Bayesian phylogeography finds its roots.
Directory of Open Access Journals (Sweden)
Philippe Lemey
2009-09-01
Full Text Available As a key factor in endemic and epidemic dynamics, the geographical distribution of viruses has been frequently interpreted in the light of their genetic histories. Unfortunately, inference of historical dispersal or migration patterns of viruses has mainly been restricted to model-free heuristic approaches that provide little insight into the temporal setting of the spatial dynamics. The introduction of probabilistic models of evolution, however, offers unique opportunities to engage in this statistical endeavor. Here we introduce a Bayesian framework for inference, visualization and hypothesis testing of phylogeographic history. By implementing character mapping in a Bayesian software that samples time-scaled phylogenies, we enable the reconstruction of timed viral dispersal patterns while accommodating phylogenetic uncertainty. Standard Markov model inference is extended with a stochastic search variable selection procedure that identifies the parsimonious descriptions of the diffusion process. In addition, we propose priors that can incorporate geographical sampling distributions or characterize alternative hypotheses about the spatial dynamics. To visualize the spatial and temporal information, we summarize inferences using virtual globe software. We describe how Bayesian phylogeography compares with previous parsimony analysis in the investigation of the influenza A H5N1 origin and H5N1 epidemiological linkage among sampling localities. Analysis of rabies in West African dog populations reveals how virus diffusion may enable endemic maintenance through continuous epidemic cycles. From these analyses, we conclude that our phylogeographic framework will make an important asset in molecular epidemiology that can be easily generalized to infer biogeogeography from genetic data for many organisms.
DEFF Research Database (Denmark)
Marske, Katharine Ann; Rahbek, Carsten; Nogues, David Bravo
2013-01-01
-diversity. Second, phylogeography can help isolate the effects of Quaternary dispersal limitation from other factors driving community assembly and spatial turnover. Third, phylogeography can help identify key processes leading to and resulting from extinction events, including the population dynamics of species...... range reduction and its effects on the strength and temporal flexibility of networks of species interactions. We conclude with an outlook on the data-gathering protocols necessary for this collaborative, interdisciplinary research agenda.......Synthesis of ecological and evolutionary concepts and tools has led to improved understanding of how diversification, dispersal, community assembly, long-term coexistence and extinction shape patterns of biological diversity. Phylogeography, with its focus on Quaternary interactions within...
Bayesian Hypothesis Testing for Planet Finding
Braems, I.; Kasdin, N. J.
2003-12-01
One of the most important performance metrics of any space planet finding system is integration time. The time needed to make a positive detection of an extrasolar planet determines the number of systems we can observe for the life of the mission and the stability requirements of the spacecraft and optical control systems. Most astronomical detection approaches rely on fairly simple signal-to-noise calculations and a threshold determined by the ability of the human eye to extract the planet image from the background (usually a signal-to-noise ratio of five). In this paper we present an alternative approach to detection using Bayesian hypothesis testing. This optimal approach provides a quantitative measure of the probability of detection under various conditions and integration times (such as known or unknown background levels) and under different prior assumptions. We also show how the technique allows for a much higher probability of detection for shorter integration times than the previous photometric approaches. We gratefully acknowledge the support of the Jet Propulsion Laboratory of the National Aeronautics and Space Administration for this work and Institut National de Recherche en Informatique et Automatique (INRIA) for its support of Ms. Braems.
Bayesian methods for finding sparse representations
Wipf, David Paul
2006-01-01
Finding the sparsest or minimum L0-norm representation of a signal given a (possibly) overcomplete dictionary of basis vectors is an important problem in many application domains, including neuroelectromagnetic source localization, compressed sensing, sparse component analysis, feature selection, image restoration/compression, and neural coding. Unfortunately, the required optimization is typically NP-hard, and so approximate procedures that succeed with high probability are sought. Nearly al...
Finding the Most Distant Quasars Using Bayesian Selection Methods
Mortlock, Daniel
2014-01-01
Quasars, the brightly glowing disks of material that can form around the super-massive black holes at the centres of large galaxies, are amongst the most luminous astronomical objects known and so can be seen at great distances. The most distant known quasars are seen as they were when the Universe was less than a billion years old (i.e., $\\sim\\!7%$ of its current age). Such distant quasars are, however, very rare, and so are difficult to distinguish from the billions of other comparably-bright sources in the night sky. In searching for the most distant quasars in a recent astronomical sky survey (the UKIRT Infrared Deep Sky Survey, UKIDSS), there were $\\sim\\!10^3$ apparently plausible candidates for each expected quasar, far too many to reobserve with other telescopes. The solution to this problem was to apply Bayesian model comparison, making models of the quasar population and the dominant contaminating population (Galactic stars) to utilise the information content in the survey measurements. The result wa...
Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity
Directory of Open Access Journals (Sweden)
Yan Ren
2016-01-01
Full Text Available Identification of rhythmic gene expression from metabolic cycles to circadian rhythms is crucial for understanding the gene regulatory networks and functions of these biological processes. Recently, two algorithms, JTK_CYCLE and ARSER, have been developed to estimate periodicity of rhythmic gene expression. JTK_CYCLE performs well for long or less noisy time series, while ARSER performs well for detecting a single rhythmic category. However, observing gene expression at high temporal resolution is not always feasible, and many scientists are interested in exploring both ultradian and circadian rhythmic categories simultaneously. In this paper, a new algorithm, named autoregressive Bayesian spectral regression (ABSR, is proposed. It estimates the period of time-course experimental data and classifies gene expression profiles into multiple rhythmic categories simultaneously. Through the simulation studies, it is shown that ABSR substantially improves the accuracy of periodicity estimation and clustering of rhythmic categories as compared to JTK_CYCLE and ARSER for the data with low temporal resolution. Moreover, ABSR is insensitive to rhythmic patterns. This new scheme is applied to existing time-course mouse liver data to estimate period of rhythms and classify the genes into ultradian, circadian, and arrhythmic categories. It is observed that 49.2% of the circadian profiles detected by JTK_CYCLE with 1-hour resolution are also detected by ABSR with only 4-hour resolution.
Breathnach, Michelle; Moore, Elizabeth
2013-06-10
The Bayesian Approach allows forensic scientists to evaluate the significance of scientific evidence in light of two conflicting hypothesis. This aids the investigator to calculate a numerical value of the probability that the scientific findings support one hypothesis over conflicting opinions. In the case where oral intercourse is alleged, α-amylase, an indicator of saliva, is detected on penile swabs. The value of this finding is unknown as it may indicate the presence of saliva resulting from oral intercourse however it may also represent the presence of saliva due to innocent means such as background levels of salivary-α-amylase in the male population due to secondary transfer. Therefore, it is difficult to attach significance to this finding without background information and knowledge. A population study of the background levels of salivary-α-amylase was performed by analysing items of underwear worn under normal circumstances by 69 male volunteers. The Phadebas press test was used to screen the garments for amylase-containing stains and the positive areas were subjected to further confirmation of saliva by the RSID-Saliva kit. 44% of underwear screened had stains containing amylase. This study determined the background level of salivary-α-amylase and DNA on the inside front of male underwear which has potential implications on the interpretation of evidence in alleged oral intercourse. PMID:23683908
Herschtal, A.; Foroudi, F.; Greer, P. B.; Eade, T. N.; Hindson, B. R.; Kron, T.
2012-05-01
Early approaches to characterizing errors in target displacement during a fractionated course of radiotherapy assumed that the underlying fraction-to-fraction variability in target displacement, known as the ‘treatment error’ or ‘random error’, could be regarded as constant across patients. More recent approaches have modelled target displacement allowing for differences in random error between patients. However, until recently it has not been feasible to compare the goodness of fit of alternate models of random error rigorously. This is because the large volumes of real patient data necessary to distinguish between alternative models have only very recently become available. This work uses real-world displacement data collected from 365 patients undergoing radical radiotherapy for prostate cancer to compare five candidate models for target displacement. The simplest model assumes constant random errors across patients, while other models allow for random errors that vary according to one of several candidate distributions. Bayesian statistics and Markov Chain Monte Carlo simulation of the model parameters are used to compare model goodness of fit. We conclude that modelling the random error as inverse gamma distributed provides a clearly superior fit over all alternatives considered. This finding can facilitate more accurate margin recipes and correction strategies.
Gasparini, Mauro; Eisele, J
2003-01-01
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data. Many of the issues that are discussed with reference to the statistical analysis of compositional data have a natural counterpart in the construction of a Bayesian statistical model for categorical data. This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986) in his seminal book on compositional data. Particular emphasis is put on the pro...
Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation
DEFF Research Database (Denmark)
Marshall, David; Hill, Kathy; Marske, Katharine;
2012-01-01
four extant species (Amphipsalta - 3 spp. + Notopsalta - 1 sp.) and has been little studied. We examined mitochondrial and nuclear-gene phylogenies and phylogeography, Bayesian relaxed-clock divergence timing (incorporating literature-based uncertainty of molecular clock estimates) and ecological niche...
Schöniger, Anneli; Illman, Walter A.; Wöhling, Thomas; Nowak, Wolfgang
2015-12-01
Groundwater modelers face the challenge of how to assign representative parameter values to the studied aquifer. Several approaches are available to parameterize spatial heterogeneity in aquifer parameters. They differ in their conceptualization and complexity, ranging from homogeneous models to heterogeneous random fields. While it is common practice to invest more effort into data collection for models with a finer resolution of heterogeneities, there is a lack of advice which amount of data is required to justify a certain level of model complexity. In this study, we propose to use concepts related to Bayesian model selection to identify this balance. We demonstrate our approach on the characterization of a heterogeneous aquifer via hydraulic tomography in a sandbox experiment (Illman et al., 2010). We consider four increasingly complex parameterizations of hydraulic conductivity: (1) Effective homogeneous medium, (2) geology-based zonation, (3) interpolation by pilot points, and (4) geostatistical random fields. First, we investigate the shift in justified complexity with increasing amount of available data by constructing a model confusion matrix. This matrix indicates the maximum level of complexity that can be justified given a specific experimental setup. Second, we determine which parameterization is most adequate given the observed drawdown data. Third, we test how the different parameterizations perform in a validation setup. The results of our test case indicate that aquifer characterization via hydraulic tomography does not necessarily require (or justify) a geostatistical description. Instead, a zonation-based model might be a more robust choice, but only if the zonation is geologically adequate.
A Bayesian Dose-finding Design for Oncology Clinical Trials of Combinational Biological Agents.
Cai, Chunyan; Yuan, Ying; Ji, Yuan
2014-01-01
Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which efficacy and toxicity monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a dose-finding design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. PMID:24511160
DEFF Research Database (Denmark)
Marske, Katharine Ann; Leschen, Richard; Buckley, Thomas
2011-01-01
stochastic search variable selection incorporated in BEAST to identify historical dispersal patterns via ancestral state reconstruction. Ecological niche models (ENMs) were incorporated to reconstruct the potential geographic distribution of each species during the Last Glacial Maximum (LGM). Coalescent......Mitochondrial DNA (cox1) sequence data and recently developed coalescent phylogeography models were used to construct geo-spatial histories for the New Zealand fungus beetles Epistranus lawsoni and Pristoderus bakewelli (Zopheridae). These methods utilize continuous-time Markov chains and Bayesian...
Human phylogeography and diversity.
Harcourt, Alexander H
2016-07-19
Homo sapiens phylogeography begins with the species' origin nearly 200 kya in Africa. First signs of the species outside Africa (in Arabia) are from 125 kya. Earliest dates elsewhere are now 100 kya in China, 45 kya in Australia and southern Europe (maybe even 60 kya in Australia), 32 kya in northeast Siberia, and maybe 20 kya in the Americas. Humans reached arctic regions and oceanic islands last-arctic North America about 5 kya, mid- and eastern Pacific islands about 2-1 kya, and New Zealand about 700 y ago. Initial routes along coasts seem the most likely given abundant and easily harvested shellfish there as indicated by huge ancient oyster shell middens on all continents. Nevertheless, the effect of geographic barriers-mountains and oceans-is clear. The phylogeographic pattern of diasporas from several single origins-northeast Africa to Eurasia, southeast Eurasia to Australia, and northeast Siberia to the Americas-allows the equivalent of a repeat experiment on the relation between geography and phylogenetic and cultural diversity. On all continents, cultural diversity is high in productive low latitudes, presumably because such regions can support populations of sustainable size in a small area, therefore allowing a high density of cultures. Of course, other factors operate. South America has an unusually low density of cultures in its tropical latitudes. A likely factor is the phylogeographic movement of peoples from the Old World bringing novel and hence, lethal diseases to the New World, a foretaste, perhaps, of present day global transport of tropical diseases. PMID:27432967
Nolan, L A; Kaban, Ata; Raychaudhuri, S
2006-01-01
We present the results of a novel application of Bayesian modelling techniques, which, although purely data driven, have a physically interpretable result, and will be useful as an efficient data mining tool. We base our studies on the UV-to-optical spectra (observed and synthetic) of early-type galaxies. A probabilistic latent variable architecture is formulated, and a rigorous Bayesian methodology is employed for solving the inverse modelling problem from the available data. A powerful aspect of our formalism is that it allows us to recover a limited fraction of missing data due to incomplete spectral coverage, as well as to handle observational errors in a principled way. We apply this method to a sample of 21 well-studied early-type spectra, with known star-formation histories. We find that our data-driven Bayesian modelling allows us to identify those early-types which contain a significant stellar population <~ 1 Gyr old. This method would therefore be a very useful tool for automatically discovering...
Graph hierarchies for phylogeography.
Cybis, Gabriela B; Sinsheimer, Janet S; Lemey, Philippe; Suchard, Marc A
2013-03-19
Bayesian phylogeographic methods simultaneously integrate geographical and evolutionary modelling, and have demonstrated value in assessing spatial spread patterns of measurably evolving organisms. We improve on existing phylogeographic methods by combining information from multiple phylogeographic datasets in a hierarchical setting. Consider N exchangeable datasets or strata consisting of viral sequences and locations, each evolving along its own phylogenetic tree and according to a conditionally independent geographical process. At the hierarchical level, a random graph summarizes the overall dispersion process by informing which migration rates between sampling locations are likely to be relevant in the strata. This approach provides an efficient and improved framework for analysing inherently hierarchical datasets. We first examine the evolutionary history of multiple serotypes of dengue virus in the Americas to showcase our method. Additionally, we explore an application to intrahost HIV evolution across multiple patients. PMID:23382428
Beshera, K A; Harris, P M
2014-08-01
Mitochondrial DNA phylogeography of populations of the Labeobarbus intermedius complex (hexaploid barb) was investigated using 88 complete and 71 partial cytochrome b (cytb) sequences originating from 21 localities in five major drainages in Ethiopia and two localities in northern Kenya. The samples included 14 of the 15 Labeobarbus species described from Lake Tana. Discrete phylogeographic analyses of 159 cytb sequences employing Bayesian Markov Chain Monte Carlo (MCMC) simulations using Bayesian evolutionary analysis by sampling trees (BEAST) supported the monophyly of the L. intermedius complex, including the Lake Tana species. This analysis, in combination with statistical parsimony analysis, identified two mitochondrial DNA lineages within the complex. Divergence dating employing coalescent simulations suggested that the geographic split in the L. intermedius complex that led to the formation of these lineages occurred during the Pleistocene (c. 0.5 M b.p.), consistent with the timing of volcano-tectonic events postulated to have shaped the current landscape of East Africa.
Union of phylogeography and landscape genetics.
Rissler, Leslie J
2016-07-19
Phylogeography and landscape genetics have arisen within the past 30 y. Phylogeography is said to be the bridge between population genetics and systematics, and landscape genetics the bridge between landscape ecology and population genetics. Both fields can be considered as simply the amalgamation of classic biogeography with genetics and genomics; however, they differ in the temporal, spatial, and organismal scales addressed and the methodology used. I begin by briefly summarizing the history and purview of each field and suggest that, even though landscape genetics is a younger field (coined in 2003) than phylogeography (coined in 1987), early studies by Dobzhansky on the "microgeographic races" of Linanthus parryae in the Mojave Desert of California and Drosophila pseudoobscura across the western United States presaged the fields by over 40 y. Recent advances in theory, models, and methods have allowed researchers to better synthesize ecological and evolutionary processes in their quest to answer some of the most basic questions in biology. I highlight a few of these novel studies and emphasize three major areas ripe for investigation using spatially explicit genomic-scale data: the biogeography of speciation, lineage divergence and species delimitation, and understanding adaptation through time and space. Examples of areas in need of study are highlighted, and I end by advocating a union of phylogeography and landscape genetics under the more general field: biogeography.
Comparative phylogeography of the ocean planet.
Bowen, Brian W; Gaither, Michelle R; DiBattista, Joseph D; Iacchei, Matthew; Andrews, Kimberly R; Grant, W Stewart; Toonen, Robert J; Briggs, John C
2016-07-19
Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots. PMID:27432963
Comparative phylogeography of the ocean planet
Bowen, Brian W.; Gaither, Michelle R.; DiBattista, Joseph D.; Iacchei, Matthew; Andrews, Kimberly R.; Grant, W. Stewart; Toonen, Robert J.; Briggs, John C.
2016-01-01
Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots. PMID:27432963
Comparative phylogeography of the ocean planet.
Bowen, Brian W; Gaither, Michelle R; DiBattista, Joseph D; Iacchei, Matthew; Andrews, Kimberly R; Grant, W Stewart; Toonen, Robert J; Briggs, John C
2016-07-19
Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots.
Bayesian Lensing Shear Measurement
Bernstein, Gary M
2013-01-01
We derive an estimator of weak gravitational lensing shear from background galaxy images that avoids noise-induced biases through a rigorous Bayesian treatment of the measurement. The Bayesian formalism requires a prior describing the (noiseless) distribution of the target galaxy population over some parameter space; this prior can be constructed from low-noise images of a subsample of the target population, attainable from long integrations of a fraction of the survey field. We find two ways to combine this exact treatment of noise with rigorous treatment of the effects of the instrumental point-spread function and sampling. The Bayesian model fitting (BMF) method assigns a likelihood of the pixel data to galaxy models (e.g. Sersic ellipses), and requires the unlensed distribution of galaxies over the model parameters as a prior. The Bayesian Fourier domain (BFD) method compresses galaxies to a small set of weighted moments calculated after PSF correction in Fourier space. It requires the unlensed distributi...
... Brain George Hightower searches for genetic mutations that affect HIV's ability to infect the brain. Read Issue All Issues Explore Findings by Topic Cell Biology Cellular Structures, Functions, Processes, Imaging, Stress Response Chemistry and Biochemistry Enzymes, Molecular Probes, Metabolic ...
Directory of Open Access Journals (Sweden)
Shao-Yu Chen
Full Text Available BACKGROUND: The Siberian salamander (Ranodon sibiricus, distributed in geographically isolated areas of Central Asia, is an ideal alpine species for studies of conservation and phylogeography. However, there are few data regarding the genetic diversity in R. sibiricus populations. METHODOLOGY/PRINCIPAL FINDINGS: We used two genetic markers (mtDNA and microsatellites to survey all six populations of R. sibiricus in China. Both of the markers revealed extreme genetic uniformity among these populations. There were only three haplotypes in the mtDNA, and the overall nucleotide diversity in the mtDNA was 0.00064, ranging from 0.00000 to 0.00091 for the six populations. Although we recovered 70 sequences containing microsatellite repeats, there were only two loci that displayed polymorphism. We used the approximate Bayesian computation (ABC method to study the demographic history of the populations. This analysis suggested that the extant populations diverged from the ancestral population approximately 120 years ago and that the historical population size was much larger than the present population size; i.e., R. sibiricus has experienced dramatic population declines. CONCLUSION/SIGNIFICANCE: Our findings suggest that the genetic diversity in the R. sibiricus populations is the lowest among all investigated amphibians. We conclude that the isolation of R. sibiricus populations occurred recently and was a result of recent human activity and/or climatic changes. The Pleistocene glaciation oscillations may have facilitated intraspecies genetic homogeneity rather than enhanced divergence. A low genomic evolutionary rate and elevated inbreeding frequency may have also contributed to the low genetic variation observed in this species. Our findings indicate the urgency of implementing a protection plan for this endangered species.
Bayesian optimization for materials design
Frazier, Peter I.; Wang, Jialei
2015-01-01
We introduce Bayesian optimization, a technique developed for optimizing time-consuming engineering simulations and for fitting machine learning models on large datasets. Bayesian optimization guides the choice of experiments during materials design and discovery to find good material designs in as few experiments as possible. We focus on the case when materials designs are parameterized by a low-dimensional vector. Bayesian optimization is built on a statistical technique called Gaussian pro...
Lesaffre, Emmanuel
2012-01-01
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd
Draper, D.
2001-01-01
© 2012 Springer Science+Business Media, LLC. All rights reserved. Article Outline: Glossary Definition of the Subject and Introduction The Bayesian Statistical Paradigm Three Examples Comparison with the Frequentist Statistical Paradigm Future Directions Bibliography
Phylogeography of genus Squalius in Albania
Radek Šanda; Miroslav Švátora
2015-01-01
This study is focused on the issue of the Squalius genus phylogeography in Albania in the Balkan region. Phylogenetic analyses of sequence variation at mitochondrial DNA (cytochrome b gene) were used to examine these issues for the freshwater fish of the genus Squalius from various river systems in the Adriatic Sea region. There were identified three genetic lineages of unclear taxonomic position, where the genetic variation between identified clades range from 1.6 to 2.1 %. The first lineage...
Phylogeography by diffusion on a sphere: whole world phylogeography
2016-01-01
Background Techniques for reconstructing geographical history along a phylogeny can answer many questions of interest about the geographical origins of species. Bayesian models based on the assumption that taxa move through a diffusion process have found many applications. However, these methods rely on diffusion processes on a plane, and do not take the spherical nature of our planet in account. Performing an analysis that covers the whole world thus does not take in account the distortions caused by projections like the Mercator projection. Results In this paper, we introduce a Bayesian phylogeographical method based on diffusion on a sphere. When the area where taxa are sampled from is small, a sphere can be approximated by a plane and the model results in the same inferences as with models using diffusion on a plane. For taxa sampled from the whole world, we obtain substantial differences. We present an efficient algorithm for performing inference in a Markov Chain Monte Carlo (MCMC) algorithm, and show applications to small and large samples areas. We compare results between planar and spherical diffusion in a simulation study and apply the method by inferring the origin of Hepatitis B based on sequences sampled from Eurasia and Africa. Conclusions We describe a framework for performing phylogeographical inference, which is suitable when the distortion introduced by map projections is large, but works well on a smaller scale as well. The framework allows sampling tips from regions, which is useful when the exact sample location is unknown, and placing prior information on locations of clades in the tree. The method is implemented in the GEO_SPHERE package in BEAST 2, which is open source licensed under LGPL and allows joint tree and geography inference under a wide range of models. PMID:27651992
Connectivity in the deep: Phylogeography of the velvet belly lanternshark
Gubili, Chrysoula; Macleod, Kirsty; Perry, William; Hanel, Pia; Batzakas, Ioannis; Farrell, Edward D.; Lynghammar, Arve; Mancusi, Cecilia; Mariani, Stefano; Menezes, Gui M.; Neat, Francis; Scarcella, Giuseppe; Griffiths, Andrew M.
2016-09-01
The velvet belly lanternshark, Etmopterus spinax, is a deep-sea bioluminescent squaloid shark, found predominantly in the Northeast Atlantic and Mediterranean Sea. It has been exposed to relatively high levels of mortality associated with by-catch in some regions. Its late maturity and low fecundity potentially renders it vulnerable to over-exploitation, although little remains known about processes of connectivity between key habitats/regions. This study utilised DNA sequencing of partial regions of the mitochondrial control region and nuclear ribosomal internal transcribed spacer 2 to investigate population structure and phylogeography of this species across the Northeast Atlantic and Mediterranean Basin. Despite the inclusion of samples from the range edges or remote locations, no evidence of significant population structure was detected. An important exception was identified using the control region sequence, with much greater (and statistically significant) levels of genetic differentiation between the Mediterranean and Atlantic. This suggests that the Strait of Gibraltar may represent an important bathymetric barrier, separating regions with very low levels of female dispersal. Bayesian estimation of divergence time also places the separation between the Mediterranean and Atlantic lineages within the last 100,000 years, presumably connected with perturbations during the last Glacial Period. These results demonstrate population subdivision at a much smaller geographic distance than has generally been identified in previous work on deep-sea sharks. This highlights a very significant role for shallow bathymetry in promoting genetic differentiation in deepwater taxa. It acts as an important exception to a general paradigm of marine species being connected by high levels of gene-flow, representing single stocks over large scales. It may also have significant implications for the fisheries management of this species.
Comparative Phylogeography in Rainforest Trees from Lower Guinea, Africa
Myriam Heuertz; Jérôme Duminil; Gilles Dauby; Vincent Savolainen; Olivier J Hardy
2014-01-01
Comparative phylogeography is an effective approach to assess the evolutionary history of biological communities. We used comparative phylogeography in fourteen tree taxa from Lower Guinea (Atlantic Equatorial Africa) to test for congruence with two simple evolutionary scenarios based on physio-climatic features 1) the W-E environmental gradient and 2) the N-S seasonal inversion, which determine climatic and seasonality differences in the region. We sequenced the trnC-ycf6 plastid DNA region ...
Bessiere, Pierre; Ahuactzin, Juan Manuel; Mekhnacha, Kamel
2013-01-01
Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean
Directory of Open Access Journals (Sweden)
James Liley
2015-02-01
Full Text Available Genome-wide association studies (GWAS have been successful in identifying single nucleotide polymorphisms (SNPs associated with many traits and diseases. However, at existing sample sizes, these variants explain only part of the estimated heritability. Leverage of GWAS results from related phenotypes may improve detection without the need for larger datasets. The Bayesian conditional false discovery rate (cFDR constitutes an upper bound on the expected false discovery rate (FDR across a set of SNPs whose p values for two diseases are both less than two disease-specific thresholds. Calculation of the cFDR requires only summary statistics and have several advantages over traditional GWAS analysis. However, existing methods require distinct control samples between studies. Here, we extend the technique to allow for some or all controls to be shared, increasing applicability. Several different SNP sets can be defined with the same cFDR value, and we show that the expected FDR across the union of these sets may exceed expected FDR in any single set. We describe a procedure to establish an upper bound for the expected FDR among the union of such sets of SNPs. We apply our technique to pairwise analysis of p values from ten autoimmune diseases with variable sharing of controls, enabling discovery of 59 SNP-disease associations which do not reach GWAS significance after genomic control in individual datasets. Most of the SNPs we highlight have previously been confirmed using replication studies or larger GWAS, a useful validation of our technique; we report eight SNP-disease associations across five diseases not previously declared. Our technique extends and strengthens the previous algorithm, and establishes robust limits on the expected FDR. This approach can improve SNP detection in GWAS, and give insight into shared aetiology between phenotypically related conditions.
Introduction to Bayesian statistics
Bolstad, William M
2016-01-01
There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...
Bayesian artificial intelligence
Korb, Kevin B
2003-01-01
As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.
Bayesian artificial intelligence
Korb, Kevin B
2010-01-01
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente
Zamudio, Kelly R; Bell, Rayna C; Mason, Nicholas A
2016-07-19
Almost 30 y ago, the field of intraspecific phylogeography laid the foundation for spatially explicit and genealogically informed studies of population divergence. With new methods and markers, the focus in phylogeography shifted to previously unrecognized geographic genetic variation, thus reducing the attention paid to phenotypic variation in those same diverging lineages. Although phenotypic differences among lineages once provided the main data for studies of evolutionary change, the mechanisms shaping phenotypic differentiation and their integration with intraspecific genetic structure have been underexplored in phylogeographic studies. However, phenotypes are targets of selection and play important roles in species performance, recognition, and diversification. Here, we focus on three questions. First, how can phenotypes elucidate mechanisms underlying concordant or idiosyncratic responses of vertebrate species evolving in shared landscapes? Second, what mechanisms underlie the concordance or discordance of phenotypic and phylogeographic differentiation? Third, how can phylogeography contribute to our understanding of functional phenotypic evolution? We demonstrate that the integration of phenotypic data extends the reach of phylogeography to explain the origin and maintenance of biodiversity. Finally, we stress the importance of natural history collections as sources of high-quality phenotypic data that span temporal and spatial axes. PMID:27432983
Evolutionary lessons from California plant phylogeography.
Sork, Victoria L; Gugger, Paul F; Chen, Jin-Ming; Werth, Silke
2016-07-19
Phylogeography documents the spatial distribution of genetic lineages that result from demographic processes, such as population expansion, population contraction, and gene movement, shaped by climate fluctuations and the physical landscape. Because most phylogeographic studies have used neutral markers, the role of selection may have been undervalued. In this paper, we contend that plants provide a useful evolutionary lesson about the impact of selection on spatial patterns of neutral genetic variation, when the environment affects which individuals can colonize new sites, and on adaptive genetic variation, when environmental heterogeneity creates divergence at specific loci underlying local adaptation. Specifically, we discuss five characteristics found in plants that intensify the impact of selection: sessile growth form, high reproductive output, leptokurtic dispersal, isolation by environment, and the potential to evolve longevity. Collectively, these traits exacerbate the impact of environment on movement between populations and local selection pressures-both of which influence phylogeographic structure. We illustrate how these unique traits shape these processes with case studies of the California endemic oak, Quercus lobata, and the western North American lichen, Ramalina menziesii Obviously, the lessons we learn from plant traits are not unique to plants, but they highlight the need for future animal, plant, and microbe studies to incorporate its impact. Modern tools that generate genome-wide sequence data are now allowing us to decipher how evolutionary processes affect the spatial distribution of different kinds of genes and also to better model future spatial distribution of species in response to climate change. PMID:27432984
Phylogeography of genus Squalius in Albania
Directory of Open Access Journals (Sweden)
Radek Šanda
2015-11-01
Full Text Available This study is focused on the issue of the Squalius genus phylogeography in Albania in the Balkan region. Phylogenetic analyses of sequence variation at mitochondrial DNA (cytochrome b gene were used to examine these issues for the freshwater fish of the genus Squalius from various river systems in the Adriatic Sea region. There were identified three genetic lineages of unclear taxonomic position, where the genetic variation between identified clades range from 1.6 to 2.1 %. The first lineage is distributed in the Neretva River drainage in Bosnia and Hercegovina, i.e. north of Albania and in the whole remaining Periadriatic regions, whereas the second lineage is especially spread in the northern part of Albania and the third lineage occurs especially in the zone of the European ancient lake systems on the Balkan Peninsula (lakes Ohrid and Prespa, from where expands to the southern part of Albania. Both lineages sympatrically coincide in the hydrological river-lake system of Ohrid-Drin-Skadar. The phylogenetic and taxonomic position of the Squalius genus in the region seems to be interesting topic for subsequent and more detailed study.
Chloroplast DNA Phylogeography of Holy Basil (Ocimum tenuiflorum in Indian Subcontinent
Directory of Open Access Journals (Sweden)
Felix Bast
2014-01-01
Full Text Available Ocimum tenuiflorum L., holy basil “Tulsi”, is an important medicinal plant that is being grown and traditionally revered throughout Indian Subcontinent for thousands of years; however, DNA sequence-based genetic diversity of this aromatic herb is not yet known. In this report, we present our studies on the phylogeography of this species using trnL-trnF intergenic spacer of plastid genome as the DNA barcode for isolates from Indian subcontinent. Our pairwise distance analyses indicated that genetic heterogeneity of isolates remained quite low, with overall mean nucleotide p-distance of 5×10-4. However, our sensitive phylogenetic analysis using maximum likelihood framework was able to reveal subtle intraspecific molecular evolution of this species within the subcontinent. All isolates except that from North-Central India formed a distinct phylogenetic clade, notwithstanding low bootstrap support and collapse of the clade in Bayesian Inference. North-Central isolates occupied more basal position compared to other isolates, which is suggestive of its evolutionarily primitive status. Indian isolates formed a monophyletic and well-supported clade within O. tenuiflorum clade, which indicates a distinct haplotype. Given the vast geographical area of more than 3 million km2 encompassing many exclusive biogeographical and ecological zones, relatively low rate of evolution of this herb at this locus in India is particularly interesting.
Gray, Rebecca R; Salemi, Marco
2012-12-01
The rate of new emerging infectious diseases entering the human population has increased over the past century, with pathogens originating from animals or from products of animal origin accounting for the vast majority. Primary risk factors for the emergence and spread of emerging zoonoses include expansion and intensification of animal agriculture and long-distance live animal transport, live animal markets, bushmeat consumption and habitat destruction. Developing effective control strategies is contingent upon the ability to test causative hypotheses of disease transmission within a statistical framework. Broadly speaking, molecular phylogeography offers a framework in which specific hypotheses regarding pathogen gene flow and dispersal within an ecological context can be compared. A number of different methods has been developed for this application. Here, our intent is firstly to discuss the application of a wide variety of statistically based methods (including Bayesian reconstruction, network parsimony analysis and regression) to specific viruses (influenza, salmon anaemia virus, foot and mouth disease and Rift Valley Fever) that have been associated with animal farming/movements; and secondly to place them in the larger framework of the threat of potential zoonotic events as well as the economic and biosecurity implications of pathogen outbreaks among our animal food sources. PMID:22931895
Chloroplast DNA phylogeography of holy basil (Ocimum tenuiflorum) in Indian subcontinent.
Bast, Felix; Rani, Pooja; Meena, Devendra
2014-01-01
Ocimum tenuiflorum L., holy basil "Tulsi", is an important medicinal plant that is being grown and traditionally revered throughout Indian Subcontinent for thousands of years; however, DNA sequence-based genetic diversity of this aromatic herb is not yet known. In this report, we present our studies on the phylogeography of this species using trnL-trnF intergenic spacer of plastid genome as the DNA barcode for isolates from Indian subcontinent. Our pairwise distance analyses indicated that genetic heterogeneity of isolates remained quite low, with overall mean nucleotide p-distance of 5 × 10(-4). However, our sensitive phylogenetic analysis using maximum likelihood framework was able to reveal subtle intraspecific molecular evolution of this species within the subcontinent. All isolates except that from North-Central India formed a distinct phylogenetic clade, notwithstanding low bootstrap support and collapse of the clade in Bayesian Inference. North-Central isolates occupied more basal position compared to other isolates, which is suggestive of its evolutionarily primitive status. Indian isolates formed a monophyletic and well-supported clade within O. tenuiflorum clade, which indicates a distinct haplotype. Given the vast geographical area of more than 3 million km(2) encompassing many exclusive biogeographical and ecological zones, relatively low rate of evolution of this herb at this locus in India is particularly interesting. PMID:24523650
Gelman, Andrew; Stern, Hal S; Dunson, David B; Vehtari, Aki; Rubin, Donald B
2013-01-01
FUNDAMENTALS OF BAYESIAN INFERENCEProbability and InferenceSingle-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian ApproachesHierarchical ModelsFUNDAMENTALS OF BAYESIAN DATA ANALYSISModel Checking Evaluating, Comparing, and Expanding ModelsModeling Accounting for Data Collection Decision AnalysisADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional ApproximationsREGRESSION MODELS Introduction to Regression Models Hierarchical Linear
Yuan, Ying; MacKinnon, David P.
2009-01-01
This article proposes Bayesian analysis of mediation effects. Compared to conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian mediation analysis, inference is straightforward and exact, which makes it appealing for studies with small samples. Third, the Bayesian approach is conceptua...
Bayesian Games with Intentions
Bjorndahl, Adam; Halpern, Joseph Y.; Pass, Rafael
2016-01-01
We show that standard Bayesian games cannot represent the full spectrum of belief-dependent preferences. However, by introducing a fundamental distinction between intended and actual strategies, we remove this limitation. We define Bayesian games with intentions, generalizing both Bayesian games and psychological games, and prove that Nash equilibria in psychological games correspond to a special class of equilibria as defined in our setting.
Mitochondrial DNA under siege in avian phylogeography.
Zink, Robert M; Barrowclough, George F
2008-05-01
Mitochondrial DNA (mtDNA) has been the workhorse of research in phylogeography for almost two decades. However, concerns with basing evolutionary interpretations on mtDNA results alone have been voiced since the inception of such studies. Recently, some authors have suggested that the potential problems with mtDNA are so great that inferences about population structure and species limits are unwarranted unless corroborated by other evidence, usually in the form of nuclear gene data. Here we review the relative merits of mitochondrial and nuclear phylogeographical studies, using birds as an exemplar class of organisms. A review of population demographic and genetic theory indicates that mitochondrial and nuclear phylogeographical results ought to concur for both geographically unstructured populations and for populations that have long histories of isolation. However, a relatively common occurrence will be shallow, but geographically structured mtDNA trees--without nuclear gene corroboration--for populations with relatively shorter periods of isolation. This is expected because of the longer coalescence times of nuclear genes (approximately four times that of mtDNA); such cases do not contradict the mtDNA inference of recent isolation and evolutionary divergence. Rather, the nuclear markers are more lagging indicators of changes in population structure. A review of the recent literature on birds reveals the existence of relatively few cases in which nuclear markers contradict mitochondrial markers in a fashion not consistent with coalescent theory. Preliminary information from nuclear genes suggests that mtDNA patterns will prove to be robust indicators of patterns of population history and species limits. At equilibrium, mitochondrial loci are generally a more sensitive indicator of population structure than are nuclear loci, and mitochondrial estimates of F(ST)-like statistics are generally expected to exceed nuclear ones. Hence, invoking behavioural or ecological
DEFF Research Database (Denmark)
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...... and edges. The nodes represent variables, which may be either discrete or continuous. An edge between two nodes A and B indicates a direct influence between the state of A and the state of B, which in some domains can also be interpreted as a causal relation. The wide-spread use of Bayesian networks...... is largely due to the availability of efficient inference algorithms for answering probabilistic queries about the states of the variables in the network. Furthermore, to support the construction of Bayesian network models, learning algorithms are also available. We give an overview of the Bayesian network...
Directory of Open Access Journals (Sweden)
Chiari Ylenia
2007-01-01
Full Text Available Abstract Background The genus Mantella, endemic poison frogs of Madagascar with 16 described species, are known in the field of international pet trade and entered under the CITES control for the last four years. The phylogeny and phylogeography of this genus have been recently subject of study for conservation purposes. Here we report on the studies of the phylogeography of the Mantella cowani group using a fragment of 453 bp of the mitochondrial cytochrome b gene from 195 individuals from 21 localities. This group is represented by five forms: M. cowani, a critically endangered species, a vulnerable species, M. haraldmeieri, and the non-threatened M. baroni, M. aff. baroni, and M. nigricans. Results The Bayesian phylogenetic and haplotype network analyses revealed the presence of three separated haplotype clades: (1 M. baroni, M. aff. baroni, M. nigricans, and putative hybrids of M. cowani and M. baroni, (2 M. cowani and putative hybrids of M. cowani and M. baroni, and (3 M. haraldmeieri. The putative hybrids were collected from sites where M. cowani and M. baroni live in sympatry. Conclusion These results suggest (a a probable hybridization between M. cowani and M. baroni, (b a lack of genetic differentiation between M. baroni/M. aff. baroni and M. nigricans, (c evidence of recent gene-flow between the northern (M. nigricans, eastern (M. baroni, and south-eastern (M. aff. baroni forms of distinct coloration, and (d the existence of at least three units for conservation in the Mantella cowani group.
Directory of Open Access Journals (Sweden)
Joaquín Muñoz
2013-11-01
Full Text Available Since Darwin’s time, waterbirds have been considered an important vector for the dispersal of continental aquatic invertebrates. Bird movements have facilitated the worldwide invasion of the American brine shrimp Artemia franciscana, transporting cysts (diapausing eggs, and favouring rapid range expansions from introduction sites. Here we address the impact of bird migratory flyways on the population genetic structure and phylogeography of A. franciscana in its native range in the Americas. We examined sequence variation for two mitochondrial gene fragments (COI and 16S for a subset of the data in a large set of population samples representing the entire native range of A. franciscana. Furthermore, we performed Mantel tests and redundancy analyses (RDA to test the role of flyways, geography and human introductions on the phylogeography and population genetic structure at a continental scale. A. franciscana mitochondrial DNA was very diverse, with two main clades, largely corresponding to Pacific and Atlantic populations, mirroring American bird flyways. There was a high degree of regional endemism, with populations subdivided into at least 12 divergent, geographically restricted and largely allopatric mitochondrial lineages, and high levels of population structure (ΦST of 0.92, indicating low ongoing gene flow. We found evidence of human-mediated introductions in nine out of 39 populations analysed. Once these populations were removed, Mantel tests revealed a strong association between genetic variation and geographic distance (i.e., isolation-by-distance pattern. RDA showed that shared bird flyways explained around 20% of the variance in genetic distance between populations and this was highly significant, once geographic distance was controlled for. The variance explained increased to 30% when the factor human introduction was included in the model. Our findings suggest that bird-mediated transport of brine shrimp propagules does not result
Understanding Computational Bayesian Statistics
Bolstad, William M
2011-01-01
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic
Bayesian statistics an introduction
Lee, Peter M
2012-01-01
Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as wel
Bayesian analysis of rare events
Straub, Daniel; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.
An Intuitive Dashboard for Bayesian Network Inference
International Nuclear Information System (INIS)
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++
An Intuitive Dashboard for Bayesian Network Inference
Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.
2014-03-01
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.
Bayesian networks as a tool for epidemiological systems analysis
Lewis, F.I.
2012-01-01
Bayesian network analysis is a form of probabilistic modeling which derives from empirical data a directed acyclic graph (DAG) describing the dependency structure between random variables. Bayesian networks are increasingly finding application in areas such as computational and systems biology, and more recently in epidemiological analyses. The key distinction between standard empirical modeling approaches, such as generalised linear modeling, and Bayesian network analyses is that the latter ...
Frühwirth-Schnatter, Sylvia
1990-01-01
In the paper at hand we apply it to Bayesian statistics to obtain "Fuzzy Bayesian Inference". In the subsequent sections we will discuss a fuzzy valued likelihood function, Bayes' theorem for both fuzzy data and fuzzy priors, a fuzzy Bayes' estimator, fuzzy predictive densities and distributions, and fuzzy H.P.D .-Regions. (author's abstract)
Yuan, Ying; MacKinnon, David P.
2009-01-01
In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…
Bayesian Source Separation and Localization
Knuth, K H
1998-01-01
The problem of mixed signals occurs in many different contexts; one of the most familiar being acoustics. The forward problem in acoustics consists of finding the sound pressure levels at various detectors resulting from sound signals emanating from the active acoustic sources. The inverse problem consists of using the sound recorded by the detectors to separate the signals and recover the original source waveforms. In general, the inverse problem is unsolvable without additional information. This general problem is called source separation, and several techniques have been developed that utilize maximum entropy, minimum mutual information, and maximum likelihood. In previous work, it has been demonstrated that these techniques can be recast in a Bayesian framework. This paper demonstrates the power of the Bayesian approach, which provides a natural means for incorporating prior information into a source model. An algorithm is developed that utilizes information regarding both the statistics of the amplitudes...
von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo
2014-06-01
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
Global phylogeography of Dengue type 1 and 2 viruses reveals the role of India.
Walimbe, Atul M; Lotankar, Mrunalini; Cecilia, D; Cherian, Sarah S
2014-03-01
Patterns in virus dispersal and epidemiology of viral diseases can be revealed by phylogeographic studies. Currently knowledge about phylogeography of Dengue virus (DENV) Types 1 and 2 is limited. We carried out the phylogeographic analyses for DENV-1 and DENV-2, by the Bayesian Markov Chain Monte Carlo (MCMC) approach, with emphasis on Indian isolates in relation to the global evolutionary dynamics of the viruses. More than 250 E-gene sequences of each virus, available in GenBank, were used for the analyses. The study was focused on understanding the most likely geographical origin for the major genotypes and sub-lineages of DENV-1/DENV-2 and also the possible pathways in the dispersal of the virus. The results showed that for DENV-1, Southeast Asia was the most likely geographical origin and India was determined to be the ancestral location of the Cosmopolitan genotype circulating in India, Sri Lanka, West and East Africa, Caribbean region, East and Southeast Asia. For DENV-2, the ancestral source could not be precisely inferred. Further, in spite of the earliest isolate from Trinidad-1953 of the American genotype, it was depicted that India may have been the probable ancestor of this genotype. India was also determined to be the ancestral location of a subgroup of the Cosmopolitan genotype. It was noted that DENV-1 and DENV-2 were introduced into India during 1940s and 1910s respectively. Subsequently, dispersal of both the viruses between India and different regions including West, East and Central Africa, Southeast and East Asia and Caribbean was inferred. Overall, the current study provides insight into the spatial as well as temporal dynamics of dengue virus serotypes 1 and 2.
Bayesian Compressed Sensing with Unknown Measurement Noise Level
DEFF Research Database (Denmark)
Hansen, Thomas Lundgaard; Jørgensen, Peter Bjørn; Pedersen, Niels Lovmand;
2013-01-01
In sparse Bayesian learning (SBL) approximate Bayesian inference is applied to find sparse estimates from observations corrupted by additive noise. Current literature only vaguely considers the case where the noise level is unknown a priori. We show that for most state-of-the-art reconstruction a...
Granade, Christopher; Cory, D G
2015-01-01
In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of- the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we solve all three problems. First, we use modern statistical methods, as pioneered by Husz\\'ar and Houlsby and by Ferrie, to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first informative priors on quantum states and channels. Finally, we develop a method that allows online tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.
Noncausal Bayesian Vector Autoregression
DEFF Research Database (Denmark)
Lanne, Markku; Luoto, Jani
We propose a Bayesian inferential procedure for the noncausal vector autoregressive (VAR) model that is capable of capturing nonlinearities and incorporating effects of missing variables. In particular, we devise a fast and reliable posterior simulator that yields the predictive distribution...
Zheng, Ying; Liu, Jian; Gong, Xun
2016-01-01
Dramatic crustal deformation and river incision in Southwest China induced by the Indo-Asian collision have long been argued to contribute to the complicated landscapes, heterogeneous environment and abundant biodiversity in this region. However, biological impacts in promoting intraspecific phylogeographical subdivision and divergence along the Red River Fault zone (RRF) remain poorly understood. To investigate the possible biological effects of tectonic movements and environment variations within the RRF, the phylogeography of Cycas dolichophylla-an endemic but widely distributed Cycas in Southwest China and North Vietnam along the RRF were carried out based on four chloroplast DNA intergenic spacers (cpDNA), three nuclear DNA sequences (nDNA) and 16 simple sequence repeat variations (SSR). Two different phylogeographical patterns were detected: a Southwest-Northeast break across the RRF disclosed by chlorotypes and a China-Vietnam separation revealed by SSR. A Bayesian skyline plot from cpDNA data demonstrated a historical increasing, but a recent declining, dynamic in population size during the Pleistocene. Consequently, we infer it is the local environmental variation during Cenozoic that contributed to the complex landscape and microclimate mosaics, facilitating speciation and divergence of C. dolichophylla. Subsequently, the Quaternary climatic fluctuations coupled with human activities profoundly influenced the genetic structure and demographic history of this species. PMID:27629063
Frantz, A C; McDevitt, A D; Pope, L C; Kochan, J; Davison, J; Clements, C F; Elmeros, M; Molina-Vacas, G; Ruiz-Gonzalez, A; Balestrieri, A; Van Den Berge, K; Breyne, P; Do Linh San, E; Ågren, E O; Suchentrunk, F; Schley, L; Kowalczyk, R; Kostka, B I; Ćirović, D; Šprem, N; Colyn, M; Ghirardi, M; Racheva, V; Braun, C; Oliveira, R; Lanszki, J; Stubbe, A; Stubbe, M; Stier, N; Burke, T
2014-01-01
Although the phylogeography of European mammals has been extensively investigated since the 1990s, many studies were limited in terms of sampling distribution, the number of molecular markers used and the analytical techniques employed, frequently leading to incomplete postglacial recolonisation scenarios. The broad-scale genetic structure of the European badger (Meles meles) is of interest as it may result from historic restriction to glacial refugia and/or recent anthropogenic impact. However, previous studies were based mostly on samples from western Europe, making it difficult to draw robust conclusions about the location of refugia, patterns of postglacial expansion and recent demography. In the present study, continent-wide sampling and analyses with multiple markers provided evidence for two glacial refugia (Iberia and southeast Europe) that contributed to the genetic variation observed in badgers in Europe today. Approximate Bayesian computation provided support for a colonisation of Scandinavia from both Iberian and southeastern refugia. In the whole of Europe, we observed a decline in genetic diversity with increasing latitude, suggesting that the reduced diversity in the peripheral populations resulted from a postglacial expansion processes. Although MSVAR v.1.3 also provided evidence for recent genetic bottlenecks in some of these peripheral populations, the simulations performed to estimate the method's power to correctly infer the past demography of our empirical populations suggested that the timing and severity of bottlenecks could not be established with certainty. We urge caution against trying to relate demographic declines inferred using MSVAR with particular historic or climatological events. PMID:24781805
Kadane, Joseph B
2010-01-01
This paper reviews the maxims used by three early modern fictional detectives: Monsieur Lecoq, C. Auguste Dupin and Sherlock Holmes. It find similarities between these maxims and Bayesian thought. Poe's Dupin uses ideas very similar to Bayesian game theory. Sherlock Holmes' statements also show thought patterns justifiable in Bayesian terms.
Kadane, Joseph B.
2009-01-01
This paper reviews the maxims used by three early modern fictional detectives: Monsieur Lecoq, C. Auguste Dupin and Sherlock Holmes. It find similarities between these maxims and Bayesian thought. Poe's Dupin uses ideas very similar to Bayesian game theory. Sherlock Holmes' statements also show thought patterns justifiable in Bayesian terms.
Malicious Bayesian Congestion Games
Gairing, Martin
2008-01-01
In this paper, we introduce malicious Bayesian congestion games as an extension to congestion games where players might act in a malicious way. In such a game each player has two types. Either the player is a rational player seeking to minimize her own delay, or - with a certain probability - the player is malicious in which case her only goal is to disturb the other players as much as possible. We show that such games do in general not possess a Bayesian Nash equilibrium in pure strategies (i.e. a pure Bayesian Nash equilibrium). Moreover, given a game, we show that it is NP-complete to decide whether it admits a pure Bayesian Nash equilibrium. This result even holds when resource latency functions are linear, each player is malicious with the same probability, and all strategy sets consist of singleton sets. For a slightly more restricted class of malicious Bayesian congestion games, we provide easy checkable properties that are necessary and sufficient for the existence of a pure Bayesian Nash equilibrium....
Numeracy, frequency, and Bayesian reasoning
Directory of Open Access Journals (Sweden)
Gretchen B. Chapman
2009-02-01
Full Text Available Previous research has demonstrated that Bayesian reasoning performance is improved if uncertainty information is presented as natural frequencies rather than single-event probabilities. A questionnaire study of 342 college students replicated this effect but also found that the performance-boosting benefits of the natural frequency presentation occurred primarily for participants who scored high in numeracy. This finding suggests that even comprehension and manipulation of natural frequencies requires a certain threshold of numeracy abilities, and that the beneficial effects of natural frequency presentation may not be as general as previously believed.
Phylogeography and the conservation of coral reef fishes
Rocha, L. A.; Craig, M. T.; Bowen, B. W.
2007-09-01
Here we present a review of how the study of the geographic distribution of genetic lineages (phylogeography) has helped identify management units, evolutionary significant units, cryptic species, and areas of endemism, and how this information can help efforts to achieve effective conservation of coral reefs. These studies have confirmed the major biogeographic barriers that were originally identified by tropical species distributions. Ancient separations, identified primarily with mtDNA sequence comparisons, became apparent between populations on each side of the barriers. The general lack of correlation between pelagic larval duration and genetic connectivity across barriers indicates that life history and ecology can be as influential as oceanography and geography in shaping evolutionary partitions within ocean basins. Hence, conservation strategies require a recognition of ecological hotspots, those areas where habitat heterogeneity promotes speciation, in addition to more traditional approaches based on biogeography. Finally, the emerging field of genomics will add a new dimension to phylogeography, allowing the study of genes that are pertinent to recent and ongoing differentiation, and ultimately providing higher resolution to detect evolutionary significant units that have diverged in an ecological time scale.
Tactile length contraction as Bayesian inference.
Tong, Jonathan; Ngo, Vy; Goldreich, Daniel
2016-08-01
To perceive, the brain must interpret stimulus-evoked neural activity. This is challenging: The stochastic nature of the neural response renders its interpretation inherently uncertain. Perception would be optimized if the brain used Bayesian inference to interpret inputs in light of expectations derived from experience. Bayesian inference would improve perception on average but cause illusions when stimuli violate expectation. Intriguingly, tactile, auditory, and visual perception are all prone to length contraction illusions, characterized by the dramatic underestimation of the distance between punctate stimuli delivered in rapid succession; the origin of these illusions has been mysterious. We previously proposed that length contraction illusions occur because the brain interprets punctate stimulus sequences using Bayesian inference with a low-velocity expectation. A novel prediction of our Bayesian observer model is that length contraction should intensify if stimuli are made more difficult to localize. Here we report a tactile psychophysical study that tested this prediction. Twenty humans compared two distances on the forearm: a fixed reference distance defined by two taps with 1-s temporal separation and an adjustable comparison distance defined by two taps with temporal separation t ≤ 1 s. We observed significant length contraction: As t was decreased, participants perceived the two distances as equal only when the comparison distance was made progressively greater than the reference distance. Furthermore, the use of weaker taps significantly enhanced participants' length contraction. These findings confirm the model's predictions, supporting the view that the spatiotemporal percept is a best estimate resulting from a Bayesian inference process. PMID:27121574
Dimensionality reduction in Bayesian estimation algorithms
Directory of Open Access Journals (Sweden)
G. W. Petty
2013-03-01
Full Text Available An idealized synthetic database loosely resembling 3-channel passive microwave observations of precipitation against a variable background is employed to examine the performance of a conventional Bayesian retrieval algorithm. For this dataset, algorithm performance is found to be poor owing to an irreconcilable conflict between the need to find matches in the dependent database versus the need to exclude inappropriate matches. It is argued that the likelihood of such conflicts increases sharply with the dimensionality of the observation space of real satellite sensors, which may utilize 9 to 13 channels to retrieve precipitation, for example. An objective method is described for distilling the relevant information content from N real channels into a much smaller number (M of pseudochannels while also regularizing the background (geophysical plus instrument noise component. The pseudochannels are linear combinations of the original N channels obtained via a two-stage principal component analysis of the dependent dataset. Bayesian retrievals based on a single pseudochannel applied to the independent dataset yield striking improvements in overall performance. The differences between the conventional Bayesian retrieval and reduced-dimensional Bayesian retrieval suggest that a major potential problem with conventional multichannel retrievals – whether Bayesian or not – lies in the common but often inappropriate assumption of diagonal error covariance. The dimensional reduction technique described herein avoids this problem by, in effect, recasting the retrieval problem in a coordinate system in which the desired covariance is lower-dimensional, diagonal, and unit magnitude.
Tactile length contraction as Bayesian inference.
Tong, Jonathan; Ngo, Vy; Goldreich, Daniel
2016-08-01
To perceive, the brain must interpret stimulus-evoked neural activity. This is challenging: The stochastic nature of the neural response renders its interpretation inherently uncertain. Perception would be optimized if the brain used Bayesian inference to interpret inputs in light of expectations derived from experience. Bayesian inference would improve perception on average but cause illusions when stimuli violate expectation. Intriguingly, tactile, auditory, and visual perception are all prone to length contraction illusions, characterized by the dramatic underestimation of the distance between punctate stimuli delivered in rapid succession; the origin of these illusions has been mysterious. We previously proposed that length contraction illusions occur because the brain interprets punctate stimulus sequences using Bayesian inference with a low-velocity expectation. A novel prediction of our Bayesian observer model is that length contraction should intensify if stimuli are made more difficult to localize. Here we report a tactile psychophysical study that tested this prediction. Twenty humans compared two distances on the forearm: a fixed reference distance defined by two taps with 1-s temporal separation and an adjustable comparison distance defined by two taps with temporal separation t ≤ 1 s. We observed significant length contraction: As t was decreased, participants perceived the two distances as equal only when the comparison distance was made progressively greater than the reference distance. Furthermore, the use of weaker taps significantly enhanced participants' length contraction. These findings confirm the model's predictions, supporting the view that the spatiotemporal percept is a best estimate resulting from a Bayesian inference process.
Hessian PDF reweighting meets the Bayesian methods
Paukkunen, Hannu
2014-01-01
We discuss the Hessian PDF reweighting - a technique intended to estimate the effects that new measurements have on a set of PDFs. The method stems straightforwardly from considering new data in a usual $\\chi^2$-fit and it naturally incorporates also non-zero values for the tolerance, $\\Delta\\chi^2>1$. In comparison to the contemporary Bayesian reweighting techniques, there is no need to generate large ensembles of PDF Monte-Carlo replicas, and the observables need to be evaluated only with the central and the error sets of the original PDFs. In spite of the apparently rather different methodologies, we find that the Hessian and the Bayesian techniques are actually equivalent if the $\\Delta\\chi^2$ criterion is properly included to the Bayesian likelihood function that is a simple exponential.
Directory of Open Access Journals (Sweden)
Jasna Puizina
2013-08-01
Full Text Available Eobania vermiculata (O.F. Müller, 1774, is a typical Mediterranean species of large land snails. Nonindigenous populations of this species, however, are already established in the USA, Australia and elsewhere in the world, where this species is considered to represent a potentially serious threat as a pest and invasive species. The aims of this study were: 1 to determine the pattern of genetic variation within the Croatian E. vermiculata populations based on analyses of sequence diversity of two mitochondrial genes, 16S rDNA and the cytochrome oxidase I (COI, and 2 to shed more light upon the phylogeography of E. vermiculata in this area. Seventy-seven specimens of land snail Eobania vermiculata were sampled at 19 sampling sites along Croatian coastal region and islands. The partial 16S rRNA gene sequences (379 bp grouped into 14 haplotypes, whereas the partial COI gene sequences (523 bp grouped into 13 haplotypes. The overall population is characterized by relatively high haplotype (gene diversity (0.719±0.042 for 16S rDNA and 0.869±0.020 for COI. Demographic Fu F’s tests and Tajima's D value indicated no significant change in the population size, thus suggesting long historical presence of E. vermiculata in this region. Maximum likelihood phylogenetic analysis, Bayesian inference and median joining haplotype network showed a genetic splitting of Croatian 16S rRNA and COI sequences, with a clear distinction between south-Adriatic and north-Adriatic haplotypes. A possible explanation for the observed phylogeography of E. vermiculata, could be related to the climate change, glaciations and the Adriatic Sea level oscillations during the Quaternary
Bayesian least squares deconvolution
Ramos, A Asensio
2015-01-01
Aims. To develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods. We consider LSD under the Bayesian framework and we introduce a flexible Gaussian Process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results. We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.
Bayesian least squares deconvolution
Asensio Ramos, A.; Petit, P.
2015-11-01
Aims: We develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods: We consider LSD under the Bayesian framework and we introduce a flexible Gaussian process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results: We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.
Hybrid Batch Bayesian Optimization
Azimi, Javad; Fern, Xiaoli
2012-01-01
Bayesian Optimization aims at optimizing an unknown non-convex/concave function that is costly to evaluate. We are interested in application scenarios where concurrent function evaluations are possible. Under such a setting, BO could choose to either sequentially evaluate the function, one input at a time and wait for the output of the function before making the next selection, or evaluate the function at a batch of multiple inputs at once. These two different settings are commonly referred to as the sequential and batch settings of Bayesian Optimization. In general, the sequential setting leads to better optimization performance as each function evaluation is selected with more information, whereas the batch setting has an advantage in terms of the total experimental time (the number of iterations). In this work, our goal is to combine the strength of both settings. Specifically, we systematically analyze Bayesian optimization using Gaussian process as the posterior estimator and provide a hybrid algorithm t...
Loredo, T J
2004-01-01
I describe a framework for adaptive scientific exploration based on iterating an Observation--Inference--Design cycle that allows adjustment of hypotheses and observing protocols in response to the results of observation on-the-fly, as data are gathered. The framework uses a unified Bayesian methodology for the inference and design stages: Bayesian inference to quantify what we have learned from the available data and predict future data, and Bayesian decision theory to identify which new observations would teach us the most. When the goal of the experiment is simply to make inferences, the framework identifies a computationally efficient iterative ``maximum entropy sampling'' strategy as the optimal strategy in settings where the noise statistics are independent of signal properties. Results of applying the method to two ``toy'' problems with simulated data--measuring the orbit of an extrasolar planet, and locating a hidden one-dimensional object--show the approach can significantly improve observational eff...
Bayesian Exploratory Factor Analysis
DEFF Research Database (Denmark)
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.;
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corr......This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor......, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates...
Bayesian multiple target tracking
Streit, Roy L
2013-01-01
This second edition has undergone substantial revision from the 1999 first edition, recognizing that a lot has changed in the multiple target tracking field. One of the most dramatic changes is in the widespread use of particle filters to implement nonlinear, non-Gaussian Bayesian trackers. This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that implements
Bayesian and frequentist inequality tests
David M. Kaplan; Zhuo, Longhao
2016-01-01
Bayesian and frequentist criteria are fundamentally different, but often posterior and sampling distributions are asymptotically equivalent (and normal). We compare Bayesian and frequentist hypothesis tests of inequality restrictions in such cases. For finite-dimensional parameters, if the null hypothesis is that the parameter vector lies in a certain half-space, then the Bayesian test has (frequentist) size $\\alpha$; if the null hypothesis is any other convex subspace, then the Bayesian test...
Smith, Andrea L; Monteiro, Luis; Hasegawa, Osamu; Friesen, Vicki L
2007-06-01
Factors shaping population differentiation in low latitude seabirds are not well-understood. In this study, we examined global patterns of DNA sequence variation in the mitochondrial control region of the band-rumped storm-petrel (Oceanodroma castro), a highly pelagic seabird distributed across the sub-tropical and tropical Atlantic and Pacific Oceans. Despite previous classification as a single, monotypic species, fixed haplotype differences occurred between Atlantic and Pacific populations, and among all Pacific populations. In addition, Cape Verde and Galapagos birds formed distinct clades, estimated to have diverged from all other populations at least 150,000years ago. Azores hot season populations were also genetically distinct, lending support to previous phenotypic evidence that they be recognized as a separate species. Seasonal populations in Madeira probably represent separate genetic management units. The phylogeography of the band-rumped storm-petrel appears to have been shaped by both nonphysical barriers to gene flow and Pleistocene oceanographic conditions. Ancestral populations likely expanded through contiguous range expansion and infrequent long-distance colonization into their current breeding range. These findings suggest several possible revisions to the taxonomy of the band-rumped storm-petrel. PMID:17408975
Comparative phylogeography of African savannah ungulates
DEFF Research Database (Denmark)
Lorenzen, Eline; Heller, Rasmus; Siegismund, Hans Redlef
2012-01-01
The savannah biome of sub-Saharan Africa harbours the highest diversity of ungulates (hoofed mammals) on Earth. In this review, we compile population genetic data from 19 codistributed ungulate taxa of the savannah biome and find striking concordance in the phylogeographic structuring of species....
Comparative phylogeography in rainforest trees from Lower Guinea, Africa.
Heuertz, Myriam; Duminil, Jérôme; Dauby, Gilles; Savolainen, Vincent; Hardy, Olivier J
2014-01-01
Comparative phylogeography is an effective approach to assess the evolutionary history of biological communities. We used comparative phylogeography in fourteen tree taxa from Lower Guinea (Atlantic Equatorial Africa) to test for congruence with two simple evolutionary scenarios based on physio-climatic features 1) the W-E environmental gradient and 2) the N-S seasonal inversion, which determine climatic and seasonality differences in the region. We sequenced the trnC-ycf6 plastid DNA region using a dual sampling strategy: fourteen taxa with small sample sizes (dataset 1, mean n = 16/taxon), to assess whether a strong general pattern of allele endemism and genetic differentiation emerged; and four taxonomically well-studied species with larger sample sizes (dataset 2, mean n = 109/species) to detect the presence of particular shared phylogeographic patterns. When grouping the samples into two alternative sets of two populations, W and E, vs. N and S, neither dataset exhibited a strong pattern of allelic endemism, suggesting that none of the considered regions consistently harboured older populations. Differentiation in dataset 1 was similarly strong between W and E as between N and S, with 3-5 significant F ST tests out of 14 tests in each scenario. Coalescent simulations indicated that, given the power of the data, this result probably reflects idiosyncratic histories of the taxa, or a weak common differentiation pattern (possibly with population substructure) undetectable across taxa in dataset 1. Dataset 2 identified a common genetic break separating the northern and southern populations of Greenwayodendron suaveolens subsp. suaveolens var. suaveolens, Milicia excelsa, Symphonia globulifera and Trichoscypha acuminata in Lower Guinea, in agreement with differentiation across the N-S seasonal inversion. Our work suggests that currently recognized tree taxa or suspected species complexes can contain strongly differentiated genetic lineages, which could lead
Comparative phylogeography in rainforest trees from Lower Guinea, Africa.
Directory of Open Access Journals (Sweden)
Myriam Heuertz
Full Text Available Comparative phylogeography is an effective approach to assess the evolutionary history of biological communities. We used comparative phylogeography in fourteen tree taxa from Lower Guinea (Atlantic Equatorial Africa to test for congruence with two simple evolutionary scenarios based on physio-climatic features 1 the W-E environmental gradient and 2 the N-S seasonal inversion, which determine climatic and seasonality differences in the region. We sequenced the trnC-ycf6 plastid DNA region using a dual sampling strategy: fourteen taxa with small sample sizes (dataset 1, mean n = 16/taxon, to assess whether a strong general pattern of allele endemism and genetic differentiation emerged; and four taxonomically well-studied species with larger sample sizes (dataset 2, mean n = 109/species to detect the presence of particular shared phylogeographic patterns. When grouping the samples into two alternative sets of two populations, W and E, vs. N and S, neither dataset exhibited a strong pattern of allelic endemism, suggesting that none of the considered regions consistently harboured older populations. Differentiation in dataset 1 was similarly strong between W and E as between N and S, with 3-5 significant F ST tests out of 14 tests in each scenario. Coalescent simulations indicated that, given the power of the data, this result probably reflects idiosyncratic histories of the taxa, or a weak common differentiation pattern (possibly with population substructure undetectable across taxa in dataset 1. Dataset 2 identified a common genetic break separating the northern and southern populations of Greenwayodendron suaveolens subsp. suaveolens var. suaveolens, Milicia excelsa, Symphonia globulifera and Trichoscypha acuminata in Lower Guinea, in agreement with differentiation across the N-S seasonal inversion. Our work suggests that currently recognized tree taxa or suspected species complexes can contain strongly differentiated genetic lineages
A. Korattikara; V. Rathod; K. Murphy; M. Welling
2015-01-01
We consider the problem of Bayesian parameter estimation for deep neural networks, which is important in problem settings where we may have little data, and/ or where we need accurate posterior predictive densities p(y|x, D), e.g., for applications involving bandits or active learning. One simple ap
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Loredo, Thomas J.
2004-04-01
I describe a framework for adaptive scientific exploration based on iterating an Observation-Inference-Design cycle that allows adjustment of hypotheses and observing protocols in response to the results of observation on-the-fly, as data are gathered. The framework uses a unified Bayesian methodology for the inference and design stages: Bayesian inference to quantify what we have learned from the available data and predict future data, and Bayesian decision theory to identify which new observations would teach us the most. When the goal of the experiment is simply to make inferences, the framework identifies a computationally efficient iterative ``maximum entropy sampling'' strategy as the optimal strategy in settings where the noise statistics are independent of signal properties. Results of applying the method to two ``toy'' problems with simulated data-measuring the orbit of an extrasolar planet, and locating a hidden one-dimensional object-show the approach can significantly improve observational efficiency in settings that have well-defined nonlinear models. I conclude with a list of open issues that must be addressed to make Bayesian adaptive exploration a practical and reliable tool for optimizing scientific exploration.
DEFF Research Database (Denmark)
Antoniou, Constantinos; Harrison, Glenn W.; Lau, Morten I.;
2015-01-01
A large literature suggests that many individuals do not apply Bayes’ Rule when making decisions that depend on them correctly pooling prior information and sample data. We replicate and extend a classic experimental study of Bayesian updating from psychology, employing the methods of experimental...
Bayesian Independent Component Analysis
DEFF Research Database (Denmark)
Winther, Ole; Petersen, Kaare Brandt
2007-01-01
In this paper we present an empirical Bayesian framework for independent component analysis. The framework provides estimates of the sources, the mixing matrix and the noise parameters, and is flexible with respect to choice of source prior and the number of sources and sensors. Inside the engine...
DEFF Research Database (Denmark)
Hartelius, Karsten; Carstensen, Jens Michael
2003-01-01
A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which...
Quantum Bayesianism at the Perimeter
Fuchs, Christopher A
2010-01-01
The author summarizes the Quantum Bayesian viewpoint of quantum mechanics, developed originally by C. M. Caves, R. Schack, and himself. It is a view crucially dependent upon the tools of quantum information theory. Work at the Perimeter Institute for Theoretical Physics continues the development and is focused on the hard technical problem of a finding a good representation of quantum mechanics purely in terms of probabilities, without amplitudes or Hilbert-space operators. The best candidate representation involves a mysterious entity called a symmetric informationally complete quantum measurement. Contemplation of it gives a way of thinking of the Born Rule as an addition to the rules of probability theory, applicable when one gambles on the consequences of interactions with physical systems. The article ends by outlining some directions for future work.
State Information in Bayesian Games
Cuff, Paul
2009-01-01
Two-player zero-sum repeated games are well understood. Computing the value of such a game is straightforward. Additionally, if the payoffs are dependent on a random state of the game known to one, both, or neither of the players, the resulting value of the game has been analyzed under the framework of Bayesian games. This investigation considers the optimal performance in a game when a helper is transmitting state information to one of the players. Encoding information for an adversarial setting (game) requires a different result than rate-distortion theory provides. Game theory has accentuated the importance of randomization (mixed strategy), which does not find a significant role in most communication modems and source coding codecs. Higher rates of communication, used in the right way, allow the message to include the necessary random component useful in games.
Probability and Bayesian statistics
1987-01-01
This book contains selected and refereed contributions to the "Inter national Symposium on Probability and Bayesian Statistics" which was orga nized to celebrate the 80th birthday of Professor Bruno de Finetti at his birthplace Innsbruck in Austria. Since Professor de Finetti died in 1985 the symposium was dedicated to the memory of Bruno de Finetti and took place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa pers are published especially by the relationship to Bruno de Finetti's scientific work. The evolution of stochastics shows growing importance of probability as coherent assessment of numerical values as degrees of believe in certain events. This is the basis for Bayesian inference in the sense of modern statistics. The contributions in this volume cover a broad spectrum ranging from foundations of probability across psychological aspects of formulating sub jective probability statements, abstract measure theoretical considerations, contributions to theoretical statistics an...
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel N
2012-01-01
Many networks of scientific interest naturally decompose into clusters or communities with comparatively fewer external than internal links; however, current Bayesian models of network communities do not exert this intuitive notion of communities. We formulate a nonparametric Bayesian model...... for community detection consistent with an intuitive definition of communities and present a Markov chain Monte Carlo procedure for inferring the community structure. A Matlab toolbox with the proposed inference procedure is available for download. On synthetic and real networks, our model detects communities...... consistent with ground truth, and on real networks, it outperforms existing approaches in predicting missing links. This suggests that community structure is an important structural property of networks that should be explicitly modeled....
The Size-Weight Illusion is not anti-Bayesian after all: a unifying Bayesian account.
Peters, Megan A K; Ma, Wei Ji; Shams, Ladan
2016-01-01
When we lift two differently-sized but equally-weighted objects, we expect the larger to be heavier, but the smaller feels heavier. However, traditional Bayesian approaches with "larger is heavier" priors predict the smaller object should feel lighter; this Size-Weight Illusion (SWI) has thus been labeled "anti-Bayesian" and has stymied psychologists for generations. We propose that previous Bayesian approaches neglect the brain's inference process about density. In our Bayesian model, objects' perceived heaviness relationship is based on both their size and inferred density relationship: observers evaluate competing, categorical hypotheses about objects' relative densities, the inference about which is then used to produce the final estimate of weight. The model can qualitatively and quantitatively reproduce the SWI and explain other researchers' findings, and also makes a novel prediction, which we confirmed. This same computational mechanism accounts for other multisensory phenomena and illusions; that the SWI follows the same process suggests that competitive-prior Bayesian inference can explain human perception across many domains.
Brody, Samuel; Lapata, Mirella
2009-01-01
Sense induction seeks to automatically identify word senses directly from a corpus. A key assumption underlying previous work is that the context surrounding an ambiguous word is indicative of its meaning. Sense induction is thus typically viewed as an unsupervised clustering problem where the aim is to partition a word’s contexts into different classes, each representing a word sense. Our work places sense induction in a Bayesian context by modeling the contexts of the ambiguous word as samp...
Bayesian Generalized Rating Curves
Helgi Sigurðarson 1985
2014-01-01
A rating curve is a curve or a model that describes the relationship between water elevation, or stage, and discharge in an observation site in a river. The rating curve is fit from paired observations of stage and discharge. The rating curve then predicts discharge given observations of stage and this methodology is applied as stage is substantially easier to directly observe than discharge. In this thesis a statistical rating curve model is proposed working within the framework of Bayesian...
Efficient Bayesian Phase Estimation
Wiebe, Nathan; Granade, Chris
2016-07-01
We introduce a new method called rejection filtering that we use to perform adaptive Bayesian phase estimation. Our approach has several advantages: it is classically efficient, easy to implement, achieves Heisenberg limited scaling, resists depolarizing noise, tracks time-dependent eigenstates, recovers from failures, and can be run on a field programmable gate array. It also outperforms existing iterative phase estimation algorithms such as Kitaev's method.
Bayesian theory and applications
Dellaportas, Petros; Polson, Nicholas G; Stephens, David A
2013-01-01
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...
Wiegerinck, Wim; Schoenaker, Christiaan; Duane, Gregory
2016-04-01
Recently, methods for model fusion by dynamically combining model components in an interactive ensemble have been proposed. In these proposals, fusion parameters have to be learned from data. One can view these systems as parametrized dynamical systems. We address the question of learnability of dynamical systems with respect to both short term (vector field) and long term (attractor) behavior. In particular we are interested in learning in the imperfect model class setting, in which the ground truth has a higher complexity than the models, e.g. due to unresolved scales. We take a Bayesian point of view and we define a joint log-likelihood that consists of two terms, one is the vector field error and the other is the attractor error, for which we take the L1 distance between the stationary distributions of the model and the assumed ground truth. In the context of linear models (like so-called weighted supermodels), and assuming a Gaussian error model in the vector fields, vector field learning leads to a tractable Gaussian solution. This solution can then be used as a prior for the next step, Bayesian attractor learning, in which the attractor error is used as a log-likelihood term. Bayesian attractor learning is implemented by elliptical slice sampling, a sampling method for systems with a Gaussian prior and a non Gaussian likelihood. Simulations with a partially observed driven Lorenz 63 system illustrate the approach.
Approximate Bayesian Computation: a nonparametric perspective
Blum, Michael
2010-01-01
Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well-suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s_obs from the data and simulating summary statistics for different values of the parameter theta. The posterior distribution is then approximated by an estimator of the conditional density g(theta|s_obs). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better perfor...
Improving Environmental Scanning Systems Using Bayesian Networks
Simon Welter; Jörg H. Mayer; Reiner Quick
2013-01-01
As companies’ environment is becoming increasingly volatile, scanning systems gain in importance. We propose a hybrid process model for such systems' information gathering and interpretation tasks that combines quantitative information derived from regression analyses and qualitative knowledge from expert interviews. For the latter, we apply Bayesian networks. We derive the need for such a hybrid process model from a literature review. We lay out our model to find a suitable set of business e...
Bayesian Posteriors Without Bayes' Theorem
Hill, Theodore P
2012-01-01
The classical Bayesian posterior arises naturally as the unique solution of several different optimization problems, without the necessity of interpreting data as conditional probabilities and then using Bayes' Theorem. For example, the classical Bayesian posterior is the unique posterior that minimizes the loss of Shannon information in combining the prior and the likelihood distributions. These results, direct corollaries of recent results about conflations of probability distributions, reinforce the use of Bayesian posteriors, and may help partially reconcile some of the differences between classical and Bayesian statistics.
A guide to Bayesian model selection for ecologists
Hooten, Mevin B.; Hobbs, N.T.
2015-01-01
The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.
Lee, Kyung Min; Yang, Eun Chan; Coyer, James A.; Zuccarello, Giuseppe C.; Wang, Wei-Lui; Choi, Chang Geun; Boo, Sung Min
2012-01-01
Although benthic marine algae are essential components of marine coastal systems that have been influenced profoundly by past and present climate change, our knowledge of seaweed phylogeography is limited. The brown alga Ishige okamurae Yendo occurs in the northwest Pacific, where it occupies a char
Bayesian ensemble refinement by replica simulations and reweighting
Hummer, Gerhard
2015-01-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We find that the strength of the restraint scales with the number of replicas and we show that this sca...
Congdon, Peter
2014-01-01
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU
Computationally efficient Bayesian tracking
Aughenbaugh, Jason; La Cour, Brian
2012-06-01
In this paper, we describe the progress we have achieved in developing a computationally efficient, grid-based Bayesian fusion tracking system. In our approach, the probability surface is represented by a collection of multidimensional polynomials, each computed adaptively on a grid of cells representing state space. Time evolution is performed using a hybrid particle/grid approach and knowledge of the grid structure, while sensor updates use a measurement-based sampling method with a Delaunay triangulation. We present an application of this system to the problem of tracking a submarine target using a field of active and passive sonar buoys.
Bayesian nonparametric data analysis
Müller, Peter; Jara, Alejandro; Hanson, Tim
2015-01-01
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.
Bayesian Geostatistical Design
DEFF Research Database (Denmark)
Diggle, Peter; Lophaven, Søren Nymand
2006-01-01
locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model......This paper describes the use of model-based geostatistics for choosing the set of sampling locations, collectively called the design, to be used in a geostatistical analysis. Two types of design situation are considered. These are retrospective design, which concerns the addition of sampling...
Bayesian network learning for natural hazard assessments
Vogel, Kristin
2016-04-01
Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables
Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer.
Kahn, C. E.; Roberts, L. M.; K. Wang; Jenks, D.; Haddawy, P.
1995-01-01
Bayesian networks use the techniques of probability theory to reason under conditions of uncertainty. We investigated the use of Bayesian networks for radiological decision support. A Bayesian network for the interpretation of mammograms (MammoNet) was developed based on five patient-history features, two physical findings, and 15 mammographic features extracted by experienced radiologists. Conditional-probability data, such as sensitivity and specificity, were derived from peer-reviewed jour...
Garcia-Rodriguez, A. I.; Bowen, B.W.; Domning, D.; Mignucci-Giannoni, A. A.; Marmontel, M.; Montoya-Ospina, R. A.; Morales-Vela, B.; Rudin, M.; Bonde, R.K.; McGuire, P.M.
1998-01-01
To resolve the population genetic structure and phylogeography of the West Indian manatee (Trichechus manatus), mitochondrial (mt) DNA control region sequences were compared among eight locations across the western Atlantic region. Fifteen haplotypes were identified among 86 individuals from Florida, Puerto Rico, the Dominican Republic, Mexico, Colombia, Venezuela, Guyana and Brazil. Despite the manatee's ability to move thousands of kilometres along continental margins, strong population separations between most locations were demonstrated with significant haplotype frequency shifts. These findings are consistent with tagging studies which indicate that stretches of open water and unsuitable coastal habitats constitute substantial barriers to gene flow and colonization. Low levels of genetic diversity within Florida and Brazilian samples might be explained by recent colonization into high latitudes or bottleneck effects. Three distinctive mtDNA lineages were observed in an intraspecific phylogeny of T. manatus, corresponding approximately to: (i) Florida and the West Indies; (ii) the Gulf of Mexico to the Caribbean rivers of South America; and (iii) the northeast Atlantic coast of South America. These lineages, which are not concordant with previous subspecies designations, are separated by sequence divergence estimates of d = 0.04-0.07, approximately the same level of divergence observed between T. manatus and the Amazonian manatee (T. inunguis, n = 16). Three individuals from Guyana, identified as T. manatus, had mtDNA haplotypes which are affiliated with the endemic Amazon form T. inunguis. The three primary T. manatus lineages and the T. inunguis lineage may represent relatively deep phylogeographic partitions which have been bridged recently due to changes in habitat availability (after the Wisconsin glacial period, 10 000 BP), natural colonization, and human-mediated transplantation.
Directory of Open Access Journals (Sweden)
Bin Wang
Full Text Available BACKGROUND: The influence of Pleistocene climatic fluctuations on intraspecific diversification in the Qinling-Daba Mountains of East Asia remains poorly investigated. We tested hypotheses concerning refugia during the last glacial maximum (LGM in this region by examining the phylogeography of the swelled vent frog (Feirana quadranus; Dicroglossidae, Anura, Amphibia. METHODOLOGY/PRINCIPAL FINDINGS: We obtained complete mitochondrial ND2 gene sequences of 224 individuals from 34 populations of Feirana quadranus for phylogeographic analyses. Additionally, we obtained nuclear tyrosinase gene sequences of 68 F. quadranus, one F. kangxianensis and three F. taihangnica samples to test for mitochondrial introgression among them. Phylogenetic analyses based on all genes revealed no introgression among them. Phylogenetic analyses based on ND2 datasets revealed that F. quadranus was comprised of six lineages which were separated by deep valleys; the sole exception is that the Main Qinling and Micang-Western Qinling lineages overlap in distribution. Analyses of population structure indicated restricted gene flow among lineages. Coalescent simulations and divergence dating indicated that the basal diversification within F. quadranus may be associated with the dramatic uplifts of the Tibetan Plateau during the Pliocene. Coalescent simulations indicated that Wuling, Daba, and Western Qinling-Micang-Longmen Mountains were refugia for F. quadranus during the LGM. Demographic analyses indicated that the Daba lineage experienced population size increase prior to the LGM but the Main Qinling and the Micang-Western Qinling lineages expanded in population size and range after the LGM, and the other lineages almost have stable population size or slight slow population size decline. CONCLUSIONS/SIGNIFICANCE: The Qinling-Daba Mountains hosted three refugia for F. quadranus during the LGM. Populations that originated in the Daba Mountains colonized the Main Qinling
Inference in hybrid Bayesian networks
DEFF Research Database (Denmark)
Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael;
2009-01-01
Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....
Victoriano, Pedro F; Muñoz-Mendoza, Carla; Sáez, Paola A; Salinas, Hugo F; Muñoz-Ramírez, Carlos; Sallaberry, Michel; Fibla, Pablo; Méndez, Marco A
2015-01-01
The Andean Altiplano has served as a complex setting throughout its history, driving dynamic processes of diversification in several taxa. We investigated phylogeographic processes in the Telmatobius marmoratus species complex occurring in this region by studying the geographic patterns of genetic variability, genealogies, and historical migration, using the cytochrome b (cyt-b) gene as a marker. DNA sequences from Telmatobius gigas and Telmatobius culeus, Bolivian species with an uncertain taxonomic status, were also included. Additionally, we evaluated the phylogenetic diversity (PD) represented within Chilean protected areas and the complementary contribution from unprotected populations. Phylogenetic reconstructions from 148 cyt-b sequences revealed 4 main clades, one of which corresponded to T. culeus. T. gigas was part of T. marmoratus clade indicating paraphyletic relationships. Haplotypes from Chilean and Bolivian sites were not reciprocally monophyletic. Geographic distribution of lineages, spatial Bayesian analysis, and migration patterns indicated that T. marmoratus displays a weaker geographic structure than expected based on habitat distribution and physiological requirements. Demographic and statistical phylogeography analyses pointed out to a scenario of recent population expansion and high connectivity events of a more recent age than the post Last Glacial Maximum, probably associated to more humid events in Altiplano. PD of T. marmoratus populations within protected areas represents 55.6% of the total estimated PD. The unprotected populations that would contribute the most to PD are Caquena and Quebe (21%). Recent evolutionary processes and paleoclimatic changes, potentially driving shifts in habitat connectivity levels and population sizes, could explain the phylogeographic patterns recovered herein.
QBism, the Perimeter of Quantum Bayesianism
Fuchs, Christopher A
2010-01-01
This article summarizes the Quantum Bayesian point of view of quantum mechanics, with special emphasis on the view's outer edges---dubbed QBism. QBism has its roots in personalist Bayesian probability theory, is crucially dependent upon the tools of quantum information theory, and most recently, has set out to investigate whether the physical world might be of a type sketched by some false-started philosophies of 100 years ago (pragmatism, pluralism, nonreductionism, and meliorism). Beyond conceptual issues, work at Perimeter Institute is focused on the hard technical problem of finding a good representation of quantum mechanics purely in terms of probabilities, without amplitudes or Hilbert-space operators. The best candidate representation involves a mysterious entity called a symmetric informationally complete quantum measurement. Contemplation of it gives a way of thinking of the Born Rule as an addition to the rules of probability theory, applicable when an agent considers gambling on the consequences of...
Bayesian Magnetohydrodynamic Seismology of Coronal Loops
Arregui, Inigo
2011-01-01
We perform a Bayesian parameter inference in the context of resonantly damped transverse coronal loop oscillations. The forward problem is solved in terms of parametric results for kink waves in one-dimensional flux tubes in the thin tube and thin boundary approximations. For the inverse problem, we adopt a Bayesian approach to infer the most probable values of the relevant parameters, for given observed periods and damping times, and to extract their confidence levels. The posterior probability distribution functions are obtained by means of Markov Chain Monte Carlo simulations, incorporating observed uncertainties in a consistent manner. We find well localized solutions in the posterior probability distribution functions for two of the three parameters of interest, namely the Alfven travel time and the transverse inhomogeneity length-scale. The obtained estimates for the Alfven travel time are consistent with previous inversion results, but the method enables us to additionally constrain the transverse inho...
Distributed Detection via Bayesian Updates and Consensus
Liu, Qipeng; Wang, Xiaofan
2014-01-01
In this paper, we discuss a class of distributed detection algorithms which can be viewed as implementations of Bayes' law in distributed settings. Some of the algorithms are proposed in the literature most recently, and others are first developed in this paper. The common feature of these algorithms is that they all combine (i) certain kinds of consensus protocols with (ii) Bayesian updates. They are different mainly in the aspect of the type of consensus protocol and the order of the two operations. After discussing their similarities and differences, we compare these distributed algorithms by numerical examples. We focus on the rate at which these algorithms detect the underlying true state of an object. We find that (a) The algorithms with consensus via geometric average is more efficient than that via arithmetic average; (b) The order of consensus aggregation and Bayesian update does not apparently influence the performance of the algorithms; (c) The existence of communication delay dramatically slows do...
Bayesian Inference on Gravitational Waves
Directory of Open Access Journals (Sweden)
Asad Ali
2015-12-01
Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.
Opatova, Vera; Arnedo, Miquel A.
2014-01-01
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In
Directory of Open Access Journals (Sweden)
Vera Opatova
Full Text Available Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source
Bayesian global analysis of neutrino oscillation data
Bergstrom, Johannes; Maltoni, Michele; Schwetz, Thomas
2015-01-01
We perform a Bayesian analysis of current neutrino oscillation data. When estimating the oscillation parameters we find that the results generally agree with those of the $\\chi^2$ method, with some differences involving $s_{23}^2$ and CP-violating effects. We discuss the additional subtleties caused by the circular nature of the CP-violating phase, and how it is possible to obtain correlation coefficients with $s_{23}^2$. When performing model comparison, we find that there is no significant evidence for any mass ordering, any octant of $s_{23}^2$ or a deviation from maximal mixing, nor the presence of CP-violation.
Implementing Bayesian Vector Autoregressions Implementing Bayesian Vector Autoregressions
Directory of Open Access Journals (Sweden)
Richard M. Todd
1988-03-01
Full Text Available Implementing Bayesian Vector Autoregressions This paper discusses how the Bayesian approach can be used to construct a type of multivariate forecasting model known as a Bayesian vector autoregression (BVAR. In doing so, we mainly explain Doan, Littermann, and Sims (1984 propositions on how to estimate a BVAR based on a certain family of prior probability distributions. indexed by a fairly small set of hyperparameters. There is also a discussion on how to specify a BVAR and set up a BVAR database. A 4-variable model is used to iliustrate the BVAR approach.
Dynamic Bayesian diffusion estimation
Dedecius, K
2012-01-01
The rapidly increasing complexity of (mainly wireless) ad-hoc networks stresses the need of reliable distributed estimation of several variables of interest. The widely used centralized approach, in which the network nodes communicate their data with a single specialized point, suffers from high communication overheads and represents a potentially dangerous concept with a single point of failure needing special treatment. This paper's aim is to contribute to another quite recent method called diffusion estimation. By decentralizing the operating environment, the network nodes communicate just within a close neighbourhood. We adopt the Bayesian framework to modelling and estimation, which, unlike the traditional approaches, abstracts from a particular model case. This leads to a very scalable and universal method, applicable to a wide class of different models. A particularly interesting case - the Gaussian regressive model - is derived as an example.
Book review: Bayesian analysis for population ecology
Link, William A.
2011-01-01
Brian Dennis described the field of ecology as “fertile, uncolonized ground for Bayesian ideas.” He continued: “The Bayesian propagule has arrived at the shore. Ecologists need to think long and hard about the consequences of a Bayesian ecology. The Bayesian outlook is a successful competitor, but is it a weed? I think so.” (Dennis 2004)
Phylogeography of Ascaris lumbricoides and A. suum from China.
Zhou, Chunhua; Li, Min; Yuan, Keng; Hu, Ningyan; Peng, Weidong
2011-08-01
In order to obtain further understanding of genetic structure and evolutionary relationship of Ascaris from humans and pigs, phylogeography study on 12 populations from six endemic regions in China was conducted using mitochondrial DNA markers (cytochrome c oxidase subunit 1 (COX1) and NAD1) and the software programs of DnaSP 5.0, Arlequin 3.0, MEGA 4.0, and NETWORK 4.5.1.6. Results showed that (a) genetic diversity of Ascaris varied with hosts and locations, but no distinct geographical distribution pattern was found, (b) a higher level of genetic diversity and differentiation was found in pig-derived populations in contrast to human-derived ones, and in populations of human-derived Ascaris from the southern regions in comparison to that from the middle and northern locations, but similar geographical difference was not observed within pig-derived populations, (c) historical population expanding was detected from a large part of human-derived Ascaris populations but not in pig-derived Ascaris, (d) a high level of gene flow was detected between human- and pig-derived Ascaris and also among human-derived populations, and (e) network analysis from haplotype of COX1 indicated an ancestral haplotype from human-derived Ascaris. In conclusion, the present study revealed new information on Ascaris on the aspects of genetic diversity, population differentiation and historical demographic patterns, gene flow, phylogenesis reconstruction, and haplotype network, discussed the results with historical demographic migration of humans and domestication of wild boar in China, and raised a different assumption about the evolutionary relationship of the two roundworms. This study should have certain enlightenment for the epidemiology and the evolutionary and taxonomy relationship of Ascaris from humans and pigs.
Current trends in Bayesian methodology with applications
Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia
2015-01-01
Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on
Bayesian inference for OPC modeling
Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.
2016-03-01
The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.
Bayesian analysis of cosmic structures
Kitaura, Francisco-Shu
2011-01-01
We revise the Bayesian inference steps required to analyse the cosmological large-scale structure. Here we make special emphasis in the complications which arise due to the non-Gaussian character of the galaxy and matter distribution. In particular we investigate the advantages and limitations of the Poisson-lognormal model and discuss how to extend this work. With the lognormal prior using the Hamiltonian sampling technique and on scales of about 4 h^{-1} Mpc we find that the over-dense regions are excellent reconstructed, however, under-dense regions (void statistics) are quantitatively poorly recovered. Contrary to the maximum a posteriori (MAP) solution which was shown to over-estimate the density in the under-dense regions we obtain lower densities than in N-body simulations. This is due to the fact that the MAP solution is conservative whereas the full posterior yields samples which are consistent with the prior statistics. The lognormal prior is not able to capture the full non-linear regime at scales ...
Irregular-Time Bayesian Networks
Ramati, Michael
2012-01-01
In many fields observations are performed irregularly along time, due to either measurement limitations or lack of a constant immanent rate. While discrete-time Markov models (as Dynamic Bayesian Networks) introduce either inefficient computation or an information loss to reasoning about such processes, continuous-time Markov models assume either a discrete state space (as Continuous-Time Bayesian Networks), or a flat continuous state space (as stochastic dif- ferential equations). To address these problems, we present a new modeling class called Irregular-Time Bayesian Networks (ITBNs), generalizing Dynamic Bayesian Networks, allowing substantially more compact representations, and increasing the expressivity of the temporal dynamics. In addition, a globally optimal solution is guaranteed when learning temporal systems, provided that they are fully observed at the same irregularly spaced time-points, and a semiparametric subclass of ITBNs is introduced to allow further adaptation to the irregular nature of t...
Applications of Bayesian spectrum representation in acoustics
Botts, Jonathan M.
framework. The application to reflection data is useful for representing frequency-dependent impedance boundaries in finite difference acoustic simulations. Furthermore, since the filter transfer function is a parametric model, it can be modified to incorporate arbitrary frequency weighting and account for the band-limited nature of measured reflection spectra. Finally, the model is modified to compensate for dispersive error in the finite difference simulation, from the filter design process. Stemming from the filter boundary problem, the implementation of pressure sources in finite difference simulation is addressed in order to assure that schemes properly converge. A class of parameterized source functions is proposed and shown to offer straightforward control of residual error in the simulation. Guided by the notion that the solution to be approximated affects the approximation error, sources are designed which reduce residual dispersive error to the size of round-off errors. The early part of a room impulse response can be characterized by a series of isolated plane waves. Measured with an array of microphones, plane waves map to a directional response of the array or spatial intensity map. Probabilistic inversion of this response results in estimates of the number and directions of image source arrivals. The model-based inversion is shown to avoid ambiguities associated with peak-finding or inspection of the spatial intensity map. For this problem, determining the number of arrivals in a given frame is critical for properly inferring the state of the sound field. This analysis is effectively compression of the spatial room response, which is useful for analysis or encoding of the spatial sound field. Parametric, model-based formulations of these problems enhance the solution in all cases, and a Bayesian interpretation provides a principled approach to model comparison and parameter estimation. v
Neuronanatomy, neurology and Bayesian networks
Bielza Lozoya, Maria Concepcion
2014-01-01
Bayesian networks are data mining models with clear semantics and a sound theoretical foundation. In this keynote talk we will pinpoint a number of neuroscience problems that can be addressed using Bayesian networks. In neuroanatomy, we will show computer simulation models of dendritic trees and classification of neuron types, both based on morphological features. In neurology, we will present the search for genetic biomarkers in Alzheimer's disease and the prediction of health-related qualit...
Exon-primed intron-crossing (EPIC markers as a tool for ant phylogeography
Directory of Open Access Journals (Sweden)
Patrícia R. Ströher
2013-12-01
Full Text Available Exon-primed intron-crossing (EPIC markers as a tool for ant phylogeography. Due to their local abundance, diversity of adaptations and worldwide distribution, ants are a classic example of adaptive radiation. Despite this evolutionary and ecological importance, phylogeographical studies on ants have relied largely on mitochondrial markers. In this study we design and test exon-primed intron-crossing (EPIC markers, which can be widely used to uncover ant intraspecific variation. Candidate markers were obtained through screening the available ant genomes for unlinked conserved exonic regions interspersed with introns. A subset of 15 markers was tested in vitro and showed successful amplification in several phylogenetically distant ant species. These markers represent an important step forward in ant phylogeography and population genetics, allowing for more extensive characterization of variation in ant nuclear DNA without the need to develop species-specific markers.
Recovery of shapes: hypermodels and Bayesian learning
International Nuclear Information System (INIS)
We discuss the problem of recovering an image from its blurred and noisy copy with the additional information that the image consists of simple shapes with sharp edges. An iterative algorithm is given, based on the idea of updating the Tikhonov type smoothness penalty on the basis of the previous estimate. This algorithm is discussed in the framework of Bayesian hypermodels and it is shown that the approach can be justified as a sequential iterative scheme for finding the mode of the posterior density. An effective numerical algorithm based on preconditioned Krylov subspace iterations is suggested and demonstrated with a computed example
Confidence Biases and Learning among Intuitive Bayesians
Lévy-Garboua, Louis; Askari, Muniza; Gazel, Marco
2015-01-01
URL des Documents de travail : http://ces.univ-paris1.fr/cesdp/cesdp2015.html Documents de travail du Centre d'Economie de la Sorbonne 2015.80 - ISSN : 1955-611X We design a double-or-quits game to compare the speed of learning one's specific ability with the speed of rising confidence as the task gets increasingly difficult. We find that people on average learn to be overconfident faster than they learn their true ability and we present a simple Bayesian model of confidence which integ...
Bayesian logistic betting strategy against probability forecasting
Kumon, Masayuki; Takemura, Akimichi; Takeuchi, Kei
2012-01-01
We propose a betting strategy based on Bayesian logistic regression modeling for the probability forecasting game in the framework of game-theoretic probability by Shafer and Vovk (2001). We prove some results concerning the strong law of large numbers in the probability forecasting game with side information based on our strategy. We also apply our strategy for assessing the quality of probability forecasting by the Japan Meteorological Agency. We find that our strategy beats the agency by exploiting its tendency of avoiding clear-cut forecasts.
Dale Poirier
2008-01-01
This paper provides Bayesian rationalizations for White’s heteroskedastic consistent (HC) covariance estimator and various modifications of it. An informed Bayesian bootstrap provides the statistical framework.
Dynamic Batch Bayesian Optimization
Azimi, Javad; Fern, Xiaoli
2011-01-01
Bayesian optimization (BO) algorithms try to optimize an unknown function that is expensive to evaluate using minimum number of evaluations/experiments. Most of the proposed algorithms in BO are sequential, where only one experiment is selected at each iteration. This method can be time inefficient when each experiment takes a long time and more than one experiment can be ran concurrently. On the other hand, requesting a fix-sized batch of experiments at each iteration causes performance inefficiency in BO compared to the sequential policies. In this paper, we present an algorithm that asks a batch of experiments at each time step t where the batch size p_t is dynamically determined in each step. Our algorithm is based on the observation that the sequence of experiments selected by the sequential policy can sometimes be almost independent from each other. Our algorithm identifies such scenarios and request those experiments at the same time without degrading the performance. We evaluate our proposed method us...
Nonparametric Bayesian Classification
Coram, M A
2002-01-01
A Bayesian approach to the classification problem is proposed in which random partitions play a central role. It is argued that the partitioning approach has the capacity to take advantage of a variety of large-scale spatial structures, if they are present in the unknown regression function $f_0$. An idealized one-dimensional problem is considered in detail. The proposed nonparametric prior uses random split points to partition the unit interval into a random number of pieces. This prior is found to provide a consistent estimate of the regression function in the $\\L^p$ topology, for any $1 \\leq p < \\infty$, and for arbitrary measurable $f_0:[0,1] \\rightarrow [0,1]$. A Markov chain Monte Carlo (MCMC) implementation is outlined and analyzed. Simulation experiments are conducted to show that the proposed estimate compares favorably with a variety of conventional estimators. A striking resemblance between the posterior mean estimate and the bagged CART estimate is noted and discussed. For higher dimensions, a ...
The phylogeography of Fagus hayatae (Fagaceae): genetic isolation among populations.
Ying, Ling-Xiao; Zhang, Ting-Ting; Chiu, Ching-An; Chen, Tze-Ying; Luo, Shu-Jin; Chen, Xiao-Yong; Shen, Ze-Hao
2016-05-01
The beech species Fagus hayatae is an important relict tree species in subtropical China, whose biogeographical patterns may reflect floral responses to climate change in this region during the Quaternary. Previous studies have revealed phylogeography for three of the four Fagus species in China, but study on F. hayatae, the most sparsely distributed of these species, is still lacking. Here, molecular methods based on eight simple sequence repeat (SSR) loci of nuclear DNA (nDNA) and three chloroplast DNA (cpDNA) sequences were applied for analyses of genetic diversity and structure in 375 samples from 14 F. hayatae populations across its whole range. Both nDNA and cpDNA indicated a high level of genetic diversity in this species. Significant fixation indexes and departures from the Hardy-Weinberg equilibrium, with a genetic differentiation parameter of R st of 0.233, were detected in nDNA SSR loci among populations, especially those on Taiwan Island, indicating strong geographic partitioning. The populations were classified into two clusters, without a prominent signal of isolation-by-distance. For the 15 haplotypes detected in the cpDNA sequence fragments, there was a high genetic differentiation parameter (G st = 0.712) among populations. A high G st of 0.829 was also detected outside but not within the Sichuan Basin. Consistent with other Fagus species in China, no recent population expansion was detected from tests of neutrality and mismatch distribution analysis. Overall, genetic isolation with limited gene flow was prominent for this species and significant phylogeographic structures existed across its range except for those inside the Sichuan Basin. Our study suggested long-term geographic isolation in F. hayatae with limited population admixture and the existence of multiple refugia in the mountainous regions of the Sichuan Basin and southeast China during the Quaternary. These results may provide useful information critical for the conservation of F
Phylogeography of the inshore fish, Bostrychus sinensis, along the Pacific coastline of China.
Qiu, Fan; Li, Hai; Lin, Hungdu; Ding, Shaoxiong; Miyamoto, Michael M
2016-03-01
This study assesses the phylogeography of the Chinese four-eyed sleeper (Bostrychus sinensis) with one mitochondrial and one nuclear genes and two morphological characters. Phylogenetic and population genetic analyses of the sequences reveals two phylogeographic lineages from the East and South China Seas, which are corroborated by the morphological data. The vicariance of the two lineages is attributed to the Pleistocene Ice Age exposure of the Taiwan Strait and consequent connection of Taiwan to the mainland, which thereby introduced an ecological barrier to gene flow between populations in the East and South China Seas. The distributions of the two lineages now overlap in the East China Sea and this secondary contact is attributed to biased northward migration along the two main currents of the Taiwan Strait following its interglacial re-flooding. In conclusion, this study reinforces the importance of "vicariance, then secondary contact" due to Late Pliocene and Pleistocene sea-level changes to the phylogeography of marine species. Specifically, it corroborates the importance of Pleistocene sea-level changes in the Taiwan Strait to the phylogeography of Chinese inshore species.
Directory of Open Access Journals (Sweden)
Hung Kuo-Hsiang
2011-01-01
Full Text Available Abstract Background Tetraena mongolica (Zygophyllaceae, an endangered endemic species in western Inner Mongolia, China. For endemic species with a limited geographical range and declining populations, historical patterns of demography and hierarchical genetic structure are important for determining population structure, and also provide information for developing effective and sustainable management plans. In this study, we assess genetic variation, population structure, and phylogeography of T. mongolica from eight populations. Furthermore, we evaluate the conservation and management units to provide the information for conservation. Results Sequence variation and spatial apportionment of the atpB-rbcL noncoding spacer region of the chloroplast DNA were used to reconstruct the phylogeography of T. mongolica. A total of 880 bp was sequenced from eight extant populations throughout the whole range of its distribution. At the cpDNA locus, high levels of genetic differentiation among populations and low levels of genetic variation within populations were detected, indicating that most seed dispersal was restricted within populations. Conclusions Demographic fluctuations, which led to random losses of genetic polymorphisms from populations, due to frequent flooding of the Yellow River and human disturbance were indicated by the analysis of BEAST skyline plot. Nested clade analysis revealed that restricted gene flow with isolation by distance plus occasional long distance dispersal is the main evolutionary factor affecting the phylogeography and population structure of T. mongolica. For setting a conservation management plan, each population of T. mongolica should be recognized as a conservation unit.
Phylogeography of the inshore fish, Bostrychus sinensis, along the Pacific coastline of China.
Qiu, Fan; Li, Hai; Lin, Hungdu; Ding, Shaoxiong; Miyamoto, Michael M
2016-03-01
This study assesses the phylogeography of the Chinese four-eyed sleeper (Bostrychus sinensis) with one mitochondrial and one nuclear genes and two morphological characters. Phylogenetic and population genetic analyses of the sequences reveals two phylogeographic lineages from the East and South China Seas, which are corroborated by the morphological data. The vicariance of the two lineages is attributed to the Pleistocene Ice Age exposure of the Taiwan Strait and consequent connection of Taiwan to the mainland, which thereby introduced an ecological barrier to gene flow between populations in the East and South China Seas. The distributions of the two lineages now overlap in the East China Sea and this secondary contact is attributed to biased northward migration along the two main currents of the Taiwan Strait following its interglacial re-flooding. In conclusion, this study reinforces the importance of "vicariance, then secondary contact" due to Late Pliocene and Pleistocene sea-level changes to the phylogeography of marine species. Specifically, it corroborates the importance of Pleistocene sea-level changes in the Taiwan Strait to the phylogeography of Chinese inshore species. PMID:26732489
Applying Bayesian networks in practical customer satisfaction studies
Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.
2004-01-01
This chapter presents an application of Bayesian network technology in an empirical customer satisfaction study. The findings of the study should provide insight to the importance of product/service dimensions in terms of the strength of their influence on overall (dis)satisfaction. To this end we a
Exploiting sensitivity analysis in Bayesian networks for consumer satisfaction study
Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.
2004-01-01
The paper presents an application of Bayesian network technology in a empirical customer satisfaction study. The findings of the study should provide insight as to the importance of product/service dimensions in terms of the strength of their influence on overall satisfaction. To this end we apply a
Bayesian genomic selection: the effect of haplotype lenghts and priors
DEFF Research Database (Denmark)
Villumsen, Trine Michelle; Janss, Luc
2009-01-01
Breeding values for animals with marker data are estimated using a genomic selection approach where data is analyzed using Bayesian multi-marker association models. Fourteen model scenarios with varying haplotype lengths, hyper parameter and prior distributions were compared to find the scenario ...
Directory of Open Access Journals (Sweden)
Jin-Ming Chen
Full Text Available BACKGROUND: The Qinghai-Tibetan Plateau (QTP is one of the most extensive habitats for alpine plants in the world. Climatic oscillations during the Quaternary ice age had a dramatic effect on species ranges on the QTP and the adjacent areas. However, how the distribution ranges of aquatic plant species shifted on the QTP in response to Quaternary climatic changes remains almost unknown. METHODOLOGY AND PRINCIPAL FINDINGS: We studied the phylogeography and demographic history of the widespread aquatic herb Hippuris vulgaris from the QTP and adjacent areas. Our sampling included 385 individuals from 47 natural populations of H. vulgaris. Using sequences from four chloroplast DNA (cpDNA non-coding regions, we distinguished eight different cpDNA haplotypes. From the cpDNA variation in H. vulgaris, we found a very high level of population differentiation (G ST = 0.819 but the phylogeographical structure remained obscure (N ST = 0.853>G ST = 0.819, P>0.05. Phylogenetic analyses revealed two main cpDNA haplotype lineages. The split between these two haplotype groups can be dated back to the mid-to-late Pleistocene (ca. 0.480 Myr. Mismatch distribution analyses showed that each of these had experienced a recent range expansion. These two expansions (ca. 0.12 and 0.17 Myr might have begun from the different refugees before the Last Glacial Maximum (LGM. CONCLUSIONS/SIGNIFICANCE: This study initiates a research on the phylogeography of aquatic herbs in the QTP and for the first time sheds light on the response of an alpine aquatic seed plant species in the QTP to Quaternary climate oscillations.
Bayesian seismic AVO inversion
Energy Technology Data Exchange (ETDEWEB)
Buland, Arild
2002-07-01
A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S
Bayesian networks as a tool for epidemiological systems analysis
Lewis, F. I.
2012-11-01
Bayesian network analysis is a form of probabilistic modeling which derives from empirical data a directed acyclic graph (DAG) describing the dependency structure between random variables. Bayesian networks are increasingly finding application in areas such as computational and systems biology, and more recently in epidemiological analyses. The key distinction between standard empirical modeling approaches, such as generalised linear modeling, and Bayesian network analyses is that the latter attempts not only to identify statistically associated variables, but to additionally, and empirically, separate these into those directly and indirectly dependent with one or more outcome variables. Such discrimination is vastly more ambitious but has the potential to reveal far more about key features of complex disease systems. Applying Bayesian network modeling to biological and medical data has considerable computational demands, combined with the need to ensure robust model selection given the vast model space of possible DAGs. These challenges require the use of approximation techniques, such as the Laplace approximation, Markov chain Monte Carlo simulation and parametric bootstrapping, along with computational parallelization. A case study in structure discovery - identification of an optimal DAG for given data - is presented which uses additive Bayesian networks to explore veterinary disease data of industrial and medical relevance.
Elite Athletes Refine Their Internal Clocks: A Bayesian Analysis.
Chen, Yin-Hua; Verdinelli, Isabella; Cesari, Paola
2016-07-01
This paper carries out a full Bayesian analysis for a data set examined in Chen & Cesari (2015). These data were collected for assessing people's ability in evaluating short intervals of time. Chen & Cesari (2015) showed evidence of the existence of two independent internal clocks for evaluating time intervals below and above the second. We reexamine here, the same question by performing a complete statistical Bayesian analysis of the data. The Bayesian approach can be used to analyze these data thanks to the specific trial design. Data were obtained from evaluation of time ranges from two groups of individuals. More specifically, information gathered from a nontrained group (considered as baseline) allowed us to build a prior distribution for the parameter(s) of interest, and data from the trained group determined the likelihood function. This paper's main goals are (i) showing how the Bayesian inferential method can be used in statistical analyses and (ii) showing that the Bayesian methodology gives additional support to the findings presented in Chen & Cesari (2015) regarding the existence of two internal clocks in assessing duration of time intervals.
Bayesian Inference in Monte-Carlo Tree Search
Tesauro, Gerald; Segal, Richard
2012-01-01
Monte-Carlo Tree Search (MCTS) methods are drawing great interest after yielding breakthrough results in computer Go. This paper proposes a Bayesian approach to MCTS that is inspired by distributionfree approaches such as UCT [13], yet significantly differs in important respects. The Bayesian framework allows potentially much more accurate (Bayes-optimal) estimation of node values and node uncertainties from a limited number of simulation trials. We further propose propagating inference in the tree via fast analytic Gaussian approximation methods: this can make the overhead of Bayesian inference manageable in domains such as Go, while preserving high accuracy of expected-value estimates. We find substantial empirical outperformance of UCT in an idealized bandit-tree test environment, where we can obtain valuable insights by comparing with known ground truth. Additionally we rigorously prove on-policy and off-policy convergence of the proposed methods.
R. Harkema; S. van der Loeff (Sybrand Schim)
1977-01-01
textabstractIn this paper maximum-likelihood estimates of the parameters of the two-level CES function, obtained by direct estimation of this function, are given. In addition the authors propose to show how a Bayesian analysis may help to find a solution to the difficulties related with, but not spe
Phylogeography of foot-and-mouth disease virus serotype O in Ecuador.
de Carvalho, Luiz Max Fagundes; Santos, Leonardo Bacelar Lima; Faria, Nuno Rodrigues; de Castro Silveira, Waldemir
2013-01-01
Foot-and-mouth disease virus (FMDV) is the causative agent of the most important disease of domestic cattle, foot-and-mouth disease. In Ecuador, FMDV is maintained at an endemic state, with sporadic outbreaks. To unravel the tempo and mode of FMDV spread within the country we conducted a Bayesian phylogeographic analysis using a continuous time Markov chain (CTMC) to model the diffusion of FMDV between Ecuadorian provinces. We implement this framework through Markov chain Monte Carlo available in the BEAST package to study 90 FMDV serotype O isolates from 17 provinces in the period 2002-2010. The Bayesian approach also allowed us to test hypotheses on the mechanisms of viral spread by incorporating environmental and epidemiological data in our prior distributions and perform Bayesian model selection. Our analyses suggest an intense flow of viral strains throughout the country that is possibly coupled to animal movements and ecological factors, since most of inferred viral spread routes were in Coast and Highland regions. Moreover, our results suggest that both short- and long-range spread occur within Ecuador. The province of Esmeraldas, in the border with Colombia and where most animal commerce is done, was found to be the most probable origin of the circulating strains, pointing to a transboundary behavior of FMDV in South America. These findings suggest that uncontrolled animal movements can create a favorable environment for FMDV maintenance and pose a serious threat to control programmes. Also, we show that phylogeographic modeling can be a powerful tool in unraveling the spatial dynamics of viruses and potentially in controlling the spread of these pathogens. PMID:22985683
Attention in a bayesian framework
DEFF Research Database (Denmark)
Whiteley, Louise Emma; Sahani, Maneesh
2012-01-01
The behavioral phenomena of sensory attention are thought to reflect the allocation of a limited processing resource, but there is little consensus on the nature of the resource or why it should be limited. Here we argue that a fundamental bottleneck emerges naturally within Bayesian models...... of perception, and use this observation to frame a new computational account of the need for, and action of, attention - unifying diverse attentional phenomena in a way that goes beyond previous inferential, probabilistic and Bayesian models. Attentional effects are most evident in cluttered environments......, and include both selective phenomena, where attention is invoked by cues that point to particular stimuli, and integrative phenomena, where attention is invoked dynamically by endogenous processing. However, most previous Bayesian accounts of attention have focused on describing relatively simple experimental...
Probability biases as Bayesian inference
Directory of Open Access Journals (Sweden)
Andre; C. R. Martins
2006-11-01
Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.
Bayesian Methods and Universal Darwinism
Campbell, John
2010-01-01
Bayesian methods since the time of Laplace have been understood by their practitioners as closely aligned to the scientific method. Indeed a recent champion of Bayesian methods, E. T. Jaynes, titled his textbook on the subject Probability Theory: the Logic of Science. Many philosophers of science including Karl Popper and Donald Campbell have interpreted the evolution of Science as a Darwinian process consisting of a 'copy with selective retention' algorithm abstracted from Darwin's theory of Natural Selection. Arguments are presented for an isomorphism between Bayesian Methods and Darwinian processes. Universal Darwinism, as the term has been developed by Richard Dawkins, Daniel Dennett and Susan Blackmore, is the collection of scientific theories which explain the creation and evolution of their subject matter as due to the operation of Darwinian processes. These subject matters span the fields of atomic physics, chemistry, biology and the social sciences. The principle of Maximum Entropy states that system...
Bayesian modeling using WinBUGS
Ntzoufras, Ioannis
2009-01-01
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...
Bayesian test and Kuhn's paradigm
Institute of Scientific and Technical Information of China (English)
Chen Xiaoping
2006-01-01
Kuhn's theory of paradigm reveals a pattern of scientific progress,in which normal science alternates with scientific revolution.But Kuhn underrated too much the function of scientific test in his pattern,because he focuses all his attention on the hypothetico-deductive schema instead of Bayesian schema.This paper employs Bayesian schema to re-examine Kuhn's theory of paradigm,to uncover its logical and rational components,and to illustrate the tensional structure of logic and belief,rationality and irrationality,in the process of scientific revolution.
Perception, illusions and Bayesian inference.
Nour, Matthew M; Nour, Joseph M
2015-01-01
Descriptive psychopathology makes a distinction between veridical perception and illusory perception. In both cases a perception is tied to a sensory stimulus, but in illusions the perception is of a false object. This article re-examines this distinction in light of new work in theoretical and computational neurobiology, which views all perception as a form of Bayesian statistical inference that combines sensory signals with prior expectations. Bayesian perceptual inference can solve the 'inverse optics' problem of veridical perception and provides a biologically plausible account of a number of illusory phenomena, suggesting that veridical and illusory perceptions are generated by precisely the same inferential mechanisms.
3D Bayesian contextual classifiers
DEFF Research Database (Denmark)
Larsen, Rasmus
2000-01-01
We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....
Bayesian methods for proteomic biomarker development
Directory of Open Access Journals (Sweden)
Belinda Hernández
2015-12-01
In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.
Bayesian variable order Markov models: Towards Bayesian predictive state representations
C. Dimitrakakis
2009-01-01
We present a Bayesian variable order Markov model that shares many similarities with predictive state representations. The resulting models are compact and much easier to specify and learn than classical predictive state representations. Moreover, we show that they significantly outperform a more st
Bayesian networks and food security - An introduction
Stein, A.
2004-01-01
This paper gives an introduction to Bayesian networks. Networks are defined and put into a Bayesian context. Directed acyclical graphs play a crucial role here. Two simple examples from food security are addressed. Possible uses of Bayesian networks for implementation and further use in decision sup
Bayesian Model Averaging for Propensity Score Analysis
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
A Bayesian Nonparametric Approach to Test Equating
Karabatsos, George; Walker, Stephen G.
2009-01-01
A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…
Bayesian network learning with cutting planes
Cussens, James
2012-01-01
The problem of learning the structure of Bayesian networks from complete discrete data with a limit on parent set size is considered. Learning is cast explicitly as an optimisation problem where the goal is to find a BN structure which maximises log marginal likelihood (BDe score). Integer programming, specifically the SCIP framework, is used to solve this optimisation problem. Acyclicity constraints are added to the integer program (IP) during solving in the form of cutting planes. Finding good cutting planes is the key to the success of the approach -the search for such cutting planes is effected using a sub-IP. Results show that this is a particularly fast method for exact BN learning.
REMITTANCES, DUTCH DISEASE, AND COMPETITIVENESS: A BAYESIAN ANALYSIS
FARID MAKHLOUF; MAZHAR MUGHAL
2013-01-01
The paper studies symptoms of Dutch disease in the Pakistani economy arising from international remittances. An IV Bayesian analysis is carried out to take care of the endogeneity and uncertainty due to the managed float of Pakistani Rupee. We find evidence for both spending and resource movement effects in both the short and the long-run. These impacts are stronger and different from those the Official Development Assistance and the FDI exert. We find that while aggregate remittances and the...
A Bayesian approach to earthquake source studies
Minson, Sarah
Bayesian sampling has several advantages over conventional optimization approaches to solving inverse problems. It produces the distribution of all possible models sampled proportionally to how much each model is consistent with the data and the specified prior information, and thus images the entire solution space, revealing the uncertainties and trade-offs in the model. Bayesian sampling is applicable to both linear and non-linear modeling, and the values of the model parameters being sampled can be constrained based on the physics of the process being studied and do not have to be regularized. However, these methods are computationally challenging for high-dimensional problems. Until now the computational expense of Bayesian sampling has been too great for it to be practicable for most geophysical problems. I present a new parallel sampling algorithm called CATMIP for Cascading Adaptive Tempered Metropolis In Parallel. This technique, based on Transitional Markov chain Monte Carlo, makes it possible to sample distributions in many hundreds of dimensions, if the forward model is fast, or to sample computationally expensive forward models in smaller numbers of dimensions. The design of the algorithm is independent of the model being sampled, so CATMIP can be applied to many areas of research. I use CATMIP to produce a finite fault source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. Surface displacements from the earthquake were recorded by six interferograms and twelve local high-rate GPS stations. Because of the wealth of near-fault data, the source process is well-constrained. I find that the near-field high-rate GPS data have significant resolving power above and beyond the slip distribution determined from static displacements. The location and magnitude of the maximum displacement are resolved. The rupture almost certainly propagated at sub-shear velocities. The full posterior distribution can be used not only to calculate source parameters but also
Bayesian Classification of Image Structures
DEFF Research Database (Denmark)
Goswami, Dibyendu; Kalkan, Sinan; Krüger, Norbert
2009-01-01
In this paper, we describe work on Bayesian classi ers for distinguishing between homogeneous structures, textures, edges and junctions. We build semi-local classiers from hand-labeled images to distinguish between these four different kinds of structures based on the concept of intrinsic dimensi...
Bayesian Agglomerative Clustering with Coalescents
Teh, Yee Whye; Daumé III, Hal; Roy, Daniel
2009-01-01
We introduce a new Bayesian model for hierarchical clustering based on a prior over trees called Kingman's coalescent. We develop novel greedy and sequential Monte Carlo inferences which operate in a bottom-up agglomerative fashion. We show experimentally the superiority of our algorithms over others, and demonstrate our approach in document clustering and phylolinguistics.
Bayesian NL interpretation and learning
H. Zeevat
2011-01-01
Everyday natural language communication is normally successful, even though contemporary computational linguistics has shown that NL is characterised by very high degree of ambiguity and the results of stochastic methods are not good enough to explain the high success rate. Bayesian natural language
Differentiated Bayesian Conjoint Choice Designs
Z. Sándor (Zsolt); M. Wedel (Michel)
2003-01-01
textabstractPrevious conjoint choice design construction procedures have produced a single design that is administered to all subjects. This paper proposes to construct a limited set of different designs. The designs are constructed in a Bayesian fashion, taking into account prior uncertainty about
Bayesian inference for Hawkes processes
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl
The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...
Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
Bayesian inference for Hawkes processes
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl
2013-01-01
The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...
3-D contextual Bayesian classifiers
DEFF Research Database (Denmark)
Larsen, Rasmus
In this paper we will consider extensions of a series of Bayesian 2-D contextual classification pocedures proposed by Owen (1984) Hjort & Mohn (1984) and Welch & Salter (1971) and Haslett (1985) to 3 spatial dimensions. It is evident that compared to classical pixelwise classification further...
Bayesian image restoration, using configurations
DEFF Research Database (Denmark)
Thorarinsdottir, Thordis
configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed...
Bayesian image restoration, using configurations
DEFF Research Database (Denmark)
Thorarinsdottir, Thordis Linda
2006-01-01
configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for the salt and pepper noise. The inference in the model is discussed...
Bayesian Analysis of Experimental Data
Directory of Open Access Journals (Sweden)
Lalmohan Bhar
2013-10-01
Full Text Available Analysis of experimental data from Bayesian point of view has been considered. Appropriate methodology has been developed for application into designed experiments. Normal-Gamma distribution has been considered for prior distribution. Developed methodology has been applied to real experimental data taken from long term fertilizer experiments.
Topics in Bayesian statistics and maximum entropy
International Nuclear Information System (INIS)
Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)
Fully Bayesian Experimental Design for Pharmacokinetic Studies
Directory of Open Access Journals (Sweden)
Elizabeth G. Ryan
2015-03-01
Full Text Available Utility functions in Bayesian experimental design are usually based on the posterior distribution. When the posterior is found by simulation, it must be sampled from for each future dataset drawn from the prior predictive distribution. Many thousands of posterior distributions are often required. A popular technique in the Bayesian experimental design literature, which rapidly obtains samples from the posterior, is importance sampling, using the prior as the importance distribution. However, importance sampling from the prior will tend to break down if there is a reasonable number of experimental observations. In this paper, we explore the use of Laplace approximations in the design setting to overcome this drawback. Furthermore, we consider using the Laplace approximation to form the importance distribution to obtain a more efficient importance distribution than the prior. The methodology is motivated by a pharmacokinetic study, which investigates the effect of extracorporeal membrane oxygenation on the pharmacokinetics of antibiotics in sheep. The design problem is to find 10 near optimal plasma sampling times that produce precise estimates of pharmacokinetic model parameters/measures of interest. We consider several different utility functions of interest in these studies, which involve the posterior distribution of parameter functions.
Bayesian Cosmic Web Reconstruction: BARCODE for Clusters
Patrick Bos, E. G.; van de Weygaert, Rien; Kitaura, Francisco; Cautun, Marius
2016-10-01
We describe the Bayesian \\barcode\\ formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the basis of observational data, without the need for a correction of redshift space artifacts. In this contribution we provide a general overview of the the Cosmic Web connection with clusters and a description of the Bayesian BARCODE formalism. We conclude with a presentation of its successful workings with respect to test runs based on a simulated large scale matter distribution, in physical space as well as in redshift space.
A Bayesian framework for active artificial perception.
Ferreira, João Filipe; Lobo, Jorge; Bessière, Pierre; Castelo-Branco, Miguel; Dias, Jorge
2013-04-01
In this paper, we present a Bayesian framework for the active multimodal perception of 3-D structure and motion. The design of this framework finds its inspiration in the role of the dorsal perceptual pathway of the human brain. Its composing models build upon a common egocentric spatial configuration that is naturally fitting for the integration of readings from multiple sensors using a Bayesian approach. In the process, we will contribute with efficient and robust probabilistic solutions for cyclopean geometry-based stereovision and auditory perception based only on binaural cues, modeled using a consistent formalization that allows their hierarchical use as building blocks for the multimodal sensor fusion framework. We will explicitly or implicitly address the most important challenges of sensor fusion using this framework, for vision, audition, and vestibular sensing. Moreover, interaction and navigation require maximal awareness of spatial surroundings, which, in turn, is obtained through active attentional and behavioral exploration of the environment. The computational models described in this paper will support the construction of a simultaneously flexible and powerful robotic implementation of multimodal active perception to be used in real-world applications, such as human-machine interaction or mobile robot navigation. PMID:23014760
A Bayesian framework for active artificial perception.
Ferreira, João Filipe; Lobo, Jorge; Bessière, Pierre; Castelo-Branco, Miguel; Dias, Jorge
2013-04-01
In this paper, we present a Bayesian framework for the active multimodal perception of 3-D structure and motion. The design of this framework finds its inspiration in the role of the dorsal perceptual pathway of the human brain. Its composing models build upon a common egocentric spatial configuration that is naturally fitting for the integration of readings from multiple sensors using a Bayesian approach. In the process, we will contribute with efficient and robust probabilistic solutions for cyclopean geometry-based stereovision and auditory perception based only on binaural cues, modeled using a consistent formalization that allows their hierarchical use as building blocks for the multimodal sensor fusion framework. We will explicitly or implicitly address the most important challenges of sensor fusion using this framework, for vision, audition, and vestibular sensing. Moreover, interaction and navigation require maximal awareness of spatial surroundings, which, in turn, is obtained through active attentional and behavioral exploration of the environment. The computational models described in this paper will support the construction of a simultaneously flexible and powerful robotic implementation of multimodal active perception to be used in real-world applications, such as human-machine interaction or mobile robot navigation.
Bayesian methods for measures of agreement
Broemeling, Lyle D
2009-01-01
Using WinBUGS to implement Bayesian inferences of estimation and testing hypotheses, Bayesian Methods for Measures of Agreement presents useful methods for the design and analysis of agreement studies. It focuses on agreement among the various players in the diagnostic process.The author employs a Bayesian approach to provide statistical inferences based on various models of intra- and interrater agreement. He presents many examples that illustrate the Bayesian mode of reasoning and explains elements of a Bayesian application, including prior information, experimental information, the likelihood function, posterior distribution, and predictive distribution. The appendices provide the necessary theoretical foundation to understand Bayesian methods as well as introduce the fundamentals of programming and executing the WinBUGS software.Taking a Bayesian approach to inference, this hands-on book explores numerous measures of agreement, including the Kappa coefficient, the G coefficient, and intraclass correlation...
Plug & Play object oriented Bayesian networks
DEFF Research Database (Denmark)
Bangsø, Olav; Flores, J.; Jensen, Finn Verner
2003-01-01
Object oriented Bayesian networks have proven themselves useful in recent years. The idea of applying an object oriented approach to Bayesian networks has extended their scope to larger domains that can be divided into autonomous but interrelated entities. Object oriented Bayesian networks have...... been shown to be quite suitable for dynamic domains as well. However, processing object oriented Bayesian networks in practice does not take advantage of their modular structure. Normally the object oriented Bayesian network is transformed into a Bayesian network and, inference is performed...... by constructing a junction tree from this network. In this paper we propose a method for translating directly from object oriented Bayesian networks to junction trees, avoiding the intermediate translation. We pursue two main purposes: firstly, to maintain the original structure organized in an instance tree...
Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses
Papadopoulou, Anna; Knowles, L. Lacey
2016-01-01
For three decades, comparative phylogeography has conceptually and methodologically relied on the concordance criterion for providing insights into the historical/biogeographic processes driving population genetic structure and divergence. Here we discuss how this emphasis, and the corresponding lack of methods for extracting information about biotic/intrinsic contributions to patterns of genetic variation, may bias our general understanding of the factors driving genetic structure. Specifically, this emphasis has promoted a tendency to attribute discordant phylogeographic patterns to the idiosyncracies of history, as well as an adherence to generic null expectations of concordance with reduced predictive power. We advocate that it is time for a paradigm shift in comparative phylogeography, especially given the limited utility of the concordance criterion as genomic data provide ever-increasing levels of resolution. Instead of adhering to the concordance-discordance dichotomy, comparative phylogeography needs to emphasize the contribution of taxon-specific traits that will determine whether concordance is a meaningful criterion for evaluating hypotheses or may predict discordant phylogeographic structure. Through reference to some case studies we illustrate how refined hypotheses based on taxon-specific traits can provide improved predictive frameworks to forecast species responses to climatic change or biogeographic barriers while gaining unique insights about the taxa themselves and their interactions with their environment. We outline a potential avenue toward a synthetic comparative phylogeographic paradigm that includes addressing some important conceptual and methodological challenges related to study design and application of model-based approaches for evaluating support of trait-based hypotheses under the proposed paradigm. PMID:27432974
Flexible Bayesian Nonparametric Priors and Bayesian Computational Methods
Zhu, Weixuan
2016-01-01
The definition of vectors of dependent random probability measures is a topic of interest in Bayesian nonparametrics. They represent dependent nonparametric prior distributions that are useful for modelling observables for which specific covariate values are known. Our first contribution is the introduction of novel multivariate vectors of two-parameter Poisson-Dirichlet process. The dependence is induced by applying a L´evy copula to the marginal L´evy intensities. Our attenti...
Lemmon, Alan R; Lemmon, Emily Moriarty
2012-10-01
One of the major challenges for researchers studying phylogeography and shallow-scale phylogenetics is the identification of highly variable and informative nuclear loci for the question of interest. Previous approaches to locus identification have generally required extensive testing of anonymous nuclear loci developed from genomic libraries of the target taxon, testing of loci of unknown utility from other systems, or identification of loci from the nearest model organism with genomic resources. Here, we present a fast and economical approach to generating thousands of variable, single-copy nuclear loci for any system using next-generation sequencing. We performed Illumina paired-end sequencing of three reduced-representation libraries (RRLs) in chorus frogs (Pseudacris) to identify orthologous, single-copy loci across libraries and to estimate sequence divergence at multiple taxonomic levels. We also conducted PCR testing of these loci across the genus Pseudacris and outgroups to determine whether loci developed for phylogeography can be extended to deeper phylogenetic levels. Prior to sequencing, we conducted in silico digestion of the most closely related reference genome (Xenopus tropicalis) to generate expectations for the number of loci and degree of coverage for a particular experimental design. Using the RRL approach, we: (i) identified more than 100,000 single-copy nuclear loci, 6339 of which were obtained for divergent conspecifics and 904 of which were obtained for heterospecifics; (ii) estimated average nuclear sequence divergence at 0.1% between alleles within an individual, 1.1% between conspecific individuals that represent two different clades, and 1.8% between species; and (iii) determined from PCR testing that 53% of the loci successfully amplify within-species and also many amplify to the genus-level and deeper in the phylogeny (16%). Our study effectively identified nuclear loci present in the genome that have levels of sequence divergence on
DEFF Research Database (Denmark)
Muñoz, Joaquin; Gómez, Africa; Green, Andy J.;
2008-01-01
There has been a recent appreciation of the ecological impacts of zooplanktonic species invasions. The North American brine shrimp Artemia franciscana is one such alien invader in hyper-saline water ecosystems at a global scale. It has been shown to outcompete native Artemia species, leading...... to their local extinction. We used partial sequences of the mitochondrial Cytochrome c Oxidase Subunit 1 (COI or cox1) gene to investigate the genetic diversity and phylogeography of A. salina, an extreme halophilic sexual brine shrimp, over its known distribution range (Mediterranean Basin and South Africa...
Phylogeography and molecular epidemiology of an epidemic strain of dengue virus type 1 in Sri Lanka.
Ocwieja, Karen E; Fernando, Anira N; Sherrill-Mix, Scott; Sundararaman, Sesh A; Tennekoon, Rashika N; Tippalagama, Rashmi; Krishnananthasivam, Shivankari; Premawansa, Gayani; Premawansa, Sunil; De Silva, Aruna Dharshan
2014-08-01
In 2009, a severe epidemic of dengue disease occurred in Sri Lanka, with higher mortality and morbidity than any previously recorded epidemic in the country. It corresponded to a shift to dengue virus 1 as the major disease-causing serotype in Sri Lanka. Dengue disease reached epidemic levels in the next 3 years. We report phylogenetic evidence that the 2009 epidemic DENV-1 strain continued to circulate within the population and caused severe disease in the epidemic of 2012. Bayesian phylogeographic analyses suggest that the 2009 Sri Lankan epidemic DENV-1 strain may have traveled directly or indirectly from Thailand through China to Sri Lanka, and after spreading within the Sri Lankan population, it traveled to Pakistan and Singapore. Our findings delineate the dissemination route of a virulent DENV-1 strain in Asia. Understanding such routes will be of particular importance to global control efforts.
Bayesian Networks as a Decision Tool for O&M of Offshore Wind Turbines
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
Costs to operation and maintenance (O&M) of offshore wind turbines are large. This paper presents how influence diagrams can be used to assist in rational decision making for O&M. An influence diagram is a graphical representation of a decision tree based on Bayesian Networks. Bayesian Networks...... offer efficient Bayesian updating of a damage model when imperfect information from inspections/monitoring is available. The extension to an influence diagram offers the calculation of expected utilities for decision alternatives, and can be used to find the optimal strategy among different alternatives...
Bayesian versus 'plain-vanilla Bayesian' multitarget statistics
Mahler, Ronald P. S.
2004-08-01
Finite-set statistics (FISST) is a direct generalization of single-sensor, single-target Bayes statistics to the multisensor-multitarget realm, based on random set theory. Various aspects of FISST are being investigated by several research teams around the world. In recent years, however, a few partisans have claimed that a "plain-vanilla Bayesian approach" suffices as down-to-earth, "straightforward," and general "first principles" for multitarget problems. Therefore, FISST is mere mathematical "obfuscation." In this and a companion paper I demonstrate the speciousness of these claims. In this paper I summarize general Bayes statistics, what is required to use it in multisensor-multitarget problems, and why FISST is necessary to make it practical. Then I demonstrate that the "plain-vanilla Bayesian approach" is so heedlessly formulated that it is erroneous, not even Bayesian denigrates FISST concepts while unwittingly assuming them, and has resulted in a succession of algorithms afflicted by inherent -- but less than candidly acknowledged -- computational "logjams."
Pabijan, Maciej; Brown, Jason L; Chan, Lauren M; Rakotondravony, Hery A; Raselimanana, Achille P; Yoder, Anne D; Glaw, Frank; Vences, Miguel
2015-11-01
The rainforest biome of eastern Madagascar is renowned for its extraordinary biodiversity and restricted distribution ranges of many species, whereas the arid western region of the island is relatively species poor. We provide insight into the biogeography of western Madagascar by analyzing a multilocus phylogeographic dataset assembled for an amphibian, the widespread Malagasy bullfrog, Laliostoma labrosum. We find no cryptic species in L. labrosum (maximum 1.1% pairwise genetic distance between individuals in the 16S rRNA gene) attributable to considerable gene flow at the regional level as shown by genetic admixture in both mtDNA and three nuclear loci, especially in central Madagascar. Low breeding site fidelity, viewed as an adaptation to the unreliability of standing pools of freshwater in dry and seasonal environments, and a ubiquitous distribution within its range may underlie overall low genetic differentiation. Moreover, reductions in population size associated with periods of high aridity in western Madagascar may have purged DNA variation in this species. The mtDNA gene tree revealed seven major phylogroups within this species, five of which show mostly non-overlapping distributions. The nested positions of the northern and central mtDNA phylogroups imply a southwestern origin for all extant mtDNA lineages in L. labrosum. The current phylogeography of this species and paleo-distributions of major mtDNA lineages suggest five potential refugia in northern, western and southwestern Madagascar, likely the result of Pleistocene range fragmentation during drier and cooler climates. Lineage sorting in mtDNA and nuclear loci highlighted a main phylogeographic break between populations north and south of the Sambirano region, suggesting a role of the coastal Sambirano rainforest as a barrier to gene flow. Paleo-species distribution models and dispersal networks suggest that the persistence of some refugial populations was mainly determined by high population
Learning Bayesian network structure with immune algorithm
Institute of Scientific and Technical Information of China (English)
Zhiqiang Cai; Shubin Si; Shudong Sun; Hongyan Dui
2015-01-01
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa-per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further-more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Final y, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
Exploration vs Exploitation in Bayesian Optimization
Jalali, Ali; Fern, Xiaoli
2012-01-01
The problem of optimizing unknown costly-to-evaluate functions has been studied for a long time in the context of Bayesian Optimization. Algorithms in this field aim to find the optimizer of the function by asking only a few function evaluations at locations carefully selected based on a posterior model. In this paper, we assume the unknown function is Lipschitz continuous. Leveraging the Lipschitz property, we propose an algorithm with a distinct exploration phase followed by an exploitation phase. The exploration phase aims to select samples that shrink the search space as much as possible. The exploitation phase then focuses on the reduced search space and selects samples closest to the optimizer. Considering the Expected Improvement (EI) as a baseline, we empirically show that the proposed algorithm significantly outperforms EI.
Modeling Social Annotation: a Bayesian Approach
Plangprasopchok, Anon
2008-01-01
Collaborative tagging systems, such as del.icio.us, CiteULike, and others, allow users to annotate objects, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations, contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of socially-generated data, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated objects. Unfortunately, our proposed approach had a number of shortcomings, including overfitting, local maxima and the requirement to specify values for some parameters. In this paper we address these shortcomings in two ways. First, we extend the model to a fully Bayesian framework. Second, we describe an infinite ver...
Bayesian Cosmic Web Reconstruction: BARCODE for Clusters
Bos, E G Patrick; Kitaura, Francisco; Cautun, Marius
2016-01-01
We describe the Bayesian BARCODE formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the ...
Bayesian variable selection with spherically symmetric priors
De Kock, M B
2014-01-01
We propose that Bayesian variable selection for linear parametrisations with Gaussian iid likelihoods be based on the spherical symmetry of the diagonalised parameter space. This reduces the multidimensional parameter space problem to one dimension without the need for conjugate priors. Combining this likelihood with what we call the r-prior results in a framework in which we can derive closed forms for the evidence, posterior and characteristic function for four different r-priors, including the hyper-g prior and the Zellner-Siow prior, which are shown to be special cases of our r-prior. Two scenarios of a single variable dispersion parameter and of fixed dispersion are studied separately, and asymptotic forms comparable to the traditional information criteria are derived. In a simple simulation exercise, we find that model comparison based on our uniform r-prior appears to fare better than the current model comparison schemes.
Bayesian Overlapping Community Detection in Dynamic Networks
Ghorbani, Mahsa; Khodadadi, Ali
2016-01-01
Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...
Bayesian inference on proportional elections.
Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio
2015-01-01
Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259
Bayesian approach to rough set
Marwala, Tshilidzi
2007-01-01
This paper proposes an approach to training rough set models using Bayesian framework trained using Markov Chain Monte Carlo (MCMC) method. The prior probabilities are constructed from the prior knowledge that good rough set models have fewer rules. Markov Chain Monte Carlo sampling is conducted through sampling in the rough set granule space and Metropolis algorithm is used as an acceptance criteria. The proposed method is tested to estimate the risk of HIV given demographic data. The results obtained shows that the proposed approach is able to achieve an average accuracy of 58% with the accuracy varying up to 66%. In addition the Bayesian rough set give the probabilities of the estimated HIV status as well as the linguistic rules describing how the demographic parameters drive the risk of HIV.
Bayesian priors for transiting planets
Kipping, David M
2016-01-01
As astronomers push towards discovering ever-smaller transiting planets, it is increasingly common to deal with low signal-to-noise ratio (SNR) events, where the choice of priors plays an influential role in Bayesian inference. In the analysis of exoplanet data, the selection of priors is often treated as a nuisance, with observers typically defaulting to uninformative distributions. Such treatments miss a key strength of the Bayesian framework, especially in the low SNR regime, where even weak a priori information is valuable. When estimating the parameters of a low-SNR transit, two key pieces of information are known: (i) the planet has the correct geometric alignment to transit and (ii) the transit event exhibits sufficient signal-to-noise to have been detected. These represent two forms of observational bias. Accordingly, when fitting transits, the model parameter priors should not follow the intrinsic distributions of said terms, but rather those of both the intrinsic distributions and the observational ...
Bayesian Inference for Radio Observations
Lochner, Michelle; Zwart, Jonathan T L; Smirnov, Oleg; Bassett, Bruce A; Oozeer, Nadeem; Kunz, Martin
2015-01-01
(Abridged) New telescopes like the Square Kilometre Array (SKA) will push into a new sensitivity regime and expose systematics, such as direction-dependent effects, that could previously be ignored. Current methods for handling such systematics rely on alternating best estimates of instrumental calibration and models of the underlying sky, which can lead to inaccurate uncertainty estimates and biased results because such methods ignore any correlations between parameters. These deconvolution algorithms produce a single image that is assumed to be a true representation of the sky, when in fact it is just one realisation of an infinite ensemble of images compatible with the noise in the data. In contrast, here we report a Bayesian formalism that simultaneously infers both systematics and science. Our technique, Bayesian Inference for Radio Observations (BIRO), determines all parameters directly from the raw data, bypassing image-making entirely, by sampling from the joint posterior probability distribution. Thi...
A Bayesian Nonparametric IRT Model
Karabatsos, George
2015-01-01
This paper introduces a flexible Bayesian nonparametric Item Response Theory (IRT) model, which applies to dichotomous or polytomous item responses, and which can apply to either unidimensional or multidimensional scaling. This is an infinite-mixture IRT model, with person ability and item difficulty parameters, and with a random intercept parameter that is assigned a mixing distribution, with mixing weights a probit function of other person and item parameters. As a result of its flexibility...
Elements of Bayesian experimental design
Energy Technology Data Exchange (ETDEWEB)
Sivia, D.S. [Rutherford Appleton Lab., Oxon (United Kingdom)
1997-09-01
We consider some elements of the Bayesian approach that are important for optimal experimental design. While the underlying principles used are very general, and are explained in detail in a recent tutorial text, they are applied here to the specific case of characterising the inferential value of different resolution peakshapes. This particular issue was considered earlier by Silver, Sivia and Pynn (1989, 1990a, 1990b), and the following presentation confirms and extends the conclusions of their analysis.
Bayesian kinematic earthquake source models
Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.
2009-12-01
Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high
Bayesian Stable Isotope Mixing Models
Parnell, Andrew C.; Phillips, Donald L.; Bearhop, Stuart; Semmens, Brice X.; Ward, Eric J.; Moore, Jonathan W.; Andrew L Jackson; Inger, Richard
2012-01-01
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixture. The most widely used application is quantifying the diet of organisms based on the food sources they have been observed to consume. At the centre of the multivariate statistical model we propose is a compositional m...
Bayesian Network--Response Regression
WANG, LU; Durante, Daniele; Dunson, David B.
2016-01-01
There is an increasing interest in learning how human brain networks vary with continuous traits (e.g., personality, cognitive abilities, neurological disorders), but flexible procedures to accomplish this goal are limited. We develop a Bayesian semiparametric model, which combines low-rank factorizations and Gaussian process priors to allow flexible shifts of the conditional expectation for a network-valued random variable across the feature space, while including subject-specific random eff...
Bayesian segmentation of hyperspectral images
Mohammadpour, Adel; Mohammad-Djafari, Ali
2007-01-01
In this paper we consider the problem of joint segmentation of hyperspectral images in the Bayesian framework. The proposed approach is based on a Hidden Markov Modeling (HMM) of the images with common segmentation, or equivalently with common hidden classification label variables which is modeled by a Potts Markov Random Field. We introduce an appropriate Markov Chain Monte Carlo (MCMC) algorithm to implement the method and show some simulation results.
Bayesian segmentation of hyperspectral images
Mohammadpour, Adel; Féron, Olivier; Mohammad-Djafari, Ali
2004-11-01
In this paper we consider the problem of joint segmentation of hyperspectral images in the Bayesian framework. The proposed approach is based on a Hidden Markov Modeling (HMM) of the images with common segmentation, or equivalently with common hidden classification label variables which is modeled by a Potts Markov Random Field. We introduce an appropriate Markov Chain Monte Carlo (MCMC) algorithm to implement the method and show some simulation results.
Bayesian analysis of contingency tables
Gómez Villegas, Miguel A.; González Pérez, Beatriz
2005-01-01
The display of the data by means of contingency tables is used in different approaches to statistical inference, for example, to broach the test of homogeneity of independent multinomial distributions. We develop a Bayesian procedure to test simple null hypotheses versus bilateral alternatives in contingency tables. Given independent samples of two binomial distributions and taking a mixed prior distribution, we calculate the posterior probability that the proportion of successes in the first...
Bayesian estimation of turbulent motion
Héas, P.; Herzet, C.; Mémin, E.; Heitz, D.; P. D. Mininni
2013-01-01
International audience Based on physical laws describing the multi-scale structure of turbulent flows, this article proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyper-parameters, and to select the ...
Bayesian Kernel Mixtures for Counts
Canale, Antonio; David B Dunson
2011-01-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviatio...
Space Shuttle RTOS Bayesian Network
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores
Bayesian second law of thermodynamics.
Bartolotta, Anthony; Carroll, Sean M; Leichenauer, Stefan; Pollack, Jason
2016-08-01
We derive a generalization of the second law of thermodynamics that uses Bayesian updates to explicitly incorporate the effects of a measurement of a system at some point in its evolution. By allowing an experimenter's knowledge to be updated by the measurement process, this formulation resolves a tension between the fact that the entropy of a statistical system can sometimes fluctuate downward and the information-theoretic idea that knowledge of a stochastically evolving system degrades over time. The Bayesian second law can be written as ΔH(ρ_{m},ρ)+〈Q〉_{F|m}≥0, where ΔH(ρ_{m},ρ) is the change in the cross entropy between the original phase-space probability distribution ρ and the measurement-updated distribution ρ_{m} and 〈Q〉_{F|m} is the expectation value of a generalized heat flow out of the system. We also derive refined versions of the second law that bound the entropy increase from below by a non-negative number, as well as Bayesian versions of integral fluctuation theorems. We demonstrate the formalism using simple analytical and numerical examples. PMID:27627241
Bayesian second law of thermodynamics
Bartolotta, Anthony; Carroll, Sean M.; Leichenauer, Stefan; Pollack, Jason
2016-08-01
We derive a generalization of the second law of thermodynamics that uses Bayesian updates to explicitly incorporate the effects of a measurement of a system at some point in its evolution. By allowing an experimenter's knowledge to be updated by the measurement process, this formulation resolves a tension between the fact that the entropy of a statistical system can sometimes fluctuate downward and the information-theoretic idea that knowledge of a stochastically evolving system degrades over time. The Bayesian second law can be written as Δ H (ρm,ρ ) + F |m≥0 , where Δ H (ρm,ρ ) is the change in the cross entropy between the original phase-space probability distribution ρ and the measurement-updated distribution ρm and F |m is the expectation value of a generalized heat flow out of the system. We also derive refined versions of the second law that bound the entropy increase from below by a non-negative number, as well as Bayesian versions of integral fluctuation theorems. We demonstrate the formalism using simple analytical and numerical examples.
12th Brazilian Meeting on Bayesian Statistics
Louzada, Francisco; Rifo, Laura; Stern, Julio; Lauretto, Marcelo
2015-01-01
Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesia...
Phylogeography, Genetic Diversity, and Management Units of Hawksbill Turtles in the Indo-Pacific.
Vargas, Sarah M; Jensen, Michael P; Ho, Simon Y W; Mobaraki, Asghar; Broderick, Damien; Mortimer, Jeanne A; Whiting, Scott D; Miller, Jeff; Prince, Robert I T; Bell, Ian P; Hoenner, Xavier; Limpus, Colin J; Santos, Fabrício R; FitzSimmons, Nancy N
2016-05-01
Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species.
A Decomposition Algorithm for Learning Bayesian Network Structures from Data
DEFF Research Database (Denmark)
Zeng, Yifeng; Cordero Hernandez, Jorge
2008-01-01
the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks.......It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...
Phylogeography of Japanese encephalitis virus: genotype is associated with climate.
Directory of Open Access Journals (Sweden)
Amy J Schuh
Full Text Available The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate.
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan
2004-01-01
We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...... and differentiating these circuits in time linear in their size. We report on experimental results showing the successful compilation, and efficient inference, on relational Bayesian networks whose {\\primula}--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Bayesian Posterior Distributions Without Markov Chains
Cole, Stephen R.; Chu, Haitao; Greenland, Sander; Hamra, Ghassan; Richardson, David B.
2012-01-01
Bayesian posterior parameter distributions are often simulated using Markov chain Monte Carlo (MCMC) methods. However, MCMC methods are not always necessary and do not help the uninitiated understand Bayesian inference. As a bridge to understanding Bayesian inference, the authors illustrate a transparent rejection sampling method. In example 1, they illustrate rejection sampling using 36 cases and 198 controls from a case-control study (1976–1983) assessing the relation between residential ex...
Phylogeography of mtDNA haplogroup R7 in the Indian peninsula
Directory of Open Access Journals (Sweden)
Shukla Parul
2008-08-01
Full Text Available Abstract Background Human genetic diversity observed in Indian subcontinent is second only to that of Africa. This implies an early settlement and demographic growth soon after the first 'Out-of-Africa' dispersal of anatomically modern humans in Late Pleistocene. In contrast to this perspective, linguistic diversity in India has been thought to derive from more recent population movements and episodes of contact. With the exception of Dravidian, which origin and relatedness to other language phyla is obscure, all the language families in India can be linked to language families spoken in different regions of Eurasia. Mitochondrial DNA and Y chromosome evidence has supported largely local evolution of the genetic lineages of the majority of Dravidian and Indo-European speaking populations, but there is no consensus yet on the question of whether the Munda (Austro-Asiatic speaking populations originated in India or derive from a relatively recent migration from further East. Results Here, we report the analysis of 35 novel complete mtDNA sequences from India which refine the structure of Indian-specific varieties of haplogroup R. Detailed analysis of haplogroup R7, coupled with a survey of ~12,000 mtDNAs from caste and tribal groups over the entire Indian subcontinent, reveals that one of its more recently derived branches (R7a1, is particularly frequent among Munda-speaking tribal groups. This branch is nested within diverse R7 lineages found among Dravidian and Indo-European speakers of India. We have inferred from this that a subset of Munda-speaking groups have acquired R7 relatively recently. Furthermore, we find that the distribution of R7a1 within the Munda-speakers is largely restricted to one of the sub-branches (Kherwari of northern Munda languages. This evidence does not support the hypothesis that the Austro-Asiatic speakers are the primary source of the R7 variation. Statistical analyses suggest a significant correlation between
Variational bayesian method of estimating variance components.
Arakawa, Aisaku; Taniguchi, Masaaki; Hayashi, Takeshi; Mikawa, Satoshi
2016-07-01
We developed a Bayesian analysis approach by using a variational inference method, a so-called variational Bayesian method, to determine the posterior distributions of variance components. This variational Bayesian method and an alternative Bayesian method using Gibbs sampling were compared in estimating genetic and residual variance components from both simulated data and publically available real pig data. In the simulated data set, we observed strong bias toward overestimation of genetic variance for the variational Bayesian method in the case of low heritability and low population size, and less bias was detected with larger population sizes in both methods examined. The differences in the estimates of variance components between the variational Bayesian and the Gibbs sampling were not found in the real pig data. However, the posterior distributions of the variance components obtained with the variational Bayesian method had shorter tails than those obtained with the Gibbs sampling. Consequently, the posterior standard deviations of the genetic and residual variances of the variational Bayesian method were lower than those of the method using Gibbs sampling. The computing time required was much shorter with the variational Bayesian method than with the method using Gibbs sampling.
SYNTHESIZED EXPECTED BAYESIAN METHOD OF PARAMETRIC ESTIMATE
Institute of Scientific and Technical Information of China (English)
Ming HAN; Yuanyao DING
2004-01-01
This paper develops a new method of parametric estimate, which is named as "synthesized expected Bayesian method". When samples of products are tested and no failure events occur, thedefinition of expected Bayesian estimate is introduced and the estimates of failure probability and failure rate are provided. After some failure information is introduced by making an extra-test, a synthesized expected Bayesian method is defined and used to estimate failure probability, failure rateand some other parameters in exponential distribution and Weibull distribution of populations. Finally,calculations are performed according to practical problems, which show that the synthesized expected Bayesian method is feasible and easy to operate.
Bayesian networks for evaluation of evidence from forensic entomology.
Andersson, M Gunnar; Sundström, Anders; Lindström, Anders
2013-09-01
In the aftermath of a CBRN incident, there is an urgent need to reconstruct events in order to bring the perpetrators to court and to take preventive actions for the future. The challenge is to discriminate, based on available information, between alternative scenarios. Forensic interpretation is used to evaluate to what extent results from the forensic investigation favor the prosecutors' or the defendants' arguments, using the framework of Bayesian hypothesis testing. Recently, several new scientific disciplines have been used in a forensic context. In the AniBioThreat project, the framework was applied to veterinary forensic pathology, tracing of pathogenic microorganisms, and forensic entomology. Forensic entomology is an important tool for estimating the postmortem interval in, for example, homicide investigations as a complement to more traditional methods. In this article we demonstrate the applicability of the Bayesian framework for evaluating entomological evidence in a forensic investigation through the analysis of a hypothetical scenario involving suspect movement of carcasses from a clandestine laboratory. Probabilities of different findings under the alternative hypotheses were estimated using a combination of statistical analysis of data, expert knowledge, and simulation, and entomological findings are used to update the beliefs about the prosecutors' and defendants' hypotheses and to calculate the value of evidence. The Bayesian framework proved useful for evaluating complex hypotheses using findings from several insect species, accounting for uncertainty about development rate, temperature, and precolonization. The applicability of the forensic statistic approach to evaluating forensic results from a CBRN incident is discussed.
Phylogeography and evolution of the Red Salamander (Pseudotriton ruber).
Folt, Brian; Garrison, Nicole; Guyer, Craig; Rodriguez, Juanita; Bond, Jason E
2016-05-01
Phylogeographic studies frequently result in the elevation of subspecific taxa to species given monophyly, or the synonymy of subspecies that are not monophyletic. However, given limited or incongruent datasets, retention of subspecies can be useful to describe hypothesized incipient species or to illustrate interesting biological phenomena driving morphological diversity. Four subspecific taxa have been used to describe largely allopatric geographic variation within the species Pseudotriton ruber, a plethodontid salamander occupying stream and spring habitats across eastern North America: P. r. vioscai occurs in lowland Coastal Plain habitats, while P. r. ruber, P. r. nitidus, and P. r. schencki occupy upland regions in and around the Appalachian Mountains. Pseudotriton ruber co-occurs through its distribution with the aposematic newt Notophthalmus viridescens, and both species are hypothesized to be part of a Müllerian mimicry complex. In this study, we sequenced regions of two mitochondrial (cytochrome b, NADH dehydrogenase subunit 2) and one single copy nuclear protein-coding gene (pro-opiomelanocortin) from individuals sampled across much of the distribution of P. ruber and then used maximum-likelihood and Bayesian phylogenetic inference to test the monophyly of subspecies, reconstruct biogeographic history, and make inferences about morphological evolution. Phylogeographic hypotheses from mitochondrial and nuclear datasets described structure among populations of P. ruber which separated Coastal Plain and upland Appalachian populations, but subspecies were not monophyletic. Biogeographic reconstruction estimated the ancestor of all populations to have occupied and initially diverged in the Coastal Plain during the Pliocene (∼3.6mya), before one lineage subsequently invaded upland areas of Appalachia. Bold bright coloration of high elevation subspecies P. r. nitidus and P. r. schencki appears to have evolved twice. We hypothesize that the Müllerian mimicry
Bayesian Methods and Universal Darwinism
Campbell, John
2009-12-01
Bayesian methods since the time of Laplace have been understood by their practitioners as closely aligned to the scientific method. Indeed a recent Champion of Bayesian methods, E. T. Jaynes, titled his textbook on the subject Probability Theory: the Logic of Science. Many philosophers of science including Karl Popper and Donald Campbell have interpreted the evolution of Science as a Darwinian process consisting of a `copy with selective retention' algorithm abstracted from Darwin's theory of Natural Selection. Arguments are presented for an isomorphism between Bayesian Methods and Darwinian processes. Universal Darwinism, as the term has been developed by Richard Dawkins, Daniel Dennett and Susan Blackmore, is the collection of scientific theories which explain the creation and evolution of their subject matter as due to the Operation of Darwinian processes. These subject matters span the fields of atomic physics, chemistry, biology and the social sciences. The principle of Maximum Entropy states that Systems will evolve to states of highest entropy subject to the constraints of scientific law. This principle may be inverted to provide illumination as to the nature of scientific law. Our best cosmological theories suggest the universe contained much less complexity during the period shortly after the Big Bang than it does at present. The scientific subject matter of atomic physics, chemistry, biology and the social sciences has been created since that time. An explanation is proposed for the existence of this subject matter as due to the evolution of constraints in the form of adaptations imposed on Maximum Entropy. It is argued these adaptations were discovered and instantiated through the Operations of a succession of Darwinian processes.
Inherently irrational? A computational model of escalation of commitment as Bayesian Updating.
Gilroy, Shawn P; Hantula, Donald A
2016-06-01
Monte Carlo simulations were performed to analyze the degree to which two-, three- and four-step learning histories of losses and gains correlated with escalation and persistence in extended extinction (continuous loss) conditions. Simulated learning histories were randomly generated at varying lengths and compositions and warranted probabilities were determined using Bayesian Updating methods. Bayesian Updating predicted instances where particular learning sequences were more likely to engender escalation and persistence under extinction conditions. All simulations revealed greater rates of escalation and persistence in the presence of heterogeneous (e.g., both Wins and Losses) lag sequences, with substantially increased rates of escalation when lags comprised predominantly of losses were followed by wins. These methods were then applied to human investment choices in earlier experiments. The Bayesian Updating models corresponded with data obtained from these experiments. These findings suggest that Bayesian Updating can be utilized as a model for understanding how and when individual commitment may escalate and persist despite continued failures.
Bayesian Query-Focused Summarization
Daumé, Hal
2009-01-01
We present BayeSum (for ``Bayesian summarization''), a model for sentence extraction in query-focused summarization. BayeSum leverages the common case in which multiple documents are relevant to a single query. Using these documents as reinforcement for query terms, BayeSum is not afflicted by the paucity of information in short queries. We show that approximate inference in BayeSum is possible on large data sets and results in a state-of-the-art summarization system. Furthermore, we show how BayeSum can be understood as a justified query expansion technique in the language modeling for IR framework.
Bayesian Sampling using Condition Indicators
DEFF Research Database (Denmark)
Faber, Michael H.; Sørensen, John Dalsgaard
2002-01-01
The problem of control quality of components is considered for the special case where the acceptable failure rate is low, the test costs are high and where it may be difficult or impossible to test the condition of interest directly. Based on the classical control theory and the concept...... of condition indicators introduced by Benjamin and Cornell (1970) a Bayesian approach to quality control is formulated. The formulation is then extended to the case where the quality control is based on sampling of indirect information about the condition of the components, i.e. condition indicators...
Using Bayesian Networks to Improve Knowledge Assessment
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
Bayesian analysis of exoplanet and binary orbits
Schulze-Hartung, Tim; Launhardt, Ralf; Henning, Thomas
2012-01-01
We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.
Bayesian credible interval construction for Poisson statistics
Institute of Scientific and Technical Information of China (English)
ZHU Yong-Sheng
2008-01-01
The construction of the Bayesian credible (confidence) interval for a Poisson observable including both the signal and background with and without systematic uncertainties is presented.Introducing the conditional probability satisfying the requirement of the background not larger than the observed events to construct the Bayesian credible interval is also discussed.A Fortran routine,BPOCI,has been developed to implement the calculation.
Modeling Diagnostic Assessments with Bayesian Networks
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
Advances in Bayesian Modeling in Educational Research
Levy, Roy
2016-01-01
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Learning dynamic Bayesian networks with mixed variables
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard
This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned...
The Bayesian Revolution Approaches Psychological Development
Shultz, Thomas R.
2007-01-01
This commentary reviews five articles that apply Bayesian ideas to psychological development, some with psychology experiments, some with computational modeling, and some with both experiments and modeling. The reviewed work extends the current Bayesian revolution into tasks often studied in children, such as causal learning and word learning, and…
Bayesian Network for multiple hypthesis tracking
W.P. Zajdel; B.J.A. Kröse
2002-01-01
For a flexible camera-to-camera tracking of multiple objects we model the objects behavior with a Bayesian network and combine it with the multiple hypohesis framework that associates observations with objects. Bayesian networks offer a possibility to factor complex, joint distributions into a produ
Levy, Hila; Clucas, Gemma V; Rogers, Alex D; Leaché, Adam D; Ciborowski, Kate L; Polito, Michael J; Lynch, Heather J; Dunn, Michael J; Hart, Tom
2016-03-01
Climate change, fisheries' pressure on penguin prey, and direct human disturbance of wildlife have all been implicated in causing large shifts in the abundance and distribution of penguins in the Southern Ocean. Without mark-recapture studies, understanding how colonies form and, by extension, how ranges shift is challenging. Genetic studies, particularly focused on newly established colonies, provide a snapshot of colonization and can reveal the extent to which shifts in abundance and occupancy result from changes in demographic rates (e.g., reproduction and survival) or migration among suitable patches of habitat. Here, we describe the population structure of a colonial seabird breeding across a large latitudinal range in the Southern Ocean. Using multilocus microsatellite genotype data from 510 Gentoo penguin (Pygoscelis papua) individuals from 14 colonies along the Scotia Arc and Antarctic Peninsula, together with mitochondrial DNA data, we find strong genetic differentiation between colonies north and south of the Polar Front, that coincides geographically with the taxonomic boundary separating the subspecies P. p. papua and P. p. ellsworthii. Using a discrete Bayesian phylogeographic approach, we show that southern Gentoos expanded from a possible glacial refuge in the center of their current range, colonizing regions to the north and south through rare, long-distance dispersal. Our findings show that this dispersal is important for new colony foundation and range expansion in a seabird species that ordinarily exhibits high levels of natal philopatry, though persistent oceanographic features serve as barriers to movement.
Sparse reconstruction using distribution agnostic bayesian matching pursuit
Masood, Mudassir
2013-11-01
A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery. This method performs Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or unknown. It is agnostic on signal statistics and utilizes a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data if not available. The method utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean-square error (MMSE) estimate of the sparse signal. Simulation results demonstrate the power and robustness of our proposed estimator. © 2013 IEEE.
Bayesian decision making in human collectives with binary choices
Eguíluz, Víctor M; Fernández-Gracia, J
2015-01-01
Here we focus on the description of the mechanisms behind the process of information aggregation and decision making, a basic step to understand emergent phenomena in society, such as trends, information spreading or the wisdom of crowds. In many situations, agents choose between discrete options. We analyze experimental data on binary opinion choices in humans. The data consists of two separate experiments in which humans answer questions with a binary response, where one is correct and the other is incorrect. The questions are answered without and with information on the answers of some previous participants. We find that a Bayesian approach captures the probability of choosing one of the answers. The influence of peers is uncorrelated with the difficulty of the question. The data is inconsistent with Weber's law, which states that the probability of choosing an option depends on the proportion of previous answers choosing that option and not on the total number of those answers. Last, the present Bayesian ...
Support agnostic Bayesian matching pursuit for block sparse signals
Masood, Mudassir
2013-05-01
A fast matching pursuit method using a Bayesian approach is introduced for block-sparse signal recovery. This method performs Bayesian estimates of block-sparse signals even when the distribution of active blocks is non-Gaussian or unknown. It is agnostic to the distribution of active blocks in the signal and utilizes a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data and no user intervention is required. The method requires a priori knowledge of block partition and utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean square error (MMSE) estimate of the block-sparse signal. Simulation results demonstrate the power and robustness of our proposed estimator. © 2013 IEEE.
Exploiting Agent and Type Independence in Collaborative Graphical Bayesian Games
Oliehoek, Frans A; Spaan, Matthijs T J
2011-01-01
Efficient collaborative decision making is an important challenge for multiagent systems. Finding optimal joint actions is especially challenging when each agent has only imperfect information about the state of its environment. Such problems can be modeled as collaborative Bayesian games in which each agent receives private information in the form of its type. However, representing and solving such games requires space and computation time exponential in the number of agents. This article introduces collaborative graphical Bayesian games (CGBGs), which facilitate more efficient collaborative decision making by decomposing the global payoff function as the sum of local payoff functions that depend on only a few agents. We propose a framework for the efficient solution of CGBGs based on the insight that they posses two different types of independence, which we call agent independence and type independence. In particular, we present a factor graph representation that captures both forms of independence and thus...
Bayesian theories of conditioning in a changing world.
Courville, Aaron C; Daw, Nathaniel D; Touretzky, David S
2006-07-01
The recent flowering of Bayesian approaches invites the re-examination of classic issues in behavior, even in areas as venerable as Pavlovian conditioning. A statistical account can offer a new, principled interpretation of behavior, and previous experiments and theories can inform many unexplored aspects of the Bayesian enterprise. Here we consider one such issue: the finding that surprising events provoke animals to learn faster. We suggest that, in a statistical account of conditioning, surprise signals change and therefore uncertainty and the need for new learning. We discuss inference in a world that changes and show how experimental results involving surprise can be interpreted from this perspective, and also how, thus understood, these phenomena help constrain statistical theories of animal and human learning.
2nd Bayesian Young Statisticians Meeting
Bitto, Angela; Kastner, Gregor; Posekany, Alexandra
2015-01-01
The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Université Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session ...
Brochu, Eric; de Freitas, Nando
2010-01-01
We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective function, which must take into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling areas likely to offer improvement over the current best observation). We also present two detailed extensions of Bayesian optimization, with experiments---active user modelling with preferences, and hierarchical reinforcement learning---and a discussion of the pros and cons of Bayesian optimization based on our experiences.
BAYESIAN BICLUSTERING FOR PATIENT STRATIFICATION.
Khakabimamaghani, Sahand; Ester, Martin
2016-01-01
The move from Empirical Medicine towards Personalized Medicine has attracted attention to Stratified Medicine (SM). Some methods are provided in the literature for patient stratification, which is the central task of SM, however, there are still significant open issues. First, it is still unclear if integrating different datatypes will help in detecting disease subtypes more accurately, and, if not, which datatype(s) are most useful for this task. Second, it is not clear how we can compare different methods of patient stratification. Third, as most of the proposed stratification methods are deterministic, there is a need for investigating the potential benefits of applying probabilistic methods. To address these issues, we introduce a novel integrative Bayesian biclustering method, called B2PS, for patient stratification and propose methods for evaluating the results. Our experimental results demonstrate the superiority of B2PS over a popular state-of-the-art method and the benefits of Bayesian approaches. Our results agree with the intuition that transcriptomic data forms a better basis for patient stratification than genomic data.
BAYESIAN BICLUSTERING FOR PATIENT STRATIFICATION.
Khakabimamaghani, Sahand; Ester, Martin
2016-01-01
The move from Empirical Medicine towards Personalized Medicine has attracted attention to Stratified Medicine (SM). Some methods are provided in the literature for patient stratification, which is the central task of SM, however, there are still significant open issues. First, it is still unclear if integrating different datatypes will help in detecting disease subtypes more accurately, and, if not, which datatype(s) are most useful for this task. Second, it is not clear how we can compare different methods of patient stratification. Third, as most of the proposed stratification methods are deterministic, there is a need for investigating the potential benefits of applying probabilistic methods. To address these issues, we introduce a novel integrative Bayesian biclustering method, called B2PS, for patient stratification and propose methods for evaluating the results. Our experimental results demonstrate the superiority of B2PS over a popular state-of-the-art method and the benefits of Bayesian approaches. Our results agree with the intuition that transcriptomic data forms a better basis for patient stratification than genomic data. PMID:26776199
Directory of Open Access Journals (Sweden)
Tania Anaid Gutiérrez-García
2013-12-01
Full Text Available Central America is an ideal region for comparative phylogeographic studies because of its intricate geologic and biogeographic history, diversity of habitats and dynamic climatic and tectonic history. The aim of this work was to assess the phylogeography of two rodents codistributed throughout Central America, in order to identify if they show concordant genetic and phylogeographic patterns. The synopsis includes four parts: (1 an overview of the field of comparative phylogeography; (2 a detailed review that describes how genetic and geologic studies can be combined to elucidate general patterns of the biogeographic and evolutionary history of Central America; and a phylogeographic analysis of two species at both the (3 intraspecific and (4 comparative phylogeographic levels. The last incorporates specific ecological features and evaluates their influence on the species’ genetic patterns. Results showed a concordant genetic structure influenced by geographic distance for both rodents, but dissimilar dispersal patterns due to ecological features and life history.
Meyer Axel; Barluenga Marta
2010-01-01
Abstract Background Elucidation of the mechanisms driving speciation requires detailed knowledge about the phylogenetic relationships and phylogeography of the incipient species within their entire ranges as well as their colonization history. The Midas cichlid species complex Amphilophus spp. has been proven to be a powerful model system for the study of ecological specialization, sexual selection and the mechanisms of sympatric speciation. Here we present a comprehensive and integrative phy...
Honorio Coronado, Eurídice N.; Dexter, Kyle G.; Poelchau, Monica F; Hollingsworth, Peter M; Phillips, Oliver L.; Pennington, R Toby
2014-01-01
Aim: To examine the phylogeography of Ficus insipida subsp. insipida in order to investigate patterns of spatial genetic structure across the Neotropics and within Amazonia. Location: Neotropics. Methods: Plastid DNA (trnH-psbA; 410 individuals from 54 populations) and nuclear ribosomal internal transcribed spacer (ITS; 85 individuals from 27 populations) sequences were sampled from Mexico to Bolivia, representing the full extent of the taxon's distribution. Divergence of plastid lineages was...
Sezonlin, Michel; Dupas, Stéphane; Le Ru, Bruno; Le Gall, Philippe; Moyal, Pascal; Calatayud, Paul-André; Giffard, I; Faure, N; Silvain, Jean-François
2006-01-01
The population genetics and phylogeography of African phytophagous insects have received little attention. Some, such as the maize stalk borer Busseola fusca, display significant geographic differences in ecological preferences that may be congruent with patterns of molecular variation. To test this, we collected 307 individuals of this species from maize and cultivated sorghum at 52 localities in West, Central and East Africa during the growing season. For all collected individuals, we seque...
Tahsin, Tasnia; Beard, Rachel; Rivera, Robert; Lauder, Rob; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela
2014-01-01
Zoonotic viruses represent emerging or re-emerging pathogens that pose significant public health threats throughout the world. It is therefore crucial to advance current surveillance mechanisms for these viruses through outlets such as phylogeography. Despite the abundance of zoonotic viral sequence data in publicly available databases such as GenBank, phylogeographic analysis of these viruses is often limited by the lack of adequate geographic metadata. However, many GenBank records include references to articles with more detailed information and automated systems may help extract this information efficiently and effectively. In this paper, we describe our efforts to determine the proportion of GenBank records with "insufficient" geographic metadata for seven well-studied viruses. We also evaluate the performance of four different Named Entity Recognition (NER) systems for automatically extracting related entities using a manually created gold-standard. PMID:25717409
Mokrousov, Igor; Vyazovaya, Anna; Iwamoto, Tomotada; Skiba, Yuriy; Pole, Ilva; Zhdanova, Svetlana; Arikawa, Kentaro; Sinkov, Viacheslav; Umpeleva, Tatiana; Valcheva, Violeta; Alvarez Figueroa, Maria; Ranka, Renate; Jansone, Inta; Ogarkov, Oleg; Zhuravlev, Viacheslav; Narvskaya, Olga
2016-06-01
Currently, Mycobacterium tuberculosis isolates of Latin-American Mediterranean (LAM) family may be detected far beyond the geographic areas that coined its name 15years ago. Here, we established the framework phylogeny of this geographically intriguing and pathobiologically important mycobacterial lineage and hypothesized how human demographics and migration influenced its phylogeography. Phylogenetic analysis of LAM isolates from all continents based on 24 variable number of tandem repeats (VNTR) loci and other markers identified three global sublineages with certain geographic affinities and defined by large deletions RD115, RD174, and by spoligotype SIT33. One minor sublineage (spoligotype SIT388) appears endemic in Japan. One-locus VNTR signatures were established for sublineages and served for their search in published literature and geographic mapping. We suggest that the LAM family originated in the Western Mediterranean region. The most widespread RD115 sublineage seems the most ancient and encompasses genetically and geographically distant branches, including extremely drug resistant KZN in South Africa and LAM-RUS recently widespread across Northern Eurasia. The RD174 sublineage likely started its active spread in Brazil; its earlier branch is relatively dominated by isolates from South America and the derived one is dominated by Portuguese and South/Southeastern African isolates. The relatively most recent SIT33-sublineage is marked with enigmatic gaps and peaks across the Americas and includes South African clade F11/RD761, which likely emerged within the SIT33 subpopulation after its arrival to Africa. In addition to SIT388-sublineage, other deeply rooted, endemic LAM sublineages may exist that remain to be discovered. As a general conclusion, human mass migration appears to be the major factor that shaped the M. tuberculosis phylogeography over large time-spans. PMID:27001605
Brante, Antonio; Fernández, Miriam; Viard, Frédérique
2012-01-01
The biogeography and phylogeography concordance hypothesis suggests that the same factors, for instance physical barriers or environmental gradients, shape both species assemblages and intraspecific genetic structure. In the marine realm, previous studies have however suggested that phylogeographic patterns are also explained by the life-history strategy of the species. However, evidence is contradictory and comes mainly from the northern hemisphere, which is characterized by specific environmental conditions and evolutionary histories of species. In this work, we evaluated the concordance hypothesis in the southern Pacific using the marine gastropod Crepipatella dilatata as a case study. This intertidal species with direct development exhibited a restricted dispersal potential, a feature that contrasts with previous species studied in the same area. Using the gene cytochrome oxidase I, we analyzed 253 individuals sampled at 10 locations covering 543 km of the coast of Chile. The study sites also incorporated 2 biogeographic regions separated by a well-studied biogeographic break (at 30°S). Populations of C. dilatata displayed a high degree of genetic structure and a perfect match between phylogeographic and biogeographic breaks at 30°S. When comparing our data with previous research over the same geographic range, life history traits related to dispersal ability seem to be a good proxy for explaining the concordance between biogeography and phylogeography along the southeastern pacific coast. In addition, in this and other marine invertebrate species, gene flow limitations across both sides of the 30°S break may act as a driver of the speciation process. PMID:22573790
Directory of Open Access Journals (Sweden)
Daniele Canestrelli
Full Text Available Phylogeographic patterns of temperate species from the Mediterranean peninsulas have been investigated intensively. Nevertheless, as more phylogeographies become available, either unique patterns or new lines of concordance continue to emerge, providing new insights on the evolution of regional biotas. Here, we investigated the phylogeography and evolutionary history of the Italian crested newt, Triturus carnifex, through phylogenetic, molecular dating and population structure analyses of two mitochondrial gene fragments (ND2 and ND4; overall 1273 bp. We found three main mtDNA lineages having parapatric distribution and estimated divergence times between Late Pliocene and Early Pleistocene. One lineage (S was widespread south of the northern Apennine chain and was further geographically structured into five sublineages, likely of Middle Pleistocene origin. The second lineage (C was widespread throughout the Padano-Venetian plain and did not show a clear phylogeographic structure. The third lineage (N was observed in only two populations located on western Croatia/Slovenia. Results of analysis of molecular variance suggested that partitioning populations according to the geographic distribution of these lineages and sublineages explains 76% of the observed genetic variation. The phylogeographic structure observed within T. carnifex and divergence time estimates among its lineages, suggest that responses to Pleistocene environmental changes in this single species have been as diverse as those found previously among several codistributed temperate species combined. Consistent with the landscape heterogeneity, physiographic features, and palaeogeographical evolution of its distribution range, these responses encompass multiple refugia along the Apennine chain, lowland refugia in large peri-coastal plains, and a 'cryptic' northern refugium.
A Bayesian Reflection on Surfaces
Directory of Open Access Journals (Sweden)
David R. Wolf
1999-10-01
Full Text Available Abstract: The topic of this paper is a novel Bayesian continuous-basis field representation and inference framework. Within this paper several problems are solved: The maximally informative inference of continuous-basis fields, that is where the basis for the field is itself a continuous object and not representable in a finite manner; the tradeoff between accuracy of representation in terms of information learned, and memory or storage capacity in bits; the approximation of probability distributions so that a maximal amount of information about the object being inferred is preserved; an information theoretic justification for multigrid methodology. The maximally informative field inference framework is described in full generality and denoted the Generalized Kalman Filter. The Generalized Kalman Filter allows the update of field knowledge from previous knowledge at any scale, and new data, to new knowledge at any other scale. An application example instance, the inference of continuous surfaces from measurements (for example, camera image data, is presented.
Hedging Strategies for Bayesian Optimization
Brochu, Eric; de Freitas, Nando
2010-01-01
Bayesian optimization with Gaussian processes has become an increasingly popular tool in the machine learning community. It is efficient and can be used when very little is known about the objective function, making it popular in expensive black-box optimization scenarios. It is able to do this by sampling the objective using an acquisition function which incorporates the model's estimate of the objective and the uncertainty at any given point. However, there are several different parameterized acquisition functions in the literature, and it is often unclear which one to use. Instead of using a single acquisition function, we adopt a portfolio of acquisition functions governed by an online multi-armed bandit strategy. We describe the method, which we call GP-Hedge, and show that this method almost always outperforms the best individual acquisition function.
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
, and exercises are included for the reader to check his/her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...... primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples...
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented on model construction and verification, modeling techniques and tricks, learning......Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...... sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning...
Multiview Bayesian Correlated Component Analysis
DEFF Research Database (Denmark)
Kamronn, Simon Due; Poulsen, Andreas Trier; Hansen, Lars Kai
2015-01-01
Correlated component analysis as proposed by Dmochowski, Sajda, Dias, and Parra (2012) is a tool for investigating brain process similarity in the responses to multiple views of a given stimulus. Correlated components are identified under the assumption that the involved spatial networks...... are identical. Here we propose a hierarchical probabilistic model that can infer the level of universality in such multiview data, from completely unrelated representations, corresponding to canonical correlation analysis, to identical representations as in correlated component analysis. This new model, which...... we denote Bayesian correlated component analysis, evaluates favorably against three relevant algorithms in simulated data. A well-established benchmark EEG data set is used to further validate the new model and infer the variability of spatial representations across multiple subjects....
Elvira, Clément; Dobigeon, Nicolas
2015-01-01
Sparse representations have proven their efficiency in solving a wide class of inverse problems encountered in signal and image processing. Conversely, enforcing the information to be spread uniformly over representation coefficients exhibits relevant properties in various applications such as digital communications. Anti-sparse regularization can be naturally expressed through an $\\ell_{\\infty}$-norm penalty. This paper derives a probabilistic formulation of such representations. A new probability distribution, referred to as the democratic prior, is first introduced. Its main properties as well as three random variate generators for this distribution are derived. Then this probability distribution is used as a prior to promote anti-sparsity in a Gaussian linear inverse problem, yielding a fully Bayesian formulation of anti-sparse coding. Two Markov chain Monte Carlo (MCMC) algorithms are proposed to generate samples according to the posterior distribution. The first one is a standard Gibbs sampler. The seco...
Nonparametric Bayesian inference in biostatistics
Müller, Peter
2015-01-01
As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...
Bayesian Kernel Mixtures for Counts.
Canale, Antonio; Dunson, David B
2011-12-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437
Bayesian networks in educational assessment
Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M
2015-01-01
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...
Dichroic polarization at mid-infrared wavelengths: a Bayesian approach
Lopez-Rodriguez, E
2015-01-01
A fast and general Bayesian inference framework to infer the physical properties of dichroic polarization using mid-infrared imaging- and spectro-polarimetric observations is presented. The Bayesian approach is based on a hierarchical regression and No-U-Turn Sampler method. This approach simultaneously infers the normalized Stokes parameters to find the full family of solutions that best describe the observations. In comparison with previous methods, the developed Bayesian approach allows the user to introduce a customized absorptive polarization component based on the dust composition, and the appropriate extinction curve of the object. This approach allows the user to obtain more precise estimations of the magnetic field strength and geometry for tomographic studies, and information about the dominant polarization components of the object. Based on this model, imaging-polarimetric observations using two or three filters located in the central 9.5-10.5 $\\mu$m, and the edges 8-9 $\\mu$m and/or 11-13 $\\mu$m, o...
Two-Stage Bayesian Model Averaging in Endogenous Variable Models.
Lenkoski, Alex; Eicher, Theo S; Raftery, Adrian E
2014-01-01
Economic modeling in the presence of endogeneity is subject to model uncertainty at both the instrument and covariate level. We propose a Two-Stage Bayesian Model Averaging (2SBMA) methodology that extends the Two-Stage Least Squares (2SLS) estimator. By constructing a Two-Stage Unit Information Prior in the endogenous variable model, we are able to efficiently combine established methods for addressing model uncertainty in regression models with the classic technique of 2SLS. To assess the validity of instruments in the 2SBMA context, we develop Bayesian tests of the identification restriction that are based on model averaged posterior predictive p-values. A simulation study showed that 2SBMA has the ability to recover structure in both the instrument and covariate set, and substantially improves the sharpness of resulting coefficient estimates in comparison to 2SLS using the full specification in an automatic fashion. Due to the increased parsimony of the 2SBMA estimate, the Bayesian Sargan test had a power of 50 percent in detecting a violation of the exogeneity assumption, while the method based on 2SLS using the full specification had negligible power. We apply our approach to the problem of development accounting, and find support not only for institutions, but also for geography and integration as development determinants, once both model uncertainty and endogeneity have been jointly addressed. PMID:24223471
Bayesian decision making in human collectives with binary choices.
Eguíluz, Víctor M; Masuda, Naoki; Fernández-Gracia, Juan
2015-01-01
Here we focus on the description of the mechanisms behind the process of information aggregation and decision making, a basic step to understand emergent phenomena in society, such as trends, information spreading or the wisdom of crowds. In many situations, agents choose between discrete options. We analyze experimental data on binary opinion choices in humans. The data consists of two separate experiments in which humans answer questions with a binary response, where one is correct and the other is incorrect. The questions are answered without and with information on the answers of some previous participants. We find that a Bayesian approach captures the probability of choosing one of the answers. The influence of peers is uncorrelated with the difficulty of the question. The data is inconsistent with Weber's law, which states that the probability of choosing an option depends on the proportion of previous answers choosing that option and not on the total number of those answers. Last, the present Bayesian model fits reasonably well to the data as compared to some other previously proposed functions although the latter sometime perform slightly better than the Bayesian model. The asset of the present model is the simplicity and mechanistic explanation of the behavior. PMID:25867176
Bayesian decision making in human collectives with binary choices.
Directory of Open Access Journals (Sweden)
Víctor M Eguíluz
Full Text Available Here we focus on the description of the mechanisms behind the process of information aggregation and decision making, a basic step to understand emergent phenomena in society, such as trends, information spreading or the wisdom of crowds. In many situations, agents choose between discrete options. We analyze experimental data on binary opinion choices in humans. The data consists of two separate experiments in which humans answer questions with a binary response, where one is correct and the other is incorrect. The questions are answered without and with information on the answers of some previous participants. We find that a Bayesian approach captures the probability of choosing one of the answers. The influence of peers is uncorrelated with the difficulty of the question. The data is inconsistent with Weber's law, which states that the probability of choosing an option depends on the proportion of previous answers choosing that option and not on the total number of those answers. Last, the present Bayesian model fits reasonably well to the data as compared to some other previously proposed functions although the latter sometime perform slightly better than the Bayesian model. The asset of the present model is the simplicity and mechanistic explanation of the behavior.
Halo detection via large-scale Bayesian inference
Merson, Alexander I.; Jasche, Jens; Abdalla, Filipe B.; Lahav, Ofer; Wandelt, Benjamin; Jones, D. Heath; Colless, Matthew
2016-08-01
We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect haloes of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (HADES), and a Bayesian chain rule (the Blackwell-Rao estimator), which we use to connect the inferred density field to the properties of dark matter haloes. To demonstrate the capability of our approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information, we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful detection of haloes in the mock catalogue increases as a function of the signal to noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.
Bayesian Concordance Correlation Coefficient with Application to Repeatedly Measured Data
Directory of Open Access Journals (Sweden)
Atanu BHATTACHARJEE
2015-10-01
Full Text Available Objective: In medical research, Lin's classical concordance correlation coefficient (CCC is frequently applied to evaluate the similarity of the measurements produced by different raters or methods on the same subjects. It is particularly useful for continuous data. The objective of this paper is to propose the Bayesian counterpart to compute CCC for continuous data. Material and Methods: A total of 33 patients of astrocytoma brain treated in the Department of Radiation Oncology at Malabar Cancer Centre is enrolled in this work. It is a continuous data of tumor volume and tumor size repeatedly measured during baseline pretreatment workup and post surgery follow-ups for all patients. The tumor volume and tumor size are measured separately by MRI and CT scan. The agreement of measurement between MRI and CT scan is calculated through CCC. The statistical inference is performed through Markov Chain Monte Carlo (MCMC technique. Results: Bayesian CCC is found suitable to get prominent evidence for test statistics to explore the relation between concordance measurements. The posterior mean estimates and 95% credible interval of CCC on tumor size and tumor volume are observed with 0.96(0.87,0.99 and 0.98(0.95,0.99 respectively. Conclusion: The Bayesian inference is adopted for development of the computational algorithm. The approach illustrated in this work provides the researchers an opportunity to find out the most appropriate model for specific data and apply CCC to fulfill the desired hypothesis.
Bayesian models a statistical primer for ecologists
Hobbs, N Thompson
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark
2006-01-01
We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...... by evaluating and differentiating these circuits in time linear in their size. We report on experimental results showing successful compilation and efficient inference on relational Bayesian networks, whose PRIMULA--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Range Wide Phylogeography of Dactylopius coccus (Hemiptera: Dactylopiidae)
DEFF Research Database (Denmark)
Van Dam, Alex; Portillo Martinez, Liberato; Jeri Chavez, Antonio;
2015-01-01
The process of domestication and geographic origins of the cochineal insect (Dactylopius coccus Costa) has remained largely unstudied despite its importance as a global food colorant commodity. Ecological evidence supports Oaxaca Mexico as the geographic origin of this species. Other recent genetic...... cochineal distributions. We find the center of origin of D. coccus to be Oaxaca Mexico based on mtDNA data and climate niche modeling. Further meta-genomic data are needed to rule out selective sweeps from past and present endosymbionts for these results to be definitive....
A species assemblage approach to comparative phylogeography of birds in southern Australia
Dolman, Gaynor; Joseph, Leo
2012-01-01
We present a novel approach to investigating the divergence history of biomes and their component species using single-locus data prior to investing in multilocus data. We use coalescent-based hierarchical approximate Bayesian computation (HABC) methods (MsBayes) to estimate the number and timing of discrete divergences across a putative barrier and to assign species to their appropriate period of co-divergence. We then apply a coalescent-based full Bayesian model of divergence (IMa) to suite...
The Diagnosis of Reciprocating Machinery by Bayesian Networks
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A Bayesian Network is a reasoning tool based on probability theory and has many advantages that other reasoning tools do not have. This paper discusses the basic theory of Bayesian networks and studies the problems in constructing Bayesian networks. The paper also constructs a Bayesian diagnosis network of a reciprocating compressor. The example helps us to draw a conclusion that Bayesian diagnosis networks can diagnose reciprocating machinery effectively.
Directory of Open Access Journals (Sweden)
Shu Wing Ho
2011-12-01
Full Text Available The valuation of options and many other derivative instruments requires an estimation of exante or forward looking volatility. This paper adopts a Bayesian approach to estimate stock price volatility. We find evidence that overall Bayesian volatility estimates more closely approximate the implied volatility of stocks derived from traded call and put options prices compared to historical volatility estimates sourced from IVolatility.com (“IVolatility”. Our evidence suggests use of the Bayesian approach to estimate volatility can provide a more accurate measure of ex-ante stock price volatility and will be useful in the pricing of derivative securities where the implied stock price volatility cannot be observed.
The power of Bayesian evidence in astronomy
Jenkins, C R
2011-01-01
We discuss the use of the Bayesian evidence ratio, or Bayes factor, for model selection in astronomy. We treat the evidence ratio as a statistic and investigate its distribution over an ensemble of experiments, considering both simple analytical examples and some more realistic cases, which require numerical simulation. We find that the evidence ratio is a noisy statistic, and thus it may not be sensible to decide to accept or reject a model based solely on whether the evidence ratio reaches some threshold value. The odds suggested by the evidence ratio bear no obvious relationship to the power or Type I error rate of a test based on the evidence ratio. The general performance of such tests is strongly affected by the signal to noise ratio in the data, the assumed priors, and the threshold in the evidence ratio that is taken as `decisive'. The comprehensiveness of the model suite under consideration is also very important. The usefulness of the evidence ratio approach in a given problem can be assessed in adv...
Bayesian data assimilation in shape registration
Cotter, C J
2013-03-28
In this paper we apply a Bayesian framework to the problem of geodesic curve matching. Given a template curve, the geodesic equations provide a mapping from initial conditions for the conjugate momentum onto topologically equivalent shapes. Here, we aim to recover the well-defined posterior distribution on the initial momentum which gives rise to observed points on the target curve; this is achieved by explicitly including a reparameterization in the formulation. Appropriate priors are chosen for the functions which together determine this field and the positions of the observation points, the initial momentum p0 and the reparameterization vector field ν, informed by regularity results about the forward model. Having done this, we illustrate how maximum likelihood estimators can be used to find regions of high posterior density, but also how we can apply recently developed Markov chain Monte Carlo methods on function spaces to characterize the whole of the posterior density. These illustrative examples also include scenarios where the posterior distribution is multimodal and irregular, leading us to the conclusion that knowledge of a state of global maximal posterior density does not always give us the whole picture, and full posterior sampling can give better quantification of likely states and the overall uncertainty inherent in the problem. © 2013 IOP Publishing Ltd.
Bayesian refinement of protein functional site matching
Directory of Open Access Journals (Sweden)
Gold Nicola D
2007-07-01
Full Text Available Abstract Background Matching functional sites is a key problem for the understanding of protein function and evolution. The commonly used graph theoretic approach, and other related approaches, require adjustment of a matching distance threshold a priori according to the noise in atomic positions. This is difficult to pre-determine when matching sites related by varying evolutionary distances and crystallographic precision. Furthermore, sometimes the graph method is unable to identify alternative but important solutions in the neighbourhood of the distance based solution because of strict distance constraints. We consider the Bayesian approach to improve graph based solutions. In principle this approach applies to other methods with strict distance matching constraints. The Bayesian method can flexibly incorporate all types of prior information on specific binding sites (e.g. amino acid types in contrast to combinatorial formulations. Results We present a new meta-algorithm for matching protein functional sites (active sites and ligand binding sites based on an initial graph matching followed by refinement using a Markov chain Monte Carlo (MCMC procedure. This procedure is an innovative extension to our recent work. The method accounts for the 3-dimensional structure of the site as well as the physico-chemical properties of the constituent amino acids. The MCMC procedure can lead to a significant increase in the number of significant matches compared to the graph method as measured independently by rigorously derived p-values. Conclusion MCMC refinement step is able to significantly improve graph based matches. We apply the method to matching NAD(P(H binding sites within single Rossmann fold families, between different families in the same superfamily, and in different folds. Within families sites are often well conserved, but there are examples where significant shape based matches do not retain similar amino acid chemistry, indicating that
Bayesian Uncertainty Analyses Via Deterministic Model
Krzysztofowicz, R.
2001-05-01
Rational decision-making requires that the total uncertainty about a variate of interest (a predictand) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Suppose the state-of-knowledge is embodied in a deterministic model, which is imperfect and outputs only an estimate of the predictand. Fundamentals are presented of three Bayesian approaches to producing a probability distribution of the predictand via any deterministic model. The Bayesian Processor of Output (BPO) quantifies the total uncertainty in terms of a posterior distribution, conditional on model output. The Bayesian Processor of Ensemble (BPE) quantifies the total uncertainty in terms of a posterior distribution, conditional on an ensemble of model output. The Bayesian Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model uncertainty, which are characterized independently and then integrated into a predictive distribution.
Learning Bayesian networks for discrete data
Liang, Faming
2009-02-01
Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.
A Bayesian approach to model uncertainty
International Nuclear Information System (INIS)
A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given
Bayesian Control for Concentrating Mixed Nuclear Waste
Welch, Robert L.; Smith, Clayton
2013-01-01
A control algorithm for batch processing of mixed waste is proposed based on conditional Gaussian Bayesian networks. The network is compiled during batch staging for real-time response to sensor input.
Nomograms for Visualization of Naive Bayesian Classifier
Možina, Martin; Demšar, Janez; Michael W Kattan; Zupan, Blaz
2004-01-01
Besides good predictive performance, the naive Bayesian classifier can also offer a valuable insight into the structure of the training data and effects of the attributes on the class probabilities. This structure may be effectively revealed through visualization of the classifier. We propose a new way to visualize the naive Bayesian model in the form of a nomogram. The advantages of the proposed method are simplicity of presentation, clear display of the effects of individual attribute value...
Subjective Bayesian Analysis: Principles and Practice
Goldstein, Michael
2006-01-01
We address the position of subjectivism within Bayesian statistics. We argue, first, that the subjectivist Bayes approach is the only feasible method for tackling many important practical problems. Second, we describe the essential role of the subjectivist approach in scientific analysis. Third, we consider possible modifications to the Bayesian approach from a subjectivist viewpoint. Finally, we address the issue of pragmatism in implementing the subjectivist approach.
Bayesian Analysis of Multivariate Probit Models
Siddhartha Chib; Edward Greenberg
1996-01-01
This paper provides a unified simulation-based Bayesian and non-Bayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods, and maximum likelihood estimates are obtained by a Markov chain Monte Carlo version of the E-M algorithm. Computation of Bayes factors from the simulation output is also considered. The methods are applied to a bivariate data set, to a 534-subject, four-year longitudinal dat...
Fitness inheritance in the Bayesian optimization algorithm
Pelikan, Martin; Sastry, Kumara
2004-01-01
This paper describes how fitness inheritance can be used to estimate fitness for a proportion of newly sampled candidate solutions in the Bayesian optimization algorithm (BOA). The goal of estimating fitness for some candidate solutions is to reduce the number of fitness evaluations for problems where fitness evaluation is expensive. Bayesian networks used in BOA to model promising solutions and generate the new ones are extended to allow not only for modeling and sampling candidate solutions...
Kernel Bayesian Inference with Posterior Regularization
Song, Yang; Jun ZHU; Ren, Yong
2016-01-01
We propose a vector-valued regression problem whose solution is equivalent to the reproducing kernel Hilbert space (RKHS) embedding of the Bayesian posterior distribution. This equivalence provides a new understanding of kernel Bayesian inference. Moreover, the optimization problem induces a new regularization for the posterior embedding estimator, which is faster and has comparable performance to the squared regularization in kernel Bayes' rule. This regularization coincides with a former th...
Bayesian Classification in Medicine: The Transferability Question *
Zagoria, Ronald J.; Reggia, James A.; Price, Thomas R.; Banko, Maryann
1981-01-01
Using probabilities derived from a geographically distant patient population, we applied Bayesian classification to categorize stroke patients by etiology. Performance was assessed both by error rate and with a new linear accuracy coefficient. This approach to patient classification was found to be surprisingly accurate when compared to classification by two neurologists and to classification by the Bayesian method using “low cost” local and subjective probabilities. We conclude that for some...
Bayesian target tracking based on particle filter
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.
Bayesian Variable Selection in Spatial Autoregressive Models
Jesus Crespo Cuaresma; Philipp Piribauer
2015-01-01
This paper compares the performance of Bayesian variable selection approaches for spatial autoregressive models. We present two alternative approaches which can be implemented using Gibbs sampling methods in a straightforward way and allow us to deal with the problem of model uncertainty in spatial autoregressive models in a flexible and computationally efficient way. In a simulation study we show that the variable selection approaches tend to outperform existing Bayesian model averaging tech...
Fuzzy Functional Dependencies and Bayesian Networks
Institute of Scientific and Technical Information of China (English)
LIU WeiYi(刘惟一); SONG Ning(宋宁)
2003-01-01
Bayesian networks have become a popular technique for representing and reasoning with probabilistic information. The fuzzy functional dependency is an important kind of data dependencies in relational databases with fuzzy values. The purpose of this paper is to set up a connection between these data dependencies and Bayesian networks. The connection is done through a set of methods that enable people to obtain the most information of independent conditions from fuzzy functional dependencies.
Bayesian Models of Brain and Behaviour
Penny, William
2012-01-01
This paper presents a review of Bayesian models of brain and behaviour. We first review the basic principles of Bayesian inference. This is followed by descriptions of sampling and variational methods for approximate inference, and forward and backward recursions in time for inference in dynamical models. The review of behavioural models covers work in visual processing, sensory integration, sensorimotor integration, and collective decision making. The review of brain models covers a range of...
Bayesian Modeling of a Human MMORPG Player
Synnaeve, Gabriel
2010-01-01
This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.
Bayesian Modeling of a Human MMORPG Player
Synnaeve, Gabriel; Bessière, Pierre
2011-03-01
This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.
Directory of Open Access Journals (Sweden)
Chris A Hamilton
Full Text Available BACKGROUND: The primary objective of this study is to reconstruct the phylogeny of the hentzi species group and sister species in the North American tarantula genus, Aphonopelma, using a set of mitochondrial DNA markers that include the animal "barcoding gene". An mtDNA genealogy is used to consider questions regarding species boundary delimitation and to evaluate timing of divergence to infer historical biogeographic events that played a role in shaping the present-day diversity and distribution. We aimed to identify potential refugial locations, directionality of range expansion, and test whether A. hentzi post-glacial expansion fit a predicted time frame. METHODS AND FINDINGS: A Bayesian phylogenetic approach was used to analyze a 2051 base pair (bp mtDNA data matrix comprising aligned fragments of the gene regions CO1 (1165 bp and ND1-16S (886 bp. Multiple species delimitation techniques (DNA tree-based methods, a "barcode gap" using percent of pairwise sequence divergence (uncorrected p-distances, and the GMYC method consistently recognized a number of divergent and genealogically exclusive groups. CONCLUSIONS: The use of numerous species delimitation methods, in concert, provide an effective approach to dissecting species boundaries in this spider group; as well they seem to provide strong evidence for a number of nominal, previously undiscovered, and cryptic species. Our data also indicate that Pleistocene habitat fragmentation and subsequent range expansion events may have shaped contemporary phylogeographic patterns of Aphonopelma diversity in the southwestern United States, particularly for the A. hentzi species group. These findings indicate that future species delimitation approaches need to be analyzed in context of a number of factors, such as the sampling distribution, loci used, biogeographic history, breadth of morphological variation, ecological factors, and behavioral data, to make truly integrative decisions about what
Rommel-Esham, Katie; Constable, Susan D.
2006-01-01
In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…
Shu Wing Ho; Alan Lee; Alastair Marsden
2011-01-01
The valuation of options and many other derivative instruments requires an estimation of exante or forward looking volatility. This paper adopts a Bayesian approach to estimate stock price volatility. We find evidence that overall Bayesian volatility estimates more closely approximate the implied volatility of stocks derived from traded call and put options prices compared to historical volatility estimates sourced from IVolatility.com (â€œIVolatilityâ€ ). Our evidence suggests use of the Bay...
Bayesian analysis to detect abrupt changes in extreme hydrological processes
Jo, Seongil; Kim, Gwangsu; Jeon, Jong-June
2016-07-01
In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.
A Bayesian analysis of pentaquark signals from CLAS data
Ireland, D G; Protopopescu, D; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Batourine, V; Battaglieri, M; Bedlinskiy, I; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Casey, L; Chen, S; Cheng, L; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Credé, V; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Deur, A; Dickson, R; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Feldman, G; Fradi, A; Funsten, H; Garçon, M; Gavalian, G; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Gonenc, A; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Gyurjyan, V; Hafidi, K; Hakobyan, H; Hanretty, C; Hassall, N; Hersman, F W; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Jüngst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kossov, M; Krahn, Z; Kramer, L H; Kubarovski, V; Kühn, J; Kuleshov, S V; Kuznetsov, V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Livingston, K; Lu, H Y; MacCormick, M; Markov, N; Mattione, P; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Mirazita, M; Miskimen, R; Mokeev, V; Moreno, B; Moriya, K; Morrow, S A; Moteabbed, M; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Pierce, J; Pivnyuk, N; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Raue, B A; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatie, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Sharov, D; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B; Zhao, Z W
2007-01-01
We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a $\\Theta^{+}$ pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a $\\Theta^{+}$. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.
A Bayesian analysis of pentaquark signals from CLAS data
Energy Technology Data Exchange (ETDEWEB)
David Ireland; Bryan McKinnon; Dan Protopopescu; Pawel Ambrozewicz; Marco Anghinolfi; G. Asryan; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; V. Batourine; Marco Battaglieri; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Lukasz Blaszczyk; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Liam Casey; Shifeng Chen; Lu Cheng; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Volker Crede; Natalya Dashyan; Rita De Masi; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Gerald Feldman; Ahmed Fradi; Herbert Funsten; Michel Garcon; Gagik Gavalian; Nerses Gevorgyan; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Wesley Gohn; Atilla Gonenc; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Kawtar Hafidi; Hayk Hakobyan; Charles Hanretty; Neil Hassall; F. Hersman; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde; Yordanka Ilieva; Boris Ishkhanov; Eugeny Isupov; D. Jenkins; Hyon-Suk Jo; John Johnstone; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sergey Kuleshov; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; D. Lawrence; Kenneth Livingston; Haiyun Lu; Marion MacCormick; Nikolai Markov; Paul Mattione; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Brahim Moreno; Kei Moriya; Steven Morrow; Maryam Moteabbed; Edwin Munevar Espitia; Gordon Mutchler; Pawel Nadel-Turonski; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Sergio Pereira; Joshua Pierce; Nikolay Pivnyuk; Oleg Pogorelko; Sergey Pozdnyakov; John Price; Sebastien Procureur; Yelena Prok; Brian Raue; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Dmitri Sharov; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; David Tedeschi; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Daniel Watts; Lawrence Weinstein; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao
2008-02-01
We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a $\\Theta^{+}$ pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a $\\Theta^{+}$. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.
Bayesian hierarchical modeling for detecting safety signals in clinical trials.
Xia, H Amy; Ma, Haijun; Carlin, Bradley P
2011-09-01
Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.
A Bayesian analysis of pentaquark signals from CLAS data
International Nuclear Information System (INIS)
We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+ pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner
Bayesian analysis of volcanic eruptions
Ho, Chih-Hsiang
1990-10-01
The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.
BAYESIAN APPROACH OF DECISION PROBLEMS
Directory of Open Access Journals (Sweden)
DRAGOŞ STUPARU
2010-01-01
Full Text Available Management is nowadays a basic vector of economic development, a concept frequently used in our country as well as all over the world. Indifferently of the hierarchical level at which the managerial process is manifested, decision represents its essential moment, the supreme act of managerial activity. Its can be met in all fields of activity, practically having an unlimited degree of coverage, and in all the functions of management. It is common knowledge that the activity of any type of manger, no matter the hierarchical level he occupies, represents a chain of interdependent decisions, their aim being the elimination or limitation of the influence of disturbing factors that may endanger the achievement of predetermined objectives, and the quality of managerial decisions condition the progress and viability of any enterprise. Therefore, one of the principal characteristics of a successful manager is his ability to adopt the most optimal decisions of high quality. The quality of managerial decisions are conditioned by the manager’s general level of education and specialization, the manner in which they are preoccupied to assimilate the latest information and innovations in the domain of management’s theory and practice and the applying of modern managerial methods and techniques in the activity of management. We are presenting below the analysis of decision problems in hazardous conditions in terms of Bayesian theory – a theory that uses the probabilistic calculus.
Bayesian demography 250 years after Bayes.
Bijak, Jakub; Bryant, John
2016-01-01
Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around 250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian methods in population studies. We focus on three applications: demographic forecasts, limited data, and highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow for including additional (prior) information next to the data sample. As such, Bayesian approaches are complementary to many traditional methods, which can be productively re-expressed in Bayesian terms. PMID:26902889
Bayesian demography 250 years after Bayes.
Bijak, Jakub; Bryant, John
2016-01-01
Bayesian statistics offers an alternative to classical (frequentist) statistics. It is distinguished by its use of probability distributions to describe uncertain quantities, which leads to elegant solutions to many difficult statistical problems. Although Bayesian demography, like Bayesian statistics more generally, is around 250 years old, only recently has it begun to flourish. The aim of this paper is to review the achievements of Bayesian demography, address some misconceptions, and make the case for wider use of Bayesian methods in population studies. We focus on three applications: demographic forecasts, limited data, and highly structured or complex models. The key advantages of Bayesian methods are the ability to integrate information from multiple sources and to describe uncertainty coherently. Bayesian methods also allow for including additional (prior) information next to the data sample. As such, Bayesian approaches are complementary to many traditional methods, which can be productively re-expressed in Bayesian terms.
A worldwide phylogeography for the human X chromosome.
Directory of Open Access Journals (Sweden)
Simone S Santos-Lopes
Full Text Available BACKGROUND: We reasoned that by identifying genetic markers on human X chromosome regions where recombination is rare or absent, we should be able to construct X chromosome genealogies analogous to those based on Y chromosome and mitochondrial DNA polymorphisms, with the advantage of providing information about both male and female components of the population. METHODOLOGY/PRINCIPAL FINDINGS: We identified a 47 Kb interval containing an Alu insertion polymorphism (DXS225 and four microsatellites in complete linkage disequilibrium in a low recombination rate region of the long arm of the human X chromosome. This haplotype block was studied in 667 males from the HGDP-CEPH Human Genome Diversity Panel. The haplotypic diversity was highest in Africa (0.992+/-0.0025 and lowest in the Americas (0.839+/-0.0378, where no insertion alleles of DXS225 were observed. Africa shared few haplotypes with other geographical areas, while those exhibited significant sharing among themselves. Median joining networks revealed that the African haplotypes were numerous, occupied the periphery of the graph and had low frequency, whereas those from the other continents were few, central and had high frequency. Altogether, our data support a single origin of modern man in Africa and migration to occupy the other continents by serial founder effects. Coalescent analysis permitted estimation of the time of the most recent common ancestor as 182,000 years (56,700-479,000 and the estimated time of the DXS225 Alu insertion of 94,400 years (24,300-310,000. These dates are fully compatible with the current widely accepted scenario of the origin of modern mankind in Africa within the last 195,000 years and migration out-of-Africa circa 55,000-65,000 years ago. CONCLUSIONS/SIGNIFICANCE: A haplotypic block combining an Alu insertion polymorphism and four microsatellite markers on the human X chromosome is a useful marker to evaluate genetic diversity of human populations and
MATHEMATICAL RISK ANALYSIS: VIA NICHOLAS RISK MODEL AND BAYESIAN ANALYSIS
Directory of Open Access Journals (Sweden)
Anass BAYAGA
2010-07-01
Full Text Available The objective of this second part of a two-phased study was to explorethe predictive power of quantitative risk analysis (QRA method andprocess within Higher Education Institution (HEI. The method and process investigated the use impact analysis via Nicholas risk model and Bayesian analysis, with a sample of hundred (100 risk analysts in a historically black South African University in the greater Eastern Cape Province.The first findings supported and confirmed previous literature (KingIII report, 2009: Nicholas and Steyn, 2008: Stoney, 2007: COSA, 2004 that there was a direct relationship between risk factor, its likelihood and impact, certiris paribus. The second finding in relation to either controlling the likelihood or the impact of occurrence of risk (Nicholas risk model was that to have a brighter risk reward, it was important to control the likelihood ofoccurrence of risks as compared with its impact so to have a direct effect on entire University. On the Bayesian analysis, thus third finding, the impact of risk should be predicted along three aspects. These aspects included the human impact (decisions made, the property impact (students and infrastructural based and the business impact. Lastly, the study revealed that although in most business cases, where as business cycles considerably vary dependingon the industry and or the institution, this study revealed that, most impacts in HEI (University was within the period of one academic.The recommendation was that application of quantitative risk analysisshould be related to current legislative framework that affects HEI.
An introduction to Gaussian Bayesian networks.
Grzegorczyk, Marco
2010-01-01
The extraction of regulatory networks and pathways from postgenomic data is important for drug -discovery and development, as the extracted pathways reveal how genes or proteins regulate each other. Following up on the seminal paper of Friedman et al. (J Comput Biol 7:601-620, 2000), Bayesian networks have been widely applied as a popular tool to this end in systems biology research. Their popularity stems from the tractability of the marginal likelihood of the network structure, which is a consistent scoring scheme in the Bayesian context. This score is based on an integration over the entire parameter space, for which highly expensive computational procedures have to be applied when using more complex -models based on differential equations; for example, see (Bioinformatics 24:833-839, 2008). This chapter gives an introduction to reverse engineering regulatory networks and pathways with Gaussian Bayesian networks, that is Bayesian networks with the probabilistic BGe scoring metric [see (Geiger and Heckerman 235-243, 1995)]. In the BGe model, the data are assumed to stem from a Gaussian distribution and a normal-Wishart prior is assigned to the unknown parameters. Gaussian Bayesian network methodology for analysing static observational, static interventional as well as dynamic (observational) time series data will be described in detail in this chapter. Finally, we apply these Bayesian network inference methods (1) to observational and interventional flow cytometry (protein) data from the well-known RAF pathway to evaluate the global network reconstruction accuracy of Bayesian network inference and (2) to dynamic gene expression time series data of nine circadian genes in Arabidopsis thaliana to reverse engineer the unknown regulatory network topology for this domain. PMID:20824469
Evolutionary history and phylogeography of rabies viruses associated with outbreaks in Trinidad.
Seetahal, Janine F R; Velasco-Villa, Andres; Allicock, Orchid M; Adesiyun, Abiodun A; Bissessar, Joseph; Amour, Kirk; Phillip-Hosein, Annmarie; Marston, Denise A; McElhinney, Lorraine M; Shi, Mang; Wharwood, Cheryl-Ann; Fooks, Anthony R; Carrington, Christine V F
2013-01-01
Bat rabies is an emerging disease of public health significance in the Americas. The Caribbean island of Trinidad experiences periodic outbreaks within the livestock population. We performed molecular characterisation of Trinidad rabies virus (RABV) and used a Bayesian phylogeographic approach to investigate the extent to which outbreaks are a result of in situ evolution versus importation of virus from the nearby South American mainland. Trinidadian RABV sequences were confirmed as bat variant and clustered with Desmodus rotundus (vampire bat) related sequences. They fell into two largely temporally defined lineages designated Trinidad I and II. The Trinidad I lineage which included sequences from 1997-2000 (all but two of which were from the northeast of the island) was most closely related to RABV from Ecuador (2005, 2007), French Guiana (1990) and Venezuela (1993, 1994). Trinidad II comprised sequences from the southwest of the island, which clustered into two groups: Trinidad IIa, which included one sequence each from 2000 and 2007, and Trinidad IIb including all 2010 sequences. The Trinidad II sequences were most closely related to sequences from Brazil (1999, 2004) and Uruguay (2007, 2008). Phylogeographic analyses support three separate RABV introductions from the mainland from which each of the three Trinidadian lineages arose. The estimated dates for the introductions and subsequent lineage expansions suggest periods of in situ evolution within Trinidad following each introduction. These data also indicate co-circulation of Trinidad lineage I and IIa during 2000. In light of these findings and the likely vampire bat origin of Trinidadian RABV, further studies should be conducted to investigate the relationship between RABV spatiotemporal dynamics and vampire bat population ecology, in particular any movement between the mainland and Trinidad. PMID:23991230
Directory of Open Access Journals (Sweden)
Jon S Beadell
Full Text Available BACKGROUND: Glossina fuscipes fuscipes, a riverine species of tsetse, is the main vector of both human and animal trypanosomiasis in Uganda. Successful implementation of vector control will require establishing an appropriate geographical scale for these activities. Population genetics can help to resolve this issue by characterizing the extent of linkage among apparently isolated groups of tsetse. METHODOLOGY/PRINCIPAL FINDINGS: We conducted genetic analyses on mitochondrial and microsatellite data accumulated from approximately 1000 individual tsetse captured in Uganda and neighboring regions of Kenya and Sudan. Phylogeographic analyses suggested that the largest scale genetic structure in G. f. fuscipes arose from an historical event that divided two divergent mitochondrial lineages. These lineages are currently partitioned to northern and southern Uganda and co-occur only in a narrow zone of contact extending across central Uganda. Bayesian assignment tests, which provided evidence for admixture between northern and southern flies at the zone of contact and evidence for northerly gene flow across the zone of contact, indicated that this structure may be impermanent. On the other hand, microsatellite structure within the southern lineage indicated that gene flow is currently limited between populations in western and southeastern Uganda. Within regions, the average F(ST between populations separated by less than 100 km was less than approximately 0.1. Significant tests of isolation by distance suggested that gene flow is ongoing between neighboring populations and that island populations are not uniformly more isolated than mainland populations. CONCLUSIONS/SIGNIFICANCE: Despite the presence of population structure arising from historical colonization events, our results have revealed strong signals of current gene flow within regions that should be accounted for when planning tsetse control in Uganda. Populations in southeastern Uganda
Evolutionary history and phylogeography of rabies viruses associated with outbreaks in Trinidad.
Directory of Open Access Journals (Sweden)
Janine F R Seetahal
Full Text Available Bat rabies is an emerging disease of public health significance in the Americas. The Caribbean island of Trinidad experiences periodic outbreaks within the livestock population. We performed molecular characterisation of Trinidad rabies virus (RABV and used a Bayesian phylogeographic approach to investigate the extent to which outbreaks are a result of in situ evolution versus importation of virus from the nearby South American mainland. Trinidadian RABV sequences were confirmed as bat variant and clustered with Desmodus rotundus (vampire bat related sequences. They fell into two largely temporally defined lineages designated Trinidad I and II. The Trinidad I lineage which included sequences from 1997-2000 (all but two of which were from the northeast of the island was most closely related to RABV from Ecuador (2005, 2007, French Guiana (1990 and Venezuela (1993, 1994. Trinidad II comprised sequences from the southwest of the island, which clustered into two groups: Trinidad IIa, which included one sequence each from 2000 and 2007, and Trinidad IIb including all 2010 sequences. The Trinidad II sequences were most closely related to sequences from Brazil (1999, 2004 and Uruguay (2007, 2008. Phylogeographic analyses support three separate RABV introductions from the mainland from which each of the three Trinidadian lineages arose. The estimated dates for the introductions and subsequent lineage expansions suggest periods of in situ evolution within Trinidad following each introduction. These data also indicate co-circulation of Trinidad lineage I and IIa during 2000. In light of these findings and the likely vampire bat origin of Trinidadian RABV, further studies should be conducted to investigate the relationship between RABV spatiotemporal dynamics and vampire bat population ecology, in particular any movement between the mainland and Trinidad.
An earthworm riddle: systematics and phylogeography of the Spanish lumbricid Postandrilus.
Directory of Open Access Journals (Sweden)
Marcos Pérez-Losada
Full Text Available BACKGROUND: As currently defined, the genus Postandrilus Qui and Bouché, 1998, (Lumbricidae includes six earthworm species, five occurring in Majorca (Baleares Islands, western Mediterranean and another in Galicia (NW Spain. This disjunct and restricted distribution raises some interesting phylogeographic questions: (1 Is Postandrilus distribution the result of the separation of the Baleares-Kabylies (BK microplate from the proto-Iberian Peninsula in the Late Oligocene (30-28 Mya--vicariant hypothesis? (2 Did Postandrilus diversify in Spain and then colonize the Baleares during the Messinian salinity crisis (MSC 5.96-5.33 Mya--dispersal hypothesis? (3 Is the distribution the result of a two-step process--vicariance with subsequent dispersal? METHODOLOGY/PRINCIPAL FINDINGS: To answer these questions and assess Postandrilus evolutionary relationships and systematics, we collected all of the six Postandrilus species (46 specimens - 16 locations and used Aporrectodea morenoe and three Prosellodrilus and two Cataladrilus species as the outgroup. Regions of the nuclear 28S rDNA and mitochondrial 16S rDNA, 12S rDNA, ND1, COII and tRNA genes (4,666 bp were sequenced and analyzed using maximum likelihood and Bayesian methods of phylogenetic and divergence time estimation. The resulting trees revealed six new Postandrilus species in Majorca that clustered with the other five species already described. This Majorcan clade was sister to an Iberian clade including A. morenoe (outgroup and Postandrilus bertae. Our phylogeny and divergence time estimates indicated that the split between the Iberian and Majorcan Postandrilus clades took place 30.1 Mya, in concordance with the break of the BK microplate from the proto-Iberian Peninsula, and that the present Majorcan clade diversified 5.7 Mya, during the MSC. CONCLUSIONS: Postandrilus is highly diverse including multiple cryptic species in Majorca. The genus is not monophyletic and invalid as currently defined
Bayesian tomographic reconstruction of microsystems
Salem, Sofia Fekih; Vabre, Alexandre; Mohammad-Djafari, Ali
2007-11-01
The microtomography by X ray transmission plays an increasingly dominating role in the study and the understanding of microsystems. Within this framework, an experimental setup of high resolution X ray microtomography was developed at CEA-List to quantify the physical parameters related to the fluids flow in microsystems. Several difficulties rise from the nature of experimental data collected on this setup: enhanced error measurements due to various physical phenomena occurring during the image formation (diffusion, beam hardening), and specificities of the setup (limited angle, partial view of the object, weak contrast). To reconstruct the object we must solve an inverse problem. This inverse problem is known to be ill-posed. It therefore needs to be regularized by introducing prior information. The main prior information we account for is that the object is composed of a finite known number of different materials distributed in compact regions. This a priori information is introduced via a Gauss-Markov field for the contrast distributions with a hidden Potts-Markov field for the class materials in the Bayesian estimation framework. The computations are done by using an appropriate Markov Chain Monte Carlo (MCMC) technique. In this paper, we present first the basic steps of the proposed algorithms. Then we focus on one of the main steps in any iterative reconstruction method which is the computation of forward and adjoint operators (projection and backprojection). A fast implementation of these two operators is crucial for the real application of the method. We give some details on the fast computation of these steps and show some preliminary results of simulations.
DEFF Research Database (Denmark)
Dobat, Andres S.
2016-01-01
In 2003, a hitherto unknown Viking age settlement was discovered at Füsing in Northern Germany close to Hedeby/Schleswig, the largest of the early Scandinavian towns. Finds and building features suggest a high status residence and a seat of some chiefly elite that flourished from around 700 to the...
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Discovering her birth parents was an exciting adventure for a 15-year-old girl It took 14 years-and just two minutes-for an adopted Chinese girl to find her biological family.July 21 this year marked the first
Computationally efficient Bayesian inference for inverse problems.
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.
2007-10-01
Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.
A Bayesian approach to matched field processing in uncertain ocean environments
Institute of Scientific and Technical Information of China (English)
LI Jianlong; PAN Xiang
2008-01-01
An approach of Bayesian Matched Field Processing(MFP)was discussed in the uncertain ocean environment.In this approach,uncertainty knowledge is modeled and spatial and temporal data Received by the array are fully used.Therefore,a mechanism for MFP is found.which well combines model-based and data-driven methods of uncertain field processing.By theoretical derivation,simulation analysis and the validation of the experimental array data at sea,we find that(1)the basic components of Bayesian matched field processors are the corresponding sets of Bartlett matched field processor,MVDR(minimum variance distortionless response)matched field processor,etc.;(2)Bayesian MVDR/Bartlett MFP are the weighted sum of the MVDR/Bartlett MFP,where the weighted coefficients are the values of the a posteriori probability;(3)with the uncertain ocean environment,Bayesian MFP can more correctly locate the source than MVDR MFP or Bartlett MFP;(4)Bayesian MFP call better suppress sidelobes of the ambiguity surfaces.
Shetty, Rahul; Bigiel, Frank
2012-01-01
We develop a Bayesian linear regression method which rigorously treats measurement uncertainties, and accounts for hierarchical data structure for investigating the relationship between the star formation rate and gas surface density. The method simultaneously estimates the intercept, slope, and scatter about the regression line of each individual subject (e.g. a galaxy) and the population (e.g. an ensemble of galaxies). Using synthetic datasets, we demonstrate that the Bayesian method accurately recovers the parameters of both the individuals and the population, especially when compared to commonly employed least squares methods, such as the bisector. We apply the Bayesian method to estimate the Kennicutt-Schmidt (KS) parameters of a sample of spiral galaxies compiled by Bigiel et al. (2008). We find significant variation in the KS parameters, indicating that no single KS relationship holds for all galaxies. This suggests that the relationship between molecular gas and star formation differs between galaxies...
Parameterizing Bayesian network Representations of Social-Behavioral Models by Expert Elicitation
Energy Technology Data Exchange (ETDEWEB)
Walsh, Stephen J.; Dalton, Angela C.; Whitney, Paul D.; White, Amanda M.
2010-05-23
Bayesian networks provide a general framework with which to model many natural phenomena. The mathematical nature of Bayesian networks enables a plethora of model validation and calibration techniques: e.g parameter estimation, goodness of fit tests, and diagnostic checking of the model assumptions. However, they are not free of shortcomings. Parameter estimation from relevant extant data is a common approach to calibrating the model parameters. In practice it is not uncommon to find oneself lacking adequate data to reliably estimate all model parameters. In this paper we present the early development of a novel application of conjoint analysis as a method for eliciting and modeling expert opinions and using the results in a methodology for calibrating the parameters of a Bayesian network.
Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs
Directory of Open Access Journals (Sweden)
Jeffrey O. Oseh (M.Sc.
2015-04-01
Full Text Available Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Bayesian Belief Network Method employed were validated and tested by unseen data to determine their accuracy and trend stability and were also compared with the findings obtained from Scaling equations. The obtained Bayesian Belief Network results indicated that the method showed an improved performance of predicting the amount of asphaltene precipitated in light oil reservoirs thus reducing the number of experiments required.
Eadie, Gwendolyn; Harris, William
2016-01-01
We present a hierarchical Bayesian method for estimating the total mass and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian approach further improves the framework presented by Eadie, Harris, & Widrow (2015) and Eadie & Harris (2016) and builds upon the preliminary reports by Eadie et al (2015a,c). The method uses a distribution function $f(\\mathcal{E},L)$ to model the galaxy and kinematic data from satellite objects such as globular clusters to trace the Galaxy's gravitational potential. A major advantage of the method is that it not only includes complete and incomplete data simultaneously in the analysis, but also incorporates measurement uncertainties in a coherent and meaningful way. We first test the hierarchical Bayesian framework, which includes measurement uncertainties, using the same data and power-law model assumed in Eadie & Harris (2016), and find the results are similar but more strongly constrained. Next, we take advantage of the new statistical framework and in...
Franck, I M
2014-01-01
This paper presents an efficient Bayesian framework for solving nonlinear, high-dimensional model calibration problems. It is based on Variational Bayesian formulation that aims at approximating the exact posterior by means of solving an optimization problem in an appropriately selected family of distributions. The goal is two-fold. Firstly, to find lower-dimensional representations of the unknown parameter vector that capture as much as possible of the associated posterior density, and secondly to enable the computation of the approximate posterior density with as few forward calls as possible. We discuss how these objectives can be achieved by using a fully Bayesian argumentation and employing the marginal likelihood or evidence as the ultimate model validation metric for any proposed dimensionality reduction. We demonstrate the performance of the proposed methodology to problems in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, ...
Rufibach, Kaspar; Burger, Hans Ulrich; Abt, Markus
2016-09-01
Bayesian predictive power, the expectation of the power function with respect to a prior distribution for the true underlying effect size, is routinely used in drug development to quantify the probability of success of a clinical trial. Choosing the prior is crucial for the properties and interpretability of Bayesian predictive power. We review recommendations on the choice of prior for Bayesian predictive power and explore its features as a function of the prior. The density of power values induced by a given prior is derived analytically and its shape characterized. We find that for a typical clinical trial scenario, this density has a u-shape very similar, but not equal, to a β-distribution. Alternative priors are discussed, and practical recommendations to assess the sensitivity of Bayesian predictive power to its input parameters are provided. Copyright © 2016 John Wiley & Sons, Ltd.
A Bayesian Analysis of the Ages of Four Open Clusters
Jeffery, Elizabeth J; van Dyk, David A; Stenning, David C; Robinson, Elliot; Stein, Nathan; Jefferys, W H
2016-01-01
In this paper we apply a Bayesian technique to determine the best fit of stellar evolution models to find the main sequence turn off age and other cluster parameters of four intermediate-age open clusters: NGC 2360, NGC 2477, NGC 2660, and NGC 3960. Our algorithm utilizes a Markov chain Monte Carlo technique to fit these various parameters, objectively finding the best-fit isochrone for each cluster. The result is a high-precision isochrone fit. We compare these results with the those of traditional "by-eye" isochrone fitting methods. By applying this Bayesian technique to NGC 2360, NGC 2477, NGC 2660, and NGC 3960, we determine the ages of these clusters to be 1.35 +/- 0.05, 1.02 +/- 0.02, 1.64 +/- 0.04, and 0.860 +/- 0.04 Gyr, respectively. The results of this paper continue our effort to determine cluster ages to higher precision than that offered by these traditional methods of isochrone fitting.
Bayesian analysis of deterministic and stochastic prisoner's dilemma games
Directory of Open Access Journals (Sweden)
Howard Kunreuther
2009-08-01
Full Text Available This paper compares the behavior of individuals playing a classic two-person deterministic prisoner's dilemma (PD game with choice data obtained from repeated interdependent security prisoner's dilemma games with varying probabilities of loss and the ability to learn (or not learn about the actions of one's counterpart, an area of recent interest in experimental economics. This novel data set, from a series of controlled laboratory experiments, is analyzed using Bayesian hierarchical methods, the first application of such methods in this research domain. We find that individuals are much more likely to be cooperative when payoffs are deterministic than when the outcomes are probabilistic. A key factor explaining this difference is that subjects in a stochastic PD game respond not just to what their counterparts did but also to whether or not they suffered a loss. These findings are interpreted in the context of behavioral theories of commitment, altruism and reciprocity. The work provides a linkage between Bayesian statistics, experimental economics, and consumer psychology.
Dynamics of molecular evolution and phylogeography of Barley yellow dwarf virus-PAV.
Wu, Beilei; Blanchard-Letort, Alexandra; Liu, Yan; Zhou, Guanghe; Wang, Xifeng; Elena, Santiago F
2011-01-01
Barley yellow dwarf virus (BYDV) species PAV occurs frequently in irrigated wheat fields worldwide and can be efficiently transmitted by aphids. Isolates of BYDV-PAV from different countries show great divergence both in genomic sequences and pathogenicity. Despite its economical importance, the genetic structure of natural BYDV-PAV populations, as well as of the mechanisms maintaining its high diversity, remain poorly explored. In this study, we investigate the dynamics of BYDV-PAV genome evolution utilizing time-structured data sets of complete genomic sequences from 58 isolates from different hosts obtained worldwide. First, we observed that BYDV-PAV exhibits a high frequency of homologous recombination. Second, our analysis revealed that BYDV-PAV genome evolves under purifying selection and at a substitution rate similar to other RNA viruses (3.158×10(-4) nucleotide substitutions/site/year). Phylogeography analyses show that the diversification of BYDV-PAV can be explained by local geographic adaptation as well as by host-driven adaptation. These results increase our understanding of the diversity, molecular evolutionary characteristics and epidemiological properties of an economically important plant RNA virus. PMID:21326861
Pauls, Steffen U; Lumbsch, H Thorsten; Haase, Peter
2006-07-01
We studied the genetic population structure and phylogeography of the montane caddisfly Drusus discolor across its entire range in central and southern Europe. The species is restricted to mountain regions and exhibits an insular distribution across the major mountain ranges. Mitochondrial sequence data (COI) of 254 individuals from the entire species range is analysed to reveal population genetic structure. The data show little molecular variation within populations and regions, but distinct genetic differentiation between mountain ranges. Most populations are significantly differentiated based on F(ST) and exact tests of population differentiation and most haplotypes are unique to a single mountain range. Phylogenetic analyses reveal deep divergence between geographically isolated lineages. Combined, these results suggest that past fragmentation is the prominent process structuring the populations across Europe. We use tests of selective neutrality and mismatch distributions, to study the demographic population history of regions with haplotype overlap. The high level of genetic differentiation between mountain ranges and estimates of demographic history provide evidence for the existence of multiple glacial refugia, including several in central Europe. The study shows that these aquatic organisms reacted differently to Pleistocene cooling than many terrestrial species. They persisted in numerous refugia over multiple glacial cycles, allowing many local endemic clades to form. PMID:16780432
Of mice and (Viking?) men: phylogeography of British and Irish house mice.
Searle, Jeremy B; Jones, Catherine S; Gündüz, Islam; Scascitelli, Moira; Jones, Eleanor P; Herman, Jeremy S; Rambau, R Victor; Noble, Leslie R; Berry, R J; Giménez, Mabel D; Jóhannesdóttir, Fríoa
2009-01-22
The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the 'Orkney' lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history.
Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust.
Ma, Chuan; Yang, Pengcheng; Jiang, Feng; Chapuis, Marie-Pierre; Shali, Yasen; Sword, Gregory A; Kang, Le
2012-09-01
The migratory locust, Locusta migratoria, is the most widely distributed grasshopper species in the world. However, its global genetic structure and phylogeographic relationships have not been investigated. In this study, we explored the worldwide genetic structure and phylogeography of the locust populations based on the sequence information of 65 complete mitochondrial genomes and three mitochondrial genes of 263 individuals from 53 sampling sites. Although this locust can migrate over long distances, our results revealed high genetic differentiation among the geographic populations. The populations can be divided into two different lineages: the Northern lineage, which includes individuals from the temperate regions of the Eurasian continent, and the Southern lineage, which includes individuals from Africa, southern Europe, the Arabian region, India, southern China, South-east Asia and Australia. An analysis of population genetic diversity indicated that the locust species originated from Africa. Ancestral populations likely separated into Northern and Southern lineages 895 000 years ago by vicariance events associated with Pleistocene glaciations. These two lineages evolved in allopatry and occupied their current distributions in the world via distinct southern and northern dispersal routes. Genetic differences, caused by the long-term independent diversification of the two lineages, along with other factors, such as geographic barriers and temperature limitations, may play important roles in maintaining the present phylogeographic patterns. Our phylogeographic evidence challenged the long-held view of multiple subspecies in the locust species and tentatively divided it into two subspecies, L. m. migratoria and L. m. migratorioides. PMID:22738353
Directory of Open Access Journals (Sweden)
Jonathan B Puritz
Full Text Available The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers.
Mende, Michael B; Bartel, Manuela; Hundsdoerfer, Anna K
2016-01-01
We test the morphology based hypothesis that the Western Palaearctic spurge hawkmoths represent two species, the Eurasian H. euphorbiae and Afro-Macaronesian H. tithymali. It has been suggested that these species merged into several hybrid swarm populations, although a mitochondrial phylogeography revealed substructure with local differentiation. We analysed a three-gene mt-dataset (889 individuals) and 12 microsatellite loci (892 individuals). Microsatellite analyses revealed an overall weak differentiation and corroborated the superordinate division into two clusters. The data indicate that the populations studied belong to only one species according to the biological species concept, refuting the opening hypothesis. A future taxonomic revision appears necessary to reflect the division into two subgroups. Ancestral mitochondrial polymorphisms are retained in H. euphorbiae, indicating gene flow within a broad 'glacial refuge belt' and ongoing postglacial gene flow. Diverse patterns of extensive mito-nuclear discordance in the Mediterranean and the Middle East presumably evolved by more recent processes. This discordance indicates introgression of H. tithymali-related mitochondrial haplogroups, accompanied (to a lesser degree) by nuclear alleles, into Italian and Aegean H. euphorbiae populations as recently as the late Holocene. The complex mosaic of divergence and reintegration is assumed to have been influenced by locally differing environmental barriers to gene flow. PMID:27439775
Phylogeography of mitochondrial DNA variation in brown bears and polar bears
Shields, Gerald F.; Adams, Deborah; Garner, Gerald; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott
2000-01-01
We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.
Bayesian Methods for Radiation Detection and Dosimetry
Groer, Peter G
2002-01-01
We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...
Adaptive approximate Bayesian computation for complex models
Lenormand, Maxime; Deffuant, Guillaume
2011-01-01
Approximate Bayesian computation (ABC) is a family of computational techniques in Bayesian statistics. These techniques allow to fit a model to data without relying on the computation of the model likelihood. They instead require to simulate a large number of times the model to be fitted. A number of refinements to the original rejection-based ABC scheme have been proposed, including the sequential improvement of posterior distributions. This technique allows to decrease the number of model simulations required, but it still presents several shortcomings which are particularly problematic for costly to simulate complex models. We here provide a new algorithm to perform adaptive approximate Bayesian computation, which is shown to perform better on both a toy example and a complex social model.
Learning Bayesian Networks from Correlated Data
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola
2016-05-01
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Bayesian Fusion of Multi-Band Images
Wei, Qi; Tourneret, Jean-Yves
2013-01-01
In this paper, a Bayesian fusion technique for remotely sensed multi-band images is presented. The observed images are related to the high spectral and high spatial resolution image to be recovered through physical degradations, e.g., spatial and spectral blurring and/or subsampling defined by the sensor characteristics. The fusion problem is formulated within a Bayesian estimation framework. An appropriate prior distribution exploiting geometrical consideration is introduced. To compute the Bayesian estimator of the scene of interest from its posterior distribution, a Markov chain Monte Carlo algorithm is designed to generate samples asymptotically distributed according to the target distribution. To efficiently sample from this high-dimension distribution, a Hamiltonian Monte Carlo step is introduced in the Gibbs sampling strategy. The efficiency of the proposed fusion method is evaluated with respect to several state-of-the-art fusion techniques. In particular, low spatial resolution hyperspectral and mult...
Bayesian Image Reconstruction Based on Voronoi Diagrams
Cabrera, G F; Hitschfeld, N
2007-01-01
We present a Bayesian Voronoi image reconstruction technique (VIR) for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a-posteriori probability of a novel parameterization of interferometric images. We use a variable Voronoi diagram as our model in place of the usual fixed pixel grid. A quantization of the intensity field allows us to calculate the likelihood function and a-priori probabilities. The Voronoi image is optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated interferometric data. Residuals, restored images and chi^2 values are used to compare our reconstructions with fixed grid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a Bayesian point of view.
Dynamic Bayesian Combination of Multiple Imperfect Classifiers
Simpson, Edwin; Psorakis, Ioannis; Smith, Arfon
2012-01-01
Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to incorporate any available prior knowledge about their abilities when training data is sparse. In this paper we explore Bayesian classifier combination, using the computationally efficient framework of variational Bayesian inference. We apply the approach to real data from a large citizen science project, Galaxy Zoo Supernovae, and show that our method far outperforms other established approaches to imperfect decision combination. We go on to analyse the putative community structure of the decision makers, based on their inferred decision making strategies, and show that natural groupings are formed. Finally we present ...
Bayesian inference of the metazoan phylogeny
DEFF Research Database (Denmark)
Glenner, Henrik; Hansen, Anders J; Sørensen, Martin V;
2004-01-01
been the only feasible combined approach but is highly sensitive to long-branch attraction. Recent development of stochastic models for discrete morphological characters and computationally efficient methods for Bayesian inference has enabled combined molecular and morphological data analysis...... with rigorous statistical approaches less prone to such inconsistencies. We present the first statistically founded analysis of a metazoan data set based on a combination of morphological and molecular data and compare the results with a traditional parsimony analysis. Interestingly, the Bayesian analyses...... such as the ecdysozoans and lophotrochozoans. Parsimony, on the contrary, shows conflicting results, with morphology being congruent to the Bayesian results and the molecular data set producing peculiarities that are largely reflected in the combined analysis....
Variational Bayesian Inference of Line Spectra
DEFF Research Database (Denmark)
Badiu, Mihai Alin; Hansen, Thomas Lundgaard; Fleury, Bernard Henri
2016-01-01
In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid; and the coeffici......In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid......; and the coefficients are governed by a Bernoulli-Gaussian prior model turning model order selection into binary sequence detection. Unlike earlier works which retain only point estimates of the frequencies, we undertake a more complete Bayesian treatment by estimating the posterior probability density functions (pdfs...
Event generator tuning using Bayesian optimization
Ilten, Philip; Yang, Yunjie
2016-01-01
Monte Carlo event generators contain a large number of parameters that must be determined by comparing the output of the generator with experimental data. Generating enough events with a fixed set of parameter values to enable making such a comparison is extremely CPU intensive, which prohibits performing a simple brute-force grid-based tuning of the parameters. Bayesian optimization is a powerful method designed for such black-box tuning applications. In this article, we show that Monte Carlo event generator parameters can be accurately obtained using Bayesian optimization and minimal expert-level physics knowledge. A tune of the PYTHIA 8 event generator using $e^+e^-$ events, where 20 parameters are optimized, can be run on a modern laptop in just two days. Combining the Bayesian optimization approach with expert knowledge should enable producing better tunes in the future, by making it faster and easier to study discrepancies between Monte Carlo and experimental data.
A Large Sample Study of the Bayesian Bootstrap
Lo, Albert Y.
1987-01-01
An asymptotic justification of the Bayesian bootstrap is given. Large-sample Bayesian bootstrap probability intervals for the mean, the variance and bands for the distribution, the smoothed density and smoothed rate function are also provided.
Length Scales in Bayesian Automatic Adaptive Quadrature
Directory of Open Access Journals (Sweden)
Adam Gh.
2016-01-01
Full Text Available Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1–16 (2012] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule, mesoscopic (Simpson rule, and macroscopic (quadrature sums of high algebraic degrees of precision. Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.
Bayesian estimation and tracking a practical guide
Haug, Anton J
2012-01-01
A practical approach to estimating and tracking dynamic systems in real-worl applications Much of the literature on performing estimation for non-Gaussian systems is short on practical methodology, while Gaussian methods often lack a cohesive derivation. Bayesian Estimation and Tracking addresses the gap in the field on both accounts, providing readers with a comprehensive overview of methods for estimating both linear and nonlinear dynamic systems driven by Gaussian and non-Gaussian noices. Featuring a unified approach to Bayesian estimation and tracking, the book emphasizes the derivation
Bayesian Optimisation Algorithm for Nurse Scheduling
Li, Jingpeng
2008-01-01
Our research has shown that schedules can be built mimicking a human scheduler by using a set of rules that involve domain knowledge. This chapter presents a Bayesian Optimization Algorithm (BOA) for the nurse scheduling problem that chooses such suitable scheduling rules from a set for each nurses assignment. Based on the idea of using probabilistic models, the BOA builds a Bayesian network for the set of promising solutions and samples these networks to generate new candidate solutions. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed algorithm may be suitable for other scheduling problems.
A Bayesian Analysis of Spectral ARMA Model
Directory of Open Access Journals (Sweden)
Manoel I. Silvestre Bezerra
2012-01-01
Full Text Available Bezerra et al. (2008 proposed a new method, based on Yule-Walker equations, to estimate the ARMA spectral model. In this paper, a Bayesian approach is developed for this model by using the noninformative prior proposed by Jeffreys (1967. The Bayesian computations, simulation via Markov Monte Carlo (MCMC is carried out and characteristics of marginal posterior distributions such as Bayes estimator and confidence interval for the parameters of the ARMA model are derived. Both methods are also compared with the traditional least squares and maximum likelihood approaches and a numerical illustration with two examples of the ARMA model is presented to evaluate the performance of the procedures.
A Bayesian Concept Learning Approach to Crowdsourcing
DEFF Research Database (Denmark)
Viappiani, Paolo Renato; Zilles, Sandra; Hamilton, Howard J.;
2011-01-01
We develop a Bayesian approach to concept learning for crowdsourcing applications. A probabilistic belief over possible concept definitions is maintained and updated according to (noisy) observations from experts, whose behaviors are modeled using discrete types. We propose recommendation...... techniques, inference methods, and query selection strategies to assist a user charged with choosing a configuration that satisfies some (partially known) concept. Our model is able to simultaneously learn the concept definition and the types of the experts. We evaluate our model with simulations, showing...... that our Bayesian strategies are effective even in large concept spaces with many uninformative experts....
Cristiano, Maykon Passos; Clemes Cardoso, Danon; Fernandes-Salomão, Tânia Maria; Heinze, Jürgen
2016-01-01
Past climate changes often have influenced the present distribution and intraspecific genetic diversity of organisms. The objective of this study was to investigate the phylogeography and historical demography of populations of Acromyrmex striatus (Roger, 1863), a leaf-cutting ant species restricted to the open plains of South America. Additionally, we modeled the distribution of this species to predict its contemporary and historic habitat. From the partial sequences of the mitochondrial gene cytochrome oxidase I of 128 A. striatus workers from 38 locations we estimated genetic diversity and inferred historical demography, divergence time, and population structure. The potential distribution areas of A. striatus for current and quaternary weather conditions were modeled using the maximum entropy algorithm. We identified a total of 58 haplotypes, divided into five main haplogroups. The analysis of molecular variance (AMOVA) revealed that the largest proportion of genetic variation is found among the groups of populations. Paleodistribution models suggest that the potential habitat of A. striatus may have decreased during the Last Interglacial Period (LIG) and expanded during the Last Maximum Glacial (LGM). Overall, the past potential distribution recovered by the model comprises the current potential distribution of the species. The general structuring pattern observed was consistent with isolation by distance, suggesting a balance between gene flow and drift. Analysis of historical demography showed that populations of A. striatus had remained constant throughout its evolutionary history. Although fluctuations in the area of their potential historic habitat occurred during quaternary climate changes, populations of A. striatus are strongly structured geographically. However, explicit barriers to gene flow have not been identified. These findings closely match those in Mycetophylax simplex, another ant species that in some areas occurs in sympatry with A. striatus
Directory of Open Access Journals (Sweden)
María Dolores Bargues
Full Text Available BACKGROUND: Among Chagas disease triatomine vectors, the largest genus, Triatoma, includes species of high public health interest. Triatoma dimidiata, the main vector throughout Central America and up to Ecuador, presents extensive phenotypic, genotypic, and behavioral diversity in sylvatic, peridomestic and domestic habitats, and non-domiciliated populations acting as reinfestation sources. DNA sequence analyses, phylogenetic reconstruction methods, and genetic variation approaches are combined to investigate the haplotype profiling, genetic polymorphism, phylogeography, and evolutionary trends of T. dimidiata and its closest relatives within Triatoma. This is the largest interpopulational analysis performed on a triatomine species so far. METHODOLOGY AND FINDINGS: Triatomines from Mexico, Guatemala, Honduras, Nicaragua, Panama, Cuba, Colombia, Ecuador, and Brazil were used. Triatoma dimidiata populations follow different evolutionary divergences in which geographical isolation appears to have had an important influence. A southern Mexican-northern Guatemalan ancestral form gave rise to two main clades. One clade remained confined to the Yucatan peninsula and northern parts of Chiapas State, Guatemala, and Honduras, with extant descendants deserving specific status. Within the second clade, extant subspecies diversity was shaped by adaptive radiation derived from Guatemalan ancestral populations. Central American populations correspond to subspecies T. d. dimidiata. A southern spread into Panama and Colombia gave the T. d. capitata forms, and a northwestern spread rising from Guatemala into Mexico gave the T. d. maculipennis forms. Triatoma hegneri appears as a subspecific insular form. CONCLUSIONS: The comparison with very numerous Triatoma species allows us to reach highly supported conclusions not only about T. dimidiata, but also on different, important Triatoma species groupings and their evolution. The very large intraspecific genetic
Comparison of the Bayesian and Frequentist Approach to the Statistics
Hakala, Michal
2015-01-01
The Thesis deals with introduction to Bayesian statistics and comparing Bayesian approach with frequentist approach to statistics. Bayesian statistics is modern branch of statistics which provides an alternative comprehensive theory to the frequentist approach. Bayesian concepts provides solution for problems not being solvable by frequentist theory. In the thesis are compared definitions, concepts and quality of statistical inference. The main interest is focused on a point estimation, an in...
ABCtoolbox: a versatile toolkit for approximate Bayesian computations
Directory of Open Access Journals (Sweden)
Neuenschwander Samuel
2010-03-01
Full Text Available Abstract Background The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. Results Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC. It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. Conclusion ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.
A Fast Iterative Bayesian Inference Algorithm for Sparse Channel Estimation
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri
2013-01-01
representation of the Bessel K probability density function; a highly efficient, fast iterative Bayesian inference method is then applied to the proposed model. The resulting estimator outperforms other state-of-the-art Bayesian and non-Bayesian estimators, either by yielding lower mean squared estimation error...
A default Bayesian hypothesis test for ANOVA designs
R. Wetzels; R.P.P.P. Grasman; E.J. Wagenmakers
2012-01-01
This article presents a Bayesian hypothesis test for analysis of variance (ANOVA) designs. The test is an application of standard Bayesian methods for variable selection in regression models. We illustrate the effect of various g-priors on the ANOVA hypothesis test. The Bayesian test for ANOVA desig
A Gentle Introduction to Bayesian Analysis : Applications to Developmental Research
Van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A G
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, t
Bayesian Just-So Stories in Psychology and Neuroscience
Bowers, Jeffrey S.; Davis, Colin J.
2012-01-01
According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak.…
Bayesian modeling and significant features exploration in wavelet power spectra
Directory of Open Access Journals (Sweden)
D. V. Divine
2007-01-01
Full Text Available This study proposes and justifies a Bayesian approach to modeling wavelet coefficients and finding statistically significant features in wavelet power spectra. The approach utilizes ideas elaborated in scale-space smoothing methods and wavelet data analysis. We treat each scale of the discrete wavelet decomposition as a sequence of independent random variables and then apply Bayes' rule for constructing the posterior distribution of the smoothed wavelet coefficients. Samples drawn from the posterior are subsequently used for finding the estimate of the true wavelet spectrum at each scale. The method offers two different significance testing procedures for wavelet spectra. A traditional approach assesses the statistical significance against a red noise background. The second procedure tests for homoscedasticity of the wavelet power assessing whether the spectrum derivative significantly differs from zero at each particular point of the spectrum. Case studies with simulated data and climatic time-series prove the method to be a potentially useful tool in data analysis.
A species assemblage approach to comparative phylogeography of birds in southern Australia.
Dolman, Gaynor; Joseph, Leo
2012-02-01
We present a novel approach to investigating the divergence history of biomes and their component species using single-locus data prior to investing in multilocus data. We use coalescent-based hierarchical approximate Bayesian computation (HABC) methods (MsBayes) to estimate the number and timing of discrete divergences across a putative barrier and to assign species to their appropriate period of co-divergence. We then apply a coalescent-based full Bayesian model of divergence (IMa) to suites of species shown to have simultaneously diverged. The full Bayesian model results in reduced credibility intervals around divergence times and allows other parameters associated with divergence to be summarized across species assemblages. We apply this approach to 10 bird species that are wholly or patchily discontinuous in semi-arid habitats between Australia's southwest (SW) and southeast (SE) mesic zones. There was substantial support for up to three discrete periods of divergence. HABC indicates that two species wholly restricted to more mesic habitats diverged earliest, between 594,382 and 3,417,699 years ago, three species from semi-arid habitats diverged between 0 and 1,508,049 years ago, and four diverged more recently, between 0 and 396,843 years ago. Eight species were assigned to three periods of co-divergence with confidence. For full Bayesian analyses, we accounted for uncertainty in the two remaining species by analyzing all possible suites of species. Estimates of divergence times from full Bayesian divergence models ranged between 429,105 and 2,006,355; 67,172 and 663,837; and 24,607 and 171,085 for the earliest, middle, and most recent periods of co-divergence, respectively. This single-locus approach uses the power of multitaxa coalescent analyses as an efficient means of generating a foundation for further, targeted research using multilocus and genomic tools applied to an understudied biome. PMID:22423329
Riddle, Brett R
2016-07-19
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines. PMID:27432953
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Most frugal explanations in Bayesian networks
Kwisthout, J.H.P.
2015-01-01
Inferring the most probable explanation to a set of variables, given a partial observation of the remaining variables, is one of the canonical computational problems in Bayesian networks, with widespread applications in AI and beyond. This problem, known as MAP, is computationally intractable (NP-ha
Bayesian semiparametric dynamic Nelson-Siegel model
C. Cakmakli
2011-01-01
This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model where the density of the yield curve factors and thereby the density of the yields are estimated along with other model parameters. This is accomplished by modeling the error distributions of the factors according to a Diric
Von Neumann was not a Quantum Bayesian.
Stacey, Blake C
2016-05-28
Wikipedia has claimed for over 3 years now that John von Neumann was the 'first quantum Bayesian'. In context, this reads as stating that von Neumann inaugurated QBism, the approach to quantum theory promoted by Fuchs, Mermin and Schack. This essay explores how such a claim is, historically speaking, unsupported. PMID:27091166
Von Neumann Was Not a Quantum Bayesian
Blake C. Stacey
2014-01-01
Wikipedia has claimed for over three years now that John von Neumann was the "first quantum Bayesian." In context, this reads as stating that von Neumann inaugurated QBism, the approach to quantum theory promoted by Fuchs, Mermin and Schack. This essay explores how such a claim is, historically speaking, unsupported.
A Bayesian Approach to Interactive Retrieval
Tague, Jean M.
1973-01-01
A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…
Bayesian regularization of diffusion tensor images
DEFF Research Database (Denmark)
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif;
2007-01-01
several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
Inverse Problems in a Bayesian Setting
Matthies, Hermann G.
2016-02-13
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.
Comprehension and computation in Bayesian problem solving
Directory of Open Access Journals (Sweden)
Eric D. Johnson
2015-07-01
Full Text Available Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian reasoning relative to normalized formats (e.g. probabilities, percentages, both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on transparent Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e. transparent problem structures at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct versus incorrect reasoners depart, and how individual difference might influence this time point.
Bayesian Vector Autoregressions with Stochastic Volatility
Uhlig, H.F.H.V.S.
1996-01-01
This paper proposes a Bayesian approach to a vector autoregression with stochastic volatility, where the multiplicative evolution of the precision matrix is driven by a multivariate beta variate.Exact updating formulas are given to the nonlinear filtering of the precision matrix.Estimation of the au
Scaling Bayesian network discovery through incremental recovery
Castelo, J.R.; Siebes, A.P.J.M.
1999-01-01
Bayesian networks are a type of graphical models that, e.g., allow one to analyze the interaction among the variables in a database. A well-known problem with the discovery of such models from a database is the ``problem of high-dimensionality''. That is, the discovery of a network from a database w
A Bayesian Bootstrap for a Finite Population
Lo, Albert Y.
1988-01-01
A Bayesian bootstrap for a finite population is introduced; its small-sample distributional properties are discussed and compared with those of the frequentist bootstrap for a finite population. It is also shown that the two are first-order asymptotically equivalent.
Bayesian calibration for forensic age estimation.
Ferrante, Luigi; Skrami, Edlira; Gesuita, Rosaria; Cameriere, Roberto
2015-05-10
Forensic medicine is increasingly called upon to assess the age of individuals. Forensic age estimation is mostly required in relation to illegal immigration and identification of bodies or skeletal remains. A variety of age estimation methods are based on dental samples and use of regression models, where the age of an individual is predicted by morphological tooth changes that take place over time. From the medico-legal point of view, regression models, with age as the dependent random variable entail that age tends to be overestimated in the young and underestimated in the old. To overcome this bias, we describe a new full Bayesian calibration method (asymmetric Laplace Bayesian calibration) for forensic age estimation that uses asymmetric Laplace distribution as the probability model. The method was compared with three existing approaches (two Bayesian and a classical method) using simulated data. Although its accuracy was comparable with that of the other methods, the asymmetric Laplace Bayesian calibration appears to be significantly more reliable and robust in case of misspecification of the probability model. The proposed method was also applied to a real dataset of values of the pulp chamber of the right lower premolar measured on x-ray scans of individuals of known age. PMID:25645903
Exploiting structure in cooperative Bayesian games
F.A. Oliehoek; S. Whiteson; M.T.J. Spaan
2012-01-01
Cooperative Bayesian games (BGs) can model decision-making problems for teams of agents under imperfect information, but require space and computation time that is exponential in the number of agents. While agent independence has been used to mitigate these problems in perfect information settings,
Perfect Bayesian equilibrium. Part II: epistemic foundations
Bonanno, Giacomo
2011-01-01
In a companion paper we introduced a general notion of perfect Bayesian equilibrium which can be applied to arbitrary extensive-form games. The essential ingredient of the proposed definition is the qualitative notion of AGM-consistency. In this paper we provide an epistemic foundation for AGM-consistency based on the AGM theory of belief revision.
Decision generation tools and Bayesian inference
Jannson, Tomasz; Wang, Wenjian; Forrester, Thomas; Kostrzewski, Andrew; Veeris, Christian; Nielsen, Thomas
2014-05-01
Digital Decision Generation (DDG) tools are important software sub-systems of Command and Control (C2) systems and technologies. In this paper, we present a special type of DDGs based on Bayesian Inference, related to adverse (hostile) networks, including such important applications as terrorism-related networks and organized crime ones.
Von Neumann Was Not a Quantum Bayesian
Stacey, Blake C
2014-01-01
Wikipedia has claimed for over two years now that John von Neumann was the "first quantum Bayesian." In context, this reads as stating that von Neumann inaugurated QBism, the approach to quantum theory promoted by Fuchs, Mermin and Schack. This essay explores how such a claim is, historically speaking, unsupported.
Bayesian calibration of car-following models
Van Hinsbergen, C.P.IJ.; Van Lint, H.W.C.; Hoogendoorn, S.P.; Van Zuylen, H.J.
2010-01-01
Recent research has revealed that there exist large inter-driver differences in car-following behavior such that different car-following models may apply to different drivers. This study applies Bayesian techniques to the calibration of car-following models, where prior distributions on each model p
Basics of Bayesian Learning - Basically Bayes
DEFF Research Database (Denmark)
Larsen, Jan
Tutorial presented at the IEEE Machine Learning for Signal Processing Workshop 2006, Maynooth, Ireland, September 8, 2006. The tutorial focuses on the basic elements of Bayesian learning and its relation to classical learning paradigms. This includes a critical discussion of the pros and cons...
On local optima in learning bayesian networks
DEFF Research Database (Denmark)
Dalgaard, Jens; Kocka, Tomas; Pena, Jose
2003-01-01
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...
Bayesian Estimation Supersedes the "t" Test
Kruschke, John K.
2013-01-01
Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their difference, and the normality of the data. The method handles outliers. The decision rule can accept the null value (unlike traditional "t" tests) when certainty in the estimate is…
Bayesian Estimation of Thermonuclear Reaction Rates
Iliadis, Christian; Coc, Alain; Timmes, Frank; Starrfield, Sumner
2016-01-01
The problem of estimating non-resonant astrophysical S-factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied in the past to this problem, all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extra-solar planets, gravitational waves, and type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We present the first astrophysical S-factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the d(p,$\\gamma$)$^3$He, $^3$He($^3$He,2p)$^4$He, and $^3$He($\\alpha$,$\\gamma$)$^7$Be reactions,...
Bayesian analysis of Markov point processes
DEFF Research Database (Denmark)
Berthelsen, Kasper Klitgaard; Møller, Jesper
2006-01-01
Recently Møller, Pettitt, Berthelsen and Reeves introduced a new MCMC methodology for drawing samples from a posterior distribution when the likelihood function is only specified up to a normalising constant. We illustrate the method in the setting of Bayesian inference for Markov point processes...
Bayesian Averaging is Well-Temperated
DEFF Research Database (Denmark)
Hansen, Lars Kai
2000-01-01
Bayesian predictions are stochastic just like predictions of any other inference scheme that generalize from a finite sample. While a simple variational argument shows that Bayes averaging is generalization optimal given that the prior matches the teacher parameter distribution the situation...
Modelling crime linkage with Bayesian networks
J. de Zoete; M. Sjerps; D. Lagnado; N. Fenton
2015-01-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model
Analysis of Wave Directional Spreading by Bayesian Parameter Estimation
Institute of Scientific and Technical Information of China (English)
钱桦; 莊士贤; 高家俊
2002-01-01
A spatial array of wave gauges installed on an observatoion platform has been designed and arranged to measure the lo-cal features of winter monsoon directional waves off Taishi coast of Taiwan. A new method, named the Bayesian ParameterEstimation Method( BPEM), is developed and adopted to determine the main direction and the directional spreading parame-ter of directional spectra. The BPEM could be considered as a regression analysis to find the maximum joint probability ofparameters, which best approximates the observed data from the Bayesian viewpoint. The result of the analysis of field wavedata demonstrates the highly dependency of the characteristics of normalized directional spreading on the wave age. The Mit-suyasu type empirical formula of directional spectnun is therefore modified to be representative of monsoon wave field. More-over, it is suggested that Smax could be expressed as a function of wave steepness. The values of Smax decrease with increas-ing steepness. Finally, a local directional spreading model, which is simple to be utilized in engineering practice, is prop-osed.
Bayesian inference for generalized linear models for spiking neurons
Directory of Open Access Journals (Sweden)
Sebastian Gerwinn
2010-05-01
Full Text Available Generalized Linear Models (GLMs are commonly used statistical methods for modelling the relationship between neural population activity and presented stimuli. When the dimension of the parameter space is large, strong regularization has to be used in order to fit GLMs to datasets of realistic size without overfitting. By imposing properly chosen priors over parameters, Bayesian inference provides an effective and principled approach for achieving regularization. Here we show how the posterior distribution over model parameters of GLMs can be approximated by a Gaussian using the Expectation Propagation algorithm. In this way, we obtain an estimate of the posterior mean and posterior covariance, allowing us to calculate Bayesian confidence intervals that characterize the uncertainty about the optimal solution. From the posterior we also obtain a different point estimate, namely the posterior mean as opposed to the commonly used maximum a posteriori estimate. We systematically compare the different inference techniques on simulated as well as on multi-electrode recordings of retinal ganglion cells, and explore the effects of the chosen prior and the performance measure used. We find that good performance can be achieved by choosing an Laplace prior together with the posterior mean estimate.
Bayesian variable selection for detecting adaptive genomic differences among populations.
Riebler, Andrea; Held, Leonhard; Stephan, Wolfgang
2008-03-01
We extend an F(st)-based Bayesian hierarchical model, implemented via Markov chain Monte Carlo, for the detection of loci that might be subject to positive selection. This model divides the F(st)-influencing factors into locus-specific effects, population-specific effects, and effects that are specific for the locus in combination with the population. We introduce a Bayesian auxiliary variable for each locus effect to automatically select nonneutral locus effects. As a by-product, the efficiency of the original approach is improved by using a reparameterization of the model. The statistical power of the extended algorithm is assessed with simulated data sets from a Wright-Fisher model with migration. We find that the inclusion of model selection suggests a clear improvement in discrimination as measured by the area under the receiver operating characteristic (ROC) curve. Additionally, we illustrate and discuss the quality of the newly developed method on the basis of an allozyme data set of the fruit fly Drosophila melanogaster and a sequence data set of the wild tomato Solanum chilense. For data sets with small sample sizes, high mutation rates, and/or long sequences, however, methods based on nucleotide statistics should be preferred. PMID:18245358
Exclusive breastfeeding practice in Nigeria: a bayesian stepwise regression analysis.
Gayawan, Ezra; Adebayo, Samson B; Chitekwe, Stanley
2014-11-01
Despite the importance of breast milk, the prevalence of exclusive breastfeeding (EBF) in Nigeria is far lower than what has been recommended for developing countries. Worse still, the practise has been on downward trend in the country recently. This study was aimed at investigating the determinants and geographical variations of EBF in Nigeria. Any intervention programme would require a good knowledge of factors that enhance the practise. A pooled data set from Nigeria Demographic and Health Survey conducted in 1999, 2003, and 2008 were analyzed using a Bayesian stepwise approach that involves simultaneous selection of variables and smoothing parameters. Further, the approach allows for geographical variations at a highly disaggregated level of states to be investigated. Within a Bayesian context, appropriate priors are assigned on all the parameters and functions. Findings reveal that education of women and their partners, place of delivery, mother's age at birth, and current age of child are associated with increasing prevalence of EBF. However, visits for antenatal care during pregnancy are not associated with EBF in Nigeria. Further, results reveal considerable geographical variations in the practise of EBF. The likelihood of exclusively breastfeeding children are significantly higher in Kwara, Kogi, Osun, and Oyo states but lower in Jigawa, Katsina, and Yobe. Intensive interventions that can lead to improved practise are required in all states in Nigeria. The importance of breastfeeding needs to be emphasized to women during antenatal visits as this can encourage and enhance the practise after delivery. PMID:24619227
Risk Analysis of New Product Development Using Bayesian Networks
Directory of Open Access Journals (Sweden)
MohammadRahim Ramezanian
2012-06-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios..
Risk Analysis of New Product Development Using Bayesian Networks
Directory of Open Access Journals (Sweden)
Mohammad Rahim Ramezanian
2012-01-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios.
Directory of Open Access Journals (Sweden)
Kuntner Matjaž
2011-05-01
Full Text Available Abstract Background The origin and diversification patterns of lineages across the Indian Ocean islands are varied due to the interplay of the complex geographic and geologic island histories, the varying dispersal abilities of biotas, and the proximity to major continental landmasses. Our aim was to reconstruct phylogeographic history of the giant orbweaving spider (Nephila on western Indian Ocean islands (Madagascar, Mayotte, Réunion, Mauritius, Rodrigues, to test its origin and route of dispersal, and to examine the consequences of good dispersal abilities for colonization and diversification, in comparison with related spiders (Nephilengys inhabiting the same islands, and with other organisms known for over water dispersal. We used mitochondrial (COI and nuclear (ITS2 markers to examine phylogenetic and population genetic patterns in Nephila populations and species. We employed Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, respectively, and calculated genetic distances, fixation indices, and estimated clade ages under a relaxed clock model. Results Our results suggest an African origin of Madagascar Nephila inaurata populations via Cenozoic dispersal, and the colonization of the Mascarene islands from Madagascar. We find evidence of gene flow across Madagascar and Comoros. The Mascarene islands share a common 'ancestral' COI haplotype closely related to those found on Madagascar, but itself absent, or as yet unsampled, from Madagascar. Each island has one or more unique haplotypes related to the ancestral Mascarene haplotype. The Indian Ocean N. inaurata are genetically distinct from the African populations. Conclusions Nephila spiders colonized Madagascar from Africa about 2.5 (0.6-5.3 Ma. Our results are consistent with subsequent, recent and rapid, colonization of all three Mascarene islands. On each island, however, we detected unique haplotypes, consistent with a limited gene flow among the islands
Directory of Open Access Journals (Sweden)
Stephen W Attwood
Full Text Available BACKGROUND: Schistosomiasis in humans along the lower Mekong River has proven a persistent public health problem in the region. The causative agent is the parasite Schistosoma mekongi (Trematoda: Digenea. A new transmission focus is reported, as well as the first study of genetic variation among S. mekongi populations. The aim is to confirm the identity of the species involved at each known focus of Mekong schistosomiasis transmission, to examine historical relationships among the populations and related taxa, and to provide data for use (a priori in further studies of the origins, radiation, and future dispersal capabilities of S. mekongi. METHODOLOGY/PRINCIPAL FINDINGS: DNA sequence data are presented for four populations of S. mekongi from Cambodia and southern Laos, three of which were distinguishable at the COI (cox1 and 12S (rrnS mitochondrial loci sampled. A phylogeny was estimated for these populations and the other members of the Schistosoma sinensium group. The study provides new DNA sequence data for three new populations and one new locus/population combination. A Bayesian approach is used to estimate divergence dates for events within the S. sinensium group and among the S. mekongi populations. CONCLUSIONS/SIGNIFICANCE: The date estimates are consistent with phylogeographical hypotheses describing a Pliocene radiation of the S. sinensium group and a mid-Pleistocene invasion of Southeast Asia by S. mekongi. The date estimates also provide Bayesian priors for future work on the evolution of S. mekongi. The public health implications of S. mekongi transmission outside the lower Mekong River are also discussed.
Computational statistics using the Bayesian Inference Engine
Weinberg, Martin D.
2013-09-01
This paper introduces the Bayesian Inference Engine (BIE), a general parallel, optimized software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organize and reuse expensive derived data. The BIE is the first platform for computational statistics designed explicitly to enable Bayesian update and model comparison for astronomical problems. Bayesian update is based on the representation of high-dimensional posterior distributions using metric-ball-tree based kernel density estimation. Among its algorithmic offerings, the BIE emphasizes hybrid tempered Markov chain Monte Carlo schemes that robustly sample multimodal posterior distributions in high-dimensional parameter spaces. Moreover, the BIE implements a full persistence or serialization system that stores the full byte-level image of the running inference and previously characterized posterior distributions for later use. Two new algorithms to compute the marginal likelihood from the posterior distribution, developed for and implemented in the BIE, enable model comparison for complex models and data sets. Finally, the BIE was designed to be a collaborative platform for applying Bayesian methodology to astronomy. It includes an extensible object-oriented and easily extended framework that implements every aspect of the Bayesian inference. By providing a variety of statistical algorithms for all phases of the inference problem, a scientist may explore a variety of approaches with a single model and data implementation. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU General Public License.
Universal Darwinism as a process of Bayesian inference
Campbell, John O
2016-01-01
Many of the mathematical frameworks describing natural selection are equivalent to Bayes Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment". Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description clo...
Vences, Miguel; Hauswaldt, J Susanne; Steinfartz, Sebastian; Rupp, Oliver; Goesmann, Alexander; Künzel, Sven; Orozco-terWengel, Pablo; Vieites, David R; Nieto-Roman, Sandra; Haas, Sabrina; Laugsch, Clara; Gehara, Marcelo; Bruchmann, Sebastian; Pabijan, Maciej; Ludewig, Ann-Kathrin; Rudert, Dirk; Angelini, Claudio; Borkin, Leo J; Crochet, Pierre-André; Crottini, Angelica; Dubois, Alain; Ficetola, Gentile Francesco; Galán, Pedro; Geniez, Philippe; Hachtel, Monika; Jovanovic, Olga; Litvinchuk, Spartak N; Lymberakis, Petros; Ohler, Annemarie; Smirnov, Nazar A
2013-09-01
We reconstruct range-wide phylogeographies of two widespread and largely co-occurring Western Palearctic frogs, Rana temporaria and R. dalmatina. Based on tissue or saliva samples of over 1000 individuals, we compare a variety of genetic marker systems, including mitochondrial DNA, single-copy protein-coding nuclear genes, microsatellite loci, and single nucleotide polymorphisms (SNPs) of transcriptomes of both species. The two focal species differ radically in their phylogeographic structure, with R. temporaria being strongly variable among and within populations, and R. dalmatina homogeneous across Europe with a single strongly differentiated population in southern Italy. These differences were observed across the various markers studied, including microsatellites and SNP density, but especially in protein-coding nuclear genes where R. dalmatina had extremely low heterozygosity values across its range, including potential refugial areas. On the contrary, R. temporaria had comparably high range-wide values, including many areas of probable postglacial colonization. A phylogeny of R. temporaria based on various concatenated mtDNA genes revealed that two haplotype clades endemic to Iberia form a paraphyletic group at the base of the cladogram, and all other haplotypes form a monophyletic group, in agreement with an Iberian origin of the species. Demographic analysis suggests that R. temporaria and R. dalmatina have genealogies of roughly the same time to coalescence (TMRCA ~3.5 mya for both species), but R. temporaria might have been characterized by larger ancestral and current effective population sizes than R. dalmatina. The high genetic variation in R. temporaria can therefore be explained by its early range expansion out of Iberia, with subsequent cycles of differentiation in cryptic glacial refugial areas followed by admixture, while the range expansion of R. dalmatina into central Europe is a probably more recent event.
Froufe, Elsa; Prié, Vincent; Faria, João; Ghamizi, Mohamed; Gonçalves, Duarte V; Gürlek, Mustafa Emre; Karaouzas, Ioannis; Kebapçi, Ümit; Şereflişan, Hülya; Sobral, Carina; Sousa, Ronaldo; Teixeira, Amílcar; Varandas, Simone; Zogaris, Stamatis; Lopes-Lima, Manuel
2016-07-01
The Potomida genus (Bivalvia, Unionida) has a Circum-Mediterranean distribution and like other freshwater mussel species, its populations have suffered dramatic declines. Although this genus is currently considered as monotypic, it has a long history of taxonomic revisions and presently many aspects of its systematics and evolutionary history are unclear. We sampled a total of 323 individuals from 39 different sites across the Potomida genus distribution, and sequenced two mitochondrial (16S rDNA and Cytochrome c Oxidase Subunit I) and one nuclear (28S rDNA) genes to clarify its phylogeny and phylogeographic history. Our results show that the genus includes two well-supported clades, one comprising solely the western Mediterranean species Potomida littoralis, and the other including two eastern Mediterranean species, the Greek endemic P. acarnanica and the Anatolian and Middle Eastern P. semirugata. We suggest that Potomida started radiating during the upper Miocene, and that both vicariance and dispersal events shaped the diversification and distribution of the genus along the Mediterranean region. P. littoralis is further divided in two mitochondrial lineages, one restricted to Europe and the other occurring mostly in North Africa. Moreover, some European basins present both lineages in sympatry. The conservation status of the three recognized species should be reevaluated, particularly P. acarnanica, since it is restricted to two Greek river basins presenting a high risk of extinction. Overall, our results clarify some important gaps in knowledge concerning the phylogeny, phylogeography and evolution of the Potomida genus in the Mediterranean region with important taxonomical, ecological and conservational implications.
Late Quaternary distribution dynamics and phylogeography of the red deer ( Cervus elaphus) in Europe
Sommer, R. S.; Zachos, F. E.; Street, M.; Jöris, O.; Skog, A.; Benecke, N.
2008-04-01
Here we present spatial-temporal patterns for European late Quaternary red deer (Cervus elaphus), based on radiocarbon-supported evidence derived mainly from archaeological sites. This is followed by an overview of the recent phylogeography of this species using haplogroup studies of recent molecular data. The implications of the synthesis of palaeontological and genetic data are discussed and we propose that present day European red deer haplogroup distributions are best explained against the history of late Quaternary population contractions into and expansions from glacial refugia. Around 800 records of Cervus elaphus were assigned to the period covering the later part of the Last Glacial and the Early to Middle Holocene. Red deer becomes increasingly visible in faunal assemblages dated to late OIS-3 (<40.0 ka 14C BP). The species persisted throughout the LGM on the Iberian Peninsula, in adjacent regions of South-Western France (Gascony, Dordogne, Languedoc), on the Italian Peninsula, in the Balkans and Greece, and east of the Carpathians in Moldavia. We suggest that genetic exchange between the populations of the Balkans and the East of the Carpathians remained uninterrupted during the LGM. The expansion of red deer from its southern refugia into Central and Northern Europe begins rapidly at 12,500 14C BP. The expansion of red deer coincides with the sudden rise in temperature at the onset of Greenland Interstadial 1e and the dispersion of open birch woodland into the northern half of Europe. Radiocarbon supported records show a more or less universal distribution of Cervus elaphus across Europe following the Pleistocene/Holocene climatic change at 10.0 ka 14C BP for the first time. Molecular data and fossil record combined provide a clearer temporal and spatial pattern for the Lateglacial recolonisation process of the northern part of Europe.
Phylogeography and Molecular Epidemiology of an Epidemic Strain of Dengue Virus Type 1 in Sri Lanka
Ocwieja, Karen E.; Fernando, Anira N.; Sherrill-Mix, Scott; Sundararaman, Sesh A.; Tennekoon, Rashika N.; Tippalagama, Rashmi; Krishnananthasivam, Shivankari; Premawansa, Gayani; Premawansa, Sunil; De Silva, Aruna Dharshan
2014-01-01
In 2009, a severe epidemic of dengue disease occurred in Sri Lanka, with higher mortality and morbidity than any previously recorded epidemic in the country. It corresponded to a shift to dengue virus 1 as the major disease-causing serotype in Sri Lanka. Dengue disease reached epidemic levels in the next 3 years. We report phylogenetic evidence that the 2009 epidemic DENV-1 strain continued to circulate within the population and caused severe disease in the epidemic of 2012. Bayesian phylogeo...
Bayesian geostatistics in health cartography: the perspective of malaria.
Patil, Anand P; Gething, Peter W; Piel, Frédéric B; Hay, Simon I
2011-06-01
Maps of parasite prevalences and other aspects of infectious diseases that vary in space are widely used in parasitology. However, spatial parasitological datasets rarely, if ever, have sufficient coverage to allow exact determination of such maps. Bayesian geostatistics (BG) is a method for finding a large sample of maps that can explain a dataset, in which maps that do a better job of explaining the data are more likely to be represented. This sample represents the knowledge that the analyst has gained from the data about the unknown true map. BG provides a conceptually simple way to convert these samples to predictions of features of the unknown map, for example regional averages. These predictions account for each map in the sample, yielding an appropriate level of predictive precision.
Designing and testing inflationary models with Bayesian networks
Price, Layne C; Frazer, Jonathan; Easther, Richard
2015-01-01
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Designing and testing inflationary models with Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics
2015-11-15
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations
Scargle, Jeffrey D; Jackson, Brad; Chiang, James
2012-01-01
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it - an improved and generalized version of Bayesian Blocks (Scargle 1998) - that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multi-variate time series data, analysis of vari...
Bayesian methods in the search for MH370
Davey, Sam; Holland, Ian; Rutten, Mark; Williams, Jason
2016-01-01
This book demonstrates how nonlinear/non-Gaussian Bayesian time series estimation methods were used to produce a probability distribution of potential MH370 flight paths. It provides details of how the probabilistic models of aircraft flight dynamics, satellite communication system measurements, environmental effects and radar data were constructed and calibrated. The probability distribution was used to define the search zone in the southern Indian Ocean. The book describes particle-filter based numerical calculation of the aircraft flight-path probability distribution and validates the method using data from several of the involved aircraft’s previous flights. Finally it is shown how the Reunion Island flaperon debris find affects the search probability distribution.
Bayesian Asteroseismology of 23 Solar-Like Kepler Targets
Gruberbauer, Michael; MacLeod, Kieran; Kallinger, Thomas
2013-01-01
We study 23 previously published Kepler targets to perform a consistent grid-based Bayesian asteroseismic analysis and compare our results to those obtained via the Asteroseismic Modelling Portal (AMP). We find differences in the derived stellar parameters of many targets and their uncertainties. While some of these differences can be attributed to systematic effects between stellar evolutionary models, we show that the different methodologies deliver incompatible uncertainties for some parameters. Using non-adiabatic models and our capability to measure surface effects, we also investigate the dependency of these surface effects on the stellar parameters. Our results suggest a dependence of the magnitude of the surface effect on the mixing length parameter which also, but only minimally, affects the determination of stellar parameters. While some stars in our sample show no surface effect at all, the most significant surface effects are found for stars that are close to the Sun's position in the HR diagram.
Bayesians versus frequentists a philosophical debate on statistical reasoning
Vallverdú, Jordi
2016-01-01
This book analyzes the origins of statistical thinking as well as its related philosophical questions, such as causality, determinism or chance. Bayesian and frequentist approaches are subjected to a historical, cognitive and epistemological analysis, making it possible to not only compare the two competing theories, but to also find a potential solution. The work pursues a naturalistic approach, proceeding from the existence of numerosity in natural environments to the existence of contemporary formulas and methodologies to heuristic pragmatism, a concept introduced in the book’s final section. This monograph will be of interest to philosophers and historians of science and students in related fields. Despite the mathematical nature of the topic, no statistical background is required, making the book a valuable read for anyone interested in the history of statistics and human cognition.
A Software Risk Analysis Model Using Bayesian Belief Network
Institute of Scientific and Technical Information of China (English)
Yong Hu; Juhua Chen; Mei Liu; Yang Yun; Junbiao Tang
2006-01-01
The uncertainty during the period of software project development often brings huge risks to contractors and clients. Ifwe can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project, we can reduce the risk.Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we built up network structure by Delphi method for conditional probability table learning, and learn update probability table and nodes' confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately. This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.
Bayesian parameter estimation for effective field theories
Wesolowski, S; Furnstahl, R J; Phillips, D R; Thapaliya, A
2015-01-01
We present procedures based on Bayesian statistics for effective field theory (EFT) parameter estimation from data. The extraction of low-energy constants (LECs) is guided by theoretical expectations that supplement such information in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools are developed that analyze the fit and ensure that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems and the extraction of LECs for the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Narrowband interference parameterization for sparse Bayesian recovery
Ali, Anum
2015-09-11
This paper addresses the problem of narrowband interference (NBI) in SC-FDMA systems by using tools from compressed sensing and stochastic geometry. The proposed NBI cancellation scheme exploits the frequency domain sparsity of the unknown signal and adopts a Bayesian sparse recovery procedure. This is done by keeping a few randomly chosen sub-carriers data free to sense the NBI signal at the receiver. As Bayesian recovery requires knowledge of some NBI parameters (i.e., mean, variance and sparsity rate), we use tools from stochastic geometry to obtain analytical expressions for the required parameters. Our simulation results validate the analysis and depict suitability of the proposed recovery method for NBI mitigation. © 2015 IEEE.
Bayesian networks for enterprise risk assessment
Bonafede, C E
2006-01-01
According to different typologies of activity and priority, risks can assume diverse meanings and it can be assessed in different ways. In general risk is measured in terms of a probability combination of an event (frequency) and its consequence (impact). To estimate the frequency and the impact (severity) historical data or expert opinions (either qualitative or quantitative data) are used. Moreover qualitative data must be converted in numerical values to be used in the model. In the case of enterprise risk assessment the considered risks are, for instance, strategic, operational, legal and of image, which many times are difficult to be quantified. So in most cases only expert data, gathered by scorecard approaches, are available for risk analysis. The Bayesian Network is a useful tool to integrate different information and in particular to study the risk's joint distribution by using data collected from experts. In this paper we want to show a possible approach for building a Bayesian networks in the parti...
Bayesianism and inference to the best explanation
Directory of Open Access Journals (Sweden)
Valeriano IRANZO
2008-01-01
Full Text Available Bayesianism and Inference to the best explanation (IBE are two different models of inference. Recently there has been some debate about the possibility of “bayesianizing” IBE. Firstly I explore several alternatives to include explanatory considerations in Bayes’s Theorem. Then I distinguish two different interpretations of prior probabilities: “IBE-Bayesianism” (IBE-Bay and “frequentist-Bayesianism” (Freq-Bay. After detailing the content of the latter, I propose a rule for assessing the priors. I also argue that Freq-Bay: (i endorses a role for explanatory value in the assessment of scientific hypotheses; (ii avoids a purely subjectivist reading of prior probabilities; and (iii fits better than IBE-Bayesianism with two basic facts about science, i.e., the prominent role played by empirical testing and the existence of many scientific theories in the past that failed to fulfil their promises and were subsequently abandoned.
Distributed Bayesian Networks for User Modeling
DEFF Research Database (Denmark)
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang;
2006-01-01
The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...
Machine learning a Bayesian and optimization perspective
Theodoridis, Sergios
2015-01-01
This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...
Bayesian image reconstruction: Application to emission tomography
Energy Technology Data Exchange (ETDEWEB)
Nunez, J.; Llacer, J.
1989-02-01
In this paper we propose a Maximum a Posteriori (MAP) method of image reconstruction in the Bayesian framework for the Poisson noise case. We use entropy to define the prior probability and likelihood to define the conditional probability. The method uses sharpness parameters which can be theoretically computed or adjusted, allowing us to obtain MAP reconstructions without the problem of the grey'' reconstructions associated with the pre Bayesian reconstructions. We have developed several ways to solve the reconstruction problem and propose a new iterative algorithm which is stable, maintains positivity and converges to feasible images faster than the Maximum Likelihood Estimate method. We have successfully applied the new method to the case of Emission Tomography, both with simulated and real data. 41 refs., 4 figs., 1 tab.
The Bayesian Who Knew Too Much
Benétreau-Dupin, Yann
2014-01-01
In several papers, John Norton has argued that Bayesianism cannot handle ignorance adequately due to its inability to distinguish between neutral and disconfirming evidence. He argued that this inability sows confusion in, e.g., anthropic reasoning in cosmology or the Doomsday argument, by allowing one to draw unwarranted conclusions from a lack of knowledge. Norton has suggested criteria for a candidate for representation of neutral support. Imprecise credences (families of credal probability functions) constitute a Bayesian-friendly framework that allows us to avoid inadequate neutral priors and better handle ignorance. The imprecise model generally agrees with Norton's representation of ignorance but requires that his criterion of self-duality be reformulated or abandoned
Software Health Management with Bayesian Networks
Mengshoel, Ole; Schumann, JOhann
2011-01-01
Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.
Learning Bayesian networks using genetic algorithm
Institute of Scientific and Technical Information of China (English)
Chen Fei; Wang Xiufeng; Rao Yimei
2007-01-01
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.
Bayesian Population Projections for the United Nations.
Raftery, Adrian E; Alkema, Leontine; Gerland, Patrick
2014-02-01
The United Nations regularly publishes projections of the populations of all the world's countries broken down by age and sex. These projections are the de facto standard and are widely used by international organizations, governments and researchers. Like almost all other population projections, they are produced using the standard deterministic cohort-component projection method and do not yield statements of uncertainty. We describe a Bayesian method for producing probabilistic population projections for most countries that the United Nations could use. It has at its core Bayesian hierarchical models for the total fertility rate and life expectancy at birth. We illustrate the method and show how it can be extended to address concerns about the UN's current assumptions about the long-term distribution of fertility. The method is implemented in the R packages bayesTFR, bayesLife, bayesPop and bayesDem.
Bayesian information fusion networks for biosurveillance applications.
Mnatsakanyan, Zaruhi R; Burkom, Howard S; Coberly, Jacqueline S; Lombardo, Joseph S
2009-01-01
This study introduces new information fusion algorithms to enhance disease surveillance systems with Bayesian decision support capabilities. A detection system was built and tested using chief complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets between events in the multiple data streams were established. The Bayesian Network was built to fuse data from multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by NCR health departments. Further research should be done to investigate correlations between data sources for efficient fusion of the collected data.
A Bayesian nonparametric meta-analysis model.
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G
2015-03-01
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall effect size, such models may be adequate, but for prediction, they surely are not if the effect-size distribution exhibits non-normal behavior. To address this issue, we propose a Bayesian nonparametric meta-analysis model, which can describe a wider range of effect-size distributions, including unimodal symmetric distributions, as well as skewed and more multimodal distributions. We demonstrate our model through the analysis of real meta-analytic data arising from behavioral-genetic research. We compare the predictive performance of the Bayesian nonparametric model against various conventional and more modern normal fixed-effects and random-effects models.
Probabilistic forecasting and Bayesian data assimilation
Reich, Sebastian
2015-01-01
In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in ap...
Bayesian Peak Picking for NMR Spectra
Cheng, Yichen
2014-02-01
Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.
A Bayesian approach to person perception.
Clifford, C W G; Mareschal, I; Otsuka, Y; Watson, T L
2015-11-01
Here we propose a Bayesian approach to person perception, outlining the theoretical position and a methodological framework for testing the predictions experimentally. We use the term person perception to refer not only to the perception of others' personal attributes such as age and sex but also to the perception of social signals such as direction of gaze and emotional expression. The Bayesian approach provides a formal description of the way in which our perception combines current sensory evidence with prior expectations about the structure of the environment. Such expectations can lead to unconscious biases in our perception that are particularly evident when sensory evidence is uncertain. We illustrate the ideas with reference to our recent studies on gaze perception which show that people have a bias to perceive the gaze of others as directed towards themselves. We also describe a potential application to the study of the perception of a person's sex, in which a bias towards perceiving males is typically observed.
Bayesian parameter estimation for effective field theories
Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.
2016-07-01
We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
BONNSAI: correlated stellar observables in Bayesian methods
Schneider, F R N; Fossati, L; Langer, N; de Koter, A
2016-01-01
In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code BONNSAI by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounte...
A Bayesian outlier criterion to detect SNPs under selection in large data sets.
Directory of Open Access Journals (Sweden)
Mathieu Gautier
Full Text Available BACKGROUND: The recent advent of high-throughput SNP genotyping technologies has opened new avenues of research for population genetics. In particular, a growing interest in the identification of footprints of selection, based on genome scans for adaptive differentiation, has emerged. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study is to develop an efficient model-based approach to perform bayesian exploratory analyses for adaptive differentiation in very large SNP data sets. The basic idea is to start with a very simple model for neutral loci that is easy to implement under a bayesian framework and to identify selected loci as outliers via Posterior Predictive P-values (PPP-values. Applications of this strategy are considered using two different statistical models. The first one was initially interpreted in the context of populations evolving respectively under pure genetic drift from a common ancestral population while the second one relies on populations under migration-drift equilibrium. Robustness and power of the two resulting bayesian model-based approaches to detect SNP under selection are further evaluated through extensive simulations. An application to a cattle data set is also provided. CONCLUSIONS/SIGNIFICANCE: The procedure described turns out to be much faster than former bayesian approaches and also reasonably efficient especially to detect loci under positive selection.
Buddhavarapu, Prasad; Smit, Andre F; Prozzi, Jorge A
2015-07-01
Permeable friction course (PFC), a porous hot-mix asphalt, is typically applied to improve wet weather safety on high-speed roadways in Texas. In order to warrant expensive PFC construction, a statistical evaluation of its safety benefits is essential. Generally, the literature on the effectiveness of porous mixes in reducing wet-weather crashes is limited and often inconclusive. In this study, the safety effectiveness of PFC was evaluated using a fully Bayesian before-after safety analysis. First, two groups of road segments overlaid with PFC and non-PFC material were identified across Texas; the non-PFC or reference road segments selected were similar to their PFC counterparts in terms of site specific features. Second, a negative binomial data generating process was assumed to model the underlying distribution of crash counts of PFC and reference road segments to perform Bayesian inference on the safety effectiveness. A data-augmentation based computationally efficient algorithm was employed for a fully Bayesian estimation. The statistical analysis shows that PFC is not effective in reducing wet weather crashes. It should be noted that the findings of this study are in agreement with the existing literature, although these studies were not based on a fully Bayesian statistical analysis. Our study suggests that the safety effectiveness of PFC road surfaces, or any other safety infrastructure, largely relies on its interrelationship with the road user. The results suggest that the safety infrastructure must be properly used to reap the benefits of the substantial investments. PMID:25897515
Yu, Jihnhee; Hutson, Alan D; Siddiqui, Adnan H; Kedron, Mary A
2016-02-01
In some small clinical trials, toxicity is not a primary endpoint; however, it often has dire effects on patients' quality of life and is even life-threatening. For such clinical trials, rigorous control of the overall incidence of adverse events is desirable, while simultaneously collecting safety information. In this article, we propose group sequential toxicity monitoring strategies to control overall toxicity incidents below a certain level as opposed to performing hypothesis testing, which can be incorporated into an existing study design based on the primary endpoint. We consider two sequential methods: a non-Bayesian approach in which stopping rules are obtained based on the 'future' probability of an excessive toxicity rate; and a Bayesian adaptation modifying the proposed non-Bayesian approach, which can use the information obtained at interim analyses. Through an extensive Monte Carlo study, we show that the Bayesian approach often provides better control of the overall toxicity rate than the non-Bayesian approach. We also investigate adequate toxicity estimation after the studies. We demonstrate the applicability of our proposed methods in controlling the symptomatic intracranial hemorrhage rate for treating acute ischemic stroke patients.
Bayesian nonparametric regression with varying residual density
Pati, Debdeep; Dunson, David B.
2013-01-01
We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose priors for the residual density based on probit stick-breaking (PSB) scale mixtures and symmetrized ...
Towards Bayesian Deep Learning: A Survey
Wang, Hao; Yeung, Dit-Yan
2016-01-01
While perception tasks such as visual object recognition and text understanding play an important role in human intelligence, the subsequent tasks that involve inference, reasoning and planning require an even higher level of intelligence. The past few years have seen major advances in many perception tasks using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. To achieve integrated intel...
Approximate Bayesian inference for complex ecosystems
Michael P H Stumpf
2014-01-01
Mathematical models have been central to ecology for nearly a century. Simple models of population dynamics have allowed us to understand fundamental aspects underlying the dynamics and stability of ecological systems. What has remained a challenge, however, is to meaningfully interpret experimental or observational data in light of mathematical models. Here, we review recent developments, notably in the growing field of approximate Bayesian computation (ABC), that allow us to calibrate mathe...
Forming Object Concept Using Bayesian Network
Nakamura, Tomoaki; Nagai, Takayuki
2010-01-01
This chapter hase discussed a novel framework for object understanding. Implementation of the proposed framework using Bayesian Network has been presented. Although the result given in this paper is preliminary one, we have shown that the system can form object concept by observing the performance by human hands. The on-line learning is left for the future works. Moreover the model should be extended so that it can represent the object usage and work objects.
Bayesian belief networks in business continuity.
Phillipson, Frank; Matthijssen, Edwin; Attema, Thomas
2014-01-01
Business continuity professionals aim to mitigate the various challenges to the continuity of their company. The goal is a coherent system of measures that encompass detection, prevention and recovery. Choices made in one part of the system affect other parts as well as the continuity risks of the company. In complex organisations, however, these relations are far from obvious. This paper proposes the use of Bayesian belief networks to expose these relations, and presents a modelling framework for this approach. PMID:25193453
Informed Source Separation: A Bayesian Tutorial
Knuth, Kevin
2013-01-01
Source separation problems are ubiquitous in the physical sciences; any situation where signals are superimposed calls for source separation to estimate the original signals. In this tutorial I will discuss the Bayesian approach to the source separation problem. This approach has a specific advantage in that it requires the designer to explicitly describe the signal model in addition to any other information or assumptions that go into the problem description. This leads naturally to the idea...
Market Segmentation Using Bayesian Model Based Clustering
Van Hattum, P.
2009-01-01
This dissertation deals with two basic problems in marketing, that are market segmentation, which is the grouping of persons who share common aspects, and market targeting, which is focusing your marketing efforts on one or more attractive market segments. For the grouping of persons who share common aspects a Bayesian model based clustering approach is proposed such that it can be applied to data sets that are specifically used for market segmentation. The cluster algorithm can handle very l...
Approximate Bayesian computation in population genetics.
Beaumont, Mark A; Zhang, Wenyang; Balding, David J.
2002-01-01
We propose a new method for approximate Bayesian statistical inference on the basis of summary statistics. The method is suited to complex problems that arise in population genetics, extending ideas developed in this setting by earlier authors. Properties of the posterior distribution of a parameter, such as its mean or density curve, are approximated without explicit likelihood calculations. This is achieved by fitting a local-linear regression of simulated parameter values on simulated summ...
Bayesian nonparametric duration model with censorship
Directory of Open Access Journals (Sweden)
Joseph Hakizamungu
2007-10-01
Full Text Available This paper is concerned with nonparametric i.i.d. durations models censored observations and we establish by a simple and unified approach the general structure of a bayesian nonparametric estimator for a survival function S. For Dirichlet prior distributions, we describe completely the structure of the posterior distribution of the survival function. These results are essentially supported by prior and posterior independence properties.
Bayesian modeling and classification of neural signals
Lewicki, Michael S.
1994-01-01
Signal processing and classification algorithms often have limited applicability resulting from an inaccurate model of the signal's underlying structure. We present here an efficient, Bayesian algorithm for modeling a signal composed of the superposition of brief, Poisson-distributed functions. This methodology is applied to the specific problem of modeling and classifying extracellular neural waveforms which are composed of a superposition of an unknown number of action potentials CAPs). ...
Bayesian Estimation and Inference Using Stochastic Electronics.
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326
Bayesian biclustering of gene expression data
Liu Jun S; Gu Jiajun
2008-01-01
Abstract Background Biclustering of gene expression data searches for local patterns of gene expression. A bicluster (or a two-way cluster) is defined as a set of genes whose expression profiles are mutually similar within a subset of experimental conditions/samples. Although several biclustering algorithms have been studied, few are based on rigorous statistical models. Results We developed a Bayesian biclustering model (BBC), and implemented a Gibbs sampling procedure for its statistical in...
Nonparametric Bayesian Storyline Detection from Microtexts
Krishnan, Vinodh; Eisenstein, Jacob
2016-01-01
News events and social media are composed of evolving storylines, which capture public attention for a limited period of time. Identifying these storylines would enable many high-impact applications, such as tracking public interest and opinion in ongoing crisis events. However, this requires integrating temporal and linguistic information, and prior work takes a largely heuristic approach. We present a novel online non-parametric Bayesian framework for storyline detection, using the distance...
Dual Control for Approximate Bayesian Reinforcement Learning
Klenske, Edgar D.; Hennig, Philipp
2015-01-01
Control of non-episodic, finite-horizon dynamical systems with uncertain dynamics poses a tough and elementary case of the exploration-exploitation trade-off. Bayesian reinforcement learning, reasoning about the effect of actions and future observations, offers a principled solution, but is intractable. We review, then extend an old approximate approach from control theory---where the problem is known as dual control---in the context of modern regression methods, specifically generalized line...
A Bayesian framework for robotic programming
Lebeltel, Olivier; Diard, Julien; Bessiere, Pierre; Mazer, Emmanuel
2000-01-01
We propose an original method for programming robots based on Bayesian inference and learning. This method formally deals with problems of uncertainty and incomplete information that are inherent to the field. Indeed, the principal difficulties of robot programming comes from the unavoidable incompleteness of the models used. We present the formalism for describing a robotic task as well as the resolution methods. This formalism is inspired by the theory of probability, suggested by the physi...
Constrained bayesian inference of project performance models
Sunmola, Funlade
2013-01-01
Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in ...
Bayesian Estimation and Inference Using Stochastic Electronics.
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.
Bayesian mixture models for Poisson astronomical images
Guglielmetti, Fabrizia; Fischer, Rainer; Dose, Volker
2012-01-01
Astronomical images in the Poisson regime are typically characterized by a spatially varying cosmic background, large variety of source morphologies and intensities, data incompleteness, steep gradients in the data, and few photon counts per pixel. The Background-Source separation technique is developed with the aim to detect faint and extended sources in astronomical images characterized by Poisson statistics. The technique employs Bayesian mixture models to reliably detect the background as...
Bayesian Variable Selection via Particle Stochastic Search.
Shi, Minghui; Dunson, David B
2011-02-01
We focus on Bayesian variable selection in regression models. One challenge is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In this article, we propose a new computational approach based on sequential Monte Carlo (SMC), which we refer to as particle stochastic search (PSS). We illustrate PSS through applications to linear regression and probit models.
Bayesian Spatial Modelling with R-INLA
Finn Lindgren; Håvard Rue
2015-01-01
The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA) approach proposed by Rue, Martino, and Chopin (2009) is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized) linear mixed to spatial and spatio-temporal models. Combined with the stochastic...
Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring.
Directory of Open Access Journals (Sweden)
Xia Jiang
Full Text Available The problems of correlation and classification are long-standing in the fields of statistics and machine learning, and techniques have been developed to address these problems. We are now in the era of high-dimensional data, which is data that can concern billions of variables. These data present new challenges. In particular, it is difficult to discover predictive variables, when each variable has little marginal effect. An example concerns Genome-wide Association Studies (GWAS datasets, which involve millions of single nucleotide polymorphism (SNPs, where some of the SNPs interact epistatically to affect disease status. Towards determining these interacting SNPs, researchers developed techniques that addressed this specific problem. However, the problem is more general, and so these techniques are applicable to other problems concerning interactions. A difficulty with many of these techniques is that they do not distinguish whether a learned interaction is actually an interaction or whether it involves several variables with strong marginal effects.We address this problem using information gain and Bayesian network scoring. First, we identify candidate interactions by determining whether together variables provide more information than they do separately. Then we use Bayesian network scoring to see if a candidate interaction really is a likely model. Our strategy is called MBS-IGain. Using 100 simulated datasets and a real GWAS Alzheimer's dataset, we investigated the performance of MBS-IGain.When analyzing the simulated datasets, MBS-IGain substantially out-performed nine previous methods at locating interacting predictors, and at identifying interactions exactly. When analyzing the real Alzheimer's dataset, we obtained new results and results that substantiated previous findings. We conclude that MBS-IGain is highly effective at finding interactions in high-dimensional datasets. This result is significant because we have increasingly
Sparse Bayesian learning in ISAR tomography imaging
Institute of Scientific and Technical Information of China (English)
SU Wu-ge; WANG Hong-qiang; DENG Bin; WANG Rui-jun; QIN Yu-liang
2015-01-01
Inverse synthetic aperture radar (ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography (CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm (PFA) and the convolution back projection algorithm (CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing (CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning (SBL) acts as an effective tool in regression and classification, which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of thel0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed. Experimental results based on simulated and electromagnetic (EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.
Particle identification in ALICE: a Bayesian approach
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Benacek, Pavel; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kostarakis, Panagiotis; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shahzad, Muhammed Ikram; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Derradi De Souza, Rafael; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasin, Zafar; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-01-01
We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high purity samples of identified particles in the decay channels ${\\rm K}_{\\rm S}^{\\rm 0}\\rightarrow \\pi^+\\pi^-$, $\\phi\\rightarrow {\\rm K}^-{\\rm K}^+$ and $\\Lambda\\rightarrow{\\rm p}\\pi^-$ in p–Pb collisions at $\\sqrt{s_{\\rm NN}}= 5.02$TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected $p_{\\rm T}$ spectra of pions, kaons, protons, and D$^0$ mesons in pp coll...
Bayesian Analysis of Individual Level Personality Dynamics
Directory of Open Access Journals (Sweden)
Edward Cripps
2016-07-01
Full Text Available A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine if the patterns of within-person responses on a 12 trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999. ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability, which they believe is largely innate and therefore relatively ﬁxed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the beneﬁts of Bayesian techniques for the analysis of within-person processes. These include more formal speciﬁcation of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiralling. While Bayesian techniques have many potential advantages for the analyses of within-person processes at the individual level, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Bayesian Analysis of Individual Level Personality Dynamics
Cripps, Edward; Wood, Robert E.; Beckmann, Nadin; Lau, John; Beckmann, Jens F.; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415
Bayesian Inference of a Multivariate Regression Model
Directory of Open Access Journals (Sweden)
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
Bayesian Methods for Radiation Detection and Dosimetry
International Nuclear Information System (INIS)
We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model
Bayesian and Dempster–Shafer fusion
Indian Academy of Sciences (India)
Subhash Challa; Don Koks
2004-04-01
The Kalman Filter is traditionally viewed as a prediction–correction ﬁltering algorithm. In this work we show that it can be viewed as a Bayesian fusion algorithm and derive it using Bayesian arguments. We begin with an outline of Bayes theory, using it to discuss well-known quantities such as priors, likelihood and posteriors, and we provide the basic Bayesian fusion equation. We derive the Kalman Filter from this equation using a novel method to evaluate the Chapman–Kolmogorov prediction integral. We then use the theory to fuse data from multiple sensors. Vying with this approach is the Dempster–Shafer theory, which deals with measures of “belief”, and is based on the nonclassical idea of “mass” as opposed to probability. Although these two measures look very similar, there are some differences. We point them out through outlining the ideas of the Dempster– Shafer theory and presenting the basic Dempster–Shafer fusion equation. Finally we compare the two methods, and discuss the relative merits and demerits using an illustrative example.
Bayesian Analysis of Individual Level Personality Dynamics.
Cripps, Edward; Wood, Robert E; Beckmann, Nadin; Lau, John; Beckmann, Jens F; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415
Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network
Directory of Open Access Journals (Sweden)
Ying Yan
2013-01-01
Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.
Ball, William T; Egerton, Jack S; Haigh, Joanna D
2014-01-01
We investigate the relationship between spectral solar irradiance (SSI) and ozone in the tropical upper stratosphere. We find that solar cycle (SC) changes in ozone can be well approximated by considering the ozone response to SSI changes in a small number individual wavelength bands between 176 and 310 nm, operating independently of each other. Additionally, we find that the ozone varies approximately linearly with changes in the SSI. Using these facts, we present a Bayesian formalism for inferring SC SSI changes and uncertainties from measured SC ozone profiles. Bayesian inference is a powerful, mathematically self-consistent method of considering both the uncertainties of the data and additional external information to provide the best estimate of parameters being estimated. Using this method, we show that, given measurement uncertainties in both ozone and SSI datasets, it is not currently possible to distinguish between observed or modelled SSI datasets using available estimates of ozone change profiles, ...
Directory of Open Access Journals (Sweden)
Yufei Huang
2007-06-01
Full Text Available Reverse engineering of genetic regulatory networks from time series microarray data are investigated. We propose a dynamic Bayesian networks (DBNs modeling and a full Bayesian learning scheme. The proposed DBN directly models the continuous expression levels and also is associated with parameters that indicate the degree as well as the type of regulations. To learn the network from data, we proposed a reversible jump Markov chain Monte Carlo (RJMCMC algorithm. The RJMCMC algorithm can provide not only more accurate inference results than the deterministic alternative algorithms but also an estimate of the a posteriori probabilities (APPs of the network topology. The estimated APPs provide useful information on the confidence of the inferred results and can also be used for efficient Bayesian data integration. The proposed approach is tested on yeast cell cycle microarray data and the results are compared with the KEGG pathway map.
Learning Local Components to Understand Large Bayesian Networks
DEFF Research Database (Denmark)
Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge;
2009-01-01
Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... (domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....
Liu Yang; Yang Shi-xiong; Ji Peng-zhang; Gao Li-zhi
2012-01-01
Abstract Background As one of the most important but seriously endangered wild relatives of the cultivated tea, Camellia taliensis harbors valuable gene resources for tea tree improvement in the future. The knowledge of genetic variation and population structure may provide insights into evolutionary history and germplasm conservation of the species. Results Here, we sampled 21 natural populations from the species' range in China and performed the phylogeography of C. taliensis by using the n...
Nigro, Lisa M; Hyde, Andrew S; MacGregor, Barbara J; Teske, Andreas
2016-01-01
Deep-sea hypersaline anoxic basins and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that have been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis - previously developed based on (14)C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines - that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source. PMID:27597842
Damal, Kavitha; Murrell, Ebony G; Juliano, Steven A; Conn, Jan E; Loew, Sabine S
2013-09-01
The invasive dengue vector Aedes aegypti has persisted for > 200 years in South Florida in the United States. We tested the hypotheses that Florida's landscape creates dispersal barriers and corridors and that long-distance human-aided dispersal structures populations of Ae. aegypti. We evaluated the phylogeography of 362 individuals from Florida's East and West Coasts with a 760-bp (418- and 342-bp fragments of ND5 and ND4, respectively) mitochondrial sequence. Populations from these two coasts were not significantly differentiated, suggesting that limited urbanization in central Florida is not a strong barrier to gene flow. Evidence for long-distance dispersal between Ft. Lauderdale and the West and Ft. Myers and the East indicates the importance of human-aided dispersal. West Coast populations showed no genetic differentiation, indicating that West Coast rivers and bays did not significantly impede gene flow. Phylogeographic analysis of haplotypes showed two distinct matrilines with no geographic patterns, suggesting multiple introductions or balancing selection.
Archana Venkataraman; Duncan, James S.; Daniel Y.-J. Yang; Pelphrey, Kevin A.
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differ...
Small sample Bayesian analyses in assessment of weapon performance
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Abundant test data are required in assessment of weapon performance.When weapon test data are insufficient,Bayesian analyses in small sample circumstance should be considered and the test data should be provided by simulations.The several Bayesian approaches are discussed and some limitations are founded.An improvement is put forward after limitations of Bayesian approaches available are analyzed and t he improved approach is applied to assessment of some new weapon performance.
BAYESIAN ESTIMATION OF RELIABILITY IN TWOPARAMETER GEOMETRIC DISTRIBUTION
Directory of Open Access Journals (Sweden)
Sudhansu S. Maiti
2015-12-01
Full Text Available Bayesian estimation of reliability of a component, tR ( = P(X ≥ t, when X follows two-parameter geometric distribution, has been considered. Maximum Likelihood Estimator (MLE, an Unbiased Estimator and Bayesian Estimator have been compared. Bayesian estimation of component reliability R = P ( X ≤ Y , arising under stress-strength setup, when Y is assumed to follow independent two-parameter geometric distribution has also been discussed assuming independent priors for parameters under different loss functions.
Chain ladder method: Bayesian bootstrap versus classical bootstrap
Peters, Gareth W.; Mario V. W\\"uthrich; Shevchenko, Pavel V.
2010-01-01
The intention of this paper is to estimate a Bayesian distribution-free chain ladder (DFCL) model using approximate Bayesian computation (ABC) methodology. We demonstrate how to estimate quantities of interest in claims reserving and compare the estimates to those obtained from classical and credibility approaches. In this context, a novel numerical procedure utilising Markov chain Monte Carlo (MCMC), ABC and a Bayesian bootstrap procedure was developed in a truly distribution-free setting. T...
A tutorial introduction to Bayesian models of cognitive development
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei
2010-01-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the what, the how, and the why of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for developmentalists. We emphasize a qualitative understanding of Bayesian inference, but also include information about additional resources for those interested in...
Bayesian just-so stories in psychology and neuroscience
Bowers, J.S.; Davis, Colin J
2012-01-01
According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make three main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak at best. This weakness relates to the many arbitrary ways that priors, likelihoods, and utility functions can be altered in order to account fo...
Bayesian just-so stories in cognitive psychology and neuroscience.
Bowers, J.S.; Davis, Colin J
2012-01-01
According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make three main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak at best. This weakness relates to the many arbitrary ways that priors, likelihoods, and utility functions can be altered in order to account fo...
The Bayesian Modelling Of Inflation Rate In Romania
Mihaela Simionescu
2014-01-01
Bayesian econometrics knew a considerable increase in popularity in the last years, joining the interests of various groups of researchers in economic sciences and additional ones as specialists in econometrics, commerce, industry, marketing, finance, micro-economy, macro-economy and other domains. The purpose of this research is to achieve an introduction in Bayesian approach applied in economics, starting with Bayes theorem. For the Bayesian linear regression models the methodology of estim...
Bayesian non- and semi-parametric methods and applications
Rossi, Peter
2014-01-01
This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number
Directory of Open Access Journals (Sweden)
Li Shouhsien
2009-06-01
Full Text Available Abstract Background The role of Pleistocene glacial oscillations in current biodiversity and distribution patterns varies with latitude, physical topology and population life history and has long been a topic of discussion. However, there had been little phylogeographical research in south China, where the geophysical complexity is associated with great biodiversity. A bird endemic in Southeast Asia, the Grey-cheeked Fulvetta, Alcippe morrisonia, has been reported to show deep genetic divergences among its seven subspecies. In the present study, we investigated the phylogeography of A. morrisonia to explore its population structure and evolutionary history, in order to gain insight into the effect of geological events on the speciation and diversity of birds endemic in south China. Results Mitochondrial genes cytochrome b (Cytb and cytochrome c oxidase I (COI were represented by 1236 nucleotide sites from 151 individuals from 29 localities. Phylogenetic analysis showed seven monophyletic clades congruent with the geographically separated groups, which were identified as major sources of molecular variance (90.92% by AMOVA. TCS analysis revealed four disconnected networks, and that no haplotype was shared among the geographical groups. The common ancestor of these populations was dated to 11.6 Mya and several divergence events were estimated along the population evolutionary history. Isolation by distance was inferred by NCPA to be responsible for the current intra-population genetic pattern and gene flow among geographical groups was interrupted. A late Pleistocene demographic expansion was detected in the eastern geographical groups, while the expansion time (0.2–0.4 Mya was earlier than the Last Glacial Maximum. Conclusion It is proposed that the complicated topology preserves high genetic diversity and ancient lineages for geographical groups of A. morrisonia in China mainland and its two major islands, and restricts gene exchange during
Feldman, Chris R; Spicer, Greg S
2006-07-01
The ultimate goal of comparative phylogeographical analyses is to infer processes of diversification from contemporary geographical patterns of genetic diversity. When such studies are employed across diverse groups in an array of communities, it may be difficult to discover common evolutionary and ecological processes associated with diversification. In order to identify taxa that have responded in a similar fashion to historical events, we conducted comparative phylogeographical analyses on a phylogenetically and ecologically limited set of taxa. Here, we focus on a group of squamate reptiles (snakes and lizards) that share similar ecological requirements and generally occupy the same communities in the western USA. At a gross level, deep genetic division in Contia tenuis, Diadophis punctatus, Elgaria multicarinata, the Charina bottae complex, and Lampropeltis zonata are often concordant in the Transverse Ranges, the Monterey Bay and Sacramento-San Joaquin Delta region, and the southern Sierra Nevada in California. Molecular clock estimates suggest that major phyletic breaks within many of these taxa roughly coincide temporally, and may correspond to important geological events. Furthermore, significant congruence between the phylogeographies of E. multicarinata and L. zonata suggests that the succession of vicariance and dispersal events in these species progressed in concert. Such congruence suggests that E. multicarinata and L. zonata have occupied the same communities through time. However, across our entire multi-taxon data set, the sequence of branching events rarely match between sympatric taxa, indicating the importance of subtle differences in life history features as well as random processes in creating unique genetic patterns. Lastly, coalescent and noncoalescent estimates of population expansion suggest that populations in the more southerly distributed clades of C. tenuis, D. punctatus, E. multicarinata, and L. zonata have been stable, while
Waldrop, Ellen
2016-01-11
Aim This study compares the phylogeography, population structure and evolution of four butterflyfish species in the Chaetodon subgenus Corallochaetodon, with two widespread species (Indian Ocean – C. trifasciatus and Pacific Ocean – C. lunulatus), and two species that are largely restricted to the Red Sea (C. austriacus) and north-western (NW) Indian Ocean (C. melapterus). Through extensive geographical coverage of these taxa, we seek to resolve patterns of genetic diversity within and between closely related butterflyfish species in order to illuminate biogeographical and evolutionary processes. Location Red Sea, Indian Ocean and Pacific Ocean. Methods A total of 632 individuals from 24 locations throughout the geographical ranges of all four members of the subgenus Corallochaetodon were sequenced using a 605 bp fragment (cytochrome b) of mtDNA. In addition, 10 microsatellite loci were used to assess population structure in the two widespread species. Results Phylogenetic reconstruction indicates that the Pacific Ocean C. lunulatus diverged from the Indian Ocean C. trifasciatus approximately 3 Ma, while C. melapterus and C. austriacus comprise a cluster of shared haplotypes derived from C. trifasciatus within the last 0.75 Myr. The Pacific C. lunulatus had significant population structure at peripheral locations on the eastern edge of its range (French Polynesia, Johnston Atoll, Hawai\\'i), and a strong break between two ecoregions of the Hawaiian Archipelago. The Indian Ocean C. trifasciatus showed significant structure only at the Chagos Archipelago in the central Indian Ocean, and the two range-restricted species showed no population structure but evidence of recent population expansion. Main conclusions Patterns of endemism and genetic diversity in Corallochaetodon butterflyfishes have been shaped by (1) Plio-Pleistocene sea level changes that facilitated evolutionary divergences at biogeographical barriers between Indian and Pacific Oceans, and the Indian
Directory of Open Access Journals (Sweden)
Pierce Naomi E
2008-10-01
Full Text Available Abstract Background Evolutionary genetics provides a rich theoretical framework for empirical studies of phylogeography. Investigations of intraspecific genetic variation can uncover new putative species while allowing inference into the evolutionary origin and history of extant populations. With a distribution on four continents ranging throughout most of the Old World, Lampides boeticus (Lepidoptera: Lycaenidae is one of the most widely distributed species of butterfly. It is placed in a monotypic genus with no commonly accepted subspecies. Here, we investigate the demographic history and taxonomic status of this widespread species, and screen for the presence or absence of the bacterial endosymbiont Wolbachia. Results We performed phylogenetic, population genetic, and phylogeographic analyses using 1799 bp of mitochondrial sequence data from 57 specimens collected throughout the species' range. Most of the samples (>90% were nearly genetically identical, with uncorrected pairwise sequence differences of 0 – 0.5% across geographic distances > 9,000 km. However, five samples from central Thailand, Madagascar, northern Australia and the Moluccas formed two divergent clades differing from the majority of samples by uncorrected pairwise distances ranging from 1.79 – 2.21%. Phylogenetic analyses suggest that L. boeticus is almost certainly monophyletic, with all sampled genes coalescing well after the divergence from three closely related taxa included for outgroup comparisons. Analyses of molecular diversity indicate that most L. boeticus individuals in extant populations are descended from one or two relatively recent population bottlenecks. Conclusion The combined analyses suggest a scenario in which the most recent common ancestor of L. boeticus and its sister taxon lived in the African region approximately 7 Mya; extant lineages of L. boeticus began spreading throughout the Old World at least 1.5 Mya. More recently, expansion after
Doing bayesian data analysis a tutorial with R and BUGS
Kruschke, John K
2011-01-01
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all
Bayesian missing data problems EM, data augmentation and noniterative computation
Tan, Ming T; Ng, Kai Wang
2009-01-01
Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-world problems, the authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms. After introducing the missing data problems, Bayesian approach, and poste
Bayesian integer frequency offset estimator for MIMO-OFDM systems
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO estimator based on the Bayesian philosophy is proposed. Also, it is shown that the Bayesian IFO estimator is optimal among all the IFO estimators. Furthermore, the Bayesian estimator can take advantage of oversampling so that better performance can be obtained. Finally, numerical results show the optimality of the Bayesian estimator and validate the theoretical analysis.
The bugs book a practical introduction to Bayesian analysis
Lunn, David; Best, Nicky; Thomas, Andrew; Spiegelhalter, David
2012-01-01
Introduction: Probability and ParametersProbabilityProbability distributionsCalculating properties of probability distributionsMonte Carlo integrationMonte Carlo Simulations Using BUGSIntroduction to BUGSDoodleBUGSUsing BUGS to simulate from distributionsTransformations of random variablesComplex calculations using Monte CarloMultivariate Monte Carlo analysisPredictions with unknown parametersIntroduction to Bayesian InferenceBayesian learningPosterior predictive distributionsConjugate Bayesian inferenceInference about a discrete parameterCombinations of conjugate analysesBayesian and classica
A Bayesian Justification for Random Sampling in Sample Survey
Directory of Open Access Journals (Sweden)
Glen Meeden
2012-07-01
Full Text Available In the usual Bayesian approach to survey sampling the sampling design, plays a minimal role, at best. Although a close relationship between exchangeable prior distributions and simple random sampling has been noted; how to formally integrate simple random sampling into the Bayesian paradigm is not clear. Recently it has been argued that the sampling design can be thought of as part of a Bayesian's prior distribution. We will show here that under this scenario simple random sample can be given a Bayesian justification in survey sampling.
Assessing global vegetation activity using spatio-temporal Bayesian modelling
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support
Bayesian network models for error detection in radiotherapy plans
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Application of Bayesian graphs to SN Ia data analysis and compression
Ma, Cong; Corasaniti, Pier-Stefano; Bassett, Bruce A.
2016-08-01
Bayesian graphical models are an efficient tool for modelling complex data and derive self-consistent expressions of the posterior distribution of model parameters. We apply Bayesian graphs to perform statistical analyses of Type Ia supernova (SN Ia) luminosity distance measurements from the Joint Light-curve Analysis (JLA) dataset (Betoule et al. 2014). In contrast to the χ2 approach used in previous studies, the Bayesian inference allows us to fully account for the standard-candle parameter dependence of the data covariance matrix. Comparing with χ2 analysis results we find a systematic offset of the marginal model parameter bounds. We demonstrate that the bias is statistically significant in the case of the SN Ia standardization parameters with a maximal 6σ shift of the SN light-curve colour correction. In addition, we find that the evidence for a host galaxy correction is now only 2.4σ. Systematic offsets on the cosmological parameters remain small, but may increase by combining constraints from complementary cosmological probes. The bias of the χ2 analysis is due to neglecting the parameter-dependent log-determinant of the data covariance, which gives more statistical weight to larger values of the standardization parameters. We find a similar effect on compressed distance modulus data. To this end we implement a fully consistent compression method of the JLA dataset that uses a Gaussian approximation of the posterior distribution for fast generation of compressed data. Overall, the results of our analysis emphasize the need for a fully consistent Bayesian statistical approach in the analysis of future large SN Ia datasets.
Shah, Abhik; Woolf, Peter
2009-06-01
In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing. PMID:20161541
Bayesian inference tools for inverse problems
Mohammad-Djafari, Ali
2013-08-01
In this paper, first the basics of Bayesian inference with a parametric model of the data is presented. Then, the needed extensions are given when dealing with inverse problems and in particular the linear models such as Deconvolution or image reconstruction in Computed Tomography (CT). The main point to discuss then is the prior modeling of signals and images. A classification of these priors is presented, first in separable and Markovien models and then in simple or hierarchical with hidden variables. For practical applications, we need also to consider the estimation of the hyper parameters. Finally, we see that we have to infer simultaneously on the unknowns, the hidden variables and the hyper parameters. Very often, the expression of this joint posterior law is too complex to be handled directly. Indeed, rarely we can obtain analytical solutions to any point estimators such the Maximum A posteriori (MAP) or Posterior Mean (PM). Three main tools are then can be used: Laplace approximation (LAP), Markov Chain Monte Carlo (MCMC) and Bayesian Variational Approximations (BVA). To illustrate all these aspects, we will consider a deconvolution problem where we know that the input signal is sparse and propose to use a Student-t prior for that. Then, to handle the Bayesian computations with this model, we use the property of Student-t which is modelling it via an infinite mixture of Gaussians, introducing thus hidden variables which are the variances. Then, the expression of the joint posterior of the input signal samples, the hidden variables (which are here the inverse variances of those samples) and the hyper-parameters of the problem (for example the variance of the noise) is given. From this point, we will present the joint maximization by alternate optimization and the three possible approximation methods. Finally, the proposed methodology is applied in different applications such as mass spectrometry, spectrum estimation of quasi periodic biological signals and
Meteorological Data Assimilation by Adaptive Bayesian Optimization.
Purser, Robert James
1992-01-01
The principal aim of this research is the elucidation of the Bayesian statistical principles that underlie the theory of objective meteorological analysis. In particular, emphasis is given to aspects of data assimilation that can benefit from an iterative numerical strategy. Two such aspects that are given special consideration are statistical validation of the covariance profiles and nonlinear initialization. A new economic algorithm is presented, based on the imposition of a sparse matrix structure for all covariances and precisions held during the computations. It is shown that very large datasets may be accommodated using this structure and a good linear approximation to the analysis equations established without the need to unnaturally fragment the problem. Since the integrity of the system of analysis equations is preserved, it is a relatively straight-forward matter to extend the basic analysis algorithm to one that incorporates a check on the plausibility of the statistical model assumed for background errors--the so-called "validation" problem. Two methods of validation are described within the sparse matrix framework: the first is essentially a direct extension of the Bayesian principles to embrace, not only the regular analysis variables, but also the parameters that determine the precise form of the covariance functions; the second technique is the non-Bayesian method of generalized cross validation adapted for use within the sparse matrix framework. The later part of this study is concerned with the establishment of a consistent dynamical balance within a forecast model--the initialization problem. The formal principles of the modern theory of initialization are reviewed and a critical examination is made of the concept of the "slow manifold". It is demonstrated, in accordance with more complete nonlinear models, that even within a simple three-mode linearized system, the notion that a universal slow manifold exists is untenable. It is therefore argued
Personalized Audio Systems - a Bayesian Approach
DEFF Research Database (Denmark)
Nielsen, Jens Brehm; Jensen, Bjørn Sand; Hansen, Toke Jansen;
2013-01-01
Modern audio systems are typically equipped with several user-adjustable parameters unfamiliar to most users listening to the system. To obtain the best possible setting, the user is forced into multi-parameter optimization with respect to the users's own objective and preference. To address this......, the present paper presents a general inter-active framework for personalization of such audio systems. The framework builds on Bayesian Gaussian process regression in which a model of the users's objective function is updated sequentially. The parameter setting to be evaluated in a given trial is...
Bayesian model selection in Gaussian regression
Abramovich, Felix
2009-01-01
We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting estimator. We establish the oracle inequality and specify conditions on the prior that imply its asymptotic minimaxity within a wide range of sparse and dense settings for "nearly-orthogonal" and "multicollinear" designs.
Structure-based bayesian sparse reconstruction
Quadeer, Ahmed Abdul
2012-12-01
Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity. © 1991-2012 IEEE.
Radioactive Contraband Detection: A Bayesian Approach
Energy Technology Data Exchange (ETDEWEB)
Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Sale, K; Chambers, D; Axelrod, M; Meyer, A
2009-03-16
Radionuclide emissions from nuclear contraband challenge both detection and measurement technologies to capture and record each event. The development of a sequential Bayesian processor incorporating both the physics of gamma-ray emissions and the measurement of photon energies offers a physics-based approach to attack this challenging problem. It is shown that a 'physics-based' structure can be used to develop an effective detection technique, but also motivates the implementation of this approach using or particle filters to enhance and extract the required information.
Bayesian Analysis of Type Ia Supernova Data
Institute of Scientific and Technical Information of China (English)
王晓峰; 周旭; 李宗伟; 陈黎
2003-01-01
Recently, the distances to type Ia supernova (SN Ia) at z ～ 0.5 have been measured with the motivation of estimating cosmological parameters. However, different sleuthing techniques tend to give inconsistent measurements for SN Ia distances (～0.3 mag), which significantly affects the determination of cosmological parameters.A Bayesian "hyper-parameter" procedure is used to analyse jointly the current SN Ia data, which considers the relative weights of different datasets. For a flat Universe, the combining analysis yields ΩM = 0.20 ± 0.07.