensitive to the relaxation time value for coarser domains. Furthermore, lower relaxation times necessitate a higher number of iterations to reach the steady
Topological magnon bands in ferromagnetic star lattice
Owerre, S. A.
2017-05-01
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
Fractional random walk lattice dynamics
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2017-02-01
We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in n = 1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices {{L}\\fracα{2}}} where α =2 recovers the normal walk. First we demonstrate that the interval 0expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix {{Z}(α )} , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix {{Z}(α )} relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic {{t}-\\frac{n{α}} -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.
Beautiful baryons from lattice QCD
Alexandrou, C; Güsken, S; Jegerlehner, F; Schilling, K; Siegert, G; Sommer, Rainer
1994-01-01
We perform a lattice study of heavy baryons, containing one (\\Lambda_b) or two b-quarks (\\Xi_b). Using the quenched approximation we obtain for the mass of \\Lambda_b M_{\\Lambda_b}= 5.728 \\pm 0.144 \\pm 0.018 {\\rm GeV}. The mass splitting between the \\Lambda_b and the B-meson is found to increase by about 20\\% if the light quark mass is varied from the chiral limit to the strange quark mass. ------- Figures obtained upon request from borrelli@psiclu.cern.ch.
Rojas Bocanegra, Alberto
2004-01-01
Objetivo: Determinar la prevalencia de degeneración periférica de retina Lattice y su relación con estados refractivos y rupturas retinales. Metodología: Estudio de corte transversal con exploración de asociación, mediante análisis de casos y controles. Se examinaron 680 ojos en el Instituto de Investigaciones Optométricas e Instituto de Córnea. El estado refractivo se determinó mediante técnica estática y el estado retinal mediante oftalmoscopia indirecta con indentación escleral. Resultados...
Lattice degeneration of the retina.
Byer, N E
1979-01-01
Lattice degeneration of the retina is the most important of all clinically distinct entities that effect the peripheral fundus and are related to retinal detachment. The purpose of this review is to survey the extensive literature, to evaluate the many diverse opinions on this subject, and to correlate and summarize all the known facts regarding this disease entity. The disease is fully defined and described, both clinically and histologically. Some aspects of the disease are still poorly understood, and some remain controversial, especially in the area of management. For this reason, the indications for treatment are discussed under eight subsections, with a view toward providing practical guidelines for recommendations in management.
The lattice dynamics of imidazole
International Nuclear Information System (INIS)
Link, K.H.
1983-05-01
The lattice dynamics of imidazole have been investigated. To this end dispersion curves have been determined at 10 K by inelastic coherent neutron scattering. RAMAN measurements have been done to investigate identical gamma - point modes. The combination of extinction rules for RAMAN - and neutron scattering leads to the symmetry assignment of identical gamma - point modes. The experiment yields a force constant of the streching vibration of the hydrogen bond of 0.33 mdyn/A. A force model has been developed to describe the intermolecular atom - atom Interactions in imidazole. (orig./BHO)
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao
2017-11-01
Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.
Lattice Codes for Physical Layer Communications
Barreal, Amaro
2017-01-01
Lattices are deceptively simple mathematical structures that have become indispensable for code design for physical layer communications. While lattice-related problems are interesting in their own right, the usefulness of these discrete structures in wireless communications provides additional motivation for their study and enables a multidisciplinary line of research. This thesis is devoted to the study of lattice code design for physical layer communications. Modern wireless communica...
The Gluon Propagator without lattice Gribov copies
Alexandrou, C; Follana, E; Forcrand, Ph. de
2001-01-01
We study the gluon propagator on the lattice using the Laplacian gauge which is free of lattice Gribov copies. We compare our results with those obtained in the Landau gauge on the lattice, as well as with various approximate solutions of the Dyson Schwinger equations. We find a finite value $\\sim (250 \\rm{MeV})^{-2}$ for the zero-momentum propagator, and a pole mass $\\sim 640 \\pm 110$ MeV.
Experimental generation of optical coherence lattices
Energy Technology Data Exchange (ETDEWEB)
Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)
2016-08-08
We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.
An Intrinsic Topology for Orthomodular Lattices
Brunet, Olivier
2007-11-01
We present a general way to define a topology on orthomodular lattices. We show that in the case of a Hilbert lattice, this topology is equivalent to that induced by the metrics of the corresponding Hilbert space. Moreover, we show that in the case of a boolean algebra, the obtained topology is the discrete one. Thus, our construction provides a general tool for studying orthomodular lattices but also a way to distinguish classical and quantum logics.
International Nuclear Information System (INIS)
Richter, W.
1976-01-01
α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)
Lattice theory special topics and applications
Wehrung, Friedrich
George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich W...
Testing the holographic principle using lattice simulations
Directory of Open Access Journals (Sweden)
Jha Raghav G.
2018-01-01
Full Text Available The lattice studies of maximally supersymmetric Yang-Mills (MSYM theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme between them.
The Developement of A Lattice Structured Database
DEFF Research Database (Denmark)
Bruun, Hans
In this project we have investigated the possibilities to make a system based on the concept algebra described in [3], [4] and [5]. The concept algebra is used for ontology specification and knowledge representation. It is a distributive lattice extended with attribution operations. One of the main...... to a given set of inserted terms, that is the smallest lattice where the inserted terms preserve their value compared to the value in the initial algebra/lattice. The database is the dual representation of this most disjoint lattice. We develop algorithms to construct and make queries to the database....
Cascade Baryon Spectrum from Lattice QCD
International Nuclear Information System (INIS)
Mathur, Nilmani; Bulava, John; Edwards, Robert; Engelson, Eric; Joo, Balint; Lichtl, Adam; Lin, Huey-Wen; Morningstar, Colin; Richards, David; Wallace, Stephen
2008-01-01
A comprehensive study of the cascade baryon spectrum using lattice QCD affords the prospect of predicting the masses of states not yet discovered experimentally, and determining the spin and parity of those states for which the quantum numbers are not yet known. The study of the cascades, containing two strange quarks, is particularly attractive for lattice QCD in that the chiral effects are reduced compared to states composed only of u/d quarks, and the states are typically narrow. We report preliminary results for the cascade spectrum obtained by using anisotropic Nf = 2 Wilson lattices with temporal lattice spacing 5.56 GeV?1.
Elastic lattice in an incommensurate background
International Nuclear Information System (INIS)
Dickman, R.; Chudnovsky, E.M.
1995-01-01
We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices
Holographic Lattices Give the Graviton a Mass
Blake, Mike; Vegh, David
2014-01-01
We discuss the DC conductivity of holographic theories with translational invariance broken by a background lattice. We show that the presence of the lattice induces an effective mass for the graviton via a gravitational version of the Higgs mechanism. This allows us to obtain, at leading order in the lattice strength, an analytic expression for the DC conductivity in terms of the size of the lattice at the horizon. In locally critical theories this leads to a power law resistivity that is in agreement with an earlier field theory analysis of Hartnoll and Hofman.
Polarization response of RHIC electron lens lattices
Directory of Open Access Journals (Sweden)
V. H. Ranjbar
2016-10-01
Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
DEFF Research Database (Denmark)
Stassis, C.; Zaretsky, J.; Misemer, D. K.;
1983-01-01
A large single crystal of FCC Ca was grown and was used to study the lattice dynamics of this divalent metal by coherent inelastic neutron scattering. The phonon dispersion curves were measured, at room temperature, along the [ξ00], [ξξ0], [ξξξ], and [0ξ1] symmetry directions. The dispersion curves...... to the propagation of elastic waves. The frequencies of the T1[ξξ0] branch for ξ between approximately 0.5 and 0.8 are slightly above the velocity-of-sound line determined from the low-frequency measurements. Since a similar effect has been observed in FCC Yb, it is natural to assume that the anomalous dispersion.......8, there is a relative decrease in the electronic screening of the vibrational motion of the nuclei, which may account for the positive dispersion exhibited by the T1 [ξξ0] branch in this range of ξ values. The data were used to evaluate the elastic constants, the phonon density of states, and the lattice specific heat...
Lattice dynamics in solid oxygen
International Nuclear Information System (INIS)
Kobashi, K.; Klein, M.L.; Chandrasekharan, V.
1979-01-01
Lattice dynamical calculations for the bulk α, β, and γ phases of solid O 2 and for the monolayer α and β phases have been made in the harmonic approximation. In the α and β phases, atom-atom 6-12 potentials are employed. In the γ phase, effective potentials are used between molecular centers and only the translational lattice vibrations are calculated. It is found that Laufer and Leroi's potential parameters give two k=O frequencies at 42.7 and 43.6 cm -1 in the bulk α-O 2 , and at 40.7 cm -1 for the degenerate k=0 modes in the β phase. The observed Raman lines for α-O 2 at 43 and 79 cm -1 , which are both known to exhibit isotope shifts, are thus tentatively assigned to an accidentally degenerate line and a two-phonon band, respectively, In view of the possible contribution from anharmonic effects, the agreement of the calculation with experiment (48-51 cm -1 ) in β-O 2 may be better than it seems. For the bulk γ-O 2 , a discrepancy is observed between the calculated elastic constants and those derived from Brillouin scattering experiments. This discrepancy may be due to the neglect of translation-rotation coupling. In the monolayer O 2 , Raman active modes at 28.3 and 40.6 cm -1 for the α phase, and 31.9 cm -1 for the β phase are predicted
Introduction to Vortex Lattice Theory
Directory of Open Access Journals (Sweden)
Santiago Pinzón
2015-10-01
Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization. Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.
Lattices for laymen: a non-specialist's introduction to lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.
1985-01-01
The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Spin qubits in antidot lattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger
2008-01-01
We suggest and study designed defects in an otherwise periodic potential modulation of a two-dimensional electron gas as an alternative approach to electron spin based quantum information processing in the solid-state using conventional gate-defined quantum dots. We calculate the band structure a...... electron transport between distant defect states in the lattice, and for a tunnel coupling of neighboring defect states with corresponding electrostatically controllable exchange coupling between different electron spins.......We suggest and study designed defects in an otherwise periodic potential modulation of a two-dimensional electron gas as an alternative approach to electron spin based quantum information processing in the solid-state using conventional gate-defined quantum dots. We calculate the band structure...
Monte Carlo lattice program KIM
International Nuclear Information System (INIS)
Cupini, E.; De Matteis, A.; Simonini, R.
1980-01-01
The Monte Carlo program KIM solves the steady-state linear neutron transport equation for a fixed-source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional thermal reactor lattice. Fluxes and reaction rates are the main quantities computed by the program, from which power distribution and few-group averaged cross sections are derived. The simulation ranges from 10 MeV to zero and includes anisotropic and inelastic scattering in the fast energy region, the epithermal Doppler broadening of the resonances of some nuclides, and the thermalization phenomenon by taking into account the thermal velocity distribution of some molecules. Besides the well known combinatorial geometry, the program allows complex configurations to be represented by a discrete set of points, an approach greatly improving calculation speed
Weak transitions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Maturana, G.
1984-01-01
Some techniques to calculate the effects of the strong interactions on the matrix elements of weak processes are described. The lattice formulation of Quantum Chromodynamics is used to account for the low energy gluons, and the corresponding numerical methods are explained. The high energy contributions are included in effective lagrangians and the problem of matching the different scales related to the renormalization of the operators and wavefunctions is also discussed. The ..delta..l = 1/2 enhancement rule and the K/sup 0/-anti-K/sup 0/ are used to illustrate these techniques and the results of a numerical calculation is reported. The values obtained are very encouraging and they certainly show good qualitative agreement with the experimental values. The emphasis is on general techniques, and in particular, several improvements to this particular calculation are proposed.
Müller, H.-M.; Koonin, S. E.; Seki, R.; van Kolck, U.
2000-04-01
We investigate nuclear matter on a cubic lattice. An exact thermal formalism is applied to nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-, and isospin-exchange interactions. We describe the nuclear matter Monte Carlo methods which contain elements from shell model Monte Carlo methods and from numerical simulations of the Hubbard model. We show that energy and basic saturation properties of nuclear matter can be reproduced. Evidence of a first-order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy, and grand potential. We compare symmetry energy and first sound velocities with literature and find reasonable agreement.
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Particle states of lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Kapoyannis, A.S.; Panagiotou, A.D. [University of Athens, Nuclear and Particle Physics Section, Faculty of Physics, Athens (Greece)
2017-11-15
We determine the degeneracy factor and the average particle mass of particles that produce the lattice QCD pressure and specific entropy at zero baryon chemical potential. The number of states of the gluons and the quarks are found to converge above T = 230 MeV to almost constant values, close to the number of states of an ideal quark-gluon phase, while their assigned masses retain high values. The number of states and the average mass of a system containing quarks in interaction with gluons are found to decrease steeply with increase of temperature between T ∝ 150 and 160 MeV, a region contained within the region of the chiral transition. The minimum value of the number of states within this temperature interval indicates that the states are of hadronic nature. (orig.)
Lattice studies of hadrons with heavy flavors
Aubin, C.
2009-01-01
I will discuss recent developments in lattice studies of hadrons composed of heavy quarks. I will mostly cover topics which are at a state of direct comparison with experiment, but will also discuss new ideas and promising techniques to aid future studies of lattice heavy quark physics.
Lattice Boltzmann scheme for relativistic fluids
Mendoza, M.; Boghosian, B.; Herrmann, H. J.; Succi, S.
2009-01-01
A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.
Lattice dynamics of ferromagnetic superconductor UGe2
Indian Academy of Sciences (India)
This paper reports the lattice dynamical study of the UGe2 using a lattice dynamical model theory based on pairwise interactions under the framework of the shell model. The calculated phonon dispersion curves and phonon density of states are in good agreement with the measured data.
The contact polytope of the leech lattice
Sikiric, M.D.; Schürmann, A.; Vallentin, F.
2010-01-01
The contact polytope of a lattice is the convex hull of its shortest vectors. In this paper we classify the facets of the contact polytope of the Leech lattice up to symmetry. There are 1, 197, 362, 269, 604, 214, 277, 200 many facets in 232 orbits.
The contact polytope of the Leech lattice
M. Dutour Sikiric; A. Schuermann; F. Vallentin (Frank)
2010-01-01
htmlabstractThe contact polytope of a lattice is the convex hull of its shortest vectors. In this paper we classify the facets of the contact polytope of the Leech lattice up to symmetry. There are 1,197,362,269,604,214,277,200 many facets in 232 orbits.
The contact polytope of the Leech lattice
M. Dutour Sikiric; A. Schuermann; F. Vallentin (Frank)
2009-01-01
htmlabstractThe contact polytope of a lattice is the convex hull of its shortest vectors. In this paper we classify the facets of the contact polytope of the Leech lattice up to symmetry. There are 1,197,362,269,604,214,277,200 many facets in 232 orbits.
An Application of Linear Algebra over Lattices
Directory of Open Access Journals (Sweden)
M. Hosseinyazdi
2008-03-01
Full Text Available In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given
Lattice-Valued Possibilistic Entropy Measure
Czech Academy of Sciences Publication Activity Database
Kramosil, Ivan
2008-01-01
Roč. 16, č. 6 (2008), s. 829-846 ISSN 0218-4885 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : complete lattice * lattice-valued possibilistic distribution * entropy measure * product of possibilistic distribution Subject RIV: BA - General Mathematics Impact factor: 1.000, year: 2008
Spectral Gaps in Graphene Antidot Lattices
DEFF Research Database (Denmark)
Barbaroux, Jean-Marie; Cornean, Decebal Horia; Stockmeyer, Edgardo
2017-01-01
We consider the gap creation problem in an antidot graphene lattice, i.e. a sheet of graphene with periodically distributed obstacles. We prove several spectral results concerning the size of the gap and its dependence on different natural parameters related to the antidot lattice....
Abelian gauge potentials on cubic lattices
DEFF Research Database (Denmark)
Burrello, M.; Lepori, L.; Paganelli, S.
2017-01-01
fields in a system of ultracold atoms in optical lattices. After reviewing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold setups, we study cubic lattice tight-bindingmodels with commensurate flux.We finally discuss applications of gauge...
Selective nanoscale growth of lattice mismatched materials
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung-Chang; Brueck, Steven R. J.
2017-06-20
Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.
The mystery of the fifteenth Bravais lattice
Nussbaum, Allen
2000-10-01
An understanding of the principles of crystal structure is necessary for the study of solids. There are contradictions in the literature dealing with the nature of crystal lattices, and there is also a miscounting of the number of possible lattices. This paper clarifies the situation in a systematic and simple way.
Minimal Varieties of Representable Commutative Residuated Lattices
Czech Academy of Sciences Publication Activity Database
Horčík, Rostislav
2012-01-01
Roč. 100, č. 6 (2012), s. 1063-1078 ISSN 0039-3215 R&D Projects: GA ČR GAP202/10/1826 Institutional research plan: CEZ:AV0Z10300504 Keywords : commutative residuated lattice * subvariety lattice * minimal variety * substructural logic * maximally consistent logic Subject RIV: BA - General Mathematics Impact factor: 0.342, year: 2012
The Chroma Software System for Lattice QCD
International Nuclear Information System (INIS)
Edwards, Robert G.; Joo, Balint
2005-01-01
We describe aspects of the Chroma software for lattice QCD calculations. Chroma is an open source C++ based software system developed using the software infrastructure of the US SciDAC initiative. Chroma interfaces with output from the BAGEL assembly generator for optimised lattice fermion kernels on some architectures. It can be run on workstations, clusters and the QCDOC supercomputer
The Chroma Software System for Lattice QCD
International Nuclear Information System (INIS)
Robert Edwards; Balint Joo
2004-01-01
We describe aspects of the Chroma software system for lattice QCD calculations. Chroma is an open source C++ based software system developed using the software infrastructure of the US SciDAC initiative. Chroma interfaces with output from the BAGEL assembly generator for optimized lattice fermion kernels on some architectures. It can be run on workstations, clusters and the QCDOC supercomputer
Gap solitons in Rabi lattices.
Chen, Zhaopin; Malomed, Boris A
2017-03-01
We introduce a two-component one-dimensional system, which is based on two nonlinear Schrödinger or Gross-Pitaevskii equations (GPEs) with spatially periodic modulation of linear coupling ("Rabi lattice") and self-repulsive nonlinearity. The system may be realized in a binary Bose-Einstein condensate, whose components are resonantly coupled by a standing optical wave, as well as in terms of the bimodal light propagation in periodically twisted waveguides. The system supports various types of gap solitons (GSs), which are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. These include on- and off-site-centered solitons (the GSs of the off-site type are additionally categorized as spatially even and odd ones), which may be symmetric or antisymmetric, with respect to the coupled components. The GSs are chiefly stable in the first finite bandgap and unstable in the second one. In addition to that, there are narrow regions near the right edge of the first bandgap, and in the second one, which feature intricate alternation of stability and instability. Unstable solitons evolve into robust breathers or spatially confined turbulent modes. On-site-centered GSs are also considered in a version of the system that is made asymmetric by the Zeeman effect, or by birefringence of the optical waveguide. A region of alternate stability is found in the latter case too. In the limit of strong asymmetry, GSs are obtained in a semianalytical approximation, which reduces two coupled GPEs to a single one with an effective lattice potential.
Chen, Zhaopin; Malomed, Boris A.
2017-03-01
We introduce a two-component one-dimensional system, which is based on two nonlinear Schrödinger or Gross-Pitaevskii equations (GPEs) with spatially periodic modulation of linear coupling ("Rabi lattice") and self-repulsive nonlinearity. The system may be realized in a binary Bose-Einstein condensate, whose components are resonantly coupled by a standing optical wave, as well as in terms of the bimodal light propagation in periodically twisted waveguides. The system supports various types of gap solitons (GSs), which are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. These include on- and off-site-centered solitons (the GSs of the off-site type are additionally categorized as spatially even and odd ones), which may be symmetric or antisymmetric, with respect to the coupled components. The GSs are chiefly stable in the first finite bandgap and unstable in the second one. In addition to that, there are narrow regions near the right edge of the first bandgap, and in the second one, which feature intricate alternation of stability and instability. Unstable solitons evolve into robust breathers or spatially confined turbulent modes. On-site-centered GSs are also considered in a version of the system that is made asymmetric by the Zeeman effect, or by birefringence of the optical waveguide. A region of alternate stability is found in the latter case too. In the limit of strong asymmetry, GSs are obtained in a semianalytical approximation, which reduces two coupled GPEs to a single one with an effective lattice potential.
International Nuclear Information System (INIS)
1975-01-01
Results of studies on radiation strengthening of V, Mo, and Nb are presented. Information is included on deformation characteristics of low-temperature neutron-irradiated Nb, the effects of He 3+ on the low-temperature deformation characteristics of Nb, electron-transmission microscopic studies of the nature of neutron damage effects of post-irradiation annealing, microplasticity, thermally activated dislocation motion, production of high-purity Nb and V, early stages of flow in Mo, microplasticity in V, and effects of impurity interstitials on the lattice resistance to dislocation motion. (JRD)
Cold collisions in dissipative optical lattices
International Nuclear Information System (INIS)
Piilo, J; Suominen, K-A
2005-01-01
The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix
Energy Technology Data Exchange (ETDEWEB)
Hahn, Steven [Iowa State Univ., Ames, IA (United States)
2012-01-01
Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.
Atom interferometry using a shaken optical lattice
Weidner, C. A.; Yu, Hoon; Kosloff, Ronnie; Anderson, Dana Z.
2017-04-01
We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lattice. By phase modulating (shaking) the lattice, we control the momentum state of the atoms. Through a sequence of shaking functions, the atoms undergo an interferometer sequence of splitting, propagation, reflection, reverse propagation, and recombination. Each shaking function in the sequence is optimized with a genetic algorithm to achieve the desired momentum state transitions. As with conventional atom interferometers, the sensitivity of the shaken lattice interferometer increases with interrogation time. The shaken lattice interferometer may also be optimized to sense signals of interest while rejecting others, such as the measurement of an ac inertial signal in the presence of an unwanted dc signal.
Synthesizing lattice structures in phase space
International Nuclear Information System (INIS)
Guo, Lingzhen; Marthaler, Michael
2016-01-01
In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)
A lattice approach to spinorial quantum gravity
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Supersymmetry on a space-time lattice
International Nuclear Information System (INIS)
Kaestner, Tobias
2008-01-01
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
Lattice gravity near the continuum limit
International Nuclear Information System (INIS)
Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.
1984-01-01
We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)
Interstructure Lattices and Types of Peano Arithmetic
Abdul-Quader, Athar
The collection of elementary substructures of a model of PA forms a lattice, and is referred to as the substructure lattice of the model. In this thesis, we study substructure and interstructure lattices of models of PA. We apply techniques used in studying these lattices to other problems in the model theory of PA. In Chapter 2, we study a problem that had its origin in Simpson ([Sim74]), who used arithmetic forcing to show that every countable model of PA has an expansion to PA* that is pointwise definable. Enayat ([Ena88]) later showed that there are 2N0 models with the property that every expansion to PA* is pointwise definable. In this Chapter, we use techniques involved in representations of lattices to show that there is a model of PA with this property which contains an infinite descending chain of elementary cuts. In Chapter 3, we study the question of when subsets can be coded in elementary end extensions with prescribed interstructure lattices. This problem originated in Gaifman [Gai76], who showed that every model of PA has a conservative, minimal elementary end extension. That is, every model of PA has a minimal elementary end extension which codes only definable sets. Kossak and Paris [KP92] showed that if a model is countable and a subset X can be coded in any elementary end extension, then it can be coded in a minimal extension. Schmerl ([Sch14] and [Sch15]) extended this work by considering which collections of sets can be the sets coded in a minimal elementary end extension. In this Chapter, we extend this work to other lattices. We study two questions: given a countable model M, which sets can be coded in an elementary end extension such that the interstructure lattice is some prescribed finite distributive lattice; and, given an arbitrary model M, which sets can be coded in an elementary end extension whose interstructure lattice is a finite Boolean algebra?
Directory of Open Access Journals (Sweden)
Jarnail Singh Thakur
2017-01-01
Full Text Available Context: Health promotion (HP has been an integral part of all national programs although it has been a low priority in India, which has resulted in a failure to achieve the desired results. Settings and Design: Situation analysis of information education communication (IEC/behavior change communication (BCC/HP activities within the existing national health programs was undertaken in the district of Hoshiarpur in Punjab and the district of Ambala in Haryana during 2013-14. Materials and Methods: Facility-based assessments were done by conducting in-depth interviews with stakeholders, program officers, medical officers, health workers, and counselors. Household survey (332 individuals and exit interview (102 interviews were conducted to assess the knowledge of the community regarding key risk factors. Results: There was a high vacancy in the mass media division with 40% (2 out of 5 and 89% (8 out of 9 of the sanctioned positions vacant in Hoshiarpur and Ambala, respectively, with low capacity of staff and budget. There was no annual calendar, logbook of activities with poor recording of IEC material received and disseminated. The knowledge of community members regarding key risk factors such as tobacco use, salt intake, blood pressure level, anemia, and tuberculosis was 77.3%, 26.4%, 16.4%, 32.7%, and 91.8%, respectively, in the district of Ambala as compared to 77.5%, 37.5%, 33.3%, 25.8%, and 88.3%, respectively, in the district of Hoshiarpur. The village health and sanitation committee (VHSC in the district of Hoshiarpur and village level core committee (VLCC in the district of Ambala were found to be nonfunctional with no Iec/Bcc activities in the covered villages in the last month. Monitoring and supervision of Iec/Bcc activities were poor in both the districts. Conclusions: Iec/Bcc/HP is a neglected area in national health programs in the selected districts with inadequate budget, human resources with poor implementation, and requires
International Nuclear Information System (INIS)
Bilello, J.C.; Liu, J.M.
1978-01-01
Progress in an investigation of the application of microdynamics and lattice mechanics to the problems in plastic flow and fracture is described. The research program consisted of both theoretical formulations and experimental measurements of a number of intrinsic material parameters in bcc metals and alloys including surface energy, phonon-dispersion curves for dislocated solids, dislocation-point defect interaction energy, slip initiation and microplastic flow behavior. The study has resulted in an improved understanding in the relationship among the experimentally determined fracture surface energy, the intrinsic cohesive energy between atomic planes, and the plastic deformation associated with the initial stages of crack propagation. The values of intrinsic surface energy of tungsten, molybdenum, niobium and niobium-molybdenum alloys, deduced from the measurements, serve as a starting point from which fracture toughness of these materials in engineering service may be intelligently discussed
Commensurability effects in holographic homogeneous lattices
International Nuclear Information System (INIS)
Andrade, Tomas; Krikun, Alexander
2016-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.
3D Metallic Lattices for Accelerator Applications
Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J
2005-01-01
We present the results of research on 3D metallic lattices operating at microwave frequencies for application in (1) accelerator structures with higher order mode suppression, (2) Smith-Purcell radiation beam diagnostics, and (3) polaritonic materials for laser acceleration. Electromagnetic waves in a 3D simple cubic lattice formed by metal wires are calculated using HFSS. The bulk modes in the lattice are determined using single cell calculations with different phase advances in all three directions. The Brillouin diagram for the bulk modes is presented and indicates the absence of band gaps in simple lattices except the band below the cutoff. Lattices with thin wires as well as with thick wires have been analyzed. The Brillouin diagram also indicates the presence of low frequency 3D plasmon mode as well as the two degenerate photon modes analogous to those in a 2D lattice. Surface modes for a semi-infinite cubic lattice are modeled as a stack of cells with different phase advances in the two directions alon...
Lattice-Based Revocable Certificateless Signature
Directory of Open Access Journals (Sweden)
Ying-Hao Hung
2017-10-01
Full Text Available Certificateless signatures (CLS are noticeable because they may resolve the key escrow problem in ID-based signatures and break away the management problem regarding certificate in conventional signatures. However, the security of the mostly previous CLS schemes relies on the difficulty of solving discrete logarithm or large integer factorization problems. These two problems would be solved by quantum computers in the future so that the signature schemes based on them will also become insecure. For post-quantum cryptography, lattice-based cryptography is significant due to its efficiency and security. However, no study on addressing the revocation problem in the existing lattice-based CLS schemes is presented. In this paper, we focus on the revocation issue and present the first revocable CLS (RCLS scheme over lattices. Based on the short integer solution (SIS assumption over lattices, the proposed lattice-based RCLS scheme is shown to be existential unforgeability against adaptive chosen message attacks. By performance analysis and comparisons, the proposed lattice-based RCLS scheme is better than the previously proposed lattice-based CLS scheme, in terms of private key size, signature length and the revocation mechanism.
On Decompositions of Matrices over Distributive Lattices
Directory of Open Access Journals (Sweden)
Yizhi Chen
2014-01-01
Full Text Available Let L be a distributive lattice and Mn,q (L(Mn(L, resp. the semigroup (semiring, resp. of n × q (n × n, resp. matrices over L. In this paper, we show that if there is a subdirect embedding from distributive lattice L to the direct product ∏i=1mLi of distributive lattices L1,L2, …,Lm, then there will be a corresponding subdirect embedding from the matrix semigroup Mn,q(L (semiring Mn(L, resp. to semigroup ∏i=1mMn,q(Li (semiring ∏i=1mMn(Li, resp.. Further, it is proved that a matrix over a distributive lattice can be decomposed into the sum of matrices over some of its special subchains. This generalizes and extends the decomposition theorems of matrices over finite distributive lattices, chain semirings, fuzzy semirings, and so forth. Finally, as some applications, we present a method to calculate the indices and periods of the matrices over a distributive lattice and characterize the structures of idempotent and nilpotent matrices over it. We translate the characterizations of idempotent and nilpotent matrices over a distributive lattice into the corresponding ones of the binary Boolean cases, which also generalize the corresponding structures of idempotent and nilpotent matrices over general Boolean algebras, chain semirings, fuzzy semirings, and so forth.
Coherent collisional spin dynamics in optical lattices.
Widera, Artur; Gerbier, Fabrice; Fölling, Simon; Gericke, Tatjana; Mandel, Olaf; Bloch, Immanuel
2005-11-04
We report on the observation of coherent, purely collisionally driven spin dynamics of neutral atoms in an optical lattice. For high lattice depths, atom pairs confined to the same lattice site show weakly damped Rabi-type oscillations between two-particle Zeeman states of equal magnetization, induced by spin-changing collisions. Moreover, measurement of the oscillation frequency allows for precise determination of the spin-changing collisional coupling strengths, which are directly related to fundamental scattering lengths describing interatomic collisions at ultracold temperatures.
Construction of Capacity Achieving Lattice Gaussian Codes
Alghamdi, Wael
2016-04-01
We propose a new approach to proving results regarding channel coding schemes based on construction-A lattices for the Additive White Gaussian Noise (AWGN) channel that yields new characterizations of the code construction parameters, i.e., the primes and dimensions of the codes, as functions of the block-length. The approach we take introduces an averaging argument that explicitly involves the considered parameters. This averaging argument is applied to a generalized Loeliger ensemble [1] to provide a more practical proof of the existence of AWGN-good lattices, and to characterize suitable parameters for the lattice Gaussian coding scheme proposed by Ling and Belfiore [3].
Measurement Based Quantum Computation on Fractal Lattices
Directory of Open Access Journals (Sweden)
Michal Hajdušek
2010-06-01
Full Text Available In this article we extend on work which establishes an analology between one-way quantum computation and thermodynamics to see how the former can be performed on fractal lattices. We find fractals lattices of arbitrary dimension greater than one which do all act as good resources for one-way quantum computation, and sets of fractal lattices with dimension greater than one all of which do not. The difference is put down to other topological factors such as ramification and connectivity. This work adds confidence to the analogy and highlights new features to what we require for universal resources for one-way quantum computation.
Topology and symmetries in gyroscopic lattices
Nash, Lisa M.; Mitchell, Noah P.; Turner, Ari M.; Irvine, William T. M.
Mechanical metamaterials - including static frames, coupled pendula, and gyroscopic lattices - can support topologically protected vibrational behavior. In particular, fast-spinning gyroscopes pinned on a honeycomb lattice break time-reversal symmetry and exhibit topologically protected, one-way edge modes. As in electronic systems, symmetries play an important role in determining the topological properties of the material. Here we present the roles of inversion symmetry, local coordination number, and time reversal symmetry on the band topology of gyroscopic metamaterials with several lattice geometries.
Racetrack lattices for the TRIUMF KAON factory
International Nuclear Information System (INIS)
Servranckx, R.V.; Craddock, M.K.
1989-05-01
Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. The arcs of the large rings have a regular FODO structure with a superimposed six-fold symmetric modulation of the betafunction in order to raise γ t to infinity. In the small rings, γ t is kept high enough by choosing a sufficiently large phase advance in the arcs. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. The ion-optical properties of the lattices and the results from tracking studies are discussed
International Nuclear Information System (INIS)
Jansen, K.; Michael, C.; Urbach, C.
2008-04-01
We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With N f =2 flavours of light quark, this is the so-called η 2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the η 2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses. (orig.)
Continuum methods in lattice perturbation theory
International Nuclear Information System (INIS)
Becher, Thomas G
2002-01-01
We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions
Electronic properties of graphene antidot lattices
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.
2009-01-01
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...
Optical lattice on an atom chip
DEFF Research Database (Denmark)
Gallego, D.; Hofferberth, S.; Schumm, Thorsten
2009-01-01
Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....
Supersymmetric quiver gauge theories on the lattice
International Nuclear Information System (INIS)
Joseph, Anosh
2013-12-01
In this paper we detail the lattice constructions of several classes of supersymmetric quiver gauge theories in two and three Euclidean spacetime dimensions possessing exact supersymmetry at finite lattice spacing. Such constructions are obtained through the methods of topological twisting and geometric discretization of Euclidean Yang-Mills theories with eight and sixteen supercharges in two and three dimensions. We detail the lattice constructions of two-dimensional quiver gauge theories possessing four and eight supercharges and three-dimensional quiver gauge theories possessing eight supercharges.
Dynamical Regge calculus as lattice gravity
International Nuclear Information System (INIS)
Hagura, Hiroyuki
2001-01-01
We propose a hybrid approach to lattice quantum gravity by combining simultaneously the dynamical triangulation with the Regge calculus, called the dynamical Regge calculus (DRC). In this approach lattice diffeomorphism is realized as an exact symmetry by some hybrid (k, l) moves on the simplicial lattice. Numerical study of 3D pure gravity shows that an entropy of the DRC is not exponetially bounded if we adopt the uniform measure Π i dl i . On the other hand, using the scale-invariant measure Π i dl i /l i , we can calculate observables and observe a large hysteresis between two phases that indicates the first-order nature of the phase transition
Vortex-Peierls States in Optical Lattices
International Nuclear Information System (INIS)
Burkov, A.A.; Demler, Eugene
2006-01-01
We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states
How to Share a Lattice Trapdoor
DEFF Research Database (Denmark)
Bendlin, Rikke; Peikert, Chris; Krehbiel, Sara
2013-01-01
We develop secure threshold protocols for two important operations in lattice cryptography, namely, generating a hard lattice Λ together with a "strong" trapdoor, and sampling from a discrete Gaussian distribution over a desired coset of Λ using the trapdoor. These are the central operations...... delegation, which is used in lattice-based hierarchical IBE schemes. Our work therefore directly transfers all these systems to the threshold setting. Our protocols provide information-theoretic (i.e., statistical) security against adaptive corruptions in the UC framework, and they are robust against up to ℓ...
Application of model search to lattice theory.
Energy Technology Data Exchange (ETDEWEB)
Rose, M.; Wilkinson, K.; Mathematics and Computer Science
2001-08-01
We have used the first-order model-searching programs MACE and SEM to study various problems in lattice theory. First, we present a case study in which the two programs are used to examine the differences between the stages along the way from lattice theory to Boolean algebra. Second, we answer several questions posed by Norman Megill and Mladen Pavicic on ortholattices and orthomodular lattices. The questions from Megill and Pavicic arose in their study of quantum logics, which are being investigated in connection with proposed computing devices based on quantum mechanics. Previous questions of a similar nature were answered by McCune and MACE in [2].
Spontaneous supersymmetry breaking on the lattice
Energy Technology Data Exchange (ETDEWEB)
Wenger, Urs [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2013-07-01
We discuss various strategies for regularising supersymmetric quantum field theories on a space-time lattice. In general, simulations of lattice models with spontaneously broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We discuss a novel approach which evades this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. Then we present exact results on the spectrum and the Witten index for N=2 supersymmetric quantum mechanics and results from simulations of the spontaneously broken N=1 Wess-Zumino model.
Lattice-Like Total Perfect Codes
Directory of Open Access Journals (Sweden)
Araujo Carlos
2014-02-01
Full Text Available A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.
Lattice-induced modulators at terahertz frequencies.
Naranjo, Guillermo A; Peralta, Xomalin G
2017-12-01
We measured the transmission spectra of an array of split-ring resonators (SRRs) up to 10 terahertz for parallel and perpendicular polarizations. Calculations of the lattice and plasmon mode dispersion relations, in combination with electromagnetic simulations, confirm the presence of multiple higher-order lattice and plasmon modes. We modify the quality factor of higher-order plasmon resonances by modulating the lattice-plasmon mode coupling via changes in the period of the array. We also propose single frequency switches and a broadband dual-state amplitude modulator based on structured illumination that actively modifies the period of the SRR array.
Group theory and lattice gauge fields
International Nuclear Information System (INIS)
Creutz, M.
1988-09-01
Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs
Cold quarks stars from hot lattice QCD
International Nuclear Information System (INIS)
Schulze, R.; Kaempfer, B.
2010-01-01
At small net baryon densities ab initio lattice QCD provides valuable information on the finite-temperature equation of state of strongly interacting matter. Our phenomenological quasiparticle model provides a means to map such lattice results to regions relevant for future heavy-ion experiments at large baryon density; even the cool equation of state can be inferred to address the issue of quark stars. We report on (i) the side conditions (charge neutrality, beta equilibrium) in mapping latest lattice QCD results to large baryon density and (ii) scaling properties of emerging strange quark stars. (author)
Anderson localization in bipartite lattices
International Nuclear Information System (INIS)
Fabrizio, Michele; Castellani, Claudio
2000-01-01
We study the localization properties of a disordered tight-binding Hamiltonian on a generic bipartite lattice close to the band center. By means of a fermionic replica trick method, we derive the effective non-linear σ-model describing the diffusive modes, which we analyse by using the Wilson-Polyakov renormalization group. In addition to the standard parameters which define the non-linear σ-model, namely, the conductance and the external frequency, a new parameter enters, which may be related to the fluctuations of the staggered density of states. We find that, when both the regular hopping and the disorder only couple one sublattice to the other, the quantum corrections to the Kubo conductivity vanish at the band center, thus implying the existence of delocalized states. In two dimensions, the RG equations predict that the conductance flows to a finite value, while both the density of states and the staggered density of states fluctuations diverge. In three dimensions, we find that, sufficiently close to the band center, all states are extended, independently of the disorder strength. We also discuss the role of various symmetry breaking terms, as a regular hopping between same sublattices, or an on-site disorder
Infinitesimal diffeomorfisms on the lattice
CERN. Geneva
2015-01-01
The energy-momentum tensor and local translation Ward identities constitute the essential toolkit to probe the response of a QFT to an infinitesimal change of geometry. This is relevant in a number of contexts. For instance in order to get the thermodynamical equation of state, one wants to study the response of a Euclidean QFT in a finite box to a change in the size of the box. The lattice formulation of QFTs is a prime tool to study their dynamics beyond perturbation theory. However Poincaré invariance is explicitly broken, and is supposed to be recovered only in the continuum limit. Approximate local Ward identities for translations can be defined, by they require some care for two reasons: 1) the energy-momentum tensor needs to be properly defined through a renormalization procedure; 2) the action of infinitesimal local translations (i.e. infinitesimal diffeomorfisms) is ill-defined on local observables. In this talk I will review the issues related to the renormalization of the energy-momentum tensor ...
Halo Mitigation Using Nonlinear Lattices
Sonnad, Kiran G
2005-01-01
This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...
Essentially Entropic Lattice Boltzmann Model
Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh
2017-12-01
The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.
Anderson localization in bipartite lattices
International Nuclear Information System (INIS)
Fabrizio, M.; Castellani, C.
2000-04-01
We study the localization properties of a disordered tight-binding Hamiltonian on a generic bipartite lattice close to the band center. By means of a fermionic replica trick method, we derive the effective non-linear σ-model describing the diffusive modes, which we analyse by using the Wilson-Polyakov renormalization group. In addition to the standard parameters which define the non-linear σ-model, namely the conductance and the external frequency, a new parameter enters, which may be related to the fluctuations of the staggered density of states. We find that, when both the regular hopping and the disorder only couple one sublattice to the other, the quantum corrections to the Kubo conductivity vanish at the band center, thus implying the existence of delocalized states. In two dimensions, the RG equations predict that the conductance flows to a finite value, while both the density of states and the staggered density of states fluctuations diverge. In three dimensions, we find that, sufficiently close to the band center, all states are extended, independently of the disorder strength. We also discuss the role of various symmetry breaking terms, as a regular hopping between same sublattices, or an on-site disorder. (author)
Madla, S; Isaka, M; Wongsa, P
2008-08-01
This work aimed to improve the production of anti-tubercular hirsutellones by the insect pathogenic fungus Hirsutella nivea BCC 2594. The fungus was cultivated under different carbon/nitrogen sources and aerations (shake vs static flasks) to improve the production of the anti-tubercular alkaloids, hirsutellones A-D. Under the basal conditions, static cultivation at 25 degrees C in minimum salt medium, only hirsutellone B and C were detected with maximum concentrations of 139.00 and 18.27 mg l(-1). Substitution of fructose for glucose and peptone for yeast extract increased the titres of hirsutellones A, B and C about two- to threefold. However, hirsutellone D was not detected in this medium. Culture agitation induced the production of hirsutellone D. As a result, the significant amounts of hirsutellones A-D were obtained with the concentration of 29.93, 169.63, 22.65 and 15.71 mg l(-1) within 15 days. Improved titres of hirsutellones in H. nivea BCC 2549 were achieved with an agitated (200 rev min(-1)) fructose-peptone medium at 25 degrees C. Improved yields of hirsutellones B-D will enable medicinal chemistry modifications leading to a development of a potential candidate for tuberculosis therapy.
Zhang, Geng; Sun, Di-Hua; Liu, Hui; Chen, Dong
2017-11-01
In this paper, a new lattice hydrodynamic model with consideration of the density difference of a lattice's current density and its anticipative density is proposed. The influence of lattice's self-anticipative density on traffic stability is revealed through linear stability theory and it shows that lattice's self-anticipative density can improve the stability of traffic flow. To describe the phase transition of traffic flow, the mKdV equation near the critical point is derived by using nonlinear analysis method. The propagating behavior of density wave in the unstable region can be described by the kink-antikink soliton of the mKdV equation. Numerical simulation validates the analytical results, which shows that traffic jam can be suppressed efficiently by considering lattice's self-anticipative density in the modified lattice hydrodynamic model.
Link fermions in Euclidean lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Brower, R.; Giles, R.; Maturana, G.
1984-02-15
The representation of the Wilson lattice fermion propagator as a sum over classical particle trajectories is discussed. A simple generalization of this path sum leads to an extended set of fermion theories characterized by one (or more) additional parameters. Such theories are nonlocal when written in terms of the usual four-component Dirac field. They are more naturally characterized by a local action functional whose degrees of freedom are those of a set of two-component Fermi fields defined on directed links of the lattice. Such lattice fields correspond to the direct product of a four-vector and Dirac spinor. For a suitable choice of parameters, the extended fermion theory offers a precocious approach to the continuum dispersion relation as the lattice spacing goes to zero and is therefore of interest for numerical studies of QCD.
Renormalization transformation of periodic and aperiodic lattices
International Nuclear Information System (INIS)
Macia, Enrique; Rodriguez-Oliveros, Rogelio
2006-01-01
In this work we introduce a similarity transformation acting on transfer matrices describing the propagation of elementary excitations through either periodic or Fibonacci lattices. The proposed transformation can act at two different scale lengths. At the atomic scale the transformation allows one to express the systems' global transfer matrix in terms of an equivalent on-site model one. Correlation effects among different hopping terms are described by a series of local phase factors in that case. When acting on larger scale lengths, corresponding to short segments of the original lattice, the similarity transformation can be properly regarded as describing an effective renormalization of the chain. The nature of the resulting renormalized lattice significantly depends on the kind of order (i.e., periodic or quasiperiodic) of the original lattice, expressing a delicate balance between chemical complexity and topological order as a consequence of the renormalization process
Lattice Waves, Spin Waves, and Neutron Scattering
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Benchmarking computer platforms for lattice QCD applications
International Nuclear Information System (INIS)
Hasenbusch, M.; Jansen, K.; Pleiter, D.; Wegner, P.; Wettig, T.
2003-09-01
We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E, Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC. (orig.)
Benchmarking computer platforms for lattice QCD applications
International Nuclear Information System (INIS)
Hasenbusch, M.; Jansen, K.; Pleiter, D.; Stueben, H.; Wegner, P.; Wettig, T.; Wittig, H.
2004-01-01
We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E; Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC
Breatherlike impurity modes in discrete nonlinear lattices
DEFF Research Database (Denmark)
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Optical properties of graphene antidot lattices
DEFF Research Database (Denmark)
Pedersen, Thomas Garm; Flindt, Christian; Pedersen, Jesper Goor
2008-01-01
Undoped graphene is semimetallic and thus not suitable for many electronic and optoelectronic applications requiring gapped semiconductor materials. However, a periodic array of holes (antidot lattice) renders graphene semiconducting with a controllable band gap. Using atomistic modeling, we...
Arbitrary spin fermions on the lattice
International Nuclear Information System (INIS)
Bullinaria, J.A.
1985-01-01
Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out
n-Orthodistributivity in Orthomodular Lattices
Moes, Justin; Roddy, Micheale S.
2014-10-01
A useful generalization of distributivity in lattices n-distributivity, , was introduced in Huhn (Acta Sci. Math. 33:297-305, 1972). In Mayet and Roddy (Contrib. Gen. Algebra 5:285-294, 1987), `orthogonalized' versions, n-orthodistributivity, , of these equations were introduced and discussed. The discussion and results of Mayet and Roddy (Contrib. Gen. Algebra 5:285-294, 1987) centered on the class of modular ortholattices. In this paper we discuss and present some preliminary results for these conditions in orthomodular lattices. In particular, we completely classify the n-(ortho)distributive orthomodular lattices arising from Greechie's classical 1971 construction, and we prove that a certain simple atomless orthomodular lattice, presented in Roddy (Algebra Univers. 29:564-597, 1992), is 4-orthodistributive. It is not 3-orthodistributive.
Extended Josephson Relation and Abrikosov lattice deformation
International Nuclear Information System (INIS)
Matlock, Peter
2012-01-01
From the point of view of time-dependent Ginzburg Landau (TDGL) theory, a Josephson-like relation is derived for an Abrikosov vortex lattice accelerated and deformed by applied fields. Beginning with a review of the Josephson Relation derived from the two ingredients of a lattice-kinematics assumption in TDGL theory and gauge invariance, we extend the construction to accommodate a time-dependent applied magnetic field, a Floating-Kernel formulation of normal current, and finally lattice deformation due to the electric field and inertial effects of vortex-lattice motion. The resulting Josephson-like relation, which we call an Extended Josephson Relation, applies to a much wider set of experimental conditions than the original Josephson Relation, and is explicitly compatible with the considerations of TDGL theory.
Lattice Regenerative Cooling Methods (LRCM) Project
National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate a novel cooling concept called Lattice Regenerative Cooling Methods (LRCM) for future high thrust in-space propulsion...
The Gluon Propagator without lattice Gribov copies on a finer lattice
Alexandrou, C; Follana, E; Forcrand, Ph. de
2002-01-01
We extend our study of the gluon propagator in quenched lattice QCD using the Laplacian gauge to a finer lattice. We verify the existence of a pole mass as we take the continuum limit and deduce a value of $\\sim 600^{+150}_{-30}$ MeV for this pole mass. We find a finite value of $(454(5){\\rm MeV})^{-2}$ for the renormalized zero-momentum propagator, in agreement with results on coarser lattices.
Distances on a lattice from noncommutative geometry
International Nuclear Information System (INIS)
Bimonte, G.; Lizzi, F.; Sparano, G.
1994-04-01
Using the tools of noncommutative geometry we calculate the distances between the points of a lattice on which the usual discretized Dirac operator has been defined. We find that these distances do not have the expected behaviour, revealing that from the metric point of view the lattice does not look at all as a set of points sitting on the continuum manifold. We thus have an additional criterion for the choice of the discretization of the Dirac operator. (author). 11 refs, 1 tab
Lattice quantum chromodynamics with approximately chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Multifractal behaviour of Т-simplex lattice
Indian Academy of Sciences (India)
Sanjay Kumar, D Giri and Sujata Krishna each of the lattice points of the Цth order map by the entire Цth order map. Each of the resulting Т points is connected to one of the lines connecting the originalЦth order vertices. The fractal and spectral dimensions of this lattice are given by: = ln(Т) ln 2. (1) and. = 2 ln(Т) ln(Т + 2). (2).
Lattice quantum chromodynamics with approximately chiral fermions
International Nuclear Information System (INIS)
Hierl, Dieter
2008-05-01
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Mining Complex Hydrobiological Data with Galois Lattices
Bertaux, Aurélie; Braud, AGNès; Ber, Florence Le
2008-01-01
International audience; We have used Galois lattices for mining hydrobiological data. These data are about macrophytes, that are macroscopic plants living in water bodies. These plants are characterized by several biological traits, that own several modalities. Our aim is to cluster the plants according to their common traits and modalities and to find out the relations between traits. Galois lattices are efficient methods for such an aim, but apply on binary data. In this article, we detail ...
Status of the Fermilab lattice supercomputer project
International Nuclear Information System (INIS)
Mackenzie, P.; Eichten, E.; Hockney, G.
1988-10-01
Fermilab has completed construction of a sixteen node (320 megaflop peak speed) parallel computer for lattice gauge theory calculations. The architecture was designed to provide the highest possible cost effectiveness while maintaining a high level of programmability and constraining as little as possible the types of lattice problems which can be done on it. The machine is programmed in C. It is a prototype for a 256 node (5 gigaflop peak speed) computer which will be assembled this winter. 6 refs
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
Finite size scaling and lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.A.
1986-01-01
Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs
Vague Congruences and Quotient Lattice Implication Algebras
Directory of Open Access Journals (Sweden)
Xiaoyan Qin
2014-01-01
Full Text Available The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given.
Vague Congruences and Quotient Lattice Implication Algebras
Qin, Xiaoyan; Xu, Yang
2014-01-01
The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given. PMID:25133207
Matching fields and lattice points of simplices
Loho, Georg; Smith, Ben
2018-01-01
We show that the Chow covectors of a linkage matching field define a bijection of lattice points and we demonstrate how one can recover the linkage matching field from this bijection. This resolves two open questions from Sturmfels & Zelevinsky (1993) on linkage matching fields. For this, we give an explicit construction that associates a bipartite incidence graph of an ordered partition of a common set to all lattice points in a dilated simplex. Given a triangulation of a product of two simp...
Lattice models and conformal field theories
International Nuclear Information System (INIS)
Saleur, H.
1988-01-01
Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied
Topological Aspects of the Product of Lattices
Directory of Open Access Journals (Sweden)
Carmen Vlad
2011-01-01
Full Text Available Let be an arbitrary nonempty set and a lattice of subsets of such that ∅, X∈L. ( denotes the algebra generated by , and ( denotes those nonnegative, finite, finitely additive measures on (. In addition, ( denotes the subset of ( which consists of the nontrivial zero-one valued measures. The paper gives detailed analysis of products of lattices, their associated Wallman spaces, and products of a variety of measures.
Topological Aspects of the Product of Lattices
Vlad, Carmen
2011-01-01
Let be an arbitrary nonempty set and a lattice of subsets of such that ∅ , X ∈ L . ( ) denotes the algebra generated by , and ( ) denotes those nonnegative, finite, finitely additive measures on ( ). In addition, ( ) denotes the subset of ( ) which consists of the nontrivial zero-one valued measures. The paper gives detailed analysis of products of lattices, their associated Wallman spaces, and products of a variety of measures....
The world according to lattice QCD
International Nuclear Information System (INIS)
Sharpe, S.R.
1988-12-01
A non-technical introduction to lattice calculations is given. The successes and problems of current calculations are emphasized. A summary of lattice results on non-exotic meson and baryon masses indicates that while calculations in the quenched approximation are becoming reliable, the results differ in systematic ways from the physical values. Results for exotic mesons (glueballs and hybrids) are then presented. The future prospects are discussed. 23 refs., 4 figs
A lattice hierarchy and its continuous limits
International Nuclear Information System (INIS)
Fan Engui
2008-01-01
By introducing a discrete spectral problem, we derive a lattice hierarchy which is integrable in Liouville's sense and possesses a multi-Hamiltonian structure. It is show that the discrete spectral problem converges to the well-known AKNS spectral problem under a certain continuous limit. In particular, we construct a sequence of equations in the lattice hierarchy which approximates the AKNS hierarchy as a continuous limit
Improved lattice fermion action for heavy quarks
Cho, Yong-Gwi; Jüttner, Andreas; Kaneko, Takashi; Marinkovic, Marina; Noaki, Jun-Ichi; Tsang, Justus Tobias
2015-01-01
We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of $O(a)$ and $O(a^2)$ are eliminated at tree-level. We carry out a scaling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.
Lattice QCD and the Jefferson Laboratory Program
Energy Technology Data Exchange (ETDEWEB)
Jozef Dudek, Robert Edwards, David Richards, Konstantinos Orginos
2011-06-01
Lattice gauge theory provides our only means of performing \\textit{ab initio} calculations in the non-perturbative regime. It has thus become an increasing important component of the Jefferson Laboratory physics program. In this paper, we describe the contributions of lattice QCD to our understanding of hadronic and nuclear physics, focusing on the structure of hadrons, the calculation of the spectrum and properties of resonances, and finally on deriving an understanding of the QCD origin of nuclear forces.
Building the RHIC tracking lattice model
Energy Technology Data Exchange (ETDEWEB)
Luo, Y.; Fischer, W.; Tepikian, S.
2010-01-27
In this note we outline the procedure to build a realistic lattice model for the RHIC beam-beam tracking simulation. We will install multipole field errors in the arc main dipoles, arc main quadrupols and interaction region magnets (DX, D0, and triplets) and introduce a residual closed orbit, tune ripples, and physical apertures in the tracking lattice model. Nonlinearities such as local IR multipoles, second order chromaticies and third order resonance driving terms are also corrected before tracking.
The Beauty of Lattice Perturbation Theory: the Role of Lattice Perturbation Theory in B Physics
Monahan, C. J.
2012-12-01
As new experimental data arrive from the LHC the prospect of indirectly detecting new physics through precision tests of the Standard Model grows more exciting. Precise experimental and theoretical inputs are required to test the unitarity of the CKM matrix and to search for new physics effects in rare decays. Lattice QCD calculations of non-perturbative inputs have reached a precision at the level of a few percent; in many cases aided by the use of lattice perturbation theory. This review examines the role of lattice perturbation theory in B physics calculations on the lattice in the context of two questions: how is lattice perturbation theory used in the different heavy quark formalisms implemented by the major lattice collaborations? And what role does lattice perturbation theory play in determinations of non-perturbative contributions to the physical processes at the heart of the search for new physics? Framing and addressing these questions reveals that lattice perturbation theory is a tool with a spectrum of applications in lattice B physics.
Vitreous in lattice degeneration of retina.
Foos, R Y; Simons, K B
1984-05-01
A localized pocket of missing vitreous invariably overlies lattice degeneration of the retina. Subjects with lattice also have a higher rate of rhegmatogenous retinal detachment, which is usually a complication of retinal tears. The latter are in turn a result of alterations in the central vitreous--that is, synchysis senilis leading to posterior vitreous detachment. In order to determine if there is either an association or a deleterious interaction between the local and central lesions of the vitreous in eyes with lattice, a comparison was made in autopsy eyes with and without lattice the degree of synchysis and rate of vitreous detachment. Results show no association between the local and central vitreous lesions, indicating that a higher rate of vitreous detachment is not the basis for the higher rate of retinal detachment in eyes with lattice. Also, there was no suggestion of deleterious interaction between the local and central vitreous lesions, either through vitreodonesis as a basis for precocious vitreous detachment, or through a greater degree of synchysis as a basis for interconnection of local and central lacunae (which could extend the localized retinal detachment in eyes with holes in lattice degeneration).
Superfluidity of bosons on a deformable lattice
International Nuclear Information System (INIS)
Jackeli, G.; Ranninger, J.
2001-01-01
We study the superfluid properties of a system of interacting bosons on a lattice, which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon modes. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective sound-wave-like mode with sound velocity v, arising from gauge symmetry breaking. (i) The sound velocity v 0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest-order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of the phonon-mediated interaction in the static limit. (ii) The second-order correction to the sound velocity is enhanced as compared to that of bosons on a rigid lattice when the boson-phonon interaction is switched on due to the retarded nature of the phonon-mediated interaction. The overall effect is that the sound velocity is essentially unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detection of superfluid properties of bosons. Our results are based on an extension of the Beliaev-Popov formalism for a weakly interacting Bose gas on a rigid lattice to one on a deformable lattice with which it interacts
Matter-wave bright solitons in effective bichromatic lattice potentials
Indian Academy of Sciences (India)
Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both ...
An approach to the isoperimetric problem on some lattices
International Nuclear Information System (INIS)
Duarte, J.A.M.S.
1979-01-01
In this paper it is shown how elements of convex-set theory and lattice symmetry requirements can be combined to determine the areas, symmetry point groups and lattice constants of all isoperimetric solutions for regular lattices. The technique is also applied to one semi-regular lattice, where it assists in obtaining the exact expansion for polygonal closures. (author)
Hyper-lattice algebraic model for data warehousing
Sen, Soumya; Chaki, Nabendu
2016-01-01
This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.
Few quantum particles on one dimensional lattices
Energy Technology Data Exchange (ETDEWEB)
Valiente Cifuentes, Manuel
2010-06-18
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and
Few quantum particles on one dimensional lattices
International Nuclear Information System (INIS)
Valiente Cifuentes, Manuel
2010-01-01
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and extended Hubbard models
SSC lattice database and graphical interface
International Nuclear Information System (INIS)
Trahern, C.G.; Zhou, J.
1991-11-01
When completed the Superconducting Super Collider will be the world's largest accelerator complex. In order to build this system on schedule, the use of database technologies will be essential. In this paper we discuss one of the database efforts underway at the SSC, the lattice database. The SSC lattice database provides a centralized source for the design of each major component of the accelerator complex. This includes the two collider rings, the High Energy Booster, Medium Energy Booster, Low Energy Booster, and the LINAC as well as transfer and test beam lines. These designs have been created using a menagerie of programs such as SYNCH, DIMAD, MAD, TRANSPORT, MAGIC, TRACE3D AND TEAPOT. However, once a design has been completed, it is entered into a uniform database schema in the database system. In this paper we discuss the reasons for creating the lattice database and its implementation via the commercial database system SYBASE. Each lattice in the lattice database is composed of a set of tables whose data structure can describe any of the SSC accelerator lattices. In order to allow the user community access to the databases, a programmatic interface known as dbsf (for database to several formats) has been written. Dbsf creates ascii input files appropriate to the above mentioned accelerator design programs. In addition it has a binary dataset output using the Self Describing Standard data discipline provided with the Integrated Scientific Tool Kit software tools. Finally we discuss the graphical interfaces to the lattice database. The primary interface, known as OZ, is a simulation environment as well as a database browser
Elcoro, Luis; Etxebarria, Jesus
2011-01-01
The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used…
Czech Academy of Sciences Publication Activity Database
Landa, Michal; Machová, Anna; Uhnáková, Alena; Pokluda, J.; Lejček, Pavel
2016-01-01
Roč. 87, June (2016), s. 63-70 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698; GA ČR GAP108/12/0144; GA ČR(CZ) GA15-20666S; GA ČR GA13-13616S Institutional support: RVO:61388998 ; RVO:68378271 Keywords : grack growth * cyclic loading * Bcc iron Subject RIV: JL - Materials Fatigue, Friction Mechanics; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.899, year: 2016 http://ac.els-cdn.com/S014211231500448X/1-s2.0-S014211231500448X-main.pdf?_tid=96e3e5a0-fb08-11e5-92cb-00000aab0f02&acdnat=1459845181_19fcdd93d31b1f140714e52b835b33d8
Topological phases of shaken quantum Ising lattices
International Nuclear Information System (INIS)
Fernández-Lorenzo, Samuel; Porras, Diego; García-Ripoll, Juan José
2016-01-01
The quantum compass model consists of a two-dimensional square spin lattice where the orientation of the spin–spin interactions depends on the spatial direction of the bonds. It has remarkable symmetry properties and the ground state shows topological degeneracy. The implementation of the quantum compass model in quantum simulation setups like ultracold atoms and trapped ions is far from trivial, since spin interactions in those systems typically are independent of the spatial direction. Ising spin interactions, on the contrary, can be induced and controlled in atomic setups with state-of-the art experimental techniques. In this work, we show how the quantum compass model on a rectangular lattice can be simulated by the use of the photon-assisted tunneling induced by periodic drivings on a quantum Ising spin model. We describe a procedure to adiabatically prepare one of the doubly degenerate ground states of this model by adiabatically ramping down a transverse magnetic field, with surprising differences depending on the parity of the lattice size. Exact diagonalizations confirm the validity of this approach for small lattices. Specific implementations of this scheme are presented with ultracold atoms in optical lattices in the Mott insulator regime, as well as with Rydberg atoms. (paper)
Lattice mismatch modeling of aluminum alloys
Energy Technology Data Exchange (ETDEWEB)
Shin, Dongwon; Roy, Shibayan; Watkins, Thomas R.; Shyam, Amit
2017-10-01
We present a theoretical framework to accurately predict the lattice mismatch between the fcc matrix and precipitates in the multi-component aluminum alloys as a function of temperature and composition. We use a computational thermodynamic approach to model the lattice parameters of the multi-component fcc solid solution and θ'-Al2Cu precipitate phase. Better agreement between the predicted lattice parameters of fcc aluminum in five commercial alloys (206, 319, 356, A356, and A356 + 0.5Cu) and experimental data from the synchrotron X-ray diffraction (SXD) has been obtained when simulating supersaturated rather than equilibrium solid solutions. We use the thermal expansion coefficient of thermodynamically stable θ-Al2Cu to describe temperature-dependent lattice parameters of meta-stable θ' and to show good agreement with the SXD data. Both coherent and semi-coherent interface mismatches between the fcc aluminum matrix and θ' in Al-Cu alloys are presented as a function of temperature. Our calculation results show that the concentration of solute atoms, particularly Cu, in the matrix greatly affects the lattice mismatch
Techniques for transparent lattice measurement and correction
Cheng, Weixing; Li, Yongjun; Ha, Kiman
2017-07-01
A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.
Full CKM matrix with lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Masataka; /Fermilab
2004-12-01
The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.
Classification of lattices: a new step
International Nuclear Information System (INIS)
Gruber, B.
1997-01-01
From the classification of (three-dimensional) lattices into the 14 Bravais types, the finer classifications into the 44 Niggli characters and 24 Delaunay sorts are considered. The last two divisions are mutually incompatible and the Niggli characters show a disturbing 'asymmetry' with respect to the conventional parameters. The aim of the paper is to find a common subdivision of both the Niggli characters and Delaunay sorts that reveals no 'asymmetry' and is crystallographically meaningful. The first attempt based on separating the non-sharp inequalities (≤) into sharp inequalities ( 5 , its Buerger points. These Buerger points lie in two convex five-dimensional hyperpolyhedra Ω + , Ω - . The division of lattices into classes is determined by the distribution of their Buerger points along the vertices, edges, faces, three- and four-dimensional hyperfaces and the interior of Ω + and Ω - . The resulting classes are called genera. There are 127 of them. They form a subdivision of both the Delaunay sorts and the Niggli characters (and, consequently, also of the Bravais types) and their parameter ranges are open. Genera stand for a remarkably strong bond between lattices. The lattices belonging to the same genus agree in a series of important crystallographic properties. Genera are explicitly described by systems of linear inequalities. The five-dimensional geometrical objects obtained in this way are illustrated by their three-dimensional cross sections. From these illustrations, a suitable notation of the genera was derived. Extensive tables enable the determination of the genus of a given lattice. (orig.)
Incommensurate lattice modulations in Potassium Vanadate
Chakoumakos, Bryan; Banerjee, Arnab; Mark, Lumsden; Cao, Huibo; Kim, Jong-Woo; Hoffman, Christina; Wang, Xiaoping
Potassium Vanadate (K2V3O8) is an S = 1/2 2D square lattice antiferromagnet that shows spin reorientation indicating a strong coupling between the magnetism and its dielectric properties with a promise of rich physics that promises multiferroicity. These tangible physical properties are strongly tied through a spin-lattice coupling to the underlying lattice and superlattice behavior. It has a superlattice (SL) onsetting below Tc = 115 K with an approximate [3 x 3 x 2] modulation. Here we present our recent experiments at TOPAZ beamline at SNS which for the first time proves conclusively that the lattice modulations are incommensurate, with an in-plane Q of 0.315. We will also show our attempts to refine the data using JANA which requires a redefinition of the lattice, as well as the temperature and Q dependence of the superlattice modulation measured using neutrons at HFIR and synchrotron x-rays at APS. Our results are not only relevant for the ongoing search of multifunctional behavior in K2V3O8 but also generally for the superlattice modulations observed in a large family of fresnoites. Work performed at ORNL and ANL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.
The thermoelectric properties of inhomogeneous holographic lattices
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College,Prince Consort Rd, London, SW7 2AZ (United Kingdom)
2015-01-09
We consider inhomogeneous, periodic, holographic lattices of D=4 Einstein-Maxwell theory. We show that the DC thermoelectric conductivity matrix can be expressed analytically in terms of the horizon data of the corresponding black hole solution. We numerically construct such black hole solutions for lattices consisting of one, two and ten wave-numbers. We numerically determine the AC electric conductivity which reveals Drude physics as well as resonances associated with sound modes. No evidence for an intermediate frequency scaling regime is found. All of the monochromatic lattice black holes that we have constructed exhibit scaling behaviour at low temperatures which is consistent with the appearance of AdS{sub 2}×ℝ{sup 2} in the far IR at T=0.
Electronic properties of graphene antidot lattices
International Nuclear Information System (INIS)
Fuerst, J A; Brandbyge, M; Jauho, A-P; Pedersen, J G; Mortensen, N A; Flindt, C; Pedersen, T G
2009-01-01
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full tight-binding calculations and density functional theory (DFT) are necessary for more reliable predictions of the band structure. We compare the three computational approaches and investigate the role of hydrogen passivation within our DFT scheme.
Updated lattice results for parton distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-07-15
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Periodic Toda lattice in quantum mechanics
International Nuclear Information System (INIS)
Matsuyama, A.
1992-01-01
The quantum mechanical periodic Toda lattice is studied by the direct diagonalization of the Hamiltonian. The eigenstates are classified according to the irreducible representations of the dihedral group D N . It is shown that Gutzwiller's quantization conditions are satisfied and they have a one-to-one correspondence to the irreducible representation of the D N group. The authors have also carried out the semiclassical quantization of the periodic Toda lattice by the EBK formulation. The eigenvalues of the semiclassical quantization have a one-to-one correspondence to the integer quantum numbers, and those quantum numbers also have a close relationship to the symmetry of the state. Numerical calculations have been done for N = 3, 4, 5, and 6 particle periodic Toda lattices. The distributions of the eigenvalues are systematic and distinguished by the symmetry of the state. As illustrative examples, amplitudes of the wave functions and density distributions are shown. 14 refs., 8 figs., 11 tabs
Exotic meson decay widths using lattice QCD
International Nuclear Information System (INIS)
Cook, M. S.; Fiebig, H. R.
2006-01-01
A decay width calculation for a hybrid exotic meson h, with J PC =1 -+ , is presented for the channel h→πa 1 . This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and πa 1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative πa 1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes having a lattice spacing of 0.07 fm
Making sense of nanocrystal lattice fringes
International Nuclear Information System (INIS)
Fraundorf, P.; Qin Wentao; Moeck, Peter; Mandell, Eric
2005-01-01
The orientation dependence of thin-crystal lattice fringes can be gracefully quantified using fringe-visibility maps, a direct-space analog of Kikuchi maps [Nishikawa and Kikuchi, Nature (London) 121, 1019 (1928)]. As in navigation of reciprocal space with the aid of Kikuchi lines, fringe-visibility maps facilitate acquisition of crystallographic information from lattice images. In particular, these maps can help researchers to determine the three-dimensional lattice of individual nanocrystals, to 'fringe-fingerprint' collections of randomly oriented particles, and to measure local specimen thickness with only a modest tilt. Since the number of fringes in an image increases with maximum spatial-frequency squared, these strategies (with help from more precise goniometers) will be more useful as aberration correction moves resolutions into the subangstrom range
Updated lattice results for parton distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2017-07-01
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
Critical Power Performance of Tight Lattice Bundle
Yamamoto, Yasushi; Hiraiwa, Kouji; Morooka, Shinichi; Abe, Nobuaki
An innovative fuel cycle system concept named BARS (BWR with an Advanced Recycle System) has been proposed as a future fuel cycle option aiming at enhanced utilization of uranium resources and reduction of radioactive wastes. In BARS, the spent fuel from conventional light water reactors (LWRs) is recycled as a mixed oxide (MOX) fuel for a BWR core with the fast neutron spectrum by means of oxide dry-processing and vibro-packing fuel fabrication. The fast neutron spectrum is obtained by means of triangular tight fuel lattice. Further study on BARS, especially on tight lattice MOX fuel, has been initiated as a joint study by Toshiba and Gifu University. The objective of this paper is to show the latest progress of the study on BARS, especially concerning the thermal-hydraulics measurements for tight lattice bundle.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Lattice models for invasions through patchy environments.
Campos, Daniel; Méndez, Vicenç; Ortega-Cejas, Vicente
2008-10-01
We analyze traveling front solutions for a class of reaction-transport Lattice Models (LMs) in order to claim their interest on the description of biological invasions. As lattice models are spatially discrete models, we address here the problem of invasions trough patchy habitats, where every node in the lattice represents a different patch. Distributed generation times for the individuals are considered, so that different temporal patterns can be studied. Specifically, we explore some examples of seasonal and nonseasonal patterns which may be of ecological interest. The main advantage of the LMs described here is that a direct correspondence between these discrete models and a mesoscopic description of Continuous-Time Random Walks (CTRW) can be found. This point is of great importance, since many times one needs analytical expressions to support or validate numerical results, or vice versa. Finally, that correspondence allows us to provide a discussion about some general aspects of reaction-dispersal models.
Fractional quantum Hall effect in optical lattices
International Nuclear Information System (INIS)
Hafezi, M.; Demler, E.; Lukin, M. D.; Soerensen, A. S.
2007-01-01
We analyze a recently proposed method to create fractional quantum Hall (FQH) states of atoms confined in optical lattices [A. Soerensen et al., Phys. Rev. Lett. 94, 086803 (2005)]. Extending the previous work, we investigate conditions under which the FQH effect can be achieved for bosons on a lattice with an effective magnetic field and finite on-site interaction. Furthermore, we characterize the ground state in such systems by calculating Chern numbers which can provide direct signatures of topological order and explore regimes where the characterization in terms of wave-function overlap fails. We also discuss various issues which are relevant for the practical realization of such FQH states with ultracold atoms in an optical lattice, including the presence of a long-range dipole interaction which can improve the energy gap and stabilize the ground state. We also investigate a detection technique based on Bragg spectroscopy to probe these systems in an experimental realization
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-02
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Automated generation of lattice QCD Feynman rules
International Nuclear Information System (INIS)
Hart, A.; Mueller, E.H.; Horgan, R.R.
2009-04-01
The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)
Response of Kondo lattice systems to pressure
International Nuclear Information System (INIS)
Thompson, J.D.; Borges, H.A.; Fisk, Z.; Horn, S.; Parks, R.D.; Wells, G.L.
1987-01-01
Yb-based Kondo lattice systems (YbAgCu 4 , YbCu 2 Si 2 , YbRh 2 Si 2 ) represent an interesting class of materials in which it is possible to study systematically the development of heavy electron behavior through the application of pressure. Certainly, additional experiments are required to determine to what extent Yb compounds are mirror images of their Ce counterparts. Finally, pressure reveals the presence of competing interactions for which a simple model exists that qualitatively accounts for the pressure response observed in a large number of Ce, U and Yb-based Kondo lattice systems
Neutron Electric Dipole Moment on the Lattice
Directory of Open Access Journals (Sweden)
Yoon Boram
2018-01-01
Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
Neutron Electric Dipole Moment on the Lattice
Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan
2018-03-01
For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
Two Dimensional Super QCD on a Lattice
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon [Syracuse U.; Veernala, Aarti [Fermilab
2017-10-04
We construct a lattice theory with one exact supersymmetry which consists of fields transforming in both the adjoint and fundamental representations of a U(Nc) gauge group. In addition to gluons and gluinos, the theory contains Nf flavors of fermion in the fundamental representation along with their scalar partners and is invariant under a global U(Nf) flavor symmetry. The lattice action contains an additional Fayet-Iliopoulos term which can be used to generate a scalar potential. We perform numerical simulations that corroborate the theoretical expectation that supersymmetry is spontaneously broken for Nf
Automated generation of lattice QCD Feynman rules
Energy Technology Data Exchange (ETDEWEB)
Hart, A.; Mueller, E.H. [Edinburgh Univ. (United Kingdom). SUPA School of Physics and Astronomy; von Hippel, G.M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Horgan, R.R. [Cambridge Univ. (United Kingdom). DAMTP, CMS
2009-04-15
The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)
Late complications following cryotherapy of lattice degeneration.
Benson, W E; Morse, P H; Nantawan, P
1977-10-01
We observed 341 patients who had received cryotherapy for lattice degeneration in order to identify possible late complications. Sequelae such as retinal tears posterior to an operculum or flap tears within treated areas showed that treatment did not necessarily prevent subsequent vitreous traction. Moreover, the newly created flap tears may extend beyond the treated area and can cause retinal detachment. Even scleral buckling did not necesserily prevent further traction. Therefore, we concluded that when cryotherapy is used to treat lattice degeneration, an adequate margin of surrounding retina should be treated and the treatment should extend to the ora serrata.
Genetics of lattice degeneration of the retina.
Murakami, F; Ohba, N
1982-01-01
First-degree relatives of proband patients with lattice degeneration of the retina revealed a significantly higher prevalence of the disease than the prevalence in the general population: the former had the disease about three times as frequently as the latter. The observed data were analyzed in terms of their accordance with recognized genetic models. The inheritance pattern did not fit well to a monogenic mode of inheritance, and it was hypothesized that a polygenic or multifactorial mode of inheritance is the most likely for lattice degeneration of the retina.
Deflation acceleration of lattice QCD simulations
International Nuclear Information System (INIS)
Luescher, Martin
2007-01-01
Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved
Deflation acceleration of lattice QCD simulations
Lüscher, Martin
2007-01-01
Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved.
YANG-MILLS FIELDS AND THE LATTICE.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ,M.
2004-05-18
The Yang-Mills theory lies at the heart of our understanding of elementary particle interactions. For the strong nuclear forces, we must understand this theory in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. I discuss some of the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.
Mobile localization in nonlinear Schroedinger lattices
Energy Technology Data Exchange (ETDEWEB)
Gomez-Gardenes, J. [Departamento de Fisica de la Materia Condensada and Instituto de Biocomputacion y Fisica de los Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza (Spain) and Departamento de Teoria y Simulacion de Sistemas Complejos, Instituto de Ciencia de Materiales de Aragon (ICMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)]. E-mail: gardenes@unizar.es; Falo, F. [Departamento de Fisica de la Materia Condensada and Instituto de Biocomputacion y Fisica de los Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Teoria y Simulacion de Sistemas Complejos, Instituto de Ciencia de Materiales de Aragon (ICMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Floria, L.M. [Departamento de Fisica de la Materia Condensada and Instituto de Biocomputacion y Fisica de los Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza (Spain)
2004-11-15
Using continuation methods from the integrable Ablowitz-Ladik lattice, we have studied the structure of numerically exact mobile discrete breathers in the standard discrete nonlinear Schroedinger equation. We show that, away from that integrable limit, the mobile pulse is dressed by a background of resonant plane waves with wavevectors given by a certain selection rule. This background is seen to be essential for supporting mobile localization in the absence of integrability. We show how the variations of the localized pulse energy during its motion are balanced by the interaction with this background, allowing the localization mobility along the lattice.
Bottomonium above Deconfinement in Lattice Nonrelativistic QCD
International Nuclear Information System (INIS)
Aarts, G.; Kim, S.; Lombardo, M. P.; Oktay, M. B.; Ryan, S. M.; Sinclair, D. K.; Skullerud, J.-I.
2011-01-01
We study the temperature dependence of bottomonium for temperatures in the range 0.4T c c , using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for N f =2 light flavors on a highly anisotropic lattice. We find that the Υ is insensitive to the temperature in this range, while the χ b propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T≅2T c .
Topology in dynamical lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Gruber, Florian
2012-08-20
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Natural uranium lattice in heavy water
International Nuclear Information System (INIS)
Girard, Y.; Koechlin, J.C.; Moreau, J.; Naudet, R.
1959-01-01
A group of Laplacian determinations have been made under critical running conditions in a heavy water pile specially constructed to this end using either complete lattices or samples of lattices employing a two-zone method. The experimental equipment is briefly described: it has been devised to allow rapid modifications of the charge. The methods of measurement employed are also summarily described one operates either by flux charts in the case of lattices which are then used as references, or by progressive replacement of the bars by concentric rings and measurements of the reactivity. In this case, one attempts to obtain the difference between the material laplacian of the central unknown lattice and that of the reference lattice. The method has been specially develop ped to give precision. Results of Laplacian measurements for all these lattice types are presented, allowing the construction of a set of curves as a function of the separation. Various other effects have also been measured: the equivalent reactivity of a mm of water - anisotropy - temperature effect, etc. However in this first attack on the problem, the measurement of a large variety of Laplacian has been carried out, rather than careful measurements in particular cases. It is in this spirit that the interpretation of the results has been made. As a large number of very complex phenomena still escape the possibilities of the calculation, it is considered that a certain number of adjustments are necessary; now these can only give the desired efficiency in forecasting results if they refer to a sufficiently great number of experimental data. It is necessary then to connect the measurements closely on with the other whilst, at the same time, subdividing them according to logically deduced formulae. The principal source of trouble has been that of coherence. The rules governing the calculations employed in the interpretation of the data are given. In the first instance simple formula are used: first of
Phase structure of lattice N=4 super Yang-Mills
DEFF Research Database (Denmark)
Catterall, Simon; Damgaard, Poul H.; DeGrand, Thomas
2012-01-01
We make a first study of the phase diagram of four-dimensional N = 4 super Yang-Mills theory regulated on a space-time lattice. The lattice formulation we employ is both gauge invariant and retains at all lattice spacings one exactly preserved supersymmetry charge. Our numerical results are consi......We make a first study of the phase diagram of four-dimensional N = 4 super Yang-Mills theory regulated on a space-time lattice. The lattice formulation we employ is both gauge invariant and retains at all lattice spacings one exactly preserved supersymmetry charge. Our numerical results...
Lattice formulation of a two-dimensional topological field theory
International Nuclear Information System (INIS)
Ohta, Kazutoshi; Takimi, Tomohisa
2007-01-01
We investigate an integrable property and the observables of 2-dimensional N=(4,4) topological field theory defined on a discrete lattice by using the 'orbifolding' and 'deconstruction' methods. We show that our lattice model is integrable and, for this reason, the partition function reduces to matrix integrals of scalar fields on the lattice sites. We elucidate meaningful differences between a discrete lattice and a differentiable manifold. This is important for studying topological quantities on a lattice. We also propose a new construction of N=(2,2) supersymmetric lattice theory, which is realized through a suitable truncation of scalar fields from the N=(4,4) theory. (author)
On the hierarchical lattices approximation of Bravais lattices: Specific heat and correlation length
International Nuclear Information System (INIS)
Tsallis, C.
1984-01-01
Certain types of real-space renormalization groups (which essentially approximate Bravais lattices through hierarchical ones) do not preserve standard thermodynamic convexity properties. It is pointed out that this serious defect is not intrinsic to any real-space renormalization. It can be avoided if form-invariance (under uniform translation of the energy scale) of the equation connecting the Bravais lattice (which is intended to study) to the hierarchical one (which approximates it) is demanded. In addition to that expressions for the critical exponentes ν and α corresponding to hierarchical lattices are analysed; these are consistent with Melrose recent analysis of the fractal intrinsic dimensionality. (Author) [pt
Fuel lattice design using heuristics and new strategies
Energy Technology Data Exchange (ETDEWEB)
Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Pelta, D. A. [ETS Ingenieria Informatica y Telecomunicaciones, Universidad de Granada, Daniel Saucedo Aranda s/n, 18071 Granada (Spain); Campos S, Y., E-mail: juanjose.ortiz@inin.gob.m [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)
2010-10-15
This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)
Fuel lattice design using heuristics and new strategies
International Nuclear Information System (INIS)
Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R.; Pelta, D. A.; Campos S, Y.
2010-10-01
This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)
Supersymmetry and the lattice: A reconciliation?
International Nuclear Information System (INIS)
Curci, G.
1987-01-01
Contrary to common prejudice, we claim that supersymmetric gauge theories can be studied non-perturbatively on the lattice (by using known ideas and techniques). We discuss in detail super-Yang-Mills theory and propose some explicit measurements which are both physically interesting and within present or near-future computer capabilities. (orig.)
Lattice QCD on a beowulf cluster
International Nuclear Information System (INIS)
Kima, Seyong
2000-01-01
Using commodity component personal computers based on Alpha processor and commodity network devices and a switch, we built an 8-node parallel computer. GNU/Linux is chosen as an operating system and message passing libraries such as PVM, LAM, and MPICH have been tested as a parallel programming environment. We discuss our lattice QCD project for a heavy quark system on this computer
Antiferromagnetic noise correlations in optical lattices
DEFF Research Database (Denmark)
Bruun, Niels Bohr International Academy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark, Georg Morten; Syljuåsen, F. T.; Pedersen, K. G. L.
2009-01-01
We analyze how noise correlations probed by time-of-flight experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional and three-dimensional optical lattices. Combining analytical and quantum Monte Carlo calculations using experimentally realistic parameters, we s...
First multi-bend achromat lattice consideration
Energy Technology Data Exchange (ETDEWEB)
Einfeld, Dieter, E-mail: dieter.einfeld@maxlab.lu.se [Lund University, PO Box 118, Lund SE-221 00 (Sweden); Plesko, Mark [COSYLAB, Teslova ulica 30, Ljubljana SI-1000 (Slovakia); Schaper, Joachim [HAWK University of Applied Sciences and Arts, Hohnsen 4, D-31134 Hildesheim (Germany)
2014-08-27
The first proposed lattice for a ‘diffraction-limited light source’ is reported. This approach has now more or less been used for the MAX IV project. By the beginning of 1990, three third-generation synchrotron light sources had been successfully commissioned in Grenoble, Berkeley and Trieste (ESRF, ALS and ELETTRA). Each of these new machines reached their target specifications without any significant problems. In parallel, already at that time discussions were underway regarding the next generation, the ‘diffraction-limited light source (DLSR)’, which featured sub-nm rad electron beam emittance, photon beam brilliance exceeding 10{sup 22} and the potential to emit coherent radiation. Also, at about that time, a first design for a 3 GeV DLSR was developed, based on a modified multiple-bend achromat (MBA) design leading to a lattice with normalized emittance of ∊{sub x} = 0.5 nm rad. The novel feature of the MBA lattice was the use of seven vertically focusing bend magnets with different bending angles throughout the achromat cell to keep the radiation integrals and resulting beam emittance low. The baseline design called for a 400 m ring circumference with 12 straight sections of 6 m length. The dynamic aperture behaviour of the DLSR lattice was estimated to produce > 5 h beam lifetime at 100 mA stored beam current.
Optical lattices on wings of Apatura butterflies
Czech Academy of Sciences Publication Activity Database
Krizek, G.O.; Hagen, G.M.; Křížek, P.; Havlová, M.; Křížek, Michal
2014-01-01
Roč. 124, č. 3 (2014), s. 176-185 ISSN 0013-872X R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : photonic nanostructures * iridescence * optical lattices Subject RIV: BA - General Mathematics Impact factor: 0.447, year: 2014 http://www.bioone.org/doi/abs/10.3157/021.124.0302
Magnetization dynamics in artificial spin ice lattices
Heinonen, Olle; Gliga, Sebastian
2012-02-01
Artificial spin ice lattices (ASIL) consist of regular arrays of single-domain nanomagnets displaying ice rule ordering. Frustration is introduced through shape anisotropy. ASILs have been shown to exhibit complex behavior, with rich phase diagrams and quasi-static magnetization reversal. In particular, topological defects, such as Dirac monopoles and Dirac strings, play a fundamental role in the quasi-static behavior of ASILs. In this work, we use micromagnetic simulations to investigate the resonant frequencies of square lattice ASILs consisting of stadium-shaped nanomagnets. We calculate the evolution of the fundamental modes of a single element when elements are combined in four-stadia configurations and large lattices. In a cross-shaped four-stadium configuration for example, the Dirac monopole splits the frequencies of the lowest (near)-degenerate symmetric and antisymmetric edge modes of a single stadium. This splitting increases in a 24-stadium system with two monopoles. We also calculate the evolution of the spectral characteristics as the monopoles move farther apart in the lattice, but stay connected through a Dirac string. Our work suggests that these topological defects have distinct spectral signatures that can be detected experimentally.
Lattice Mismatch in Crystalline Nanoparticle Thin Films.
Gabrys, Paul A; Seo, Soyoung E; Wang, Mary X; Oh, EunBi; Macfarlane, Robert J; Mirkin, Chad A
2018-01-10
For atomic thin films, lattice mismatch during heteroepitaxy leads to an accumulation of strain energy, generally causing the films to irreversibly deform and generate defects. In contrast, more elastically malleable building blocks should be better able to accommodate this mismatch and the resulting strain. Herein, that hypothesis is tested by utilizing DNA-modified nanoparticles as "soft," programmable atom equivalents to grow a heteroepitaxial colloidal thin film. Calculations of interaction potentials, small-angle X-ray scattering data, and electron microscopy images show that the oligomer corona surrounding a particle core can deform and rearrange to store elastic strain up to ±7.7% lattice mismatch, substantially exceeding the ±1% mismatch tolerated by atomic thin films. Importantly, these DNA-coated particles dissipate strain both elastically through a gradual and coherent relaxation/broadening of the mismatched lattice parameter and plastically (irreversibly) through the formation of dislocations or vacancies. These data also suggest that the DNA cannot be extended as readily as compressed, and thus the thin films exhibit distinctly different relaxation behavior in the positive and negative lattice mismatch regimes. These observations provide a more general understanding of how utilizing rigid building blocks coated with soft compressible polymeric materials can be used to control nano- and microstructure.
Probing hadron wave functions in Lattice QCD
Alexandrou, C; Tsapalis, A; Forcrand, Ph. de
2002-01-01
Gauge-invariant equal-time correlation functions are calculated in lattice QCD within the quenched approximation and with two dynamical quark species. These correlators provide information on the shape and multipole moments of the pion, the rho, the nucleon and the $\\Delta$.
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Lattice for FPGAs using logarithmic arithmetic
Czech Academy of Sciences Publication Activity Database
Kadlec, Jiří; Matoušek, Rudolf; Heřmánek, Antonín; Líčko, Miroslav; Tichý, Milan
2002-01-01
Roč. 74, č. 906 (2002), s. 53-56 ISSN 0013-4902 Grant - others:ESPRIT(XE) 33544 Institutional research plan: CEZ:AV0Z1075907 Keywords : lattice Rls algorithm * FPGA * logarithmic arithmetic Subject RIV: JC - Computer Hardware ; Software Impact factor: 0.039, year: 2002
Heavy water lattices: Second panel report
International Nuclear Information System (INIS)
1963-01-01
The panel was attended by prominent physicists from most of the laboratories engaged in the field of heavy water lattices throughout the world. The participants presented written contributions and status reports describing the past history and plans for further development of heavy-water reactors. Valuable discussions took place, during which recommendations for future work were formulated. Refs, figs, tabs
Monte Carlo simulations of lattice gauge theories
International Nuclear Information System (INIS)
Forcrand, P. de; Minnesota Univ., Minneapolis, MN
1989-01-01
Lattice gauge simulations are presented in layman's terms. The need for large computer resources is justified. The main aspects of implementations on vector and parallel machines are explained. An overview of state of the art simulations and dedicated hardware projects is presented. 8 refs.; 1 figure; 1 table
Statistics of clusters in binary linear lattices
Felderhof, B.U.
The statistics of clusters in binary linear lattices is studied on the assumption that the relative weight of an Al or Bm cluster is determined only by its size l or m, and is independent of the location of the cluster on the chain. The average cluster numbers and the variance of their fluctuations
Mechanical cloak design by direct lattice transformation.
Bückmann, Tiemo; Kadic, Muamer; Schittny, Robert; Wegener, Martin
2015-04-21
Spatial coordinate transformations have helped simplifying mathematical issues and solving complex boundary-value problems in physics for decades already. More recently, material-parameter transformations have also become an intuitive and powerful engineering tool for designing inhomogeneous and anisotropic material distributions that perform wanted functions, e.g., invisibility cloaking. A necessary mathematical prerequisite for this approach to work is that the underlying equations are form invariant with respect to general coordinate transformations. Unfortunately, this condition is not fulfilled in elastic-solid mechanics for materials that can be described by ordinary elasticity tensors. Here, we introduce a different and simpler approach. We directly transform the lattice points of a 2D discrete lattice composed of a single constituent material, while keeping the properties of the elements connecting the lattice points the same. After showing that the approach works in various areas, we focus on elastic-solid mechanics. As a demanding example, we cloak a void in an effective elastic material with respect to static uniaxial compression. Corresponding numerical calculations and experiments on polymer structures made by 3D printing are presented. The cloaking quality is quantified by comparing the average relative SD of the strain vectors outside of the cloaked void with respect to the homogeneous reference lattice. Theory and experiment agree and exhibit very good cloaking performance.
Shaking the entropy out of a lattice
DEFF Research Database (Denmark)
C. Tichy, Malte; Mølmer, Klaus; F. Sherson, Jacob
2012-01-01
, for which we implement a protocol that circumvents the constraints of unitarity. The preparation of large regions with precisely one atom per lattice site is discussed for both bosons and fermions. The resulting low-entropy Mott-insulating states may serve as high-fidelity register states for quantum...
Thermoelectric properties of finite graphene antidot lattices
DEFF Research Database (Denmark)
Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka
2011-01-01
We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport...
Recent advances in lattice gauge theories
Indian Academy of Sciences (India)
Abstract. Recent progress in the ﬁeld of lattice gauge theories is brieﬂy reviewed for a nonspecialist audience. While the emphasis is on the latest and more deﬁnitive results that have emerged prior to this symposium, an effort has been made to provide them with minimal technicalities.
Entanglement complexity of semiflexible lattice polygons
International Nuclear Information System (INIS)
Orlandini, E; Tesi, M C; Whittington, S G
2005-01-01
We use Monte Carlo methods to study knotting in polygons on the simple cubic lattice with a stiffness fugacity. We investigate how the knot probability depends on stiffness and how the relative frequency of trefoils and figure eight knots changes as the stiffness changes. In addition, we examine the effect of stiffness on the writhe of the polygons. (letter to the editor)
Multifractal behaviour of в-simplex lattice
Indian Academy of Sciences (India)
We study the asymptotic behaviour of resistance scaling and ﬂuctuation of resistance that give rise to ﬂicker noise in an -simplex lattice. We propose a simple method to calculate the resistance scaling and give a closed-form formula to calculate the exponent, , associated with resistance scaling, for any . Using current ...
Lattice Multiplication in a Preservice Classroom
Nugent, Patricia M.
2007-01-01
This article discusses the algorithm for multiplication that is referred to as lattice multiplication. Evidence of how the author's preservice students' conceptual understanding of the algorithm grew through the semester is given. In addition, the author extends the conceptualization of the algorithm from the multiplication of whole numbers to the…
Soft covariant gauges on the lattice
Energy Technology Data Exchange (ETDEWEB)
Henty, D.S.; Oliveira, O.; Parrinello, C.; Ryan, S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (UKQCD Collaboration)
1996-12-01
We present an exploratory study of a one-parameter family of covariant, nonperturbative lattice gauge-fixing conditions that can be implemented through a simple Monte Carlo algorithm. We demonstrate that at the numerical level the procedure is feasible, and as a first application we examine the gauge dependence of the gluon propagator. {copyright} {ital 1996 The American Physical Society.}
Dynamical fermions in lattice quantum chromodynamics
International Nuclear Information System (INIS)
Szabo, Kalman
2007-01-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Lattice calculus of the morphological slope transform
H.J.A.M. Heijmans (Henk); P. Maragos
1995-01-01
textabstractThis paper presents a study of the morphological slope transform in the complete lattice framework. It discusses in detail the interrelationships between the slope transform at one hand and the (Young-Fenchel) conjugate and Legendre transform, two well-known concepts from convex
Lattice effects in YVO3 single crystal
Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM
In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =
Scattering processes and resonances from lattice QCD
Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.
2018-04-01
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.
Orthomodular Lattices Generated by Graphs of Functions
Cegła, W.; Florek, J.
2005-10-01
In a subset where ℝ is the real line and is an arbitrary topological space, an orthogonality relation is constructed from a family of graphs of continuous functions from connected subsets of ℝ to . It is shown that under two conditions on this family a complete lattice of double orthoclosed sets is orthomodular.
Marking up lattice QCD configurations and ensembles
Energy Technology Data Exchange (ETDEWEB)
P.Coddington; B.Joo; C.M.Maynard; D.Pleiter; T.Yoshie
2007-10-01
QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.
Dynamical fermions in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Szabo, Kalman
2007-07-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Vector fields and gravity on the lattice
International Nuclear Information System (INIS)
Khatsymovsky, V.M.
1988-01-01
The problem of discretization of vector field on Regge lattice is considered. Our approach is based on geometrical interpretation of the vector field as the field of infinitesimal coordinate transformation. A discrete version of the vector field action is obtained as a particular case of the continuum action, and it is shown to have the true continuum limit
Geometry and dynamics in Hamiltonian lattices
Rink, B.W.
2003-01-01
E. Fermi, J. Pasta and S. Ulam introduced the Fermi-Pasta-Ulam lattice in the 1950s as a classical mechanical model for a mono-atomic crystal or a one-dimensional continuum. The model consisted of a discrete number of equal point masses that interact with their nearest neighbours only. On the basis
A lattice model for influenza spreading.
Directory of Open Access Journals (Sweden)
Antonella Liccardo
Full Text Available We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1 during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.
Spin-2 NΩ dibaryon from lattice QCD
International Nuclear Information System (INIS)
Etminan, Faisal; Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji
2014-01-01
We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm) 3 × 3.8 fm lattice. The ud and s quark masses in our study correspond to m π =875(1) MeV and m K =916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)( +12.1 −1.8 ) MeV, where the first error is the statistical one, while the second represents the systematic error
Phase transitions: the lattice QCD approach
International Nuclear Information System (INIS)
Gavai, R.V.
1986-01-01
Recent results in the field of finite temperature lattice quantum chromodynamics (QCD) are presented with special emphasis on comparison of the different methods used to incorporate the dynamical fermions. Attempts to obtain a nonperturbative estimate of the velocity of sound in both the hadronic and quark-gluon phase are summarized along with the results. 15 refs., 7 figs
Bucked Coils lattice: a novel ionisation cooling lattice for the Neutrino Factory
International Nuclear Information System (INIS)
Alekou, A; Pasternak, J
2012-01-01
A successful muon ionisation cooling channel for the Neutrino Factory and Muon Collider, requires simultaneously a strong focusing and a large mean RF gradient. To date, all candidate design lattices achieved these requirements with a large magnetic field in the RF cavities, which can potentially limit the achievable gradient leading to RF breakdown. This paper presents the Bucked Coils lattice, designed to reduce the magnetic field at the RF cavities while achieving a satisfactory cooling effect and muon transmission. The Bucked Coils managed to achieve significantly reduced magnetic field components at the RF position, while also achieving a comparable transmission to the FSIIA lattice, the current reference ionisation cooling lattice of the Neutrino Factory. A detailed comparison with respect to the magnetic field reduction, cooling dynamics and transmission is given. A preliminary feasibility study taking into account the hoop stress of the coils and their superconducting operation is also presented.
Perturbative study of interacting photons in open lattices
Li, Andy C. Y.; Petruccione, Francesco; Koch, Jens
2015-03-01
Quantum simulation realized in the circuit QED architecture is an emerging direction to study many-body physics in open lattice systems. Among several models of interacting photons, the driven-dissipative Jaynes-Cummings (JC) lattice is commonly employed to investigate the steady-state and dynamical behavior. While there is a wealth of analytical and numerical tools applicable to closed lattice systems in thermal equilibrium, the number of methods to treat open lattice systems is rather limited. Hence, many properties of open lattices remain an open question. Here, we formulate a general perturbation theory and an infinite-order resummation scheme applicable to open lattices. We then apply this theory to the driven-dissipative JC lattices to predict steady-state expectation values. This allows us to explore the rich features due to photon-qubit interaction and compare results obtained for finite chains and infinite lattices.
Matter-wave bright solitons in effective bichromatic lattice potentials
Indian Academy of Sciences (India)
wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. ... Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ...
APS-U LATTICE DESIGN FOR OFF-AXIS ACCUMULATION
Energy Technology Data Exchange (ETDEWEB)
Sun, Yipeng; Borland, M.; Lindberg, R.; Sajaev, V.
2017-06-25
A 67-pm hybrid-seven-bend achromat (H7BA) lattice is being proposed for a future Advanced Photon Source (APS) multi-bend-achromat (MBA) upgrade project. This lattice design pushes for smaller emittance and requires use of a swap-out (on-axis) injection scheme due to limited dynamic acceptance. Alternate lattice design work has also been performed for the APS upgrade to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow off-axis accumulation. Two such alternate H7BA lattice designs, which target a still-low emittance of 90 pm, are discussed in detail in this paper. Although the single-particle-dynamics performance is good, simulations of collective effects indicate that surprising difficulty would be expected accumulating high single-bunch charge in this lattice. The brightness of the 90-pm lattice is also a factor of two lower than the 67-pm H7BA lattice.
Program LATTICE for Calculation of Parameters of Targets with Heterogeneous (Lattice) Structure
Bznuni, S A; Soloviev, A G; Sosnin, A N
2002-01-01
Program LATTICE, with which help it is possible to describe lattice structure for the program complex CASCAD, is created in the C++ language. It is shown that for model-based electronuclear system on a basis of molten salt reactor with graphite moderator at transition from homogeneous structure to heterogeneous at preservation of a chemical compound there is a growth of k_{eff} by approximately 6 %.
Modelling heterogeneity of concrete using 2D lattice network for ...
Indian Academy of Sciences (India)
The algorithm determines the position of the lattice .... coordinate and the y coordinate of centre a circle with diameter D. The algorithm developed ... Method of analysis. A computer program for analysis of lattice structure has been developed. Fracture is simu- lated by performing a linear elastic analysis of the lattice and ...
Solitary plane waves in an isotropic hexagonal lattice
DEFF Research Database (Denmark)
Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth
1998-01-01
of these solitary waves is investigated numerically by their interactions with vacancies and lattice edges. Propagation of solitary plane waves through finite lattice domains with isotopic disorder is extensively studied. Comparison of these results with the soliton propagation in one-dimensional lattices with mass...
Mean ergodic operators and reflexive Fréchet lattices
Bonet, J.; De Pagter, B.; Ricker, W.J.
2011-01-01
Connections between (positive) mean ergodic operators acting in Banach lattices and properties of the underlying lattice itself are well understood (see the works of Emel'yanov, Wolff and Zaharopol). For Fréchet lattices (or more general locally convex solid Riesz spaces) there is virtually no
The critical point of quantum chromodynamics through lattice and ...
Indian Academy of Sciences (India)
Abstract. This talk discusses methods of extending lattice computations at ﬁnite temperature into regions of ﬁnite chemical potential, and the conditions under which such results from the lattice may be compared to experiments. Such comparisons away from a critical point are absolutely essential for quantitative use of lattice ...