WorldWideScience

Sample records for bayleyite

  1. New french uranium mineral species

    International Nuclear Information System (INIS)

    Branche, G.; Chervet, J.; Guillemin, C.

    1952-01-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; β uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the α uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [fr

  2. New french uranium mineral species; Nouvelles especes uraniferes francaises

    Energy Technology Data Exchange (ETDEWEB)

    Branche, G; Chervet, J; Guillemin, C [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; {beta} uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the {alpha} uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [French] Dans ce travail, les auteurs etudient les nouveaux mineraux uraniferes francais: parsonsite et renardite, phosphates hydrates de plomb et d'uranium; kasolite: silicate hydrate d'uranium et de plomb uranopilite: sulfate d'uranium hydrate; bayleyite: carbonate d'uranium et de magnesium hydrate; {beta} uranolite: silicate d'uranium et de calcium hydrate. Pour tous ces mineraux, les auteurs donnent les caracteres cristallographiques, optiques, et les analyses chimiques quantitatives. Par contre, les especes suivantes, tres rares dans les gites francais, n'ont pas permis d'effectuer d'analyses quantitatives. Ce sont: l'ianthinite: oxyde uraneux hydrate; l'{alpha} uranotile: silicate d'uranium et de calcium hydrate; le bassetite: phosphate d'uranium et de fer hydrate; la hosphuranylite: phosphate duranium hydrate; la becquerelite: oxyde d'uranium hydrate; la curite: oxyde d'uranium et de plomb hydrate. Enfin, les auteurs presentent a la fin de cette etude

  3. Kinetic study of time-dependent fixation of U{sup VI} on biochar

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Radiation Protection Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo (Egypt); Bailey, E.H., E-mail: liz.bailey@nottingham.ac.uk [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Chenery, S.R.N. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Young, S.D. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom)

    2016-12-15

    Biochar, a by-product from the production of biofuel and syngas by gasification, was tested as a material for adsorption and fixation of U{sup VI} from aqueous solutions. A batch experiment was conducted to study the factors that influence the adsorption and time-dependent fixation on biochar at 20 °C, including pH, initial concentration of U{sup VI} and contact time. Uranium (U{sup VI}) adsorption was highly dependent on pH but adsorption on biochar was high over a wide range of pH values, from 4.5 to 9.0, and adsorption strength was time-dependent over several days. The experimental data for pH > 7 were most effectively modelled using a Freundlich adsorption isotherm coupled to a reversible first order kinetic equation to describe the time-dependent fixation of U{sup VI} within the biochar structure. Desorption experiments showed that U{sup VI} was only sparingly desorbable from the biochar with time and isotopic dilution with {sup 233}U{sup VI} confirmed the low, or time-dependent, lability of adsorbed {sup 238}U{sup VI}. Below pH 7 the adsorption isotherm trend suggested precipitation, rather than true adsorption, may occur. However, across all pH values (4.5-9) measured saturation indices suggested precipitation was possible: autunite below pH 6.5 and either swartzite, liebigite or bayleyite above pH 6.5.

  4. Kinetic study of time-dependent fixation of U"V"I on biochar

    International Nuclear Information System (INIS)

    Ashry, A.; Bailey, E.H.; Chenery, S.R.N.; Young, S.D.

    2016-01-01

    Biochar, a by-product from the production of biofuel and syngas by gasification, was tested as a material for adsorption and fixation of U"V"I from aqueous solutions. A batch experiment was conducted to study the factors that influence the adsorption and time-dependent fixation on biochar at 20 °C, including pH, initial concentration of U"V"I and contact time. Uranium (U"V"I) adsorption was highly dependent on pH but adsorption on biochar was high over a wide range of pH values, from 4.5 to 9.0, and adsorption strength was time-dependent over several days. The experimental data for pH > 7 were most effectively modelled using a Freundlich adsorption isotherm coupled to a reversible first order kinetic equation to describe the time-dependent fixation of U"V"I within the biochar structure. Desorption experiments showed that U"V"I was only sparingly desorbable from the biochar with time and isotopic dilution with "2"3"3U"V"I confirmed the low, or time-dependent, lability of adsorbed "2"3"8U"V"I. Below pH 7 the adsorption isotherm trend suggested precipitation, rather than true adsorption, may occur. However, across all pH values (4.5-9) measured saturation indices suggested precipitation was possible: autunite below pH 6.5 and either swartzite, liebigite or bayleyite above pH 6.5.

  5. Exploration for sandstone- type uranium mineralisation in the Siwaliks of northwestern Himalaya, India

    International Nuclear Information System (INIS)

    Swarnkar, B.M.; Kothari, P.K.; Umamaheswar, K.; Srinivasan, S.

    2002-01-01

    The Siwalik Group with a thickness of about 6000m of fluvial sediments of middle Miocene to Pleistocene age has been explored extensively over two decades for U, using various types of exploration techniques involving air-borne gamma-ray spectrometry, radiation jeep survey, hydrogeochemical survey, ground radiometric survey, radon survey, exploratory drilling and mining, Exploration effort by the Atomic Minerals Directorate for Exploration and Research (AMD) has helped in identifying numerous uranium occurrences spread over the entire Siwalik belt between Poonch (Jammu and Kashmir) in the west and Tanakpur (Uttar Pradesh) in the east, in the northwest Himalaya. Eight significant zones were delineated, mostly confining to distinct stratigraphic horizons of the transition zone between Middle and Upper Siwaliks, and occasionally the transition zone between Lower and Middle Siwaliks. These mineralised zones have a considerable lateral extent of up to 12 km and are associated with sandstones and rarely conglomerates. Uranium mineralisation occurs in the form of peneconcordant lensoidal bodies with individual lenses traceable from a few tens of metres to 700m, sub-parallel to strike or dip, with average grades varying from 0.020 - 0.060% U 3 O 8 and thickness less than a metre to 4m. The host rock of uranium mineralisation is predominantly sandstone containing carbonaceous matter, pyrite and clay pellets. The sandstone is often arkosic and micaceous, and termed as lithic wacke and arkosic wacke. The uranium minerals present are uraninite, pitchblende, coffinite and secondary minerals such as tyuyamunite, metatyuyamunite, uranophane, bayleyite, andersonite, schoepite, liebegite, swartzite, schroekingerite, wulfenite, billictite, betauranophane, autunite and torbernite. Relatively higher concentrations or Se, Mo, Cu, Co, V and Au have been noted in a few uranirerous zones. Concentration or uranium in the Siwalik clastic sediments is controlled by the redox interface