Bayesian Spatial Modelling with R-INLA
Finn Lindgren; Håvard Rue
2015-01-01
The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA) approach proposed by Rue, Martino, and Chopin (2009) is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized) linear mixed to spatial and spatio-temporal models. Combined with the stochastic...
Bayesian Spatial Modelling with R-INLA
Directory of Open Access Journals (Sweden)
Finn Lindgren
2015-02-01
Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies
Spatial and spatio-temporal bayesian models with R - INLA
Blangiardo, Marta
2015-01-01
Dedication iiiPreface ix1 Introduction 11.1 Why spatial and spatio-temporal statistics? 11.2 Why do we use Bayesian methods for modelling spatial and spatio-temporal structures? 21.3 Why INLA? 31.4 Datasets 32 Introduction to 212.1 The language 212.2 objects 222.3 Data and session management 342.4 Packages 352.5 Programming in 362.6 Basic statistical analysis with 393 Introduction to Bayesian Methods 533.1 Bayesian Philosophy 533.2 Basic Probability Elements 573.3 Bayes Theorem 623.4 Prior and Posterior Distributions 643.5 Working with the Posterior Distribution 663.6 Choosing the Prior Distr
Spatial Bayesian hierarchical modelling of extreme sea states
Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.
2016-11-01
A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.
Assessing fit in Bayesian models for spatial processes
Jun, M.
2014-09-16
© 2014 John Wiley & Sons, Ltd. Gaussian random fields are frequently used to model spatial and spatial-temporal data, particularly in geostatistical settings. As much of the attention of the statistics community has been focused on defining and estimating the mean and covariance functions of these processes, little effort has been devoted to developing goodness-of-fit tests to allow users to assess the models\\' adequacy. We describe a general goodness-of-fit test and related graphical diagnostics for assessing the fit of Bayesian Gaussian process models using pivotal discrepancy measures. Our method is applicable for both regularly and irregularly spaced observation locations on planar and spherical domains. The essential idea behind our method is to evaluate pivotal quantities defined for a realization of a Gaussian random field at parameter values drawn from the posterior distribution. Because the nominal distribution of the resulting pivotal discrepancy measures is known, it is possible to quantitatively assess model fit directly from the output of Markov chain Monte Carlo algorithms used to sample from the posterior distribution on the parameter space. We illustrate our method in a simulation study and in two applications.
Forecasting unconventional resource productivity - A spatial Bayesian model
Montgomery, J.; O'sullivan, F.
2015-12-01
Today's low prices mean that unconventional oil and gas development requires ever greater efficiency and better development decision-making. Inter and intra-field variability in well productivity, which is a major contemporary driver of uncertainty regarding resource size and its economics is driven by factors including geological conditions, well and completion design (which companies vary as they seek to optimize their performance), and uncertainty about the nature of fracture propagation. Geological conditions are often not be well understood early on in development campaigns, but nevertheless critical assessments and decisions must be made regarding the value of drilling an area and the placement of wells. In these situations, location provides a reasonable proxy for geology and the "rock quality." We propose a spatial Bayesian model for forecasting acreage quality, which improves decision-making by leveraging available production data and provides a framework for statistically studying the influence of different parameters on well productivity. Our approach consists of subdividing a field into sections and forming prior distributions for productivity in each section based on knowledge about the overall field. Production data from wells is used to update these estimates in a Bayesian fashion, improving model accuracy far more rapidly and with less sensitivity to outliers than a model that simply establishes an "average" productivity in each section. Additionally, forecasts using this model capture the importance of uncertainty—either due to a lack of information or for areas that demonstrate greater geological risk. We demonstrate the forecasting utility of this method using public data and also provide examples of how information from this model can be combined with knowledge about a field's geology or changes in technology to better quantify development risk. This approach represents an important shift in the way that production data is used to guide
A Bayesian spatial random parameters Tobit model for analyzing crash rates on roadway segments.
Zeng, Qiang; Wen, Huiying; Huang, Helai; Abdel-Aty, Mohamed
2017-03-01
This study develops a Bayesian spatial random parameters Tobit model to analyze crash rates on road segments, in which both spatial correlation between adjacent sites and unobserved heterogeneity across observations are accounted for. The crash-rate data for a three-year period on road segments within a road network in Florida, are collected to compare the performance of the proposed model with that of a (fixed parameters) Tobit model and a spatial (fixed parameters) Tobit model in the Bayesian context. Significant spatial effect is found in both spatial models and the results of Deviance Information Criteria (DIC) show that the inclusion of spatial correlation in the Tobit regression considerably improves model fit, which indicates the reasonableness of considering cross-segment spatial correlation. The spatial random parameters Tobit regression has lower DIC value than does the spatial Tobit regression, suggesting that accommodating the unobserved heterogeneity is able to further improve model fit when the spatial correlation has been considered. Moreover, the random parameters Tobit model provides a more comprehensive understanding of the effect of speed limit on crash rates than does its fixed parameters counterpart, which suggests that it could be considered as a good alternative for crash rate analysis.
Directory of Open Access Journals (Sweden)
Kostas Alexandridis
2013-06-01
Full Text Available Assessing spatial model performance often presents challenges related to the choice and suitability of traditional statistical methods in capturing the true validity and dynamics of the predicted outcomes. The stochastic nature of many of our contemporary spatial models of land use change necessitate the testing and development of new and innovative methodologies in statistical spatial assessment. In many cases, spatial model performance depends critically on the spatially-explicit prior distributions, characteristics, availability and prevalence of the variables and factors under study. This study explores the statistical spatial characteristics of statistical model assessment of modeling land use change dynamics in a seven-county study area in South-Eastern Wisconsin during the historical period of 1963–1990. The artificial neural network-based Land Transformation Model (LTM predictions are used to compare simulated with historical land use transformations in urban/suburban landscapes. We introduce a range of Bayesian information entropy statistical spatial metrics for assessing the model performance across multiple simulation testing runs. Bayesian entropic estimates of model performance are compared against information-theoretic stochastic entropy estimates and theoretically-derived accuracy assessments. We argue for the critical role of informational uncertainty across different scales of spatial resolution in informing spatial landscape model assessment. Our analysis reveals how incorporation of spatial and landscape information asymmetry estimates can improve our stochastic assessments of spatial model predictions. Finally our study shows how spatially-explicit entropic classification accuracy estimates can work closely with dynamic modeling methodologies in improving our scientific understanding of landscape change as a complex adaptive system and process.
Xu, Lei; Johnson, Timothy D.; Nichols, Thomas E.; Nee, Derek E.
2010-01-01
Summary The aim of this work is to develop a spatial model for multi-subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi-subject data, some work on spatial modeling of single-subject data, and some recent work on spatial modeling of multi-subject data. However, there has been no work on spatial models that explicitly account for inter-subject variability in activation locations. In this work, we use the idea of activation centers and model the inter-subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical frame work which allows us to draw inferences at all levels: the population level, the individual level and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question which is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov Chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass-univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data. PMID:19210732
Bayesian prediction of spatial count data using generalized linear mixed models
DEFF Research Database (Denmark)
Christensen, Ole Fredslund; Waagepetersen, Rasmus Plenge
2002-01-01
Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, we...... demonstrate that so-called Langevin-Hastings updates are useful for efficient simulation of the posterior distributions, and we discuss computational issues concerning prediction....
Bayesian approaches to spatial inference: Modelling and computational challenges and solutions
Moores, Matthew; Mengersen, Kerrie
2014-12-01
We discuss a range of Bayesian modelling approaches for spatial data and investigate some of the associated computational challenges. This paper commences with a brief review of Bayesian mixture models and Markov random fields, with enabling computational algorithms including Markov chain Monte Carlo (MCMC) and integrated nested Laplace approximation (INLA). Following this, we focus on the Potts model as a canonical approach, and discuss the challenge of estimating the inverse temperature parameter that controls the degree of spatial smoothing. We compare three approaches to addressing the doubly intractable nature of the likelihood, namely pseudo-likelihood, path sampling and the exchange algorithm. These techniques are applied to satellite data used to analyse water quality in the Great Barrier Reef.
Roy, Vivekananda; Evangelou, Evangelos; Zhu, Zhengyuan
2016-03-01
Spatial generalized linear mixed models (SGLMMs) are popular models for spatial data with a non-Gaussian response. Binomial SGLMMs with logit or probit link functions are often used to model spatially dependent binomial random variables. It is known that for independent binomial data, the robit regression model provides a more robust (against extreme observations) alternative to the more popular logistic and probit models. In this article, we introduce a Bayesian spatial robit model for spatially dependent binomial data. Since constructing a meaningful prior on the link function parameter as well as the spatial correlation parameters in SGLMMs is difficult, we propose an empirical Bayes (EB) approach for the estimation of these parameters as well as for the prediction of the random effects. The EB methodology is implemented by efficient importance sampling methods based on Markov chain Monte Carlo (MCMC) algorithms. Our simulation study shows that the robit model is robust against model misspecification, and our EB method results in estimates with less bias than full Bayesian (FB) analysis. The methodology is applied to a Celastrus Orbiculatus data, and a Rhizoctonia root data. For the former, which is known to contain outlying observations, the robit model is shown to do better for predicting the spatial distribution of an invasive species. For the latter, our approach is doing as well as the classical models for predicting the disease severity for a root disease, as the probit link is shown to be appropriate. Though this article is written for Binomial SGLMMs for brevity, the EB methodology is more general and can be applied to other types of SGLMMs. In the accompanying R package geoBayes, implementations for other SGLMMs such as Poisson and Gamma SGLMMs are provided.
Bayesian spatial semi-parametric modeling of HIV variation in Kenya.
Directory of Open Access Journals (Sweden)
Oscar Ngesa
Full Text Available Spatial statistics has seen rapid application in many fields, especially epidemiology and public health. Many studies, nonetheless, make limited use of the geographical location information and also usually assume that the covariates, which are related to the response variable, have linear effects. We develop a Bayesian semi-parametric regression model for HIV prevalence data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (McMC. The model is applied to HIV prevalence data among men in Kenya, derived from the Kenya AIDS indicator survey, with n = 3,662. Past studies have concluded that HIV infection has a nonlinear association with age. In this study a smooth function based on penalized regression splines is used to estimate this nonlinear effect. Other covariates were assumed to have a linear effect. Spatial references to the counties were modeled as both structured and unstructured spatial effects. We observe that circumcision reduces the risk of HIV infection. The results also indicate that men in the urban areas were more likely to be infected by HIV as compared to their rural counterpart. Men with higher education had the lowest risk of HIV infection. A nonlinear relationship between HIV infection and age was established. Risk of HIV infection increases with age up to the age of 40 then declines with increase in age. Men who had STI in the last 12 months were more likely to be infected with HIV. Also men who had ever used a condom were found to have higher likelihood to be infected by HIV. A significant spatial variation of HIV infection in Kenya was also established. The study shows the practicality and flexibility of Bayesian semi-parametric regression model in analyzing epidemiological data.
Jin, Ick Hoon; Yuan, Ying; Bandyopadhyay, Dipankar
2016-01-01
Research in dental caries generates data with two levels of hierarchy: that of a tooth overall and that of the different surfaces of the tooth. The outcomes often exhibit spatial referencing among neighboring teeth and surfaces, i.e., the disease status of a tooth or surface might be influenced by the status of a set of proximal teeth/surfaces. Assessments of dental caries (tooth decay) at the tooth level yield binary outcomes indicating the presence/absence of teeth, and trinary outcomes at the surface level indicating healthy, decayed, or filled surfaces. The presence of these mixed discrete responses complicates the data analysis under a unified framework. To mitigate complications, we develop a Bayesian two-level hierarchical model under suitable (spatial) Markov random field assumptions that accommodates the natural hierarchy within the mixed responses. At the first level, we utilize an autologistic model to accommodate the spatial dependence for the tooth-level binary outcomes. For the second level and conditioned on a tooth being non-missing, we utilize a Potts model to accommodate the spatial referencing for the surface-level trinary outcomes. The regression models at both levels were controlled for plausible covariates (risk factors) of caries, and remain connected through shared parameters. To tackle the computational challenges in our Bayesian estimation scheme caused due to the doubly-intractable normalizing constant, we employ a double Metropolis-Hastings sampler. We compare and contrast our model performances to the standard non-spatial (naive) model using a small simulation study, and illustrate via an application to a clinical dataset on dental caries. PMID:27807470
Bayesian spatial joint modeling of traffic crashes on an urban road network.
Zeng, Qiang; Huang, Helai
2014-06-01
This study proposes a Bayesian spatial joint model of crash prediction including both road segments and intersections located in an urban road network, through which the spatial correlations between heterogeneous types of entities could be considered. A road network in Hillsborough, Florida, with crash, road, and traffic characteristics data for a three-year period was selected in order to compare the proposed joint model with three site-level crash prediction models, that is, the Poisson, negative binomial (NB), and conditional autoregressive (CAR) models. According to the results, the CAR and Joint models outperform the Poisson and NB models in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-entity spatial correlations. Although the goodness-of-fit and predictive performance of the CAR and Joint models are equivalent in this case study, spatial correlations between segments and the connected intersections are found to be more significant than those solely between segments or between intersections, which supports the employment of the Joint model as an alternative in road-network-level safety modeling.
CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors
Directory of Open Access Journals (Sweden)
Duncan Lee
2013-11-01
Full Text Available Conditional autoregressive models are commonly used to represent spatial autocorrelation in data relating to a set of non-overlapping areal units, which arise in a wide variety of applications including agriculture, education, epidemiology and image analysis. Such models are typically specified in a hierarchical Bayesian framework, with inference based on Markov chain Monte Carlo (MCMC simulation. The most widely used software to fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R package CARBayes. The main advantage of CARBayes compared with the BUGS software is its ease of use, because: (1 the spatial adjacency information is easy to specify as a binary neighbourhood matrix; and (2 given the neighbourhood matrix the models can be implemented by a single function call in R. This paper outlines the general class of Bayesian hierarchical models that can be implemented in the CARBayes software, describes their implementation via MCMC simulation techniques, and illustrates their use with two worked examples in the fields of house price analysis and disease mapping.
Directory of Open Access Journals (Sweden)
C. Mukherjee
2011-01-01
Full Text Available Inverse modeling applications in atmospheric chemistry are increasingly addressing the challenging statistical issues of data synthesis by adopting refined statistical analysis methods. This paper advances this line of research by addressing several central questions in inverse modeling, focusing specifically on Bayesian statistical computation. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on increasingly high-resolution satellite retrievals of atmospheric chemical concentrations, we address head-on the need for integrating formal spatial statistical methods of residual error structure in global scale inversion models. We do this using analytically and computationally tractable spatial statistical models, know as conditional autoregressive spatial models, as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors in a more physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a~proof-of-concept and model assessment, and then in analysis of real MOPITT data.
Bayesian spatial modeling of disease risk in relation to multivariate environmental risk fields.
Kim, Ji-in; Lawson, Andrew B; McDermott, Suzanne; Aelion, C Marjorie
2010-01-15
The relationship between exposure to environmental chemicals during pregnancy and early childhood development is an important issue that has a spatial risk component. In this context, we have examined mental retardation and developmental delay (MRDD) outcome measures for children in a Medicaid population in South Carolina and sampled measures of soil chemistry (e.g. As, Hg, etc.) on a network of sites that are misaligned to the outcome residential addresses during pregnancy. The true chemical concentration at the residential addresses is not observed directly and must be interpolated from soil samples. In this study, we have developed a Bayesian joint model that interpolates soil chemical fields and estimates the associated MRDD risk simultaneously. Having multiple spatial fields to interpolate, we have considered a low-rank Kriging method for the interpolation that requires less computation than the Bayesian Kriging. We performed a sensitivity analysis for a bivariate smoothing, changing the number of knots and the smoothing parameter. These analyses show that a low-rank Kriging method can be used as an alternative to a full-rank Kriging, reducing the computational burden. However, the number of knots for the low-rank Kriging model needs to be selected with caution as a bivariate surface estimation can be sensitive to the choice of the number of knots.
A spectral-spatial-dynamic hierarchical Bayesian (SSD-HB) model for estimating soybean yield
Kazama, Yoriko; Kujirai, Toshihiro
2014-10-01
A method called a "spectral-spatial-dynamic hierarchical-Bayesian (SSD-HB) model," which can deal with many parameters (such as spectral and weather information all together) by reducing the occurrence of multicollinearity, is proposed. Experiments conducted on soybean yields in Brazil fields with a RapidEye satellite image indicate that the proposed SSD-HB model can predict soybean yield with a higher degree of accuracy than other estimation methods commonly used in remote-sensing applications. In the case of the SSD-HB model, the mean absolute error between estimated yield of the target area and actual yield is 0.28 t/ha, compared to 0.34 t/ha when conventional PLS regression was applied, showing the potential effectiveness of the proposed model.
DEFF Research Database (Denmark)
Schur, Nadine; Hürlimann, Eveline; Stensgaard, Anna-Sofie
2013-01-01
Schistosomiasis remains one of the most prevalent parasitic diseases in the tropics and subtropics, but current statistics are outdated due to demographic and ecological transformations and ongoing control efforts. Reliable risk estimates are important to plan and evaluate interventions in a spat......Schistosomiasis remains one of the most prevalent parasitic diseases in the tropics and subtropics, but current statistics are outdated due to demographic and ecological transformations and ongoing control efforts. Reliable risk estimates are important to plan and evaluate interventions...... in a spatially explicit and cost-effective manner. We analysed a large ensemble of georeferenced survey data derived from an open-access neglected tropical diseases database to create smooth empirical prevalence maps for Schistosoma mansoni and Schistosoma haematobium for a total of 13 countries of eastern...... Africa. Bayesian geostatistical models based on climatic and other environmental data were used to account for potential spatial clustering in spatially structured exposures. Geostatistical variable selection was employed to reduce the set of covariates. Alignment factors were implemented to combine...
Directory of Open Access Journals (Sweden)
Stephen S Ban
Full Text Available Multiple stressors are an increasing concern in the management and conservation of ecosystems, and have been identified as a key gap in research. Coral reefs are one example of an ecosystem where management of local stressors may be a way of mitigating or delaying the effects of climate change. Predicting how multiple stressors interact, particularly in a spatially explicit fashion, is a difficult challenge. Here we use a combination of an expert-elicited Bayesian network (BN and spatial environmental data to examine how hypothetical scenarios of climate change and local management would result in different outcomes for coral reefs on the Great Barrier Reef (GBR, Australia. Parameterizing our BN using the mean responses from our experts resulted in predictions of limited efficacy of local management in combating the effects of climate change. However, there was considerable variability in expert responses and uncertainty was high. Many reefs within the central GBR appear to be at risk of further decline based on the pessimistic opinions of our expert pool. Further parameterization of the model as more data and knowledge become available could improve predictive power. Our approach serves as a starting point for subsequent work that can fine-tune parameters and explore uncertainties in predictions of responses to management.
Hagos, Seifu; Hailemariam, Damen; WoldeHanna, Tasew; Lindtjørn, Bernt
2017-01-01
Background Understanding the spatial distribution of stunting and underlying factors operating at meso-scale is of paramount importance for intervention designing and implementations. Yet, little is known about the spatial distribution of stunting and some discrepancies are documented on the relative importance of reported risk factors. Therefore, the present study aims at exploring the spatial distribution of stunting at meso- (district) scale, and evaluates the effect of spatial dependency on the identification of risk factors and their relative contribution to the occurrence of stunting and severe stunting in a rural area of Ethiopia. Methods A community based cross sectional study was conducted to measure the occurrence of stunting and severe stunting among children aged 0–59 months. Additionally, we collected relevant information on anthropometric measures, dietary habits, parent and child-related demographic and socio-economic status. Latitude and longitude of surveyed households were also recorded. Local Anselin Moran's I was calculated to investigate the spatial variation of stunting prevalence and identify potential local pockets (hotspots) of high prevalence. Finally, we employed a Bayesian geo-statistical model, which accounted for spatial dependency structure in the data, to identify potential risk factors for stunting in the study area. Results Overall, the prevalence of stunting and severe stunting in the district was 43.7% [95%CI: 40.9, 46.4] and 21.3% [95%CI: 19.5, 23.3] respectively. We identified statistically significant clusters of high prevalence of stunting (hotspots) in the eastern part of the district and clusters of low prevalence (cold spots) in the western. We found out that the inclusion of spatial structure of the data into the Bayesian model has shown to improve the fit for stunting model. The Bayesian geo-statistical model indicated that the risk of stunting increased as the child’s age increased (OR 4.74; 95% Bayesian credible
Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.
2011-01-01
Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model, i.e. each new point is generated given the previous points. Under this model...
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
2012-01-01
We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model. Under this model, the points can be of one of three types: a ‘background...
Gong, Maozhen
Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.
Spatial guilds in the Serengeti food web revealed by a Bayesian group model.
Directory of Open Access Journals (Sweden)
Edward B Baskerville
2011-12-01
Full Text Available Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts.
Bayesian network approach to spatial data mining: a case study
Huang, Jiejun; Wan, Youchuan
2006-10-01
Spatial data mining is a process of discovering interesting, novel, and potentially useful information or knowledge hidden in spatial data sets. It involves different techniques and different methods from various areas of research. A Bayesian network is a graphical model that encodes causal probabilistic relationships among variables of interest, which has a powerful ability for representing and reasoning and provides an effective way to spatial data mining. In this paper we give an introduction to Bayesian networks, and discuss using Bayesian networks for spatial data mining. We propose a framework of spatial data mining based on Bayesian networks. Then we show a case study and use the experimental results to validate the practical viability of the proposed approach to spatial data mining. Finally, the paper gives a summary and some remarks.
A BAYESIAN HIERARCHICAL SPATIAL POINT PROCESS MODEL FOR MULTI-TYPE NEUROIMAGING META-ANALYSIS.
Kang, Jian; Nichols, Thomas E; Wager, Tor D; Johnson, Timothy D
2014-09-01
Neuroimaging meta-analysis is an important tool for finding consistent effects over studies that each usually have 20 or fewer subjects. Interest in meta-analysis in brain mapping is also driven by a recent focus on so-called "reverse inference": where as traditional "forward inference" identifies the regions of the brain involved in a task, a reverse inference identifies the cognitive processes that a task engages. Such reverse inferences, however, requires a set of meta-analysis, one for each possible cognitive domain. However, existing methods for neuroimaging meta-analysis have significant limitations. Commonly used methods for neuroimaging meta-analysis are not model based, do not provide interpretable parameter estimates, and only produce null hypothesis inferences; further, they are generally designed for a single group of studies and cannot produce reverse inferences. In this work we address these limitations by adopting a non-parametric Bayesian approach for meta analysis data from multiple classes or types of studies. In particular, foci from each type of study are modeled as a cluster process driven by a random intensity function that is modeled as a kernel convolution of a gamma random field. The type-specific gamma random fields are linked and modeled as a realization of a common gamma random field, shared by all types, that induces correlation between study types and mimics the behavior of a univariate mixed effects model. We illustrate our model on simulation studies and a meta analysis of five emotions from 219 studies and check model fit by a posterior predictive assessment. In addition, we implement reverse inference by using the model to predict study type from a newly presented study. We evaluate this predictive performance via leave-one-out cross validation that is efficiently implemented using importance sampling techniques.
Institute of Scientific and Technical Information of China (English)
Farid Zayeri; Masoud Salehi; Hasan Pirhosseini
2011-01-01
Objective:To present the geographical map of malaria and identify some of the important environmental factors of this disease in Sistan and Baluchistan province, Iran.Methods:We used the registered malaria data to compute the standard incidence rates (SIRs) of malaria in different areas of Sistan and Baluchistan province for a nine-year period (from 2001 to 2009). Statistical analyses consisted of two different parts: geographical mapping of malaria incidence rates, and modeling the environmental factors. The empirical Bayesian estimates of malaria SIRs were utilized for geographical mapping of malaria and a Poisson random effects model was used for assessing the effect of environmental factors on malaria SIRs.Results:In general, 64 926 new cases of malaria were registered in Sistan and Baluchistan Province from 2001 to 2009. Among them, 42 695 patients (65.8%) were male and 22 231 patients (34.2%) were female. Modeling the environmental factors showed that malaria incidence rates had positive relationship with humidity, elevation, average minimum temperature and average maximum temperature, while rainfall had negative effect on malaria SIRs in this province.Conclusions:The results of the present study reveals that malaria is still a serious health problem in Sistan and Baluchistan province, Iran. Geographical map and related environmental factors of malaria can help the health policy makers to intervene in high risk areas more efficiently and allocate the resources in a proper manner.
Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya
2017-02-01
Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data.
Law, Jane; Quick, Matthew
2013-01-01
This paper adopts a Bayesian spatial modeling approach to investigate the distribution of young offender residences in York Region, Southern Ontario, Canada, at the census dissemination area level. Few geographic researches have analyzed offender (as opposed to offense) data at a large map scale (i.e., using a relatively small areal unit of analysis) to minimize aggregation effects. Providing context is the social disorganization theory, which hypothesizes that areas with economic deprivation, high population turnover, and high ethnic heterogeneity exhibit social disorganization and are expected to facilitate higher instances of young offenders. Non-spatial and spatial Poisson models indicate that spatial methods are superior to non-spatial models with respect to model fit and that index of ethnic heterogeneity, residential mobility (1 year moving rate), and percentage of residents receiving government transfer payments are, respectively, the most significant explanatory variables related to young offender location. These findings provide overwhelming support for social disorganization theory as it applies to offender location in York Region, Ontario. Targeting areas where prevalence of young offenders could or could not be explained by social disorganization through decomposing the estimated risk map are helpful for dealing with juvenile offenders in the region. Results prompt discussion into geographically targeted police services and young offender placement pertaining to risk of recidivism. We discuss possible reasons for differences and similarities between the previous findings (that analyzed offense data and/or were conducted at a smaller map scale) and our findings, limitations of our study, and practical outcomes of this research from a law enforcement perspective.
Model Diagnostics for Bayesian Networks
Sinharay, Sandip
2006-01-01
Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…
A Bayesian spatial assimilation scheme for snow coverage observations in a gridded snow model
Directory of Open Access Journals (Sweden)
S. Kolberg
2006-01-01
Full Text Available A method for assimilating remotely sensed snow covered area (SCA into the snow subroutine of a grid distributed precipitation-runoff model (PRM is presented. The PRM is assumed to simulate the snow state in each grid cell by a snow depletion curve (SDC, which relates that cell's SCA to its snow cover mass balance. The assimilation is based on Bayes' theorem, which requires a joint prior distribution of the SDC variables in all the grid cells. In this paper we propose a spatial model for this prior distribution, and include similarities and dependencies among the grid cells. Used to represent the PRM simulated snow cover state, our joint prior model regards two elevation gradients and a degree-day factor as global variables, rather than describing their effect separately for each cell. This transformation results in smooth normalised surfaces for the two related mass balance variables, supporting a strong inter-cell dependency in their joint prior model. The global features and spatial interdependency in the prior model cause each SCA observation to provide information for many grid cells. The spatial approach similarly facilitates the utilisation of observed discharge. Assimilation of SCA data using the proposed spatial model is evaluated in a 2400 km2 mountainous region in central Norway (61° N, 9° E, based on two Landsat 7 ETM+ images generalized to 1 km2 resolution. An image acquired on 11 May, a week before the peak flood, removes 78% of the variance in the remaining snow storage. Even an image from 4 May, less than a week after the melt onset, reduces this variance by 53%. These results are largely improved compared to a cell-by-cell independent assimilation routine previously reported. Including observed discharge in the updating information improves the 4 May results, but has weak effect on 11 May. Estimated elevation gradients are shown to be sensitive to informational deficits occurring at high altitude, where snowmelt has not started
Directory of Open Access Journals (Sweden)
Laura Gosoniu
Full Text Available A national HIV/AIDS and malaria parasitological survey was carried out in Tanzania in 2007-2008. In this study the parasitological data were analyzed: i to identify climatic/environmental, socio-economic and interventions factors associated with child malaria risk and ii to produce a contemporary, high spatial resolution parasitaemia risk map of the country. Bayesian geostatistical models were fitted to assess the association between parasitaemia risk and its determinants. bayesian kriging was employed to predict malaria risk at unsampled locations across Tanzania and to obtain the uncertainty associated with the predictions. Markov chain Monte Carlo (MCMC simulation methods were employed for model fit and prediction. Parasitaemia risk estimates were linked to population data and the number of infected children at province level was calculated. Model validation indicated a high predictive ability of the geostatistical model, with 60.00% of the test locations within the 95% credible interval. The results indicate that older children are significantly more likely to test positive for malaria compared with younger children and living in urban areas and better-off households reduces the risk of infection. However, none of the environmental and climatic proxies or the intervention measures were significantly associated with the risk of parasitaemia. Low levels of malaria prevalence were estimated for Zanzibar island. The population-adjusted prevalence ranges from 0.29% in Kaskazini province (Zanzibar island to 18.65% in Mtwara region. The pattern of predicted malaria risk is similar with the previous maps based on historical data, although the estimates are lower. The predicted maps could be used by decision-makers to allocate resources and target interventions in the regions with highest burden of malaria in order to reduce the disease transmission in the country.
Directory of Open Access Journals (Sweden)
S. Balbi
2015-10-01
Full Text Available This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of: (1 likelihood of non-fatal physical injury; (2 likelihood of post-traumatic stress disorder; (3 likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland including the city of Zurich. The model is used to estimate the benefits of improving an existing Early Warning System, taking into account the reliability, lead-time and scope (i.e. coverage of people reached by the warning. Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event: about 75 % of fatalities, 25 % of injuries and 18 % of post-traumatic stress disorders could be avoided.
Balbi, Stefano; Villa, Ferdinando; Mojtahed, Vahid; Hegetschweiler, Karin Tessa; Giupponi, Carlo
2016-06-01
This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; and produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of (1) likelihood of non-fatal physical injury, (2) likelihood of post-traumatic stress disorder and (3) likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland) including the city of Zurich. The model is used to estimate the effect of improving an existing early warning system, taking into account the reliability, lead time and scope (i.e., coverage of people reached by the warning). Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event.
Bayesian spatial modeling of disease risk in relation to multivariate environmental risk fields
Kim, Ji-In; Lawson, Andrew B.; McDermott, Suzanne; Aelion, C. Marjorie
2010-01-01
The relationship between exposure to environmental chemicals during pregnancy and early childhood development is an important issue which has a spatial risk component. In this context, we have examined mental retardation and developmental delay (MRDD) outcome measures for children in a Medicaid population in South Carolina and sampled measures of soil chemistry (e.g. As, Hg, etc.) on a network of sites which are misaligned to the outcome residential addresses during pregnancy. The true chemic...
Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary
2013-06-01
Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the
Directory of Open Access Journals (Sweden)
Hideaki Kawaguchi
Full Text Available Regional disparity in suicide rates is a serious problem worldwide. One possible cause is unequal distribution of the health workforce, especially psychiatrists. Research about the association between regional physician numbers and suicide rates is therefore important but studies are rare. The objective of this study was to evaluate the association between physician numbers and suicide rates in Japan, by municipality.The study included all the municipalities in Japan (n = 1,896. We estimated smoothed standardized mortality ratios of suicide rates for each municipality and evaluated the association between health workforce and suicide rates using a hierarchical Bayesian model accounting for spatially correlated random effects, a conditional autoregressive model. We assumed a Poisson distribution for the observed number of suicides and set the expected number of suicides as the offset variable. The explanatory variables were numbers of physicians, a binary variable for the presence of psychiatrists, and social covariates.After adjustment for socioeconomic factors, suicide rates in municipalities that had at least one psychiatrist were lower than those in the other municipalities. There was, however, a positive and statistically significant association between the number of physicians and suicide rates.Suicide rates in municipalities that had at least one psychiatrist were lower than those in other municipalities, but the number of physicians was positively and significantly related with suicide rates. To improve the regional disparity in suicide rates, the government should encourage psychiatrists to participate in community-based suicide prevention programs and to settle in municipalities that currently have no psychiatrists. The government and other stakeholders should also construct better networks between psychiatrists and non-psychiatrists to support sharing of information for suicide prevention.
Congdon, Peter
2014-01-01
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU
Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.
2013-01-01
In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.
Du, Qingyun; Zhang, Mingxiao; Li, Yayan; Luan, Hui; Liang, Shi; Ren, Fu
2016-01-01
Incorporating the information of hypertension, this paper applies Bayesian multi-disease analysis to model the spatial patterns of Ischemic Heart Disease (IHD) risks. Patterns of harmful alcohol intake (HAI) and overweight/obesity are also modelled as they are common risk factors contributing to both IHD and hypertension. The hospitalization data of IHD and hypertension in 2012 were analyzed with three Bayesian multi-disease models at the sub-district level of Shenzhen. Results revealed that the IHD high-risk cluster shifted slightly north-eastward compared with the IHD Standardized Hospitalization Ratio (SHR). Spatial variations of overweight/obesity and HAI were found to contribute most to the IHD patterns. Identified patterns of IHD risk would benefit IHD integrated prevention. Spatial patterns of overweight/obesity and HAI could supplement the current disease surveillance system by providing information about small-area level risk factors, and thus benefit integrated prevention of related chronic diseases. Middle southern Shenzhen, where high risk of IHD, overweight/obesity, and HAI are present, should be prioritized for interventions, including alcohol control, innovative healthy diet toolkit distribution, insurance system revision, and community-based chronic disease intervention. Related health resource planning is also suggested to focus on these areas first. PMID:27104551
Directory of Open Access Journals (Sweden)
Qingyun Du
2016-04-01
Full Text Available Incorporating the information of hypertension, this paper applies Bayesian multi-disease analysis to model the spatial patterns of Ischemic Heart Disease (IHD risks. Patterns of harmful alcohol intake (HAI and overweight/obesity are also modelled as they are common risk factors contributing to both IHD and hypertension. The hospitalization data of IHD and hypertension in 2012 were analyzed with three Bayesian multi-disease models at the sub-district level of Shenzhen. Results revealed that the IHD high-risk cluster shifted slightly north-eastward compared with the IHD Standardized Hospitalization Ratio (SHR. Spatial variations of overweight/obesity and HAI were found to contribute most to the IHD patterns. Identified patterns of IHD risk would benefit IHD integrated prevention. Spatial patterns of overweight/obesity and HAI could supplement the current disease surveillance system by providing information about small-area level risk factors, and thus benefit integrated prevention of related chronic diseases. Middle southern Shenzhen, where high risk of IHD, overweight/obesity, and HAI are present, should be prioritized for interventions, including alcohol control, innovative healthy diet toolkit distribution, insurance system revision, and community-based chronic disease intervention. Related health resource planning is also suggested to focus on these areas first.
Du, Qingyun; Zhang, Mingxiao; Li, Yayan; Luan, Hui; Liang, Shi; Ren, Fu
2016-04-20
Incorporating the information of hypertension, this paper applies Bayesian multi-disease analysis to model the spatial patterns of Ischemic Heart Disease (IHD) risks. Patterns of harmful alcohol intake (HAI) and overweight/obesity are also modelled as they are common risk factors contributing to both IHD and hypertension. The hospitalization data of IHD and hypertension in 2012 were analyzed with three Bayesian multi-disease models at the sub-district level of Shenzhen. Results revealed that the IHD high-risk cluster shifted slightly north-eastward compared with the IHD Standardized Hospitalization Ratio (SHR). Spatial variations of overweight/obesity and HAI were found to contribute most to the IHD patterns. Identified patterns of IHD risk would benefit IHD integrated prevention. Spatial patterns of overweight/obesity and HAI could supplement the current disease surveillance system by providing information about small-area level risk factors, and thus benefit integrated prevention of related chronic diseases. Middle southern Shenzhen, where high risk of IHD, overweight/obesity, and HAI are present, should be prioritized for interventions, including alcohol control, innovative healthy diet toolkit distribution, insurance system revision, and community-based chronic disease intervention. Related health resource planning is also suggested to focus on these areas first.
Beck-Wörner, Christian; Raso, Giovanna; Vounatsou, Penelope; N'Goran, Eliézer K; Rigo, Gergely; Parlow, Eberhard; Utzinger, Jürg
2007-05-01
An important epidemiologic feature of schistosomiasis is the focal distribution of the disease. Thus, the identification of high-risk communities is an essential first step for targeting interventions in an efficient and cost-effective manner. We used a remotely-sensed digital elevation model (DEM), derived hydrologic features (i.e., stream order, and catchment area), and fitted Bayesian geostatistical models to assess associations between environmental factors and infection with Schistosoma mansoni among more than 4,000 school children from the region of Man in western Côte d'Ivoire. At the unit of the school, we found significant correlations between the infection prevalence of S. mansoni and stream order of the nearest river, water catchment area, and altitude. In conclusion, the use of a freely available 90 m high-resolution DEM, geographic information system applications, and Bayesian spatial modeling facilitates risk prediction for S. mansoni, and is a powerful approach for risk profiling of other neglected tropical diseases that are pervasive in the developing world.
DEFF Research Database (Denmark)
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
and edges. The nodes represent variables, which may be either discrete or continuous. An edge between two nodes A and B indicates a direct influence between the state of A and the state of B, which in some domains can also be interpreted as a causal relation. The wide-spread use of Bayesian networks...
Bayesian modelling of geostatistical malaria risk data
Directory of Open Access Journals (Sweden)
L. Gosoniu
2006-11-01
Full Text Available Bayesian geostatistical models applied to malaria risk data quantify the environment-disease relations, identify significant environmental predictors of malaria transmission and provide model-based predictions of malaria risk together with their precision. These models are often based on the stationarity assumption which implies that spatial correlation is a function of distance between locations and independent of location. We relax this assumption and analyse malaria survey data in Mali using a Bayesian non-stationary model. Model fit and predictions are based on Markov chain Monte Carlo simulation methods. Model validation compares the predictive ability of the non-stationary model with the stationary analogue. Results indicate that the stationarity assumption is important because it influences the significance of environmental factors and the corresponding malaria risk maps.
Bayesian modelling of geostatistical malaria risk data.
Gosoniu, L; Vounatsou, P; Sogoba, N; Smith, T
2006-11-01
Bayesian geostatistical models applied to malaria risk data quantify the environment-disease relations, identify significant environmental predictors of malaria transmission and provide model-based predictions of malaria risk together with their precision. These models are often based on the stationarity assumption which implies that spatial correlation is a function of distance between locations and independent of location. We relax this assumption and analyse malaria survey data in Mali using a Bayesian non-stationary model. Model fit and predictions are based on Markov chain Monte Carlo simulation methods. Model validation compares the predictive ability of the non-stationary model with the stationary analogue. Results indicate that the stationarity assumption is important because it influences the significance of environmental factors and the corresponding malaria risk maps.
Bayesian Model Averaging for Propensity Score Analysis
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Bayesian modeling using WinBUGS
Ntzoufras, Ioannis
2009-01-01
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
Bayesian Evidence and Model Selection
Knuth, Kevin H; Malakar, Nabin K; Mubeen, Asim M; Placek, Ben
2014-01-01
In this paper we review the concept of the Bayesian evidence and its application to model selection. The theory is presented along with a discussion of analytic, approximate and numerical techniques. Application to several practical examples within the context of signal processing are discussed.
The Bayesian group lasso for confounded spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.
2017-01-01
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.
Directory of Open Access Journals (Sweden)
Beatriz Martínez-López
2014-05-01
Full Text Available The spatial pattern and epidemiology of backyard pig farming and other low bio-security pig production systems and their role in the occurrence of classical swine fever (CSF is described and evaluated. A spatial Bayesian model was used to explore the risk factors, including human demographics, socioeconomic and environmental factors. The analyses were performed for Bulgaria, which has a large number of backyard farms (96% of all pig farms in the country are classified as backyard farms, and it is one of the countries for which both backyard pig and farm counts were available. Results reveal that the high-risk areas are typically concentrated in areas with small family farms, high numbers of outgoing pig shipments and low levels of personal consumption (i.e. economically deprived areas. Identification of risk factors and high-risk areas for CSF will allow to targeting risk-based surveillance strategies leading to prevention, control and, ultimately, elimination of the disease in Bulgaria and other countries with similar socio-epidemiological conditions.
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the mo
Lawson, Andrew B
2002-01-01
Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...
Spatial Hierarchical Bayesian Analysis of the Historical Extreme Streamflow
Najafi, M. R.; Moradkhani, H.
2012-04-01
Analysis of the climate change impact on extreme hydro-climatic events is crucial for future hydrologic/hydraulic designs and water resources decision making. The purpose of this study is to investigate the changes of the extreme value distribution parameters with respect to time to reflect upon the impact of climate change. We develop a statistical model using the observed streamflow data of the Columbia River Basin in USA to estimate the changes of high flows as a function of time as well as other variables. Generalized Pareto Distribution (GPD) is used to model the upper 95% flows during December through March for 31 gauge stations. In the process layer of the model the covariates including time, latitude, longitude, elevation and basin area are considered to assess the sensitivity of the model to each variable. Markov Chain Monte Carlo (MCMC) method is used to estimate the parameters. The Spatial Hierarchical Bayesian technique models the GPD parameters spatially and borrows strength from other locations by pooling data together, while providing an explicit estimation of the uncertainties in all stages of modeling.
Directory of Open Access Journals (Sweden)
Shelley M. ALEXANDER
2009-02-01
Full Text Available We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS-based approaches: logistic regression and Akaike’s Information Criterion (AIC, Multiple Criteria Evaluation (MCE, and Bayesian Analysis (specifically Dempster-Shafer theory. We used lynx Lynx canadensis as our focal species, and developed our environment relationship model using track data collected in Banff National Park, Alberta, Canada, during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy, the failure to predict a species where it occurred (omission error and the prediction of presence where there was absence (commission error. Our overall accuracy showed the logistic regression approach was the most accurate (74.51%. The multiple criteria evaluation was intermediate (39.22%, while the Dempster-Shafer (D-S theory model was the poorest (29.90%. However, omission and commission error tell us a different story: logistic regression had the lowest commission error, while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least, the logistic regression model is optimal. However, where sample size is small or the species is very rare, it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer that would over-predict, protect more sites, and thereby minimize the risk of missing critical habitat in conservation plans[Current Zoology 55(1: 28 – 40, 2009].
Institute of Scientific and Technical Information of China (English)
Hejun KANG; Shelley M.ALEXANDER
2009-01-01
We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS) -based approaches: logistic regression and Akaike's Information Criterion (AIC),Multiple Criteria Evaluation (MCE),and Bayesian Analysis (specifically Dempster-Shafer theory). We used lynx Lynx canadensis as our focal species,and developed our environment relationship model using track data collected in Banff National Park,Alberta,Canada,during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy),the failure to predict a species where it occurred (omission error) and the prediction of presence where there was absence (commission error). Our overall accuracy showed the logistic regression approach was the most accurate (74.51% ). The multiple criteria evaluation was intermediate (39.22%),while the Dempster-Shafer (D-S) theory model was the poorest (29.90%). However,omission and commission error tell us a different story: logistic regression had the lowest commission error,while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least,the logistic regression model is optimal. However,where sample size is small or the species is very rare,it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer) that would over-predict,protect more sites,and thereby minimize the risk of missing critical habitat in conservation plans.
Temporal Forecasting with a Bayesian Spatial Predictor: Application to Ozone
Directory of Open Access Journals (Sweden)
Yiping Dou
2012-01-01
Full Text Available This paper develops and empirically compares two Bayesian and empirical Bayes space-time approaches for forecasting next-day hourly ground-level ozone concentrations. The comparison involves the Chicago area in the summer of 2000 and measurements from fourteen monitors as reported in the EPA's AQS database. One of these approaches adapts a multivariate method originally designed for spatial prediction. The second is based on a state-space modeling approach originally developed and used in a case study involving one week in Mexico City with ten monitoring sites. The first method proves superior to the second in the Chicago Case Study, judged by several criteria, notably root mean square predictive accuracy, computing times, and calibration of 95% predictive intervals.
Borsboom, D.; Haig, B.D.
2013-01-01
Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science primar
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...... for complex networks can be derived and point out relevant literature....
Modeling Diagnostic Assessments with Bayesian Networks
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data
DeSarbo, WS; Kim, Y; Fong, D
1999-01-01
We present a new Bayesian formulation of a vector multidimensional scaling procedure for the spatial analysis of binary choice data. The Gibbs sampler is gainfully employed to estimate the posterior distribution of the specified scalar products, bilinear model parameters. The computational procedure
Directory of Open Access Journals (Sweden)
Maria Alejandra Chadid
2015-10-01
Full Text Available The loss of tropical forests has continued in recent decades despite wide recognition of their importance to maintaining biodiversity. Here, we examine the conversion of forests to pastures and coca crops (illicit activity on the San Lucas Mountain Range, Colombia for 2002–2007 and 2007–2010. Land use maps and biophysical variables were used as inputs to generate land use and cover change (LUCC models using the DINAMICA EGO software. These analyses revealed a dramatic acceleration of the pace of deforestation in the region, with rates of conversion from forest to pasture doubling from the first to the second period. Altitude, distance to other crops, and distance to rivers were the primary drivers of deforestation. The influence of these drivers, however, differed markedly depending on whether coca cultivation or pastures replaced forest. Conversion to coca was more probable farther from other crops and from settlements. In contrast, proximity to other crops and to settlements increased conversion to pasture. These relationships highlight the different roles of coca and pastures in forest loss, with coca tending to open up new forest frontiers, and pastures tending to consolidate agricultural expansion and urban influence. Large differences between LUCC processes for each period suggest highly dynamic changes, likely associated with shifting underlying causes of deforestation. These changes may relate to shifts in demand for illicit crops, land, or mining products; however, the data to test these hypotheses are currently lacking. More frequent and detailed monitoring is required to guide actions to decrease the loss of forest in this highly vulnerable biodiversity hotspot in the Northern Andes.
Bayesian Method with Spatial Constraint for Retinal Vessel Segmentation
Directory of Open Access Journals (Sweden)
Zhiyong Xiao
2013-01-01
Full Text Available A Bayesian method with spatial constraint is proposed for vessel segmentation in retinal images. The proposed model makes the assumption that the posterior probability of each pixel is dependent on posterior probabilities of their neighboring pixels. An energy function is defined for the proposed model. By applying the modified level set approach to minimize the proposed energy function, we can identify blood vessels in the retinal image. Evaluation of the developed method is done on real retinal images which are from the DRIVE database and the STARE database. The performance is analyzed and compared to other published methods using a number of measures which include accuracy, sensitivity, and specificity. The proposed approach is proved to be effective on these two databases. The average accuracy, sensitivity, and specificity on the DRIVE database are 0.9529, 0.7513, and 0.9792, respectively, and for the STARE database 0.9476, 0.7147, and 0.9735, respectively. The performance is better than that of other vessel segmentation methods.
Bayesian inference for OPC modeling
Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.
2016-03-01
The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.
Bayesian Calibration of Microsimulation Models.
Rutter, Carolyn M; Miglioretti, Diana L; Savarino, James E
2009-12-01
Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models.
GPstuff: Bayesian Modeling with Gaussian Processes
Vanhatalo, J.; Riihimaki, J.; Hartikainen, J.; Jylänki, P.P.; Tolvanen, V.; Vehtari, A.
2013-01-01
The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for Bayesian inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.
Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods
Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.
2012-03-01
In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.
Spatial attention, precision, and Bayesian inference: a study of saccadic response speed.
Vossel, Simone; Mathys, Christoph; Daunizeau, Jean; Bauer, Markus; Driver, Jon; Friston, Karl J; Stephan, Klaas E
2014-06-01
Inferring the environment's statistical structure and adapting behavior accordingly is a fundamental modus operandi of the brain. A simple form of this faculty based on spatial attentional orienting can be studied with Posner's location-cueing paradigm in which a cue indicates the target location with a known probability. The present study focuses on a more complex version of this task, where probabilistic context (percentage of cue validity) changes unpredictably over time, thereby creating a volatile environment. Saccadic response speed (RS) was recorded in 15 subjects and used to estimate subject-specific parameters of a Bayesian learning scheme modeling the subjects' trial-by-trial updates of beliefs. Different response models-specifying how computational states translate into observable behavior-were compared using Bayesian model selection. Saccadic RS was most plausibly explained as a function of the precision of the belief about the causes of sensory input. This finding is in accordance with current Bayesian theories of brain function, and specifically with the proposal that spatial attention is mediated by a precision-dependent gain modulation of sensory input. Our results provide empirical support for precision-dependent changes in beliefs about saccade target locations and motivate future neuroimaging and neuropharmacological studies of how Bayesian inference may determine spatial attention.
Bayesian Uncertainty Analyses Via Deterministic Model
Krzysztofowicz, R.
2001-05-01
Rational decision-making requires that the total uncertainty about a variate of interest (a predictand) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Suppose the state-of-knowledge is embodied in a deterministic model, which is imperfect and outputs only an estimate of the predictand. Fundamentals are presented of three Bayesian approaches to producing a probability distribution of the predictand via any deterministic model. The Bayesian Processor of Output (BPO) quantifies the total uncertainty in terms of a posterior distribution, conditional on model output. The Bayesian Processor of Ensemble (BPE) quantifies the total uncertainty in terms of a posterior distribution, conditional on an ensemble of model output. The Bayesian Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model uncertainty, which are characterized independently and then integrated into a predictive distribution.
Bayesian models a statistical primer for ecologists
Hobbs, N Thompson
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili
Bayesian Modeling of a Human MMORPG Player
Synnaeve, Gabriel
2010-01-01
This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.
Bayesian Modeling of a Human MMORPG Player
Synnaeve, Gabriel; Bessière, Pierre
2011-03-01
This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.
Multi-Fraction Bayesian Sediment Transport Model
Directory of Open Access Journals (Sweden)
Mark L. Schmelter
2015-09-01
Full Text Available A Bayesian approach to sediment transport modeling can provide a strong basis for evaluating and propagating model uncertainty, which can be useful in transport applications. Previous work in developing and applying Bayesian sediment transport models used a single grain size fraction or characterized the transport of mixed-size sediment with a single characteristic grain size. Although this approach is common in sediment transport modeling, it precludes the possibility of capturing processes that cause mixed-size sediments to sort and, thereby, alter the grain size available for transport and the transport rates themselves. This paper extends development of a Bayesian transport model from one to k fractional dimensions. The model uses an existing transport function as its deterministic core and is applied to the dataset used to originally develop the function. The Bayesian multi-fraction model is able to infer the posterior distributions for essential model parameters and replicates predictive distributions of both bulk and fractional transport. Further, the inferred posterior distributions are used to evaluate parametric and other sources of variability in relations representing mixed-size interactions in the original model. Successful OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1067 development of the model demonstrates that Bayesian methods can be used to provide a robust and rigorous basis for quantifying uncertainty in mixed-size sediment transport. Such a method has heretofore been unavailable and allows for the propagation of uncertainty in sediment transport applications.
Bayesian Data-Model Fit Assessment for Structural Equation Modeling
Levy, Roy
2011-01-01
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
Energy Technology Data Exchange (ETDEWEB)
Pulgati, Fernando H. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem de Bacias (LAB2M); Zouain, Ricardo N.A. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Geociencias. Centro de Estudos de Geologia Costeira e Oceanica; Fachel, Jandyra M.G. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Matematica; Landau, Luiz [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)
2004-07-01
Controlling and monitoring environmental researches have accompanied the development of offshore exploration drill activities aimed at finding oil and gas reserves, as there has been an increase in the environmental demands and restrictions. Three stages of the drilling process were isolated and the effects of different fluids were measured using Bayesian spatial models. The probable impact of the use of non-aqueous fluid (NAF) was measured through changes observed in sea sediments in three different occasions: previous to the activity, one (1) month after the end of the activity, and one (1) year after the end of the activity. BACI (Before-After Control Impact) design, which allows the control of temporal and spatial variation components, was chosen. (author)
Bayesian modeling of unknown diseases for biosurveillance.
Shen, Yanna; Cooper, Gregory F
2009-11-14
This paper investigates Bayesian modeling of unknown causes of events in the context of disease-outbreak detection. We introduce a Bayesian approach that models and detects both (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A key contribution of this paper is that it introduces a Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has broad applicability in medical informatics, where the space of known causes of outcomes of interest is seldom complete.
Distributed Bayesian Networks for User Modeling
DEFF Research Database (Denmark)
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang
2006-01-01
by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...... efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....
A Bayesian Analysis of Spectral ARMA Model
Directory of Open Access Journals (Sweden)
Manoel I. Silvestre Bezerra
2012-01-01
Full Text Available Bezerra et al. (2008 proposed a new method, based on Yule-Walker equations, to estimate the ARMA spectral model. In this paper, a Bayesian approach is developed for this model by using the noninformative prior proposed by Jeffreys (1967. The Bayesian computations, simulation via Markov Monte Carlo (MCMC is carried out and characteristics of marginal posterior distributions such as Bayes estimator and confidence interval for the parameters of the ARMA model are derived. Both methods are also compared with the traditional least squares and maximum likelihood approaches and a numerical illustration with two examples of the ARMA model is presented to evaluate the performance of the procedures.
Bayesian semiparametric dynamic Nelson-Siegel model
C. Cakmakli
2011-01-01
This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model where the density of the yield curve factors and thereby the density of the yields are estimated along with other model parameters. This is accomplished by modeling the error distributions of the factors according to a Diric
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Bayesian calibration of car-following models
Van Hinsbergen, C.P.IJ.; Van Lint, H.W.C.; Hoogendoorn, S.P.; Van Zuylen, H.J.
2010-01-01
Recent research has revealed that there exist large inter-driver differences in car-following behavior such that different car-following models may apply to different drivers. This study applies Bayesian techniques to the calibration of car-following models, where prior distributions on each model p
Bayesian modeling of flexible cognitive control.
Jiang, Jiefeng; Heller, Katherine; Egner, Tobias
2014-10-01
"Cognitive control" describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation.
Bayesian modeling of flexible cognitive control
Jiang, Jiefeng; Heller, Katherine; Egner, Tobias
2014-01-01
“Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218
Bayesian Approach to Neuro-Rough Models for Modelling HIV
Marwala, Tshilidzi
2007-01-01
This paper proposes a new neuro-rough model for modelling the risk of HIV from demographic data. The model is formulated using Bayesian framework and trained using Markov Chain Monte Carlo method and Metropolis criterion. When the model was tested to estimate the risk of HIV infection given the demographic data it was found to give the accuracy of 62% as opposed to 58% obtained from a Bayesian formulated rough set model trained using Markov chain Monte Carlo method and 62% obtained from a Bayesian formulated multi-layered perceptron (MLP) model trained using hybrid Monte. The proposed model is able to combine the accuracy of the Bayesian MLP model and the transparency of Bayesian rough set model.
Survey of Bayesian Models for Modelling of Stochastic Temporal Processes
Energy Technology Data Exchange (ETDEWEB)
Ng, B
2006-10-12
This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.
Directory of Open Access Journals (Sweden)
Kai Cao
2016-05-01
Full Text Available Objective: To explore the spatial-temporal interaction effect within a Bayesian framework and to probe the ecological influential factors for tuberculosis. Methods: Six different statistical models containing parameters of time, space, spatial-temporal interaction and their combination were constructed based on a Bayesian framework. The optimum model was selected according to the deviance information criterion (DIC value. Coefficients of climate variables were then estimated using the best fitting model. Results: The model containing spatial-temporal interaction parameter was the best fitting one, with the smallest DIC value (−4,508,660. Ecological analysis results showed the relative risks (RRs of average temperature, rainfall, wind speed, humidity, and air pressure were 1.00324 (95% CI, 1.00150–1.00550, 1.01010 (95% CI, 1.01007–1.01013, 0.83518 (95% CI, 0.93732–0.96138, 0.97496 (95% CI, 0.97181–1.01386, and 1.01007 (95% CI, 1.01003–1.01011, respectively. Conclusions: The spatial-temporal interaction was statistically meaningful and the prevalence of tuberculosis was influenced by the time and space interaction effect. Average temperature, rainfall, wind speed, and air pressure influenced tuberculosis. Average humidity had no influence on tuberculosis.
Modelling crime linkage with Bayesian networks
J. de Zoete; M. Sjerps; D. Lagnado; N. Fenton
2015-01-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model
Directory of Open Access Journals (Sweden)
Miriam Marco
2017-02-01
Full Text Available This paper aimed to analyze the spatial distribution of drug-related police interventions and the neighborhood characteristics influencing these spatial patterns. To this end, police officers ranked each census block group in Valencia, Spain (N = 552, providing an index of drug-related police interventions. Data from the City Statistics Office and observational variables were used to analyze neighborhood characteristics. Distance to the police station was used as the control variable. A Bayesian ecological analysis was performed with a spatial beta regression model. Results indicated that high physical decay, low socioeconomic status, and high immigrant concentration were associated with high levels of drug-related police interventions after adjustment for distance to the police station. Results illustrate the importance of a spatial approach to understanding crime.
A Bayesian nonparametric meta-analysis model.
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G
2015-03-01
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall effect size, such models may be adequate, but for prediction, they surely are not if the effect-size distribution exhibits non-normal behavior. To address this issue, we propose a Bayesian nonparametric meta-analysis model, which can describe a wider range of effect-size distributions, including unimodal symmetric distributions, as well as skewed and more multimodal distributions. We demonstrate our model through the analysis of real meta-analytic data arising from behavioral-genetic research. We compare the predictive performance of the Bayesian nonparametric model against various conventional and more modern normal fixed-effects and random-effects models.
Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.
Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale
2016-08-01
Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty.
Spatial Distribution of TDS in Drinking Water of Tehsil Jampur using Ordinary and Bayesian Kriging
Directory of Open Access Journals (Sweden)
Maqsood Ahmad
2015-09-01
Full Text Available In this research article, level of TDS in groundwater with spatial domain Tehsil Jampur, Pakistan is considered as response variable. Its enhanced level in drinking water produces both the human health concerns and aquatic ecological impacts. Its high value causes several diseases like bilestone, joints stiffness, obstruction of blood vessel and kidney stones. Some Geostatistical techniques were used to interpolate TDS at unmonitored locations of Tehsil Jampur. Four estimation techniques were comparatively studied for fitting well known matern spatial covariance models. Model based Ordinary Kriging (OK and Bayesian Kriging (BK were used for spatial interpolation at unmonitored locations. Cross validation statistic was used to select best interpolation technique with reduced RMSPE. Prediction maps were generated for visual presentation of interpolated sited for both techniques. This study revealed that among thirty observed locations, 56% water samples exceed the maximum permissible limit (1000g/ml of TDS as described by WHO
Bayesian Model comparison of Higgs couplings
Bergstrom, Johannes
2014-01-01
We investigate the possibility of contributions from physics beyond the Standard Model (SM) to the Higgs couplings, in the light of the LHC data. The work is performed within an interim framework where the magnitude of the Higgs production and decay rates are rescaled though Higgs coupling scale factors. We perform Bayesian parameter inference on these scale factors, concluding that there is good compatibility with the SM. Furthermore, we carry out Bayesian model comparison on all models where any combination of scale factors can differ from their SM values and find that typically models with fewer free couplings are strongly favoured. We consider the evidence that each coupling individually equals the SM value, making the minimal assumptions on the other couplings. Finally, we make a comparison of the SM against a single "not-SM" model, and find that there is moderate to strong evidence for the SM.
Bayesian inference for pulsar timing models
Vigeland, Sarah J
2013-01-01
The extremely regular, periodic radio emission from millisecond pulsars make them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse time of arrivals are fit to complicated timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsar's spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain these timing solutions. These include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of tempo2 with the nested-sampling integ...
Structure learning for Bayesian networks as models of biological networks.
Larjo, Antti; Shmulevich, Ilya; Lähdesmäki, Harri
2013-01-01
Bayesian networks are probabilistic graphical models suitable for modeling several kinds of biological systems. In many cases, the structure of a Bayesian network represents causal molecular mechanisms or statistical associations of the underlying system. Bayesian networks have been applied, for example, for inferring the structure of many biological networks from experimental data. We present some recent progress in learning the structure of static and dynamic Bayesian networks from data.
Bayesian geostatistical modeling of leishmaniasis incidence in Brazil.
Directory of Open Access Journals (Sweden)
Dimitrios-Alexios Karagiannis-Voules
Full Text Available BACKGROUND: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. METHODOLOGY: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001-2010. Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. PRINCIPAL FINDINGS: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676 for cutaneous leishmaniasis and 4,889 (SD: 288 for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. CONCLUSIONS/SIGNIFICANCE: Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence.
spTimer: Spatio-Temporal Bayesian Modeling Using R
Directory of Open Access Journals (Sweden)
Khandoker Shuvo Bakar
2015-02-01
Full Text Available Hierarchical Bayesian modeling of large point-referenced space-time data is increasingly becoming feasible in many environmental applications due to the recent advances in both statistical methodology and computation power. Implementation of these methods using the Markov chain Monte Carlo (MCMC computational techniques, however, requires development of problem-specific and user-written computer code, possibly in a low-level language. This programming requirement is hindering the widespread use of the Bayesian model-based methods among practitioners and, hence there is an urgent need to develop high-level software that can analyze large data sets rich in both space and time. This paper develops the package spTimer for hierarchical Bayesian modeling of stylized environmental space-time monitoring data as a contributed software package in the R language that is fast becoming a very popular statistical computing platform. The package is able to fit, spatially and temporally predict large amounts of space-time data using three recently developed Bayesian models. The user is given control over many options regarding covariance function selection, distance calculation, prior selection and tuning of the implemented MCMC algorithms, although suitable defaults are provided. The package has many other attractive features such as on the fly transformations and an ability to spatially predict temporally aggregated summaries on the original scale, which saves the problem of storage when using MCMC methods for large datasets. A simulation example, with more than a million observations, and a real life data example are used to validate the underlying code and to illustrate the software capabilities.
Bayesian network modelling of upper gastrointestinal bleeding
Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri
2013-09-01
Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Bayesian Network Based XP Process Modelling
Directory of Open Access Journals (Sweden)
Mohamed Abouelela
2010-07-01
Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.
Bayesian nonparametric duration model with censorship
Directory of Open Access Journals (Sweden)
Joseph Hakizamungu
2007-10-01
Full Text Available This paper is concerned with nonparametric i.i.d. durations models censored observations and we establish by a simple and unified approach the general structure of a bayesian nonparametric estimator for a survival function S. For Dirichlet prior distributions, we describe completely the structure of the posterior distribution of the survival function. These results are essentially supported by prior and posterior independence properties.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
Bayesian Inference of a Multivariate Regression Model
Directory of Open Access Journals (Sweden)
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
Bayesian variable selection for latent class models.
Ghosh, Joyee; Herring, Amy H; Siega-Riz, Anna Maria
2011-09-01
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.
Bayesian model selection in Gaussian regression
Abramovich, Felix
2009-01-01
We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting estimator. We establish the oracle inequality and specify conditions on the prior that imply its asymptotic minimaxity within a wide range of sparse and dense settings for "nearly-orthogonal" and "multicollinear" designs.
Bayesian mixture models for partially verified data
DEFF Research Database (Denmark)
Kostoulas, Polychronis; Browne, William J.; Nielsen, Søren Saxmose;
2013-01-01
for some individuals, in order to minimize this loss in the discriminatory power. The distribution of the continuous antibody response against MAP has been obtained for healthy, MAP-infected and MAP-infectious cows of different age groups. The overall power of the milk-ELISA to discriminate between healthy......Bayesian mixture models can be used to discriminate between the distributions of continuous test responses for different infection stages. These models are particularly useful in case of chronic infections with a long latent period, like Mycobacterium avium subsp. paratuberculosis (MAP) infection...
A Bayesian Shrinkage Approach for AMMI Models.
da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio
2015-01-01
Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior
A Bayesian Shrinkage Approach for AMMI Models.
Directory of Open Access Journals (Sweden)
Carlos Pereira da Silva
Full Text Available Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI model, are widely applicable to genotype-by-environment interaction (GEI studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05 in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct
Sparse Event Modeling with Hierarchical Bayesian Kernel Methods
2016-01-05
SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function
Model uncertainty and Bayesian model averaging in vector autoregressive processes
R.W. Strachan (Rodney); H.K. van Dijk (Herman)
2006-01-01
textabstractEconomic forecasts and policy decisions are often informed by empirical analysis based on econometric models. However, inference based upon a single model, when several viable models exist, limits its usefulness. Taking account of model uncertainty, a Bayesian model averaging procedure i
Directory of Open Access Journals (Sweden)
Rasheda Arman Chowdhury
Full Text Available Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG or Magneto-EncephaloGraphy (MEG signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i brain activity may be modeled using cortical parcels and (ii brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM and the Hierarchical Bayesian (HB source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2 to 30 cm(2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.
Bayesian Discovery of Linear Acyclic Causal Models
Hoyer, Patrik O
2012-01-01
Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-based methods (Geiger and Heckerman, 1994) (which assign relative scores to the equivalence classes) are available. On the contrary, all current methods able to utilize non-Gaussianity in the data (Shimizu et al., 2006; Hoyer et al., 2008) always return only a single graph or a single equivalence class, and so are fundamentally unable to express the degree of certainty attached to that output. In this paper we develop a Bayesian score-based approach able to take advantage of non-Gaussianity when estimating linear acyclic causal models, and we empirically demonstrate that, at least on very modest size networks, its accur...
A note on Bayesian logistic regression for spatial exponential family Gibbs point processes
Rajala, Tuomas
2014-01-01
Recently, a very attractive logistic regression inference method for exponential family Gibbs spatial point processes was introduced. We combined it with the technique of quadratic tangential variational approximation and derived a new Bayesian technique for analysing spatial point patterns. The technique is described in detail, and demonstrated on numerical examples.
A Hierarchical Bayesian Model for Crowd Emotions
Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias
2016-01-01
Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366
Predicting coastal cliff erosion using a Bayesian probabilistic model
Hapke, C.; Plant, N.
2010-01-01
Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70-90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale. ?? 2010.
Spatial correlation in Bayesian logistic regression with misclassification
DEFF Research Database (Denmark)
Bihrmann, Kristine; Toft, Nils; Nielsen, Søren Saxmose
2014-01-01
Standard logistic regression assumes that the outcome is measured perfectly. In practice, this is often not the case, which could lead to biased estimates if not accounted for. This study presents Bayesian logistic regression with adjustment for misclassification of the outcome applied to data...
Hopes and Cautions in Implementing Bayesian Structural Equation Modeling
MacCallum, Robert C.; Edwards, Michael C.; Cai, Li
2012-01-01
Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Entropic Priors and Bayesian Model Selection
Brewer, Brendon J
2009-01-01
We demonstrate that the principle of maximum relative entropy (ME), used judiciously, can ease the specification of priors in model selection problems. The resulting effect is that models that make sharp predictions are disfavoured, weakening the usual Bayesian "Occam's Razor". This is illustrated with a simple example involving what Jaynes called a "sure thing" hypothesis. Jaynes' resolution of the situation involved introducing a large number of alternative "sure thing" hypotheses that were possible before we observed the data. However, in more complex situations, it may not be possible to explicitly enumerate large numbers of alternatives. The entropic priors formalism produces the desired result without modifying the hypothesis space or requiring explicit enumeration of alternatives; all that is required is a good model for the prior predictive distribution for the data. This idea is illustrated with a simple rigged-lottery example, and we outline how this idea may help to resolve a recent debate amongst ...
Bayesian Estimation of a Mixture Model
Directory of Open Access Journals (Sweden)
Ilhem Merah
2015-05-01
Full Text Available We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010. This one is a mixture of a Gamma distribution G(2, (1/θ and a new distribution L(θ. We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980 and Tierney and Kadane (1986. Using a statistical sample of 60 failure data relative to a technical device, we illustrate the results derived. Based on a simulation study, comparisons are made between these two methods and the maximum likelihood method of this two parameters model.
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Enhancing debris flow modeling parameters integrating Bayesian networks
Graf, C.; Stoffel, M.; Grêt-Regamey, A.
2009-04-01
Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk
MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES
Directory of Open Access Journals (Sweden)
H. Sadeq
2016-06-01
Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
Merging Digital Surface Models Implementing Bayesian Approaches
Sadeq, H.; Drummond, J.; Li, Z.
2016-06-01
In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.
Improving randomness characterization through Bayesian model selection
R., Rafael Díaz-H; Martínez, Alí M Angulo; U'Ren, Alfred B; Hirsch, Jorge G; Marsili, Matteo; Castillo, Isaac Pérez
2016-01-01
Nowadays random number generation plays an essential role in technology with important applications in areas ranging from cryptography, which lies at the core of current communication protocols, to Monte Carlo methods, and other probabilistic algorithms. In this context, a crucial scientific endeavour is to develop effective methods that allow the characterization of random number generators. However, commonly employed methods either lack formality (e.g. the NIST test suite), or are inapplicable in principle (e.g. the characterization derived from the Algorithmic Theory of Information (ATI)). In this letter we present a novel method based on Bayesian model selection, which is both rigorous and effective, for characterizing randomness in a bit sequence. We derive analytic expressions for a model's likelihood which is then used to compute its posterior probability distribution. Our method proves to be more rigorous than NIST's suite and the Borel-Normality criterion and its implementation is straightforward. We...
Modeling Social Annotation: a Bayesian Approach
Plangprasopchok, Anon
2008-01-01
Collaborative tagging systems, such as del.icio.us, CiteULike, and others, allow users to annotate objects, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations, contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of socially-generated data, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated objects. Unfortunately, our proposed approach had a number of shortcomings, including overfitting, local maxima and the requirement to specify values for some parameters. In this paper we address these shortcomings in two ways. First, we extend the model to a fully Bayesian framework. Second, we describe an infinite ver...
Modeling Land-Use Decision Behavior with Bayesian Belief Networks
Directory of Open Access Journals (Sweden)
Inge Aalders
2008-06-01
Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.
3-Layered Bayesian Model Using in Text Classification
Directory of Open Access Journals (Sweden)
Chang Jiayu
2013-01-01
Full Text Available Naive Bayesian is one of quite effective classification methods in all of the text disaggregated models. Usually, the computed result will be large deviation from normal, with the reason of attribute relevance and so on. This study embarked from the degree of correlation, defined the node’s degree as well as the relations between nodes, proposed a 3-layered Bayesian Model. According to the conditional probability recurrence formula, the theory support of the 3-layered Bayesian Model is obtained. According to the theory analysis and the empirical datum contrast to the Naive Bayesian, the model has better attribute collection and classify. It can be also promoted to the Multi-layer Bayesian Model using in text classification.
Landmine detection with Bayesian cross-categorization on point-wise, contextual and spatial features
Léveillé, Jasmin; Yu, Ssu-Hsin; Gandhe, Avinash
2016-05-01
Recently developed feature extraction methods proposed in the explosive hazard detection community have yielded many features that potentially provide complementary information for explosive detection. Finding the right combination of features that is most effective in distinguishing targets from clutter, on the other hand, is extremely challenging due to a large number of potential features to explore. Furthermore, sensors employed for mine and buried explosive hazard detection are typically sensitive to environmental conditions such as soil properties and weather as well as other operating parameters. In this work, we applied Bayesian cross-categorization (CrossCat) to a heterogeneous set of features derived from electromagnetic induction (EMI) sensor time-series for purposes of buried explosive hazard detection. The set of features used here includes simple, point-wise measurements such as the overall magnitude of the EMI response, contextual information such as soil type, and a new feature consisting of spatially aggregated Discrete Spectra of Relaxation Frequencies (DSRFs). Previous work showed that the DSRF characterizes target properties with some invariance to orientation and position. We have developed a novel approach to aggregate point-wise DSRF estimates. The spatial aggregation is based on the Bag-of-Words (BoW) model found in the machine learning and computer vision literatures and aims to enhance the invariance properties of point-wise DSRF estimates. We considered various refinements to the BoW model for purpose of buried explosive hazard detection and tested their usefulness as part of a Bayesian cross-categorization framework on data collected from two different sites. The results show improved performance over classifiers using only point-wise features.
Modelling crime linkage with Bayesian networks.
de Zoete, Jacob; Sjerps, Marjan; Lagnado, David; Fenton, Norman
2015-05-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model different evidential structures that can occur when linking crimes, and how they assist in understanding the complex underlying dependencies. That is, how evidence that is obtained in one case can be used in another and vice versa. The flip side of this is that the intuitive decision to "unlink" a case in which exculpatory evidence is obtained leads to serious overestimation of the strength of the remaining cases.
Bayesian Student Modeling and the Problem of Parameter Specification.
Millan, Eva; Agosta, John Mark; Perez de la Cruz, Jose Luis
2001-01-01
Discusses intelligent tutoring systems and the application of Bayesian networks to student modeling. Considers reasons for not using Bayesian networks, including the computational complexity of the algorithms and the difficulty of knowledge acquisition, and proposes an approach to simplify knowledge acquisition that applies causal independence to…
Implementing Relevance Feedback in the Bayesian Network Retrieval Model.
de Campos, Luis M.; Fernandez-Luna, Juan M.; Huete, Juan F.
2003-01-01
Discussion of relevance feedback in information retrieval focuses on a proposal for the Bayesian Network Retrieval Model. Bases the proposal on the propagation of partial evidences in the Bayesian network, representing new information obtained from the user's relevance judgments to compute the posterior relevance probabilities of the documents…
A new approach for Bayesian model averaging
Institute of Scientific and Technical Information of China (English)
TIAN XiangJun; XIE ZhengHui; WANG AiHui; YANG XiaoChun
2012-01-01
Bayesian model averaging (BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the additional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA (referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algorithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is almost equivalent to that for EM.
Advances in Bayesian Modeling in Educational Research
Levy, Roy
2016-01-01
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Bayesian Model Selection for LISA Pathfinder
Karnesis, Nikolaos; Sopuerta, Carlos F; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; Plagnol, Eric; Vitale, and Stefano
2013-01-01
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the LISA/eLISA concept. The Data Analysis (DA) team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment on-board LPF. These models are used for simulations, but more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the DA team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching to this problem is to recover the essential parameters of the LTP which describe the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes Factor between two competing models. In our analysis, we use three main different methods to estimate...
A guide to Bayesian model selection for ecologists
Hooten, Mevin B.; Hobbs, N.T.
2015-01-01
The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.
Nonparametric Bayesian Modeling for Automated Database Schema Matching
Energy Technology Data Exchange (ETDEWEB)
Ferragut, Erik M [ORNL; Laska, Jason A [ORNL
2015-01-01
The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.
Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model
Mo, Qianxing
2010-01-29
ChIP-chip experiments are procedures that combine chromatin immunoprecipitation (ChIP) and DNA microarray (chip) technology to study a variety of biological problems, including protein-DNA interaction, histone modification, and DNA methylation. The most important feature of ChIP-chip data is that the intensity measurements of probes are spatially correlated because the DNA fragments are hybridized to neighboring probes in the experiments. We propose a simple, but powerful Bayesian hierarchical approach to ChIP-chip data through an Ising model with high-order interactions. The proposed method naturally takes into account the intrinsic spatial structure of the data and can be used to analyze data from multiple platforms with different genomic resolutions. The model parameters are estimated using the Gibbs sampler. The proposed method is illustrated using two publicly available data sets from Affymetrix and Agilent platforms, and compared with three alternative Bayesian methods, namely, Bayesian hierarchical model, hierarchical gamma mixture model, and Tilemap hidden Markov model. The numerical results indicate that the proposed method performs as well as the other three methods for the data from Affymetrix tiling arrays, but significantly outperforms the other three methods for the data from Agilent promoter arrays. In addition, we find that the proposed method has better operating characteristics in terms of sensitivities and false discovery rates under various scenarios. © 2010, The International Biometric Society.
Bayesian model reduction and empirical Bayes for group (DCM) studies.
Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter
2016-03-01
This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction.
A Gaussian Mixed Model for Learning Discrete Bayesian Networks.
Balov, Nikolay
2011-02-01
In this paper we address the problem of learning discrete Bayesian networks from noisy data. Considered is a graphical model based on mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network. The network learning is formulated as a Maximum Likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable - from simple regression analysis to learning gene/protein regulatory networks from microarray data.
A Bayesian Approach for Structural Learning with Hidden Markov Models
Directory of Open Access Journals (Sweden)
Cen Li
2002-01-01
Full Text Available Hidden Markov Models(HMM have proved to be a successful modeling paradigm for dynamic and spatial processes in many domains, such as speech recognition, genomics, and general sequence alignment. Typically, in these applications, the model structures are predefined by domain experts. Therefore, the HMM learning problem focuses on the learning of the parameter values of the model to fit the given data sequences. However, when one considers other domains, such as, economics and physiology, model structure capturing the system dynamic behavior is not available. In order to successfully apply the HMM methodology in these domains, it is important that a mechanism is available for automatically deriving the model structure from the data. This paper presents a HMM learning procedure that simultaneously learns the model structure and the maximum likelihood parameter values of a HMM from data. The HMM model structures are derived based on the Bayesian model selection methodology. In addition, we introduce a new initialization procedure for HMM parameter value estimation based on the K-means clustering method. Experimental results with artificially generated data show the effectiveness of the approach.
Bayesian approach to decompression sickness model parameter estimation.
Howle, L E; Weber, P W; Nichols, J M
2017-03-01
We examine both maximum likelihood and Bayesian approaches for estimating probabilistic decompression sickness model parameters. Maximum likelihood estimation treats parameters as fixed values and determines the best estimate through repeated trials, whereas the Bayesian approach treats parameters as random variables and determines the parameter probability distributions. We would ultimately like to know the probability that a parameter lies in a certain range rather than simply make statements about the repeatability of our estimator. Although both represent powerful methods of inference, for models with complex or multi-peaked likelihoods, maximum likelihood parameter estimates can prove more difficult to interpret than the estimates of the parameter distributions provided by the Bayesian approach. For models of decompression sickness, we show that while these two estimation methods are complementary, the credible intervals generated by the Bayesian approach are more naturally suited to quantifying uncertainty in the model parameters.
Robust Bayesian Regularized Estimation Based on t Regression Model
Directory of Open Access Journals (Sweden)
Zean Li
2015-01-01
Full Text Available The t distribution is a useful extension of the normal distribution, which can be used for statistical modeling of data sets with heavy tails, and provides robust estimation. In this paper, in view of the advantages of Bayesian analysis, we propose a new robust coefficient estimation and variable selection method based on Bayesian adaptive Lasso t regression. A Gibbs sampler is developed based on the Bayesian hierarchical model framework, where we treat the t distribution as a mixture of normal and gamma distributions and put different penalization parameters for different regression coefficients. We also consider the Bayesian t regression with adaptive group Lasso and obtain the Gibbs sampler from the posterior distributions. Both simulation studies and real data example show that our method performs well compared with other existing methods when the error distribution has heavy tails and/or outliers.
Bayesian model discrimination for glucose-insulin homeostasis
DEFF Research Database (Denmark)
Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene
the reformulation of existing deterministic models as stochastic state space models which properly accounts for both measurement and process variability. The analysis is further enhanced by Bayesian model discrimination techniques and model averaged parameter estimation which fully accounts for model as well...
Modelling of JET diagnostics using Bayesian Graphical Models
Energy Technology Data Exchange (ETDEWEB)
Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.
2011-07-01
The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This
Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro
2016-01-01
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas.
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling.
Using consensus bayesian network to model the reactive oxygen species regulatory pathway.
Hu, Liangdong; Wang, Limin
2013-01-01
Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.
Bayesian structural equation modeling method for hierarchical model validation
Energy Technology Data Exchange (ETDEWEB)
Jiang Xiaomo [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: xiaomo.jiang@vanderbilt.edu; Mahadevan, Sankaran [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: sankaran.mahadevan@vanderbilt.edu
2009-04-15
A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system, comparing model predictions with experimental observations at each level. Usually, experimental data becomes scarce as one proceeds from lower to higher levels. This paper presents a structural equation modeling approach to make use of the lower-level data for higher-level model validation under uncertainty, integrating several components: lower-level data, higher-level data, computational model, and latent variables. The method proposed in this paper uses latent variables to model two sets of relationships, namely, the computational model to system-level data, and lower-level data to system-level data. A Bayesian network with Markov chain Monte Carlo simulation is applied to represent the two relationships and to estimate the influencing factors between them. Bayesian hypothesis testing is employed to quantify the confidence in the predictive model at the system level, and the role of lower-level data in the model validation assessment at the system level. The proposed methodology is implemented for hierarchical assessment of three validation problems, using discrete observations and time-series data.
Nomura, Shunichi; Ogata, Yosihiko
2016-04-01
We propose a Bayesian method of probability forecasting for recurrent earthquakes of inland active faults in Japan. Renewal processes with the Brownian Passage Time (BPT) distribution are applied for over a half of active faults in Japan by the Headquarters for Earthquake Research Promotion (HERP) of Japan. Long-term forecast with the BPT distribution needs two parameters; the mean and coefficient of variation (COV) for recurrence intervals. The HERP applies a common COV parameter for all of these faults because most of them have very few specified paleoseismic events, which is not enough to estimate reliable COV values for respective faults. However, different COV estimates are proposed for the same paleoseismic catalog by some related works. It can make critical difference in forecast to apply different COV estimates and so COV should be carefully selected for individual faults. Recurrence intervals on a fault are, on the average, determined by the long-term slip rate caused by the tectonic motion but fluctuated by nearby seismicities which influence surrounding stress field. The COVs of recurrence intervals depend on such stress perturbation and so have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus we introduce a spatial structure on its COV parameter by Bayesian modeling with a Gaussian process prior. The COVs on active faults are correlated and take similar values for closely located faults. It is found that the spatial trends in the estimated COV values coincide with the density of active faults in Japan. We also show Bayesian forecasts by the proposed model using Markov chain Monte Carlo method. Our forecasts are different from HERP's forecast especially on the active faults where HERP's forecasts are very high or low.
Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm
Directory of Open Access Journals (Sweden)
Raj Kumar
2012-12-01
Full Text Available In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi Newton-Raphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC simulation method in OpenBUGS(established software for Bayesian analysis using Markov Chain Monte Carlo methods. The R functions are developed to study the statistical properties, model validation and comparison tools of the model and the output analysis of MCMC samples generated from OpenBUGS. Details of applying MCMC to parameter estimation for the Gumbel model are elaborated and a real software reliability data set is considered to illustrate the methods of inference discussed in this paper.
Estimating Tree Height-Diameter Models with the Bayesian Method
Directory of Open Access Journals (Sweden)
Xiongqing Zhang
2014-01-01
Full Text Available Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS and the maximum likelihood method (ML. The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.
Bayesian Spatial Design of Optimal Deep Tubewell Locations in Matlab, Bangladesh.
Warren, Joshua L; Perez-Heydrich, Carolina; Yunus, Mohammad
2013-09-01
We introduce a method for statistically identifying the optimal locations of deep tubewells (dtws) to be installed in Matlab, Bangladesh. Dtw installations serve to mitigate exposure to naturally occurring arsenic found at groundwater depths less than 200 meters, a serious environmental health threat for the population of Bangladesh. We introduce an objective function, which incorporates both arsenic level and nearest town population size, to identify optimal locations for dtw placement. Assuming complete knowledge of the arsenic surface, we then demonstrate how minimizing the objective function over a domain favors dtws placed in areas with high arsenic values and close to largely populated regions. Given only a partial realization of the arsenic surface over a domain, we use a Bayesian spatial statistical model to predict the full arsenic surface and estimate the optimal dtw locations. The uncertainty associated with these estimated locations is correctly characterized as well. The new method is applied to a dataset from a village in Matlab and the estimated optimal locations are analyzed along with their respective 95% credible regions.
Song, Joon Jin; Kwon, Soohyun; Lee, GyuWon
2015-03-01
Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications. Ground-based telemetered rain gauges are widely used to collect precipitation measurements. Spatial interpolation methods are commonly employed to estimate precipitation fields covering non-observed locations. Kriging is a simple and popular geostatistical interpolation method, but it has two known problems: uncertainty underestimation and violation of assumptions. This paper tackles these problems and seeks an optimal spatial interpolation for QPE in order to enhance spatial interpolation through appropriately assessing prediction uncertainty and fulfilling the required assumptions. To this end, several methods are tested: transformation, detrending, multiple spatial correlation functions, and Bayesian kriging. In particular, we focus on a short-term and time-specific rather than a long-term and event-specific analysis. This paper analyzes a stratiform rain event with an embedded convection linked to the passing monsoon front on the 23 August 2012. Data from a total of 100 automatic weather stations are used, and the rainfall intensities are calculated from the difference of 15 minute accumulated rainfall observed every 1 minute. The one-hour average rainfall intensity is then calculated to minimize the measurement random error. Cross-validation is carried out for evaluating the interpolation methods at regional and local levels. As a result, transformation is found to play an important role in improving spatial interpolation and uncertainty assessment, and Bayesian methods generally outperform traditional ones in terms of the criteria.
Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
Vrugt, J.A.; Diks, C.G.H.; Clark, M.
2008-01-01
Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In t
Bayesian Network Models for Local Dependence among Observable Outcome Variables
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli
2009-01-01
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…
Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.
Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa
2017-01-01
TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.
Bayesian inference of chemical kinetic models from proposed reactions
Galagali, Nikhil
2015-02-01
© 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.
A COMPOUND POISSON MODEL FOR LEARNING DISCRETE BAYESIAN NETWORKS
Institute of Scientific and Technical Information of China (English)
Abdelaziz GHRIBI; Afif MASMOUDI
2013-01-01
We introduce here the concept of Bayesian networks, in compound Poisson model, which provides a graphical modeling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We suggest an approach proposal which offers a new mixed implicit estimator. We show that the implicit approach applied in compound Poisson model is very attractive for its ability to understand data and does not require any prior information. A comparative study between learned estimates given by implicit and by standard Bayesian approaches is established. Under some conditions and based on minimal squared error calculations, we show that the mixed implicit estimator is better than the standard Bayesian and the maximum likelihood estimators. We illustrate our approach by considering a simulation study in the context of mobile communication networks.
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming
2013-06-01
This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks
DEFF Research Database (Denmark)
Skare, Øivind; Møller, Jesper; Jensen, Eva B. Vedel
2007-01-01
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample f...... from biology (animal territories) and material science (alumina grain structure) are presented.......A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample...
Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks
DEFF Research Database (Denmark)
Skare, Øivind; Møller, Jesper; Vedel Jensen, Eva B.
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample f...... from biology (animal territories) and material science (alumina grain structure) are presented.......A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample...
Gou, Faxiang; Liu, Xinfeng; Ren, Xiaowei; Liu, Dongpeng; Liu, Haixia; Wei, Kongfu; Yang, Xiaoting; Cheng, Yao; Zheng, Yunhe; Jiang, Xiaojuan; Li, Juansheng; Meng, Lei; Hu, Wenbiao
2016-06-01
The influence of socio-ecological factors on hand, foot and mouth disease (HFMD) were explored in this study using Bayesian spatial modeling and spatial patterns identified in dry regions of Gansu, China. Notified HFMD cases and socio-ecological data were obtained from the China Information System for Disease Control and Prevention, Gansu Yearbook and Gansu Meteorological Bureau. A Bayesian spatial conditional autoregressive model was used to quantify the effects of socio-ecological factors on the HFMD and explore spatial patterns, with the consideration of its socio-ecological effects. Our non-spatial model suggests temperature (relative risk (RR) 1.15, 95 % CI 1.01-1.31), GDP per capita (RR 1.19, 95 % CI 1.01-1.39) and population density (RR 1.98, 95 % CI 1.19-3.17) to have a significant effect on HFMD transmission. However, after controlling for spatial random effects, only temperature (RR 1.25, 95 % CI 1.04-1.53) showed significant association with HFMD. The spatial model demonstrates temperature to play a major role in the transmission of HFMD in dry regions. Estimated residual variation after taking into account the socio-ecological variables indicated that high incidences of HFMD were mainly clustered in the northwest of Gansu. And, spatial structure showed a unique distribution after taking account of socio-ecological effects.
Gou, Faxiang; Liu, Xinfeng; Ren, Xiaowei; Liu, Dongpeng; Liu, Haixia; Wei, Kongfu; Yang, Xiaoting; Cheng, Yao; Zheng, Yunhe; Jiang, Xiaojuan; Li, Juansheng; Meng, Lei; Hu, Wenbiao
2017-01-01
The influence of socio-ecological factors on hand, foot and mouth disease (HFMD) were explored in this study using Bayesian spatial modeling and spatial patterns identified in dry regions of Gansu, China. Notified HFMD cases and socio-ecological data were obtained from the China Information System for Disease Control and Prevention, Gansu Yearbook and Gansu Meteorological Bureau. A Bayesian spatial conditional autoregressive model was used to quantify the effects of socio-ecological factors on the HFMD and explore spatial patterns, with the consideration of its socio-ecological effects. Our non-spatial model suggests temperature (relative risk (RR) 1.15, 95 % CI 1.01-1.31), GDP per capita (RR 1.19, 95 % CI 1.01-1.39) and population density (RR 1.98, 95 % CI 1.19-3.17) to have a significant effect on HFMD transmission. However, after controlling for spatial random effects, only temperature (RR 1.25, 95 % CI 1.04-1.53) showed significant association with HFMD. The spatial model demonstrates temperature to play a major role in the transmission of HFMD in dry regions. Estimated residual variation after taking into account the socio-ecological variables indicated that high incidences of HFMD were mainly clustered in the northwest of Gansu. And, spatial structure showed a unique distribution after taking account of socio-ecological effects.
2013-01-01
This paper proposes a hierarchical Bayesian framework for modeling the life cycle of marine exploited fish with a spatial perspective. The application was developed for a nursery-dependent fish species, the common sole (Solea solea), on the Eastern Channel population (Western Europe). The approach combined processes of different natures and various sources of observations within an integrated framework for life-cycle modeling: (1) outputs of an individual-based model for larval drift and surv...
Bayesian Estimation of the DINA Model with Gibbs Sampling
Culpepper, Steven Andrew
2015-01-01
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
A Bayesian Approach for Analyzing Longitudinal Structural Equation Models
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum
2011-01-01
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
Directory of Open Access Journals (Sweden)
J. P. Werner
2015-03-01
Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.
Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway
Liangdong Hu; Limin Wang
2013-01-01
Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks...
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
Block-sparse beamforming for spatially extended sources in a Bayesian formulation
DEFF Research Database (Denmark)
Xenaki, Angeliki; Fernandez Grande, Efren; Gerstoft, Peter
2016-01-01
sources, but cannot capture spatially extended sources. The DOA estimation problem is formulated in a Bayesian framework where regularization is imposed through prior information on the source spatial distribution which is then reconstructed as the maximum a posteriori estimate. A composite prior......Direction-of-arrival (DOA) estimation refers to the localization of sound sources on an angular grid from noisy measurements of the associated wavefield with an array of sensors. For accurate localization, the number of angular look-directions is much larger than the number of sensors, hence...... is introduced, which simultaneously promotes a piecewise constant profile and sparsity in the solution. Simulations and experimental measurements show that this choice of regularization provides high-resolution DOA estimation in a general framework, i.e., in the presence of spatially extended sources....
Uncertainty Modeling Based on Bayesian Network in Ontology Mapping
Institute of Scientific and Technical Information of China (English)
LI Yuhua; LIU Tao; SUN Xiaolin
2006-01-01
How to deal with uncertainty is crucial in exact concept mapping between ontologies. This paper presents a new framework on modeling uncertainty in ontologies based on bayesian networks (BN). In our approach, ontology Web language (OWL) is extended to add probabilistic markups for attaching probability information, the source and target ontologies (expressed by patulous OWL) are translated into bayesian networks (BNs), the mapping between the two ontologies can be digged out by constructing the conditional probability tables (CPTs) of the BN using a improved algorithm named I-IPFP based on iterative proportional fitting procedure (IPFP). The basic idea of this framework and algorithm are validated by positive results from computer experiments.
Bayesian probabilistic modeling for damage assessment in a bolted frame
Haynes, Colin; Todd, Michael
2012-04-01
This paper presents the development of a Bayesian framework for optimizing the design of a structural health monitoring (SHM) system. Statistical damage detection techniques are applied to a geometrically-complex, three-story structure with bolted joints. A sparse network of PZT sensor-actuators is bonded to the structure, using ultrasonic guided waves in both pulse-echo and pitch-catch modes to inspect the structure. Receiver operating characteristics are used to quantify the performance of multiple features (or detectors). The detection rate of the system is compared across different types and levels of damage. A Bayesian cost model is implemented to determine the best performing network.
Directory of Open Access Journals (Sweden)
Enrique Gracia
2014-01-01
Full Text Available This paper uses spatial data of cases of intimate partner violence against women (IPVAW to examine neighborhood-level influences on small-area variations in IPVAW risk in a police district of the city of Valencia (Spain. To analyze area variations in IPVAW risk and its association with neighborhood-level explanatory variables we use a Bayesian spatial random-effects modeling approach, as well as disease mapping methods to represent risk probabilities in each area. Analyses show that IPVAW cases are more likely in areas of high immigrant concentration, high public disorder and crime, and high physical disorder. Results also show a spatial component indicating remaining variability attributable to spatially structured random effects. Bayesian spatial modeling offers a new perspective to identify IPVAW high and low risk areas, and provides a new avenue for the design of better-informed prevention and intervention strategies.
Bayesian Modelling of fMRI Time Series
DEFF Research Database (Denmark)
Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward
2000-01-01
We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...
Advanced REACH tool: A Bayesian model for occupational exposure assessment
McNally, K.; Warren, N.; Fransman, W.; Entink, R.K.; Schinkel, J.; Van Tongeren, M.; Cherrie, J.W.; Kromhout, H.; Schneider, T.; Tielemans, E.
2014-01-01
This paper describes a Bayesian model for the assessment of inhalation exposures in an occupational setting; the methodology underpins a freely available web-based application for exposure assessment, the Advanced REACH Tool (ART). The ART is a higher tier exposure tool that combines disparate sourc
A Bayesian network approach to coastal storm impact modeling
Jäger, W.S.; Den Heijer, C.; Bolle, A.; Hanea, A.M.
2015-01-01
In this paper we develop a Bayesian network (BN) that relates offshore storm conditions to their accompagnying flood characteristics and damages to residential buildings, following on the trend of integrated flood impact modeling. It is based on data from hydrodynamic storm simulations, information
Bayesian online algorithms for learning in discrete Hidden Markov Models
Alamino, Roberto C.; Caticha, Nestor
2008-01-01
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Research on Bayesian Network Based User's Interest Model
Institute of Scientific and Technical Information of China (English)
ZHANG Weifeng; XU Baowen; CUI Zifeng; XU Lei
2007-01-01
It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability.
Bayesian estimation of parameters in a regional hydrological model
Directory of Open Access Journals (Sweden)
K. Engeland
2002-01-01
Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis
MacNab, Ying C
2007-11-20
This paper presents a Bayesian disability-adjusted life year (DALY) methodology for spatial and spatiotemporal analyses of disease and/or injury burden. A Bayesian disease mapping model framework, which blends together spatial modelling, shared-component modelling (SCM), temporal modelling, ecological modelling, and non-linear modelling, is developed for small-area DALY estimation and inference. In particular, we develop a model framework that enables SCM as well as multivariate CAR modelling of non-fatal and fatal disease or injury rates and facilitates spline smoothing for non-linear modelling of temporal rate and risk trends. Using British Columbia (Canada) hospital admission-separation data and vital statistics mortality data on non-fatal and fatal road traffic injuries to male population age 20-39 for year 1991-2000 and for 84 local health areas and 16 health service delivery areas, spatial and spatiotemporal estimation and inference on years of life lost due to premature death, years lived with disability, and DALYs are presented. Fully Bayesian estimation and inference, with Markov chain Monte Carlo implementation, are illustrated. We present a methodological framework within which the DALY and the Bayesian disease mapping methodologies interface and intersect. Its development brings the relative importance of premature mortality and disability into the assessment of community health and health needs in order to provide reliable information and evidence for community-based public health surveillance and evaluation, disease and injury prevention, and resource provision.
A Bayesian model of stereopsis depth and motion direction discrimination.
Read, J C A
2002-02-01
The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345-3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broadband anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system--stereopsis and motion--has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with
Empirical evaluation of scoring functions for Bayesian network model selection.
Liu, Zhifa; Malone, Brandon; Yuan, Changhe
2012-01-01
In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also
FACIAL LANDMARKING LOCALIZATION FOR EMOTION RECOGNITION USING BAYESIAN SHAPE MODELS
Directory of Open Access Journals (Sweden)
Hernan F. Garcia
2013-02-01
Full Text Available This work presents a framework for emotion recognition, based in facial expression analysis using Bayesian Shape Models (BSM for facial landmarking localization. The Facial Action Coding System (FACS compliant facial feature tracking based on Bayesian Shape Model. The BSM estimate the parameters of the model with an implementation of the EM algorithm. We describe the characterization methodology from parametric model and evaluated the accuracy for feature detection and estimation of the parameters associated with facial expressions, analyzing its robustness in pose and local variations. Then, a methodology for emotion characterization is introduced to perform the recognition. The experimental results show that the proposed model can effectively detect the different facial expressions. Outperforming conventional approaches for emotion recognition obtaining high performance results in the estimation of emotion present in a determined subject. The model used and characterization methodology showed efficient to detect the emotion type in 95.6% of the cases.
Bayesian latent structure modeling of walking behavior in a physical activity intervention
Lawson, Andrew B; Ellerbe, Caitlyn; Carroll, Rachel; Alia, Kassandra; Coulon, Sandra; Wilson, Dawn K; VanHorn, M Lee; St George, Sara M
2017-01-01
The analysis of walking behavior in a physical activity intervention is considered. A Bayesian latent structure modeling approach is proposed whereby the ability and willingness of participants is modeled via latent effects. The dropout process is jointly modeled via a linked survival model. Computational issues are addressed via posterior sampling and a simulated evaluation of the longitudinal model’s ability to recover latent structure and predictor effects is considered. We evaluate the effect of a variety of socio-psychological and spatial neighborhood predictors on the propensity to walk and the estimation of latent ability and willingness in the full study. PMID:24741000
A Bayesian ensemble of sensitivity measures for severe accident modeling
Energy Technology Data Exchange (ETDEWEB)
Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)
2015-12-15
Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).
Bayesian modeling growth curves for quail assuming skewness in errors
Directory of Open Access Journals (Sweden)
Robson Marcelo Rossi
2014-06-01
Full Text Available Bayesian modeling growth curves for quail assuming skewness in errors - To assume normal distributions in the data analysis is common in different areas of the knowledge. However we can make use of the other distributions that are capable to model the skewness parameter in the situations that is needed to model data with tails heavier than the normal. This article intend to present alternatives to the assumption of the normality in the errors, adding asymmetric distributions. A Bayesian approach is proposed to fit nonlinear models when the errors are not normal, thus, the distributions t, skew-normal and skew-t are adopted. The methodology is intended to apply to different growth curves to the quail body weights. It was found that the Gompertz model assuming skew-normal errors and skew-t errors, respectively for male and female, were the best fitted to the data.
Quasi-Bayesian software reliability model with small samples
Institute of Scientific and Technical Information of China (English)
ZHANG Jin; TU Jun-xiang; CHEN Zhuo-ning; YAN Xiao-guang
2009-01-01
In traditional Bayesian software reliability models,it was assume that all probabilities are precise.In practical applications the parameters of the probability distributions are often under uncertainty due to strong dependence on subjective information of experts' judgments on sparse statistical data.In this paper,a quasi-Bayesian software reliability model using interval-valued probabilities to clearly quantify experts' prior beliefs on possible intervals of the parameters of the probability distributions is presented.The model integrates experts' judgments with statistical data to obtain more convincible assessments of software reliability with small samples.For some actual data sets,the presented model yields better predictions than the Jelinski-Moranda (JM) model using maximum likelihood (ML).
A Bayesian Alternative for Multi-objective Ecohydrological Model Specification
Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.
2015-12-01
Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.
[A medical image semantic modeling based on hierarchical Bayesian networks].
Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu
2009-04-01
A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.
Quarterly Bayesian DSGE Model of Pakistan Economy with Informality
2013-01-01
In this paper we use the Bayesian methodology to estimate the structural and shocks‟ parameters of the DSGE model in Ahmad et al. (2012). This model includes formal and informal firms both at intermediate and final goods production levels. Households derive utility from leisure, real money balances and consumption. Each household is treated as a unit of labor which is a composite of formal (skilled) and informal (unskilled) labor. The formal (skilled) labor is further divided into types “r” a...
Spatial Stochastic Point Models for Reservoir Characterization
Energy Technology Data Exchange (ETDEWEB)
Syversveen, Anne Randi
1997-12-31
The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Nonparametric Bayesian inference of the microcanonical stochastic block model
Peixoto, Tiago P
2016-01-01
A principled approach to characterize the hidden modular structure of networks is to formulate generative models, and then infer their parameters from data. When the desired structure is composed of modules or "communities", a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: 1. Deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, that not only remove limitations that seriously degrade the inference on large networks, but also reveal s...
Space-time Bayesian survival modeling of chronic wasting disease in deer.
Song, Hae-Ryoung; Lawson, Andrew
2009-09-01
The primary objectives of this study are to describe the spatial and temporal variation in disease prevalence of chronic wasting disease (CWD), to assess the effect of demographic factors such as age and sex on disease prevalence and to model the disease clustering effects over space and time. We propose a Bayesian hierarchical survival model where latent parameters capture temporal and spatial trends in disease incidence, incorporating several individual covariates and random effects. The model is applied to a data set which consists of 65085 harvested deer in Wisconsin from 2002 to 2006. We found significant sex effects, spatial effects, temporal effects and spatio-temporal interacted effects in CWD infection in deer in Wisconsin. The risk of infection for male deer was significantly higher than that of female deer, and CWD has been significantly different over space, time, and space and time based on the harvest samples.
Application of a predictive Bayesian model to environmental accounting.
Anex, R P; Englehardt, J D
2001-03-30
Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.
Application of the Bayesian dynamic survival model in medicine.
He, Jianghua; McGee, Daniel L; Niu, Xufeng
2010-02-10
The Bayesian dynamic survival model (BDSM), a time-varying coefficient survival model from the Bayesian prospective, was proposed in early 1990s but has not been widely used or discussed. In this paper, we describe the model structure of the BDSM and introduce two estimation approaches for BDSMs: the Markov Chain Monte Carlo (MCMC) approach and the linear Bayesian (LB) method. The MCMC approach estimates model parameters through sampling and is computationally intensive. With the newly developed geoadditive survival models and software BayesX, the BDSM is available for general applications. The LB approach is easier in terms of computations but it requires the prespecification of some unknown smoothing parameters. In a simulation study, we use the LB approach to show the effects of smoothing parameters on the performance of the BDSM and propose an ad hoc method for identifying appropriate values for those parameters. We also demonstrate the performance of the MCMC approach compared with the LB approach and a penalized partial likelihood method available in software R packages. A gastric cancer trial is utilized to illustrate the application of the BDSM.
Introduction to Hierarchical Bayesian Modeling for Ecological Data
Parent, Eric
2012-01-01
Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a
Bayesian Age-Period-Cohort Modeling and Prediction - BAMP
Directory of Open Access Journals (Sweden)
Volker J. Schmid
2007-10-01
Full Text Available The software package BAMP provides a method of analyzing incidence or mortality data on the Lexis diagram, using a Bayesian version of an age-period-cohort model. A hierarchical model is assumed with a binomial model in the first-stage. As smoothing priors for the age, period and cohort parameters random walks of first and second order, with and without an additional unstructured component are available. Unstructured heterogeneity can also be included in the model. In order to evaluate the model fit, posterior deviance, DIC and predictive deviances are computed. By projecting the random walk prior into the future, future death rates can be predicted.
Bayesian hierarchical modelling of weak lensing - the golden goal
Heavens, Alan; Jaffe, Andrew; Hoffmann, Till; Kiessling, Alina; Wandelt, Benjamin
2016-01-01
To accomplish correct Bayesian inference from weak lensing shear data requires a complete statistical description of the data. The natural framework to do this is a Bayesian Hierarchical Model, which divides the chain of reasoning into component steps. Starting with a catalogue of shear estimates in tomographic bins, we build a model that allows us to sample simultaneously from the the underlying tomographic shear fields and the relevant power spectra (E-mode, B-mode, and E-B, for auto- and cross-power spectra). The procedure deals easily with masked data and intrinsic alignments. Using Gibbs sampling and messenger fields, we show with simulated data that the large (over 67000-)dimensional parameter space can be efficiently sampled and the full joint posterior probability density function for the parameters can feasibly be obtained. The method correctly recovers the underlying shear fields and all of the power spectra, including at levels well below the shot noise.
Bayesian Hierarchical Models to Augment the Mediterranean Forecast System
2016-06-07
year. Our goal is to develop an ensemble ocean forecast methodology, using Bayesian Hierarchical Modelling (BHM) tools . The ocean ensemble forecast...from above); i.e. we assume Ut ~ Z Λt1/2. WORK COMPLETED The prototype MFS-Wind-BHM was designed and implemented based on stochastic...coding refinements we implemented on the prototype surface wind BHM. A DWF event in February 2005, in the Gulf of Lions, was identified for reforecast
Demir, M. T.; Copty, N. K.; Trinchero, P.; Sanchez-Vila, X.
2013-12-01
Groundwater flow and contaminant transport are strongly influenced by the spatial variability of subsurface flow parameters. However, the interpretation of pumping test data used for subsurface characterization is normally performed using conventional methods that are based on the assumption of aquifer homogeneity. In recent years, hydraulic tomography has been proposed by some researchers to address the limitations of conventional site characterization methods. Hydraulic tomography involves the sequential pumping at one of a series of wells and observing the drawdown due to pumping at adjacent wells. The interpretation of the drawdown data from hydraulic tomography has been mostly performed using formal inverse procedures for the estimation of the spatial variability of the flow parameters. The purpose of this study is to develop a method for the estimation of the statistical spatial structure of the transmissivity from hydraulic tomography data. The method relies on the pumping test interpretation procedure of Copty et al. (2011), which uses the time-drawdown data and its time derivative at each observation well to estimate the spatially averaged transmissivity as a function of radial distance from the pumping well. A Bayesian approach is then used to identify the statistical parameters of the transmissivity field (i.e. variance and integral scale). The approach compares the estimated transmissivity as a function of radial distance from the pumping well to the probability density function of the spatially-averaged transmissivity. The method is evaluated using synthetically-generated pumping test data for a range of input parameters. This application demonstrates that, through a relatively simple procedure, additional information of the spatial structure of the transmissivity may be inferred from pumping tests data. Results indicate that as the number of available pumping tests increases, the reliability of the estimated transmissivity statistical parameters also
Bayesian estimation of the network autocorrelation model
Dittrich, D.; Leenders, R.T.A.J.; Mulder, J.
2017-01-01
The network autocorrelation model has been extensively used by researchers interested modeling social influence effects in social networks. The most common inferential method in the model is classical maximum likelihood estimation. This approach, however, has known problems such as negative bias of
A Bayesian hierarchical nonhomogeneous hidden Markov model for multisite streamflow reconstructions
Bracken, C.; Rajagopalan, B.; Woodhouse, C.
2016-10-01
In many complex water supply systems, the next generation of water resources planning models will require simultaneous probabilistic streamflow inputs at multiple locations on an interconnected network. To make use of the valuable multicentury records provided by tree-ring data, reconstruction models must be able to produce appropriate multisite inputs. Existing streamflow reconstruction models typically focus on one site at a time, not addressing intersite dependencies and potentially misrepresenting uncertainty. To this end, we develop a model for multisite streamflow reconstruction with the ability to capture intersite correlations. The proposed model is a hierarchical Bayesian nonhomogeneous hidden Markov model (NHMM). A NHMM is fit to contemporary streamflow at each location using lognormal component distributions. Leading principal components of tree rings are used as covariates to model nonstationary transition probabilities and the parameters of the lognormal component distributions. Spatial dependence between sites is captured with a Gaussian elliptical copula. Parameters of the model are estimated in a fully Bayesian framework, in that marginal posterior distributions of all the parameters are obtained. The model is applied to reconstruct flows at 20 sites in the Upper Colorado River Basin (UCRB) from 1473 to 1906. Many previous reconstructions are available for this basin, making it ideal for testing this new method. The results show some improvements over regression-based methods in terms of validation statistics. Key advantages of the Bayesian NHMM over traditional approaches are a dynamic representation of uncertainty and the ability to make long multisite simulations that capture at-site statistics and spatial correlations between sites.
Bayesian prediction of placebo analgesia in an instrumental learning model
Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung
2017-01-01
Placebo analgesia can be primarily explained by the Pavlovian conditioning paradigm in which a passively applied cue becomes associated with less pain. In contrast, instrumental conditioning employs an active paradigm that might be more similar to clinical settings. In the present study, an instrumental conditioning paradigm involving a modified trust game in a simulated clinical situation was used to induce placebo analgesia. Additionally, Bayesian modeling was applied to predict the placebo responses of individuals based on their choices. Twenty-four participants engaged in a medical trust game in which decisions to receive treatment from either a doctor (more effective with high cost) or a pharmacy (less effective with low cost) were made after receiving a reference pain stimulus. In the conditioning session, the participants received lower levels of pain following both choices, while high pain stimuli were administered in the test session even after making the decision. The choice-dependent pain in the conditioning session was modulated in terms of both intensity and uncertainty. Participants reported significantly less pain when they chose the doctor or the pharmacy for treatment compared to the control trials. The predicted pain ratings based on Bayesian modeling showed significant correlations with the actual reports from participants for both of the choice categories. The instrumental conditioning paradigm allowed for the active choice of optional cues and was able to induce the placebo analgesia effect. Additionally, Bayesian modeling successfully predicted pain ratings in a simulated clinical situation that fits well with placebo analgesia induced by instrumental conditioning. PMID:28225816
Cepeda-Cuervo, Edilberto; Núñez-Antón, Vicente
2013-01-01
In this article, a proposed Bayesian extension of the generalized beta spatial regression models is applied to the analysis of the quality of education in Colombia. We briefly revise the beta distribution and describe the joint modeling approach for the mean and dispersion parameters in the spatial regression models' setting. Finally, we…
Cepeda-Cuervo, Edilberto; Núñez-Antón, Vicente
2013-01-01
In this article, a proposed Bayesian extension of the generalized beta spatial regression models is applied to the analysis of the quality of education in Colombia. We briefly revise the beta distribution and describe the joint modeling approach for the mean and dispersion parameters in the spatial regression models' setting. Finally, we motivate…
Characterizing economic trends by Bayesian stochastic model specification search
DEFF Research Database (Denmark)
Grassi, Stefano; Proietti, Tommaso
We extend a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. In particular, we focus on autoregressive models with possibly time-varying intercept and slope and decide...... on whether their parameters are fixed or evolutive. Stochastic model specification is carried out to discriminate two alternative hypotheses concerning the generation of trends: the trend-stationary hypothesis, on the one hand, for which the trend is a deterministic function of time and the short run......, estimated by a suitable Gibbs sampling scheme, provides useful insight on quasi-integrated nature of the specifications selected....
AIC, BIC, Bayesian evidence against the interacting dark energy model
Energy Technology Data Exchange (ETDEWEB)
Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Krawiec, Adam [Jagiellonian University, Institute of Economics, Finance and Management, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Kurek, Aleksandra [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Kamionka, Michal [University of Wroclaw, Astronomical Institute, Wroclaw (Poland)
2015-01-01
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)
AIC, BIC, Bayesian evidence against the interacting dark energy model
Energy Technology Data Exchange (ETDEWEB)
Szydłowski, Marek, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Krawiec, Adam, E-mail: adam.krawiec@uj.edu.pl [Institute of Economics, Finance and Management, Jagiellonian University, Łojasiewicza 4, 30-348, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Kurek, Aleksandra, E-mail: alex@oa.uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Kamionka, Michał, E-mail: kamionka@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, ul. Kopernika 11, 51-622, Wrocław (Poland)
2015-01-14
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model.
A Bayesian Nonparametric Meta-Analysis Model
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G.
2015-01-01
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…
Dissecting magnetar variability with Bayesian hierarchical models
Huppenkothen, D; Hogg, D W; Murray, I; Frean, M; Elenbaas, C; Watts, A L; Levin, Y; van der Horst, A J; Kouveliotou, C
2015-01-01
Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture afte...
Directory of Open Access Journals (Sweden)
K. Duraiswamy
2012-01-01
Full Text Available Problem statement: A database that is optimized to store and query data that is related to objects in space, including points, lines and polygons is called spatial database. Identifying nearest neighbor object search is a vital part of spatial database. Many nearest neighbor search techniques such as Authenticated Multi-step NN (AMNN, Superseding Nearest Neighbor (SNN search, Bayesian Nearest Neighbor (BNN and so on are available. But they had some difficulties while performing NN in uncertain spatial database. AMNN does not process the queries from distributed server and it accesses the queries only from single server. In SNN, the high dimensional data structure could not be used in NN search and it accesses only low dimensional data for NN search. Approach: The previous works described the process of NN using SNN with marginal object weight ranking. The downside over the previous work is that the performance is poor when compared to another work which performed NN using BNN. To improve the NN search in spatial databases using BNN, we are going to present a new technique as BNN search using marginal object weight ranking. Based on events occurring in the nearest object, BNN starts its search using MOW. The MOW is done by computing the weight of each NN objects and rank each object based on its frequency and distance of NN object for an efficient NN search in spatial databases. Results: Marginal Object Weight (MOW is introduced to all nearest neighbor object identified using BNN for any relevant query point. It processes the queries from distributed server using MOW. Conclusion: The proposed BNN using MOW framework is experimented with real data sets to show the performance improvement with the previous MOW using SNN in terms of execution time, memory consumption and query result accuracy.
A Latent Variable Bayesian Approach to Spatial Clustering with Background Noise
Kayabol, K.
2011-01-01
We propose a finite mixture model for clustering of the spatial data patterns. The model is based on the spatial distances between the data locations in such a way that both the distances of the points to the cluster centers and the distances of a given point to its neighbors within a defined window
Bayesian comparisons of codon substitution models.
Rodrigue, Nicolas; Lartillot, Nicolas; Philippe, Hervé
2008-11-01
In 1994, Muse and Gaut (MG) and Goldman and Yang (GY) proposed evolutionary models that recognize the coding structure of the nucleotide sequences under study, by defining a Markovian substitution process with a state space consisting of the 61 sense codons (assuming the universal genetic code). Several variations and extensions to their models have since been proposed, but no general and flexible framework for contrasting the relative performance of alternative approaches has yet been applied. Here, we compute Bayes factors to evaluate the relative merit of several MG and GY styles of codon substitution models, including recent extensions acknowledging heterogeneous nonsynonymous rates across sites, as well as selective effects inducing uneven amino acid or codon preferences. Our results on three real data sets support a logical model construction following the MG formulation, allowing for a flexible account of global amino acid or codon preferences, while maintaining distinct parameters governing overall nucleotide propensities. Through posterior predictive checks, we highlight the importance of such a parameterization. Altogether, the framework presented here suggests a broad modeling project in the MG style, stressing the importance of combining and contrasting available model formulations and grounding developments in a sound probabilistic paradigm.
Probe Error Modeling Research Based on Bayesian Network
Institute of Scientific and Technical Information of China (English)
Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan
2015-01-01
Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.
A Bayesian Network View on Nested Effects Models
Directory of Open Access Journals (Sweden)
Fröhlich Holger
2009-01-01
Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.
Bayesian inference and model comparison for metallic fatigue data
Babuška, Ivo
2016-02-23
In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.
Bayesian Thurstonian models for ranking data using JAGS.
Johnson, Timothy R; Kuhn, Kristine M
2013-09-01
A Thurstonian model for ranking data assumes that observed rankings are consistent with those of a set of underlying continuous variables. This model is appealing since it renders ranking data amenable to familiar models for continuous response variables-namely, linear regression models. To date, however, the use of Thurstonian models for ranking data has been very rare in practice. One reason for this may be that inferences based on these models require specialized technical methods. These methods have been developed to address computational challenges involved in these models but are not easy to implement without considerable technical expertise and are not widely available in software packages. To address this limitation, we show that Bayesian Thurstonian models for ranking data can be very easily implemented with the JAGS software package. We provide JAGS model files for Thurstonian ranking models for general use, discuss their implementation, and illustrate their use in analyses.
A Bayesian Model for Discovering Typological Implications
Daumé, Hal
2009-01-01
A standard form of analysis for linguistic typology is the universal implication. These implications state facts about the range of extant languages, such as ``if objects come after verbs, then adjectives come after nouns.'' Such implications are typically discovered by painstaking hand analysis over a small sample of languages. We propose a computational model for assisting at this process. Our model is able to discover both well-known implications as well as some novel implications that deserve further study. Moreover, through a careful application of hierarchical analysis, we are able to cope with the well-known sampling problem: languages are not independent.
Modeling signalized intersection safety with corridor-level spatial correlations.
Guo, Feng; Wang, Xuesong; Abdel-Aty, Mohamed A
2010-01-01
Intersections in close spatial proximity along a corridor should be considered as correlated due to interacted traffic flows as well as similar road design and environmental characteristics. It is critical to incorporate this spatial correlation for assessing the true safety impacts of risk factors. In this paper, several Bayesian models were developed to model the crash data from 170 signalized intersections in the state of Florida. The safety impacts of risk factors such as geometric design features, traffic control, and traffic flow characteristics were evaluated. The Poisson and Negative Binomial Bayesian models with non-informative priors were fitted but the focus is to incorporate spatial correlations among intersections. Two alternative models were proposed to capture this correlation: (1) a mixed effect model in which the corridor-level correlation is incorporated through a corridor-specific random effect and (2) a conditional autoregressive model in which the magnitude of correlations is determined by spatial distances among intersections. The models were compared using the Deviance Information Criterion. The results indicate that the Poisson spatial model provides the best model fitting. Analysis of the posterior distributions of model parameters indicated that the size of intersection, the traffic conditions by turning movement, and the coordination of signal phase have significant impacts on intersection safety.
DPpackage: Bayesian Semi- and Nonparametric Modeling in R
Directory of Open Access Journals (Sweden)
Alejandro Jara
2011-04-01
Full Text Available Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian nonparametric and semiparametric models in R, DPpackage. Currently, DPpackage includes models for marginal and conditional density estimation, receiver operating characteristic curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison and for eliciting the precision parameter of the Dirichlet process prior, and a general purpose Metropolis sampling algorithm. To maximize computational efficiency, the actual sampling for each model is carried out using compiled C, C++ or Fortran code.
Theoretical aspects of spatial-temporal modeling
Matsui, Tomoko
2015-01-01
This book provides a modern introductory tutorial on specialized theoretical aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter provides up-to-date coverage of particle association measures that underpin the theoretical properties of recently developed random set methods in space and time otherwise known as the class of probability hypothesis density framework (PHD filters). The second chapter gives an overview of recent advances in Monte Carlo methods for Bayesian filtering in high-dimensional spaces. In particular, the chapter explains how one may extend classical sequential Monte Carlo methods for filtering and static inference problems to high dimensions and big-data applications. The third chapter presents an overview of generalized families of processes that extend the class of Gaussian process models to heavy-tailed families known as alph...
Evaluating stream health based environmental justice model performance at different spatial scales
Daneshvar, Fariborz; Nejadhashemi, A. Pouyan; Zhang, Zhen; Herman, Matthew R.; Shortridge, Ashton; Marquart-Pyatt, Sandra
2016-07-01
This study evaluated the effects of spatial resolution on environmental justice analysis concerning stream health. The Saginaw River Basin in Michigan was selected since it is an area of concern in the Great Lakes basin. Three Bayesian Conditional Autoregressive (CAR) models (ordinary regression, weighted regression and spatial) were developed for each stream health measure based on 17 socioeconomic and physiographical variables at three census levels. For all stream health measures, spatial models had better performance compared to the two non-spatial ones at the census tract and block group levels. Meanwhile no spatial dependency was found at the county level. Multilevel Bayesian CAR models were also developed to understand the spatial dependency at the three levels. Results showed that considering level interactions improved models' prediction. Residual plots also showed that models developed at the block group and census tract (in contrary to county level models) are able to capture spatial variations.
Skilloscopy: Bayesian modeling of decision makers' skill
Di Fatta, Giuseppe; Haworth, Guy
2013-01-01
This paper proposes and demonstrates an approach, Skilloscopy, to the assessment of decision makers. In an increasingly sophisticated, connected and information-rich world, decision making is becoming both more important and more difficult. At the same time, modelling decision-making on computers is becoming more feasible and of interest, partly because the information-input to those decisions is increasingly on record. The aims of Skilloscopy are to rate and rank decision makers in a d...
A spatial interaction model with spatially structured origin and destination effects
LeSage, James P.; Llano, Carlos
2013-07-01
We introduce a Bayesian hierarchical regression model that extends the traditional least-squares regression model used to estimate gravity or spatial interaction relations involving origin-destination flows. Spatial interaction models attempt to explain variation in flows from n origin regions to n destination regions resulting in a sample of N = n 2 observations that reflect an n by n flow matrix converted to a vector. Explanatory variables typically include origin and destination characteristics as well as distance between each region and all other regions. Our extension introduces latent spatial effects parameters structured to follow a spatial autoregressive process. Individual effects parameters are included in the model to reflect latent or unobservable influences at work that are unique to each region treated as an origin and destination. That is, we estimate 2 n individual effects parameters using the sample of N = n 2 observations. We illustrate the method using a sample of commodity flows between 18 Spanish regions during the 2002 period.
Bayesian hierarchical modeling for detecting safety signals in clinical trials.
Xia, H Amy; Ma, Haijun; Carlin, Bradley P
2011-09-01
Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.
Lee, Duncan; Rushworth, Alastair; Sahu, Sujit K
2014-06-01
Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth. To avoid this collinearity a Bayesian localized conditional autoregressive model is developed for the random effects. This localized model is flexible spatially, in the sense that it is not only able to model areas of spatial smoothness, but also it is able to capture step changes in the random effects surface. This methodological development allows us to improve the estimation performance of the covariate effects, compared to using traditional conditional auto-regressive models. These results are established using a simulation study, and are then illustrated with our motivating study on air pollution and respiratory ill health in Greater Glasgow, Scotland in 2011. The model shows substantial health effects of particulate matter air pollution and nitrogen dioxide, whose effects have been consistently attenuated by the currently available globally smooth models.
A Bayesian Model Committee Approach to Forecasting Global Solar Radiation
Lauret, Philippe; Muselli, Marc; David, Mathieu; Diagne, Hadja; Voyant, Cyril
2012-01-01
This paper proposes to use a rather new modelling approach in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving Average (ARMA) and Neural Network (NN) models are combined to form a model committee. The Bayesian inference is used to affect a probability to each model in the committee. Hence, each model's predictions are weighted by their respective probability. The models are fitted to one year of hourly Global Horizontal Irradiance (GHI) measurements. Another year (the test set) is used for making genuine one hour ahead (h+1) out-of-sample forecast comparisons. The proposed approach is benchmarked against the persistence model. The very first results show an improvement brought by this approach.
Bayesian parameter estimation for nonlinear modelling of biological pathways
Directory of Open Access Journals (Sweden)
Ghasemi Omid
2011-12-01
Full Text Available Abstract Background The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. Results We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC method. We applied this approach to the biological pathways involved in the left ventricle (LV response to myocardial infarction (MI and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly
Study of TEC fluctuation via stochastic models and Bayesian inversion
Bires, A.; Roininen, L.; Damtie, B.; Nigussie, M.; Vanhamäki, H.
2016-11-01
We propose stochastic processes to be used to model the total electron content (TEC) observation. Based on this, we model the rate of change of TEC (ROT) variation during ionospheric quiet conditions with stationary processes. During ionospheric disturbed conditions, for example, when irregularity in ionospheric electron density distribution occurs, stationarity assumption over long time periods is no longer valid. In these cases, we make the parameter estimation for short time scales, during which we can assume stationarity. We show the relationship between the new method and commonly used TEC characterization parameters ROT and the ROT Index (ROTI). We construct our parametric model within the framework of Bayesian statistical inverse problems and hence give the solution as an a posteriori probability distribution. Bayesian framework allows us to model measurement errors systematically. Similarly, we mitigate variation of TEC due to factors which are not of ionospheric origin, like due to the motion of satellites relative to the receiver, by incorporating a priori knowledge in the Bayesian model. In practical computations, we draw the so-called maximum a posteriori estimates, which are our ROT and ROTI estimates, from the posterior distribution. Because the algorithm allows to estimate ROTI at each observation time, the estimator does not depend on the period of time for ROTI computation. We verify the method by analyzing TEC data recorded by GPS receiver located in Ethiopia (11.6°N, 37.4°E). The results indicate that the TEC fluctuations caused by the ionospheric irregularity can be effectively detected and quantified from the estimated ROT and ROTI values.
A study of finite mixture model: Bayesian approach on financial time series data
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
A Bayesian subgroup analysis using collections of ANOVA models.
Liu, Jinzhong; Sivaganesan, Siva; Laud, Purushottam W; Müller, Peter
2017-03-20
We develop a Bayesian approach to subgroup analysis using ANOVA models with multiple covariates, extending an earlier work. We assume a two-arm clinical trial with normally distributed response variable. We also assume that the covariates for subgroup finding are categorical and are a priori specified, and parsimonious easy-to-interpret subgroups are preferable. We represent the subgroups of interest by a collection of models and use a model selection approach to finding subgroups with heterogeneous effects. We develop suitable priors for the model space and use an objective Bayesian approach that yields multiplicity adjusted posterior probabilities for the models. We use a structured algorithm based on the posterior probabilities of the models to determine which subgroup effects to report. Frequentist operating characteristics of the approach are evaluated using simulation. While our approach is applicable in more general cases, we mainly focus on the 2 × 2 case of two covariates each at two levels for ease of presentation. The approach is illustrated using a real data example.
Hanks, Ephraim M.; Schliep, Erin M.; Hooten, Mevin B.; Hoeting, Jennifer A.
2015-01-01
In spatial generalized linear mixed models (SGLMMs), covariates that are spatially smooth are often collinear with spatially smooth random effects. This phenomenon is known as spatial confounding and has been studied primarily in the case where the spatial support of the process being studied is discrete (e.g., areal spatial data). In this case, the most common approach suggested is restricted spatial regression (RSR) in which the spatial random effects are constrained to be orthogonal to the fixed effects. We consider spatial confounding and RSR in the geostatistical (continuous spatial support) setting. We show that RSR provides computational benefits relative to the confounded SGLMM, but that Bayesian credible intervals under RSR can be inappropriately narrow under model misspecification. We propose a posterior predictive approach to alleviating this potential problem and discuss the appropriateness of RSR in a variety of situations. We illustrate RSR and SGLMM approaches through simulation studies and an analysis of malaria frequencies in The Gambia, Africa.
Two Bayesian tests of the GLOMOsys Model.
Field, Sarahanne M; Wagenmakers, Eric-Jan; Newell, Ben R; Zeelenberg, René; van Ravenzwaaij, Don
2016-12-01
Priming is arguably one of the key phenomena in contemporary social psychology. Recent retractions and failed replication attempts have led to a division in the field between proponents and skeptics and have reinforced the importance of confirming certain priming effects through replication. In this study, we describe the results of 2 preregistered replication attempts of 1 experiment by Förster and Denzler (2012). In both experiments, participants first processed letters either globally or locally, then were tested using a typicality rating task. Bayes factor hypothesis tests were conducted for both experiments: Experiment 1 (N = 100) yielded an indecisive Bayes factor of 1.38, indicating that the in-lab data are 1.38 times more likely to have occurred under the null hypothesis than under the alternative. Experiment 2 (N = 908) yielded a Bayes factor of 10.84, indicating strong support for the null hypothesis that global priming does not affect participants' mean typicality ratings. The failure to replicate this priming effect challenges existing support for the GLOMO(sys) model. (PsycINFO Database Record
Building dynamic spatial environmental models
Karssenberg, D.J.
2003-01-01
An environmental model is a representation or imitation of complex natural phenomena that can be discerned by human cognitive processes. This thesis deals with the type of environmental models referred to as dynamic spatial environmental models. The word spatial refers to the geographic domain whi
Objective Bayesian Comparison of Constrained Analysis of Variance Models.
Consonni, Guido; Paroli, Roberta
2016-10-04
In the social sciences we are often interested in comparing models specified by parametric equality or inequality constraints. For instance, when examining three group means [Formula: see text] through an analysis of variance (ANOVA), a model may specify that [Formula: see text], while another one may state that [Formula: see text], and finally a third model may instead suggest that all means are unrestricted. This is a challenging problem, because it involves a combination of nonnested models, as well as nested models having the same dimension. We adopt an objective Bayesian approach, requiring no prior specification from the user, and derive the posterior probability of each model under consideration. Our method is based on the intrinsic prior methodology, suitably modified to accommodate equality and inequality constraints. Focussing on normal ANOVA models, a comparative assessment is carried out through simulation studies. We also present an application to real data collected in a psychological experiment.
Forecasting natural gas consumption in China by Bayesian Model Averaging
Directory of Open Access Journals (Sweden)
Wei Zhang
2015-11-01
Full Text Available With rapid growth of natural gas consumption in China, it is in urgent need of more accurate and reliable models to make a reasonable forecast. Considering the limitations of the single model and the model uncertainty, this paper presents a combinative method to forecast natural gas consumption by Bayesian Model Averaging (BMA. It can effectively handle the uncertainty associated with model structure and parameters, and thus improves the forecasting accuracy. This paper chooses six variables for forecasting the natural gas consumption, including GDP, urban population, energy consumption structure, industrial structure, energy efficiency and exports of goods and services. The results show that comparing to Gray prediction model, Linear regression model and Artificial neural networks, the BMA method provides a flexible tool to forecast natural gas consumption that will have a rapid growth in the future. This study can provide insightful information on natural gas consumption in the future.
Eastwood, John G; Jalaludin, Bin B; Kemp, Lynn A; Phung, Hai N; Barnett, Bryanne E W
2013-09-01
The purpose is to explore the multilevel spatial distribution of depressive symptoms among migrant mothers in South Western Sydney and to identify any group level associations that could inform subsequent theory building and local public health interventions. Migrant mothers (n=7256) delivering in 2002 and 2003 were assessed at 2-3 weeks after delivery for risk factors for depressive symptoms. The binary outcome variables were Edinburgh Postnatal Depression Scale scores (EPDS) of >9 and >12. Individual level variables included were: financial income, self-reported maternal health, social support network, emotional support, practical support, baby trouble sleeping, baby demanding and baby not content. The group level variable reported here is aggregated social support networks. We used Bayesian hierarchical multilevel spatial modelling with conditional autoregression. Migrant mothers were at higher risk of having depressive symptoms if they lived in a community with predominantly Australian-born mothers and strong social capital as measured by aggregated social networks. These findings suggest that migrant mothers are socially isolated and current home visiting services should be strengthened for migrant mothers living in communities where they may have poor social networks.
Predictive RANS simulations via Bayesian Model-Scenario Averaging
Energy Technology Data Exchange (ETDEWEB)
Edeling, W.N., E-mail: W.N.Edeling@tudelft.nl [Arts et Métiers ParisTech, DynFluid laboratory, 151 Boulevard de l' Hospital, 75013 Paris (France); Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 2, Delft (Netherlands); Cinnella, P., E-mail: P.Cinnella@ensam.eu [Arts et Métiers ParisTech, DynFluid laboratory, 151 Boulevard de l' Hospital, 75013 Paris (France); Dwight, R.P., E-mail: R.P.Dwight@tudelft.nl [Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 2, Delft (Netherlands)
2014-10-15
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Bayesian item fit analysis for unidimensional item response theory models.
Sinharay, Sandip
2006-11-01
Assessing item fit for unidimensional item response theory models for dichotomous items has always been an issue of enormous interest, but there exists no unanimously agreed item fit diagnostic for these models, and hence there is room for further investigation of the area. This paper employs the posterior predictive model-checking method, a popular Bayesian model-checking tool, to examine item fit for the above-mentioned models. An item fit plot, comparing the observed and predicted proportion-correct scores of examinees with different raw scores, is suggested. This paper also suggests how to obtain posterior predictive p-values (which are natural Bayesian p-values) for the item fit statistics of Orlando and Thissen that summarize numerically the information in the above-mentioned item fit plots. A number of simulation studies and a real data application demonstrate the effectiveness of the suggested item fit diagnostics. The suggested techniques seem to have adequate power and reasonable Type I error rate, and psychometricians will find them promising.
Quantum-Like Bayesian Networks for Modeling Decision Making.
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
Predictive RANS simulations via Bayesian Model-Scenario Averaging
Edeling, W. N.; Cinnella, P.; Dwight, R. P.
2014-10-01
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier-Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Quantum-Like Bayesian Networks for Modeling Decision Making
Directory of Open Access Journals (Sweden)
Catarina eMoreira
2016-01-01
Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
Generalized linear models with coarsened covariates: a practical Bayesian approach.
Johnson, Timothy R; Wiest, Michelle M
2014-06-01
Coarsened covariates are a common and sometimes unavoidable phenomenon encountered in statistical modeling. Covariates are coarsened when their values or categories have been grouped. This may be done to protect privacy or to simplify data collection or analysis when researchers are not aware of their drawbacks. Analyses with coarsened covariates based on ad hoc methods can compromise the validity of inferences. One valid method for accounting for a coarsened covariate is to use a marginal likelihood derived by summing or integrating over the unknown realizations of the covariate. However, algorithms for estimation based on this approach can be tedious to program and can be computationally expensive. These are significant obstacles to their use in practice. To overcome these limitations, we show that when expressed as a Bayesian probability model, a generalized linear model with a coarsened covariate can be posed as a tractable missing data problem where the missing data are due to censoring. We also show that this model is amenable to widely available general-purpose software for simulation-based inference for Bayesian probability models, providing researchers a very practical approach for dealing with coarsened covariates.
BAYESIAN ESTIMATION IN SHARED COMPOUND POISSON FRAILTY MODELS
Directory of Open Access Journals (Sweden)
David D. Hanagal
2015-06-01
Full Text Available In this paper, we study the compound Poisson distribution as the shared frailty distribution and two different baseline distributions namely Pareto and linear failure rate distributions for modeling survival data. We are using the Markov Chain Monte Carlo (MCMC technique to estimate parameters of the proposed models by introducing the Bayesian estimation procedure. In the present study, a simulation is done to compare the true values of parameters with the estimated values. We try to fit the proposed models to a real life bivariate survival data set of McGrilchrist and Aisbett (1991 related to kidney infection. Also, we present a comparison study for the same data by using model selection criterion, and suggest a better frailty model out of two proposed frailty models.
Experimental validation of a Bayesian model of visual acuity.
LENUS (Irish Health Repository)
Dalimier, Eugénie
2009-01-01
Based on standard procedures used in optometry clinics, we compare measurements of visual acuity for 10 subjects (11 eyes tested) in the presence of natural ocular aberrations and different degrees of induced defocus, with the predictions given by a Bayesian model customized with aberrometric data of the eye. The absolute predictions of the model, without any adjustment, show good agreement with the experimental data, in terms of correlation and absolute error. The efficiency of the model is discussed in comparison with image quality metrics and other customized visual process models. An analysis of the importance and customization of each stage of the model is also given; it stresses the potential high predictive power from precise modeling of ocular and neural transfer functions.
Wu, Haiyan
2013-01-01
General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…
Jakkareddy, Pradeep S.; Balaji, C.
2016-09-01
This paper employs the Bayesian based Metropolis Hasting - Markov Chain Monte Carlo algorithm to solve inverse heat transfer problem of determining the spatially varying heat transfer coefficient from a flat plate with flush mounted discrete heat sources with measured temperatures at the bottom of the plate. The Nusselt number is assumed to be of the form Nu = aReb(x/l)c . To input reasonable values of ’a’ and ‘b’ into the inverse problem, first limited two dimensional conjugate convection simulations were done with Comsol. Based on the guidance from this different values of ‘a’ and ‘b’ are input to a computationally less complex problem of conjugate conduction in the flat plate (15mm thickness) and temperature distributions at the bottom of the plate which is a more convenient location for measuring the temperatures without disturbing the flow were obtained. Since the goal of this work is to demonstrate the eficiacy of the Bayesian approach to accurately retrieve ‘a’ and ‘b’, numerically generated temperatures with known values of ‘a’ and ‘b’ are treated as ‘surrogate’ experimental data. The inverse problem is then solved by repeatedly using the forward solutions together with the MH-MCMC aprroach. To speed up the estimation, the forward model is replaced by an artificial neural network. The mean, maximum-a-posteriori and standard deviation of the estimated parameters ‘a’ and ‘b’ are reported. The robustness of the proposed method is examined, by synthetically adding noise to the temperatures.
Theory-based Bayesian models of inductive learning and reasoning.
Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles
2006-07-01
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
Bayesian Gaussian Copula Factor Models for Mixed Data.
Murray, Jared S; Dunson, David B; Carin, Lawrence; Lucas, Joseph E
2013-06-01
Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.
Bayesian statistic methods and theri application in probabilistic simulation models
Directory of Open Access Journals (Sweden)
Sergio Iannazzo
2007-03-01
Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.
Lowman, L.; Barros, A. P.
2014-12-01
Computational modeling of surface erosion processes is inherently difficult because of the four-dimensional nature of the problem and the multiple temporal and spatial scales that govern individual mechanisms. Landscapes are modified via surface and fluvial erosion and exhumation, each of which takes place over a range of time scales. Traditional field measurements of erosion/exhumation rates are scale dependent, often valid for a single point-wise location or averaging over large aerial extents and periods with intense and mild erosion. We present a method of remotely estimating erosion rates using a Bayesian hierarchical model based upon the stream power erosion law (SPEL). A Bayesian approach allows for estimating erosion rates using the deterministic relationship given by the SPEL and data on channel slopes and precipitation at the basin and sub-basin scale. The spatial scale associated with this framework is the elevation class, where each class is characterized by distinct morphologic behavior observed through different modes in the distribution of basin outlet elevations. Interestingly, the distributions of first-order outlets are similar in shape and extent to the distribution of precipitation events (i.e. individual storms) over a 14-year period between 1998-2011. We demonstrate an application of the Bayesian hierarchical modeling framework for five basins and one intermontane basin located in the central Andes between 5S and 20S. Using remotely sensed data of current annual precipitation rates from the Tropical Rainfall Measuring Mission (TRMM) and topography from a high resolution (3 arc-seconds) digital elevation map (DEM), our erosion rate estimates are consistent with decadal-scale estimates based on landslide mapping and sediment flux observations and 1-2 orders of magnitude larger than most millennial and million year timescale estimates from thermochronology and cosmogenic nuclides.
Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model
Directory of Open Access Journals (Sweden)
Qi Yuan(Alan
2010-01-01
Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.
Efficient multilevel brain tumor segmentation with integrated bayesian model classification.
Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A
2008-05-01
We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor.
Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model
Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei
2010-12-01
The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.
Cross-validation analysis of bias models in Bayesian multi-model projections of climate
Huttunen, J. M. J.; Räisänen, J.; Nissinen, A.; Lipponen, A.; Kolehmainen, V.
2017-03-01
Climate change projections are commonly based on multi-model ensembles of climate simulations. In this paper we consider the choice of bias models in Bayesian multimodel predictions. Buser et al. (Clim Res 44(2-3):227-241, 2010a) introduced a hybrid bias model which combines commonly used constant bias and constant relation bias assumptions. The hybrid model includes a weighting parameter which balances these bias models. In this study, we use a cross-validation approach to study which bias model or bias parameter leads to, in a specific sense, optimal climate change projections. The analysis is carried out for summer and winter season means of 2 m-temperatures spatially averaged over the IPCC SREX regions, using 19 model runs from the CMIP5 data set. The cross-validation approach is applied to calculate optimal bias parameters (in the specific sense) for projecting the temperature change from the control period (1961-2005) to the scenario period (2046-2090). The results are compared to the results of the Buser et al. (Clim Res 44(2-3):227-241, 2010a) method which includes the bias parameter as one of the unknown parameters to be estimated from the data.
Schöniger, Anneli; Illman, Walter A.; Wöhling, Thomas; Nowak, Wolfgang
2015-12-01
Groundwater modelers face the challenge of how to assign representative parameter values to the studied aquifer. Several approaches are available to parameterize spatial heterogeneity in aquifer parameters. They differ in their conceptualization and complexity, ranging from homogeneous models to heterogeneous random fields. While it is common practice to invest more effort into data collection for models with a finer resolution of heterogeneities, there is a lack of advice which amount of data is required to justify a certain level of model complexity. In this study, we propose to use concepts related to Bayesian model selection to identify this balance. We demonstrate our approach on the characterization of a heterogeneous aquifer via hydraulic tomography in a sandbox experiment (Illman et al., 2010). We consider four increasingly complex parameterizations of hydraulic conductivity: (1) Effective homogeneous medium, (2) geology-based zonation, (3) interpolation by pilot points, and (4) geostatistical random fields. First, we investigate the shift in justified complexity with increasing amount of available data by constructing a model confusion matrix. This matrix indicates the maximum level of complexity that can be justified given a specific experimental setup. Second, we determine which parameterization is most adequate given the observed drawdown data. Third, we test how the different parameterizations perform in a validation setup. The results of our test case indicate that aquifer characterization via hydraulic tomography does not necessarily require (or justify) a geostatistical description. Instead, a zonation-based model might be a more robust choice, but only if the zonation is geologically adequate.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen
2012-01-01
Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian analysis would also consider all possible alternate values these parameters may take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian segmentation models more a...
Bayesian inference for generalized linear models for spiking neurons
Directory of Open Access Journals (Sweden)
Sebastian Gerwinn
2010-05-01
Full Text Available Generalized Linear Models (GLMs are commonly used statistical methods for modelling the relationship between neural population activity and presented stimuli. When the dimension of the parameter space is large, strong regularization has to be used in order to fit GLMs to datasets of realistic size without overfitting. By imposing properly chosen priors over parameters, Bayesian inference provides an effective and principled approach for achieving regularization. Here we show how the posterior distribution over model parameters of GLMs can be approximated by a Gaussian using the Expectation Propagation algorithm. In this way, we obtain an estimate of the posterior mean and posterior covariance, allowing us to calculate Bayesian confidence intervals that characterize the uncertainty about the optimal solution. From the posterior we also obtain a different point estimate, namely the posterior mean as opposed to the commonly used maximum a posteriori estimate. We systematically compare the different inference techniques on simulated as well as on multi-electrode recordings of retinal ganglion cells, and explore the effects of the chosen prior and the performance measure used. We find that good performance can be achieved by choosing an Laplace prior together with the posterior mean estimate.
MODELING INFORMATION SYSTEM AVAILABILITY BY USING BAYESIAN BELIEF NETWORK APPROACH
Directory of Open Access Journals (Sweden)
Semir Ibrahimović
2016-03-01
Full Text Available Modern information systems are expected to be always-on by providing services to end-users, regardless of time and location. This is particularly important for organizations and industries where information systems support real-time operations and mission-critical applications that need to be available on 24 7 365 basis. Examples of such entities include process industries, telecommunications, healthcare, energy, banking, electronic commerce and a variety of cloud services. This article presents a modified Bayesian Belief Network model for predicting information system availability, introduced initially by Franke, U. and Johnson, P. (in article “Availability of enterprise IT systems – an expert based Bayesian model”. Software Quality Journal 20(2, 369-394, 2012 based on a thorough review of several dimensions of the information system availability, we proposed a modified set of determinants. The model is parameterized by using probability elicitation process with the participation of experts from the financial sector of Bosnia and Herzegovina. The model validation was performed using Monte Carlo simulation.
Bayesian network as a modelling tool for risk management in agriculture
DEFF Research Database (Denmark)
Rasmussen, Svend; Madsen, Anders Læsø; Lund, Mogens
. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions...
The Bayesian bridge between simple and universal kriging
Energy Technology Data Exchange (ETDEWEB)
Omre, H.; Halvorsen, K.B. (Norwegian Computing Center, Oslo (Norway))
1989-10-01
Kriging techniques are suited well for evaluation of continuous, spatial phenomena. Bayesian statistics are characterized by using prior qualified guesses on the model parameters. By merging kriging techniques and Bayesian theory, prior guesses may be used in a spatial setting. Partial knowledge of model parameters defines a continuum of models between what is named simple and universal kriging in geostatistical terminology. The Bayesian approach to kriging is developed and discussed, and a case study concerning depth conversion of seismic reflection times is presented.
Bayesian experimental design for models with intractable likelihoods.
Drovandi, Christopher C; Pettitt, Anthony N
2013-12-01
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables.
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
Markov chain Monte Carlo simulation for Bayesian Hidden Markov Models
Chan, Lay Guat; Ibrahim, Adriana Irawati Nur Binti
2016-10-01
A hidden Markov model (HMM) is a mixture model which has a Markov chain with finite states as its mixing distribution. HMMs have been applied to a variety of fields, such as speech and face recognitions. The main purpose of this study is to investigate the Bayesian approach to HMMs. Using this approach, we can simulate from the parameters' posterior distribution using some Markov chain Monte Carlo (MCMC) sampling methods. HMMs seem to be useful, but there are some limitations. Therefore, by using the Mixture of Dirichlet processes Hidden Markov Model (MDPHMM) based on Yau et. al (2011), we hope to overcome these limitations. We shall conduct a simulation study using MCMC methods to investigate the performance of this model.
Bayesian Model Selection with Network Based Diffusion Analysis.
Whalen, Andrew; Hoppitt, William J E
2016-01-01
A number of recent studies have used Network Based Diffusion Analysis (NBDA) to detect the role of social transmission in the spread of a novel behavior through a population. In this paper we present a unified framework for performing NBDA in a Bayesian setting, and demonstrate how the Watanabe Akaike Information Criteria (WAIC) can be used for model selection. We present a specific example of applying this method to Time to Acquisition Diffusion Analysis (TADA). To examine the robustness of this technique, we performed a large scale simulation study and found that NBDA using WAIC could recover the correct model of social transmission under a wide range of cases, including under the presence of random effects, individual level variables, and alternative models of social transmission. This work suggests that NBDA is an effective and widely applicable tool for uncovering whether social transmission underpins the spread of a novel behavior, and may still provide accurate results even when key model assumptions are relaxed.
Mendes, B. S.; Draper, D.
2008-12-01
The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission
Bayesian Dose-Response Modeling in Sparse Data
Kim, Steven B.
This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a
Perceptual decision making: Drift-diffusion model is equivalent to a Bayesian model
Directory of Open Access Journals (Sweden)
Sebastian eBitzer
2014-02-01
Full Text Available Behavioural data obtained with perceptual decision making experiments are typically analysed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence towards a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses.
MATHEMATICAL RISK ANALYSIS: VIA NICHOLAS RISK MODEL AND BAYESIAN ANALYSIS
Directory of Open Access Journals (Sweden)
Anass BAYAGA
2010-07-01
Full Text Available The objective of this second part of a two-phased study was to explorethe predictive power of quantitative risk analysis (QRA method andprocess within Higher Education Institution (HEI. The method and process investigated the use impact analysis via Nicholas risk model and Bayesian analysis, with a sample of hundred (100 risk analysts in a historically black South African University in the greater Eastern Cape Province.The first findings supported and confirmed previous literature (KingIII report, 2009: Nicholas and Steyn, 2008: Stoney, 2007: COSA, 2004 that there was a direct relationship between risk factor, its likelihood and impact, certiris paribus. The second finding in relation to either controlling the likelihood or the impact of occurrence of risk (Nicholas risk model was that to have a brighter risk reward, it was important to control the likelihood ofoccurrence of risks as compared with its impact so to have a direct effect on entire University. On the Bayesian analysis, thus third finding, the impact of risk should be predicted along three aspects. These aspects included the human impact (decisions made, the property impact (students and infrastructural based and the business impact. Lastly, the study revealed that although in most business cases, where as business cycles considerably vary dependingon the industry and or the institution, this study revealed that, most impacts in HEI (University was within the period of one academic.The recommendation was that application of quantitative risk analysisshould be related to current legislative framework that affects HEI.
Aggregated Residential Load Modeling Using Dynamic Bayesian Networks
Energy Technology Data Exchange (ETDEWEB)
Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai
2014-09-28
Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.
Extended Bayesian Information Criteria for Gaussian Graphical Models
Foygel, Rina
2010-01-01
Gaussian graphical models with sparsity in the inverse covariance matrix are of significant interest in many modern applications. For the problem of recovering the graphical structure, information criteria provide useful optimization objectives for algorithms searching through sets of graphs or for selection of tuning parameters of other methods such as the graphical lasso, which is a likelihood penalization technique. In this paper we establish the consistency of an extended Bayesian information criterion for Gaussian graphical models in a scenario where both the number of variables p and the sample size n grow. Compared to earlier work on the regression case, our treatment allows for growth in the number of non-zero parameters in the true model, which is necessary in order to cover connected graphs. We demonstrate the performance of this criterion on simulated data when used in conjunction with the graphical lasso, and verify that the criterion indeed performs better than either cross-validation or the ordi...
Development of a Bayesian Belief Network Runway Incursion Model
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
Bayesian reduced-order models for multiscale dynamical systems
Koutsourelakis, P S
2010-01-01
While existing mathematical descriptions can accurately account for phenomena at microscopic scales (e.g. molecular dynamics), these are often high-dimensional, stochastic and their applicability over macroscopic time scales of physical interest is computationally infeasible or impractical. In complex systems, with limited physical insight on the coherent behavior of their constituents, the only available information is data obtained from simulations of the trajectories of huge numbers of degrees of freedom over microscopic time scales. This paper discusses a Bayesian approach to deriving probabilistic coarse-grained models that simultaneously address the problems of identifying appropriate reduced coordinates and the effective dynamics in this lower-dimensional representation. At the core of the models proposed lie simple, low-dimensional dynamical systems which serve as the building blocks of the global model. These approximate the latent, generating sources and parameterize the reduced-order dynamics. We d...
Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess
Haworth, Guy; Regan, Ken; di Fatta, Giuseppe
Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.
Advances in Bayesian Model Based Clustering Using Particle Learning
Energy Technology Data Exchange (ETDEWEB)
Merl, D M
2009-11-19
Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original
Mapping malaria risk in Bangladesh using Bayesian geostatistical models.
Reid, Heidi; Haque, Ubydul; Clements, Archie C A; Tatem, Andrew J; Vallely, Andrew; Ahmed, Syed Masud; Islam, Akramul; Haque, Rashidul
2010-10-01
Background malaria-control programs are increasingly dependent on accurate risk maps to effectively guide the allocation of interventions and resources. Advances in model-based geostatistics and geographical information systems (GIS) have enabled researchers to better understand factors affecting malaria transmission and thus, more accurately determine the limits of malaria transmission globally and nationally. Here, we construct Plasmodium falciparum risk maps for Bangladesh for 2007 at a scale enabling the malaria-control bodies to more accurately define the needs of the program. A comprehensive malaria-prevalence survey (N = 9,750 individuals; N = 354 communities) was carried out in 2007 across the regions of Bangladesh known to be endemic for malaria. Data were corrected to a standard age range of 2 to less than 10 years. Bayesian geostatistical logistic regression models with environmental covariates were used to predict P. falciparum prevalence for 2- to 10-year-old children (PfPR(2-10)) across the endemic areas of Bangladesh. The predictions were combined with gridded population data to estimate the number of individuals living in different endemicity classes. Across the endemic areas, the average PfPR(2-10) was 3.8%. Environmental variables selected for prediction were vegetation cover, minimum temperature, and elevation. Model validation statistics revealed that the final Bayesian geostatistical model had good predictive ability. Risk maps generated from the model showed a heterogeneous distribution of PfPR(2-10) ranging from 0.5% to 50%; 3.1 million people were estimated to be living in areas with a PfPR(2-10) greater than 1%. Contemporary GIS and model-based geostatistics can be used to interpolate malaria risk in Bangladesh. Importantly, malaria risk was found to be highly varied across the endemic regions, necessitating the targeting of resources to reduce the burden in these areas.
Bayesian network approach for modeling local failure in lung cancer
Oh, Jung Hun; Craft, Jeffrey; Al-Lozi, Rawan; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O; Bradley, Jeffrey D; Naqa, Issam El
2011-01-01
Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins’ role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which is comprised of clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogenous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients. PMID:21335651
Modelling of population dynamics of red king crab using Bayesian approach
Directory of Open Access Journals (Sweden)
Bakanev Sergey ...
2012-10-01
Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management
A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...
Nonparametric Bayesian inference of the microcanonical stochastic block model
Peixoto, Tiago P.
2017-01-01
A principled approach to characterize the hidden modular structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.
Bayesian geostatistical modeling of Malaria Indicator Survey data in Angola.
Directory of Open Access Journals (Sweden)
Laura Gosoniu
Full Text Available The 2006-2007 Angola Malaria Indicator Survey (AMIS is the first nationally representative household survey in the country assessing coverage of the key malaria control interventions and measuring malaria-related burden among children under 5 years of age. In this paper, the Angolan MIS data were analyzed to produce the first smooth map of parasitaemia prevalence based on contemporary nationwide empirical data in the country. Bayesian geostatistical models were fitted to assess the effect of interventions after adjusting for environmental, climatic and socio-economic factors. Non-linear relationships between parasitaemia risk and environmental predictors were modeled by categorizing the covariates and by employing two non-parametric approaches, the B-splines and the P-splines. The results of the model validation showed that the categorical model was able to better capture the relationship between parasitaemia prevalence and the environmental factors. Model fit and prediction were handled within a Bayesian framework using Markov chain Monte Carlo (MCMC simulations. Combining estimates of parasitaemia prevalence with the number of children under we obtained estimates of the number of infected children in the country. The population-adjusted prevalence ranges from in Namibe province to in Malanje province. The odds of parasitaemia in children living in a household with at least ITNs per person was by 41% lower (CI: 14%, 60% than in those with fewer ITNs. The estimates of the number of parasitaemic children produced in this paper are important for planning and implementing malaria control interventions and for monitoring the impact of prevention and control activities.
An examination of disparities in cancer incidence in Texas using Bayesian random coefficient models
Directory of Open Access Journals (Sweden)
Corey Sparks
2015-09-01
Full Text Available Disparities in cancer risk exist between ethnic groups in the United States. These disparities often result from differential access to healthcare, differences in socioeconomic status and differential exposure to carcinogens. This study uses cancer incidence data from the population based Texas Cancer Registry to investigate the disparities in digestive and respiratory cancers from 2000 to 2008. A Bayesian hierarchical regression approach is used. All models are fit using the INLA method of Bayesian model estimation. Specifically, a spatially varying coefficient model of the disparity between Hispanic and Non-Hispanic incidence is used. Results suggest that a spatio-temporal heterogeneity model best accounts for the observed Hispanic disparity in cancer risk. Overall, there is a significant disadvantage for the Hispanic population of Texas with respect to both of these cancers, and this disparity varies significantly over space. The greatest disparities between Hispanics and Non-Hispanics in digestive and respiratory cancers occur in eastern Texas, with patterns emerging as early as 2000 and continuing until 2008.
Thermodynamic Model of Spatial Memory
Kaufman, Miron; Allen, P.
1998-03-01
We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.
Japanese Dairy Cattle Productivity Analysis using Bayesian Network Model (BNM
Directory of Open Access Journals (Sweden)
Iqbal Ahmed
2016-11-01
Full Text Available Japanese Dairy Cattle Productivity Analysis is carried out based on Bayesian Network Model (BNM. Through the experiment with 280 Japanese anestrus Holstein dairy cow, it is found that the estimation for finding out the presence of estrous cycle using BNM represents almost 55% accuracy while considering all samples. On the contrary, almost 73% accurate estimation could be achieved while using suspended likelihood in sample datasets. Moreover, while the proposed BNM model have more confidence then the estimation accuracy is lies in between 93 to 100%. In addition, this research also reveals the optimum factors to find out the presence of estrous cycle among the 270 individual dairy cows. The objective estimation methods using BNM definitely lead a unique idea to overcome the error of subjective estimation of having estrous cycle among these Japanese dairy cattle.
A Bayesian model of context-sensitive value attribution.
Rigoli, Francesco; Friston, Karl J; Martinelli, Cristina; Selaković, Mirjana; Shergill, Sukhwinder S; Dolan, Raymond J
2016-06-22
Substantial evidence indicates that incentive value depends on an anticipation of rewards within a given context. However, the computations underlying this context sensitivity remain unknown. To address this question, we introduce a normative (Bayesian) account of how rewards map to incentive values. This assumes that the brain inverts a model of how rewards are generated. Key features of our account include (i) an influence of prior beliefs about the context in which rewards are delivered (weighted by their reliability in a Bayes-optimal fashion), (ii) the notion that incentive values correspond to precision-weighted prediction errors, (iii) and contextual information unfolding at different hierarchical levels. This formulation implies that incentive value is intrinsically context-dependent. We provide empirical support for this model by showing that incentive value is influenced by context variability and by hierarchically nested contexts. The perspective we introduce generates new empirical predictions that might help explaining psychopathologies, such as addiction.
Bayesian selection of nucleotide substitution models and their site assignments.
Wu, Chieh-Hsi; Suchard, Marc A; Drummond, Alexei J
2013-03-01
Probabilistic inference of a phylogenetic tree from molecular sequence data is predicated on a substitution model describing the relative rates of change between character states along the tree for each site in the multiple sequence alignment. Commonly, one assumes that the substitution model is homogeneous across sites within large partitions of the alignment, assigns these partitions a priori, and then fixes their underlying substitution model to the best-fitting model from a hierarchy of named models. Here, we introduce an automatic model selection and model averaging approach within a Bayesian framework that simultaneously estimates the number of partitions, the assignment of sites to partitions, the substitution model for each partition, and the uncertainty in these selections. This new approach is implemented as an add-on to the BEAST 2 software platform. We find that this approach dramatically improves the fit of the nucleotide substitution model compared with existing approaches, and we show, using a number of example data sets, that as many as nine partitions are required to explain the heterogeneity in nucleotide substitution process across sites in a single gene analysis. In some instances, this improved modeling of the substitution process can have a measurable effect on downstream inference, including the estimated phylogeny, relative divergence times, and effective population size histories.
Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand; Manchón, Carles Navarro; Badiu, Mihai Alin;
2015-01-01
In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued m......In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex...
Feng, Jie; Tomassetti, Nicola; Oliva, Alberto
2016-12-01
The AMS-02 experiment has reported a new measurement of the antiproton/proton ratio in Galactic cosmic rays (CRs). In the energy range E ˜60 - 450 GeV , this ratio is found to be remarkably constant. Using recent data on CR proton, helium, and carbon fluxes, 10Be/9Be and B/C ratios, we have performed a global Bayesian analysis based on a Markov chain Monte Carlo sampling algorithm under a "two halo model" of CR propagation. In this model, CRs are allowed to experience a different type of diffusion when they propagate in the region close to the Galactic disk. We found that the vertical extent of this region is about 900 pc above and below the disk, and the corresponding diffusion coefficient scales with energy as D ∝E0.15 , describing well the observations on primary CR spectra, secondary/primary ratios, and anisotropy. Under this model, we have carried out improved calculations of antiparticle spectra arising from secondary CR production and their corresponding uncertainties. We made use of Monte Carlo generators and accelerator data to assess the antiproton production cross sections and their uncertainties. While the positron excess requires the contribution of additional unknown sources, we found that the new AMS-02 antiproton data are consistent, within the estimated uncertainties, with our calculations based on secondary production.
Feng, Jie; Oliva, Alberto
2016-01-01
The AMS-02 experiment has reported a new measurement of the antiproton/proton ratio in Galactic cosmic rays (CRs). In the energy range $E\\sim\\,$60-450 GeV, this ratio is found to be remarkably constant. Using recent data on CR proton, helium, carbon, 10Be/9Be, and B/C ratio, we have performed a global Bayesian analysis based on a Markov-Chain Monte-Carlo sampling algorithm under a "two halo model" of CR propagation. In this model, CRs are allowed to experience a different type of diffusion when they propagate in the region close of the Galactic disk. We found that the vertical extent of this region is about 900 pc above and below the disk, and the corresponding diffusion coefficient scales with energy as $D\\sim\\,E^{0.15}$, describing well the observations on primary CR spectra, secondary/primary ratios and anisotropy. Under this model we have carried out improved calculations of antiparticle spectra arising from secondary CR production and their corresponding uncertainties. We made use of Monte-Carlo generato...
Diagnosing Hybrid Systems: a Bayesian Model Selection Approach
McIlraith, Sheila A.
2005-01-01
In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.
Modeling for spatial multilevel structural data
Min, Suqin; He, Xiaoqun
2013-03-01
The traditional multilevel model assumed independence between groups. However, the datasets grouped by geographical units often has spatial dependence. The individual is influenced not only by its region but also by the adjacent regions, and level-2 residual distribution assumption of traditional multilevel model is violated. In order to deal with such spatial multilevel data, we introduce spatial statistics and spatial econometric models into multilevel model, and apply spatial parameters and adjacency matrix in traditional level-2 model to reflect the spatial autocorrelation. Spatial lag model express spatial effects. We build spatial multilevel model which consider both multilevel thinking and spatial correlation.
a Bayesian Synthesis of Predictions from Different Models for Setting Water Quality Criteria
Arhonditsis, G. B.; Ecological Modelling Laboratory
2011-12-01
Skeptical views of the scientific value of modelling argue that there is no true model of an ecological system, but rather several adequate descriptions of different conceptual basis and structure. In this regard, rather than picking the single "best-fit" model to predict future system responses, we can use Bayesian model averaging to synthesize the forecasts from different models. Hence, by acknowledging that models from different areas of the complexity spectrum have different strengths and weaknesses, the Bayesian model averaging is an appealing approach to improve the predictive capacity and to overcome the ambiguity surrounding the model selection or the risk of basing ecological forecasts on a single model. Our study addresses this question using a complex ecological model, developed by Ramin et al. (2011; Environ Modell Softw 26, 337-353) to guide the water quality criteria setting process in the Hamilton Harbour (Ontario, Canada), along with a simpler plankton model that considers the interplay among phosphate, detritus, and generic phytoplankton and zooplankton state variables. This simple approach is more easily subjected to detailed sensitivity analysis and also has the advantage of fewer unconstrained parameters. Using Markov Chain Monte Carlo simulations, we calculate the relative mean standard error to assess the posterior support of the two models from the existing data. Predictions from the two models are then combined using the respective standard error estimates as weights in a weighted model average. The model averaging approach is used to examine the robustness of predictive statements made from our earlier work regarding the response of Hamilton Harbour to the different nutrient loading reduction strategies. The two eutrophication models are then used in conjunction with the SPAtially Referenced Regressions On Watershed attributes (SPARROW) watershed model. The Bayesian nature of our work is used: (i) to alleviate problems of spatiotemporal
Ursino, Mauro; Cuppini, Cristiano; Magosso, Elisa
2017-03-01
Recent theoretical and experimental studies suggest that in multisensory conditions, the brain performs a near-optimal Bayesian estimate of external events, giving more weight to the more reliable stimuli. However, the neural mechanisms responsible for this behavior, and its progressive maturation in a multisensory environment, are still insufficiently understood. The aim of this letter is to analyze this problem with a neural network model of audiovisual integration, based on probabilistic population coding-the idea that a population of neurons can encode probability functions to perform Bayesian inference. The model consists of two chains of unisensory neurons (auditory and visual) topologically organized. They receive the corresponding input through a plastic receptive field and reciprocally exchange plastic cross-modal synapses, which encode the spatial co-occurrence of visual-auditory inputs. A third chain of multisensory neurons performs a simple sum of auditory and visual excitations. The work includes a theoretical part and a computer simulation study. We show how a simple rule for synapse learning (consisting of Hebbian reinforcement and a decay term) can be used during training to shrink the receptive fields and encode the unisensory likelihood functions. Hence, after training, each unisensory area realizes a maximum likelihood estimate of stimulus position (auditory or visual). In cross-modal conditions, the same learning rule can encode information on prior probability into the cross-modal synapses. Computer simulations confirm the theoretical results and show that the proposed network can realize a maximum likelihood estimate of auditory (or visual) positions in unimodal conditions and a Bayesian estimate, with moderate deviations from optimality, in cross-modal conditions. Furthermore, the model explains the ventriloquism illusion and, looking at the activity in the multimodal neurons, explains the automatic reweighting of auditory and visual inputs
Kim, J.; Kwon, H. H.
2014-12-01
The existing regional frequency analysis has disadvantages in that it is difficult to consider geographical characteristics in estimating areal rainfall. In this regard, This study aims to develop a hierarchical Bayesian model based regional frequency analysis in that spatial patterns of the design rainfall with geographical information are explicitly incorporated. This study assumes that the parameters of Gumbel distribution are a function of geographical characteristics (e.g. altitude, latitude and longitude) within a general linear regression framework. Posterior distributions of the regression parameters are estimated by Bayesian Markov Chain Monte Calro (MCMC) method, and the identified functional relationship is used to spatially interpolate the parameters of the Gumbel distribution by using digital elevation models (DEM) as inputs. The proposed model is applied to derive design rainfalls over the entire Han-river watershed. It was found that the proposed Bayesian regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis. In addition, the model showed an advantage in terms of quantifying uncertainty of the design rainfall and estimating the area rainfall considering geographical information. Acknowledgement: This research was supported by a grant (14AWMP-B079364-01) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Directory of Open Access Journals (Sweden)
Canty Angelo
2007-09-01
Full Text Available Abstract Background This study compares the Bayesian and frequentist (non-Bayesian approaches in the modelling of the association between the risk of preterm birth and maternal proximity to hazardous waste and pollution from the Sydney Tar Pond site in Nova Scotia, Canada. Methods The data includes 1604 observed cases of preterm birth out of a total population of 17559 at risk of preterm birth from 144 enumeration districts in the Cape Breton Regional Municipality. Other covariates include the distance from the Tar Pond; the rate of unemployment to population; the proportion of persons who are separated, divorced or widowed; the proportion of persons who have no high school diploma; the proportion of persons living alone; the proportion of single parent families and average income. Bayesian hierarchical Poisson regression, quasi-likelihood Poisson regression and weighted linear regression models were fitted to the data. Results The results of the analyses were compared together with their limitations. Conclusion The results of the weighted linear regression and the quasi-likelihood Poisson regression agrees with the result from the Bayesian hierarchical modelling which incorporates the spatial effects.
Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl; Møller, Jesper
2007-01-01
Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice, and they ex......Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...
Bayesian network models for error detection in radiotherapy plans.
Kalet, Alan M; Gennari, John H; Ford, Eric C; Phillips, Mark H
2015-04-07
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network's conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Directory of Open Access Journals (Sweden)
Oliver Ratmann
Full Text Available A key priority in infectious disease research is to understand the ecological and evolutionary drivers of viral diseases from data on disease incidence as well as viral genetic and antigenic variation. We propose using a simulation-based, Bayesian method known as Approximate Bayesian Computation (ABC to fit and assess phylodynamic models that simulate pathogen evolution and ecology against summaries of these data. We illustrate the versatility of the method by analyzing two spatial models describing the phylodynamics of interpandemic human influenza virus subtype A(H3N2. The first model captures antigenic drift phenomenologically with continuously waning immunity, and the second epochal evolution model describes the replacement of major, relatively long-lived antigenic clusters. Combining features of long-term surveillance data from The Netherlands with features of influenza A (H3N2 hemagglutinin gene sequences sampled in northern Europe, key phylodynamic parameters can be estimated with ABC. Goodness-of-fit analyses reveal that the irregularity in interannual incidence and H3N2's ladder-like hemagglutinin phylogeny are quantitatively only reproduced under the epochal evolution model within a spatial context. However, the concomitant incidence dynamics result in a very large reproductive number and are not consistent with empirical estimates of H3N2's population level attack rate. These results demonstrate that the interactions between the evolutionary and ecological processes impose multiple quantitative constraints on the phylodynamic trajectories of influenza A(H3N2, so that sequence and surveillance data can be used synergistically. ABC, one of several data synthesis approaches, can easily interface a broad class of phylodynamic models with various types of data but requires careful calibration of the summaries and tolerance parameters.
Evidence on Features of a DSGE Business Cycle Model from Bayesian Model Averaging
R.W. Strachan (Rodney); H.K. van Dijk (Herman)
2012-01-01
textabstractThe empirical support for features of a Dynamic Stochastic General Equilibrium model with two technology shocks is valuated using Bayesian model averaging over vector autoregressions. The model features include equilibria, restrictions on long-run responses, a structural break of unknown
Bayesian modeling of ChIP-chip data using latent variables.
Wu, Mingqi
2009-10-26
BACKGROUND: The ChIP-chip technology has been used in a wide range of biomedical studies, such as identification of human transcription factor binding sites, investigation of DNA methylation, and investigation of histone modifications in animals and plants. Various methods have been proposed in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden Markov model-based methods, and Bayesian methods. Although, due to the integrated consideration of uncertainty of the models and model parameters, Bayesian methods can potentially work better than the other two classes of methods, the existing Bayesian methods do not perform satisfactorily. They usually require multiple replicates or some extra experimental information to parametrize the model, and long CPU time due to involving of MCMC simulations. RESULTS: In this paper, we propose a Bayesian latent model for the ChIP-chip data. The new model mainly differs from the existing Bayesian models, such as the joint deconvolution model, the hierarchical gamma mixture model, and the Bayesian hierarchical model, in two respects. Firstly, it works on the difference between the averaged treatment and control samples. This enables the use of a simple model for the data, which avoids the probe-specific effect and the sample (control/treatment) effect. As a consequence, this enables an efficient MCMC simulation of the posterior distribution of the model, and also makes the model more robust to the outliers. Secondly, it models the neighboring dependence of probes by introducing a latent indicator vector. A truncated Poisson prior distribution is assumed for the latent indicator variable, with the rationale being justified at length. CONCLUSION: The Bayesian latent method is successfully applied to real and ten simulated datasets, with comparisons with some of the existing Bayesian methods, hidden Markov model methods, and sliding window methods. The numerical results indicate that the
Designing and testing inflationary models with Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics
2015-11-15
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Designing and testing inflationary models with Bayesian networks
Price, Layne C; Frazer, Jonathan; Easther, Richard
2015-01-01
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Directory of Open Access Journals (Sweden)
Da Lin
2015-01-01
Full Text Available This paper presents a novel classification method for high-spatial-resolution satellite scene classification introducing Bayesian information criterion (BIC-based feature filtering process to further eliminate opaque and redundant information between multiple features. Firstly, two diverse and complementary feature descriptors are extracted to characterize the satellite scene. Then, sparse canonical correlation analysis (SCCA with penalty function is employed to fuse the extracted feature descriptors and remove the ambiguities and redundancies between them simultaneously. After that, a two-phase Bayesian information criterion (BIC-based feature filtering process is designed to further filter out redundant information. In the first phase, we gradually impose a constraint via an iterative process to set a constraint on the loadings for averting sparse correlation descending below to a lower confidence limit of the approximated canonical correlation. In the second phase, Bayesian information criterion (BIC is utilized to conduct the feature filtering which sets the smallest loading in absolute value to zero in each iteration for all features. Lastly, a support vector machine with pyramid match kernel is applied to obtain the final result. Experimental results on high-spatial-resolution satellite scenes demonstrate that the suggested approach achieves satisfactory performance in classification accuracy.
Bridging groundwater models and decision support with a Bayesian network
Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert
2013-01-01
Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.
A Bayesian approach to the spatial representation of market structure from consumer choice data
DeSarbo, WS; Wedel, M; Fong, DKH
1998-01-01
This paper is concerned with the spatial representation of market structure calibrated on actual or intended choice data. Previous models developed for that purpose accommodate consumer heterogeneity by estimating parameters for each consumer, typically using the method of maximum likelihood. This a
Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.
Directory of Open Access Journals (Sweden)
Ta-Chien Chan
Full Text Available BACKGROUND: For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty. METHODS AND FINDINGS: Based on the Bayesian posterior probability of influenza-like illness (ILI visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits. CONCLUSIONS: This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.
West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.
2010-01-01
A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…
Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng
2007-01-01
The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…
Bayesian CMB foreground separation with a correlated log-normal model
Oppermann, Niels
2014-01-01
The extraction of foreground and CMB maps from multi-frequency observations relies mostly on the different frequency behavior of the different components. Existing Bayesian methods additionally make use of a Gaussian prior for the CMB whose correlation structure is described by an unknown angular power spectrum. We argue for the natural extension of this by using non-trivial priors also for the foreground components. Focusing on diffuse Galactic foregrounds, we propose a log-normal model including unknown spatial correlations within each component and cross-correlations between the different foreground components. We present case studies at low resolution that demonstrate the superior performance of this model when compared to an analysis with flat priors for all components.
Bayesian Multiscale Modeling of Closed Curves in Point Clouds.
Gu, Kelvin; Pati, Debdeep; Dunson, David B
2014-10-01
Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model's latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a 'central curve' that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem.
Bayesian Face Sketch Synthesis.
Wang, Nannan; Gao, Xinbo; Sun, Leiyu; Li, Jie
2017-03-01
Exemplar-based face sketch synthesis has been widely applied to both digital entertainment and law enforcement. In this paper, we propose a Bayesian framework for face sketch synthesis, which provides a systematic interpretation for understanding the common properties and intrinsic difference in different methods from the perspective of probabilistic graphical models. The proposed Bayesian framework consists of two parts: the neighbor selection model and the weight computation model. Within the proposed framework, we further propose a Bayesian face sketch synthesis method. The essential rationale behind the proposed Bayesian method is that we take the spatial neighboring constraint between adjacent image patches into consideration for both aforementioned models, while the state-of-the-art methods neglect the constraint either in the neighbor selection model or in the weight computation model. Extensive experiments on the Chinese University of Hong Kong face sketch database demonstrate that the proposed Bayesian method could achieve superior performance compared with the state-of-the-art methods in terms of both subjective perceptions and objective evaluations.
A High Performance Bayesian Computing Framework for Spatiotemporal Uncertainty Modeling
Cao, G.
2015-12-01
All types of spatiotemporal measurements are subject to uncertainty. With spatiotemporal data becomes increasingly involved in scientific research and decision making, it is important to appropriately model the impact of uncertainty. Quantitatively modeling spatiotemporal uncertainty, however, is a challenging problem considering the complex dependence and dataheterogeneities.State-space models provide a unifying and intuitive framework for dynamic systems modeling. In this paper, we aim to extend the conventional state-space models for uncertainty modeling in space-time contexts while accounting for spatiotemporal effects and data heterogeneities. Gaussian Markov Random Field (GMRF) models, also known as conditional autoregressive models, are arguably the most commonly used methods for modeling of spatially dependent data. GMRF models basically assume that a geo-referenced variable primarily depends on its neighborhood (Markov property), and the spatial dependence structure is described via a precision matrix. Recent study has shown that GMRFs are efficient approximation to the commonly used Gaussian fields (e.g., Kriging), and compared with Gaussian fields, GMRFs enjoy a series of appealing features, such as fast computation and easily accounting for heterogeneities in spatial data (e.g, point and areal). This paper represents each spatial dataset as a GMRF and integrates them into a state-space form to statistically model the temporal dynamics. Different types of spatial measurements (e.g., categorical, count or continuous), can be accounted for by according link functions. A fast alternative to MCMC framework, so-called Integrated Nested Laplace Approximation (INLA), was adopted for model inference.Preliminary case studies will be conducted to showcase the advantages of the described framework. In the first case, we apply the proposed method for modeling the water table elevation of Ogallala aquifer over the past decades. In the second case, we analyze the
Bayesian Calibration of the Community Land Model using Surrogates
Energy Technology Data Exchange (ETDEWEB)
Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Sargsyan, K.; Swiler, Laura P.
2015-01-01
We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditioned on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that accurate surrogate models can be created for CLM in most cases. The posterior distributions lead to better prediction than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters’ distributions significantly. The structural error model reveals a correlation time-scale which can potentially be used to identify physical processes that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.
Bayesian calibration of the Community Land Model using surrogates
Energy Technology Data Exchange (ETDEWEB)
Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Swiler, Laura Painton
2014-02-01
We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.
Rings, J.; Vrugt, J.A.; Schoups, G.; Huisman, J.A.; Vereecken, H.
2012-01-01
Bayesian model averaging (BMA) is a standard method for combining predictive distributions from different models. In recent years, this method has enjoyed widespread application and use in many fields of study to improve the spread-skill relationship of forecast ensembles. The BMA predictive probabi
Rings, J.; Vrugt, J.A.; Schoups, G.; Huisman, J.A.; Vereecken, H.
2012-01-01
Bayesian model averaging (BMA) is a standard method for combining predictive distributions from different models. In recent years, this method has enjoyed widespread application and use in many fields of study to improve the spread-skill relationship of forecast ensembles. The BMA predictive probabi
In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) were combined to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT). In this hybrid method, several SWAT models with different structures are first selected; next GA i...
A Bayesian spatio-temporal geostatistical model with an auxiliary lattice for large datasets
Xu, Ganggang
2015-01-01
When spatio-temporal datasets are large, the computational burden can lead to failures in the implementation of traditional geostatistical tools. In this paper, we propose a computationally efficient Bayesian hierarchical spatio-temporal model in which the spatial dependence is approximated by a Gaussian Markov random field (GMRF) while the temporal correlation is described using a vector autoregressive model. By introducing an auxiliary lattice on the spatial region of interest, the proposed method is not only able to handle irregularly spaced observations in the spatial domain, but it is also able to bypass the missing data problem in a spatio-temporal process. Because the computational complexity of the proposed Markov chain Monte Carlo algorithm is of the order O(n) with n the total number of observations in space and time, our method can be used to handle very large spatio-temporal datasets with reasonable CPU times. The performance of the proposed model is illustrated using simulation studies and a dataset of precipitation data from the coterminous United States.
Bayesian nonparametric centered random effects models with variable selection.
Yang, Mingan
2013-03-01
In a linear mixed effects model, it is common practice to assume that the random effects follow a parametric distribution such as a normal distribution with mean zero. However, in the case of variable selection, substantial violation of the normality assumption can potentially impact the subset selection and result in poor interpretation and even incorrect results. In nonparametric random effects models, the random effects generally have a nonzero mean, which causes an identifiability problem for the fixed effects that are paired with the random effects. In this article, we focus on a Bayesian method for variable selection. We characterize the subject-specific random effects nonparametrically with a Dirichlet process and resolve the bias simultaneously. In particular, we propose flexible modeling of the conditional distribution of the random effects with changes across the predictor space. The approach is implemented using a stochastic search Gibbs sampler to identify subsets of fixed effects and random effects to be included in the model. Simulations are provided to evaluate and compare the performance of our approach to the existing ones. We then apply the new approach to a real data example, cross-country and interlaboratory rodent uterotrophic bioassay.
Bayesian-based Project Monitoring: Framework Development and Model Testing
Directory of Open Access Journals (Sweden)
Budi Hartono
2015-12-01
Full Text Available During project implementation, risk becomes an integral part of project monitoring. Therefore. a tool that could dynamically include elements of risk in project progress monitoring is needed. This objective of this study is to develop a general framework that addresses such a concern. The developed framework consists of three interrelated major building blocks, namely: Risk Register (RR, Bayesian Network (BN, and Project Time Networks (PTN for dynamic project monitoring. RR is used to list and to categorize identified project risks. PTN is utilized for modeling the relationship between project activities. BN is used to reflect the interdependence among risk factors and to bridge RR and PTN. A residential development project is chosen as a working example and the result shows that the proposed framework has been successfully applied. The specific model of the development project is also successfully developed and is used to monitor the project progress. It is shown in this study that the proposed BN-based model provides superior performance in terms of forecast accuracy compared to the extant models.
A Bayesian model for the analysis of transgenerational epigenetic variation.
Varona, Luis; Munilla, Sebastián; Mouresan, Elena Flavia; González-Rodríguez, Aldemar; Moreno, Carlos; Altarriba, Juan
2015-01-23
Epigenetics has become one of the major areas of biological research. However, the degree of phenotypic variability that is explained by epigenetic processes still remains unclear. From a quantitative genetics perspective, the estimation of variance components is achieved by means of the information provided by the resemblance between relatives. In a previous study, this resemblance was described as a function of the epigenetic variance component and a reset coefficient that indicates the rate of dissipation of epigenetic marks across generations. Given these assumptions, we propose a Bayesian mixed model methodology that allows the estimation of epigenetic variance from a genealogical and phenotypic database. The methodology is based on the development of a T: matrix of epigenetic relationships that depends on the reset coefficient. In addition, we present a simple procedure for the calculation of the inverse of this matrix ( T-1: ) and a Gibbs sampler algorithm that obtains posterior estimates of all the unknowns in the model. The new procedure was used with two simulated data sets and with a beef cattle database. In the simulated populations, the results of the analysis provided marginal posterior distributions that included the population parameters in the regions of highest posterior density. In the case of the beef cattle dataset, the posterior estimate of transgenerational epigenetic variability was very low and a model comparison test indicated that a model that did not included it was the most plausible.
Ershadi, Ali
2013-05-01
The influence of uncertainty in land surface temperature, air temperature, and wind speed on the estimation of sensible heat flux is analyzed using a Bayesian inference technique applied to the Surface Energy Balance System (SEBS) model. The Bayesian approach allows for an explicit quantification of the uncertainties in input variables: a source of error generally ignored in surface heat flux estimation. An application using field measurements from the Soil Moisture Experiment 2002 is presented. The spatial variability of selected input meteorological variables in a multitower site is used to formulate the prior estimates for the sampling uncertainties, and the likelihood function is formulated assuming Gaussian errors in the SEBS model. Land surface temperature, air temperature, and wind speed were estimated by sampling their posterior distribution using a Markov chain Monte Carlo algorithm. Results verify that Bayesian-inferred air temperature and wind speed were generally consistent with those observed at the towers, suggesting that local observations of these variables were spatially representative. Uncertainties in the land surface temperature appear to have the strongest effect on the estimated sensible heat flux, with Bayesian-inferred values differing by up to ±5°C from the observed data. These differences suggest that the footprint of the in situ measured land surface temperature is not representative of the larger-scale variability. As such, these measurements should be used with caution in the calculation of surface heat fluxes and highlight the importance of capturing the spatial variability in the land surface temperature: particularly, for remote sensing retrieval algorithms that use this variable for flux estimation.
Iskandar, Ismed; Satria Gondokaryono, Yudi
2016-02-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range
Bayesian modelling of compositional heterogeneity in molecular phylogenetics.
Heaps, Sarah E; Nye, Tom M W; Boys, Richard J; Williams, Tom A; Embley, T Martin
2014-10-01
In molecular phylogenetics, standard models of sequence evolution generally assume that sequence composition remains constant over evolutionary time. However, this assumption is violated in many datasets which show substantial heterogeneity in sequence composition across taxa. We propose a model which allows compositional heterogeneity across branches, and formulate the model in a Bayesian framework. Specifically, the root and each branch of the tree is associated with its own composition vector whilst a global matrix of exchangeability parameters applies everywhere on the tree. We encourage borrowing of strength between branches by developing two possible priors for the composition vectors: one in which information can be exchanged equally amongst all branches of the tree and another in which more information is exchanged between neighbouring branches than between distant branches. We also propose a Markov chain Monte Carlo (MCMC) algorithm for posterior inference which uses data augmentation of substitutional histories to yield a simple complete data likelihood function that factorises over branches and allows Gibbs updates for most parameters. Standard phylogenetic models are not informative about the root position. Therefore a significant advantage of the proposed model is that it allows inference about rooted trees. The position of the root is fundamental to the biological interpretation of trees, both for polarising trait evolution and for establishing the order of divergence among lineages. Furthermore, unlike some other related models from the literature, inference in the model we propose can be carried out through a simple MCMC scheme which does not require problematic dimension-changing moves. We investigate the performance of the model and priors in analyses of two alignments for which there is strong biological opinion about the tree topology and root position.
Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.
Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A
2017-01-18
Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd.
Bayesian network model of crowd emotion and negative behavior
Ramli, Nurulhuda; Ghani, Noraida Abdul; Hatta, Zulkarnain Ahmad; Hashim, Intan Hashimah Mohd; Sulong, Jasni; Mahudin, Nor Diana Mohd; Rahman, Shukran Abd; Saad, Zarina Mat
2014-12-01
The effects of overcrowding have become a major concern for event organizers. One aspect of this concern has been the idea that overcrowding can enhance the occurrence of serious incidents during events. As one of the largest Muslim religious gathering attended by pilgrims from all over the world, Hajj has become extremely overcrowded with many incidents being reported. The purpose of this study is to analyze the nature of human emotion and negative behavior resulting from overcrowding during Hajj events from data gathered in Malaysian Hajj Experience Survey in 2013. The sample comprised of 147 Malaysian pilgrims (70 males and 77 females). Utilizing a probabilistic model called Bayesian network, this paper models the dependence structure between different emotions and negative behaviors of pilgrims in the crowd. The model included the following variables of emotion: negative, negative comfortable, positive, positive comfortable and positive spiritual and variables of negative behaviors; aggressive and hazardous acts. The study demonstrated that emotions of negative, negative comfortable, positive spiritual and positive emotion have a direct influence on aggressive behavior whereas emotion of negative comfortable, positive spiritual and positive have a direct influence on hazardous acts behavior. The sensitivity analysis showed that a low level of negative and negative comfortable emotions leads to a lower level of aggressive and hazardous behavior. Findings of the study can be further improved to identify the exact cause and risk factors of crowd-related incidents in preventing crowd disasters during the mass gathering events.
A Bayesian Generative Model for Learning Semantic Hierarchies
Directory of Open Access Journals (Sweden)
Roni eMittelman
2014-05-01
Full Text Available Building fine-grained visual recognition systems that are capable of recognizing tens of thousands of categories, has received much attention in recent years. The well known semantic hierarchical structure of categories and concepts, has been shown to provide a key prior which allows for optimal predictions. The hierarchical organization of various domains and concepts has been subject to extensive research, and led to the development of the WordNet domains hierarchy [18], which was also used to organize the images in the ImageNet [11] dataset, in which the category count approaches the human capacity. Still, for the human visual system, the form of the hierarchy must be discovered with minimal use of supervision or innate knowledge. In this work, we propose a new Bayesian generative model for learning such domain hierarchies, based on semantic input. Our model is motivated by the super-subordinate organization of domain labels and concepts that characterizes WordNet, and accounts for several important challenges: maintaining context information when progressing deeper into the hierarchy, learning a coherent semantic concept for each node, and modeling uncertainty in the perception process.
Institute of Scientific and Technical Information of China (English)
HU Zhao-yong
2005-01-01
Engineering diagnosis is essential to the operation of industrial equipment. The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesian network is a powerful tool for it. This paper utilizes the Bayesian network to represent and reason diagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologic structure based on operating conditions, possible faults and corresponding symptoms. The paper also discusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gas turbine diagnosis is constructed on a platform developed under a Visual C++ environment. It shows that the Bayesian network is a powerful model for representation and reasoning of diagnostic knowledge. The three-layer structure and the approximate algorithm are effective also.
Abdelkrim Moussaoui; Yacine Selaimia; Hadj A. Abbassi
2006-01-01
The authors discuss the combination of an Artificial Neural Network (ANN) with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capa...
Bayesian inference for partially identified models exploring the limits of limited data
Gustafson, Paul
2015-01-01
Introduction Identification What Is against Us? What Is for Us? Some Simple Examples of Partially Identified ModelsThe Road Ahead The Structure of Inference in Partially Identified Models Bayesian Inference The Structure of Posterior Distributions in PIMs Computational Strategies Strength of Bayesian Updating, Revisited Posterior MomentsCredible Intervals Evaluating the Worth of Inference Partial Identification versus Model Misspecification The Siren Call of Identification Comp
Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model
Stow, Craig A.; Scavia, Donald
2009-02-01
Quantifying parameter and prediction uncertainty in a rigorous framework can be an important component of model skill assessment. Generally, models with lower uncertainty will be more useful for prediction and inference than models with higher uncertainty. Ensemble estimation, an idea with deep roots in the Bayesian literature, can be useful to reduce model uncertainty. It is based on the idea that simultaneously estimating common or similar parameters among models can result in more precise estimates. We demonstrate this approach using the Streeter-Phelps dissolved oxygen sag model fit to 29 years of data from Chesapeake Bay. Chesapeake Bay has a long history of bottom water hypoxia and several models are being used to assist management decision-making in this system. The Bayesian framework is particularly useful in a decision context because it can combine both expert-judgment and rigorous parameter estimation to yield model forecasts and a probabilistic estimate of the forecast uncertainty.
Greiner, Matthias; Smid, Joost; Havelaar, Arie H; Müller-Graf, Christine
2013-05-15
Quantitative microbiological risk assessment (QMRA) models are used to reflect knowledge about complex real-world scenarios for the propagation of microbiological hazards along the feed and food chain. The aim is to provide insight into interdependencies among model parameters, typically with an interest to characterise the effect of risk mitigation measures. A particular requirement is to achieve clarity about the reliability of conclusions from the model in the presence of uncertainty. To this end, Monte Carlo (MC) simulation modelling has become a standard in so-called probabilistic risk assessment. In this paper, we elaborate on the application of Bayesian computational statistics in the context of QMRA. It is useful to explore the analogy between MC modelling and Bayesian inference (BI). This pertains in particular to the procedures for deriving prior distributions for model parameters. We illustrate using a simple example that the inability to cope with feedback among model parameters is a major limitation of MC modelling. However, BI models can be easily integrated into MC modelling to overcome this limitation. We refer a BI submodel integrated into a MC model to as a "Bayes domain". We also demonstrate that an entire QMRA model can be formulated as Bayesian graphical model (BGM) and discuss the advantages of this approach. Finally, we show example graphs of MC, BI and BGM models, highlighting the similarities among the three approaches.
Macroscopic Models of Clique Tree Growth for Bayesian Networks
National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...
Emulation Modeling with Bayesian Networks for Efficient Decision Support
Fienen, M. N.; Masterson, J.; Plant, N. G.; Gutierrez, B. T.; Thieler, E. R.
2012-12-01
Bayesian decision networks (BDN) have long been used to provide decision support in systems that require explicit consideration of uncertainty; applications range from ecology to medical diagnostics and terrorism threat assessments. Until recently, however, few studies have applied BDNs to the study of groundwater systems. BDNs are particularly useful for representing real-world system variability by synthesizing a range of hydrogeologic situations within a single simulation. Because BDN output is cast in terms of probability—an output desired by decision makers—they explicitly incorporate the uncertainty of a system. BDNs can thus serve as a more efficient alternative to other uncertainty characterization methods such as computationally demanding Monte Carlo analyses and others methods restricted to linear model analyses. We present a unique application of a BDN to a groundwater modeling analysis of the hydrologic response of Assateague Island, Maryland to sea-level rise. Using both input and output variables of the modeled groundwater response to different sea-level (SLR) rise scenarios, the BDN predicts the probability of changes in the depth to fresh water, which exerts an important influence on physical and biological island evolution. Input variables included barrier-island width, maximum island elevation, and aquifer recharge. The variability of these inputs and their corresponding outputs are sampled along cross sections in a single model run to form an ensemble of input/output pairs. The BDN outputs, which are the posterior distributions of water table conditions for the sea-level rise scenarios, are evaluated through error analysis and cross-validation to assess both fit to training data and predictive power. The key benefit for using BDNs in groundwater modeling analyses is that they provide a method for distilling complex model results into predictions with associated uncertainty, which is useful to decision makers. Future efforts incorporate
A Spatial Model for the Instantaneous Estimation of Wind Power at a Large Number of Unobserved Sites
DEFF Research Database (Denmark)
Lenzi, Amanda; Guillot, Gilles; Pinson, Pierre
2015-01-01
We propose a hierarchical Bayesian spatial model to obtain predictive densities of wind power at a set of un-monitored locations. The model consists of a mixture of Gamma density for the non-zero values and degenerated distributions at zero. The spatial dependence is described through a common Ga...
Energy Technology Data Exchange (ETDEWEB)
Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.
A Tutorial Introduction to Bayesian Models of Cognitive Development
2011-01-01
Bayesian reasoner in the long run (de Finetti , 1937). Even if the Bayesian framework captures optimal inductive inference, does that mean it is an...Johns Hopkins University Press. de Finetti , B. (1937). Prevision, its logical laws, its subjective sources. In H. Kyburg & H. Smokler (Eds.), In...studies in subjective probability (2nd ed.). New York: J. Wiley and Sons. de Finetti , B. (1974). Theory of probability (2nd ed.). New York: J. Wiley and
Frystacky, H.; Osorio-Murillo, C. A.; Over, M. W.; Kalbacher, T.; Gunnell, D.; Kolditz, O.; Ames, D.; Rubin, Y.
2013-12-01
The Method of Anchored Distributions (MAD) is a Bayesian technique for characterizing the uncertainty in geostatistical model parameters. Open-source software has been developed in a modular framework such that this technique can be applied to any forward model software via a driver. This presentation is about the driver that has been developed for OpenGeoSys (OGS), open-source software that can simulate many hydrogeological processes, including couple processes. MAD allows the use of multiple data types for conditioning the spatially random fields and assessing model parameter likelihood. For example, if simulating flow and mass transport, the inversion target variable could be hydraulic conductivity and the inversion data types could be head, concentration, or both. The driver detects from the OGS files which processes and variables are being used in a given project and allows MAD to prompt the user to choose those that are to be modeled or to be treated deterministically. In this way, any combination of processes allowed by OGS can have MAD applied. As for the software, there are two versions, each with its own OGS driver. A Windows desktop version is available as a graphical user interface and is ideal for the learning and teaching environment. High-throughput computing can even be achieved with this version via HTCondor if large projects want to be pursued in a computer lab. In addition to this desktop application, a Linux version is available equipped with MPI such that it can be run in parallel on a computer cluster. All releases can be downloaded from the MAD Codeplex site given below.
A Bayesian model of category-specific emotional brain responses.
Directory of Open Access Journals (Sweden)
Tor D Wager
2015-04-01
Full Text Available Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories--fear, anger, disgust, sadness, or happiness--is engaged by a study with 66% accuracy (43-86% across categories. Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a differential patterns of involvement in neocortical systems that differ between humans and other species, and (b distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches.
Competition in spatial location models
Webers, H.M.
1996-01-01
Models of spatial competition are designed and analyzed to describe the fact that space, by its very nature, is a source of market power. This field of research, lying at the interface of game theory and economics, has attracted much interest because location problems are related to many aspects of
Reliability assessment using degradation models: bayesian and classical approaches
Directory of Open Access Journals (Sweden)
Marta Afonso Freitas
2010-04-01
Full Text Available Traditionally, reliability assessment of devices has been based on (accelerated life tests. However, for highly reliable products, little information about reliability is provided by life tests in which few or no failures are typically observed. Since most failures arise from a degradation mechanism at work for which there are characteristics that degrade over time, one alternative is monitor the device for a period of time and assess its reliability from the changes in performance (degradation observed during that period. The goal of this article is to illustrate how degradation data can be modeled and analyzed by using "classical" and Bayesian approaches. Four methods of data analysis based on classical inference are presented. Next we show how Bayesian methods can also be used to provide a natural approach to analyzing degradation data. The approaches are applied to a real data set regarding train wheels degradation.Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados. Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser modelados e analisados utilizando-se abordagens "clássicas" e Bayesiana. Quatro métodos de análise de dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens.
DEFF Research Database (Denmark)
Quinonero, Joaquin; Girard, Agathe; Larsen, Jan
2003-01-01
The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models such as the Gaus....... The capability of the method is demonstrated for forecasting of time-series and compared to approximate methods.......The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models...... such as the Gaussian process and the relevance vector machine. We derive novel analytic expressions for the predictive mean and variance for Gaussian kernel shapes under the assumption of a Gaussian input distribution in the static case, and of a recursive Gaussian predictive density in iterative forecasting...
Modern methodology and applications in spatial-temporal modeling
Matsui, Tomoko
2015-01-01
This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component an...
A hierarchical model for spatial capture-recapture data
Royle, J. Andrew; Young, K.V.
2008-01-01
Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.
DEFF Research Database (Denmark)
Sabuncu, Mert R.; Van Leemput, Koen
2012-01-01
This paper presents the relevance voxel machine (RVoxM), a dedicated Bayesian model for making predictions based on medical imaging data. In contrast to the generic machine learning algorithms that have often been used for this purpose, the method is designed to utilize a small number of spatially...... clustered sets of voxels that are particularly suited for clinical interpretation. RVoxM automatically tunes all its free parameters during the training phase, and offers the additional advantage of producing probabilistic prediction outcomes. We demonstrate RVoxM as a regression model by predicting age...
Dimension Reduction and Alleviation of Confounding for Spatial Generalized Linear Mixed Models
Hughes, John
2010-01-01
Non-gaussian spatial data are very common in many disciplines. For instance, count data are common in disease mapping, and binary data are common in ecology. When fitting spatial regressions for such data, one needs to account for dependence to ensure reliable inference for the regression coefficients. The spatial generalized linear mixed model (SGLMM) offers a very popular and flexible approach to modeling such data, but the SGLMM suffers from three major shortcomings: (1) uninterpretability of parameters due to spatial confounding, (2) variance inflation due to spatial confounding, and (3) high-dimensional spatial random effects that make fully Bayesian inference for such models computationally challenging. We propose a new parameterization of the SGLMM that alleviates spatial confounding and speeds computation by greatly reducing the dimension of the spatial random effects. We illustrate the application of our approach to simulated binary, count, and Gaussian spatial datasets, and to a large infant mortali...
Bayesian Safety Risk Modeling of Human-Flightdeck Automation Interaction
Ancel, Ersin; Shih, Ann T.
2015-01-01
Usage of automatic systems in airliners has increased fuel efficiency, added extra capabilities, enhanced safety and reliability, as well as provide improved passenger comfort since its introduction in the late 80's. However, original automation benefits, including reduced flight crew workload, human errors or training requirements, were not achieved as originally expected. Instead, automation introduced new failure modes, redistributed, and sometimes increased workload, brought in new cognitive and attention demands, and increased training requirements. Modern airliners have numerous flight modes, providing more flexibility (and inherently more complexity) to the flight crew. However, the price to pay for the increased flexibility is the need for increased mode awareness, as well as the need to supervise, understand, and predict automated system behavior. Also, over-reliance on automation is linked to manual flight skill degradation and complacency in commercial pilots. As a result, recent accidents involving human errors are often caused by the interactions between humans and the automated systems (e.g., the breakdown in man-machine coordination), deteriorated manual flying skills, and/or loss of situational awareness due to heavy dependence on automated systems. This paper describes the development of the increased complexity and reliance on automation baseline model, named FLAP for FLightdeck Automation Problems. The model development process starts with a comprehensive literature review followed by the construction of a framework comprised of high-level causal factors leading to an automation-related flight anomaly. The framework was then converted into a Bayesian Belief Network (BBN) using the Hugin Software v7.8. The effects of automation on flight crew are incorporated into the model, including flight skill degradation, increased cognitive demand and training requirements along with their interactions. Besides flight crew deficiencies, automation system
A Bayesian network model for predicting aquatic toxicity mode ...
The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the data set with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2% with a R2 of 0.959. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally
Scalable Bayesian modeling, monitoring and analysis of dynamic network flow data
2016-01-01
Traffic flow count data in networks arise in many applications, such as automobile or aviation transportation, certain directed social network contexts, and Internet studies. Using an example of Internet browser traffic flow through site-segments of an international news website, we present Bayesian analyses of two linked classes of models which, in tandem, allow fast, scalable and interpretable Bayesian inference. We first develop flexible state-space models for streaming count data, able to...
Improving in situ data acquisition using training images and a Bayesian mixture model
Abdollahifard, Mohammad Javad; Mariethoz, Gregoire; Pourfard, Mohammadreza
2016-06-01
Estimating the spatial distribution of physical processes using a minimum number of samples is of vital importance in earth science applications where sampling is costly. In recent years, training image-based methods have received a lot of attention for interpolation and simulation. However, training images have never been employed to optimize spatial sampling process. In this paper, a sequential compressive sampling method is presented which decides the location of new samples based on a training image. First, a Bayesian mixture model is developed based on the training patterns. Then, using this model, unknown values are estimated based on a limited number of random samples. Since the model is probabilistic, it allows estimating local uncertainty conditionally to the available samples. Based on this, new samples are sequentially extracted from the locations with maximum uncertainty. Experiments show that compared to a random sampling strategy, the proposed supervised sampling method significantly reduces the number of samples needed to achieve the same level of accuracy, even when the training image is not optimally chosen. The method has the potential to reduce the number of observations necessary for the characterization of environmental processes.
Bayesian network as a modelling tool for risk management in agriculture
DEFF Research Database (Denmark)
Rasmussen, Svend; Madsen, Anders L.; Lund, Mogens
. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions......The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools...
Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas
2012-01-01
1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.
Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation
Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.
2012-12-01
This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.
Xu, Yadong; Serre, Marc L; Reyes, Jeanette; Vizuete, William
2016-04-19
To improve ozone exposure estimates for ambient concentrations at a national scale, we introduce our novel Regionalized Air Quality Model Performance (RAMP) approach to integrate chemical transport model (CTM) predictions with the available ozone observations using the Bayesian Maximum Entropy (BME) framework. The framework models the nonlinear and nonhomoscedastic relation between air pollution observations and CTM predictions and for the first time accounts for variability in CTM model performance. A validation analysis using only noncollocated data outside of a validation radius rv was performed and the R(2) between observations and re-estimated values for two daily metrics, the daily maximum 8-h average (DM8A) and the daily 24-h average (D24A) ozone concentrations, were obtained with the OBS scenario using ozone observations only in contrast with the RAMP and a Constant Air Quality Model Performance (CAMP) scenarios. We show that, by accounting for the spatial and temporal variability in model performance, our novel RAMP approach is able to extract more information in terms of R(2) increase percentage, with over 12 times for the DM8A and over 3.5 times for the D24A ozone concentrations, from CTM predictions than the CAMP approach assuming that model performance does not change across space and time.
Bayesian parameter inference and model selection by population annealing in systems biology.
Murakami, Yohei
2014-01-01
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named "posterior parameter ensemble". We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor.
Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements
Energy Technology Data Exchange (ETDEWEB)
Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.
2014-12-01
As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.
Comparison of Bayesian and Classical Analysis of Weibull Regression Model: A Simulation Study
Directory of Open Access Journals (Sweden)
İmran KURT ÖMÜRLÜ
2011-01-01
Full Text Available Objective: The purpose of this study was to compare performances of classical Weibull Regression Model (WRM and Bayesian-WRM under varying conditions using Monte Carlo simulations. Material and Methods: It was simulated the generated data by running for each of classical WRM and Bayesian-WRM under varying informative priors and sample sizes using our simulation algorithm. In simulation studies, n=50, 100 and 250 were for sample sizes, and informative prior values using a normal prior distribution with was selected for b1. For each situation, 1000 simulations were performed. Results: Bayesian-WRM with proper informative prior showed a good performance with too little bias. It was found out that bias of Bayesian-WRM increased while priors were becoming distant from reliability in all sample sizes. Furthermore, Bayesian-WRM obtained predictions with more little standard error than the classical WRM in both of small and big samples in the light of proper priors. Conclusion: In this simulation study, Bayesian-WRM showed better performance than classical method, when subjective data analysis performed by considering of expert opinions and historical knowledge about parameters. Consequently, Bayesian-WRM should be preferred in existence of reliable informative priors, in the contrast cases, classical WRM should be preferred.
Wheeler, David C.; Calder, Catherine A.
2007-06-01
The realization in the statistical and geographical sciences that a relationship between an explanatory variable and a response variable in a linear regression model is not always constant across a study area has led to the development of regression models that allow for spatially varying coefficients. Two competing models of this type are geographically weighted regression (GWR) and Bayesian regression models with spatially varying coefficient processes (SVCP). In the application of these spatially varying coefficient models, marginal inference on the regression coefficient spatial processes is typically of primary interest. In light of this fact, there is a need to assess the validity of such marginal inferences, since these inferences may be misleading in the presence of explanatory variable collinearity. In this paper, we present the results of a simulation study designed to evaluate the sensitivity of the spatially varying coefficients in the competing models to various levels of collinearity. The simulation study results show that the Bayesian regression model produces more accurate inferences on the regression coefficients than does GWR. In addition, the Bayesian regression model is overall fairly robust in terms of marginal coefficient inference to moderate levels of collinearity, and degrades less substantially than GWR with strong collinearity.
A Bayesian hierarchical model for accident and injury surveillance.
MacNab, Ying C
2003-01-01
This article presents a recent study which applies Bayesian hierarchical methodology to model and analyse accident and injury surveillance data. A hierarchical Poisson random effects spatio-temporal model is introduced and an analysis of inter-regional variations and regional trends in hospitalisations due to motor vehicle accident injuries to boys aged 0-24 in the province of British Columbia, Canada, is presented. The objective of this article is to illustrate how the modelling technique can be implemented as part of an accident and injury surveillance and prevention system where transportation and/or health authorities may routinely examine accidents, injuries, and hospitalisations to target high-risk regions for prevention programs, to evaluate prevention strategies, and to assist in health planning and resource allocation. The innovation of the methodology is its ability to uncover and highlight important underlying structure of the data. Between 1987 and 1996, British Columbia hospital separation registry registered 10,599 motor vehicle traffic injury related hospitalisations among boys aged 0-24 who resided in British Columbia, of which majority (89%) of the injuries occurred to boys aged 15-24. The injuries were aggregated by three age groups (0-4, 5-14, and 15-24), 20 health regions (based of place-of-residence), and 10 calendar years (1987 to 1996) and the corresponding mid-year population estimates were used as 'at risk' population. An empirical Bayes inference technique using penalised quasi-likelihood estimation was implemented to model both rates and counts, with spline smoothing accommodating non-linear temporal effects. The results show that (a) crude rates and ratios at health region level are unstable, (b) the models with spline smoothing enable us to explore possible shapes of injury trends at both the provincial level and the regional level, and (c) the fitted models provide a wealth of information about the patterns (both over space and time
Applications of Bayesian approach in modelling risk of malaria-related hospital mortality
Directory of Open Access Journals (Sweden)
Simbeye Jupiter S
2008-02-01
Full Text Available Abstract Background Malaria is a major public health problem in Malawi, however, quantifying its burden in a population is a challenge. Routine hospital data provide a proxy for measuring the incidence of severe malaria and for crudely estimating morbidity rates. Using such data, this paper proposes a method to describe trends, patterns and factors associated with in-hospital mortality attributed to the disease. Methods We develop semiparametric regression models which allow joint analysis of nonlinear effects of calendar time and continuous covariates, spatially structured variation, unstructured heterogeneity, and other fixed covariates. Modelling and inference use the fully Bayesian approach via Markov Chain Monte Carlo (MCMC simulation techniques. The methodology is applied to analyse data arising from paediatric wards in Zomba district, Malawi, between 2002 and 2003. Results and Conclusion We observe that the risk of dying in hospital is lower in the dry season, and for children who travel a distance of less than 5 kms to the hospital, but increases for those who are referred to the hospital. The results also indicate significant differences in both structured and unstructured spatial effects, and the health facility effects reveal considerable differences by type of facility or practice. More importantly, our approach shows non-linearities in the effect of metrical covariates on the probability of dying in hospital. The study emphasizes that the methodological framework used provides a useful tool for analysing the data at hand and of similar structure.
Bayesian Network Based Fault Prognosis via Bond Graph Modeling of High-Speed Railway Traction Device
Directory of Open Access Journals (Sweden)
Yunkai Wu
2015-01-01
component-level faults accurately for a high-speed railway traction system, a fault prognosis approach via Bayesian network and bond graph modeling techniques is proposed. The inherent structure of a railway traction system is represented by bond graph model, based on which a multilayer Bayesian network is developed for fault propagation analysis and fault prediction. For complete and incomplete data sets, two different parameter learning algorithms such as Bayesian estimation and expectation maximization (EM algorithm are adopted to determine the conditional probability table of the Bayesian network. The proposed prognosis approach using Pearl’s polytree propagation algorithm for joint probability reasoning can predict the failure probabilities of leaf nodes based on the current status of root nodes. Verification results in a high-speed railway traction simulation system can demonstrate the effectiveness of the proposed approach.
Inherently irrational? A computational model of escalation of commitment as Bayesian Updating.
Gilroy, Shawn P; Hantula, Donald A
2016-06-01
Monte Carlo simulations were performed to analyze the degree to which two-, three- and four-step learning histories of losses and gains correlated with escalation and persistence in extended extinction (continuous loss) conditions. Simulated learning histories were randomly generated at varying lengths and compositions and warranted probabilities were determined using Bayesian Updating methods. Bayesian Updating predicted instances where particular learning sequences were more likely to engender escalation and persistence under extinction conditions. All simulations revealed greater rates of escalation and persistence in the presence of heterogeneous (e.g., both Wins and Losses) lag sequences, with substantially increased rates of escalation when lags comprised predominantly of losses were followed by wins. These methods were then applied to human investment choices in earlier experiments. The Bayesian Updating models corresponded with data obtained from these experiments. These findings suggest that Bayesian Updating can be utilized as a model for understanding how and when individual commitment may escalate and persist despite continued failures.
Gelman, Andrew; Stern, Hal S; Dunson, David B; Vehtari, Aki; Rubin, Donald B
2013-01-01
FUNDAMENTALS OF BAYESIAN INFERENCEProbability and InferenceSingle-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian ApproachesHierarchical ModelsFUNDAMENTALS OF BAYESIAN DATA ANALYSISModel Checking Evaluating, Comparing, and Expanding ModelsModeling Accounting for Data Collection Decision AnalysisADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional ApproximationsREGRESSION MODELS Introduction to Regression Models Hierarchical Linear
Applied Bayesian Hierarchical Methods
Congdon, Peter D
2010-01-01
Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.
Directory of Open Access Journals (Sweden)
Abel Palafox
2014-01-01
Full Text Available We address a prototype inverse scattering problem in the interface of applied mathematics, statistics, and scientific computing. We pose the acoustic inverse scattering problem in a Bayesian inference perspective and simulate from the posterior distribution using MCMC. The PDE forward map is implemented using high performance computing methods. We implement a standard Bayesian model selection method to estimate an effective number of Fourier coefficients that may be retrieved from noisy data within a standard formulation.
Directory of Open Access Journals (Sweden)
Mihaela Simionescu
2014-12-01
Full Text Available There are many types of econometric models used in predicting the inflation rate, but in this study we used a Bayesian shrinkage combination approach. This methodology is used in order to improve the predictions accuracy by including information that is not captured by the econometric models. Therefore, experts’ forecasts are utilized as prior information, for Romania these predictions being provided by Institute for Economic Forecasting (Dobrescu macromodel, National Commission for Prognosis and European Commission. The empirical results for Romanian inflation show the superiority of a fixed effects model compared to other types of econometric models like VAR, Bayesian VAR, simultaneous equations model, dynamic model, log-linear model. The Bayesian combinations that used experts’ predictions as priors, when the shrinkage parameter tends to infinite, improved the accuracy of all forecasts based on individual models, outperforming also zero and equal weights predictions and naïve forecasts.
Van Nguyen, Linh; Chainais, Pierre
2015-01-01
The study of turbulent flows calls for measurements with high resolution both in space and in time. We propose a new approach to reconstruct High-Temporal-High-Spatial resolution velocity fields by combining two sources of information that are well-resolved either in space or in time, the Low-Temporal-High-Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS) resolution measurements. In the framework of co-conception between sensing and data post-processing, this work extensively investigates a Bayesian reconstruction approach using a simulated database. A Bayesian fusion model is developed to solve the inverse problem of data reconstruction. The model uses a Maximum A Posteriori estimate, which yields the most probable field knowing the measurements. The DNS of a wall-bounded turbulent flow at moderate Reynolds number is used to validate and assess the performances of the present approach. Low resolution measurements are subsampled in time and space from the fully resolved data. Reconstructed velocities ar...
Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W
2007-07-01
Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.
Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants
Jin, Ick Hoon
2014-03-01
Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis. © 2012 Elsevier B.V. All rights reserved.
Model Criticism of Bayesian Networks with Latent Variables.
Williamson, David M.; Mislevy, Robert J.; Almond, Russell G.
This study investigated statistical methods for identifying errors in Bayesian networks (BN) with latent variables, as found in intelligent cognitive assessments. BN, commonly used in artificial intelligence systems, are promising mechanisms for scoring constructed-response examinations. The success of an intelligent assessment or tutoring system…
Bayesian log-periodic model for financial crashes
DEFF Research Database (Denmark)
Rodríguez-Caballero, Carlos Vladimir; Knapik, Oskar
2014-01-01
This paper introduces a Bayesian approach in econophysics literature about financial bubbles in order to estimate the most probable time for a financial crash to occur. To this end, we propose using noninformative prior distributions to obtain posterior distributions. Since these distributions...
Lesaffre, Emmanuel
2012-01-01
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd
Shen, Yanna; Cooper, Gregory F
2012-09-01
This paper investigates Bayesian modeling of known and unknown causes of events in the context of disease-outbreak detection. We introduce a multivariate Bayesian approach that models multiple evidential features of every person in the population. This approach models and detects (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A contribution of this paper is that it introduces a multivariate Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has general applicability in domains where the space of known causes is incomplete.
Energy Technology Data Exchange (ETDEWEB)
Placek, Ben; Knuth, Kevin H. [Physics Department, University at Albany (SUNY), Albany, NY 12222 (United States); Angerhausen, Daniel, E-mail: bplacek@albany.edu, E-mail: kknuth@albany.edu, E-mail: daniel.angerhausen@gmail.com [Department of Physics, Applied Physics, and Astronomy, Rensselear Polytechnic Institute, Troy, NY 12180 (United States)
2014-11-10
EXONEST is an algorithm dedicated to detecting and characterizing the photometric signatures of exoplanets, which include reflection and thermal emission, Doppler boosting, and ellipsoidal variations. Using Bayesian inference, we can test between competing models that describe the data as well as estimate model parameters. We demonstrate this approach by testing circular versus eccentric planetary orbital models, as well as testing for the presence or absence of four photometric effects. In addition to using Bayesian model selection, a unique aspect of EXONEST is the potential capability to distinguish between reflective and thermal contributions to the light curve. A case study is presented using Kepler data recorded from the transiting planet KOI-13b. By considering only the nontransiting portions of the light curve, we demonstrate that it is possible to estimate the photometrically relevant model parameters of KOI-13b. Furthermore, Bayesian model testing confirms that the orbit of KOI-13b has a detectable eccentricity.
A Bayesian hierarchical diffusion model decomposition of performance in Approach-Avoidance Tasks.
Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan
2015-01-01
Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach-Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest.
Placek, Ben; Angerhausen, Daniel
2013-01-01
EXONEST is an algorithm dedicated to detecting and characterizing the photometric signatures of exoplanets, which include reflection and thermal emission, Doppler boosting, and ellipsoidal variations. Using Bayesian Inference, we can test between competing models that describe the data as well as estimate model parameters. We demonstrate this approach by testing circular versus eccentric planetary orbital models, as well as testing for the presence or absence of four photometric effects. In addition to using Bayesian Model Selection, a unique aspect of EXONEST is the capability to distinguish between reflective and thermal contributions to the light curve. A case-study is presented using Kepler data recorded from the transiting planet KOI-13b. By considering only the non-transiting portions of the light curve, we demonstrate that it is possible to estimate the photometrically-relevant model parameters of KOI-13b. Furthermore, Bayesian model testing confirms that the orbit of KOI-13b has a detectable eccentric...
Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel
2014-11-01
EXONEST is an algorithm dedicated to detecting and characterizing the photometric signatures of exoplanets, which include reflection and thermal emission, Doppler boosting, and ellipsoidal variations. Using Bayesian inference, we can test between competing models that describe the data as well as estimate model parameters. We demonstrate this approach by testing circular versus eccentric planetary orbital models, as well as testing for the presence or absence of four photometric effects. In addition to using Bayesian model selection, a unique aspect of EXONEST is the potential capability to distinguish between reflective and thermal contributions to the light curve. A case study is presented using Kepler data recorded from the transiting planet KOI-13b. By considering only the nontransiting portions of the light curve, we demonstrate that it is possible to estimate the photometrically relevant model parameters of KOI-13b. Furthermore, Bayesian model testing confirms that the orbit of KOI-13b has a detectable eccentricity.
Another look at Bayesian analysis of AMMI models for genotype-environment data
Josse, J.; Eeuwijk, van F.A.; Piepho, H.P.; Denis, J.B.
2014-01-01
Linear–bilinear models are frequently used to analyze two-way data such as genotype-by-environment data. A well-known example of this class of models is the additive main effects and multiplicative interaction effects model (AMMI). We propose a new Bayesian treatment of such models offering a proper
Monitoring Murder Crime in Namibia Using Bayesian Space-Time Models
Directory of Open Access Journals (Sweden)
Isak Neema
2012-01-01
Full Text Available This paper focuses on the analysis of murder in Namibia using Bayesian spatial smoothing approach with temporal trends. The analysis was based on the reported cases from 13 regions of Namibia for the period 2002–2006 complemented with regional population sizes. The evaluated random effects include space-time structured heterogeneity measuring the effect of regional clustering, unstructured heterogeneity, time, space and time interaction and population density. The model consists of carefully chosen prior and hyper-prior distributions for parameters and hyper-parameters, with inference conducted using Gibbs sampling algorithm and sensitivity test for model validation. The posterior mean estimate of the parameters from the model using DIC as model selection criteria show that most of the variation in the relative risk of murder is due to regional clustering, while the effect of population density and time was insignificant. The sensitivity analysis indicates that both intrinsic and Laplace CAR prior can be adopted as prior distribution for the space-time heterogeneity. In addition, the relative risk map show risk structure of increasing north-south gradient, pointing to low risk in northern regions of Namibia, while Karas and Khomas region experience long-term increase in murder risk.
Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model
Ellefsen, Karl J.; Smith, David
2016-01-01
Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.
Bayesian data fusion for spatial prediction of categorical variables in environmental sciences
Energy Technology Data Exchange (ETDEWEB)
Gengler, Sarah, E-mail: sarahgengler@gmail.com; Bogaert, Patrick, E-mail: sarahgengler@gmail.com [Earth and Life Institute, Environmental Sciences. Université catholique de Louvain, Croix du Sud 2/L7.05.16, B-1348 Louvain-la-Neuve (Belgium)
2014-12-05
First developed to predict continuous variables, Bayesian Maximum Entropy (BME) has become a complete framework in the context of space-time prediction since it has been extended to predict categorical variables and mixed random fields. This method proposes solutions to combine several sources of data whatever the nature of the information. However, the various attempts that were made for adapting the BME methodology to categorical variables and mixed random fields faced some limitations, as a high computational burden. The main objective of this paper is to overcome this limitation by generalizing the Bayesian Data Fusion (BDF) theoretical framework to categorical variables, which is somehow a simplification of the BME method through the convenient conditional independence hypothesis. The BDF methodology for categorical variables is first described and then applied to a practical case study: the estimation of soil drainage classes using a soil map and point observations in the sandy area of Flanders around the city of Mechelen (Belgium). The BDF approach is compared to BME along with more classical approaches, as Indicator CoKringing (ICK) and logistic regression. Estimators are compared using various indicators, namely the Percentage of Correctly Classified locations (PCC) and the Average Highest Probability (AHP). Although BDF methodology for categorical variables is somehow a simplification of BME approach, both methods lead to similar results and have strong advantages compared to ICK and logistic regression.
Time-series gas prediction model using LS-SVR within a Bayesian framework
Institute of Scientific and Technical Information of China (English)
Qiao Meiying; Ma Xiaoping; Lan Jianyi; Wang Ying
2011-01-01
The traditional least squares support vector regression (LS-SVR) model, using cross validation to determine the regularization parameter and kernel parameter, is time-consuming. We propose a Bayesian evidence framework to infer the LS-SVR model parameters. Three levels Bayesian inferences are used to determine the model parameters, regularization hyper-parameters and tune the nuclear parameters by model comparison. On this basis, we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm. The gas outburst data of a Hebi 10th mine working face is used to validate the model. The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method. Finally, within a MATLAB7.1 environment, we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation. The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast
Bayesian network modeling method based on case reasoning for emergency decision-making
Directory of Open Access Journals (Sweden)
XU Lei
2013-06-01
Full Text Available Bayesian network has the abilities of probability expression, uncertainty management and multi-information fusion.It can support emergency decision-making, which can improve the efficiency of decision-making.Emergency decision-making is highly time sensitive, which requires shortening the Bayesian Network modeling time as far as possible.Traditional Bayesian network modeling methods are clearly unable to meet that requirement.Thus, a Bayesian network modeling method based on case reasoning for emergency decision-making is proposed.The method can obtain optional cases through case matching by the functions of similarity degree and deviation degree.Then,new Bayesian network can be built through case adjustment by case merging and pruning.An example is presented to illustrate and test the proposed method.The result shows that the method does not have a huge search space or need sample data.The only requirement is the collection of expert knowledge and historical case models.Compared with traditional methods, the proposed method can reuse historical case models, which can reduce the modeling time and improve the efficiency.
Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno
2016-01-01
Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.
Multi-scale inference of interaction rules in animal groups using Bayesian model selection.
Mann, Richard P; Perna, Andrea; Strömbom, Daniel; Garnett, Roman; Herbert-Read, James E; Sumpter, David J T; Ward, Ashley J W
2012-01-01
Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.
Multi-scale inference of interaction rules in animal groups using Bayesian model selection.
Directory of Open Access Journals (Sweden)
Richard P Mann
2012-01-01
Full Text Available Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis. We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.
A Bayesian approach to modeling 2D gravity data using polygon states
Titus, W. J.; Titus, S.; Davis, J. R.
2015-12-01
We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.
Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice
Park, Jincheol
2012-04-01
The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation: it requires users to invert a large covariance matrix. This is infeasible when the number of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model completely avoids the requirement of matrix inversion. It is remarkable that the computational complexity of our method is only O(n), where n is the number of observations. Hence, our method can be applied to very large datasets with reasonable computational (CPU) times. The numerical results indicate that our model can approximate Gaussian random fields very well in terms of predictions, even for those with long correlation lengths. For real data examples, our model can generally outperform conventional Gaussian random field models in both prediction errors and CPU times. Supplemental materials for the article are available online. © 2012 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
A Bayesian Surrogate Model for Rapid Time Series Analysis and Application to Exoplanet Observations
Ford, Eric B; Veras, Dimitri
2011-01-01
We present a Bayesian surrogate model for the analysis of periodic or quasi-periodic time series data. We describe a computationally efficient implementation that enables Bayesian model comparison. We apply this model to simulated and real exoplanet observations. We discuss the results and demonstrate some of the challenges for applying our surrogate model to realistic exoplanet data sets. In particular, we find that analyses of real world data should pay careful attention to the effects of uneven spacing of observations and the choice of prior for the "jitter" parameter.
Bayesian data assimilation for stochastic multiscale models of transport in porous media.
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M. (Massachusetts Institute of Technology, Cambridge, MA); van Bloemen Waanders, Bart Gustaaf (Sandia National Laboratories, Albuquerque NM); Parno, Matthew (Massachusetts Institute of Technology, Cambridge, MA); Ray, Jaideep; Lefantzi, Sophia; Salazar, Luke (Sandia National Laboratories, Albuquerque NM); McKenna, Sean Andrew (Sandia National Laboratories, Albuquerque NM); Klise, Katherine A. (Sandia National Laboratories, Albuquerque NM)
2011-10-01
We investigate Bayesian techniques that can be used to reconstruct field variables from partial observations. In particular, we target fields that exhibit spatial structures with a large spectrum of lengthscales. Contemporary methods typically describe the field on a grid and estimate structures which can be resolved by it. In contrast, we address the reconstruction of grid-resolved structures as well as estimation of statistical summaries of subgrid structures, which are smaller than the grid resolution. We perform this in two different ways (a) via a physical (phenomenological), parameterized subgrid model that summarizes the impact of the unresolved scales at the coarse level and (b) via multiscale finite elements, where specially designed prolongation and restriction operators establish the interscale link between the same problem defined on a coarse and fine mesh. The estimation problem is posed as a Bayesian inverse problem. Dimensionality reduction is performed by projecting the field to be inferred on a suitable orthogonal basis set, viz. the Karhunen-Loeve expansion of a multiGaussian. We first demonstrate our techniques on the reconstruction of a binary medium consisting of a matrix with embedded inclusions, which are too small to be grid-resolved. The reconstruction is performed using an adaptive Markov chain Monte Carlo method. We find that the posterior distributions of the inferred parameters are approximately Gaussian. We exploit this finding to reconstruct a permeability field with long, but narrow embedded fractures (which are too fine to be grid-resolved) using scalable ensemble Kalman filters; this also allows us to address larger grids. Ensemble Kalman filtering is then used to estimate the values of hydraulic conductivity and specific yield in a model of the High Plains Aquifer in Kansas. Strong conditioning of the spatial structure of the parameters and the non-linear aspects of the water table aquifer create difficulty for the ensemble Kalman
Emergence of Strange Spatial Pattern in a Spatial Epidemic Model
Institute of Scientific and Technical Information of China (English)
SUN Gui-Quan; JIN Zhen; LIU Quan-Xing; LI Li
2008-01-01
Pattern formation of a spatial epidemic model with nonlinear incidence rate kI2 S/ (1 + αI2) is investigated. Our results show that strange spatial dynamics, i.e., filament-like pattern, can be obtained by both mathematical analysis and numerical simulation, which are different from the previous results in the spatial epidemic model such as stripe-like or spotted or coexistence of both pattern and so on. The obtained results well extend the finding of pattern formation in the epidemic model and may well explain the distribution of the infected of some epidemic.
Directory of Open Access Journals (Sweden)
Moritz eBoos
2016-05-01
Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.
Wheeler, David C.; Waller, Lance A.
2009-03-01
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.
Peter, Benjamin M; Wegmann, Daniel; Excoffier, Laurent
2010-11-01
Although most natural populations are genetically subdivided, they are often analysed as if they were panmictic units. In particular, signals of past demographic size changes are often inferred from genetic data by assuming that the analysed sample is drawn from a population without any internal subdivision. However, it has been shown that a bottleneck signal can result from the presence of some recent immigrants in a population. It thus appears important to contrast these two alternative scenarios in a model choice procedure to prevent wrong conclusions to be made. We use here an Approximate Bayesian Computation (ABC) approach to infer whether observed patterns of genetic diversity in a given sample are more compatible with it being drawn from a panmictic population having gone through some size change, or from one or several demes belonging to a recent finite island model. Simulations show that we can correctly identify samples drawn from a subdivided population in up to 95% of the cases for a wide range of parameters. We apply our model choice procedure to the case of the chimpanzee (Pan troglodytes) and find conclusive evidence that Western and Eastern chimpanzee samples are drawn from a spatially subdivided population.
Truth, models, model sets, AIC, and multimodel inference: a Bayesian perspective
Barker, Richard J.; Link, William A.
2015-01-01
Statistical inference begins with viewing data as realizations of stochastic processes. Mathematical models provide partial descriptions of these processes; inference is the process of using the data to obtain a more complete description of the stochastic processes. Wildlife and ecological scientists have become increasingly concerned with the conditional nature of model-based inference: what if the model is wrong? Over the last 2 decades, Akaike's Information Criterion (AIC) has been widely and increasingly used in wildlife statistics for 2 related purposes, first for model choice and second to quantify model uncertainty. We argue that for the second of these purposes, the Bayesian paradigm provides the natural framework for describing uncertainty associated with model choice and provides the most easily communicated basis for model weighting. Moreover, Bayesian arguments provide the sole justification for interpreting model weights (including AIC weights) as coherent (mathematically self consistent) model probabilities. This interpretation requires treating the model as an exact description of the data-generating mechanism. We discuss the implications of this assumption, and conclude that more emphasis is needed on model checking to provide confidence in the quality of inference.
Bayesian modelling of the emission spectrum of the JET Li-BES system
Kwak, Sehyun; Brix, M; Ghim, Y -c; Contributors, JET
2015-01-01
A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy (Li-BES) system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The p...
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.
Pope, A.; Gimblett, R.
2013-12-01
Interdependencies of ecologic, hydrologic, and social systems challenge traditional approaches to natural resource management in semi-arid regions. As a complex social-ecological system, water demands in the Sonoran Desert from agricultural and urban users often conflicts with water needs for its ecologically-significant riparian corridors. To explore this system, we developed an agent-based model to simulate complex feedbacks between human decisions and environmental conditions. Cognitive mapping in conjunction with stakeholder participation produced a Bayesian model of conditional probabilities of local human decision-making processes resulting to changes in water demand. Probabilities created in the Bayesian model were incorporated into the agent-based model, so that each agent had a unique probability to make a positive decision based on its perceived environment at each point in time and space. By using a Bayesian approach, uncertainty in the human decision-making process could be incorporated. The spatially-explicit agent-based model simulated changes in depth-to-groundwater by well pumping based on an agent's water demand. Depth-to-groundwater was then used as an indicator of unique vegetation guilds within the riparian corridor. Each vegetation guild provides varying levels of ecosystem services, the changes of which, along with changes in depth-to-groundwater, feedback to influence agent behavior. Using this modeling approach allowed us to examine resilience of semi-arid riparian corridors and agent behavior under various scenarios. The insight provided by the model contributes to understanding how specific interventions may alter the complex social-ecological system in the future.
Directory of Open Access Journals (Sweden)
Aloah J Pope
2015-08-01
Full Text Available Interdependencies of ecologic, hydrologic, and social systems challenge traditional approaches to natural resource management in semi-arid regions. As a complex social-ecological system, water demands in the Sonoran Desert from agricultural and urban users often conflicts with water needs for its ecologically-significant riparian corridors. To explore this system, we developed an agent-based model to simulate complex feedbacks between human decisions and environmental conditions in the Rio Sonora Watershed. Cognitive mapping in conjunction with stakeholder participation produced a Bayesian model of conditional probabilities of local human decision-making processes resulting to changes in water demand. Probabilities created in the Bayesian model were incorporated into the agent-based model, so that each agent had a unique probability to make a positive decision based on its perceived environment at each point in time and space. By using a Bayesian approach, uncertainty in the human decision-making process could be incorporated. The spatially-explicit agent-based model simulated changes in depth-to-groundwater by well pumping based on an agent’s water demand. Changes in depth-to-groundwater feedback to influence agent behavior, as well as determine unique vegetation classes within the riparian corridor. Each vegetation class then provides varying stakeholder-defined quality values of ecosystem services. Using this modeling approach allowed us to examine effects on both the ecological and social system of semi-arid riparian corridors under various scenarios. The insight provided by the model contributes to understanding how specific interventions may alter the complex social-ecological system in the future.
Directory of Open Access Journals (Sweden)
Che Wan Jasimah bt Wan Mohamed Radzi
2016-11-01
Full Text Available Several factors may influence children’s lifestyle. The main purpose of this study is to introduce a children’s lifestyle index framework and model it based on structural equation modeling (SEM with Maximum likelihood (ML and Bayesian predictors. This framework includes parental socioeconomic status, household food security, parental lifestyle, and children’s lifestyle. The sample for this study involves 452 volunteer Chinese families with children 7–12 years old. The experimental results are compared in terms of root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error metrics. An analysis of the proposed causal model suggests there are multiple significant interconnections among the variables of interest. According to both Bayesian and ML techniques, the proposed framework illustrates that parental socioeconomic status and parental lifestyle strongly impact children’s lifestyle. The impact of household food security on children’s lifestyle is rejected. However, there is a strong relationship between household food security and both parental socioeconomic status and parental lifestyle. Moreover, the outputs illustrate that the Bayesian prediction model has a good fit with the data, unlike the ML approach. The reasons for this discrepancy between ML and Bayesian prediction are debated and potential advantages and caveats with the application of the Bayesian approach in future studies are discussed.
Owens Chantelle J; Owusu-Edusei Kwame
2009-01-01
Abstract Background Chlamydia continues to be the most prevalent disease in the United States. Effective spatial monitoring of chlamydia incidence is important for successful implementation of control and prevention programs. The objective of this study is to apply Bayesian smoothing and exploratory spatial data analysis (ESDA) methods to monitor Texas county-level chlamydia incidence rates by examining spatiotemporal patterns. We used county-level data on chlamydia incidence (for all ages, g...
Directory of Open Access Journals (Sweden)
J. P. Werner
2014-12-01
Full Text Available Reconstructions of late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurement on tree rings, ice cores, and varved lake sediments. Considerable advances may be achievable if time uncertain proxies could be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches to accounting for time uncertainty are generally limited to repeating the reconstruction using each of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here we demonstrate how Bayesian Hierarchical climate reconstruction models can be augmented to account for time uncertain proxies. Critically, while a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age-model probabilities decreases uncertainty in the climate reconstruction, as compared with the current de-facto standard of sampling over all age models, provided there is sufficient information from other data sources in the region of the time-uncertain proxy. This approach can readily be generalized to non-layer counted proxies, such as those derived from marine sediments.
Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling
Knowles, David
2010-01-01
A nonparametric Bayesian extension of Factor Analysis (FA) is proposed where observed data Y is modeled as a linear superposition, G, of a potentially infinite number of hidden factors, X. The Indian Buffet Process (IBP) is used as a prior on G to incorporate sparsity and to allow the number of latent features to be inferred. The model's utility for modeling gene expression data is investigated using randomly generated datasets based on a known sparse connectivity matrix for E. Coli, and on three biological datasets of increasing complexity.
Hierarchical Bayesian Model for Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE)
DEFF Research Database (Denmark)
Stahlhut, Carsten; Mørup, Morten; Winther, Ole;
2009-01-01
In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface, and ele......In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface......, and electrode positions. We first present a hierarchical Bayesian framework for EEG source localization that jointly performs source and forward model reconstruction (SOFOMORE). Secondly, we evaluate the SOFOMORE model by comparison with source reconstruction methods that use fixed forward models. Simulated...... and real EEG data demonstrate that invoking a stochastic forward model leads to improved source estimates....
Tang, An-Min; Tang, Nian-Sheng
2015-02-28
We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.
Lee, Sik-Yum
2012-01-01
This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduce
Planning of O&M for Offfshore Wind Turbines using Bayesian Graphical Models
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
The costs to operation and maintenance (O&M) for offshore wind turbines are large, and riskbased planning of O&M has the potential of reducing these costs. This paper presents how Bayesian graphical models can be used to establish a probabilistic damage model and include data from imperfect...
De Luca, G.; Magnus, J.R.
2011-01-01
This article is concerned with the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals which implement, respectively, the exact Bayesian Model Averaging (BMA) estimator and the Weighted Average Least Squa
Prioritizing Policies for Pro-Poor Growth : Applying Bayesian Model Averaging to Vietnam
Klump, R.; Prüfer, P.
2006-01-01
Pro-Poor Growth (PPG) is the vision of combining high growth rates with poverty reduction.Due to the myriad of possible determinants of growth and poverty a unique theoretical model for guiding empirical work on PPG is absent, though.Bayesian Model Averaging is a statistically robust framework for t
Multi-objective calibration of forecast ensembles using Bayesian model averaging
Vrugt, J.A.; Clark, M.P.; Diks, C.G.H.; Duan, Q.; Robinson, B.A.
2006-01-01
Bayesian Model Averaging (BMA) has recently been proposed as a method for statistical postprocessing of forecast ensembles from numerical weather prediction models. The BMA predictive probability density function (PDF) of any weather quantity of interest is a weighted average of PDFs centered on the
Non-parametric Bayesian graph models reveal community structure in resting state fMRI
DEFF Research Database (Denmark)
Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman
2014-01-01
Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...
DEFF Research Database (Denmark)
Dalgaard, Jens; Pena, Jose; Kocka, Tomas
2004-01-01
We propose a method to assist the user in the interpretation of the best Bayesian network model indu- ced from data. The method consists in extracting relevant features from the model (e.g. edges, directed paths and Markov blankets) and, then, assessing the con¯dence in them by studying multiple...
A Bayesian MCMC method for point process models with intractable normalising constants
DEFF Research Database (Denmark)
Berthelsen, Kasper Klitgaard; Møller, Jesper
2004-01-01
to simulate from the "unknown distribution", perfect simulation algorithms become useful. We illustrate the method in cases whre the likelihood is given by a Markov point process model. Particularly, we consider semi-parametric Bayesian inference in connection to both inhomogeneous Markov point process models...
A Bayesian Multi-Level Factor Analytic Model of Consumer Price Sensitivities across Categories
Duvvuri, Sri Devi; Gruca, Thomas S.
2010-01-01
Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…
Bayesian network models for the management of ventilator-associated pneumonia
Visscher, S.
2008-01-01
The purpose of the research described in this thesis was to develop Bayesian network models for the analysis of patient data, as well as to use such a model as a clinical decision-support system for assisting clinicians in the diagnosis and treatment of ventilator-associated pneumonia (VAP) in mecha
Osei, Frank B.; Duker, Alfred A.; Stein, Alfred
2011-01-01
This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint
Directory of Open Access Journals (Sweden)
Hao Zhang
2016-01-01
Full Text Available Under the increasingly uncertain economic environment, the research on the reliability of urban distribution system has great practical significance for the integration of logistics and supply chain resources. This paper summarizes the factors that affect the city logistics distribution system. Starting from the research of factors that influence the reliability of city distribution system, further construction of city distribution system reliability influence model is built based on Bayesian networks. The complex problem is simplified by using the sub-Bayesian network, and an example is analyzed. In the calculation process, we combined the traditional Bayesian algorithm and the Expectation Maximization (EM algorithm, which made the Bayesian model able to lay a more accurate foundation. The results show that the Bayesian network can accurately reflect the dynamic relationship among the factors affecting the reliability of urban distribution system. Moreover, by changing the prior probability of the node of the cause, the correlation degree between the variables that affect the successful distribution can be calculated. The results have significant practical significance on improving the quality of distribution, the level of distribution, and the efficiency of enterprises.
Directory of Open Access Journals (Sweden)
Entin Hidayah
2011-02-01
Full Text Available Disaggregation of hourly rainfall data is very important to fulfil the input of continual rainfall-runoff model, when the availability of automatic rainfall records are limited. Continual rainfall-runoff modeling requires rainfall data in form of series of hourly. Such specification can be obtained by temporal disaggregation in single site. The paper attempts to generate single-site rainfall model based upon time series (AR1 model by adjusting and establishing dummy procedure. Estimated with Bayesian Markov Chain Monte Carlo (MCMC the objective variable is hourly rainfall depth. Performance of model has been evaluated by comparison of history data and model prediction. The result shows that the model has a good performance for dry interval periods. The performance of the model good represented by smaller number of MAE by 0.21 respectively.
Model Data Fusion: developing Bayesian inversion to constrain equilibrium and mode structure
Hole, M J; Bertram, J; Svensson, J; Appel, L C; Blackwell, B D; Dewar, R L; Howard, J
2010-01-01
Recently, a new probabilistic "data fusion" framework based on Bayesian principles has been developed on JET and W7-AS. The Bayesian analysis framework folds in uncertainties and inter-dependencies in the diagnostic data and signal forward-models, together with prior knowledge of the state of the plasma, to yield predictions of internal magnetic structure. A feature of the framework, known as MINERVA (J. Svensson, A. Werner, Plasma Physics and Controlled Fusion 50, 085022, 2008), is the inference of magnetic flux surfaces without the use of a force balance model. We discuss results from a new project to develop Bayesian inversion tools that aim to (1) distinguish between competing equilibrium theories, which capture different physics, using the MAST spherical tokamak; and (2) test the predictions of MHD theory, particularly mode structure, using the H-1 Heliac.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen
2012-01-01
Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian analysis would also consider all possible alternate values these parameters may take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian segmentation models more accurately by using Monte Carlo sampling. We demonstrate our technique by sampling atlas warps in a recent method for hippocampal subfield segmentation, and show a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the method also yields informative "error bars" on the segmentation results for each of the individual sub-structures.
DEFF Research Database (Denmark)
Iglesias, J. E.; Sabuncu, M. R.; Van Leemput, Koen
2012-01-01
in a recent method for hippocampal subfield segmentation, and show a significant improvement in an Alzheimer’s disease classification task. As an additional benefit, the method also yields informative “error bars” on the segmentation results for each of the individual sub-structures.......Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian...... analysis would also consider all possible alternate values these parameters may take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian segmentation models more accurately by using Monte Carlo sampling. We demonstrate our technique by sampling atlas warps...
Introduction to Bayesian statistics
Bolstad, William M
2017-01-01
There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...
Goring, S.; Williams, J. W.; Blois, J. L.; Jackson, S. T.; Paciorek, C. J.; Booth, R. K.; Marlon, J. R.; Blaauw, M.; Christen, J. A.
2012-08-01
Age-depth relationships in sedimentary archives such as lakes, wetlands and bogs are non-linear with irregular probability distributions associated with calibrated radiocarbon dates. Bayesian approaches are thus well-suited to understanding relationships between age and depth for use in paleoecological studies. Bayesian models for the accumulation of sediment and organic matter within basins combine dated material from one or more records with prior information about the behavior of deposition times (yr/cm) based on expert knowledge. Well-informed priors are essential to good modeling of the age-depth relationship, but are particularly important in cases where data may be sparse (e.g., few radiocarbon dates), or unclear (e.g., age-reversals, coincident dates, age offsets, outliers and dates within a radiocarbon plateau). Here we assessed Holocene deposition times using 204 age-depth models obtained from the Neotoma Paleoecology Database (www.neotomadb.org) for both lacustrine and palustrine environments across the northeastern United States. These age-depth models were augmented using biostratigraphic events identifiable within pollen records from the northeastern United States during the Holocene and late-Pleistocene. Deposition times are significantly related to depositional environment (palustrine and lacustrine), sediment age, and sediment depth. Spatial variables had non-significant relationships with deposition time when site effects were considered. The best-fit model was a generalized additive mixed model that relates deposition time to age, stratified by depositional environment with site as a random factor. The best-fit model accounts for 63.3% of the total deviance in deposition times. The strongly increasing accumulation rates of the last 500-1000 years indicate that gamma distributions describing lacustrine deposition times (α = 1.08, β = 18.28) and palustrine deposition times (α = 1.23, β = 22.32) for the entire Holocene may be insufficient for
A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate
Lima, Carlos H. R.; Kwon, Hyun-Han; Kim, Jin-Young
2016-09-01
The estimation of intensity-duration-frequency (IDF) curves for rainfall data comprises a classical task in hydrology studies to support a variety of water resources projects, including urban drainage and the design of flood control structures. In a changing climate, however, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to poor estimates of rainfall intensity quantiles. Climate change scenarios built on General Circulation Models offer a way to access and estimate future changes in spatial and temporal rainfall patterns at the daily scale at the utmost, which is not as fine temporal resolution as required (e.g. hours) to directly estimate IDF curves. In this paper we propose a novel methodology based on a four-parameter beta distribution to estimate IDF curves conditioned on the observed (or simulated) daily rainfall, which becomes the time-varying upper bound of the updated nonstationary beta distribution. The inference is conducted in a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters when building the IDF curves. The proposed model is tested using rainfall data from four stations located in South Korea and projected climate change Representative Concentration Pathways (RCPs) scenarios 6 and 8.5 from the Met Office Hadley Centre HadGEM3-RA model. The results show that the developed model fits the historical data as good as the traditional Generalized Extreme Value (GEV) distribution but is able to produce future IDF curves that significantly differ from the historically based IDF curves. The proposed model predicts for the stations and RCPs scenarios analysed in this work an increase in the intensity of extreme rainfalls of short duration with long return periods.
Bayesian artificial intelligence
Korb, Kevin B
2010-01-01
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente
Elsheikh, Ahmed H.
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.
Spatial-temporal assessment of climate model drifts
Zanchettin, Davide; Woldeyes Arisido, Maeregu; Gaetan, Carlo; Rubino, Angelo
2016-04-01
Decadal climate forecasts with full-field initialized coupled climate models are affected by a growing error signal that develops due to the adjustment of the simulations from the assimilated state consistent with observations to the state consistent with the biased model's climatology. Sea-surface temperature (SST) drifts and biases are a major concern due to the central role of SST properties for the dynamical coupling between the atmosphere and the ocean, and for the associated variability. Therefore, strong SST drifts complicate the initialization and assessment of decadal climate prediction experiments, and can be detrimental for their overall quality. We propose a dynamic linear model based on a state-space approach and developed within a Bayesian hierarchical framework for probabilistic assessment of spatial and temporal characteristics of SST drifts in ensemble climate simulations. The state-space approach uses unobservable state variables to directly model the processes generating the observed variability. The statistical model is based on a sequential definition of the process having a conditional dependency only on the previous time step, which therefore corresponds to the Kalman filter formulas. In our formulation, the statistical model distinguishes between seasonal and longer-term drift components, and between large-scale and local drifts. We apply the Bayesian method to make inferences on the variance components of the Gaussian errors in both the observation and system equations of the state-space model. To this purpose, we draw samples from their posterior distributions using a Monte Carlo Markov Chain simulation technique with a Gibbs sampler. In this contribution we illustrate a first application of the model using the MiKlip prototype system for decadal climate predictions. We focus on the tropical Atlantic Ocean - a region where climate models are typically affected by a severe warm SST bias - to demonstrate how our approach allows for a more
Risk Forecasting of Karachi Stock Exchange: A Comparison of Classical and Bayesian GARCH Models
Directory of Open Access Journals (Sweden)
Farhat Iqbal
2016-09-01
Full Text Available This paper is concerned with the estimation, forecasting and evaluation of Value-at-Risk (VaR of Karachi Stock Exchange before and after the global financial crisis of 2008 using Bayesian method. The generalized autoregressive conditional heteroscedastic (GARCH models under the assumption of normal and heavy-tailed errors are used to forecast one-day-ahead risk estimates. Various measures and backtesting methods are employed to evaluate VaR forecasts. The observed number of VaR violations using Bayesian method is found close to the expected number of violations. The losses are also found smaller than the competing Maximum Likelihood method. The results showed that the Bayesian method produce accurate and reliable VaR forecasts and can be preferred over other methods.
An object-oriented Bayesian network modeling the causes of leg disorders in finisher herds
DEFF Research Database (Denmark)
Jensen, Tina Birk; Kristensen, Anders Ringgaard; Toft, Nils
2009-01-01
The implementation of an effective control strategy against disease in a finisher herd requires knowledge regarding the disease level in the herd. A Bayesian network was constructed that can estimate risk indexes for three cause-categories of leg disorders in a finisher herd. The cause...... pigs (e.g. results from diagnostic tests) were used to estimate the most likely cause of leg disorders at herd level. As information to the model originated from two different levels, we used an object-oriented structure in order to ease the specification of the Bayesian network. Hence, a Herd class...
Prudhomme, Serge
2015-09-17
Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves.
Directory of Open Access Journals (Sweden)
Gianola Daniel
2007-09-01
Full Text Available Abstract Multivariate linear models are increasingly important in quantitative genetics. In high dimensional specifications, factor analysis (FA may provide an avenue for structuring (covariance matrices, thus reducing the number of parameters needed for describing (codispersion. We describe how FA can be used to model genetic effects in the context of a multivariate linear mixed model. An orthogonal common factor structure is used to model genetic effects under Gaussian assumption, so that the marginal likelihood is multivariate normal with a structured genetic (covariance matrix. Under standard prior assumptions, all fully conditional distributions have closed form, and samples from the joint posterior distribution can be obtained via Gibbs sampling. The model and the algorithm developed for its Bayesian implementation were used to describe five repeated records of milk yield in dairy cattle, and a one common FA model was compared with a standard multiple trait model. The Bayesian Information Criterion favored the FA model.
Bayesian Hierarchical Models to Augment the Mediterranean Forecast System
2012-02-17
Climate, 21, 1891-1910. Berliner, L.M. and C.K. Wikle, 2007: Approximate importance sampling Monte Carlo for data assimilation, Physica D, 230, 37-49...representations for spatial processes, In: Handbook of Spatial Statis- tics, A.Gelfand, P. Diggle, M. Fuentes , P. Guttorp (eds), Chapman and Hall. 107-118. Wikle
A Software Risk Analysis Model Using Bayesian Belief Network
Institute of Scientific and Technical Information of China (English)
Yong Hu; Juhua Chen; Mei Liu; Yang Yun; Junbiao Tang
2006-01-01
The uncertainty during the period of software project development often brings huge risks to contractors and clients. Ifwe can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project, we can reduce the risk.Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we built up network structure by Delphi method for conditional probability table learning, and learn update probability table and nodes' confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately. This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.
Integrated spatial sampling modeling of geospatial data
Institute of Scientific and Technical Information of China (English)
LI Lianfa; WANG Jinfeng
2004-01-01
Spatial sampling is a necessary and important method for extracting geospatial data and its methodology directly affects the geo-analysis results. Counter to the deficiency of separate models of spatial sampling, this article analyzes three crucial elements of spatial sampling (frame, correlation and decision diagram) and induces its general integrated model. The program of Spatial Sampling Integration (SSI) has been developed with Component Object Model (COM) to realize the general integrated model. In two practical applications, i.e. design of the monitoring network of natural disasters and sampling survey of the areas of non-cultivated land, SSI has produced accurate results at less cost, better realizing the cost-effective goal of sampling toward the geo-objects with spatial correlation. The two cases exemplify expanded application and convenient implementation of the general integrated model with inset components in an integrated environment, which can also be extended to other modeling of spatial analysis.
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H
2016-08-01
The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012.
Directory of Open Access Journals (Sweden)
Sarah Depaoli
2015-03-01
Full Text Available Background: After traumatic events, such as disaster, war trauma, and injuries including burns (which is the focus here, the risk to develop posttraumatic stress disorder (PTSD is approximately 10% (Breslau & Davis, 1992. Latent Growth Mixture Modeling can be used to classify individuals into distinct groups exhibiting different patterns of PTSD (Galatzer-Levy, 2015. Currently, empirical evidence points to four distinct trajectories of PTSD patterns in those who have experienced burn trauma. These trajectories are labeled as: resilient, recovery, chronic, and delayed onset trajectories (e.g., Bonanno, 2004; Bonanno, Brewin, Kaniasty, & Greca, 2010; Maercker, Gäbler, O'Neil, Schützwohl, & Müller, 2013; Pietrzak et al., 2013. The delayed onset trajectory affects only a small group of individuals, that is, about 4–5% (O'Donnell, Elliott, Lau, & Creamer, 2007. In addition to its low frequency, the later onset of this trajectory may contribute to the fact that these individuals can be easily overlooked by professionals. In this special symposium on Estimating PTSD trajectories (Van de Schoot, 2015a, we illustrate how to properly identify this small group of individuals through the Bayesian estimation framework using previous knowledge through priors (see, e.g., Depaoli & Boyajian, 2014; Van de Schoot, Broere, Perryck, Zondervan-Zwijnenburg, & Van Loey, 2015. Method: We used latent growth mixture modeling (LGMM (Van de Schoot, 2015b to estimate PTSD trajectories across 4 years that followed a traumatic burn. We demonstrate and compare results from traditional (maximum likelihood and Bayesian estimation using priors (see, Depaoli, 2012, 2013. Further, we discuss where priors come from and how to define them in the estimation process. Results: We demonstrate that only the Bayesian approach results in the desired theory-driven solution of PTSD trajectories. Since the priors are chosen subjectively, we also present a sensitivity analysis of the
A continuous-time Bayesian network reliability modeling and analysis framework
Boudali, H.; Dugan, J.B.
2006-01-01
We present a continuous-time Bayesian network (CTBN) framework for dynamic systems reliability modeling and analysis. Dynamic systems exhibit complex behaviors and interactions between their components; where not only the combination of failure events matters, but so does the sequence ordering of th
Generic form of Bayesian Monte Carlo for models with partial monotonicity
Rajabalinejad, M.; Spitas, C.
2012-01-01
This paper presents a generic method for the safety assessments of models with partial monotonicity. For this purpose, a Bayesian interpolation method is developed and implemented in the Monte Carlo process. integrated approach is the generalization of the recently developed techniques used in safet
Bayesian Analysis for Linearized Multi-Stage Models in Quantal Bioassay.
Kuo, Lynn; Cohen, Michael P.
Bayesian methods for estimating dose response curves in quantal bioassay are studied. A linearized multi-stage model is assumed for the shape of the curves. A Gibbs sampling approach with data augmentation is employed to compute the Bayes estimates. In addition, estimation of the "relative additional risk" and the "risk specific…
Generic Form of Bayesian Monte Carlo For Models With Partial Monotonicity
Rajabalinejad, M.
2012-01-01
This paper presents a generic method for the safety assessments of models with partial monotonicity. For this purpose, a Bayesian interpolation method is developed and implemented in the Monte Carlo process. integrated approach is the generalization of the recently developed techniques used in safet
Bayesian Inference for Growth Mixture Models with Latent Class Dependent Missing Data
Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta
2011-01-01
"Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…
A Robust Bayesian Approach for Structural Equation Models with Missing Data
Lee, Sik-Yum; Xia, Ye-Mao
2008-01-01
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory
Muthen, Bengt; Asparouhov, Tihomir
2012-01-01
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…
The Bayesian Evaluation of Categorization Models: Comment on Wills and Pothos (2012)
Vanpaemel, Wolf; Lee, Michael D.
2012-01-01
Wills and Pothos (2012) reviewed approaches to evaluating formal models of categorization, raising a series of worthwhile issues, challenges, and goals. Unfortunately, in discussing these issues and proposing solutions, Wills and Pothos (2012) did not consider Bayesian methods in any detail. This means not only that their review excludes a major…
Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng
2010-01-01
Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…
Lin, Lin; Chan, Cliburn; West, Mike
2016-01-01
We discuss the evaluation of subsets of variables for the discriminative evidence they provide in multivariate mixture modeling for classification. The novel development of Bayesian classification analysis presented is partly motivated by problems of design and selection of variables in biomolecular studies, particularly involving widely used assays of large-scale single-cell data generated using flow cytometry technology. For such studies and for mixture modeling generally, we define discriminative analysis that overlays fitted mixture models using a natural measure of concordance between mixture component densities, and define an effective and computationally feasible method for assessing and prioritizing subsets of variables according to their roles in discrimination of one or more mixture components. We relate the new discriminative information measures to Bayesian classification probabilities and error rates, and exemplify their use in Bayesian analysis of Dirichlet process mixture models fitted via Markov chain Monte Carlo methods as well as using a novel Bayesian expectation-maximization algorithm. We present a series of theoretical and simulated data examples to fix concepts and exhibit the utility of the approach, and compare with prior approaches. We demonstrate application in the context of automatic classification and discriminative variable selection in high-throughput systems biology using large flow cytometry datasets.
Xu, Chengcheng; Wang, Wei; Liu, Pan; Li, Zhibin
2015-12-01
This study aimed to develop a real-time crash risk model with limited data in China by using Bayesian meta-analysis and Bayesian inference approach. A systematic review was first conducted by using three different Bayesian meta-analyses, including the fixed effect meta-analysis, the random effect meta-analysis, and the meta-regression. The meta-analyses provided a numerical summary of the effects of traffic variables on crash risks by quantitatively synthesizing results from previous studies. The random effect meta-analysis and the meta-regression produced a more conservative estimate for the effects of traffic variables compared with the fixed effect meta-analysis. Then, the meta-analyses results were used as informative priors for developing crash risk models with limited data. Three different meta-analyses significantly affect model fit and prediction accuracy. The model based on meta-regression can increase the prediction accuracy by about 15% as compared to the model that was directly developed with limited data. Finally, the Bayesian predictive densities analysis was used to identify the outliers in the limited data. It can further improve the prediction accuracy by 5.0%.
Royle, J. Andrew; Converse, Sarah J.
2014-01-01
Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.
Bayesian methods for model uncertainty analysis with application to future sea level rise
Energy Technology Data Exchange (ETDEWEB)
Patwardhan, A.; Small, M.J. (Carnegie Mellon Univ., Pittsburgh, PA (United States))
1992-12-01
This paper addresses the use of data for identifying and characterizing uncertainties in model parameters and predictions. The Bayesian Monte Carlo method is formally presented and elaborated, and applied to the analysis of the uncertainty in a predictive model for global mean sea level change. The method uses observations of output variables, made with an assumed error structure, to determine a posterior distribution of model outputs. This is used to derive a posterior distribution for the model parameters. Results demonstrate the resolution of the uncertainty that is obtained as a result of the Bayesian analysis and also indicate the key contributors to the uncertainty in the sea level rise model. While the technique is illustrated with a simple, preliminary model, the analysis provides an iterative framework for model refinement. The methodology developed in this paper provides a mechanism for the incorporation of ongoing data collection and research in decision-making for problems involving uncertain environmental change.
Directory of Open Access Journals (Sweden)
X. Chen
2013-09-01
Full Text Available A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.
An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit.
Directory of Open Access Journals (Sweden)
Rowena Syn Yin Wong
Full Text Available There are not many studies that attempt to model intensive care unit (ICU risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU.This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV model. Bayesian Markov Chain Monte Carlo (MCMC simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method.The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05 for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study.Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes.
Continuous Spatial Process Models for Spatial Extreme Values
Sang, Huiyan
2010-01-28
We propose a hierarchical modeling approach for explaining a collection of point-referenced extreme values. In particular, annual maxima over space and time are assumed to follow generalized extreme value (GEV) distributions, with parameters μ, σ, and ξ specified in the latent stage to reflect underlying spatio-temporal structure. The novelty here is that we relax the conditionally independence assumption in the first stage of the hierarchial model, an assumption which has been adopted in previous work. This assumption implies that realizations of the the surface of spatial maxima will be everywhere discontinuous. For many phenomena including, e. g., temperature and precipitation, this behavior is inappropriate. Instead, we offer a spatial process model for extreme values that provides mean square continuous realizations, where the behavior of the surface is driven by the spatial dependence which is unexplained under the latent spatio-temporal specification for the GEV parameters. In this sense, the first stage smoothing is viewed as fine scale or short range smoothing while the larger scale smoothing will be captured in the second stage of the modeling. In addition, as would be desired, we are able to implement spatial interpolation for extreme values based on this model. A simulation study and a study on actual annual maximum rainfall for a region in South Africa are used to illustrate the performance of the model. © 2009 International Biometric Society.
Modelling evolution in a spatial continuum
Barton, N. H.; Etheridge, A. M.; Véber, A.
2013-01-01
We survey a class of models for spatially structured populations which we have called spatial Λ-Fleming-Viot processes. They arise from a flexible framework for modelling in which the key innovation is that random genetic drift is driven by a Poisson point process of spatial 'events'. We demonstrate how this overcomes some of the obstructions to modelling populations which evolve in two-(and higher-) dimensional spatial continua, how its predictions match phenomena observed in data and how it fits with classical models. Finally we outline some directions for future research.
Choy, Samantha Low; O'Leary, Rebecca; Mengersen, Kerrie
2009-01-01
Bayesian statistical modeling has several benefits within an ecological context. In particular, when observed data are limited in sample size or representativeness, then the Bayesian framework provides a mechanism to combine observed data with other "prior" information. Prior information may be obtained from earlier studies, or in their absence, from expert knowledge. This use of the Bayesian framework reflects the scientific "learning cycle," where prior or initial estimates are updated when new data become available. In this paper we outline a framework for statistical design of expert elicitation processes for quantifying such expert knowledge, in a form suitable for input as prior information into Bayesian models. We identify six key elements: determining the purpose and motivation for using prior information; specifying the relevant expert knowledge available; formulating the statistical model; designing effective and efficient numerical encoding; managing uncertainty; and designing a practical elicitation protocol. We demonstrate this framework applies to a variety of situations, with two examples from the ecological literature and three from our experience. Analysis of these examples reveals several recurring important issues affecting practical design of elicitation in ecological problems.
Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?
Energy Technology Data Exchange (ETDEWEB)
Vrugt, Jasper A [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Ter Braak, Cajo J F [NON LANL; Gupta, Hoshin V [NON LANL
2008-01-01
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.
A Bayesian analysis of kaon photoproduction with the Regge-plus-resonance model
De Cruz, Lesley; Vrancx, Tom; Vancraeyveld, Pieter
2012-01-01
We address the issue of unbiased model selection and propose a methodology based on Bayesian inference to extract physical information from kaon photoproduction $p(\\gamma,K^+)\\Lambda$ data. We use the single-channel Regge-plus-resonance (RPR) framework for $p(\\gamma,K^+)\\Lambda$ to illustrate the proposed strategy. The Bayesian evidence Z is a quantitative measure for the model's fitness given the world's data. We present a numerical method for performing the multidimensional integrals in the expression for the Bayesian evidence. We use the $p(\\gamma,K^+)\\Lambda$ data with an invariant energy W > 2.6 GeV in order to constrain the background contributions in the RPR framework with Bayesian inference. Next, the resonance information is extracted from the analysis of differential cross sections, single and double polarization observables. This background and resonance content constitutes the basis of a model which is coined RPR-2011. It is shown that RPR-2011 yields a comprehensive account of the kaon photoprodu...
Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data.
Plankensteiner, Kathrin; Bluder, Olivia; Pilz, Jürgen
2015-09-01
In this article, Bayesian networks are used to model semiconductor lifetime data obtained from a cyclic stress test system. The data of interest are a mixture of log-normal distributions, representing two dominant physical failure mechanisms. Moreover, the data can be censored due to limited test resources. For a better understanding of the complex lifetime behavior, interactions between test settings, geometric designs, material properties, and physical parameters of the semiconductor device are modeled by a Bayesian network. Statistical toolboxes in MATLAB® have been extended and applied to find the best structure of the Bayesian network and to perform parameter learning. Due to censored observations Markov chain Monte Carlo (MCMC) simulations are employed to determine the posterior distributions. For model selection the automatic relevance determination (ARD) algorithm and goodness-of-fit criteria such as marginal likelihoods, Bayes factors, posterior predictive density distributions, and sum of squared errors of prediction (SSEP) are applied and evaluated. The results indicate that the application of Bayesian networks to semiconductor reliability provides useful information about the interactions between the significant covariates and serves as a reliable alternative to currently applied methods.
Comparison of a Bayesian Network with a Logistic Regression Model to Forecast IgA Nephropathy
Directory of Open Access Journals (Sweden)
Michel Ducher
2013-01-01
Full Text Available Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n=155 performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC curves. IgAN was found (on pathology in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67% and specificity (73% versus 95% using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.
Comparison of a Bayesian network with a logistic regression model to forecast IgA nephropathy.
Ducher, Michel; Kalbacher, Emilie; Combarnous, François; Finaz de Vilaine, Jérome; McGregor, Brigitte; Fouque, Denis; Fauvel, Jean Pierre
2013-01-01
Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN) from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n = 155) performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC) curves. IgAN was found (on pathology) in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67%) and specificity (73% versus 95%) using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.
Bayesian model selection in complex linear systems, as illustrated in genetic association studies.
Wen, Xiaoquan
2014-03-01
Motivated by examples from genetic association studies, this article considers the model selection problem in a general complex linear model system and in a Bayesian framework. We discuss formulating model selection problems and incorporating context-dependent a priori information through different levels of prior specifications. We also derive analytic Bayes factors and their approximations to facilitate model selection and discuss their theoretical and computational properties. We demonstrate our Bayesian approach based on an implemented Markov Chain Monte Carlo (MCMC) algorithm in simulations and a real data application of mapping tissue-specific eQTLs. Our novel results on Bayes factors provide a general framework to perform efficient model comparisons in complex linear model systems.
Directory of Open Access Journals (Sweden)
Abdelkrim Moussaoui
2006-01-01
Full Text Available The authors discuss the combination of an Artificial Neural Network (ANN with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capacity of the fitted ANN model to predict the unseen regions of data. As a result, test rolls obtained by the suggested hybrid model have shown high prediction quality comparatively to the usual empirical prediction models.
Local models for spatial analysis
Lloyd, Christopher D
2010-01-01
Focusing on solutions, this second edition provides guidance to a wide variety of real-world problems. The text presents a complete introduction to key concepts and a clear mapping of the methods discussed. It also explores connections between methods. New chapters address spatial patterning in single variables and spatial relations. In addition, every chapter now includes links to key related studies. The author clearly distinguishes between local and global methods and provides more detailed coverage of geographical weighting, image texture measures, local spatial autocorrelation, and multic
A Bayesian Mixture Model for PoS Induction Using Multiple Features
Christodoulopoulos, Christos; Goldwater, Sharon; Steedman, Mark
2011-01-01
In this paper we present a fully unsupervised syntactic class induction system formulated as a Bayesian multinomial mixture model, where each word type is constrained to belong to a single class. By using a mixture model rather than a sequence model (e.g., HMM), we are able to easily add multiple kinds of features, including those at both the type level (morphology features) and token level (context and alignment features, the latter from parallel corpora). Using only context features, our sy...
Recent advances in technology have led to the collection of high-dimensional data not previously encountered in many scientific environments. As a result, scientists are often faced with the challenging task of including these high-dimensional data into statistical models. For example, data from sen...
KING GEORGE ISLAND SPATIAL DATA MODEL
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Distribution,interoperability,interactivity,component are four main features of distributed GIS.Based on the principle of hypermap,hypermedia and distributed database,the paper comes up with a kind of distributed spatial data model which is in accordance with those features of distributed GIS.The model takes catalog service as the outline of spatial information globalization,and defines data structure of hypermap node in different level.Based on the model,it is feasible to manage and process distributed spatial information,and integrate multi_source,heterogeneous spatial data into a framework.Traditionally,to retrieve and access spatial data via Internet is only by theme or map name.With the concept of the model,it is possible to retrieve,load,and link spatial data by vector_based graphics on the Internet.
Spatial modeling for groundwater arsenic levels in North Carolina.
Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E
2011-06-01
To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.
A Bayesian Approach for Parameter Estimation and Prediction using a Computationally Intensive Model
Higdon, Dave; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M
2014-01-01
Bayesian methods have been very successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model $\\eta(\\theta)$ where $\\theta$ denotes the uncertain, best input setting. Hence the statistical model is of the form $y = \\eta(\\theta) + \\epsilon$, where $\\epsilon$ accounts for measurement, and possibly other error sources. When non-linearity is present in $\\eta(\\cdot)$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and non-standard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. While quite generally applicable, MCMC requires thousands, or even millions of evaluations of the physics model $\\eta(\\cdot)$. This is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we pr...
Bayesian inference for kinetic models of biotransformation using a generalized rate equation.
Ying, Shanshan; Zhang, Jiangjiang; Zeng, Lingzao; Shi, Jiachun; Wu, Laosheng
2017-03-06
Selecting proper rate equations for the kinetic models is essential to quantify biotransformation processes in the environment. Bayesian model selection method can be used to evaluate the candidate models. However, comparisons of all plausible models can result in high computational cost, while limiting the number of candidate models may lead to biased results. In this work, we developed an integrated Bayesian method to simultaneously perform model selection and parameter estimation by using a generalized rate equation. In the approach, the model hypotheses were represented by discrete parameters and the rate constants were represented by continuous parameters. Then Bayesian inference of the kinetic models was solved by implementing Markov Chain Monte Carlo simulation for parameter estimation with the mixed (i.e., discrete and continuous) priors. The validity of this approach was illustrated through a synthetic case and a nitrogen transformation experimental study. It showed that our method can successfully identify the plausible models and parameters, as well as uncertainties therein. Thus this method can provide a powerful tool to reveal more insightful information for the complex biotransformation processes.
bspmma: An R Package for Bayesian Semiparametric Models for Meta-Analysis
Directory of Open Access Journals (Sweden)
Deborah Burr
2012-07-01
Full Text Available We introduce an R package, bspmma, which implements a Dirichlet-based random effects model specific to meta-analysis. In meta-analysis, when combining effect estimates from several heterogeneous studies, it is common to use a random-effects model. The usual frequentist or Bayesian models specify a normal distribution for the true effects. However, in many situations, the effect distribution is not normal, e.g., it can have thick tails, be skewed, or be multi-modal. A Bayesian nonparametric model based on mixtures of Dirichlet process priors has been proposed in the literature, for the purpose of accommodating the non-normality. We review this model and then describe a competitor, a semiparametric version which has the feature that it allows for a well-defined centrality parameter convenient for determining whether the overall effect is significant. This second Bayesian model is based on a different version of the Dirichlet process prior, and we call it the "conditional Dirichlet model". The package contains functions to carry out analyses based on either the ordinary or the conditional Dirichlet model, functions for calculating certain Bayes factors that provide a check on the appropriateness of the conditional Dirichlet model, and functions that enable an empirical Bayes selection of the precision parameter of the Dirichlet process. We illustrate the use of the package on two examples, and give an interpretation of the results in these two different scenarios.
Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating.
Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela K; Friston, Karl
2016-01-15
Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5-10min compared to approximately 1-2h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated.
Owusu-Edusei, Kwame; Owens, Chantelle J
2009-01-01
Background Chlamydia continues to be the most prevalent disease in the United States. Effective spatial monitoring of chlamydia incidence is important for successful implementation of control and prevention programs. The objective of this study is to apply Bayesian smoothing and exploratory spatial data analysis (ESDA) methods to monitor Texas county-level chlamydia incidence rates by examining spatiotemporal patterns. We used county-level data on chlamydia incidence (for all ages, gender and races) from the National Electronic Telecommunications System for Surveillance (NETSS) for 2004 and 2005. Results Bayesian-smoothed chlamydia incidence rates were spatially dependent both in levels and in relative changes. Erath county had significantly (p 300 cases per 100,000 residents) than its contiguous neighbors (195 or less) in both years. Gaines county experienced the highest relative increase in smoothed rates (173% – 139 to 379). The relative change in smoothed chlamydia rates in Newton county was significantly (p < 0.05) higher than its contiguous neighbors. Conclusion Bayesian smoothing and ESDA methods can assist programs in using chlamydia surveillance data to identify outliers, as well as relevant changes in chlamydia incidence in specific geographic units. Secondly, it may also indirectly help in assessing existing differences and changes in chlamydia surveillance systems over time. PMID:19245686
Directory of Open Access Journals (Sweden)
Mohammed Hussni O
2010-06-01
Full Text Available Abstract Background Cryptosporidium parvum is one of the most important biological contaminants in drinking water that produces life threatening infection in people with compromised immune systems. Dairy calves are thought to be the primary source of C. parvum contamination in watersheds. Understanding the spatial and temporal variation in the risk of C. parvum infection in dairy cattle is essential for designing cost-effective watershed management strategies to protect drinking water sources. Crude and Bayesian seasonal risk estimates for Cryptosporidium in dairy calves were used to investigate the spatio-temporal dynamics of C. parvum infection on dairy farms in the New York City watershed. Results Both global (Global Moran's I and specific (SaTScan cluster analysis methods revealed a significant (p C. parvum infection in all herds in the summer (p = 0.002, compared to the rest of the year. Bayesian estimates did not show significant spatial autocorrelation in any season. Conclusions Although we were not able to identify seasonal clusters using Bayesian approach, crude estimates highlighted both temporal and spatial clusters of C. parvum infection in dairy herds in a major watershed. We recommend that further studies focus on the factors that may lead to the presence of C. parvum clusters within the watershed, so that monitoring and prevention practices such as stream monitoring, riparian buffers, fencing and manure management can be prioritized and improved, to protect drinking water supplies and public health.
Directory of Open Access Journals (Sweden)
Owens Chantelle J
2009-02-01
Full Text Available Abstract Background Chlamydia continues to be the most prevalent disease in the United States. Effective spatial monitoring of chlamydia incidence is important for successful implementation of control and prevention programs. The objective of this study is to apply Bayesian smoothing and exploratory spatial data analysis (ESDA methods to monitor Texas county-level chlamydia incidence rates by examining spatiotemporal patterns. We used county-level data on chlamydia incidence (for all ages, gender and races from the National Electronic Telecommunications System for Surveillance (NETSS for 2004 and 2005. Results Bayesian-smoothed chlamydia incidence rates were spatially dependent both in levels and in relative changes. Erath county had significantly (p 300 cases per 100,000 residents than its contiguous neighbors (195 or less in both years. Gaines county experienced the highest relative increase in smoothed rates (173% – 139 to 379. The relative change in smoothed chlamydia rates in Newton county was significantly (p Conclusion Bayesian smoothing and ESDA methods can assist programs in using chlamydia surveillance data to identify outliers, as well as relevant changes in chlamydia incidence in specific geographic units. Secondly, it may also indirectly help in assessing existing differences and changes in chlamydia surveillance systems over time.
Energy Technology Data Exchange (ETDEWEB)
Kim, Joo Yeon; Lee, Seung Hyun; Park, Tai Jin [Korean Association for Radiation Application, Seoul (Korea, Republic of)
2016-06-15
Any real application of Bayesian inference must acknowledge that both prior distribution and likelihood function have only been specified as more or less convenient approximations to whatever the analyzer's true belief might be. If the inferences from the Bayesian analysis are to be trusted, it is important to determine that they are robust to such variations of prior and likelihood as might also be consistent with the analyzer's stated beliefs. The robust Bayesian inference was applied to atmospheric dispersion assessment using Gaussian plume model. The scopes of contaminations were specified as the uncertainties of distribution type and parametric variability. The probabilistic distribution of model parameters was assumed to be contaminated as the symmetric unimodal and unimodal distributions. The distribution of the sector-averaged relative concentrations was then calculated by applying the contaminated priors to the model parameters. The sector-averaged concentrations for stability class were compared by applying the symmetric unimodal and unimodal priors, respectively, as the contaminated one based on the class of ε-contamination. Though ε was assumed as 10%, the medians reflecting the symmetric unimodal priors were nearly approximated within 10% compared with ones reflecting the plausible ones. However, the medians reflecting the unimodal priors were approximated within 20% for a few downwind distances compared with ones reflecting the plausible ones. The robustness has been answered by estimating how the results of the Bayesian inferences are robust to reasonable variations of the plausible priors. From these robust inferences, it is reasonable to apply the symmetric unimodal priors for analyzing the robustness of the Bayesian inferences.
Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.
Ziebarth, Jesse D; Cui, Yan
2017-01-01
The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.
Villalba, Jesús
2015-01-01
In this document we are going to derive the equations needed to implement a Variational Bayes estimation of the parameters of the simplified probabilistic linear discriminant analysis (SPLDA) model. This can be used to adapt SPLDA from one database to another with few development data or to implement the fully Bayesian recipe. Our approach is similar to Bishop's VB PPCA.
Integration of Geophysical Data into Structural Geological Modelling through Bayesian Networks
de la Varga, Miguel; Wellmann, Florian; Murdie, Ruth
2016-04-01
Structural geological models are widely used to represent the spatial distribution of relevant geological features. Several techniques exist to construct these models on the basis of different assumptions and different types of geological observations (e.g. Jessell et al., 2014). However, two problems are prevalent when constructing models: (i) observations and assumptions, and therefore also the constructed model, are subject to uncertainties, and (ii) additional information, such as geophysical data, is often available, but cannot be considered directly in the geological modelling step. In our work, we propose the integration of all available data into a Bayesian network including the generation of the implicit geological method by means of interpolation functions (Mallet, 1992; Lajaunie et al., 1997; Mallet, 2004; Carr et al., 2001; Hillier et al., 2014). As a result, we are able to increase the certainty of the resultant models as well as potentially learn features of our regional geology through data mining and information theory techniques. MCMC methods are used in order to optimize computational time and assure the validity of the results. Here, we apply the aforementioned concepts in a 3-D model of the Sandstone Greenstone Belt in the Archean Yilgarn Craton in Western Australia. The example given, defines the uncertainty in the thickness of greenstone as limited by Bouguer anomaly and the internal structure of the greenstone as limited by the magnetic signature of a banded iron formation. The incorporation of the additional data and specially the gravity provides an important reduction of the possible outcomes and therefore the overall uncertainty. References Carr, C. J., K. R. Beatson, B. J. Cherrie, J. T. Mitchell, R. W. Fright, C. B. McCallum, and R. T. Evans, 2001, Reconstruction and representation of 3D objects with radial basis functions: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 67-76. Jessell, M
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events
Sekara, Vedran; Jonsson, Håkan; Larsen, Jakob Eg; Lehmann, Sune
2017-01-01
We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals’ daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient. PMID:28076375
Bayesian inference for a wavefront model of the Neolithisation of Europe
Baggaley, Andrew W; Shukurov, Anvar; Boys, Richard J; Golightly, Andrew
2012-01-01
We consider a wavefront model for the spread of Neolithic culture across Europe, and use Bayesian inference techniques to provide estimates for the parameters within this model, as constrained by radiocarbon data from Southern and Western Europe. Our wavefront model allows for both an isotropic background spread (incorporating the effects of local geography), and a localized anisotropic spread associated with major waterways. We introduce an innovative numerical scheme to track the wavefront, allowing us to simulate the times of the first arrival at any site orders of magnitude more efficiently than traditional PDE approaches. We adopt a Bayesian approach to inference and use Gaussian process emulators to facilitate further increases in efficiency in the inference scheme, thereby making Markov chain Monte Carlo methods practical. We allow for uncertainty in the fit of our model, and also infer a parameter specifying the magnitude of this uncertainty. We obtain a magnitude for the background spread of order 1 ...
Calibration of complex models through Bayesian evidence synthesis: a demonstration and tutorial.
Jackson, Christopher H; Jit, Mark; Sharples, Linda D; De Angelis, Daniela
2015-02-01
Decision-analytic models must often be informed using data that are only indirectly related to the main model parameters. The authors outline how to implement a Bayesian synthesis of diverse sources of evidence to calibrate the parameters of a complex model. A graphical model is built to represent how observed data are generated from statistical models with unknown parameters and how those parameters are related to quantities of interest for decision making. This forms the basis of an algorithm to estimate a posterior probability distribution, which represents the updated state of evidence for all unknowns given all data and prior beliefs. This process calibrates the quantities of interest against data and, at the same time, propagates all parameter uncertainties to the results used for decision making. To illustrate these methods, the authors demonstrate how a previously developed Markov model for the progression of human papillomavirus (HPV-16) infection was rebuilt in a Bayesian framework. Transition probabilities between states of disease severity are inferred indirectly from cross-sectional observations of prevalence of HPV-16 and HPV-16-related disease by age, cervical cancer incidence, and other published information. Previously, a discrete collection of plausible scenarios was identified but with no further indication of which of these are more plausible. Instead, the authors derive a Bayesian posterior distribution, in which scenarios are implicitly weighted according to how well they are supported by the data. In particular, we emphasize the appropriate choice of prior distributions and checking and comparison of fitted models.
Directory of Open Access Journals (Sweden)
Pengpeng Jiao
2014-01-01
Full Text Available Time-dependent turning movement flows are very important input data for intelligent transportation systems but are impossible to be detected directly through current traffic surveillance systems. Existing estimation models have proved to be not accurate and reliable enough during all intervals. An improved way to address this problem is to develop a combined model framework that can integrate multiple submodels running simultaneously. This paper first presents a back propagation neural network model to estimate dynamic turning movements, as well as the self-adaptive learning rate approach and the gradient descent with momentum method for solving. Second, this paper develops an efficient Kalman filtering model and designs a revised sequential Kalman filtering algorithm. Based on the Bayesian method using both historical data and currently estimated results for error calibration, this paper further integrates above two submodels into a Bayesian combined model framework and proposes a corresponding algorithm. A field survey is implemented at an intersection in Beijing city to collect both time series of link counts and actual time-dependent turning movement flows, including historical and present data. The reported estimation results show that the Bayesian combined model is much more accurate and stable than other models.
A Genomic Bayesian Multi-trait and Multi-environment Model.
Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Toledo, Fernando H; Pérez-Hernández, Oscar; Eskridge, Kent M; Rutkoski, Jessica
2016-09-08
When information on multiple genotypes evaluated in multiple environments is recorded, a multi-environment single trait model for assessing genotype × environment interaction (G × E) is usually employed. Comprehensive models that simultaneously take into account the correlated traits and trait × genotype × environment interaction (T × G × E) are lacking. In this research, we propose a Bayesian model for analyzing multiple traits and multiple environments for whole-genome prediction (WGP) model. For this model, we used Half-[Formula: see text] priors on each standard deviation term and uniform priors on each correlation of the covariance matrix. These priors were not informative and led to posterior inferences that were insensitive to the choice of hyper-parameters. We also developed a computationally efficient Markov Chain Monte Carlo (MCMC) under the above priors, which allowed us to obtain all required full conditional distributions of the parameters leading to an exact Gibbs sampling for the posterior distribution. We used two real data sets to implement and evaluate the proposed Bayesian method and found that when the correlation between traits was high (>0.5), the proposed model (with unstructured variance-covariance) improved prediction accuracy compared to the model with diagonal and standard variance-covariance structures. The R-software package Bayesian Multi-Trait and Multi-Environment (BMTME) offers optimized C++ routines to efficiently perform the analyses.
Kuczera, George; Kavetski, Dmitri; Franks, Stewart; Thyer, Mark
2006-11-01
SummaryCalibration and prediction in conceptual rainfall-runoff (CRR) modelling is affected by the uncertainty in the observed forcing/response data and the structural error in the model. This study works towards the goal of developing a robust framework for dealing with these sources of error and focuses on model error. The characterisation of model error in CRR modelling has been thwarted by the convenient but indefensible treatment of CRR models as deterministic descriptions of catchment dynamics. This paper argues that the fluxes in CRR models should be treated as stochastic quantities because their estimation involves spatial and temporal averaging. Acceptance that CRR models are intrinsically stochastic paves the way for a more rational characterisation of model error. The hypothesis advanced in this paper is that CRR model error can be characterised by storm-dependent random variation of one or more CRR model parameters. A simple sensitivity analysis is used to identify the parameters most likely to behave stochastically, with variation in these parameters yielding the largest changes in model predictions as measured by the Nash-Sutcliffe criterion. A Bayesian hierarchical model is then formulated to explicitly differentiate between forcing, response and model error. It provides a very general framework for calibration and prediction, as well as for testing hypotheses regarding model structure and data uncertainty. A case study calibrating a six-parameter CRR model to daily data from the Abercrombie catchment (Australia) demonstrates the considerable potential of this approach. Allowing storm-dependent variation in just two model parameters (with one of the parameters characterising model error and the other reflecting input uncertainty) yields a substantially improved model fit raising the Nash-Sutcliffe statistic from 0.74 to 0.94. Of particular significance is the use of posterior diagnostics to test the key assumptions about the data and model errors
Helical mode lung 4D-CT reconstruction using Bayesian model.
He, Tiancheng; Xue, Zhong; Nitsch, Paige L; Teh, Bin S; Wong, Stephen T
2013-01-01
4D computed tomography (CT) has been widely used for treatment planning of thoracic and abdominal cancer radiotherapy. Current 4D-CT lung image reconstruction methods rely on respiratory gating to rearrange the large number of axial images into different phases, which may be subject to external surrogate errors due to poor reproducibility of breathing cycles. New image-matching-based reconstruction works better for the cine mode of 4D-CT acquisition than the helical mode because the table position of each axial image is different in helical mode and image matching might suffer from bigger errors. In helical mode, not only the phases but also the un-uniform table positions of images need to be considered. We propose a Bayesian method for automated 4D-CT lung image reconstruction in helical mode 4D scans. Each axial image is assigned to a respiratory phase based on the Bayesian framework that ensures spatial and temporal smoothness of surfaces of anatomical structures. Iterative optimization is used to reconstruct a series of 3D-CT images for subjects undergoing 4D scans. In experiments, we compared visually and quantitatively the results of the proposed Bayesian 4D-CT reconstruction algorithm with the respiratory surrogate and the image matching-based method. The results showed that the proposed algorithm yielded better 4D-CT for helical scans.
Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but ...
Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.
Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G
2016-07-26
The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel
Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel
Energy Technology Data Exchange (ETDEWEB)
Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon [Nuclear Materials Laboratory, Seoul National University, Seoul (Korea, Republic of)
2015-10-15
The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties.