Bayesian Networks An Introduction
Koski, Timo
2009-01-01
Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include:.: An introduction to Dirichlet Distribution, Exponential Families and their applications.; A detailed description of learni
Bayesian networks in reliability
Energy Technology Data Exchange (ETDEWEB)
Langseth, Helge [Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)]. E-mail: helgel@math.ntnu.no; Portinale, Luigi [Department of Computer Science, University of Eastern Piedmont ' Amedeo Avogadro' , 15100 Alessandria (Italy)]. E-mail: portinal@di.unipmn.it
2007-01-15
Over the last decade, Bayesian networks (BNs) have become a popular tool for modelling many kinds of statistical problems. We have also seen a growing interest for using BNs in the reliability analysis community. In this paper we will discuss the properties of the modelling framework that make BNs particularly well suited for reliability applications, and point to ongoing research that is relevant for practitioners in reliability.
Inference in hybrid Bayesian networks
DEFF Research Database (Denmark)
Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2009-01-01
Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees a...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....... and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last...
Bayesian networks in levee reliability
Roscoe, K.; Hanea, A.
2015-01-01
We applied a Bayesian network to a system of levees for which the results of traditional reliability analysis showed high failure probabilities, which conflicted with the intuition and experience of those managing the levees. We made use of forty proven strength observations - high water levels with
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...... primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples...
Pedestrian dynamics via Bayesian networks
Venkat, Ibrahim; Khader, Ahamad Tajudin; Subramanian, K. G.
2014-06-01
Studies on pedestrian dynamics have vital applications in crowd control management relevant to organizing safer large scale gatherings including pilgrimages. Reasoning pedestrian motion via computational intelligence techniques could be posed as a potential research problem within the realms of Artificial Intelligence. In this contribution, we propose a "Bayesian Network Model for Pedestrian Dynamics" (BNMPD) to reason the vast uncertainty imposed by pedestrian motion. With reference to key findings from literature which include simulation studies, we systematically identify: What are the various factors that could contribute to the prediction of crowd flow status? The proposed model unifies these factors in a cohesive manner using Bayesian Networks (BNs) and serves as a sophisticated probabilistic tool to simulate vital cause and effect relationships entailed in the pedestrian domain.
Space Shuttle RTOS Bayesian Network
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores
Reliability analysis with Bayesian networks
Zwirglmaier, Kilian Martin
2017-01-01
Bayesian networks (BNs) represent a probabilistic modeling tool with large potential for reliability engineering. While BNs have been successfully applied to reliability engineering, there are remaining issues, some of which are addressed in this work. Firstly a classification of BN elicitation approaches is proposed. Secondly two approximate inference approaches, one of which is based on discretization and the other one on sampling, are proposed. These approaches are applicable to hybrid/con...
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan
2004-01-01
We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...... and differentiating these circuits in time linear in their size. We report on experimental results showing the successful compilation, and efficient inference, on relational Bayesian networks whose {\\primula}--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Learning dynamic Bayesian networks with mixed variables
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard
This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learn....... An automated procedure for specifying prior distributions for the parameters in a dynamic Bayesian network is presented. It is a simple extension of the procedure for the ordinary Bayesian networks. Finally the W¨olfer?s sunspot numbers are analyzed....
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...... sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning...... under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented on model construction and verification, modeling techniques and tricks, learning...
Using Bayesian belief networks in adaptive management.
J.B. Nyberg; B.G. Marcot; R. Sulyma
2006-01-01
Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...
Bayesian Network for multiple hypthesis tracking
Zajdel, W.P.; Kröse, B.J.A.; Blockeel, H.; Denecker, M.
2002-01-01
For a flexible camera-to-camera tracking of multiple objects we model the objects behavior with a Bayesian network and combine it with the multiple hypohesis framework that associates observations with objects. Bayesian networks offer a possibility to factor complex, joint distributions into a
Plug & Play object oriented Bayesian networks
DEFF Research Database (Denmark)
Bangsø, Olav; Flores, J.; Jensen, Finn Verner
2003-01-01
and secondly, to gain efficiency during modification of an object oriented Bayesian network. To accomplish these two goals we have exploited a mechanism allowing local triangulation of instances to develop a method for updating the junction trees associated with object oriented Bayesian networks in highly...
Modeling Diagnostic Assessments with Bayesian Networks
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
An Intuitive Dashboard for Bayesian Network Inference
International Nuclear Information System (INIS)
Reddy, Vikas; Farr, Anna Charisse; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K D V
2014-01-01
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++
Bayesian networks in educational assessment
Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M
2015-01-01
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark
2006-01-01
We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...... by evaluating and differentiating these circuits in time linear in their size. We report on experimental results showing successful compilation and efficient inference on relational Bayesian networks, whose PRIMULA--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Learning Bayesian networks for discrete data
Liang, Faming
2009-02-01
Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.
A Bayesian Network Approach to Ontology Mapping
National Research Council Canada - National Science Library
Pan, Rong; Ding, Zhongli; Yu, Yang; Peng, Yun
2005-01-01
.... In this approach, the source and target ontologies are first translated into Bayesian networks (BN); the concept mapping between the two ontologies are treated as evidential reasoning between the two translated BNs...
Bayesian networks for management of industrial risk
International Nuclear Information System (INIS)
Munteanu, P.; Debache, G.; Duval, C.
2008-01-01
This article presents the outlines of Bayesian networks modelling and argues for their interest in the probabilistic studies of industrial risk and reliability. A practical case representative of this type of study is presented in support of the argumentation. The article concludes on some research tracks aiming at improving the performances of the methods relying on Bayesian networks and at widening their application area in risk management. (authors)
Neural network classification - A Bayesian interpretation
Wan, Eric A.
1990-01-01
The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.
Classifying emotion in Twitter using Bayesian network
Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya
2018-03-01
Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.
Network structure exploration via Bayesian nonparametric models
International Nuclear Information System (INIS)
Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z
2015-01-01
Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)
Bayesian phylogeography of the Arawak expansion in lowland South America.
Walker, Robert S; Ribeiro, Lincoln A
2011-09-07
Phylogenetic inference based on language is a vital tool for tracing the dynamics of human population expansions. The timescale of agriculture-based expansions around the world provides an informative amount of linguistic change ideal for reconstructing phylogeographies. Here we investigate the expansion of Arawak, one of the most widely dispersed language families in the Americas, scattered from the Antilles to Argentina. It has been suggested that Northwest Amazonia is the Arawak homeland based on the large number of diverse languages in the region. We generate language trees by coding cognates of basic vocabulary words for 60 Arawak languages and dialects to estimate the phylogenetic relationships among Arawak societies, while simultaneously implementing a relaxed random walk model to infer phylogeographic history. Estimates of the Arawak homeland exclude Northwest Amazonia and are bi-modal, with one potential homeland on the Atlantic seaboard and another more likely origin in Western Amazonia. Bayesian phylogeography better supports a Western Amazonian origin, and consequent dispersal to the Caribbean and across the lowlands. Importantly, the Arawak expansion carried with it not only language but also a number of cultural traits that contrast Arawak societies with other lowland cultures.
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...
deal: A Package for Learning Bayesian Networks
Directory of Open Access Journals (Sweden)
Susanne G. Boettcher
2003-12-01
Full Text Available deal is a software package for use with R. It includes several methods for analysing data using Bayesian networks with variables of discrete and/or continuous types but restricted to conditionally Gaussian networks. Construction of priors for network parameters is supported and their parameters can be learned from data using conjugate updating. The network score is used as a metric to learn the structure of the network and forms the basis of a heuristic search strategy. deal has an interface to Hugin.
Bayesian networks in overlay recipe optimization
Binns, Lewis A.; Reynolds, Greg; Rigden, Timothy C.; Watkins, Stephen; Soroka, Andrew
2005-05-01
Currently, overlay measurements are characterized by "recipe", which defines both physical parameters such as focus, illumination et cetera, and also the software parameters such as algorithm to be used and regions of interest. Setting up these recipes requires both engineering time and wafer availability on an overlay tool, so reducing these requirements will result in higher tool productivity. One of the significant challenges to automating this process is that the parameters are highly and complexly correlated. At the same time, a high level of traceability and transparency is required in the recipe creation process, so a technique that maintains its decisions in terms of well defined physical parameters is desirable. Running time should be short, given the system (automatic recipe creation) is being implemented to reduce overheads. Finally, a failure of the system to determine acceptable parameters should be obvious, so a certainty metric is also desirable. The complex, nonlinear interactions make solution by an expert system difficult at best, especially in the verification of the resulting decision network. The transparency requirements tend to preclude classical neural networks and similar techniques. Genetic algorithms and other "global minimization" techniques require too much computational power (given system footprint and cost requirements). A Bayesian network, however, provides a solution to these requirements. Such a network, with appropriate priors, can be used during recipe creation / optimization not just to select a good set of parameters, but also to guide the direction of search, by evaluating the network state while only incomplete information is available. As a Bayesian network maintains an estimate of the probability distribution of nodal values, a maximum-entropy approach can be utilized to obtain a working recipe in a minimum or near-minimum number of steps. In this paper we discuss the potential use of a Bayesian network in such a capacity
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Bayesian networks: a combined tuning heuristic
Bolt, J.H.
2016-01-01
One of the issues in tuning an output probability of a Bayesian network by changing multiple parameters is the relative amount of the individual parameter changes. In an existing heuristic parameters are tied such that their changes induce locally a maximal change of the tuned probability. This
On local optima in learning bayesian networks
DEFF Research Database (Denmark)
Dalgaard, Jens; Kocka, Tomas; Pena, Jose
2003-01-01
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...
Combining morphological analysis and Bayesian networks for ...
African Journals Online (AJOL)
... how these two computer aided methods may be combined to better facilitate modelling procedures. A simple example is presented, concerning a recent application in the field of environmental decision support. Keywords: Morphological analysis, Bayesian networks, strategic decision support. ORiON Vol. 23 (2) 2007: pp.
Spatiotemporal Bayesian networks for malaria prediction.
Haddawy, Peter; Hasan, A H M Imrul; Kasantikul, Rangwan; Lawpoolsri, Saranath; Sa-Angchai, Patiwat; Kaewkungwal, Jaranit; Singhasivanon, Pratap
2018-01-01
Targeted intervention and resource allocation are essential for effective malaria control, particularly in remote areas, with predictive models providing important information for decision making. While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating village level models with weekly temporal resolution for Tha Song Yang district in northern Thailand. The networks are learned using data on cases and environmental covariates. Three types of networks are explored: networks for numeric prediction, networks for outbreak prediction, and networks that incorporate spatial autocorrelation. Evaluation of the numeric prediction network shows that the Bayes net has prediction accuracy in terms of mean absolute error of about 1.4 cases for 1 week prediction and 1.7 cases for 6 week prediction. The network for outbreak prediction has an ROC AUC above 0.9 for all prediction horizons. Comparison of prediction accuracy of both Bayes nets against several traditional modeling approaches shows the Bayes nets to outperform the other models for longer time horizon prediction of high incidence transmission. To model spread of malaria over space, we elaborate the models with links between the village networks. This results in some very large models which would be far too laborious to build by hand. So we represent the models as collections of probability logic rules and automatically generate the networks. Evaluation of the models shows that the autocorrelation links significantly improve prediction accuracy for some villages in regions of high incidence. We conclude that spatiotemporal Bayesian networks are a highly promising modeling alternative for prediction
Learning Local Components to Understand Large Bayesian Networks
DEFF Research Database (Denmark)
Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge
2009-01-01
Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....
Distributed Bayesian Networks for User Modeling
DEFF Research Database (Denmark)
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang
2006-01-01
The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...
Software Health Management with Bayesian Networks
Mengshoel, Ole; Schumann, JOhann
2011-01-01
Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.
Characteristic imsets for learning Bayesian network structure
Czech Academy of Sciences Publication Activity Database
Hemmecke, R.; Lindner, S.; Studený, Milan
2012-01-01
Roč. 53, č. 9 (2012), s. 1336-1349 ISSN 0888-613X R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * essential graph * standard imset * characteristic imset * LP relaxation of a polytope Subject RIV: BA - General Mathematics Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/studeny-0382596.pdf
Centralized Bayesian reliability modelling with sensor networks
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Sečkárová, Vladimíra
2013-01-01
Roč. 19, č. 5 (2013), s. 471-482 ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant - others:GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf
SAFETY RISK ASSESSMENT USING BAYESIAN BELIEF NETWORK
Directory of Open Access Journals (Sweden)
Victor M. Rukhlinskiy
2017-01-01
Full Text Available The solution of the problem of modelling and quantitative assessment of flight safety risk is being considered in this paper. The article considers the main groups of mathematical models used to quantify the risks of flight safety, which can be used by providers of aviation services. The authors demonstrate and discuss risk modeling possibilities in the field of flight safety on the basis of Bayesian belief networks.In this paper a mathematical model is built on the basis of identified hazards, and this model allows to determine the level of risk for each hazard and the consequences of their occurrence using Bayesian belief networks, consisting of marginal probability distributions graph and conditional probability tables. This mathematical model allows to determine the following, based on the data on adverse events and hazard identification: the probability of various adverse events in all dangers occurrence, the risk level for each of the identified hazards, the most likely consequences of the given danger oc- currence. For risk modeling in the field of flight safety on the basis of Bayesian belief networks there were used supple- mentary Bayes Net Toolbox for MATLAB with open source. To determine the level of risk in the form specified in ICAO Doc 9859 "Flight Safety Management Manual" of the International Civil Aviation Organization, the authors wrote a func- tion to MATLAB, allowing each pair of probability - to set severity level in line with alphanumeric value and significance of the risk category.Risk model in the field of flight safety on the basis of Bayesian belief networks corresponds to the definition of risk by Kaplan and Garrick. The advantage of the developed risk assessment method over other methods is shown in the paper.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Bayesian information fusion networks for biosurveillance applications.
Mnatsakanyan, Zaruhi R; Burkom, Howard S; Coberly, Jacqueline S; Lombardo, Joseph S
2009-01-01
This study introduces new information fusion algorithms to enhance disease surveillance systems with Bayesian decision support capabilities. A detection system was built and tested using chief complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets between events in the multiple data streams were established. The Bayesian Network was built to fuse data from multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by NCR health departments. Further research should be done to investigate correlations between data sources for efficient fusion of the collected data.
Modelling dependable systems using hybrid Bayesian networks
International Nuclear Information System (INIS)
Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter
2008-01-01
A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems
Seeded Bayesian Networks: Constructing genetic networks from microarray data
Directory of Open Access Journals (Sweden)
Quackenbush John
2008-07-01
Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.
A Bayesian Networks approach to Operational Risk
Aquaro, V.; Bardoscia, M.; Bellotti, R.; Consiglio, A.; De Carlo, F.; Ferri, G.
2010-04-01
A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters; since the main aim is to understand the role of the correlations among the losses, the assessments of domain experts are not used. The algorithm has been validated on synthetic time series. It should be stressed that the proposed algorithm has been thought for the practical implementation in a mid or small sized bank, since it has a small impact on the organizational structure of a bank and requires an investment in human resources which is limited to the computational area.
Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks
Directory of Open Access Journals (Sweden)
Fayroz F. Sherif
2015-01-01
Full Text Available Single nucleotide polymorphisms (SNPs contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer’s disease (AD. Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA studies. New SNP biomarkers were observed to be significantly associated with Alzheimer’s disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively.
Computerized tongue diagnosis based on Bayesian networks.
Pang, Bo; Zhang, David; Li, Naimin; Wang, Kuanquan
2004-10-01
Tongue diagnosis is an important diagnostic method in traditional Chinese medicine (TCM). However, due to its qualitative, subjective and experience-based nature, traditional tongue diagnosis has a very limited-application in clinical medicine. Moreover, traditional tongue diagnosis is always concerned with the identification of syndromes rather than with the connection between tongue abnormal appearances and diseases. This is not well understood in Western medicine, thus greatly obstruct its wider use in the world. In this paper, we present a novel computerized tongue inspection method aiming to address these problems. First, two kinds of quantitative features, chromatic and textural measures, are extracted from tongue images by using popular digital image processing techniques. Then, Bayesian networks are employed to model the relationship between these quantitative features and diseases. The effectiveness of the method is tested on a group of 455 patients affected by 13 common diseases as well as other 70 healthy volunteers, and the diagnostic results predicted by the previously trained Bayesian network classifiers are reported.
Estimating mental states of a depressed person with bayesian networks
Klein, Michel C.A.; Modena, Gabriele
2013-01-01
In this work in progress paper we present an approach based on Bayesian Networks to model the relationship between mental states and empirical observations in a depressed person. We encode relationships and domain expertise as a Hierarchical Bayesian Network. Mental states are represented as latent
Non-homogeneous dynamic Bayesian networks for continuous data
Grzegorczyk, Marco; Husmeier, Dirk
Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with
Prognostic Bayesian networks I: Rationale, learning procedure, and clinical use
Verduijn, Marion; Peek, Niels; Rosseel, Peter M. J.; de Jonge, Evert; de Mol, Bas A. J. M.
2007-01-01
Prognostic models are tools to predict the future outcome of disease and disease treatment, one of the fundamental tasks in clinical medicine. This article presents the prognostic Bayesian network (PBN) as a new type of prognostic model that builds on the Bayesian network methodology, and implements
ExpertBayes: Automatically refining manually built Bayesian networks
Almeida, Ezilda; Ferreira, Pedro; Vinhoza, Tiago; Dutra, Inês; Li, Jingwei; Wu, Yirong; Burnside, Elizabeth
2014-01-01
Bayesian network structures are usually built using only the data and starting from an empty network or from a naive Bayes structure. Very often, in some domains, like medicine, a prior structure knowledge is already known. This structure can be automatically or manually refined in search for better performance models. In this work, we take Bayesian networks built by specialists and show that minor perturbations to this original network can yield better classifiers with a very small computati...
Logistic regression against a divergent Bayesian network
Directory of Open Access Journals (Sweden)
Noel Antonio Sánchez Trujillo
2015-01-01
Full Text Available This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered; we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.
Modelling crime linkage with Bayesian networks.
de Zoete, Jacob; Sjerps, Marjan; Lagnado, David; Fenton, Norman
2015-05-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model different evidential structures that can occur when linking crimes, and how they assist in understanding the complex underlying dependencies. That is, how evidence that is obtained in one case can be used in another and vice versa. The flip side of this is that the intuitive decision to "unlink" a case in which exculpatory evidence is obtained leads to serious overestimation of the strength of the remaining cases. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Using consensus bayesian network to model the reactive oxygen species regulatory pathway.
Directory of Open Access Journals (Sweden)
Liangdong Hu
Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.
ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM
Directory of Open Access Journals (Sweden)
Santosh Kumar Chaudhari
2011-06-01
Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.
Approximation methods for efficient learning of Bayesian networks
Riggelsen, C
2008-01-01
This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.
Bayesian model ensembling using meta-trained recurrent neural networks
Ambrogioni, L.; Berezutskaya, Y.; Gü ç lü , U.; Borne, E.W.P. van den; Gü ç lü tü rk, Y.; Gerven, M.A.J. van; Maris, E.G.G.
2017-01-01
In this paper we demonstrate that a recurrent neural network meta-trained on an ensemble of arbitrary classification tasks can be used as an approximation of the Bayes optimal classifier. This result is obtained by relying on the framework of e-free approximate Bayesian inference, where the Bayesian
Filtering in Hybrid Dynamic Bayesian Networks
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2000-01-01
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
Regulatory Holidays and Optimal Network Expansion
Willems, Bert; Zwart, Gijsbert
2016-01-01
We model the optimal regulation of continuous, irreversible, capacity expansion, in a model in which the regulated network firm has private information about its capacity costs, investments need to be financed out of the firm’s cash flows from selling network access and demand is stochastic. If
Macroscopic Models of Clique Tree Growth for Bayesian Networks
National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...
Developing Large-Scale Bayesian Networks by Composition
National Aeronautics and Space Administration — In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale...
Designing Resource-Bounded Reasoners using Bayesian Networks
National Aeronautics and Space Administration — In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are...
Multilevel temporal Bayesian networks can model longitudinal change in multimorbidity
Lappenschaar, M.; Hommersom, A.; Lucas, P.J.; Lagro, J.; Visscher, S.; Korevaar, J.C.; Schellevis, F.G.
2013-01-01
Objectives Although the course of single diseases can be studied using traditional epidemiologic techniques, these methods cannot capture the complex joint evolutionary course of multiple disorders. In this study, multilevel temporal Bayesian networks were adopted to study the course of
Bayesian network modeling of operator's state recognition process
International Nuclear Information System (INIS)
Hatakeyama, Naoki; Furuta, Kazuo
2000-01-01
Nowadays we are facing a difficult problem of establishing a good relation between humans and machines. To solve this problem, we suppose that machine system need to have a model of human behavior. In this study we model the state cognition process of a PWR plant operator as an example. We use a Bayesian network as an inference engine. We incorporate the knowledge hierarchy in the Bayesian network and confirm its validity using the example of PWR plant operator. (author)
On polyhedral approximations of polytopes for learning Bayesian networks
Czech Academy of Sciences Publication Activity Database
Studený, Milan; Haws, D.C.
2013-01-01
Roč. 4, č. 1 (2013), s. 59-92 ISSN 1309-3452 R&D Projects: GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : Bayesian network structure * integer programming * standard imset * characteristic imset * LP relaxation Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2013/MTR/studeny-on polyhedral approximations of polytopes for learning bayesian networks.pdf
Bayesian Network Webserver: a comprehensive tool for biological network modeling.
Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan
2013-11-01
The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.
Using Bayesian Networks to Improve Knowledge Assessment
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
ExpertBayes: Automatically refining manually built Bayesian networks.
Almeida, Ezilda; Ferreira, Pedro; Vinhoza, Tiago; Dutra, Inês; Li, Jingwei; Wu, Yirong; Burnside, Elizabeth
2014-12-01
Bayesian network structures are usually built using only the data and starting from an empty network or from a naïve Bayes structure. Very often, in some domains, like medicine, a prior structure knowledge is already known. This structure can be automatically or manually refined in search for better performance models. In this work, we take Bayesian networks built by specialists and show that minor perturbations to this original network can yield better classifiers with a very small computational cost, while maintaining most of the intended meaning of the original model.
A mixture copula Bayesian network model for multimodal genomic data
Directory of Open Access Journals (Sweden)
Qingyang Zhang
2017-04-01
Full Text Available Gaussian Bayesian networks have become a widely used framework to estimate directed associations between joint Gaussian variables, where the network structure encodes the decomposition of multivariate normal density into local terms. However, the resulting estimates can be inaccurate when the normality assumption is moderately or severely violated, making it unsuitable for dealing with recent genomic data such as the Cancer Genome Atlas data. In the present paper, we propose a mixture copula Bayesian network model which provides great flexibility in modeling non-Gaussian and multimodal data for causal inference. The parameters in mixture copula functions can be efficiently estimated by a routine expectation–maximization algorithm. A heuristic search algorithm based on Bayesian information criterion is developed to estimate the network structure, and prediction can be further improved by the best-scoring network out of multiple predictions from random initial values. Our method outperforms Gaussian Bayesian networks and regular copula Bayesian networks in terms of modeling flexibility and prediction accuracy, as demonstrated using a cell signaling data set. We apply the proposed methods to the Cancer Genome Atlas data to study the genetic and epigenetic pathways that underlie serous ovarian cancer.
Model parameter updating using Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Treml, C. A. (Christine A.); Ross, Timothy J.
2004-01-01
This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.
A Decomposition Algorithm for Learning Bayesian Network Structures from Data
DEFF Research Database (Denmark)
Zeng, Yifeng; Cordero Hernandez, Jorge
2008-01-01
It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....
Flood quantile estimation at ungauged sites by Bayesian networks
Mediero, L.; Santillán, D.; Garrote, L.
2012-04-01
Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a
Learning from incomplete data in Bayesian networks with qualitative influences
Masegosa, Andrés; Feelders, A.J.; van der Gaag, L.C.
2016-01-01
Domain experts can often quite reliably specify the sign of influences between variables in a Bayesian network. If we exploit this prior knowledge in estimating the probabilities of the network, it is more likely to be accepted by its users and may in fact be better calibrated with reality. We
Bayesian networks for mastitis management on dairy farms
Steeneveld, Wilma; van der Gaag, Linda; Barkema, H.W.; Hogeveen, H.
2009-01-01
This manuscript presents the idea of providing dairy farmers with probability distributions to support decisions on mastitis management and illustrates its feasibility by two applications. Naive Bayesian networks were developed for both applications. The networks in the first application were used
Shah, Abhik; Woolf, Peter
2009-01-01
Summary In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing. PMID:20161541
Kaolin Quality Prediction from Samples: A Bayesian Network Approach
International Nuclear Information System (INIS)
Rivas, T.; Taboada, J.; Ordonez, C.; Matias, J. M.
2009-01-01
We describe the results of an expert system applied to the evaluation of samples of kaolin for industrial use in paper or ceramic manufacture. Different machine learning techniques - classification trees, support vector machines and Bayesian networks - were applied with the aim of evaluating and comparing their interpretability and prediction capacities. The predictive capacity of these models for the samples analyzed was highly satisfactory, both for ceramic quality and paper quality. However, Bayesian networks generally proved to be the most useful technique for our study, as this approach combines good predictive capacity with excellent interpretability of the kaolin quality structure, as it graphically represents relationships between variables and facilitates what-if analyses.
Prognostic Bayesian networks I: rationale, learning procedure, and clinical use.
Verduijn, Marion; Peek, Niels; Rosseel, Peter M J; de Jonge, Evert; de Mol, Bas A J M
2007-12-01
Prognostic models are tools to predict the future outcome of disease and disease treatment, one of the fundamental tasks in clinical medicine. This article presents the prognostic Bayesian network (PBN) as a new type of prognostic model that builds on the Bayesian network methodology, and implements a dynamic, process-oriented view on prognosis. A PBN describes the mutual relationships between variables that come into play during subsequent stages of a care process and a clinical outcome. A dedicated procedure for inducing these networks from clinical data is presented. In this procedure, the network is composed of a collection of local supervised learning models that are recursively learned from the data. The procedure optimizes performance of the network's primary task, outcome prediction, and handles the fact that patients may drop out of the process in earlier stages. Furthermore, the article describes how PBNs can be applied to solve a number of information problems that are related to medical prognosis.
Learning Bayesian network classifiers for credit scoring using Markov Chain Monte Carlo search
Baesens, B.; Egmont-Petersen, M.; Castelo, R.; Vanthienen, J.
2001-01-01
In this paper, we will evaluate the power and usefulness of Bayesian network classifiers for credit scoring. Various types of Bayesian network classifiers will be evaluated and contrasted including unrestricted Bayesian network classifiers learnt using Markov Chain Monte Carlo (MCMC) search.
Applying Bayesian networks in practical customer satisfaction studies
Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.; Chen Tan, K.; Hiot Lim, M.; Yao, X.; Wang, L.
2004-01-01
This chapter presents an application of Bayesian network technology in an empirical customer satisfaction study. The findings of the study should provide insight to the importance of product/service dimensions in terms of the strength of their influence on overall (dis)satisfaction. To this end we
Bayesian and neural networks for preliminary ship design
DEFF Research Database (Denmark)
Clausen, H. B.; Lützen, Marie; Friis-Hansen, Andreas
2001-01-01
000 ships is acquired and various methods for derivation of empirical relations are employed. A regression analysis is carried out to fit functions to the data. Further, the data are used to learn Bayesian and neural networks to encode the relations between the characteristics. On the basis...
Exploiting sensitivity analysis in Bayesian networks for consumer satisfaction study
Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.
2004-01-01
The paper presents an application of Bayesian network technology in a empirical customer satisfaction study. The findings of the study should provide insight as to the importance of product/service dimensions in terms of the strength of their influence on overall satisfaction. To this end we apply a
Bayesian belief networks: applications in ecology and natural resource management.
R.K. McCann; B.G. Marcot; R. Ellis
2006-01-01
We review the use of Bayesian belief networks (BBNs) in natural resource management and ecology. We suggest that BBNs are useful tools for representing expert knowledge of a system, evaluating potential effects of alternative management decisions, and communicating to nonexperts about resource decision issues. BBNs can be used effectively to represent uncertainty in...
Metrics for evaluating performance and uncertainty of Bayesian network models
Bruce G. Marcot
2012-01-01
This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...
A Bayesian network approach to coastal storm impact modeling
Jäger, W.S.; Den Heijer, C.; Bolle, A.; Hanea, A.M.
2015-01-01
In this paper we develop a Bayesian network (BN) that relates offshore storm conditions to their accompagnying flood characteristics and damages to residential buildings, following on the trend of integrated flood impact modeling. It is based on data from hydrodynamic storm simulations, information
Validation & verification of a Bayesian network model for aircraft vulnerability
CSIR Research Space (South Africa)
Schietekat, Sunelle
2016-09-01
Full Text Available This paper provides a methodology for Validation and Verification (V&V) of a Bayesian Network (BN) model for aircraft vulnerability against Infrared (IR) missile threats. The model considers that the aircraft vulnerability depends both on a missile...
Nursing Home Care Quality: Insights from a Bayesian Network Approach
Goodson, Justin; Jang, Wooseung; Rantz, Marilyn
2008-01-01
Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…
Exploratory use of a Bayesian network process for translating ...
African Journals Online (AJOL)
Water resource management is complex, and should ideally be a co-operative, stakeholder-driven problem-solving process. Bayesian networks (BNs) are one participatory tool being increasingly used to facilitate this process. The upper Mgeni catchment in the province of KwaZulu-Natal, South Africa, is a key water ...
Model Criticism of Bayesian Networks with Latent Variables.
Williamson, David M.; Mislevy, Robert J.; Almond, Russell G.
This study investigated statistical methods for identifying errors in Bayesian networks (BN) with latent variables, as found in intelligent cognitive assessments. BN, commonly used in artificial intelligence systems, are promising mechanisms for scoring constructed-response examinations. The success of an intelligent assessment or tutoring system…
Bayesian Network Models in Cyber Security: A Systematic Review
Chockalingam, S.; Pieters, W.; Herdeiro Teixeira, A.M.; van Gelder, P.H.A.J.M.; Lipmaa, Helger; Mitrokotsa, Aikaterini; Matulevicius, Raimundas
2017-01-01
Bayesian Networks (BNs) are an increasingly popular modelling technique in cyber security especially due to their capability to overcome data limitations. This is also instantiated by the growth of BN models development in cyber security. However, a comprehensive comparison and analysis of these
Maritime piracy situation modelling with dynamic Bayesian networks
CSIR Research Space (South Africa)
Dabrowski, James M
2015-05-01
Full Text Available A generative model for modelling maritime vessel behaviour is proposed. The model is a novel variant of the dynamic Bayesian network (DBN). The proposed DBN is in the form of a switching linear dynamic system (SLDS) that has been extended into a...
Approximate inference in Bayesian networks: Parameterized complexity results
Kwisthout, J.H.P.
2018-01-01
Computing posterior and marginal probabilities constitutes the backbone of almost all inferences in Bayesian networks. These computations are known to be intractable in general, both to compute exactly and to approximate (e.g., by sampling algorithms). While it is well known under what constraints
The parameterized complexity of approximate inference in Bayesian networks
Kwisthout, J.H.P.
2016-01-01
Computing posterior and marginal probabilities constitutes the backbone of almost all inferences in Bayesian networks. These computations are known to be intractable in general, both to compute exactly and to approximate by sampling algorithms. While it is well known under what constraints exact
Towards port sustainability through probabilistic models: Bayesian networks
Directory of Open Access Journals (Sweden)
B. Molina
2018-04-01
Full Text Available It is necessary that a manager of an infrastructure knows relations between variables. Using Bayesian networks, variables can be classified, predicted and diagnosed, being able to estimate posterior probability of the unknown ones based on known ones. The proposed methodology has generated a database with port variables, which have been classified as economic, social, environmental and institutional, as addressed in of smart ports studies made in all Spanish Port System. Network has been developed using an acyclic directed graph, which have let us know relationships in terms of parents and sons. In probabilistic terms, it can be concluded from the constructed network that the most decisive variables for port sustainability are those that are part of the institutional dimension. It has been concluded that Bayesian networks allow modeling uncertainty probabilistically even when the number of variables is high as it occurs in port planning and exploitation.
Bayesian module identification from multiple noisy networks
Zamani Dadaneh, Siamak; Qian, Xiaoning
2016-01-01
Background and motivations Module identification has been studied extensively in order to gain deeper understanding of complex systems, such as social networks as well as biological networks. Modules are often defined as groups of vertices in these networks that are topologically cohesive with similar interaction patterns with the rest of the vertices. Most of the existing module identification algorithms assume that the given networks are faithfully measured without errors. However, in many ...
Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring
2016-02-02
AFRL-AFOSR-VA-TR-2016-0094 Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring. Thomas Henderson UNIVERSITY OF UTAH SALT ...Adams Grant Number: FA9550-12-1-0291 AFOSR PI: Dr. Frederica Darema 25 January 2016 University of Utah, Salt lake City UT 84112 Executive Summary...samples provided by a sensor network. This approach was applied to the aircraft structural health monitoring problem. Structural health monitoring
Robust Learning of Fixed-Structure Bayesian Networks
Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair
2016-01-01
We investigate the problem of learning Bayesian networks in an agnostic model where an $\\epsilon$-fraction of the samples are adversarially corrupted. Our agnostic learning model is similar to -- in fact, stronger than -- Huber's contamination model in robust statistics. In this work, we study the fully observable Bernoulli case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent facto...
Bayesian probabilistic network approach for managing earthquake risks of cities
DEFF Research Database (Denmark)
Bayraktarli, Yahya; Faber, Michael
2011-01-01
This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...... and a fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated...
Using Bayesian networks to support decision-focused information retrieval
Energy Technology Data Exchange (ETDEWEB)
Lehner, P.; Elsaesser, C.; Seligman, L. [Mitre Corp., McLean, VA (United States)
1996-12-31
This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base that are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.
Bayesian integration of networks without gold standards.
Weile, Jochen; James, Katherine; Hallinan, Jennifer; Cockell, Simon J; Lord, Phillip; Wipat, Anil; Wilkinson, Darren J
2012-06-01
Biological experiments give insight into networks of processes inside a cell, but are subject to error and uncertainty. However, due to the overlap between the large number of experiments reported in public databases it is possible to assess the chances of individual observations being correct. In order to do so, existing methods rely on high-quality 'gold standard' reference networks, but such reference networks are not always available. We present a novel algorithm for computing the probability of network interactions that operates without gold standard reference data. We show that our algorithm outperforms existing gold standard-based methods. Finally, we apply the new algorithm to a large collection of genetic interaction and protein-protein interaction experiments. The integrated dataset and a reference implementation of the algorithm as a plug-in for the Ondex data integration framework are available for download at http://bio-nexus.ncl.ac.uk/projects/nogold/
Bayesian networks: computer-assisted diagnosis support in radiology.
Burnside, Elizabeth S
2005-04-01
Medical knowledge is growing at an explosive rate. While the availability of pertinent data has the potential to make the task of diagnosis more accurate, it is also increasingly overwhelming for physicians to assimilate. Using artificial intelligence techniques, a computer can process large amounts of data to help physicians manage the growing body of medical knowledge and thereby make better decisions. Computer-assisted diagnosis support is of particular interest to the diagnostic imaging community because radiologists must integrate huge amounts of data in order to diagnose disease. Bayesian networks, among the most promising artificial intelligence techniques available, enable computers to store knowledge and estimate the probability of outcomes based on probability theory. The article describes what a Bayesian network is and how it works using a system in mammography for illustration. A comparison of Bayesian networks with other types of artificial intelligence methods, specifically neural networks and case-based reasoning, clarifies the unique features and the potential of these systems to aid radiologists in the decisions they make every day.
Looking for Sustainable Urban Mobility through Bayesian Networks
Directory of Open Access Journals (Sweden)
Giovanni Fusco
2004-11-01
Full Text Available There is no formalised theory of sustainable urban mobility systems. Observed patterns of urban mobility are often considered unsustainable. But we don’t know what a city with sustainable mobility should look like. It is nevertheless increasingly apparent that the urban mobility system plays an important role in the achievement of the city’s wider sustainability objectives.In this paper we explore the characteristics of sustainable urban mobility systems through the technique of Bayesian networks. At the frontier between multivariate statistics and artificial intelligence, Bayesian networks provide powerful models of causal knowledge in an uncertain context. Using data on urban structure, transportation offer, mobility demand, resource consumption and environmental externalities from seventy-five world cities, we developed a systemic model of the city-transportation-environment interaction in the form of a Bayesian network. The network could then be used to infer the features of the city with sustainable mobility.The Bayesian model indicates that the city with sustainable mobility is most probably a dense city with highly efficient transit and multimodal mobility. It produces high levels of accessibility without relying on a fast road network. The achievement of sustainability objectives for urban mobility is probably compatible with all socioeconomic contexts.By measuring the distance of world cities from the inferred sustainability profile, we finally derive a geography of sustainability for mobility systems. The cities closest to the sustainability profile are in Central Europe as well as in affluent countries of the Far East. Car-dependent American cities are the farthest from the desired sustainability profile.
A full bayesian approach for boolean genetic network inference.
Directory of Open Access Journals (Sweden)
Shengtong Han
Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.
Bayesian-network-based fault diagnosis methodology of subsea jumper
Cai, Baoping; Liu, Yonghong; Huang, Lei; Hu, Song; Xue, Haitao; Wang, Jiaxing
2017-10-01
The paper proposes a Bayesian-network-based real-time fault diagnosis methodology of M-shaped subsea jumper. Finite element models of a typical M-shaped subsea jumper system are built to get the data for diagnosis. Netica is Bayesian-network -based software and is used to construct diagnosis models of the jumper in two main loading conditions which are falling objects and seabed moving. The results show that the accuracy of falling objects diagnosis model with four faults is 100%, and the accuracy of seabed moving diagnosis model with two faults is also 100%. Combine the two models into one and the accuracy of combined model is 96.59%. The effectiveness of the proposed method is validated.
Uncertainty management using bayesian networks in student knowledge diagnosis
Directory of Open Access Journals (Sweden)
Adina COCU
2005-12-01
Full Text Available In intelligent tutoring systems, student or user modeling implies dealing with imperfect and uncertain knowledge. One of the artificial intelligence techniques used for uncertainty management is that of Bayesian networks. This paradigm is recommended in the situation when exist dependencies between data and qualitative information about these data. In this work we present a student knowledge diagnosis model based on representation with Bayesian networks. The educational system incorporate a multimedia interface for accomplishes the testing tools. The results of testing sessions are represented and interpreted with probability theory in order to ensure an adapted support for the student. The aims of the computer assisted application that contains this diagnose module are to support the student in personalized learning process and errors explanation.
Object-Oriented Bayesian Networks for a Decision Support System
Julia Mortera; Paola Vicard; Cecilia Vergari
2012-01-01
We study an economic decision problem where the actors are two rms and the Antitrust Authority whose main task is to monitor and prevent rms potential anti-competitive behaviour. The Antitrust Au- thority's decision process is modelled using a Bayesian network whose relational structure and parameters are estimated from data provided by the Authority itself. Several economic variables in uencing this de- cision process are included in the model. We analyse how monitoring by the Antitrust Auth...
Automatic dialogue act recognition using a dynamic Bayesian network
Dielmann, Alfred; Renals, Steve
2007-01-01
We propose a joint segmentation and classification approach for the dialogue act recognition task on natural multi-party meetings (ICSI Meeting Corpus). Five broad DA categories are automatically recognised using a generative Dynamic Bayesian Network based infrastructure. Prosodic features and a switching graphical model are used to estimate DA boundaries, in conjunction with a factored language model which is used to relate words and DA categories. This easily generalizable and extensible sy...
Prediction of the insulin sensitivity index using Bayesian networks
Bøttcher, Susanne Gammelgaard; Dethlefsen, Claus
2006-01-01
The insulin sensitivity index () can be used in assessing the risk of developing type 2 diabetes. An intravenous study is used to determine using Bergmans minimal model. However, an intravenous study is time consuming and expensive and therefore not suitable for large scale epidemiological studies. In this paper we learn the parameters and structure of several Bayesian networks relating measurements from an oral glucose tolerance test to the insulin sensitivity index determined from an intrav...
Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup
2011-01-01
Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.
Software reliability prediction using recurrent neural network with Bayesian regularization.
Tian, Liang; Noore, Afzel
2004-06-01
A recurrent neural network modeling approach for software reliability prediction with respect to cumulative failure time is proposed. Our proposed network structure has the capability of learning and recognizing the inherent internal temporal property of cumulative failure time sequence. Further, by adding a penalty term of sum of network connection weights, Bayesian regularization is applied to our network training scheme to improve the generalization capability and lower the susceptibility of overfitting. The performance of our proposed approach has been tested using four real-time control and flight dynamic application data sets. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to both goodness-of-fit and next-step-predictability compared to existing neural network models for failure time prediction.
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
Bayesian network models for error detection in radiotherapy plans
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T
2015-02-01
Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Prediction of the insulin sensitivity index using Bayesian networks
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard; Dethlefsen, Claus
The insulin sensitivity index () can be used in assessing the risk of developing type 2 diabetes. An intravenous study is used to determine using Bergmans minimal model. However, an intravenous study is time consuming and expensive and therefore not suitable for large scale epidemiological studies....... In this paper we learn the parameters and structure of several Bayesian networks relating measurements from an oral glucose tolerance test to the insulin sensitivity index determined from an intravenous study on the same individuals. The networks can then be used in prediction of from an oral glucose tolerance...
Modeling operational risks of the nuclear industry with Bayesian networks
International Nuclear Information System (INIS)
Wieland, Patricia; Lustosa, Leonardo J.
2009-01-01
Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)
Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks
DEFF Research Database (Denmark)
Jiang, Jiuchuan; Jaeger, Manfred
2014-01-01
Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes...... to express different models capturing different aspects of community detection in multiplex networks in a coherent manner, and to use a single inference mechanism for all models........ In this paper we propose to use relational Bayesian networks for the specification of probabilistic network models, and develop inference techniques that solve the community detection problem based on these models. The use of relational Bayesian networks as a flexible high-level modeling framework enables us...
Bayesian probabilistic network approach for managing earthquake risks of cities
DEFF Research Database (Denmark)
Bayraktarli, Yahya; Faber, Michael
2011-01-01
This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...... and geographical information systems. The proposed framework comprises several modules: A module on the probabilistic description of potential future earthquake shaking intensity, a module on the probabilistic assessment of spatial variability of soil liquefaction, a module on damage assessment of buildings...... and a fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated...
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.
2015-10-24
Taroni, F, Aitken, C, Garbolino, P, Biedermann, A, Bayesian Networks and Probabilistic Inference in Forensic Science (Statistics in Practice), Wiley...were transformed into a Bayesian network . Bayesian networks allow for the assessment of evidence based upon two propositions (same gun or different...gun). This allows a forensic scientist to provide insight to courts and investigators as to the value of the evidence. The breech face (BF) and
Bayesian multioutput feedforward neural networks comparison: a conjugate prior approach.
Rossi, Vivien; Vila, Jean-Pierre
2006-01-01
A Bayesian method for the comparison and selection of multioutput feedforward neural network topology, based on the predictive capability, is proposed. As a measure of the prediction fitness potential, an expected utility criterion is considered which is consistently estimated by a sample-reuse computation. As opposed to classic point-prediction-based cross-validation methods, this expected utility is defined from the logarithmic score of the neural model predictive probability density. It is shown how the advocated choice of a conjugate probability distribution as prior for the parameters of a competing network, allows a consistent approximation of the network posterior predictive density. A comparison of the performances of the proposed method with the performances of usual selection procedures based on classic cross-validation and information-theoretic criteria, is performed first on a simulated case study, and then on a well known food analysis dataset.
Bayesian-network-based safety risk analysis in construction projects
International Nuclear Information System (INIS)
Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie
2014-01-01
This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical
Smartphone technologies and Bayesian networks to assess shorebird habitat selection
Zeigler, Sara; Thieler, E. Robert; Gutierrez, Ben; Plant, Nathaniel G.; Hines, Megan K.; Fraser, James D.; Catlin, Daniel H.; Karpanty, Sarah M.
2017-01-01
Understanding patterns of habitat selection across a species’ geographic distribution can be critical for adequately managing populations and planning for habitat loss and related threats. However, studies of habitat selection can be time consuming and expensive over broad spatial scales, and a lack of standardized monitoring targets or methods can impede the generalization of site-based studies. Our objective was to collaborate with natural resource managers to define available nesting habitat for piping plovers (Charadrius melodus) throughout their U.S. Atlantic coast distribution from Maine to North Carolina, with a goal of providing science that could inform habitat management in response to sea-level rise. We characterized a data collection and analysis approach as being effective if it provided low-cost collection of standardized habitat-selection data across the species’ breeding range within 1–2 nesting seasons and accurate nesting location predictions. In the method developed, >30 managers and conservation practitioners from government agencies and private organizations used a smartphone application, “iPlover,” to collect data on landcover characteristics at piping plover nest locations and random points on 83 beaches and barrier islands in 2014 and 2015. We analyzed these data with a Bayesian network that predicted the probability a specific combination of landcover variables would be associated with a nesting site. Although we focused on a shorebird, our approach can be modified for other taxa. Results showed that the Bayesian network performed well in predicting habitat availability and confirmed predicted habitat preferences across the Atlantic coast breeding range of the piping plover. We used the Bayesian network to map areas with a high probability of containing nesting habitat on the Rockaway Peninsula in New York, USA, as an example application. Our approach facilitated the collation of evidence-based information on habitat selection
Quantum-Like Bayesian Networks for Modeling Decision Making
Directory of Open Access Journals (Sweden)
Catarina eMoreira
2016-01-01
Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
A geometric view on learning Bayesian network structures
Czech Academy of Sciences Publication Activity Database
Studený, Milan; Vomlel, Jiří; Hemmecke, R.
2010-01-01
Roč. 51, č. 5 (2010), s. 578-586 ISSN 0888-613X. [PGM 2008] R&D Projects: GA AV ČR(CZ) IAA100750603; GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : learning Bayesian networks * standard imset * inclusion neighborhood * geometric neighborhood * GES algorithm Subject RIV: BA - General Mathematics Impact factor: 1.679, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/studeny-0342804.pdf
Simplifying Probability Elicitation and Uncertainty Modeling in Bayesian Networks
Energy Technology Data Exchange (ETDEWEB)
Paulson, Patrick R; Carroll, Thomas E; Sivaraman, Chitra; Neorr, Peter A; Unwin, Stephen D; Hossain, Shamina S
2011-04-16
In this paper we contribute two methods that simplify the demands of knowledge elicitation for particular types of Bayesian networks. The first method simplify the task of providing probabilities when the states that a random variable takes can be described by a new, fully ordered state set in which a state implies all the preceding states. The second method leverages Dempster-Shafer theory of evidence to provide a way for the expert to express the degree of ignorance that they feel about the estimates being provided.
Combination of Bayesian Network and Overlay Model in User Modeling
Directory of Open Access Journals (Sweden)
Loc Nguyen
2009-12-01
Full Text Available The core of adaptive system is user model containing personal information such as knowledge, learning styles, goals… which is requisite for learning personalized process. There are many modeling approaches, for example: stereotype, overlay, plan recognition… but they don’t bring out the solid method for reasoning from user model. This paper introduces the statistical method that combines Bayesian network and overlay modeling so that it is able to infer user’s knowledge from evidences collected during user’s learning process.
A Bayesian Network View on Nested Effects Models
Directory of Open Access Journals (Sweden)
Fröhlich Holger
2009-01-01
Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Tian, Xiaojie; Zhang, Yanzhen; Ji, Renjie
2013-07-01
This article proposes a methodology for the application of Bayesian networks in conducting quantitative risk assessment of operations in offshore oil and gas industry. The method involves translating a flow chart of operations into the Bayesian network directly. The proposed methodology consists of five steps. First, the flow chart is translated into a Bayesian network. Second, the influencing factors of the network nodes are classified. Third, the Bayesian network for each factor is established. Fourth, the entire Bayesian network model is established. Lastly, the Bayesian network model is analyzed. Subsequently, five categories of influencing factors, namely, human, hardware, software, mechanical, and hydraulic, are modeled and then added to the main Bayesian network. The methodology is demonstrated through the evaluation of a case study that shows the probability of failure on demand in closing subsea ram blowout preventer operations. The results show that mechanical and hydraulic factors have the most important effects on operation safety. Software and hardware factors have almost no influence, whereas human factors are in between. The results of the sensitivity analysis agree with the findings of the quantitative analysis. The three-axiom-based analysis partially validates the correctness and rationality of the proposed Bayesian network model. © 2012 Society for Risk Analysis.
Application of Bayesian Networks to hindcast barrier island morphodynamics
Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.
2015-01-01
Prediction of coastal vulnerability is of increasing concern to policy makers, coastal managers and other stakeholders. Coastal regions and barrier islands along the Atlantic and Gulf coasts are subject to frequent, large storms, whose waves and storm surge can dramatically alter beach morphology, threaten infrastructure, and impact local economies. Given that precise forecasts of regional hazards are challenging, because of the complex interactions between processes on many scales, a range of probable geomorphic change in response to storm conditions is often more helpful than deterministic predictions. Site-specific probabilistic models of coastal change are reliable because they are formulated with observations so that local factors, of potentially high influence, are inherent in the model. The development and use of predictive tools such as Bayesian Networks in response to future storms has the potential to better inform management decisions and hazard preparation in coastal communities. We present several Bayesian Networks designed to hindcast distinct morphologic changes attributable to the Nor'Ida storm of 2009, at Fire Island, New York. Model predictions are informed with historical system behavior, initial morphologic conditions, and a parameterized treatment of wave climate.
Nuclear charge radii: density functional theory meets Bayesian neural networks
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
Learning Bayesian networks from survival data using weighting censored instances.
Stajduhar, Ivan; Dalbelo-Basić, Bojana
2010-08-01
Different survival data pre-processing procedures and adaptations of existing machine-learning techniques have been successfully applied to numerous fields in clinical medicine. Zupan et al. (2000) proposed handling censored survival data by assigning distributions of outcomes to shortly observed censored instances. In this paper, we applied their learning technique to two well-known procedures for learning Bayesian networks: a search-and-score hill-climbing algorithm and a constraint-based conditional independence algorithm. The method was thoroughly tested in a simulation study and on the publicly available clinical dataset GBSG2. We compared it to learning Bayesian networks by treating censored instances as event-free and to Cox regression. The results on model performance suggest that the weighting approach performs best when dealing with intermediate censoring. There is no significant difference between the model structures learnt using either the weighting approach or by treating censored instances as event-free, regardless of censoring. Copyright 2010 Elsevier Inc. All rights reserved.
Lo, Benjamin W. Y.; Macdonald, R. Loch; Baker, Andrew; Levine, Mitchell A. H.
2013-01-01
Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave gene...
Evaluating Flight Crew Performance by a Bayesian Network Model
Directory of Open Access Journals (Sweden)
Wei Chen
2018-03-01
Full Text Available Flight crew performance is of great significance in keeping flights safe and sound. When evaluating the crew performance, quantitative detailed behavior information may not be available. The present paper introduces the Bayesian Network to perform flight crew performance evaluation, which permits the utilization of multidisciplinary sources of objective and subjective information, despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of 484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance Model is constructed. The Delphi technique helps to gather subjective data as a supplement to objective data from accident reports. The conditional probabilities are elicited by the leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis are used and some interesting conclusions are drawn, which could provide data support to make interventions for human error management in aviation safety.
Bayesian network as a modelling tool for risk management in agriculture
DEFF Research Database (Denmark)
Rasmussen, Svend; Madsen, Anders L.; Lund, Mogens
. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models...
de Nijs, Patrick J.; Berry, Nicholas J.; Wells, Geoff J.; Reay, Dave S.
2014-10-01
The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.
Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis
International Nuclear Information System (INIS)
Simon, C.; Weber, P.; Evsukoff, A.
2008-01-01
This paper deals with the use of Bayesian networks to compute system reliability. The reliability analysis problem is described and the usual methods for quantitative reliability analysis are presented within a case study. Some drawbacks that justify the use of Bayesian networks are identified. The basic concepts of the Bayesian networks application to reliability analysis are introduced and a model to compute the reliability for the case study is presented. Dempster Shafer theory to treat epistemic uncertainty in reliability analysis is then discussed and its basic concepts that can be applied thanks to the Bayesian network inference algorithm are introduced. Finally, it is shown, with a numerical example, how Bayesian networks' inference algorithms compute complex system reliability and what the Dempster Shafer theory can provide to reliability analysis
Quantifying Uncertainty in Brain Network Measures using Bayesian Connectomics
Directory of Open Access Journals (Sweden)
Ronald Johannes Janssen
2014-10-01
Full Text Available The wiring diagram of the human brain can be described in terms of graph measures that characterize structural regularities. These measures require an estimate of whole-brain structural connectivity for which one may resort to deterministic or thresholded probabilistic streamlining procedures. While these procedures have provided important insights about the characteristics of human brain networks, they ultimately rely on unwarranted assumptions such as those of noise-free data or the use of an arbitrary threshold. Therefore, resulting structural connectivity estimates as well as derived graph measures fail to fully take into account the inherent uncertainty in the structural estimate.In this paper, we illustrate an easy way of obtaining posterior distributions over graph metrics using Bayesian inference. It is shown that this posterior distribution can be used to quantify uncertainty about graph-theoretical measures at the single subject level, thereby providing a more nuanced view of the graph-theoretical properties of human brain connectivity. We refer to this model-based approach to connectivity analysis as Bayesian connectomics.
Aggregated Residential Load Modeling Using Dynamic Bayesian Networks
Energy Technology Data Exchange (ETDEWEB)
Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai
2014-09-28
Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.
The neighborhood MCMC sampler for learning Bayesian networks
Alyami, Salem A.; Azad, A. K. M.; Keith, Jonathan M.
2016-07-01
Getting stuck in local maxima is a problem that arises while learning Bayesian networks (BNs) structures. In this paper, we studied a recently proposed Markov chain Monte Carlo (MCMC) sampler, called the Neighbourhood sampler (NS), and examined how efficiently it can sample BNs when local maxima are present. We assume that a posterior distribution f(N,E|D) has been defined, where D represents data relevant to the inference, N and E are the sets of nodes and directed edges, respectively. We illustrate the new approach by sampling from such a distribution, and inferring BNs. The simulations conducted in this paper show that the new learning approach substantially avoids getting stuck in local modes of the distribution, and achieves a more rapid rate of convergence, compared to other common algorithms e.g. the MCMC Metropolis-Hastings sampler.
Dynamic Bayesian Networks for Context-Aware Fall Risk Assessment
Directory of Open Access Journals (Sweden)
Gregory Koshmak
2014-05-01
Full Text Available Fall incidents among the elderly often occur in the home and can cause serious injuries affecting their independent living. This paper presents an approach where data from wearable sensors integrated in a smart home environment is combined using a dynamic Bayesian network. The smart home environment provides contextual data, obtained from environmental sensors, and contributes to assessing a fall risk probability. The evaluation of the developed system is performed through simulation. Each time step is represented by a single user activity and interacts with a fall sensors located on a mobile device. A posterior probability is calculated for each recognized activity or contextual information. The output of the system provides a total risk assessment of falling given a response from the fall sensor.
Development of a Bayesian Belief Network Runway Incursion Model
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
Refinement of Bayesian Network Structures upon New Data
DEFF Research Database (Denmark)
Zeng, Yifeng; Xiang, Yanping; Pacekajus, Saulius
2010-01-01
knowledge and every effort must be made in order to extract it. In this paper, we propose a general merging algorithm to deal with situations when new data have different set of attributes. The merging algorithm updates sufficient statistics when new data are received. It expands the flexibility of BN......Refinement of Bayesian network (BN) structures using new data becomes more and more relevant. Some work has been done there; however, one problem has not been considered yet – what to do when new data have fewer or more attributes than the existing model. In both cases, data contain important...... structure refinement methods. The new algorithm is evaluated in extensive experiments and its applications are discussed at length....
Designing and testing inflationary models with Bayesian networks
International Nuclear Information System (INIS)
Price, Layne C.; Auckland Univ.; Peiris, Hiranya V.; Frazer, Jonathan; Univ. of the Basque Country, Bilbao; Basque Foundation for Science, Bilbao; Easther, Richard
2015-11-01
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N f -quadratic inflation as an illustrative example, finding that the number of e-folds N * between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Dynamic Bayesian networks as prognostic models for clinical patient management.
van Gerven, Marcel A J; Taal, Babs G; Lucas, Peter J F
2008-08-01
Prognostic models in medicine are usually been built using simple decision rules, proportional hazards models, or Markov models. Dynamic Bayesian networks (DBNs) offer an approach that allows for the incorporation of the causal and temporal nature of medical domain knowledge as elicited from domain experts, thereby allowing for detailed prognostic predictions. The aim of this paper is to describe the considerations that must be taken into account when constructing a DBN for complex medical domains and to demonstrate their usefulness in practice. To this end, we focus on the construction of a DBN for prognosis of carcinoid patients, compare performance with that of a proportional hazards model, and describe predictions for three individual patients. We show that the DBN can make detailed predictions, about not only patient survival, but also other variables of interest, such as disease progression, the effect of treatment, and the development of complications. Strengths and limitations of our approach are discussed and compared with those offered by traditional methods.
Bayesian networks in infectious disease eco-epidemiology.
Lau, Colleen L; Smith, Carl S
2016-03-01
Globally, infectious diseases are responsible for a significant burden on human health. Drivers of disease transmission depend on interactions between humans, the environment, vectors, carriers, and pathogens; transmission dynamics are therefore potentially highly complex. Research in infectious disease eco-epidemiology has been rapidly gaining momentum because of the rising global importance of disease emergence and outbreaks, and growing understanding of the intimate links between human health and the environment. The scientific community is increasingly recognising the need for multidisciplinary translational research, integrated approaches, and innovative methods and tools to optimise risk prediction and control measures. Environmental health experts have also identified the need for more advanced analytical and biostatistical approaches to better determine causality, and deal with unknowns and uncertainties inherent in complex systems. In this paper, we discuss the use of Bayesian networks in infectious disease eco-epidemiology, and the potential for developing dynamic tools for public health decision-making and improving intervention strategies.
Dynamic safety assessment of natural gas stations using Bayesian network
Energy Technology Data Exchange (ETDEWEB)
Zarei, Esmaeil, E-mail: smlzarei65@gmail.com [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Azadeh, Ali [School of Industrial and Systems Engineering, Center of Excellence for Intelligent-Based Experimental Mechanic, College of Engineering, University of Tehran (Iran, Islamic Republic of); Khakzad, Nima [Safety and Security Science Section, Delft University of Technology, Delft (Netherlands); Aliabadi, Mostafa Mirzaei [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Mohammadfam, Iraj, E-mail: mohammadfam@umsha.ac.ir [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of)
2017-01-05
Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.
Dynamic safety assessment of natural gas stations using Bayesian network
International Nuclear Information System (INIS)
Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj
2017-01-01
Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.
Development of a cyber security risk model using Bayesian networks
International Nuclear Information System (INIS)
Shin, Jinsoo; Son, Hanseong; Khalil ur, Rahman; Heo, Gyunyoung
2015-01-01
Cyber security is an emerging safety issue in the nuclear industry, especially in the instrumentation and control (I and C) field. To address the cyber security issue systematically, a model that can be used for cyber security evaluation is required. In this work, a cyber security risk model based on a Bayesian network is suggested for evaluating cyber security for nuclear facilities in an integrated manner. The suggested model enables the evaluation of both the procedural and technical aspects of cyber security, which are related to compliance with regulatory guides and system architectures, respectively. The activity-quality analysis model was developed to evaluate how well people and/or organizations comply with the regulatory guidance associated with cyber security. The architecture analysis model was created to evaluate vulnerabilities and mitigation measures with respect to their effect on cyber security. The two models are integrated into a single model, which is called the cyber security risk model, so that cyber security can be evaluated from procedural and technical viewpoints at the same time. The model was applied to evaluate the cyber security risk of the reactor protection system (RPS) of a research reactor and to demonstrate its usefulness and feasibility. - Highlights: • We developed the cyber security risk model can be find the weak point of cyber security integrated two cyber analysis models by using Bayesian Network. • One is the activity-quality model signifies how people and/or organization comply with the cyber security regulatory guide. • Other is the architecture model represents the probability of cyber-attack on RPS architecture. • The cyber security risk model can provide evidence that is able to determine the key element for cyber security for RPS of a research reactor
Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring.
Directory of Open Access Journals (Sweden)
Xia Jiang
Full Text Available The problems of correlation and classification are long-standing in the fields of statistics and machine learning, and techniques have been developed to address these problems. We are now in the era of high-dimensional data, which is data that can concern billions of variables. These data present new challenges. In particular, it is difficult to discover predictive variables, when each variable has little marginal effect. An example concerns Genome-wide Association Studies (GWAS datasets, which involve millions of single nucleotide polymorphism (SNPs, where some of the SNPs interact epistatically to affect disease status. Towards determining these interacting SNPs, researchers developed techniques that addressed this specific problem. However, the problem is more general, and so these techniques are applicable to other problems concerning interactions. A difficulty with many of these techniques is that they do not distinguish whether a learned interaction is actually an interaction or whether it involves several variables with strong marginal effects.We address this problem using information gain and Bayesian network scoring. First, we identify candidate interactions by determining whether together variables provide more information than they do separately. Then we use Bayesian network scoring to see if a candidate interaction really is a likely model. Our strategy is called MBS-IGain. Using 100 simulated datasets and a real GWAS Alzheimer's dataset, we investigated the performance of MBS-IGain.When analyzing the simulated datasets, MBS-IGain substantially out-performed nine previous methods at locating interacting predictors, and at identifying interactions exactly. When analyzing the real Alzheimer's dataset, we obtained new results and results that substantiated previous findings. We conclude that MBS-IGain is highly effective at finding interactions in high-dimensional datasets. This result is significant because we have increasingly
E-commerce System Security Assessment based on Bayesian Network Algorithm Research
Ting Li; Xin Li
2013-01-01
Evaluation of e-commerce network security is based on assessment method Bayesian networks, and it first defines the vulnerability status of e-commerce system evaluation index and the vulnerability of the state model of e-commerce systems, and after the principle of the Bayesian network reliability of e-commerce system and the criticality of the vulnerabilities were analyzed, experiments show that the change method is a good evaluation of the security of e-commerce systems.
Directory of Open Access Journals (Sweden)
Duo ePeng
2014-11-01
Full Text Available Sucrose transporters (SUTs are essential for the export and efficient movement of sucrose from source leaves to sink organs in plants. The angiosperm SUT family was previously classified into three or four distinct groups, Types I, II (subgroup IIB and III, with dicot-specific Type I and monocot-specific Type IIB functioning in phloem loading. To shed light on the underlying drivers of SUT evolution, Bayesian phylogenetic inference was undertaken using 41 sequenced plant genomes, including seven basal lineages at key evolutionary junctures. Our analysis supports four phylogenetically and structurally distinct SUT subfamilies, originating from two ancient groups (AG1 and AG2 that diverged early during terrestrial colonization. In both AG1 and AG2, multiple intron acquisition events in the progenitor vascular plant established the gene structures of modern SUTs. Tonoplastic Type III and plasmalemmal Type II represent evolutionarily conserved descendants of AG1 and AG2, respectively. Type I and Type IIB were previously thought to evolve after the dicot-monocot split. We show, however, that divergence of Type I from Type III SUT predated basal angiosperms, likely associated with evolution of vascular cambium and phloem transport. Type I SUT was subsequently lost in monocots along with vascular cambium, and independent evolution of Type IIB coincided with modified monocot vasculature. Both Type I and Type IIB underwent lineage-specific expansion. In multiple unrelated taxa, the newly-derived SUTs exhibit biased expression in reproductive tissues, suggesting a functional link between phloem loading and reproductive fitness. Convergent evolution of Type I and Type IIB for SUT function in phloem loading and reproductive organs supports the idea that differential vascular development in dicots and monocots is a strong driver for SUT family evolution in angiosperms.
Making Supply Chains Resilient to Floods Using a Bayesian Network
Haraguchi, M.
2015-12-01
Natural hazards distress the global economy by disrupting the interconnected supply chain networks. Manufacturing companies have created cost-efficient supply chains by reducing inventories, streamlining logistics and limiting the number of suppliers. As a result, today's supply chains are profoundly susceptible to systemic risks. In Thailand, for example, the GDP growth rate declined by 76 % in 2011 due to prolonged flooding. Thailand incurred economic damage including the loss of USD 46.5 billion, approximately 70% of which was caused by major supply chain disruptions in the manufacturing sector. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and Hurricane Sandy in 2012. This study proposes a methodology for modeling supply chain disruptions using a Bayesian network analysis (BNA) to estimate expected values of countermeasures of floods, such as inventory management, supplier management and hard infrastructure management. We first performed a spatio-temporal correlation analysis between floods and extreme precipitation data for the last 100 years at a global scale. Then we used a BNA to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains and market demands. We also included decision variables of countermeasures that would mitigate potential losses caused by supply chain disruptions. Finally, we conducted a cost-benefit analysis by estimating the expected values of these potential countermeasures while conducting a sensitivity analysis. The methodology was applied to supply chain disruptions caused by the 2011 Thailand floods. Our study demonstrates desirable typical data requirements for the analysis, such as anonymized supplier network data (i.e. critical dependencies, vulnerability information of suppliers) and sourcing data(i.e. locations of suppliers, and production rates and
Rational Irrationality: Modeling Climate Change Belief Polarization Using Bayesian Networks.
Cook, John; Lewandowsky, Stephan
2016-01-01
Belief polarization is said to occur when two people respond to the same evidence by updating their beliefs in opposite directions. This response is considered to be "irrational" because it involves contrary updating, a form of belief updating that appears to violate normatively optimal responding, as for example dictated by Bayes' theorem. In light of much evidence that people are capable of normatively optimal behavior, belief polarization presents a puzzling exception. We show that Bayesian networks, or Bayes nets, can simulate rational belief updating. When fit to experimental data, Bayes nets can help identify the factors that contribute to polarization. We present a study into belief updating concerning the reality of climate change in response to information about the scientific consensus on anthropogenic global warming (AGW). The study used representative samples of Australian and U.S. Among Australians, consensus information partially neutralized the influence of worldview, with free-market supporters showing a greater increase in acceptance of human-caused global warming relative to free-market opponents. In contrast, while consensus information overall had a positive effect on perceived consensus among U.S. participants, there was a reduction in perceived consensus and acceptance of human-caused global warming for strong supporters of unregulated free markets. Fitting a Bayes net model to the data indicated that under a Bayesian framework, free-market support is a significant driver of beliefs about climate change and trust in climate scientists. Further, active distrust of climate scientists among a small number of U.S. conservatives drives contrary updating in response to consensus information among this particular group. Copyright © 2016 Cognitive Science Society, Inc.
Bayesian networks for clinical decision support in lung cancer care.
Directory of Open Access Journals (Sweden)
M Berkan Sesen
Full Text Available Survival prediction and treatment selection in lung cancer care are characterised by high levels of uncertainty. Bayesian Networks (BNs, which naturally reason with uncertain domain knowledge, can be applied to aid lung cancer experts by providing personalised survival estimates and treatment selection recommendations. Based on the English Lung Cancer Database (LUCADA, we evaluate the feasibility of BNs for these two tasks, while comparing the performances of various causal discovery approaches to uncover the most feasible network structure from expert knowledge and data. We show first that the BN structure elicited from clinicians achieves a disappointing area under the ROC curve of 0.75 (± 0.03, whereas a structure learned by the CAMML hybrid causal discovery algorithm, which adheres with the temporal restrictions, achieves 0.81 (± 0.03. Second, our causal intervention results reveal that BN treatment recommendations, based on prescribing the treatment plan that maximises survival, can only predict the recorded treatment plan 29% of the time. However, this percentage rises to 76% when partial matches are included.
Biedermann, A; Taroni, F; Bozza, S
2009-12-15
As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches--with the help of Bayesian networks--for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).
Garcia Urquia, E. L.; Braun, A.; Yamagishi, H.
2016-12-01
Tegucigalpa, the capital city of Honduras, experiences rainfall-induced landslides on a yearly basis. The high precipitation regime and the rugged topography the city has been built in couple with the lack of a proper urban expansion plan to contribute to the occurrence of landslides during the rainy season. Thousands of inhabitants live at risk of losing their belongings due to the construction of precarious shelters in landslide-prone areas on mountainous terrains and next to the riverbanks. Therefore, the city is in the need for landslide susceptibility and hazard maps to aid in the regulation of future development. Major challenges in the context of highly dynamic urbanizing areas are the overlap of natural and anthropogenic slope destabilizing factors, as well as the availability and accuracy of data. Data-driven multivariate techniques have proven to be powerful in discovering interrelations between factors, identifying important factors in large datasets, capturing non-linear problems and coping with noisy and incomplete data. This analysis focuses on the creation of a landslide susceptibility map using different methods from the field of data mining, Artificial Neural Networks (ANN), Bayesian Networks (BN) and Decision Trees (DT). The input dataset of the study contains geomorphological and hydrological factors derived from a digital elevation model with a 10 m resolution, lithological factors derived from a geological map, and anthropogenic factors, such as information on the development stage of the neighborhoods in Tegucigalpa and road density. Moreover, a landslide inventory map that was developed in 2014 through aerial photo interpretation was used as target variable in the analysis. The analysis covers an area of roughly 100 km2, while 8.95 km2 are occupied by landslides. In a first step, the dataset was explored by assessing and improving the data quality, identifying unimportant variables and finding interrelations. Then, based on a training
Transmission Network Expansion Planning Considering Phase-Shifter Transformers
Miasaki, Celso T.; Franco, Edgar M. C.; Romero, Ruben A.
2012-01-01
This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS) transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed...
Integrated Bayesian network framework for modeling complex ecological issues.
Johnson, Sandra; Mengersen, Kerrie
2012-07-01
The management of environmental problems is multifaceted, requiring varied and sometimes conflicting objectives and perspectives to be considered. Bayesian network (BN) modeling facilitates the integration of information from diverse sources and is well suited to tackling the management challenges of complex environmental problems. However, combining several perspectives in one model can lead to large, unwieldy BNs that are difficult to maintain and understand. Conversely, an oversimplified model may lead to an unrealistic representation of the environmental problem. Environmental managers require the current research and available knowledge about an environmental problem of interest to be consolidated in a meaningful way, thereby enabling the assessment of potential impacts and different courses of action. Previous investigations of the environmental problem of interest may have already resulted in the construction of several disparate ecological models. On the other hand, the opportunity may exist to initiate this modeling. In the first instance, the challenge is to integrate existing models and to merge the information and perspectives from these models. In the second instance, the challenge is to include different aspects of the environmental problem incorporating both the scientific and management requirements. Although the paths leading to the combined model may differ for these 2 situations, the common objective is to design an integrated model that captures the available information and research, yet is simple to maintain, expand, and refine. BN modeling is typically an iterative process, and we describe a heuristic method, the iterative Bayesian network development cycle (IBNDC), for the development of integrated BN models that are suitable for both situations outlined above. The IBNDC approach facilitates object-oriented BN (OOBN) modeling, arguably viewed as the next logical step in adaptive management modeling, and that embraces iterative development
Kinematic and Attribute Fusion Using a Bayesian Belief Network Framework
National Research Council Canada - National Science Library
Krieg, Mark L
2006-01-01
.... However, attribute information has the potential to not only provide identity and class information, but it may also improve data association and kinematic tracking performance, Bayesian Belief...
Multi-year expansion planning of large transmission networks
Energy Technology Data Exchange (ETDEWEB)
Binato, S.; Oliveira, G.C. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)
1994-12-31
This paper describes a model for multi-year transmission network expansion to be used in long-term system planning. The network is represented by a linearized (DC) power flow and, for each year, operation costs are evaluated by a linear programming (LP) based algorithm that provides sensitivity indices for circuit reinforcements. A Backward/Forward approaches is proposed to devise an expansion plan over the study period. A case study with the southeastern Brazilian system is presented and discussed. (author) 18 refs., 5 figs., 1 tab.
International Nuclear Information System (INIS)
Duarte, Juliana P.; Leite, Victor C.; Melo, P.F. Frutuoso e
2013-01-01
Bayesian networks have become a very handy tool for solving problems in various application areas. This paper discusses the use of Bayesian networks to treat dependent events in reliability engineering typically modeled by Markovian models. Dependent events play an important role as, for example, when treating load-sharing systems, bridge systems, common-cause failures, and switching systems (those for which a standby component is activated after the main one fails by means of a switching mechanism). Repair plays an important role in all these cases (as, for example, the number of repairmen). All Bayesian network calculations are performed by means of the Netica™ software, of Norsys Software Corporation, and Fortran 90 to evaluate them over time. The discussion considers the development of time-dependent reliability figures of merit, which are easily obtained, through Markovian models, but not through Bayesian networks, because these latter need probability figures as input and not failure and repair rates. Bayesian networks produced results in very good agreement with those of Markov models and pivotal decomposition. Static and discrete time (DTBN) Bayesian networks were used in order to check their capabilities of modeling specific situations, like switching failures in cold-standby systems. The DTBN was more flexible to modeling systems where the time of occurrence of an event is important, for example, standby failure and repair. However, the static network model showed as good results as DTBN by a much more simplified approach. (author)
International Nuclear Information System (INIS)
Montani, S.; Portinale, L.; Bobbio, A.; Codetta-Raiteri, D.
2008-01-01
In this paper, we present RADYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the inference on dynamic Bayesian networks, in order to compute reliability measures. After having described the basic features of the tool, we show how it operates on a real world example and we compare the unreliability results it generates with those returned by other methodologies, in order to verify the correctness and the consistency of the results obtained
Bayesian network as a modelling tool for risk management in agriculture
DEFF Research Database (Denmark)
Rasmussen, Svend; Madsen, Anders Læsø; Lund, Mogens
. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions......, and that it has the ability to link uncertainty from different external sources to budget figures and to quantify risk at the farm level....
Question Generation and Adaptation Using a Bayesian Network of the Learner’s Achievements
Wißner, M.; Linnebank, F.; Liem, J.; Bredeweg, B.; André, E.; Lane, H.C.; Yacef, K.; Mostow, J.; Pavlik, P.
2013-01-01
This paper presents a domain independent question generation and interaction procedure that automatically generates multiple-choice questions for conceptual models created with Qualitative Reasoning vocabulary. A Bayesian Network is deployed that captures the learning progress based on the answers
Flexible Transport Network Expansion via Open WDM Interfaces
DEFF Research Database (Denmark)
Fagertun, Anna Manolova; Skjoldstrup, Bjarke
2013-01-01
This paper presents a successful test-bed implementation of a multi-vendor transport network interconnection via open WDM interfaces. The concept of applying Alien Wavelengths (AWs) for network expansion was successfully illustrated via deployment of multi-domain/multi-vendor end-to-end OTN...... services. We evaluate the impact of AW service establishment on both native and other alien services. Our experience confirms the technical feasibility of the concept in the context of transparent network-to-network interconnection at the optical layer. Furthermore, main operational challenges...
Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.
2016-12-01
We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will
Bus Route Design with a Bayesian Network Analysis of Bus Service Revenues
Liu, Yi; Jia, Yuanhua; Feng, Xuesong; Wu, Jiang
2018-01-01
A Bayesian network is used to estimate revenues of bus services in consideration of the effect of bus travel demands, passenger transport distances, and so on. In this research, the area X in Beijing has been selected as the study area because of its relatively high bus travel demand and, on the contrary, unsatisfactory bus services. It is suggested that the proposed Bayesian network approach is able to rationally predict the probabilities of different revenues of various route services, from...
Energy Technology Data Exchange (ETDEWEB)
Munteanu, P. [Bayesia SA, 53 - Laval (France); Debache, G. [Dassault Aviation, 92 - Saint Cloud (France); Duval, C. [Electricite de France (EDF), 78 - Chatou (France)
2008-09-15
This article presents the outlines of Bayesian networks modelling and argues for their interest in the probabilistic studies of industrial risk and reliability. A practical case representative of this type of study is presented in support of the argumentation. The article concludes on some research tracks aiming at improving the performances of the methods relying on Bayesian networks and at widening their application area in risk management. (authors)
Alaska Seismic Network Upgrade and Expansion
Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.
2009-12-01
such as ANSS, Alaska Volcano Observatory, Bradley Lake Dam, Red Dog Mine, The Plate Boundary Observatory (PBO), Alaska Tsunami Warning Center, and City and State Emergency Managers has helped link vast networks together so that the overall data transition can be varied. This lessens the likelihood of having a single point of failure for an entire network. Robust communication is key to retrieving seismic data. AEIC has gone through growing pains learning how to harden our network and encompassing the many types of telemetry that can be utilized in today's world. Redundant telemetry paths are a goal that is key to retrieving data, however at times this is not feasible with the vast size and terrain in Alaska. We will demonstrate what has worked for us and what our network consists of.
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
DEFF Research Database (Denmark)
Antal, P.; Fannes, G.; Timmerman, D.
2004-01-01
Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate...... an expert reference and against data scores (the mutual information (MI) and a Bayesian score). Next, we transform the text-based dependency measures into informative text-based priors for Bayesian network structures. Finally, we report the benefit of such informative text-based priors on the performance...
Bayesian Networks as a Decision Tool for O&M of Offshore Wind Turbines
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
Costs to operation and maintenance (O&M) of offshore wind turbines are large. This paper presents how influence diagrams can be used to assist in rational decision making for O&M. An influence diagram is a graphical representation of a decision tree based on Bayesian Networks. Bayesian Networks...... offer efficient Bayesian updating of a damage model when imperfect information from inspections/monitoring is available. The extension to an influence diagram offers the calculation of expected utilities for decision alternatives, and can be used to find the optimal strategy among different alternatives...
Taming Many-Parameter BSM Models with Bayesian Neural Networks
Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.
2017-09-01
The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.
Combining morphological analysis and Bayesian networks for strategic decision support
Directory of Open Access Journals (Sweden)
A de Waal
2007-12-01
Full Text Available Morphological analysis (MA and Bayesian networks (BN are two closely related modelling methods, each of which has its advantages and disadvantages for strategic decision support modelling. MA is a method for defining, linking and evaluating problem spaces. BNs are graphical models which consist of a qualitative and quantitative part. The qualitative part is a cause-and-effect, or causal graph. The quantitative part depicts the strength of the causal relationships between variables. Combining MA and BN, as two phases in a modelling process, allows us to gain the benefits of both of these methods. The strength of MA lies in defining, linking and internally evaluating the parameters of problem spaces and BN modelling allows for the definition and quantification of causal relationships between variables. Short summaries of MA and BN are provided in this paper, followed by discussions how these two computer aided methods may be combined to better facilitate modelling procedures. A simple example is presented, concerning a recent application in the field of environmental decision support.
Vehicle detection in aerial surveillance using dynamic Bayesian networks.
Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying
2012-04-01
We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.
Predicting data popularity using Bayesian networks over ATLAS grid sites
AUTHOR|(CDS)2072085; The ATLAS collaboration; Klimentov, A; De, K
2012-01-01
One of the primary tasks in resource utilization of the Distributed Computing at the ATLAS experiment is to replicate newly obtained data from the Production and Distributed Analysis System (PanDA) over grid while minimizing the number of data replicas, but on the other hand if a dataset becomes popular, such replicas should be encouraged to distribute the workload more evenly. To make this feasible it is of significant importance to know, with a good probability, how popular particular datasets will be in future. We are focusing on the analysis of data usage in PanDA system that provides efficient and transparent utilization of the grid for production and analysis tasks. The initial data popularity analysis was done at “A Probabilistic Analysis of Data Popularity in ATLAS Data Caching”, and an idea of Bayesian networks (a high-level representation of a probability distribution over a set of stochastic variables that are used for building a model of the problem domain) for popularity prediction has surfac...
Finding the optimal Bayesian network given a constraint graph
Directory of Open Access Journals (Sweden)
Jacob M. Schreiber
2017-07-01
Full Text Available Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior knowledge, including global orderings, super-structures, and constraint rules. While super-structures and constraint rules are flexible in terms of what prior knowledge they can encode, they achieve savings in memory and computational time simply by avoiding considering invalid graphs. We introduce the concept of a “constraint graph” as an intuitive method for incorporating rich prior knowledge into the structure learning task. We describe how this graph can be used to reduce the memory cost and computational time required to find the optimal graph subject to the encoded constraints, beyond merely eliminating invalid graphs. In particular, we show that a constraint graph can break the structure learning task into independent subproblems even in the presence of cyclic prior knowledge. These subproblems are well suited to being solved in parallel on a single machine or distributed across many machines without excessive communication cost.
Bayesian network model of crowd emotion and negative behavior
Ramli, Nurulhuda; Ghani, Noraida Abdul; Hatta, Zulkarnain Ahmad; Hashim, Intan Hashimah Mohd; Sulong, Jasni; Mahudin, Nor Diana Mohd; Rahman, Shukran Abd; Saad, Zarina Mat
2014-12-01
The effects of overcrowding have become a major concern for event organizers. One aspect of this concern has been the idea that overcrowding can enhance the occurrence of serious incidents during events. As one of the largest Muslim religious gathering attended by pilgrims from all over the world, Hajj has become extremely overcrowded with many incidents being reported. The purpose of this study is to analyze the nature of human emotion and negative behavior resulting from overcrowding during Hajj events from data gathered in Malaysian Hajj Experience Survey in 2013. The sample comprised of 147 Malaysian pilgrims (70 males and 77 females). Utilizing a probabilistic model called Bayesian network, this paper models the dependence structure between different emotions and negative behaviors of pilgrims in the crowd. The model included the following variables of emotion: negative, negative comfortable, positive, positive comfortable and positive spiritual and variables of negative behaviors; aggressive and hazardous acts. The study demonstrated that emotions of negative, negative comfortable, positive spiritual and positive emotion have a direct influence on aggressive behavior whereas emotion of negative comfortable, positive spiritual and positive have a direct influence on hazardous acts behavior. The sensitivity analysis showed that a low level of negative and negative comfortable emotions leads to a lower level of aggressive and hazardous behavior. Findings of the study can be further improved to identify the exact cause and risk factors of crowd-related incidents in preventing crowd disasters during the mass gathering events.
Non-parametric Bayesian networks: Improving theory and reviewing applications
International Nuclear Information System (INIS)
Hanea, Anca; Morales Napoles, Oswaldo; Ababei, Dan
2015-01-01
Applications in various domains often lead to high dimensional dependence modelling. A Bayesian network (BN) is a probabilistic graphical model that provides an elegant way of expressing the joint distribution of a large number of interrelated variables. BNs have been successfully used to represent uncertain knowledge in a variety of fields. The majority of applications use discrete BNs, i.e. BNs whose nodes represent discrete variables. Integrating continuous variables in BNs is an area fraught with difficulty. Several methods that handle discrete-continuous BNs have been proposed in the literature. This paper concentrates only on one method called non-parametric BNs (NPBNs). NPBNs were introduced in 2004 and they have been or are currently being used in at least twelve professional applications. This paper provides a short introduction to NPBNs, a couple of theoretical advances, and an overview of applications. The aim of the paper is twofold: one is to present the latest improvements of the theory underlying NPBNs, and the other is to complement the existing overviews of BNs applications with the NPNBs applications. The latter opens the opportunity to discuss some difficulties that applications pose to the theoretical framework and in this way offers some NPBN modelling guidance to practitioners. - Highlights: • The paper gives an overview of the current NPBNs methodology. • We extend the NPBN methodology by relaxing the conditions of one of its fundamental theorems. • We propose improvements of the data mining algorithm for the NPBNs. • We review the professional applications of the NPBNs.
Modeling Land-Use Decision Behavior with Bayesian Belief Networks
Directory of Open Access Journals (Sweden)
Inge Aalders
2008-06-01
Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.
Application of Bayesian Networks for Estimation of Individual Psychological Characteristics
Litvinenko, Alexander
2017-07-19
In this paper we apply Bayesian networks for developing more accurate final overall estimations of psychological characteristics of an individual, based on psychological test results. Psychological tests which identify how much an individual possesses a certain factor are very popular and quite common in the modern world. We call this value for a given factor -- the final overall estimation. Examples of factors could be stress resistance, the readiness to take a risk, the ability to concentrate on certain complicated work and many others. An accurate qualitative and comprehensive assessment of human potential is one of the most important challenges in any company or collective. The most common way of studying psychological characteristics of each single person is testing. Psychologists and sociologists are constantly working on improvement of the quality of their tests. Despite serious work, done by psychologists, the questions in tests often do not produce enough feedback due to the use of relatively poor estimation systems. The overall estimation is usually based on personal experiences and the subjective perception of a psychologist or a group of psychologists about the investigated psychological personality factors.
CEO emotional bias and investment decision, Bayesian network method
Directory of Open Access Journals (Sweden)
Jarboui Anis
2012-08-01
Full Text Available This research examines the determinants of firms’ investment introducing a behavioral perspective that has received little attention in corporate finance literature. The following central hypothesis emerges from a set of recently developed theories: Investment decisions are influenced not only by their fundamentals but also depend on some other factors. One factor is the biasness of any CEO to their investment, biasness depends on the cognition and emotions, because some leaders use them as heuristic for the investment decision instead of fundamentals. This paper shows how CEO emotional bias (optimism, loss aversion and overconfidence affects the investment decisions. The proposed model of this paper uses Bayesian Network Method to examine this relationship. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some 100 Tunisian executives. Our results have revealed that the behavioral analysis of investment decision implies leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its investment choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.
Du, Yuanwei; Guo, Yubin
2015-01-01
The intrinsic mechanism of multimorbidity is difficult to recognize and prediction and diagnosis are difficult to carry out accordingly. Bayesian networks can help to diagnose multimorbidity in health care, but it is difficult to obtain the conditional probability table (CPT) because of the lack of clinically statistical data. Today, expert knowledge and experience are increasingly used in training Bayesian networks in order to help predict or diagnose diseases, but the CPT in Bayesian networks is usually irrational or ineffective for ignoring realistic constraints especially in multimorbidity. In order to solve these problems, an evidence reasoning (ER) approach is employed to extract and fuse inference data from experts using a belief distribution and recursive ER algorithm, based on which evidence reasoning method for constructing conditional probability tables in Bayesian network of multimorbidity is presented step by step. A multimorbidity numerical example is used to demonstrate the method and prove its feasibility and application. Bayesian network can be determined as long as the inference assessment is inferred by each expert according to his/her knowledge or experience. Our method is more effective than existing methods for extracting expert inference data accurately and is fused effectively for constructing CPTs in a Bayesian network of multimorbidity.
A Bayesian Network approach for flash flood risk assessment
Boutkhamouine, Brahim; Roux, Hélène; Pérès, François
2017-04-01
Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments ( 10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio-temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by
Health impact assessment of cycling network expansions in European cities.
Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark
2018-01-09
We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.
A novel Bayesian learning method for information aggregation in modular neural networks
DEFF Research Database (Denmark)
Wang, Pan; Xu, Lida; Zhou, Shang-Ming
2010-01-01
Modular neural network is a popular neural network model which has many successful applications. In this paper, a sequential Bayesian learning (SBL) is proposed for modular neural networks aiming at efficiently aggregating the outputs of members of the ensemble. The experimental results on eight...... benchmark problems have demonstrated that the proposed method can perform information aggregation efficiently in data modeling....
Evaluation of a Bayesian inference network for ligand-based virtual screening
Directory of Open Access Journals (Sweden)
Chen Beining
2009-04-01
Full Text Available Abstract Background Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity. Results Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought. Conclusion A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening.
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
DEFF Research Database (Denmark)
Antal, P.; Fannes, G.; Timmerman, D.
2004-01-01
Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate...... information from free-text resources with statistical data in learning Bayesian networks. Firstly, we report on the collection of prior information resources in the ovarian cancer domain, which includes "kernel" annotations of the domain variables. We introduce methods based on the annotations and literature...... an expert reference and against data scores (the mutual information (MI) and a Bayesian score). Next, we transform the text-based dependency measures into informative text-based priors for Bayesian network structures. Finally, we report the benefit of such informative text-based priors on the performance...
Li, Rui; Chen, Kewei; Zhang, Nan; Fleisher, Adam S.; Li, Yao; Wu, Xia
2009-02-01
This work proposed to use the linear Gaussian Bayesian network (BN) to construct the effective connectivity model of the brain's default mode network (DMN), a set of regions characterized by more increased neural activity during rest-state than most goal-oriented tasks. In a complete unsupervised data-driven manner, Bayesian information criterion (BIC) based learning approach was utilized to identify a highest scored network whose nodes (brain regions) were selected based on the result from the group independent component analysis (Group ICA) examining the DMN. We put forward to adopt the statistical significance testing method for regression coefficients used in stepwise regression analysis to further refine the network identified by BIC. The final established BN, learned from the functional magnetic resonance imaging (fMRI) data acquired from 12 healthy young subjects during rest-state, revealed that the hippocampus (HC) was the most influential brain region that affected activities in all other regions included in the BN. In contrast, the posterior cingulate cortex (PCC) was influenced by other regions, but had no reciprocal effects on any other region. Overall, the configuration of our BN illustrated that a prominent connection from HC to PCC existed in the DMN.
Heterogeneous LTE-Advanced Network Expansion for 1000x Capacity
DEFF Research Database (Denmark)
Hu, Liang; Sanchez, Maria Laura Luque; Maternia, Michal
2013-01-01
rate. We conclude that the 1000 times network capacity increase simultaneously with a 10 times increase of minimum user data rate can be reached by LTE-Advanced deploying approximately 10 times outdoor micro sites and 100 times more indoor femto cells, relative to the number of reference macro sites......this paper studies LTE (Long-Term Evolution)-Advanced heterogeneous network expansion in a dense urban environment for a 1000 times capacity increase and a 10 times increase in minimum user data rate requirements. The radio network capacity enhancement via outdoor and indoor small cell...
Transmission Network Expansion Planning Considering Desired Generation Security
Directory of Open Access Journals (Sweden)
Samaneh GOLESTANI
2014-02-01
Full Text Available Transmission Network Expansion Planning (TNEP is an important part of power system planning in both conventional and new structured power market. Its goal is to minimize the network construction and operational cost while satisfying the demand increase, considering technical and economic conditions. Planning algorithm in this paper consisted of two stages. The former specifies highly uncertain lines and probability of congestion, considering desired generation security level (e.g. N-2 generation security level. The latter determines the optimal expansion capacity of existing lines. Splitting required capacity for reinforcement of weak lines due to desired generation security level simplifies the TNEP problem. In addition, it monitors the impact of generation uncertainty on transmission lines. Simulation results of the proposed idea are presented for IEEE-RTS-24bus network.
Efficient design and inference in distributed Bayesian networks: an overview
de Oude, P.; Groen, F.C.A.; Pavlin, G.; Bezhanishvili, N.; Löbner, S.; Schwabe, K.; Spada, L.
2011-01-01
This paper discusses an approach to distributed Bayesian modeling and inference, which is relevant for an important class of contemporary real world situation assessment applications. By explicitly considering the locality of causal relations, the presented approach (i) supports coherent distributed
Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Bayesian decision theory. The method is demonstrated through an application example....
Distributed Diagnosis in Uncertain Environments Using Dynamic Bayesian Networks
National Aeronautics and Space Administration — This paper presents a distributed Bayesian fault diagnosis scheme for physical systems. Our diagnoser design is based on a procedure for factoring the global system...
Utilization of extended bayesian networks in decision making under uncertainty
Energy Technology Data Exchange (ETDEWEB)
Van Eeckhout, Edward M [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory; Gibson, William L [Los Alamos National Laboratory
2009-01-01
Bayesian network tool (called IKE for Integrated Knowledge Engine) has been developed to assess the probability of undesirable events. The tool allows indications and observables from sensors and/or intelligence to feed directly into hypotheses of interest, thus allowing one to quantify the probability and uncertainty of these events resulting from very disparate evidence. For example, the probability that a facility is processing nuclear fuel or assembling a weapon can be assessed by examining the processes required, establishing the observables that should be present, then assembling information from intelligence, sensors and other information sources related to the observables. IKE also has the capability to determine tasking plans, that is, prioritize which observable should be collected next to most quickly ascertain the 'true' state and drive the probability toward 'zero' or 'one.' This optimization capability is called 'evidence marshaling.' One example to be discussed is a denied facility monitoring situation; there is concern that certain process(es) are being executed at the site (due to some intelligence or other data). We will show how additional pieces of evidence will then ascertain with some degree of certainty the likelihood of this process(es) as each piece of evidence is obtained. This example shows how both intelligence and sensor data can be incorporated into the analysis. A second example involves real-time perimeter security. For this demonstration we used seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors identified and assessed the likelihood of 'intruder' versus friendly vehicles.
A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.
Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing
2015-01-01
This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.
Bayesian networks applied to process diagnostics. Applications in energy industry
Energy Technology Data Exchange (ETDEWEB)
Widarsson, Bjoern (ed.); Karlsson, Christer; Dahlquist, Erik [Maelardalen Univ., Vaesteraas (Sweden); Nielsen, Thomas D.; Jensen, Finn V. [Aalborg Univ. (Denmark)
2004-10-01
Uncertainty in process operation occurs frequently in heat and power industry. This makes it hard to find the occurrence of an abnormal process state from a number of process signals (measurements) or find the correct cause to an abnormality. Among several other methods, Bayesian Networks (BN) is a method to build a model which can handle uncertainty in both process signals and the process itself. The purpose of this project is to investigate the possibilities to use BN for fault detection and diagnostics in combined heat and power industries through execution of two different applications. Participants from Aalborg University represent the knowledge of BN and participants from Maelardalen University have the experience from modelling heat and power applications. The co-operation also includes two energy companies; Elsam A/S (Nordjyllandsverket) and Maelarenergi AB (Vaesteraas CHP-plant), where the two applications are made with support from the plant personnel. The project ended out in two quite different applications. At Nordjyllandsverket, an application based (due to the lack of process knowledge) on pure operation data is build with capability to detect an abnormal process state in a coal mill. Detection is made through a conflict analysis when entering process signals into a model built by analysing the operation database. The application at Maelarenergi is built with a combination of process knowledge and operation data and can detect various faults caused by the fuel. The process knowledge is used to build a causal network structure and the structure is then trained by data from the operation database. Both applications are made as off-online applications, but they are ready for being run on-line. The performance of fault detection and diagnostics are good, but a lack of abnormal process states with known cause reduces the evaluation possibilities. Advantages with combining expert knowledge of the process with operation data are the possibility to represent
Predicting the Survival of Gastric Cancer Patients Using Artificial and Bayesian Neural Networks
Korhani Kangi, Azam; Bahrampour, Abbas
2018-02-26
Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for
Tamada, Yoshinori; Bannai, Hideo; Imoto, Seiya; Katayama, Toshiaki; Kanehisa, Minoru; Miyano, Satoru
2005-12-01
Since microarray gene expression data do not contain sufficient information for estimating accurate gene networks, other biological information has been considered to improve the estimated networks. Recent studies have revealed that highly conserved proteins that exhibit similar expression patterns in different organisms, have almost the same function in each organism. Such conserved proteins are also known to play similar roles in terms of the regulation of genes. Therefore, this evolutionary information can be used to refine regulatory relationships among genes, which are estimated from gene expression data. We propose a statistical method for estimating gene networks from gene expression data by utilizing evolutionarily conserved relationships between genes. Our method simultaneously estimates two gene networks of two distinct organisms, with a Bayesian network model utilizing the evolutionary information so that gene expression data of one organism helps to estimate the gene network of the other. We show the effectiveness of the method through the analysis on Saccharomyces cerevisiae and Homo sapiens cell cycle gene expression data. Our method was successful in estimating gene networks that capture many known relationships as well as several unknown relationships which are likely to be novel. Supplementary information is available at http://bonsai.ims.u-tokyo.ac.jp/~tamada/bayesnet/.
The use of Bayesian Networks in Detecting the States of Ventilation Mills in Power Plants
Directory of Open Access Journals (Sweden)
Sanja Vujnović
2014-06-01
Full Text Available The main objective of this paper is to present a new method of predictive maintenance which can detect the states of coal grinding mills in thermal power plants using Bayesian networks. Several possible structures of Bayesian networks are proposed for solving this problem and one of them is implemented and tested on an actual system. This method uses acoustic signals and statistical signal pre-processing tools to compute the inputs of the Bayesian network. After that the network is trained and tested using signals measured in the vicinity of the mill in the period of 2 months. The goal of this algorithm is to increase the efficiency of the coal grinding process and reduce the maintenance cost by eliminating the unnecessary maintenance checks of the system.
Method for Building a Medical Training Simulator with Bayesian Networks: SimDeCS.
Flores, Cecilia Dias; Fonseca, João Marcelo; Bez, Marta Rosecler; Respício, Ana; Coelho, Helder
2014-01-01
Distance education has grown in importance with the advent of the internet. An adequate evaluation of students in this mode is still difficult. Distance tests or occasional on-site exams do not meet the needs of evaluation of the learning process for distance education. Bayesian networks are adequate for simulating several aspects of clinical reasoning. The possibility of integrating them in distance education student evaluation has not yet been explored much. The present work describes a Simulator based on probabilistic networks built to represent knowledge of clinical practice guidelines in Family and Community Medicine. The Bayesian Network, the basis of the simulator, was modeled to playable by the student, to give immediate feedback according to pedagogical strategies adapted to the student according to past performance, and to give a broad evaluation of performance at the end of the game. Simulators structured by Bayesian Networks may become alternatives in the evaluation of students of Medical Distance Education.
Ranking Features on Psychological Dynamics of Cooperative Team Work through Bayesian Networks
Pilar Fuster-Parra; Alex García-Mas; Jaume Cantallops; F. Javier Ponseti; Yuhua Luo
2016-01-01
The aim of this study is to rank some features that characterize the psychological dynamics of cooperative team work in order to determine priorities for interventions and formation: leading positive feedback, cooperative manager and collaborative manager features. From a dataset of 20 cooperative sport teams (403 soccer players), the characteristics of the prototypical sports teams are studied using an average Bayesian network (BN) and two special types of BNs, the Bayesian classifiers: naiv...
Leak localization in water distribution networks using model-based bayesian reasoning
Soldevila Coma, Adrià; Fernández Canti, Rosa M.; Blesa Izquierdo, Joaquim; Tornil Sin, Sebastián; Puig Cayuela, Vicenç
2016-01-01
This paper presents a new method for leak localization in Water Distribution Networks that uses a model-based approach combined with Bayesian reasoning. Probability density functions in model-based pressure residuals are calibrated off-line for all the possible leak scenarios by using a hydraulic simulator, being leak size uncertainty, demand uncertainty and sensor noise considered. A Bayesian reasoning is applied online to the available residuals to determine the location of leaks present in...
Intention Recognition for Partial-Order Plans Using Dynamic Bayesian Networks
Krauthausen, Peter; Hanebeck, Uwe D.
2009-01-01
In this paper, a novel probabilistic approach to intention recognition for partial-order plans is proposed. The key idea is to exploit independences between subplans to substantially reduce the state space sizes in the compiled Dynamic Bayesian Networks. This makes inference more efficient. The main con- tributions are the computationally exploitable definition of subplan structures, the introduction of a novel Lay- ered Intention Model and a Dynamic Bayesian Net- work representation with an ...
Patient Specific Seizure Prediction System Using Hilbert Spectrum and Bayesian Networks Classifiers
Ozdemir, Nilufer; Yildirim, Esen
2014-01-01
The aim of this paper is to develop an automated system for epileptic seizure prediction from intracranial EEG signals based on Hilbert-Huang transform (HHT) and Bayesian classifiers. Proposed system includes decomposition of the signals into intrinsic mode functions for obtaining features and use of Bayesian networks with correlation based feature selection for binary classification of preictal and interictal recordings. The system was trained and tested on Freiburg EEG database. 58 hours of...
Bayesian networks with a logistic regression model for the conditional probabilities
Rijmen, F.P.J.
2008-01-01
Logistic regression techniques can be used to restrict the conditional probabilities of a Bayesian network for discrete variables. More specifically, each variable of the network can be modeled through a logistic regression model, in which the parents of the variable define the covariates. When all
Transmission Network Expansion Planning Considering Phase-Shifter Transformers
Directory of Open Access Journals (Sweden)
Celso T. Miasaki
2012-01-01
Full Text Available This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process.
Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu
2017-07-05
We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers
[Meta analysis of the use of Bayesian networks in breast cancer diagnosis].
Simões, Priscyla Waleska; Silva, Geraldo Doneda da; Moretti, Gustavo Pasquali; Simon, Carla Sasso; Winnikow, Erik Paul; Nassar, Silvia Modesto; Medeiros, Lidia Rosi; Rosa, Maria Inês
2015-01-01
The aim of this study was to determine the accuracy of Bayesian networks in supporting breast cancer diagnoses. Systematic review and meta-analysis were carried out, including articles and papers published between January 1990 and March 2013. We included prospective and retrospective cross-sectional studies of the accuracy of diagnoses of breast lesions (target conditions) made using Bayesian networks (index test). Four primary studies that included 1,223 breast lesions were analyzed, 89.52% (444/496) of the breast cancer cases and 6.33% (46/727) of the benign lesions were positive based on the Bayesian network analysis. The area under the curve (AUC) for the summary receiver operating characteristic curve (SROC) was 0.97, with a Q* value of 0.92. Using Bayesian networks to diagnose malignant lesions increased the pretest probability of a true positive from 40.03% to 90.05% and decreased the probability of a false negative to 6.44%. Therefore, our results demonstrated that Bayesian networks provide an accurate and non-invasive method to support breast cancer diagnosis.
Analysis of Climate Change on Hydrologic Components by using Bayesian Neural Networks
Kang, K.
2012-12-01
Representation of hydrologic analysis in climate change is a challenging task. Hydrologic outputs in regional climate models (RCMs) from general circulation models (GCMs) have difficult representation due to several uncertainties in hydrologic impacts of climate change. To overcome this problem, this research presents practical options for hydrological climate change with Bayesian and Neural networks approached to regional adaption to climate change. Bayesian and Neural networks analysis to climate hydrologic components is one of new frontier researches considering to climate change expectation. Strong advantage in Bayesian Neural networks is detecting time series in hydrologic components, which is complicated due to data, parameter, and model hypothesis on climate change scenario, through changing steps by removing and adding connections in Neural network process that combined Bayesian concept from parameter, predict and update process. As an example study, Mekong River Watershed, which is surrounded by four countries (Myanmar, Laos, Thailand and Cambodia), is selected. Results will show understanding of hydrologic components trend on climate model simulations through Bayesian Neural networks.
Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature.
Biedermann, A; Taroni, F
2012-03-01
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
A new research tool for hybrid Bayesian networks using script language
Sun, Wei; Park, Cheol Young; Carvalho, Rommel
2011-06-01
While continuous variables become more and more inevitable in Bayesian networks for modeling real-life applications in complex systems, there are not much software tools to support it. Popular commercial Bayesian network tools such as Hugin, and Netica etc., are either expensive or have to discretize continuous variables. In addition, some free programs existing in the literature, commonly known as BNT, GeNie/SMILE, etc, have their own advantages and disadvantages respectively. In this paper, we introduce a newly developed Java tool for model construction and inference for hybrid Bayesian networks. Via the representation power of the script language, this tool can build the hybrid model automatically based on a well defined string that follows the specific grammars. Furthermore, it implements several inference algorithms capable to accommodate hybrid Bayesian networks, including Junction Tree algorithm (JT) for conditional linear Gaussian model (CLG), and Direct Message Passing (DMP) for general hybrid Bayesian networks with CLG structure. We believe this tool will be useful for researchers in the field.
Impact of precision of Bayesian networks parameters on accuracy of medical diagnostic systems
Oniśko, Agnieszka; Druzdzel, Marek J.
2014-01-01
Objective One of the hardest technical tasks in employing Bayesian network models in practice is obtaining their numerical parameters. In the light of this difficulty, a pressing question, one that has immediate implications on the knowledge engineering effort, is whether precision of these parameters is important. In this paper, we address experimentally the question whether medical diagnostic systems based on Bayesian networks are sensitive to precision of their parameters. Methods and Materials The test networks include Hepar II, a sizeable Bayesian network model for diagnosis of liver disorders and six other medical diagnostic networks constructed from medical data sets available through the Irvine Machine Learning Repository. Assuming that the original model parameters are perfectly accurate, we lower systematically their precision by rounding them to progressively courser scales and check the impact of this rounding on the models' accuracy. Results Our main result, consistent across all tested networks, is that imprecision in numerical parameters has minimal impact on the diagnostic accuracy of models, as long as we avoid zeroes among parameters. Conclusion The experiments' results provide evidence that as long as we avoid zeroes among model parameters, diagnostic accuracy of Bayesian network models does not suffer from decreased precision of their parameters. PMID:23466438
Biedermann, A; Taroni, F; Bozza, S; Mazzella, W D
2011-01-30
This paper presents and discusses the use of Bayesian procedures - introduced through the use of Bayesian networks in Part I of this series of papers - for 'learning' probabilities from data. The discussion will relate to a set of real data on characteristics of black toners commonly used in printing and copying devices. Particular attention is drawn to the incorporation of the proposed procedures as an integral part in probabilistic inference schemes (notably in the form of Bayesian networks) that are intended to address uncertainties related to particular propositions of interest (e.g., whether or not a sample originates from a particular source). The conceptual tenets of the proposed methodologies are presented along with aspects of their practical implementation using currently available Bayesian network software. Copyright Â© 2010 Elsevier Ireland Ltd. All rights reserved.
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors.
Antal, Peter; Fannes, Geert; Timmerman, Dirk; Moreau, Yves; De Moor, Bart
2004-03-01
Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate information from free-text resources with statistical data in learning Bayesian networks. Firstly, we report on the collection of prior information resources in the ovarian cancer domain, which includes "kernel" annotations of the domain variables. We introduce methods based on the annotations and literature to derive informative pairwise dependency measures, which are derived from the statistical cooccurrence of the names of the variables, from the similarity of the "kernel" descriptions of the variables and from a combined method. We perform wide-scale evaluation of these text-based dependency scores against an expert reference and against data scores (the mutual information (MI) and a Bayesian score). Next, we transform the text-based dependency measures into informative text-based priors for Bayesian network structures. Finally, we report the benefit of such informative text-based priors on the performance of a Bayesian network for the classification of ovarian tumors from clinical data.
bnstruct: an R package for Bayesian Network structure learning in the presence of missing data.
Franzin, Alberto; Sambo, Francesco; Di Camillo, Barbara
2017-04-15
A Bayesian Network is a probabilistic graphical model that encodes probabilistic dependencies between a set of random variables. We introduce bnstruct, an open source R package to (i) learn the structure and the parameters of a Bayesian Network from data in the presence of missing values and (ii) perform reasoning and inference on the learned Bayesian Networks. To the best of our knowledge, there is no other open source software that provides methods for all of these tasks, particularly the manipulation of missing data, which is a common situation in practice. The software is implemented in R and C and is available on CRAN under a GPL licence. francesco.sambo@unipd.it. Supplementary data are available at Bioinformatics online.
International Nuclear Information System (INIS)
Gomes, Many R.S.; Melo, Paulo F.F.F. e
2015-01-01
This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)
Camargo, Arley; Werneck, Fernanda P; Morando, Mariana; Sites, Jack W; Avila, Luciano J
2013-08-01
Until recently, most phylogeographic approaches have been unable to distinguish between demographic and range expansion processes, making it difficult to test for the possibility of range expansion without population growth and vice versa. In this study, we applied a Bayesian phylogeographic approach to reconstruct both demographic and range expansion in the lizard Liolaemus darwinii of the Monte Desert in Central Argentina, during the Late Quaternary. Based on analysis of 14 anonymous nuclear loci and the cytochrome b mitochondrial DNA gene, we detected signals of demographic expansion starting at ~55 ka based on Bayesian Skyline and Skyride Plots. In contrast, Bayesian relaxed models of spatial diffusion suggested that range expansion occurred only between ~95 and 55 ka, and more recently, diffusion rates were very low during demographic expansion. The possibility of population growth without substantial range expansion could account for the shared patterns of demographic expansion during the Last Glacial Maxima (OIS 2 and 4) in fish, small mammals and other lizards of the Monte Desert. We found substantial variation in diffusion rates over time, and very high rates during the range expansion phase, consistent with a rapidly advancing expansion front towards the southeast shown by palaeo-distribution models. Furthermore, the estimated diffusion rates are congruent with observed dispersal rates of lizards in field conditions and therefore provide additional confidence to the temporal scale of inferred phylogeographic patterns. Our study highlights how the integration of phylogeography with palaeo-distribution models can shed light on both demographic and range expansion processes and their potential causes. © 2013 John Wiley & Sons Ltd.
Multilevel Bayesian networks for the analysis of hierarchical health care data.
Lappenschaar, Martijn; Hommersom, Arjen; Lucas, Peter J F; Lagro, Joep; Visscher, Stefan
2013-03-01
Large health care datasets normally have a hierarchical structure, in terms of levels, as the data have been obtained from different practices, hospitals, or regions. Multilevel regression is the technique commonly used to deal with such multilevel data. However, for the statistical analysis of interactions between entities from a domain, multilevel regression yields little to no insight. While Bayesian networks have proved to be useful for analysis of interactions, they do not have the capability to deal with hierarchical data. In this paper, we describe a new formalism, which we call multilevel Bayesian networks; its effectiveness for the analysis of hierarchically structured health care data is studied from the perspective of multimorbidity. Multilevel Bayesian networks are formally defined and applied to analyze clinical data from family practices in The Netherlands with the aim to predict interactions between heart failure and diabetes mellitus. We compare the results obtained with multilevel regression. The results obtained by multilevel Bayesian networks closely resembled those obtained by multilevel regression. For both diseases, the area under the curve of the prediction model improved, and the net reclassification improvements were significantly positive. In addition, the models offered considerable more insight, through its internal structure, into the interactions between the diseases. Multilevel Bayesian networks offer a suitable alternative to multilevel regression when analyzing hierarchical health care data. They provide more insight into the interactions between multiple diseases. Moreover, a multilevel Bayesian network model can be used for the prediction of the occurrence of multiple diseases, even when some of the predictors are unknown, which is typically the case in medicine. Copyright © 2013 Elsevier B.V. All rights reserved.
Applying Bayesian belief networks in rapid response situations
Energy Technology Data Exchange (ETDEWEB)
Gibson, William L [Los Alamos National Laboratory; Deborah, Leishman, A. [Los Alamos National Laboratory; Van Eeckhout, Edward [Los Alamos National Laboratory
2008-01-01
The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed. These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.
Directory of Open Access Journals (Sweden)
Yan eWang
2014-05-01
Full Text Available Recent neuroimaging studies have revealed normal aging-related alterations in functional and structural brain networks such as the default mode network (DMN. However, less is understood about specific brain structural dependencies or interactions between brain regions within the DMN in the normal aging process. In this study, using Bayesian network (BN modeling, we analyzed grey matter volume data from 109 young and 82 old subjects to characterize the influence of aging on associations between core brain regions within the DMN. Furthermore, we investigated the discriminability of the aging-associated BN models for the young and old groups. Compared to their young counterparts, the old subjects showed significant reductions in connections from right inferior temporal cortex (ITC to medial prefrontal cortex (mPFC, right hippocampus (HP to right ITC, and mPFC to posterior cingulate cortex (PCC and increases in connections from left HP to mPFC and right inferior parietal cortex (IPC to right ITC. Moreover, the classification results showed that the aging-related BN models could predict group membership with 88.48% accuracy, 88.07% sensitivity and 89.02% specificity. Our findings suggest that structural associations within the DMN may be affected by normal aging and provide crucial information about aging effects on brain structural networks.
Hierarchy Bayesian model based services awareness of high-speed optical access networks
Bai, Hui-feng
2018-03-01
As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.
Efficient method for AC transmission network expansion planning
Energy Technology Data Exchange (ETDEWEB)
Rahmani, M. [Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman (Iran); Faculdade de Engenharia de Ilha Solteira, UNESP - Univ Estadual Paulista, Departamento de Engenharia Eletrica, Ilha Solteira, SP (Brazil); Rashidinejad, M. [Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman (Iran); Carreno, E.M. [Centro de Engenharia, Universidade Estadual do Oeste de Parana, UNIOESTE, Foz do Iguacu - PR (Brazil); Romero, R. [Faculdade de Engenharia de Ilha Solteira, UNESP - Univ Estadual Paulista, Departamento de Engenharia Eletrica, Ilha Solteira, SP (Brazil)
2010-09-15
A combinatorial mathematical model in tandem with a metaheuristic technique for solving transmission network expansion planning (TNEP) using an AC model associated with reactive power planning (RPP) is presented in this paper. AC-TNEP is handled through a prior DC model while additional lines as well as VAr-plants are used as reinforcements to cope with real network requirements. The solution of the reinforcement stage can be obtained by assuming all reactive demands are supplied locally to achieve a solution for AC-TNEP and by neglecting the local reactive sources, a reactive power planning (RPP) will be managed to find the minimum required reactive power sources. Binary GA as well as a real genetic algorithm (RGA) are employed as metaheuristic optimization techniques for solving this combinatorial TNEP as well as the RPP problem. High quality results related with lower investment costs through case studies on test systems show the usefulness of the proposal when working directly with the AC model in transmission network expansion planning, instead of relaxed models. (author)
Bayesian networks for evaluation of evidence from forensic entomology.
Andersson, M Gunnar; Sundström, Anders; Lindström, Anders
2013-09-01
In the aftermath of a CBRN incident, there is an urgent need to reconstruct events in order to bring the perpetrators to court and to take preventive actions for the future. The challenge is to discriminate, based on available information, between alternative scenarios. Forensic interpretation is used to evaluate to what extent results from the forensic investigation favor the prosecutors' or the defendants' arguments, using the framework of Bayesian hypothesis testing. Recently, several new scientific disciplines have been used in a forensic context. In the AniBioThreat project, the framework was applied to veterinary forensic pathology, tracing of pathogenic microorganisms, and forensic entomology. Forensic entomology is an important tool for estimating the postmortem interval in, for example, homicide investigations as a complement to more traditional methods. In this article we demonstrate the applicability of the Bayesian framework for evaluating entomological evidence in a forensic investigation through the analysis of a hypothetical scenario involving suspect movement of carcasses from a clandestine laboratory. Probabilities of different findings under the alternative hypotheses were estimated using a combination of statistical analysis of data, expert knowledge, and simulation, and entomological findings are used to update the beliefs about the prosecutors' and defendants' hypotheses and to calculate the value of evidence. The Bayesian framework proved useful for evaluating complex hypotheses using findings from several insect species, accounting for uncertainty about development rate, temperature, and precolonization. The applicability of the forensic statistic approach to evaluating forensic results from a CBRN incident is discussed.
Directory of Open Access Journals (Sweden)
Mohammad Taghi Ameli
2012-01-01
Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.
Bayesian Joint Modeling of Multiple Brain Functional Networks
Lukemire, Joshua; Kundu, Suprateek; Pagnoni, Giuseppe; Guo, Ying
2017-01-01
Brain function is organized in coordinated modes of spatio-temporal activity (functional networks) exhibiting an intrinsic baseline structure with variations under different experimental conditions. Existing approaches for uncovering such network structures typically do not explicitly model shared and differential patterns across networks, thus potentially reducing the detection power. We develop an integrative modeling approach for jointly modeling multiple brain networks across experimental...
Papakosta, Panagiota; Botzler, Sebastian; Krug, Kai; Straub, Daniel
2013-04-01
areas and rare species is also included. Presence of cultural heritage sites, power stations and power line network influence social exposure. The conceptual framework is demonstrated with a Bayesian Network (BN). The BN model incorporates empirical observation, physical models and expert knowledge; it can also explicitly account for uncertainty in the indicators. The proposed model is applied to the island of Cyprus. Maps support the demonstration of results. [1] Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. (2012): Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New York, USA. [2] UN/ISDR (International Strategy for Disaster Reduction (2004): Living with Risk: A Global Review of Disaster Reduction Initiatives, Geneva, UN Publications. [3] Birkmann, J. (2006): Measuring vulnerability to natural hazards: towards disaster resilient societies. United Nations University Press, Tokyo, Japan.
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
Applying Object Oriented Bayesian Networks to Large Medical Decision Support Systems
DEFF Research Database (Denmark)
Bangsø, Olav; Olesen, Kristian Grønborg
2003-01-01
in the construction of such models. The other application is the MUNIN system for diagnosis of perioheral muscle and nerve diseases, that is characterized by a number of (almost) identical anatomical structures. The modeling of such structures benefit drom inheritance properties of object oriented Bayesian networks...... systems...
Zwick, Rebecca; Lenaburg, Lubella
2009-01-01
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
CausalTrail: Testing hypothesis using causal Bayesian networks [version 1; referees: 2 approved
Directory of Open Access Journals (Sweden)
Daniel Stöckel
2015-12-01
Full Text Available Summary Causal Bayesian Networks are a special class of Bayesian networks in which the hierarchy directly encodes the causal relationships between the variables. This allows to compute the effect of interventions, which are external changes to the system, caused by e.g. gene knockouts or an administered drug. Whereas numerous packages for constructing causal Bayesian networks are available, hardly any program targeted at downstream analysis exists. In this paper we present CausalTrail, a tool for performing reasoning on causal Bayesian networks using the do-calculus. CausalTrail's features include multiple data import methods, a flexible query language for formulating hypotheses, as well as an intuitive graphical user interface. The program is able to account for missing data and thus can be readily applied in multi-omics settings where it is common that not all measurements are performed for all samples. Availability and Implementation CausalTrail is implemented in C++ using the Boost and Qt5 libraries. It can be obtained from https://github.com/dstoeckel/causaltrail
B.G. Marcot; J.D. Steventon; G.D. Sutherland; R.K. McCann
2006-01-01
We provide practical guidelines for developing, testing, and revising Bayesian belief networks (BBNs). Primary steps in this process include creating influence diagrams of the hypothesized "causal web" of key factors affecting a species or ecological outcome of interest; developing a first, alpha-level BBN model from the influence diagram; revising the model...
A simulated annealing-based method for learning Bayesian networks from statistical data
Czech Academy of Sciences Publication Activity Database
Janžura, Martin; Nielsen, Jan
2006-01-01
Roč. 21, č. 3 (2006), s. 335-348 ISSN 0884-8173 R&D Projects: GA ČR GA201/03/0478 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian network * simulated annealing * Markov Chain Monte Carlo Subject RIV: BA - General Mathematics Impact factor: 0.429, year: 2006
Overill, Richard Edward; Chow, Kam-Pui
2017-01-01
A method for obtaining a quantitative measure of the relative weight of each individual item of evidence in a digital forensic investigation by means of a Bayesian network is described. The resulting evidential weights can then be used to determine a near-optimal cost-effective triage scheme for the investigation in question.
Bayesian networks for victim identification on the basis of DNA profiles
Bruijning-van Dongen, C. J.; Slooten, K.; Burgers, W.; Wiegerinck, W.
We have developed software to improve screening and matching routine for victim identification based on DNA profiles. The software, called Napoleon/Bonaparte, uses Bayesian networks for the analysis. It is designed for effective handling of the identification process in case of a large disaster with
Marvin, Hans J.P.; Bouzembrak, Yamine; Janssen, Esmée M.; Zande, van der Meike; Murphy, Finbarr; Sheehan, Barry; Mullins, Martin; Bouwmeester, Hans
2017-01-01
In this study, a Bayesian Network (BN) was developed for the prediction of the hazard potential and biological effects with the focus on metal- and metal-oxide nanomaterials to support human health risk assessment. The developed BN captures the (inter) relationships between the exposure route, the
Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data.
Plankensteiner, Kathrin; Bluder, Olivia; Pilz, Jürgen
2015-09-01
In this article, Bayesian networks are used to model semiconductor lifetime data obtained from a cyclic stress test system. The data of interest are a mixture of log-normal distributions, representing two dominant physical failure mechanisms. Moreover, the data can be censored due to limited test resources. For a better understanding of the complex lifetime behavior, interactions between test settings, geometric designs, material properties, and physical parameters of the semiconductor device are modeled by a Bayesian network. Statistical toolboxes in MATLAB® have been extended and applied to find the best structure of the Bayesian network and to perform parameter learning. Due to censored observations Markov chain Monte Carlo (MCMC) simulations are employed to determine the posterior distributions. For model selection the automatic relevance determination (ARD) algorithm and goodness-of-fit criteria such as marginal likelihoods, Bayes factors, posterior predictive density distributions, and sum of squared errors of prediction (SSEP) are applied and evaluated. The results indicate that the application of Bayesian networks to semiconductor reliability provides useful information about the interactions between the significant covariates and serves as a reliable alternative to currently applied methods. © 2015 Society for Risk Analysis.
DEFF Research Database (Denmark)
Dalgaard, Jens; Pena, Jose; Kocka, Tomas
2004-01-01
We propose a method to assist the user in the interpretation of the best Bayesian network model indu- ced from data. The method consists in extracting relevant features from the model (e.g. edges, directed paths and Markov blankets) and, then, assessing the con¯dence in them by studying multiple...
Feature selection for Bayesian network classifiers using the MDL-FS score
Drugan, Madalina M.; Wiering, Marco A.
When constructing a Bayesian network classifier from data, the more or less redundant features included in a dataset may bias the classifier and as a consequence may result in a relatively poor classification accuracy. In this paper, we study the problem of selecting appropriate subsets of features
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
Energy Technology Data Exchange (ETDEWEB)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.
Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
Grzegorczyk, Marco; Husmeier, Dirk
Applications of Bayesian networks in systems biology are computationally demanding due to the large number of model parameters. Conventional MCMC schemes based on proposal moves in structure space tend to be too slow in mixing and convergence, and have recently been superseded by proposal moves in
Bayesian network models for the management of ventilator-associated pneumonia
Visscher, S.
2008-01-01
The purpose of the research described in this thesis was to develop Bayesian network models for the analysis of patient data, as well as to use such a model as a clinical decision-support system for assisting clinicians in the diagnosis and treatment of ventilator-associated pneumonia (VAP) in
Deliverable 7.2-2: Bayesian Belief Networks: Linking abiotic and biotic data
DEFF Research Database (Denmark)
van Geest, Gerben; Kramer, Lilith; Buijse, Tom
2017-01-01
. For this, models are required to forecast the effects of the measures planned. Over the past decade, Bayesian Belief Networks (BBNs) models are increasingly applied to aquatic ecosystems. BBNs have a number of advantages, such as explicit incorporation of uncertainty in the outcome, the ability to handle...
Prognostic Bayesian networks II: An application in the domain of cardiac surgery
Verduijn, Marion; Rosseel, Peter M. J.; Peek, Niels; de Jonge, Evert; de Mol, Bas A. J. M.
2007-01-01
A prognostic Bayesian network (PBN) is new type of prognostic model that implements a dynamic, process-oriented view on prognosis. In a companion article, the rationale of the PBN is described, and a dedicated learning procedure is presented. This article presents an application hereof in the domain
Gerven, M.A.J. van
2007-01-01
This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed
Gerven, M.A.J. van
2007-01-01
This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed models perform well in realistic settings
Bayat, Sahar; Cuggia, Marc; Kessler, Michel; Briançon, Serge; Le Beux, Pierre; Frimat, Luc
2008-01-01
Evaluation of adult candidates for kidney transplantation diverges from one centre to another. Our purpose was to assess the suitability of Bayesian method for describing the factors associated to registration on the waiting list in a French healthcare network. We have found no published paper using Bayesian method in this domain. Eight hundred and nine patients starting renal replacement therapy were included in the analysis. The data were extracted from the information system of the healthcare network. We performed conventional statistical analysis and data mining analysis using mainly Bayesian networks. The Bayesian model showed that the probability of registration on the waiting list is associated to age, cardiovascular disease, diabetes, serum albumin level, respiratory disease, physical impairment, follow-up in the department performing transplantation and past history of malignancy. These results are similar to conventional statistical method. The comparison between conventional analysis and data mining analysis showed us the contribution of the data mining method for sorting variables and having a global view of the variables' associations. Moreover theses approaches constitute an essential step toward a decisional information system for healthcare networks.
Bayesian inference for low-rank Ising networks
Marsman, M.; Maris, Gunter; Bechger, Timo; Glas, Cornelis A.W.
2015-01-01
Estimating the structure of Ising networks is a notoriously difficult problem. We demonstrate that using a latent variable representation of the Ising network, we can employ a full-data-information approach to uncover the network structure. Thereby, only ignoring information encoded in the prior
A Bayesian network approach to the database search problem in criminal proceedings.
Biedermann, Alex; Vuille, Joëlle; Taroni, Franco
2012-08-01
The 'database search problem', that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method's graphical environment, along
Lo, Benjamin W Y; Macdonald, R Loch; Baker, Andrew; Levine, Mitchell A H
2013-01-01
The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
Directory of Open Access Journals (Sweden)
Benjamin W. Y. Lo
2013-01-01
Full Text Available Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH. Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients. Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs. Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
Directory of Open Access Journals (Sweden)
Kim Chang
2007-07-01
Full Text Available Abstract Background A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm. Results This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|Hi, which is used as confidence level. The unit network with higher P(D|Hi has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|Hi, which is a unique property of the proposed algorithm. The algorithm is evaluated with synthetic and Saccharomyces cerevisiae expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm. The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and Saccharomyces cerevisiae expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian
Li, Ruowang; Dudek, Scott M; Kim, Dokyoon; Hall, Molly A; Bradford, Yuki; Peissig, Peggy L; Brilliant, Murray H; Linneman, James G; McCarty, Catherine A; Bao, Le; Ritchie, Marylyn D
2016-01-01
The future of medicine is moving towards the phase of precision medicine, with the goal to prevent and treat diseases by taking inter-individual variability into account. A large part of the variability lies in our genetic makeup. With the fast paced improvement of high-throughput methods for genome sequencing, a tremendous amount of genetics data have already been generated. The next hurdle for precision medicine is to have sufficient computational tools for analyzing large sets of data. Genome-Wide Association Studies (GWAS) have been the primary method to assess the relationship between single nucleotide polymorphisms (SNPs) and disease traits. While GWAS is sufficient in finding individual SNPs with strong main effects, it does not capture potential interactions among multiple SNPs. In many traits, a large proportion of variation remain unexplained by using main effects alone, leaving the door open for exploring the role of genetic interactions. However, identifying genetic interactions in large-scale genomics data poses a challenge even for modern computing. For this study, we present a new algorithm, Grammatical Evolution Bayesian Network (GEBN) that utilizes Bayesian Networks to identify interactions in the data, and at the same time, uses an evolutionary algorithm to reduce the computational cost associated with network optimization. GEBN excelled in simulation studies where the data contained main effects and interaction effects. We also applied GEBN to a Type 2 diabetes (T2D) dataset obtained from the Marshfield Personalized Medicine Research Project (PMRP). We were able to identify genetic interactions for T2D cases and controls and use information from those interactions to classify T2D samples. We obtained an average testing area under the curve (AUC) of 86.8 %. We also identified several interacting genes such as INADL and LPP that are known to be associated with T2D. Developing the computational tools to explore genetic associations beyond main
Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric
2013-06-01
Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph--a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer's disease (AD) and reveal findings that could lead to advancements in AD research.
Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network
Directory of Open Access Journals (Sweden)
Ying Yan
2013-01-01
Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.
Bayesian Computation Methods for Inferring Regulatory Network Models Using Biomedical Data.
Tian, Tianhai
2016-01-01
The rapid advancement of high-throughput technologies provides huge amounts of information for gene expression and protein activity in the genome-wide scale. The availability of genomics, transcriptomics, proteomics, and metabolomics dataset gives an unprecedented opportunity to study detailed molecular regulations that is very important to precision medicine. However, it is still a significant challenge to design effective and efficient method to infer the network structure and dynamic property of regulatory networks. In recent years a number of computing methods have been designed to explore the regulatory mechanisms as well as estimate unknown model parameters. Among them, the Bayesian inference method can combine both prior knowledge and experimental data to generate updated information regarding the regulatory mechanisms. This chapter gives a brief review for Bayesian statistical methods that are used to infer the network structure and estimate model parameters based on experimental data.
Directory of Open Access Journals (Sweden)
Parameswaran Ramachandran
Full Text Available Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing-with its unique statistical properties-became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca.
2017-01-01
Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing—with its unique statistical properties—became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca. PMID:28817636
A Bayesian Approach to Measurement Bias in Networking Studies
Zhu, Ling; Robinson, Scott E.; Torenvlied, René
2014-01-01
The study of managerial networking has been growing in the field of public administration; a field that analyzes how managers in open system organizations interact with different external actors and organizations. Coincident with this interest in managerial networking is the use of self-reported
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Censoring for Bayesian Cooperative Positioning in Dense Wireless Networks
Das, Kallol; Wymeersch, Henk
2012-01-01
Cooperative positioning is a promising solution for location-enabled technologies in GPS-challenged environments. However, it suffers from high computational complexity and increased network traffic, compared to traditional positioning approaches. The computational complexity is related to the
Object-oriented Bayesian networks for paternity cases with allelic dependencies.
Hepler, Amanda B; Weir, Bruce S
2008-06-01
This study extends the current use of Bayesian networks by incorporating the effects of allelic dependencies in paternity calculations. The use of object-oriented networks greatly simplify the process of building and interpreting forensic identification models, allowing researchers to solve new, more complex problems. We explore two paternity examples: the most common scenario where DNA evidence is available from the alleged father, the mother and the child; a more complex casewhere DNA is not available from the alleged father, but is available from the alleged father's brother. Object-oriented networks are built, using HUGIN, for each example which incorporate the effects of allelic dependence caused by evolutionary relatedness.
GraphAlignment: Bayesian pairwise alignment of biological networks
Directory of Open Access Journals (Sweden)
Kolář Michal
2012-11-01
Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.
McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T
2014-06-01
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.
Directory of Open Access Journals (Sweden)
Michael J McGeachie
2014-06-01
Full Text Available Bayesian Networks (BN have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.
Weiss, Scott T.
2014-01-01
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com. PMID:24922310
SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection
Energy Technology Data Exchange (ETDEWEB)
Kalet, A; Phillips, M; Gennari, J [UniversityWashington, Seattle, WA (United States)
2014-06-01
Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the
SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection
International Nuclear Information System (INIS)
Kalet, A; Phillips, M; Gennari, J
2014-01-01
Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the
Prediction of Sybil attack on WSN using Bayesian network and swarm intelligence
Muraleedharan, Rajani; Ye, Xiang; Osadciw, Lisa Ann
2008-04-01
Security in wireless sensor networks is typically sacrificed or kept minimal due to limited resources such as memory and battery power. Hence, the sensor nodes are prone to Denial-of-service attacks and detecting the threats is crucial in any application. In this paper, the Sybil attack is analyzed and a novel prediction method, combining Bayesian algorithm and Swarm Intelligence (SI) is proposed. Bayesian Networks (BN) is used in representing and reasoning problems, by modeling the elements of uncertainty. The decision from the BN is applied to SI forming an Hybrid Intelligence Scheme (HIS) to re-route the information and disconnecting the malicious nodes in future routes. A performance comparison based on the prediction using HIS vs. Ant System (AS) helps in prioritizing applications where decisions are time-critical.
Introduction of Bayesian network in risk analysis of maritime accidents in Bangladesh
Rahman, Sohanur
2017-12-01
Due to the unique geographic location, complex navigation environment and intense vessel traffic, a considerable number of maritime accidents occurred in Bangladesh which caused serious loss of life, property and environmental contamination. Based on the historical data of maritime accidents from 1981 to 2015, which has been collected from Department of Shipping (DOS) and Bangladesh Inland Water Transport Authority (BIWTA), this paper conducted a risk analysis of maritime accidents by applying Bayesian network. In order to conduct this study, a Bayesian network model has been developed to find out the relation among parameters and the probability of them which affect accidents based on the accident investigation report of Bangladesh. Furthermore, number of accidents in different categories has also been investigated in this paper. Finally, some viable recommendations have been proposed in order to ensure greater safety of inland vessels in Bangladesh.
Bus Route Design with a Bayesian Network Analysis of Bus Service Revenues
Directory of Open Access Journals (Sweden)
Yi Liu
2018-01-01
Full Text Available A Bayesian network is used to estimate revenues of bus services in consideration of the effect of bus travel demands, passenger transport distances, and so on. In this research, the area X in Beijing has been selected as the study area because of its relatively high bus travel demand and, on the contrary, unsatisfactory bus services. It is suggested that the proposed Bayesian network approach is able to rationally predict the probabilities of different revenues of various route services, from the perspectives of both satisfying passenger demand and decreasing bus operation cost. This way, the existing bus routes in the studied area can be optimized for their most probable high revenues.
Research on Evaluation Method Based on Modified Buckley Decision Making and Bayesian Network
Directory of Open Access Journals (Sweden)
Neng-pu Yang
2015-01-01
Full Text Available This work presents a novel evaluation method, which can be applied in the field of risk assessment, project management, cause analysis, and so forth. Two core technologies are used in the method, namely, modified Buckley Decision Making and Bayesian Network. Based on the modified Buckley Decision Making, the fuzzy probabilities of element factors are calibrated. By the forward and backward calculation of Bayesian Network, the structure importance, probability importance, and criticality importance of each factor are calculated and discussed. A numerical example of risk evaluation for dangerous goods transport process is given to verify the method. The results indicate that the method can efficiently identify the weakest element factor. In addition, the method can improve the reliability and objectivity for evaluation.
Exploratory use of a Bayesian network process for translating ...
African Journals Online (AJOL)
2016-04-02
Apr 2, 2016 ... Similarly, outputs from BNs can be applied to raster images, to provide a likelihood surface (Johnson et al., 2011). The BNs developed in this study represent only the first step in what could become a more complex and iterative process. Developing such a network has been a successful process, and.
Sensitivity analysis in Gaussian Bayesian networks using a symbolic-numerical technique
International Nuclear Information System (INIS)
Castillo, Enrique; Kjaerulff, Uffe
2003-01-01
The paper discusses the problem of sensitivity analysis in Gaussian Bayesian networks. The algebraic structure of the conditional means and variances, as rational functions involving linear and quadratic functions of the parameters, are used to simplify the sensitivity analysis. In particular the probabilities of conditional variables exceeding given values and related probabilities are analyzed. Two examples of application are used to illustrate all the concepts and methods
Tantipisanuh, Naruemon; Gale, George A; Pollino, Carmel
Bayesian networks (BN) have been increasingly used for habitat suitability modeling of threatened species due to their potential to construct robust models with limited survey data. However, previous applications of this approach have only occurred in countries where human and budget resources are highly available, but the highest concentrations of threatened vertebrates globally are located in the tropics where resources are much more limited. We assessed the effectiveness of Bayesian networks in generating habitat suitability models in Thailand, a biodiversity-rich country where the knowledge base is typically sparse for a wide range of threatened species. The Bayesian network approach was used to generate habitat suitability maps for 52 threatened vertebrate species in Thailand, using a range of evidence types, from relatively well-documented species with good local knowledge to poorly documented species, with few local experts. Published information and expert knowledge were used to define habitat requirements. Focal species were categorized into 22 groups based on known habitat preferences, and then habitat suitability models were constructed with outcomes represented spatially. Models had a consistent structure with three major components: potential habitat, known range, and threat level. Model classification sensitivity was tested using presence-only field data for 21 species. Habitat models for 12 species were relatively sensitive (>70% congruency between observed and predicted locations), three were moderately congruent, and six were poor. Classification sensitivity tended to be high for bird models and moderate for mammals, whereas sensitivity for reptiles was low, presumably reflecting the relatively poor knowledge base for reptiles in the region. Bayesian network models show significant potential for biodiversity-rich regions with scarce resources, although they require further refinement and testing. It is possible that one detailed ecological study is
Predicting Software Test Effort in Iterative Development Using a Dynamic Bayesian Network
Torkar, Richard; Awan, Nasir Majeed; Alvi, Adnan Khadem; Afzal, Wasif
2010-01-01
Projects following iterative software development methodologies must still be managed in a way as to maximize quality and minimize costs. However, there are indications that predicting test effort in iterative development is challenging and currently there seem to be no models for test effort prediction. This paper introduces and validates a dynamic Bayesian network for predicting test effort in iterative software devel- opment. The proposed model is validated by the use of data from two indu...
Mocapy++ - a toolkit for inference and learning in dynamic Bayesian networks
DEFF Research Database (Denmark)
Paluszewski, Martin; Hamelryck, Thomas Wim
2010-01-01
Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...... for constructing probabilistic models of biomolecular structure, due to its support for directional statistics. In particular, it supports the Kent distribution on the sphere and the bivariate von Mises distribution on the torus. These distributions have proven useful to formulate probabilistic models of protein...
Learning Bayesian network structure: towards the essential graph by integer linear programming tools
Czech Academy of Sciences Publication Activity Database
Studený, Milan; Haws, D.
2014-01-01
Roč. 55, č. 4 (2014), s. 1043-1071 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * integer linear programming * characteristic imset * essential graph Subject RIV: BA - General Mathematics Impact factor: 2.451, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/studeny-0427002.pdf
Bayesian networks and statistical analysis application to analyze the diagnostic test accuracy
Orzechowski, P.; Makal, Jaroslaw; Onisko, A.
2005-02-01
The computer aided BPH diagnosis system based on Bayesian network is described in the paper. First result are compared to a given statistical method. Different statistical methods are used successfully in medicine for years. However, the undoubted advantages of probabilistic methods make them useful in application in newly created systems which are frequent in medicine, but do not have full and competent knowledge. The article presents advantages of the computer aided BPH diagnosis system in clinical practice for urologists.
Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves
Mengshoel, Ole J.
2010-01-01
One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.
Fan, Yue; Wang, Xiao; Peng, Qinke
2017-01-01
Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab p...
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.
M. Mahdavi; E. Mahdavi
2011-01-01
In this research, STNEP is being studied considering network adequacy and limitation of investment cost by decimal codification genetic algorithm (DCGA). The goal is obtaining the maximum of network adequacy with lowest expansion cost for a specific investment. Finally, the proposed idea is applied to the Garvers 6-bus network. The results show that considering the network adequacy for solution of STNEP problem is caused that among of expansion plans for a determined investment, configuration...
Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Main, P. [Dpto. Estadistica e I.O., Fac. Ciencias Matematicas, Univ. Complutense de Madrid, 28040 Madrid (Spain)], E-mail: pmain@mat.ucm.es; Navarro, H. [Dpto. de Estadistica, I.O. y Calc. Numerico, Fac. Ciencias, UNED, 28040 Madrid (Spain)
2009-05-15
Gaussian Bayesian networks are graphical models that represent the dependence structure of a multivariate normal random variable with a directed acyclic graph (DAG). In Gaussian Bayesian networks the output is usually the conditional distribution of some unknown variables of interest given a set of evidential nodes whose values are known. The problem of uncertainty about the assumption of normality is very common in applications. Thus a sensitivity analysis of the non-normality effect in our conclusions could be necessary. The aspect of non-normality to be considered is the tail behavior. In this line, the multivariate exponential power distribution is a family depending on a kurtosis parameter that goes from a leptokurtic to a platykurtic distribution with the normal as a mesokurtic distribution. Therefore a more general model can be considered using the multivariate exponential power distribution to describe the joint distribution of a Bayesian network, with a kurtosis parameter reflecting deviations from the normal distribution. The sensitivity of the conclusions to this perturbation is analyzed using the Kullback-Leibler divergence measure that provides an interesting formula to evaluate the effect.
Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs.
Verardo, L L; Silva, F F; Varona, L; Resende, M D V; Bastiaansen, J W M; Lopes, P S; Guimarães, S E F
2015-02-01
The genetic improvement of reproductive traits such as the number of teats is essential to the success of the pig industry. As opposite to most SNP association studies that consider continuous phenotypes under Gaussian assumptions, this trait is characterized as a discrete variable, which could potentially follow other distributions, such as the Poisson. Therefore, in order to access the complexity of a counting random regression considering all SNPs simultaneously as covariate under a GWAS modeling, the Bayesian inference tools become necessary. Currently, another point that deserves to be highlighted in GWAS is the genetic dissection of complex phenotypes through candidate genes network derived from significant SNPs. We present a full Bayesian treatment of SNP association analysis for number of teats assuming alternatively Gaussian and Poisson distributions for this trait. Under this framework, significant SNP effects were identified by hypothesis tests using 95% highest posterior density intervals. These SNPs were used to construct associated candidate genes network aiming to explain the genetic mechanism behind this reproductive trait. The Bayesian model comparisons based on deviance posterior distribution indicated the superiority of Gaussian model. In general, our results suggest the presence of 19 significant SNPs, which mapped 13 genes. Besides, we predicted gene interactions through networks that are consistent with the mammals known breast biology (e.g., development of prolactin receptor signaling, and cell proliferation), captured known regulation binding sites, and provided candidate genes for that trait (e.g., TINAGL1 and ICK).
Unavailability analysis of a PWR safety system by a Bayesian network
International Nuclear Information System (INIS)
Estevao, Lilian B.; Melo, Paulo Fernando F. Frutuoso e; Rivero, Jose J.
2013-01-01
Bayesian networks (BN) are directed acyclic graphs that have dependencies between variables, which are represented by nodes. These dependencies are represented by lines connecting the nodes and can be directed or not. Thus, it is possible to model conditional probabilities and calculate them with the help of Bayes' Theorem. The objective of this paper is to present the modeling of the failure of a safety system of a typical second generation light water reactor plant, the Containment Heat Removal System (CHRS), whose function is to cool the water of containment reservoir being recirculated through the Containment Spray Recirculation System (CSRS). CSRS is automatically initiated after a loss of coolant accident (LOCA) and together with the CHRS cools the reservoir water. The choice of this system was due to the fact that its analysis by a fault tree is available in Appendix II of the Reactor Safety Study Report (WASH-1400), and therefore all the necessary technical information is also available, such as system diagrams, failure data input and the fault tree itself that was developed to study system failure. The reason for the use of a bayesian network in this context was to assess its ability to reproduce the results of fault tree analyses and also verify the feasibility of treating dependent events. Comparing the fault trees and bayesian networks, the results obtained for the system failure were very close. (author)
Software Delivery Risk Management: Application of Bayesian Networks in Agile Software Development
Directory of Open Access Journals (Sweden)
Ancveire Ieva
2015-12-01
Full Text Available The information technology industry cannot be imagined without large- or small-scale projects. They are implemented to develop systems enabling key business processes and improving performance and enterprise resource management. However, projects often experience various difficulties during their execution. These problems are usually related to the three objectives of the project – costs, quality and deadline. A way these challenges can be solved is project risk management. However, not always the main problems and their influencing factors can be easily identified. Usually there is a need for a more profound analysis of the problem situation. In this paper, we propose the use of a Bayesian Network concept for quantitative risk management in agile projects. The Bayesian Network is explored using a case study focusing on a project that faces difficulties during the software delivery process. We explain why an agile risk analysis is needed and assess the potential risk factors, which may occur during the project. Thereafter, we design the Bayesian Network to capture the actual problem situation and make suggestions how to improve the delivery process based on the measures to be taken to reduce the occurrence of project risks.
Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks.
Zhang, Jinfen; Teixeira, Ângelo P; Guedes Soares, C; Yan, Xinping; Liu, Kezhong
2016-06-01
This article develops a Bayesian belief network model for the prediction of accident consequences in the Tianjin port. The study starts with a statistical analysis of historical accident data of six years from 2008 to 2013. Then a Bayesian belief network is constructed to express the dependencies between the indicator variables and accident consequences. The statistics and expert knowledge are synthesized in the Bayesian belief network model to obtain the probability distribution of the consequences. By a sensitivity analysis, several indicator variables that have influence on the consequences are identified, including navigational area, ship type and time of the day. The results indicate that the consequences are most sensitive to the position where the accidents occurred, followed by time of day and ship length. The results also reflect that the navigational risk of the Tianjin port is at the acceptable level, despite that there is more room of improvement. These results can be used by the Maritime Safety Administration to take effective measures to enhance maritime safety in the Tianjin port. © 2016 Society for Risk Analysis.
Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks
International Nuclear Information System (INIS)
Main, P.; Navarro, H.
2009-01-01
Gaussian Bayesian networks are graphical models that represent the dependence structure of a multivariate normal random variable with a directed acyclic graph (DAG). In Gaussian Bayesian networks the output is usually the conditional distribution of some unknown variables of interest given a set of evidential nodes whose values are known. The problem of uncertainty about the assumption of normality is very common in applications. Thus a sensitivity analysis of the non-normality effect in our conclusions could be necessary. The aspect of non-normality to be considered is the tail behavior. In this line, the multivariate exponential power distribution is a family depending on a kurtosis parameter that goes from a leptokurtic to a platykurtic distribution with the normal as a mesokurtic distribution. Therefore a more general model can be considered using the multivariate exponential power distribution to describe the joint distribution of a Bayesian network, with a kurtosis parameter reflecting deviations from the normal distribution. The sensitivity of the conclusions to this perturbation is analyzed using the Kullback-Leibler divergence measure that provides an interesting formula to evaluate the effect
Reliability estimation of safety-critical software-based systems using Bayesian networks
International Nuclear Information System (INIS)
Helminen, A.
2001-06-01
Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear power plants. In the research project 'Programmable automation system safety integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002), various safety assessment methods and tools for software based systems are developed and evaluated. The project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT). In this report the applicability of Bayesian networks to the reliability estimation of software-based systems is studied. The applicability is evaluated by building Bayesian network models for the systems of interest and performing simulations for these models. In the simulations hypothetical evidence is used for defining the parameter relations and for determining the ability to compensate disparate evidence in the models. Based on the experiences from modelling and simulations we are able to conclude that Bayesian networks provide a good method for the reliability estimation of software-based systems. (orig.)
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.
GraphAlignment: Bayesian pairwise alignment of biological networks
Czech Academy of Sciences Publication Activity Database
Kolář, Michal; Meier, J.; Mustonen, V.; Lässig, M.; Berg, J.
2012-01-01
Roč. 6, November 21 (2012) ISSN 1752-0509 Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB 680; Deutsche Forschungsgemeinschaft(DE) SFB-TR12; Deutsche Forschungsgemeinschaft(DE) BE 2478/2-1 Institutional research plan: CEZ:AV0Z50520514 Keywords : Graph alignment * Biological networks * Parameter estimation * Bioconductor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.982, year: 2012
Joint Bayesian variable and graph selection for regression models with network-structured predictors
Peterson, C. B.; Stingo, F. C.; Vannucci, M.
2015-01-01
In this work, we develop a Bayesian approach to perform selection of predictors that are linked within a network. We achieve this by combining a sparse regression model relating the predictors to a response variable with a graphical model describing conditional dependencies among the predictors. The proposed method is well-suited for genomic applications since it allows the identification of pathways of functionally related genes or proteins which impact an outcome of interest. In contrast to previous approaches for network-guided variable selection, we infer the network among predictors using a Gaussian graphical model and do not assume that network information is available a priori. We demonstrate that our method outperforms existing methods in identifying network-structured predictors in simulation settings, and illustrate our proposed model with an application to inference of proteins relevant to glioblastoma survival. PMID:26514925
International Nuclear Information System (INIS)
Shayeghi, H.; Jalilzadeh, S.; Mahdavi, M.; Hadadian, H.
2008-01-01
Transmission network expansion planning (TNEP) is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. Its task is to minimize the network construction and operational cost, while meeting imposed technical, economic and reliability constraints. Up till now, various methods have been proposed for solution of the static transmission network expansion planning (STNEP) problem. But, in all of them, the effect of two important parameters i.e., inflation rate and load growth factor on network losses has not been investigated. Thus, in this paper, STNEP is being studied considering the effect of inflation rate and load growth factor on the network losses in a transmission network with different voltage levels using a decimal codification genetic algorithm (DCGA). The effectiveness of the proposed idea is tested on the Garver's six-bus network. The results evaluation reveals that the inflation rate and load growth factor have important effect on the network losses and subsequent network arrangement. In addition, considering the effect of two above-mentioned parameters (inflation rate and load growth factor) in expansion planning of transmission networks with various line voltage levels is caused that the total expansion cost of the network (expansion costs and the operational cost) is calculated more exactly and therefore the network satisfies the requirements of delivering electric power more safely and reliably to load centers
Aydin, Orhun; Caers, Jef Karel
2017-08-01
Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed
Bayesian artificial intelligence
Korb, Kevin B
2010-01-01
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Valchev, Nikolay; Eftimova, Petya; Andreeva, Nataliya; Prodanov, Bogdan
2017-04-01
Coastal zone is among the fastest evolving areas worldwide. Ever increasing population inhabiting coastal settlements develops often conflicting economic and societal activities. The existing imbalance between the expansion of these activities, on one hand, and the potential to accommodate them in a sustainable manner, on the other, becomes a critical problem. Concurrently, coasts are affected by various hydro-meteorological phenomena such as storm surges, heavy seas, strong winds and flash floods, which intensities and occurrence frequency is likely to increase due to the climate change. This implies elaboration of tools capable of quick prediction of impact of those phenomena on the coast and providing solutions in terms of disaster risk reduction measures. One such tool is Bayesian network. Proposed paper describes the set-up of such network for Varna Bay (Bulgaria, Western Black Sea). It relates near-shore storm conditions to their onshore flood potential and ultimately to relevant impact as relative damage on coastal and manmade environment. Methodology for set-up and training of the Bayesian network was developed within RISC-KIT project (Resilience-Increasing Strategies for Coasts - toolKIT). Proposed BN reflects the interaction between boundary conditions, receptors, hazard, and consequences. Storm boundary conditions - maximum significant wave height and peak surge level, were determined on the basis of their historical and projected occurrence. The only hazard considered in this study is flooding characterized by maximum inundation depth. BN was trained with synthetic events created by combining estimated boundary conditions. Flood impact was modeled with the process-based morphodynamical model XBeach. Restaurants, sport and leisure facilities, administrative buildings, and car parks were introduced in the network as receptors. Consequences (impact) are estimated in terms of relative damage caused by given inundation depth. National depth
Directory of Open Access Journals (Sweden)
R. Latha
Full Text Available Nowadays, Wireless Body Area Network (WBAN is emerging very fast and so many new methods and algorithms are coming up for finding the optimal path for disseminating emergency messages. Ant Colony Optimization (ACO is one of the cultural algorithms for solving many hard problems such as Travelling Salesman Problem (TSP. ACO is a natural behaviour of ants, which work stochastically with the help of pheromone trails deposited in the shortest route to find their food. This optimization procedure involves adapting, positive feedback and inherent parallelism. Each ant will deposit certain amount of pheromone in the tour construction it makes searching for food. This type of communication is known as stigmetric communication. In addition, if a dense WBAN environment prevails, such as hospital, i.e. in the environment of overlapping WBAN, game formulation was introduced for analyzing the mixed strategy behaviour of WBAN. In this paper, the ant colony optimization approach to the travelling salesman problem was applied to the WBAN to determine the shortest route for sending emergency message to the doctor via sensor nodes; and also a static Bayesian game formulation with mixed strategy was analysed to enhance the network lifetime. Whenever the patient needs any critical care or any other medical issue arises, emergency messages will be created by the WBAN and sent to the doctor's destination. All the modes of communication were realized in a simulation environment using OMNet++. The authors investigated a balanced model of emergency message dissemination and network lifetime in WBAN using ACO and Bayesian game formulation. Keywords: Wireless body area network, Ant colony optimization, Bayesian game model, Sensor network, Message latency, Network lifetime
Nash, David; Hannah, Murray; Robertson, Fiona; Rifkin, Penny
2010-01-01
Best management practices are often used to mitigate nutrient exports from agricultural systems. The effectiveness of these measures can vary depending on the natural attributes of the land in question (e.g., soil type, slope, and drainage class). In this paper we use a Bayesian Network to combine experiential data (expert opinion) and experimental data to compare farm-scale management for different high-rainfall cropping farms in the Hamilton region of southern Australia. In the absence of appropriate data for calibration, the network was tested against various scenarios in a predictive and in a diagnostic way. In general, the network suggests that transport factors related to total surface water (i.e., surface and near surface interflow) runoff, which are largely unrelated to Site Variables, have the biggest effect on N exports. Source factors, especially those related to fertilizer applications at planting, also appear to be important. However, the effects of fertilizer depend on when runoff occurs, and, of the major factors under management control, only the Fertilizer Rate at Sowing had a notable effect. When used in a predictive capacity, the network suggests that, compared with other scenarios, high N loads are likely when fertilizer applications at sowing and runoff coincide. In this paper we have used a Bayesian Network to describe many of the dependencies between some of the major factors affecting N exports from high rainfall cropping. This relatively simple approach has been shown to be a useful tool for comparing management practices in data-poor environments.
DEFF Research Database (Denmark)
Jensen, Kasper Lynge; Toftum, Jørn; Friis-Hansen, Peter
2009-01-01
A Bayesian Network approach has been developed that can compare different building designs by estimating the effects of the thermal indoor environment on the mental performance of office workers. A part of this network is based on the compilation of subjective thermal sensation data and the assoc......A Bayesian Network approach has been developed that can compare different building designs by estimating the effects of the thermal indoor environment on the mental performance of office workers. A part of this network is based on the compilation of subjective thermal sensation data...... are affected by the indoor climate....
Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio
2015-12-01
Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.
A Bayesian Network Based Adaptability Design of Product Structures for Function Evolution
Directory of Open Access Journals (Sweden)
Shaobo Li
2018-03-01
Full Text Available Structure adaptability design is critical for function evolution in product families, in which many structural and functional design factors are intertwined together with manufacturing cost, customer satisfaction, and final market sales. How to achieve a delicate balance among all of these factors to maximize the market performance of the product is too complicated to address based on traditional domain experts’ knowledge or some ad hoc heuristics. Here, we propose a quantitative product evolution design model that is based on Bayesian networks to model the dynamic relationship between customer needs and product structure design. In our model, all of the structural or functional features along with customer satisfaction, manufacturing cost, sale price, market sales, and indirect factors are modeled as random variables denoted as nodes in the Bayesian networks. The structure of the Bayesian model is then determined based on the historical data, which captures the dynamic sophisticated relationship of customer demands of a product, structural design, and market performance. Application of our approach to an electric toothbrush product family evolution design problem shows that our model allows for designers to interrogate with the model and obtain theoretical and decision support for dynamic product feature design process.
An empirical Bayesian approach for model-based inference of cellular signaling networks
Directory of Open Access Journals (Sweden)
Klinke David J
2009-11-01
Full Text Available Abstract Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.
Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees
Directory of Open Access Journals (Sweden)
Chen Xiaoyu
2007-12-01
Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.
2017-01-01
Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result. PMID:28133490
Directory of Open Access Journals (Sweden)
Yue Fan
2017-01-01
Full Text Available Gene regulatory networks (GRNs play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Joung, Semin; Kwak, Sehyun; Ghim, Y.-C.
2017-10-01
Obtaining plasma shapes during tokamak discharges requires real-time estimation of magnetic configuration using Grad-Shafranov solver such as EFIT. Since off-line EFIT is computationally intensive and the real-time reconstructions do not agree with the results of off-line EFIT within our desired accuracy, we use a neural network to generate an off-line-quality equilibrium in real time. To train the neural network (two hidden layers with 30 and 20 nodes for each layer), we create database consisting of the magnetic signals and off-line EFIT results from KSTAR as inputs and targets, respectively. To compensate drifts in the magnetic signals originated from electronic circuits, we develop a Bayesian-based two-step real-time correction method. Additionally, we infer missing inputs, i.e. when some of inputs to the network are not usable, using Gaussian process coupled with Bayesian model. The likelihood of this model is determined based on the Maxwell's equations. We find that our network can withstand at least up to 20% of input errors. Note that this real-time reconstruction scheme is not yet implemented for KSTAR operation.
Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.
Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias
2015-04-01
Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis-Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data. Copyright © 2015 by the Genetics Society of America.
A new approach for supply chain risk management: Mapping SCOR into Bayesian network
Directory of Open Access Journals (Sweden)
Mahdi Abolghasemi
2015-01-01
Full Text Available Purpose: Increase of costs and complexities in organizations beside the increase of uncertainty and risks have led the managers to use the risk management in order to decrease risk taking and deviation from goals. SCRM has a close relationship with supply chain performance. During the years different methods have been used by researchers in order to manage supply chain risk but most of them are either qualitative or quantitative. Supply chain operation reference (SCOR is a standard model for SCP evaluation which have uncertainty in its metrics. In This paper by combining qualitative and quantitative metrics of SCOR, supply chain performance will be measured by Bayesian Networks. Design/methodology/approach: First qualitative assessment will be done by recognizing uncertain metrics of SCOR model and then by quantifying them, supply chain performance will be measured by Bayesian Networks (BNs and supply chain operations reference (SCOR in which making decision on uncertain variables will be done by predictive and diagnostic capabilities. Findings: After applying the proposed method in one of the biggest automotive companies in Iran, we identified key factors of supply chain performance based on SCOR model through predictive and diagnostic capability of Bayesian Networks. After sensitivity analysis, we find out that ‘Total cost’ and its criteria that include costs of labors, warranty, transportation and inventory have the widest range and most effect on supply chain performance. So, managers should take their importance into account for decision making. We can make decisions simply by running model in different situations. Research limitations/implications: A more precise model consisted of numerous factors but it is difficult and sometimes impossible to solve big models, if we insert all of them in a Bayesian model. We have adopted real world characteristics with our software and method abilities. On the other hand, fewer data exist for some
Biedermann, A; Taroni, F; Delemont, O; Semadeni, C; Davison, A C
2005-01-06
This paper extends a previous discussion of the use of Bayesian networks for evaluating evidence in the forensic investigation of fire incidents. Bayesian networks are proposed for two casework examples and the practical implications studied in detail. Such networks were found to provide precious support in addressing some of the wide range of issues that affect the coherent evaluation of evidence.
Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks
Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui
2017-01-01
The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295
Daly, Rónán; Edwards, Kieron D.; O'Neill, John S.; Aitken, Stuart; Millar, Andrew J.; Girolami, Mark
Modelling gene regulatory networks in organisms is an important task that has recently become possible due to large scale assays using technologies such as microarrays. In this paper, the circadian clock of Arabidopsis thaliana is modelled by fitting dynamic Bayesian networks to luminescence data gathered from experiments. This work differs from previous modelling attempts by using higher-order dynamic Bayesian networks to explicitly model the time lag between the various genes being expressed. In order to achieve this goal, new techniques in preprocessing the data and in evaluating a learned model are proposed. It is shown that it is possible, to some extent, to model these time delays using a higher-order dynamic Bayesian network.
Alvarez-Galvez, Javier
2016-03-01
Studies assume that socioeconomic status determines individuals' states of health, but how does health determine socioeconomic status? And how does this association vary depending on contextual differences? To answer this question, our study uses an additive Bayesian Networks model to explain the interrelationships between health and socioeconomic determinants using complex and messy data. This model has been used to find the most probable structure in a network to describe the interdependence of these factors in five European welfare state regimes. The advantage of this study is that it offers a specific picture to describe the complex interrelationship between socioeconomic determinants and health, producing a network that is controlled by socio-demographic factors such as gender and age. The present work provides a general framework to describe and understand the complex association between socioeconomic determinants and health. Copyright © 2016 Elsevier Inc. All rights reserved.
Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.
2012-01-01
The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.
Predicting Football Matches Results using Bayesian Networks for English Premier League (EPL)
Razali, Nazim; Mustapha, Aida; Yatim, Faiz Ahmad; Aziz, Ruhaya Ab
2017-08-01
The issues of modeling asscoiation football prediction model has become increasingly popular in the last few years and many different approaches of prediction models have been proposed with the point of evaluating the attributes that lead a football team to lose, draw or win the match. There are three types of approaches has been considered for predicting football matches results which include statistical approaches, machine learning approaches and Bayesian approaches. Lately, many studies regarding football prediction models has been produced using Bayesian approaches. This paper proposes a Bayesian Networks (BNs) to predict the results of football matches in term of home win (H), away win (A) and draw (D). The English Premier League (EPL) for three seasons of 2010-2011, 2011-2012 and 2012-2013 has been selected and reviewed. K-fold cross validation has been used for testing the accuracy of prediction model. The required information about the football data is sourced from a legitimate site at http://www.football-data.co.uk. BNs achieved predictive accuracy of 75.09% in average across three seasons. It is hoped that the results could be used as the benchmark output for future research in predicting football matches results.
Grzegorczyk, Marco; Husmeier, Dirk
2012-01-01
An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional
Constructing a Bayesian network model for improving safety behavior of employees at workplaces.
Mohammadfam, Iraj; Ghasemi, Fakhradin; Kalatpour, Omid; Moghimbeigi, Abbas
2017-01-01
Unsafe behavior increases the risk of accident at workplaces and needs to be managed properly. The aim of the present study was to provide a model for managing and improving safety behavior of employees using the Bayesian networks approach. The study was conducted in several power plant construction projects in Iran. The data were collected using a questionnaire composed of nine factors, including management commitment, supporting environment, safety management system, employees' participation, safety knowledge, safety attitude, motivation, resource allocation, and work pressure. In order for measuring the score of each factor assigned by a responder, a measurement model was constructed for each of them. The Bayesian network was constructed using experts' opinions and Dempster-Shafer theory. Using belief updating, the best intervention strategies for improving safety behavior also were selected. The result of the present study demonstrated that the majority of employees do not tend to consider safety rules, regulation, procedures and norms in their behavior at the workplace. Safety attitude, safety knowledge, and supporting environment were the best predictor of safety behavior. Moreover, it was determined that instantaneous improvement of supporting environment and employee participation is the best strategy to reach a high proportion of safety behavior at the workplace. The lack of a comprehensive model that can be used for explaining safety behavior was one of the most problematic issues of the study. Furthermore, it can be concluded that belief updating is a unique feature of Bayesian networks that is very useful in comparing various intervention strategies and selecting the best one form them. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sorias, Soli
2015-01-01
Efforts to overcome the problems of descriptive and categorical approaches have not yielded results. In the present article, psychiatric diagnosis using Bayesian networks is proposed. Instead of a yes/no decision, Bayesian networks give the probability of diagnostic category inclusion, thereby yielding both a graded, i.e., dimensional diagnosis, and a value of the certainty of the diagnosis. With the use of Bayesian networks in the diagnosis of mental disorders, information about etiology, associated features, treatment outcome, and laboratory results may be used in addition to clinical signs and symptoms, with each of these factors contributing proportionally to their own specificity and sensitivity. Furthermore, a diagnosis (albeit one with a lower probability) can be made even with incomplete, uncertain, or partially erroneous information, and patients whose symptoms are below the diagnostic threshold can be evaluated. Lastly, there is no need of NOS or "unspecified" categories, and comorbid disorders become different dimensions of the diagnostic evaluation. Bayesian diagnoses allow the preservation of current categories and assessment methods, and may be used concurrently with criteria-based diagnoses. Users need not put in extra effort except to collect more comprehensive information. Unlike the Research Domain Criteria (RDoC) project, the Bayesian approach neither increases the diagnostic validity of existing categories nor explains the pathophysiological mechanisms of mental disorders. It, however, can be readily integrated to present classification systems. Therefore, the Bayesian approach may be an intermediate phase between criteria-based diagnosis and the RDoC ideal.
Santra, Tapesh; Kolch, Walter; Kholodenko, Boris N
2013-07-06
Recent advancements in genetics and proteomics have led to the acquisition of large quantitative data sets. However, the use of these data to reverse engineer biochemical networks has remained a challenging problem. Many methods have been proposed to infer biochemical network topologies from different types of biological data. Here, we focus on unraveling network topologies from steady state responses of biochemical networks to successive experimental perturbations. We propose a computational algorithm which combines a deterministic network inference method termed Modular Response Analysis (MRA) and a statistical model selection algorithm called Bayesian Variable Selection, to infer functional interactions in cellular signaling pathways and gene regulatory networks. It can be used to identify interactions among individual molecules involved in a biochemical pathway or reveal how different functional modules of a biological network interact with each other to exchange information. In cases where not all network components are known, our method reveals functional interactions which are not direct but correspond to the interaction routes through unknown elements. Using computer simulated perturbation responses of signaling pathways and gene regulatory networks from the DREAM challenge, we demonstrate that the proposed method is robust against noise and scalable to large networks. We also show that our method can infer network topologies using incomplete perturbation datasets. Consequently, we have used this algorithm to explore the ERBB regulated G1/S transition pathway in certain breast cancer cells to understand the molecular mechanisms which cause these cells to become drug resistant. The algorithm successfully inferred many well characterized interactions of this pathway by analyzing experimentally obtained perturbation data. Additionally, it identified some molecular interactions which promote drug resistance in breast cancer cells. The proposed algorithm
Prediction of HLA-A2 binding peptides using Bayesian network.
Astakhov, Vadim; Cherkasov, Artem
2005-10-11
Prediction of peptides binding to HLA (human leukocyte antigen) finds application in peptide vaccine design. A number of statistical and structural models have been developed in recent years for HLA binding peptide prediction. However, a Bayesian Network (BNT) model is not available. In this study we describe a BNT model for HLA-A2 binding peptide prediction. It has been demonstrated that the BNT model allows up to 99 % accurate identification of the HLA-A2 binding peptides and provides similar prediction accuracy compared to HMM (Hidden Markov Model) and ANN (Artificial Neural Network). At the same time, it has been shown that the BNT has that advantage that it allows more accurate performance for smaller sets of empirical data compared to the HMM and the ANN methods. When the size of the training set has been reduced to 40% from the original data, the identification of the HLA-A2 binding peptides by the BNT, ANN and HMM methods produced ARoc (area under receiver operating characteristic) values 0.88, 0.85, 0.85 respectively. The results of the work demonstrate certain advantages of using the Bayesian Networks in predicting the HLA binding peptides using smaller datasets.
Energy Technology Data Exchange (ETDEWEB)
Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann; Clowers, Brian H.; Dowling, Chase P.; Wahl, Karen L.; Wunschel, David S.; Kreuzer, Helen W.
2014-03-21
The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict the production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.
Directory of Open Access Journals (Sweden)
Gao Shouguo
2011-08-01
Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
An object-oriented Bayesian network modeling the causes of leg disorders in finisher herds
DEFF Research Database (Denmark)
Jensen, Tina Birk; Kristensen, Anders Ringgaard; Toft, Nils
2009-01-01
and a Pig class comprised the basic components of the object-oriented structure. The causal structure of the model was based on evidence from published literature. The conditional probabilities used in the model were elicited from experts within the field and from the published literature. To illustrate...... pigs (e.g. results from diagnostic tests) were used to estimate the most likely cause of leg disorders at herd level. As information to the model originated from two different levels, we used an object-oriented structure in order to ease the specification of the Bayesian network. Hence, a Herd class...
Risk-Based Operation and Maintenance of Offshore Wind Turbines using Bayesian Networks
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2011-01-01
the lifetime. Two different approaches are used; one uses a threshold value of the failure probability, and one uses a Limited Memory Influence Diagram. Both methods are tested for an application example using MonteCarlo sampling, and they are both found to be efficient and equally good.......For offshore wind farms, the costs due to operation and maintenance are large, and more optimal planning has the potential of reducing these costs. This paper presents how Bayesian networks can be used for risk-based inspection planning, where the inspection plans are updated each year through...
Object-oriented Bayesian networks for complex forensic DNA profiling problems.
Dawid, A P; Mortera, J; Vicard, P
2007-07-04
We describe a flexible computational toolkit, based on object-oriented Bayesian networks, that can be used to model and solve a wide variety of complex problems of relationship testing using DNA profiles. In particular this can account for such complicating features as missing individuals, mutation and null alleles. We illustrate the use of this toolkit with several examples, including disputed paternity with missing or additional measurements, and criminal identification. We investigate the effects on likelihood ratios of introducing mutation and/or null alleles, and show that this can be substantial even when the underlying perturbations are small.
Active and dynamic information fusion for multisensor systems with dynamic Bayesian networks.
Zhang, Yongmian; Ji, Qiang
2006-04-01
Many information fusion applications are often characterized by a high degree of complexity because: (1) data are often acquired from sensors of different modalities and with different degrees of uncertainty; (2) decisions must be made efficiently; and (3) the world situation evolves over time. To address these issues, we propose an information fusion framework based on dynamic Bayesian networks to provide active, dynamic, purposive and sufficing information fusion in order to arrive at a reliable conclusion with reasonable time and limited resources. The proposed framework is suited to applications where the decision must be made efficiently from dynamically available information of diverse and disparate sources.
Werhli, Adriano V; Husmeier, Dirk
2008-06-01
There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments.
National Research Council Canada - National Science Library
Hugar, Wayne
1998-01-01
.... As a result, China's MSI is expanding faster than that of any other nation in the world. China's MSI expansion is creating regional shipping networks that increase levels of Sino-foreign trade (SFT) interdependence...
Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo
2017-09-21
Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously
AC Transmission Network Expansion Planning: A Semidefinite Programming Branch-and-Cut Approach
Ghaddar, Bissan; Jabr, Rabih
2017-01-01
Transmission network expansion planning is a mixed-integer optimization problem, whose solution is used to guide future investment in transmission equipment. An approach is presented to find the global solution of the transmission planning problem using an AC network model. The approach builds on the semidefinite relaxation of the AC optimal power flow problem (ACOPF); its computational engine is a new specialized branch-and-cut algorithm for transmission expansion planning to deal with the u...
On the structure of Bayesian network for Indonesian text document paraphrase identification
Prayogo, Ario Harry; Syahrul Mubarok, Mohamad; Adiwijaya
2018-03-01
Paraphrase identification is an important process within natural language processing. The idea is to automatically recognize phrases that have different forms but contain same meanings. For examples if we input query “causing fire hazard”, then the computer has to recognize this query that this query has same meaning as “the cause of fire hazard. Paraphrasing is an activity that reveals the meaning of an expression, writing, or speech using different words or forms, especially to achieve greater clarity. In this research we will focus on classifying two Indonesian sentences whether it is a paraphrase to each other or not. There are four steps in this research, first is preprocessing, second is feature extraction, third is classifier building, and the last is performance evaluation. Preprocessing consists of tokenization, non-alphanumerical removal, and stemming. After preprocessing we will conduct feature extraction in order to build new features from given dataset. There are two kinds of features in the research, syntactic features and semantic features. Syntactic features consist of normalized levenshtein distance feature, term-frequency based cosine similarity feature, and LCS (Longest Common Subsequence) feature. Semantic features consist of Wu and Palmer feature and Shortest Path Feature. We use Bayesian Networks as the method of training the classifier. Parameter estimation that we use is called MAP (Maximum A Posteriori). For structure learning of Bayesian Networks DAG (Directed Acyclic Graph), we use BDeu (Bayesian Dirichlet equivalent uniform) scoring function and for finding DAG with the best BDeu score, we use K2 algorithm. In evaluation step we perform cross-validation. The average result that we get from testing the classifier as follows: Precision 75.2%, Recall 76.5%, F1-Measure 75.8% and Accuracy 75.6%.
Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering.
Directory of Open Access Journals (Sweden)
Chuan Gao
2016-07-01
Full Text Available Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.
Energy Technology Data Exchange (ETDEWEB)
White, Amanda M.; Gastelum, Zoe N.; Whitney, Paul D.
2014-05-13
Under the auspices of Pacific Northwest National Laboratory’s Signature Discovery Initiative (SDI), the research team developed a series of Bayesian Network models to assess multi-source signatures of nuclear programs. A Bayesian network is a mathematical model that can be used to marshal evidence to assess competing hypotheses. The purpose of the models was to allow non-expert analysts to benefit from the use of expert-informed mathematical models to assess nuclear programs, because such assessments require significant technical expertise ranging from the nuclear fuel cycle, construction and engineering, imagery analysis, and so forth. One such model developed under this research was aimed at assessing the consistency of open-source information about a nuclear facility with the facility’s declared use. The model incorporates factors such as location, security and safety features among others identified by subject matter experts as crucial to their assessments. The model includes key features, observables and their relationships. The model also provides documentation, which serves as training materials for the non-experts.
Energy Technology Data Exchange (ETDEWEB)
Gastelum, Zoe N.; White, Amanda M.; Whitney, Paul D.; Gosink, Luke J.; Sego, Landon H.
2013-06-04
The Multi-Source Signatures for Nuclear Programs project, part of Pacific Northwest National Laboratory’s (PNNL) Signature Discovery Initiative, seeks to computationally capture expert assessment of multi-type information such as text, sensor output, imagery, or audio/video files, to assess nuclear activities through a series of Bayesian network (BN) models. These models incorporate knowledge from a diverse range of information sources in order to help assess a country’s nuclear activities. The models span engineering topic areas, state-level indicators, and facility-specific characteristics. To illustrate the development, calibration, and use of BN models for multi-source assessment, we present a model that predicts a country’s likelihood to participate in the international nuclear nonproliferation regime. We validate this model by examining the extent to which the model assists non-experts arrive at conclusions similar to those provided by nuclear proliferation experts. We also describe the PNNL-developed software used throughout the lifecycle of the Bayesian network model development.
Predicting Mycobacterium tuberculosis Complex Clades Using Knowledge-Based Bayesian Networks
Directory of Open Access Journals (Sweden)
Minoo Aminian
2014-01-01
Full Text Available We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC clades. The proposed knowledge-based Bayesian network (KBBN treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes, since these are routinely gathered from MTBC isolates of tuberculosis (TB patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web.
Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors
Energy Technology Data Exchange (ETDEWEB)
Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.
2010-04-16
A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.
Yang, Xiaorong; Li, Suyun; Pan, Lulu; Wang, Qiang; Li, Huijie; Han, Mingkui; Zhang, Nan; Jiang, Fan; Jia, Chongqi
2016-07-01
The association between psychological factors and smoking cessation is complicated and inconsistent in published researches, and the joint effect of psychological factors on smoking cessation is unclear. This study explored how psychological factors jointly affect the success of smoking cessation using a Bayesian network approach. A community-based case control study was designed with 642 adult male successful smoking quitters as the cases, and 700 adult male failed smoking quitters as the controls. General self-efficacy (GSE), trait coping style (positive-trait coping style (PTCS) and negative-trait coping style (NTCS)) and self-rating anxiety (SA) were evaluated by GSE Scale, Trait Coping Style Questionnaire and SA Scale, respectively. Bayesian network was applied to evaluate the relationship between psychological factors and successful smoking cessation. The local conditional probability table of smoking cessation indicated that different joint conditions of psychological factors led to different outcomes for smoking cessation. Among smokers with high PTCS, high NTCS and low SA, only 36.40% successfully quitted smoking. However, among smokers with low pack-years of smoking, high GSE, high PTCS and high SA, 63.64% successfully quitted smoking. Our study indicates psychological factors jointly influence smoking cessation outcome. According to different joint situations, different solutions should be developed to control tobacco in practical intervention.
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Directory of Open Access Journals (Sweden)
Fang Yan
Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.
De la Fuente, José Manuel; Bengoetxea, Endika; Navarro, Felipe; Bobes, Julio; Alarcón, Renato Daniel
2011-04-30
There is agreement in that strengthening the sets of neurobiological data would reinforce the diagnostic objectivity of many psychiatric entities. This article attempts to use this approach in borderline personality disorder (BPD). Assuming that most of the biological findings in BPD reflect common underlying pathophysiological processes we hypothesized that most of the data involved in the findings would be statistically interconnected and interdependent, indicating biological consistency for this diagnosis. Prospectively obtained data on scalp and sleep electroencephalography (EEG), clinical neurologic soft signs, the dexamethasone suppression and thyrotropin-releasing hormone stimulation tests of 20 consecutive BPD patients were used to generate a Bayesian network model, an artificial intelligence paradigm that visually illustrates eventual associations (or inter-dependencies) between otherwise seemingly unrelated variables. The Bayesian network model identified relationships among most of the variables. EEG and TSH were the variables that influence most of the others, especially sleep parameters. Neurological soft signs were linked with EEG, TSH, and sleep parameters. The results suggest the possibility of using objective neurobiological variables to strengthen the validity of future diagnostic criteria and nosological characterization of BPD. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.
In-hospital death caused by pancreatic cancer in Spain: application with a bayesian network.
Alvaro-Meca, A; Gil-Prieto, R; Gil de Miguel, A
2011-06-01
Pancreatic cancer is one of the least common tumors (2.1%), but it remains one of the most lethal. This lethality is primarily due to late stage diagnosis in the vast majority of patients. Here we demonstrate, using a Bayesian network, that we can determine a posteriori, with a high probability of success, the probability of in-hospital death of pancreatic cancer in hospitals across Spain with information related to the type of admission, the type of procedure, the primary diagnosis or the Charlson co-morbidity index. The advantages of using a Bayesian network are that it allows us to examine multiple hypotheses and to measure the effect of the introduction of variables on our hypotheses. Being able to determine deceases in the probability of survival based on hospital admission data, such as the diagnosis resulting in the present admission or the presence of co-morbidities, could facilitate the detection of deficiencies in the patient treatment and improve hospital management. Moreover, the control of related co-morbidities may have an impact on the in-hospital deaths of these patients.
Constantinou, Anthony Costa; Yet, Barbaros; Fenton, Norman; Neil, Martin; Marsh, William
2016-01-01
Inspired by real-world examples from the forensic medical sciences domain, we seek to determine whether a decision about an interventional action could be subject to amendments on the basis of some incomplete information within the model, and whether it would be worthwhile for the decision maker to seek further information prior to suggesting a decision. The method is based on the underlying principle of Value of Information to enhance decision analysis in interventional and counterfactual Bayesian networks. The method is applied to two real-world Bayesian network models (previously developed for decision support in forensic medical sciences) to examine the average gain in terms of both Value of Information (average relative gain ranging from 11.45% and 59.91%) and decision making (potential amendments in decision making ranging from 0% to 86.8%). We have shown how the method becomes useful for decision makers, not only when decision making is subject to amendments on the basis of some unknown risk factors, but also when it is not. Knowing that a decision outcome is independent of one or more unknown risk factors saves us from the trouble of seeking information about the particular set of risk factors. Further, we have also extended the assessment of this implication to the counterfactual case and demonstrated how answers about interventional actions are expected to change when some unknown factors become known, and how useful this becomes in forensic medical science. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Q. J.; Robertson, D. E.; Haines, C. L.
2009-02-01
Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.
International Nuclear Information System (INIS)
Gastelum, Zoe N.; White, Amanda M.; Whitney, Paul D.; Gosink, Luke J.; Sego, Landon H.
2013-01-01
The Multi-Source Signatures for Nuclear Programs project, part of Pacific Northwest National Laboratory's (PNNL) Signature Discovery Initiative, seeks to computationally capture expert assessment of multi-type information such as text, sensor output, imagery, or audio/video files, to assess nuclear activities through a series of Bayesian network (BN) models. These models incorporate knowledge from a diverse range of information sources in order to help assess a country's nuclear activities. The models span engineering topic areas, state-level indicators, and facility-specific characteristics. To illustrate the development, calibration, and use of BN models for multi-source assessment, we present a model that predicts a country's likelihood to participate in the international nuclear nonproliferation regime. We validate this model by examining the extent to which the model assists non-experts arrive at conclusions similar to those provided by nuclear proliferation experts. We also describe the PNNL-developed software used throughout the lifecycle of the Bayesian network model development
Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil.
Li, Xuewen; Xie, Yunfeng; Li, Lianfa; Yang, Xunfeng; Wang, Ning; Wang, Jinfeng
2015-11-01
Prediction of antibiotic pollution and its consequences is difficult, due to the uncertainties and complexities associated with multiple related factors. This article employed domain knowledge and spatial data to construct a Bayesian network (BN) model to assess fluoroquinolone antibiotic (FQs) pollution in the soil of an intensive vegetable cultivation area. The results show: (1) The relationships between FQs pollution and contributory factors: Three factors (cultivation methods, crop rotations, and chicken manure types) were consistently identified as predictors in the topological structures of three FQs, indicating their importance in FQs pollution; deduced with domain knowledge, the cultivation methods are determined by the crop rotations, which require different nutrients (derived from the manure) according to different plant biomass. (2) The performance of BN model: The integrative robust Bayesian network model achieved the highest detection probability (pd) of high-risk and receiver operating characteristic (ROC) area, since it incorporates domain knowledge and model uncertainty. Our encouraging findings have implications for the use of BN as a robust approach to assessment of FQs pollution and for informing decisions on appropriate remedial measures.
A discrete-time Bayesian network reliability modeling and analysis framework
International Nuclear Information System (INIS)
Boudali, H.; Dugan, J.B.
2005-01-01
Dependability tools are becoming an indispensable tool for modeling and analyzing (critical) systems. However the growing complexity of such systems calls for increasing sophistication of these tools. Dependability tools need to not only capture the complex dynamic behavior of the system components, but they must be also easy to use, intuitive, and computationally efficient. In general, current tools have a number of shortcomings including lack of modeling power, incapacity to efficiently handle general component failure distributions, and ineffectiveness in solving large models that exhibit complex dependencies between their components. We propose a novel reliability modeling and analysis framework based on the Bayesian network (BN) formalism. The overall approach is to investigate timed Bayesian networks and to find a suitable reliability framework for dynamic systems. We have applied our methodology to two example systems and preliminary results are promising. We have defined a discrete-time BN reliability formalism and demonstrated its capabilities from a modeling and analysis point of view. This research shows that a BN based reliability formalism is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, being based on the BN formalism, the framework is easy to use and intuitive for non-experts, and provides a basis for more advanced and useful analyses such as system diagnosis
Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks.
Tylman, Wojciech; Waszyrowski, Tomasz; Napieralski, Andrzej; Kamiński, Marek; Trafidło, Tamara; Kulesza, Zbigniew; Kotas, Rafał; Marciniak, Paweł; Tomala, Radosław; Wenerski, Maciej
2016-02-01
This paper presents a decision support system that aims to estimate a patient׳s general condition and detect situations which pose an immediate danger to the patient׳s health or life. The use of this system might be especially important in places such as accident and emergency departments or admission wards, where a small medical team has to take care of many patients in various general conditions. Particular stress is laid on cardiovascular and pulmonary conditions, including those leading to sudden cardiac arrest. The proposed system is a stand-alone microprocessor-based device that works in conjunction with a standard vital signs monitor, which provides input signals such as temperature, blood pressure, pulseoxymetry, ECG, and ICG. The signals are preprocessed and analysed by a set of artificial intelligence algorithms, the core of which is based on Bayesian networks. The paper focuses on the construction and evaluation of the Bayesian network, both its structure and numerical specification. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Bayesian Neural Network approach to estimating the Energy Equivalent Speed.
Riviere, C; Lauret, P; Ramsamy, J F Manicom; Page, Y
2006-03-01
To reduce the number and the gravity of accidents, it is necessary to analyse and reconstruct them. Accident modelling requires the modelling of the impact which in turn requires the estimation of the deformation energy. There are several tools available to evaluate the deformation energy absorbed by a vehicle during an impact. However, there is a growing demand for more precise and more powerful tools. In this work, we express the deformation energy absorbed by a vehicle during a crash as a function of the Energy Equivalent Speed (EES). The latter is a difficult parameter to estimate because the structural response of the vehicle during an impact depends on parameters concerning the vehicle, but also parameters concerning the impact. The objective of our work is to design a model to estimate the EES by using an original approach combining Bayesian and Neural Network approaches. Both of these tools are complementary and offer significant advantages, such as the guarantee of finding the optimal model and the implementation of error bars on the computed output. In this paper, we present the procedure for implementing this Bayesian Neural Network approach and the results obtained for the modelling of the EES: our model is able to estimate the EES of the car with a mean error of 1.34 m s(-1). Furthermore, we built a sensitivity analysis to study the relevance of model's inputs.
Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems
International Nuclear Information System (INIS)
Tien, Iris; Der Kiureghian, Armen
2016-01-01
Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems. - Highlights: • Novel algorithms developed for Bayesian network modeling of infrastructure systems. • Algorithm presented to compress information in conditional probability tables. • Updating algorithm presented to perform inference on compressed matrices. • Algorithms applied to example systems to investigate their performance. • Orders of magnitude savings in memory storage requirement demonstrated.
Directory of Open Access Journals (Sweden)
Pedro Zorrilla
2010-09-01
Full Text Available Stakeholder participation is becoming increasingly important in water resources management. In participatory processes, stakeholders contribute by putting forward their own perspective, and they benefit by enhancing their understanding of the factors involved in decision making. A diversity of modeling tools can be used to facilitate participatory processes. Bayesian networks are well suited to this task for a variety of reasons, including their ability to structure discussions and visual appeal. This research focuses on developing and testing a set of evaluation criteria for public participation. The advantages and limitations of these criteria are discussed in the light of a specific participatory modeling initiative. Modeling work was conducted in the Upper Guadiana Basin in central Spain, where uncontrolled groundwater extraction is responsible for wetland degradation and conflicts between farmers, water authorities, and environmentalists. Finding adequate solutions to the problem is urgent because the implementation of the EU Water Framework Directive requires all aquatic ecosystems to be in a "good ecological state" within a relatively short time frame. Stakeholder evaluation highlights the potential of Bayesian networks to support public participation processes.
Yetton, Benjamin D; McDevitt, Elizabeth A; Cellini, Nicola; Shelton, Christian; Mednick, Sara C
2018-01-01
The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep.
Sironi, Emanuele; Taroni, Franco; Baldinotti, Claudio; Nardi, Cosimo; Norelli, Gian-Aristide; Gallidabino, Matteo; Pinchi, Vilma
2017-11-14
The present study aimed to investigate the performance of a Bayesian method in the evaluation of dental age-related evidence collected by means of a geometrical approximation procedure of the pulp chamber volume. Measurement of this volume was based on three-dimensional cone beam computed tomography images. The Bayesian method was applied by means of a probabilistic graphical model, namely a Bayesian network. Performance of that method was investigated in terms of accuracy and bias of the decisional outcomes. Influence of an informed elicitation of the prior belief of chronological age was also studied by means of a sensitivity analysis. Outcomes in terms of accuracy were adequate with standard requirements for forensic adult age estimation. Findings also indicated that the Bayesian method does not show a particular tendency towards under- or overestimation of the age variable. Outcomes of the sensitivity analysis showed that results on estimation are improved with a ration elicitation of the prior probabilities of age.
Detection method of vegetable maturity based on neural network and bayesian information fusions
Liang, Fan; Chen, Hong-Dou; Cui, Shi-Gang; Yang, Li-Li; Wu, Xing-Li
2015-12-01
In order to better grasp the maturity of vegetables, this paper proposes a method which makes full use of external morphological characteristics of vegetables to infer the maturity of vegetables. Especially extracting the morphological features of the root and combine them with the ground morphological features. In this paper, firstly, vegetable images are disposed by threshold segmentation and feature extraction using the image processing toolbox of Matlab. Through this way, the value of leaf crown projected area, plant height, root length and root side area will be got. Secondly, Features of ground part and underground part can be used as training samples for corresponding neural network maturity detection models. Ultimately, Bayesian theory is utilized to process information fusion with obtained values of each neural network. The results show that this method improved the accuracy of detection.
Sachs, Karen; Gentles, Andrew J; Youland, Ryan; Itani, Solomon; Irish, Jonathan; Nolan, Garry P; Plevritis, Sylvia K
2009-01-01
Characterization of patient-specific disease features at a molecular level is an important emerging field. Patients may be characterized by differences in the level and activity of relevant biomolecules in diseased cells. When high throughput, high dimensional data is available, it becomes possible to characterize differences not only in the level of the biomolecules, but also in the molecular interactions among them. We propose here a novel approach to characterize patient specific signaling, which augments high throughput single cell data with state nodes corresponding to patient and disease states, and learns a Bayesian network based on this data. Features distinguishing individual patients emerge as downstream nodes in the network. We illustrate this approach with a six phospho-protein, 30,000 cell-per-patient dataset characterizing three comparably diagnosed follicular lymphoma, and show that our approach elucidates signaling differences among them.
Biedermann, A; Taroni, F; Delemont, O; Semadeni, C; Davison, A C
2005-01-06
The forensic investigation of the origin and cause of a fire incident is a particularly demanding area of expertise. As the available evidence is often incomplete or vague, uncertainty is a key element. The present study is an attempt to approach this through the use of Bayesian networks, which have been found useful in assisting human reasoning in a variety of disciplines in which uncertainty plays a central role. The present paper describes the construction of a Bayesian network (BN) and its use for drawing inferences about propositions of interest, based upon a single, possibly non replicable item of evidence: detected residual quantities of a flammable liquid in fire debris.
Li, Peng; Gong, Ping; Li, Haoni; Perkins, Edward J; Wang, Nan; Zhang, Chaoyang
2014-12-01
The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project was initiated in 2006 as a community-wide effort for the development of network inference challenges for rigorous assessment of reverse engineering methods for biological networks. We participated in the in silico network inference challenge of DREAM3 in 2008. Here we report the details of our approach and its performance on the synthetic challenge datasets. In our methodology, we first developed a model called relative change ratio (RCR), which took advantage of the heterozygous knockdown data and null-mutant knockout data provided by the challenge, in order to identify the potential regulators for the genes. With this information, a time-delayed dynamic Bayesian network (TDBN) approach was then used to infer gene regulatory networks from time series trajectory datasets. Our approach considerably reduced the searching space of TDBN; hence, it gained a much higher efficiency and accuracy. The networks predicted using our approach were evaluated comparatively along with 29 other submissions by two metrics (area under the ROC curve and area under the precision-recall curve). The overall performance of our approach ranked the second among all participating teams.
Directory of Open Access Journals (Sweden)
Matthieu Vignes
Full Text Available Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed to infer gene regulatory networks. The fifth "Dialogue for Reverse Engineering Assessments and Methods" (DREAM5 challenges are aimed at assessing methods and associated algorithms devoted to the inference of biological networks. Challenge 3 on "Systems Genetics" proposed to infer causal gene regulatory networks from different genetical genomics data sets. We investigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference methods. We present results of the Challenge as well as more in-depth analysis of predicted networks in terms of structure and reliability. The developed meta-analysis was ranked first among the 16 teams participating in Challenge 3A. It paves the way for future extensions of our inference method and more accurate gene network estimates in the context of genetical genomics.
Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.
Zhao, Gengyan; Liu, Fang; Oler, Jonathan A; Meyerand, Mary E; Kalin, Ned H; Birn, Rasmus M
2018-03-28
Brain extraction or skull stripping of magnetic resonance images (MRI) is an essential step in neuroimaging studies, the accuracy of which can severely affect subsequent image processing procedures. Current automatic brain extraction methods demonstrate good results on human brains, but are often far from satisfactory on nonhuman primates, which are a necessary part of neuroscience research. To overcome the challenges of brain extraction in nonhuman primates, we propose a fully-automated brain extraction pipeline combining deep Bayesian convolutional neural network (CNN) and fully connected three-dimensional (3D) conditional random field (CRF). The deep Bayesian CNN, Bayesian SegNet, is used as the core segmentation engine. As a probabilistic network, it is not only able to perform accurate high-resolution pixel-wise brain segmentation, but also capable of measuring the model uncertainty by Monte Carlo sampling with dropout in the testing stage. Then, fully connected 3D CRF is used to refine the probability result from Bayesian SegNet in the whole 3D context of the brain volume. The proposed method was evaluated with a manually brain-extracted dataset comprising T1w images of 100 nonhuman primates. Our method outperforms six popular publicly available brain extraction packages and three well-established deep learning based methods with a mean Dice coefficient of 0.985 and a mean average symmetric surface distance of 0.220 mm. A better performance against all the compared methods was verified by statistical tests (all p-values < 10 -4 , two-sided, Bonferroni corrected). The maximum uncertainty of the model on nonhuman primate brain extraction has a mean value of 0.116 across all the 100 subjects. The behavior of the uncertainty was also studied, which shows the uncertainty increases as the training set size decreases, the number of inconsistent labels in the training set increases, or the inconsistency between the training set and the testing set increases
Sironi, Emanuele; Pinchi, Vilma; Taroni, Franco
2016-01-01
In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Koopmans, C.C.; Jacobs, C.G.W.
2016-01-01
This paper introduces a GIS-based model that simulates the geographic expansion of transport networks by several decision-makers with varying objectives. The model progressively adds extensions to a growing network by choosing the most attractive investments from a limited choice set. Attractiveness
Refining mass formulas for astrophysical applications: A Bayesian neural network approach
Utama, R.; Piekarewicz, J.
2017-10-01
Background: Exotic nuclei, particularly those near the drip lines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: What are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Purpose: Our aim is to refine existing mass models through the training of an artificial neural network that will mitigate the large model discrepancies far away from stability. Methods: The basic paradigm of our two-pronged approach is an existing mass model that captures as much as possible of the underlying physics followed by the implementation of a Bayesian neural network (BNN) refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of the neural network so that model predictions may be accompanied by theoretical uncertainties. Results: Despite the undeniable quality of the mass models adopted in this work, we observe a significant improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-Zuker mass formula, we find that the rms deviation relative to experiment is reduced from σrms=0.503 MeV to σrms=0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather "drip bands") and to study a few critical r -process nuclei. Conclusions: The BNN approach is highly successful in refining the predictions of existing mass models. In particular, the large discrepancy displayed by the original "bare" models in regions where experimental data are unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications.
Weinstein, Lawrence; Radano, Todd A; Jack, Timothy; Kalina, Philip; Eberhardt, John S
2009-09-16
This paper explores the use of machine learning and Bayesian classification models to develop broadly applicable risk stratification models to guide disease management of health plan enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD are understood by payers, who manage it through utilization review, acute interventions, coverage and cost limitations, and disease management, the literature shows mixed results for these modalities in improving patient outcomes and controlling cost. Our objective is to evaluate the potential of data mining methods to identify novel risk factors for chronic disease and stratification of enrollee utilization, which can be used to develop new methods for targeting disease management services to maximize benefits to both enrollees and payers. For our evaluation, we used DecisionQ machine learning algorithms to build Bayesian network models of a representative sample of data licensed from Thomson-Reuters' MarketScan consisting of 185,322 enrollees with three full-year claim records. Data sets were prepared, and a stepwise learning process was used to train a series of Bayesian belief networks (BBNs). The BBNs were validated using a 10 percent holdout set. The networks were highly predictive, with the risk-stratification BBNs producing area under the curve (AUC) for SUD positive of 0.948 (95 percent confidence interval [CI], 0.944-0.951) and 0.736 (95 percent CI, 0.721-0.752), respectively, and SUD negative of 0.951 (95 percent CI, 0.947-0.954) and 0.738 (95 percent CI, 0.727-0.750), respectively. The cost estimation models produced area under the curve ranging from 0.72 (95 percent CI, 0.708-0.731) to 0.961 (95 percent CI, 0.95-0.971). We were able to successfully model a large, heterogeneous population of commercial enrollees, applying state-of-the-art machine learning technology to develop complex and accurate multivariate models that support near-real-time scoring of novel payer
Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy.
Liu, Bing; Li, Jiuyong; Tsykin, Anna; Liu, Lin; Gaur, Arti B; Goodall, Gregory J
2009-12-10
microRNAs (miRNAs) regulate target gene expression by controlling their mRNAs post-transcriptionally. Increasing evidence demonstrates that miRNAs play important roles in various biological processes. However, the functions and precise regulatory mechanisms of most miRNAs remain elusive. Current research suggests that miRNA regulatory modules are complicated, including up-, down-, and mix-regulation for different physiological conditions. Previous computational approaches for discovering miRNA-mRNA interactions focus only on down-regulatory modules. In this work, we present a method to capture complex miRNA-mRNA interactions including all regulatory types between miRNAs and mRNAs. We present a method to capture complex miRNA-mRNA interactions using Bayesian network structure learning with splitting-averaging strategy. It is designed to explore all possible miRNA-mRNA interactions by integrating miRNA-targeting information, expression profiles of miRNAs and mRNAs, and sample categories. We also present an analysis of data sets for epithelial and mesenchymal transition (EMT). Our results show that the proposed method identified all possible types of miRNA-mRNA interactions from the data. Many interactions are of tremendous biological significance. Some discoveries have been validated by previous research, for example, the miR-200 family negatively regulates ZEB1 and ZEB2 for EMT. Some are consistent with the literature, such as LOX has wide interactions with the miR-200 family members for EMT. Furthermore, many novel interactions are statistically significant and worthy of validation in the near future. This paper presents a new method to explore the complex miRNA-mRNA interactions for different physiological conditions using Bayesian network structure learning with splitting-averaging strategy. The method makes use of heterogeneous data including miRNA-targeting information, expression profiles of miRNAs and mRNAs, and sample categories. Results on EMT data sets
Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy
Directory of Open Access Journals (Sweden)
Liu Lin
2009-12-01
Full Text Available Abstract Background microRNAs (miRNAs regulate target gene expression by controlling their mRNAs post-transcriptionally. Increasing evidence demonstrates that miRNAs play important roles in various biological processes. However, the functions and precise regulatory mechanisms of most miRNAs remain elusive. Current research suggests that miRNA regulatory modules are complicated, including up-, down-, and mix-regulation for different physiological conditions. Previous computational approaches for discovering miRNA-mRNA interactions focus only on down-regulatory modules. In this work, we present a method to capture complex miRNA-mRNA interactions including all regulatory types between miRNAs and mRNAs. Results We present a method to capture complex miRNA-mRNA interactions using Bayesian network structure learning with splitting-averaging strategy. It is designed to explore all possible miRNA-mRNA interactions by integrating miRNA-targeting information, expression profiles of miRNAs and mRNAs, and sample categories. We also present an analysis of data sets for epithelial and mesenchymal transition (EMT. Our results show that the proposed method identified all possible types of miRNA-mRNA interactions from the data. Many interactions are of tremendous biological significance. Some discoveries have been validated by previous research, for example, the miR-200 family negatively regulates ZEB1 and ZEB2 for EMT. Some are consistent with the literature, such as LOX has wide interactions with the miR-200 family members for EMT. Furthermore, many novel interactions are statistically significant and worthy of validation in the near future. Conclusions This paper presents a new method to explore the complex miRNA-mRNA interactions for different physiological conditions using Bayesian network structure learning with splitting-averaging strategy. The method makes use of heterogeneous data including miRNA-targeting information, expression profiles of miRNAs and
Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure
Directory of Open Access Journals (Sweden)
Bilmes Jeff
2011-05-01
Full Text Available Abstract Background Protein secondary structure prediction provides insight into protein function and is a valuable preliminary step for predicting the 3D structure of a protein. Dynamic Bayesian networks (DBNs and support vector machines (SVMs have been shown to provide state-of-the-art performance in secondary structure prediction. As the size of the protein database grows, it becomes feasible to use a richer model in an effort to capture subtle correlations among the amino acids and the predicted labels. In this context, it is beneficial to derive sparse models that discourage over-fitting and provide biological insight. Results In this paper, we first show that we are able to obtain accurate secondary structure predictions. Our per-residue accuracy on a well established and difficult benchmark (CB513 is 80.3%, which is comparable to the state-of-the-art evaluated on this dataset. We then introduce an algorithm for sparsifying the parameters of a DBN. Using this algorithm, we can automatically remove up to 70-95% of the parameters of a DBN while maintaining the same level of predictive accuracy on the SD576 set. At 90% sparsity, we are able to compute predictions three times faster than a fully dense model evaluated on the SD576 set. We also demonstrate, using simulated data, that the algorithm is able to recover true sparse structures with high accuracy, and using real data, that the sparse model identifies known correlation structure (local and non-local related to different classes of secondary structure elements. Conclusions We present a secondary structure prediction method that employs dynamic Bayesian networks and support vector machines. We also introduce an algorithm for sparsifying the parameters of the dynamic Bayesian network. The sparsification approach yields a significant speed-up in generating predictions, and we demonstrate that the amino acid correlations identified by the algorithm correspond to several known features of
Zhang, Xuesong
2011-11-01
Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework (BNN-PIS) to incorporate the uncertainties associated with parameters, inputs, and structures into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform BNNs that only consider uncertainties associated with parameters and model structures. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters shows that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of and interactions among different uncertainty sources is expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting. © 2011 Elsevier B.V.
Directory of Open Access Journals (Sweden)
R. K. Tiwari
2011-08-01
Full Text Available A novel technique based on the Bayesian neural network (BNN theory is developed and employed to model the temperature variation record from the Western Himalayas. In order to estimate an a posteriori probability function, the BNN is trained with the Hybrid Monte Carlo (HMC/Markov Chain Monte Carlo (MCMC simulations algorithm. The efficacy of the new algorithm is tested on the well known chaotic, first order autoregressive (AR and random models and then applied to model the temperature variation record decoded from the tree-ring widths of the Western Himalayas for the period spanning over 1226–2000 AD. For modeling the actual tree-ring temperature data, optimum network parameters are chosen appropriately and then cross-validation test is performed to ensure the generalization skill of the network on the new data set. Finally, prediction result based on the BNN model is compared with the conventional artificial neural network (ANN and the AR linear models results. The comparative results show that the BNN based analysis makes better prediction than the ANN and the AR models. The new BNN modeling approach provides a viable tool for climate studies and could also be exploited for modeling other kinds of environmental data.
Ranking Features on Psychological Dynamics of Cooperative Team Work through Bayesian Networks
Directory of Open Access Journals (Sweden)
Pilar Fuster-Parra
2016-05-01
Full Text Available The aim of this study is to rank some features that characterize the psychological dynamics of cooperative team work in order to determine priorities for interventions and formation: leading positive feedback, cooperative manager and collaborative manager features. From a dataset of 20 cooperative sport teams (403 soccer players, the characteristics of the prototypical sports teams are studied using an average Bayesian network (BN and two special types of BNs, the Bayesian classifiers: naive Bayes (NB and tree augmented naive Bayes (TAN. BNs are selected as they are able to produce probability estimates rather than predictions. BN results show that the antecessors (the “top” features ranked are the team members’ expectations and their attraction to the social aspects of the task. The main node is formed by the cooperative behaviors, the consequences ranked at the BN bottom (ratified by the TAN trees and the instantiations made, the roles assigned to the members and their survival inside the same team. These results should help managers to determine contents and priorities when they have to face team-building actions.
Capturing cognitive causal paths in human reliability analysis with Bayesian network models
International Nuclear Information System (INIS)
Zwirglmaier, Kilian; Straub, Daniel; Groth, Katrina M.
2017-01-01
reIn the last decade, Bayesian networks (BNs) have been identified as a powerful tool for human reliability analysis (HRA), with multiple advantages over traditional HRA methods. In this paper we illustrate how BNs can be used to include additional, qualitative causal paths to provide traceability. The proposed framework provides the foundation to resolve several needs frequently expressed by the HRA community. First, the developed extended BN structure reflects the causal paths found in cognitive psychology literature, thereby addressing the need for causal traceability and strong scientific basis in HRA. Secondly, the use of node reduction algorithms allows the BN to be condensed to a level of detail at which quantification is as straightforward as the techniques used in existing HRA. We illustrate the framework by developing a BN version of the critical data misperceived crew failure mode in the IDHEAS HRA method, which is currently under development at the US NRC . We illustrate how the model could be quantified with a combination of expert-probabilities and information from operator performance databases such as SACADA. This paper lays the foundations necessary to expand the cognitive and quantitative foundations of HRA. - Highlights: • A framework for building traceable BNs for HRA, based on cognitive causal paths. • A qualitative BN structure, directly showing these causal paths is developed. • Node reduction algorithms are used for making the BN structure quantifiable. • BN quantified through expert estimates and observed data (Bayesian updating). • The framework is illustrated for a crew failure mode of IDHEAS.
A Bayesian framework for cell-level protein network analysis for multivariate proteomics image data
Kovacheva, Violet N.; Sirinukunwattana, Korsuk; Rajpoot, Nasir M.
2014-03-01
The recent development of multivariate imaging techniques, such as the Toponome Imaging System (TIS), has facilitated the analysis of multiple co-localisation of proteins. This could hold the key to understanding complex phenomena such as protein-protein interaction in cancer. In this paper, we propose a Bayesian framework for cell level network analysis allowing the identification of several protein pairs having significantly higher co-expression levels in cancerous tissue samples when compared to normal colon tissue. It involves segmenting the DAPI-labeled image into cells and determining the cell phenotypes according to their protein-protein dependence profile. The cells are phenotyped using Gaussian Bayesian hierarchical clustering (GBHC) after feature selection is performed. The phenotypes are then analysed using Difference in Sums of Weighted cO-dependence Profiles (DiSWOP), which detects differences in the co-expression patterns of protein pairs. We demonstrate that the pairs highlighted by the proposed framework have high concordance with recent results using a different phenotyping method. This demonstrates that the results are independent of the clustering method used. In addition, the highlighted protein pairs are further analysed via protein interaction pathway databases and by considering the localization of high protein-protein dependence within individual samples. This suggests that the proposed approach could identify potentially functional protein complexes active in cancer progression and cell differentiation.
Decision-theoretic analysis of forensic sampling criteria using bayesian decision networks.
Biedermann, A; Bozza, S; Garbolino, P; Taroni, F
2012-11-30
Sampling issues represent a topic of ongoing interest to the forensic science community essentially because of their crucial role in laboratory planning and working protocols. For this purpose, forensic literature described thorough (bayesian) probabilistic sampling approaches. These are now widely implemented in practice. They allow, for instance, to obtain probability statements that parameters of interest (e.g., the proportion of a seizure of items that present particular features, such as an illegal substance) satisfy particular criteria (e.g., a threshold or an otherwise limiting value). Currently, there are many approaches that allow one to derive probability statements relating to a population proportion, but questions on how a forensic decision maker--typically a client of a forensic examination or a scientist acting on behalf of a client--ought actually to decide about a proportion or a sample size, remained largely unexplored to date. The research presented here intends to address methodology from decision theory that may help to cope usefully with the wide range of sampling issues typically encountered in forensic science applications. The procedures explored in this paper enable scientists to address a variety of concepts such as the (net) value of sample information, the (expected) value of sample information or the (expected) decision loss. All of these aspects directly relate to questions that are regularly encountered in casework. Besides probability theory and bayesian inference, the proposed approach requires some additional elements from decision theory that may increase the efforts needed for practical implementation. In view of this challenge, the present paper will emphasise the merits of graphical modelling concepts, such as decision trees and bayesian decision networks. These can support forensic scientists in applying the methodology in practice. How this may be achieved is illustrated with several examples. The graphical devices invoked
Liu, Ke; Yu, Zhu Liang; Wu, Wei; Gu, Zhenghui; Li, Yuanqing; Nagarajan, Srikantan
2016-10-01
Estimating the locations and spatial extents of brain sources poses a long-standing challenge for electroencephalography and magnetoencephalography (E/MEG) source imaging. In the present work, a novel source imaging method, Bayesian Electromagnetic Spatio-Temporal Imaging of Extended Sources (BESTIES), which is built upon a Bayesian framework that determines the spatio-temporal smoothness of source activities in a fully data-driven fashion, is proposed to address this challenge. In particular, a Markov Random Field (MRF), which can precisely capture local cortical interactions, is employed to characterize the spatial smoothness of source activities, the temporal dynamics of which are modeled by a set of temporal basis functions (TBFs). Crucially, all of the unknowns in the MRF and TBF models are learned from the data. To accomplish model inference efficiently on high-resolution source spaces, a scalable algorithm is developed to approximate the posterior distribution of the source activities, which is based on the variational Bayesian inference and convex analysis. The performance of BESTIES is assessed using both simulated and actual human E/MEG data. Compared with L 2 -norm constrained methods, BESTIES is superior in reconstructing extended sources with less spatial diffusion and less localization error. By virtue of the MRF, BESTIES also overcomes the drawback of over-focal estimates in sparse constrained methods. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Cong; Zhang, Guohui; Tarefder, Rafiqul; Ma, Jianming; Wei, Heng; Guan, Hongzhi
2015-07-01
Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Grzegorczyk, Marco; Husmeier, Dirk; Edwards, Kieron D.; Ghazal, Peter; Millar, Andrew J.
2008-01-01
Method: The objective of the present article is to propose and evaluate a probabilistic approach based on Bayesian networks for modelling non-homogeneous and non-linear gene regulatory processes. The method is based on a mixture model, using latent variables to assign individual measurements to
Doskey, Steven Craig
2014-01-01
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
International Nuclear Information System (INIS)
Zhang, D.; Yan, X.P.; Yang, Z.L.; Wall, A.; Wang, J.
2013-01-01
Formal safety assessment (FSA), as a structured and systematic risk evaluation methodology, has been increasingly and broadly used in the shipping industry around the world. Concerns have been raised as to navigational safety of the Yangtze River, China's largest and the world's busiest inland waterway. Over the last few decades, the throughput of ships in the Yangtze River has increased rapidly due to the national development of the Middle and Western parts of China. Accidents such as collisions, groundings, contacts, oil-spills and fires occur repeatedly, often causing serious consequences. In order to improve the navigational safety in the Yangtze River, this paper estimates the navigational risk of the Yangtze River using the FSA concept and a Bayesian network (BN) technique. The navigational risk model is established by considering both probability and consequences of accidents with respect to a risk matrix method, followed by a scenario analysis to demonstrate the application of the proposed model
Ho, S H; Speldewinde, P; Cook, A
2017-01-01
A Bayesian Belief Network (BBN) for assessing the potential risk of dengue virus emergence and distribution in Western Australia (WA) is presented and used to identify possible hotspots of dengue outbreaks in summer and winter. The model assesses the probabilities of two kinds of events which must take place before an outbreak can occur: (1) introduction of the virus and mosquito vectors to places where human population densities are high; and (2) vector population growth rates as influenced by climatic factors. The results showed that if either Aedes aegypti or Ae. albopictus were to become established in WA, three centres in the northern part of the State (Kununurra, Fitzroy Crossing, Broome) would be at particular risk of experiencing an outbreak. The model can also be readily extended to predict the risk of introduction of other viruses carried by Aedes mosquitoes, such as yellow fever, chikungunya and Zika viruses.
Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks
Directory of Open Access Journals (Sweden)
Hamelryck Thomas
2010-03-01
Full Text Available Abstract Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs. It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations. Results The program package is freely available under the GNU General Public Licence (GPL from SourceForge http://sourceforge.net/projects/mocapy. The package contains the source for building the Mocapy++ library, several usage examples and the user manual. Conclusions Mocapy++ is especially suitable for constructing probabilistic models of biomolecular structure, due to its support for directional statistics. In particular, it supports the Kent distribution on the sphere and the bivariate von Mises distribution on the torus. These distributions have proven useful to formulate probabilistic models of protein and RNA structure in atomic detail.
DEFF Research Database (Denmark)
Thomsen, Nanna Isbak; Binning, Philip John; McKnight, Ursula S.
2016-01-01
to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models...... that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert...... on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information becomes available....
Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
He, Zhiwei; Gao, Mingyu; Ma, Guojin; Liu, Yuanyuan; Chen, Sanxin
2014-12-01
Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc. The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteries based on Dynamic Bayesian Networks (DBNs). The structure of the DBN model is built according to the experience of experts, with the state of charges used as hidden states and the terminal voltages used as observations in the DBN. Parameters of the DBN model are learned based on training data collected through Li-ion battery aging experiments. A forward algorithm is applied for the inference of the DBN model in order to estimate the SOH in real-time. Experimental results show that the proposed method is effective and efficient in estimating the SOH of Li-ion batteries.
Toward an Adaptive Learning System Framework: Using Bayesian Network to Manage Learner Model
Directory of Open Access Journals (Sweden)
Viet Anh Nguyen
2012-12-01
Full Text Available This paper represents a new approach to manage learner modeling in an adaptive learning system framework. It considers developing the basic components of an adaptive learning system such as the learner model, the course content model and the adaptation engine. We use the overlay model and Bayesian network to evaluate learners’ knowledge. In addition, we also propose a new content modeling method as well as adaptation engine to generate adaptive course based on learner’s knowledge. Based on this approach, we developed an adaptive learning system named is ACGS-II, that teaches students how to design an Entity Relationship model in a database system course. Empirical testing results for students who used the application indicate that our proposed model is very helpful as guidelines to develop adaptive learning system to meet learners’ demands.
Bayesian networks and the value of the evidence for the forensic two-trace transfer problem.
Gittelson, Simone; Biedermann, Alex; Bozza, Silvia; Taroni, Franco
2012-09-01
Forensic scientists face increasingly complex inference problems for evaluating likelihood ratios (LRs) for an appropriate pair of propositions. Up to now, scientists and statisticians have derived LR formulae using an algebraic approach. However, this approach reaches its limits when addressing cases with an increasing number of variables and dependence relationships between these variables. In this study, we suggest using a graphical approach, based on the construction of Bayesian networks (BNs). We first construct a BN that captures the problem, and then deduce the expression for calculating the LR from this model to compare it with existing LR formulae. We illustrate this idea by applying it to the evaluation of an activity level LR in the context of the two-trace transfer problem. Our approach allows us to relax assumptions made in previous LR developments, produce a new LR formula for the two-trace transfer problem and generalize this scenario to n traces. © 2012 American Academy of Forensic Sciences.
Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez
2013-01-01
Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182
A novel critical infrastructure resilience assessment approach using dynamic Bayesian networks
Cai, Baoping; Xie, Min; Liu, Yonghong; Liu, Yiliu; Ji, Renjie; Feng, Qiang
2017-10-01
The word resilience originally originates from the Latin word "resiliere", which means to "bounce back". The concept has been used in various fields, such as ecology, economics, psychology, and society, with different definitions. In the field of critical infrastructure, although some resilience metrics are proposed, they are totally different from each other, which are determined by the performances of the objects of evaluation. Here we bridge the gap by developing a universal critical infrastructure resilience metric from the perspective of reliability engineering. A dynamic Bayesian networks-based assessment approach is proposed to calculate the resilience value. A series, parallel and voting system is used to demonstrate the application of the developed resilience metric and assessment approach.
A Bayesian network model for predicting type 2 diabetes risk based on electronic health records
Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen
2017-07-01
An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.
Holt, J; Leach, A W; Johnson, S; Tu, D M; Nhu, D T; Anh, N T; Quinlan, M M; Whittle, P J L; Mengersen, K; Mumford, J D
2018-02-01
The production of an agricultural commodity involves a sequence of processes: planting/growing, harvesting, sorting/grading, postharvest treatment, packing, and exporting. A Bayesian network has been developed to represent the level of potential infestation of an agricultural commodity by a specified pest along an agricultural production chain. It reflects the dependency of this infestation on the predicted level of pest challenge, the anticipated susceptibility of the commodity to the pest, the level of impact from pest control measures as designed, and any variation from that due to uncertainty in measure efficacy. The objective of this Bayesian network is to facilitate agreement between national governments of the exporters and importers on a set of phytosanitary measures to meet specific phytosanitary measure requirements to achieve target levels of protection against regulated pests. The model can be used to compare the performance of different combinations of measures under different scenarios of pest challenge, making use of available measure performance data. A case study is presented using a model developed for a fruit fly pest on dragon fruit in Vietnam; the model parameters and results are illustrative and do not imply a particular level of fruit fly infestation of these exports; rather, they provide the most likely, alternative, or worst-case scenarios of the impact of measures. As a means to facilitate agreement for trade, the model provides a framework to support communication between exporters and importers about any differences in perceptions of the risk reduction achieved by pest control measures deployed during the commodity production chain. © 2017 Society for Risk Analysis.
International Nuclear Information System (INIS)
Dongiovanni, Danilo Nicola; Iesmantas, Tomas
2016-01-01
Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability
International Nuclear Information System (INIS)
Khakzad, Nima
2015-01-01
A domino effect is a low frequency high consequence chain of accidents where a primary accident (usually fire and explosion) in a unit triggers secondary accidents in adjacent units. High complexity and growing interdependencies of chemical infrastructures make them increasingly vulnerable to domino effects. Domino effects can be considered as time dependent processes. Thus, not only the identification of involved units but also their temporal entailment in the chain of accidents matter. More importantly, in the case of domino-induced fires which can generally last much longer compared to explosions, foreseeing the temporal evolution of domino effects and, in particular, predicting the most probable sequence of accidents (or involved units) in a domino effect can be of significance in the allocation of preventive and protective safety measures. Although many attempts have been made to identify the spatial evolution of domino effects, the temporal evolution of such accidents has been overlooked. We have proposed a methodology based on dynamic Bayesian network to model both the spatial and temporal evolutions of domino effects and also to quantify the most probable sequence of accidents in a potential domino effect. The application of the developed methodology has been demonstrated via a hypothetical fuel storage plant. - Highlights: • A Dynamic Bayesian Network methodology has been developed to model domino effects. • Considering time-dependencies, both spatial and temporal evolutions of domino effects have been modeled. • The concept of most probable sequence of accidents has been proposed instead of the most probable combination of accidents. • Using backward analysis, the most vulnerable units have been identified during a potential domino effect. • The proposed methodology does not need to identify a unique primary unit (accident) for domino effect modeling
Jaramillo, L. V.; Stone, M. C.; Morrison, R. R.
2017-12-01
Decision-making for natural resource management is complex especially for fire impacted watersheds in the Southwestern US because of the vital importance of water resources, exorbitant cost of fire management and restoration, and the risks of the wildland-urban interface (WUI). While riparian and terrestrial vegetation are extremely important to ecosystem health and provide ecosystem services, loss of vegetation due to wildfire, post-fire flooding, and debris flows can lead to further degradation of the watershed and increased vulnerability to erosion and debris flow. Land managers are charged with taking measures to mitigate degradation of the watershed effectively and efficiently with limited time, money, and data. For our study, a Bayesian network (BN) approach is implemented to understand vegetation potential for Kashe-Katuwe Tent Rocks National Monument in the fire-impacted Peralta Canyon Watershed, New Mexico, USA. We implement both two-dimensional hydrodynamic and Bayesian network modeling to incorporate spatial variability in the system. Our coupled modeling framework presents vegetation recruitment and succession potential for three representative plant types (native riparian, native terrestrial, and non-native) under several hydrologic scenarios and management actions. In our BN model, we use variables that address timing, hydrologic, and groundwater conditions as well as recruitment and succession constraints for the plant types based on expert knowledge and literature. Our approach allows us to utilize small and incomplete data, incorporate expert knowledge, and explicitly account for uncertainty in the system. Our findings can be used to help land managers and local decision-makers determine their plan of action to increase watershed health and resilience.
Using a Bayesian network to clarify areas requiring research in a host-pathogen system.
Bower, D S; Mengersen, K; Alford, R A; Schwarzkopf, L
2017-12-01
Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease-driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host-pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for
International Nuclear Information System (INIS)
Wu, Wei-Shing; Yang, Chen-Feng; Chang, Jung-Chuan; Château, Pierre-Alexandre; Chang, Yang-Chi
2015-01-01
The sound development of marine resource usage relies on a strong maritime engineering industry. The perilous marine environment poses the highest risk to all maritime work. It is therefore imperative to reduce the risk associated with maritime work by using some analytical methods other than engineering techniques. This study addresses this issue by using an integrated interpretive structure modeling (ISM) and Bayesian network (BN) approach in a risk assessment context. Mitigating or managing maritime risk relies primarily on domain expert experience and knowledge. ISM can be used to incorporate expert knowledge in a systematic manner and helps to impose order and direction on complex relationships that exist among system elements. Working with experts, this research used ISM to clearly specify an engineering risk factor relationship represented by a cause–effect diagram, which forms the structure of the BN. The expert subjective judgments were further transformed into a prior and conditional probability set to be embedded in the BN. We used the BN to evaluate the risks of two offshore pipeline projects in Taiwan. The results indicated that the BN can provide explicit risk information to support better project management. - Highlights: • We adopt an integrated method for risk assessment of offshore pipeline projects. • We conduct semi-structural interview with the experts for risk factor identification. • Interpretive structural modeling helps to form the digraph of Bayesian network (BN) • We perform the risk analysis with the experts by building a BN. • Risk evaluations of two case studies using the BN show effectiveness of the methods
A dynamic Bayesian network based approach to safety decision support in tunnel construction
International Nuclear Information System (INIS)
Wu, Xianguo; Liu, Huitao; Zhang, Limao; Skibniewski, Miroslaw J.; Deng, Qianli; Teng, Jiaying
2015-01-01
This paper presents a systemic decision approach with step-by-step procedures based on dynamic Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic and updated feature of geological, design and mechanical variables as the construction progress evolves, in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive, sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide real-time support before and after an accident. A case study in relating to dynamic safety analysis in the construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed approach, as well as its application potential. The relationships between the DBN-based and BN-based approaches are further discussed according to analysis results. The proposed approach can be used as a decision tool to provide support for safety analysis in tunnel construction, and thus increase the likelihood of a successful project in a dynamic project environment. - Highlights: • A dynamic Bayesian network (DBN) based approach for safety decision support is developed. • This approach is able to perform feed-forward, concurrent and back-forward analysis and control. • A case concerning dynamic safety analysis in Wuhan Yangtze Metro Tunnel in China is presented. • DBN-based approach can perform a higher accuracy than traditional static BN-based approach
Bayesian Networks for the Age Classification of Living Individuals: A Study on Transition Analysis
Directory of Open Access Journals (Sweden)
Emanuele Sironi
2015-01-01
Full Text Available Over the past few decades, age estimation of living persons has represented a challenging task for many forensic services worldwide. In general, the process for age estimation includes the observation of the degree of maturity reached by some physical attributes, such as dentition or several ossification centers. The estimated chronological age or the probability that an individual belongs to a meaningful class of ages is then obtained from the observed degree of maturity by means of various statistical methods. Among these methods, those developed in a Bayesian framework offer to users the possibility of coherently dealing with the uncertainty associated with age estimation and of assessing in a transparent and logical way the probability that an examined individual is younger or older than a given age threshold. Recently, a Bayesian network for age estimation has been presented in scientific literature; this kind of probabilistic graphical tool may facilitate the use of the probabilistic approach. Probabilities of interest in the network are assigned by means of transition analysis, a statistical parametric model, which links the chronological age and the degree of maturity by means of specific regression models, such as logit or probit models. Since different regression models can be employed in transition analysis, the aim of this paper is to study the influence of the model in the classification of individuals. The analysis was performed using a dataset related to the ossifications status of the medial clavicular epiphysis and results support that the classification of individuals is not dependent on the choice of the regression model.
Mohajerani, Hadis; Casper, Markus; Kholghi, Majid; Mosaedi, Abolfazl; Farmani, Raziyeh; Saadoddin, Amir; Meftah Halaghi, Mehdi
2017-04-01
This paper presents management of groundwater resource using a Bayesian Decision Network (BDN). The Kordkooy region in North East of Iran has been selected as study area. The region has been divided to three parts based on Transmissivity (T) and Electrical Conductivity (EC) values. The BDN parameters (prior probabilities and Conditional Probability Tables (CPTs) have been identified for each of the three zones. Three groups of management scenarios have been developed based on the two decision variables including "Crop pattern" and "Domestic water demand" across the three zones of the study area: 1) status quo management for all three zones representing current conditions. 2) the effect of change in cropping pattern on management endpoints and 3) the effect of increasing domestic water demand on management endpoints in the future. The outcomes arising from implementing each scenario have been predicted using the BDN for each of the zones. Results reveal that probability of drawdown in groundwater levels of southern areas is relatively high compared with other zones. Groundwater withdrawal from northern and northwestern areas of the study area should be limited due to the groundwater quality problems associated with shallow groundwater of these two zones. The ability of the Bayesian Decision Network to take into account key uncertainties in natural resources and performing a meaningful analysis in cases where there is not vast amount of information and observed data available -even based partly on expert opinion- emphasizes the advantage of this approach in groundwater resources management process, as limited data availability was a serious problem faced by groundwater resources of the study area.
Energy Technology Data Exchange (ETDEWEB)
Dongiovanni, Danilo Nicola, E-mail: danilo.dongiovanni@enea.it [ENEA, Nuclear Fusion and Safety Technologies Department, via Enrico Fermi 45, Frascati 00040 (Italy); Iesmantas, Tomas [LEI, Breslaujos str. 3 Kaunas (Lithuania)
2016-11-01
Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability
Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.
Directory of Open Access Journals (Sweden)
Holger Fröhlich
Full Text Available Aberrant activation of sonic Hegdehog (SHH signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs. To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays. We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.
Biedermann, A; Voisard, R; Taroni, F
2012-09-01
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Rosellon, Juan; Weigt, Hannes
2008-01-01
This paper examines the Hogan-Rosellón-Vogelsang (2007) (HRV) incentive mechanism for transmission expansion, and tests it for different network topologies. This new mechanism is based upon redefining transmission output in terms of point-to-point transactions or financial transmission rights (FTRs) and applies Vogelsang’s (2001) incentive-regulation logic that proposes rebalancing the variable and fixed parts of a two-part tariff to promote efficient, long-term expansion. We anal...
Development of a Bayesian Belief Network Runway Incursion and Excursion Model
Green, Lawrence L.
2014-01-01
In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.
Schmit, C. J.; Pritchard, J. R.
2018-03-01
Next generation radio experiments such as LOFAR, HERA, and SKA are expected to probe the Epoch of Reionization (EoR) and claim a first direct detection of the cosmic 21cm signal within the next decade. Data volumes will be enormous and can thus potentially revolutionize our understanding of the early Universe and galaxy formation. However, numerical modelling of the EoR can be prohibitively expensive for Bayesian parameter inference and how to optimally extract information from incoming data is currently unclear. Emulation techniques for fast model evaluations have recently been proposed as a way to bypass costly simulations. We consider the use of artificial neural networks as a blind emulation technique. We study the impact of training duration and training set size on the quality of the network prediction and the resulting best-fitting values of a parameter search. A direct comparison is drawn between our emulation technique and an equivalent analysis using 21CMMC. We find good predictive capabilities of our network using training sets of as low as 100 model evaluations, which is within the capabilities of fully numerical radiative transfer codes.
The Method of Oilfield Development Risk Forecasting and Early Warning Using Revised Bayesian Network
Directory of Open Access Journals (Sweden)
Yihua Zhong
2016-01-01
Full Text Available Oilfield development aiming at crude oil production is an extremely complex process, which involves many uncertain risk factors affecting oil output. Thus, risk prediction and early warning about oilfield development may insure operating and managing oilfields efficiently to meet the oil production plan of the country and sustainable development of oilfields. However, scholars and practitioners in the all world are seldom concerned with the risk problem of oilfield block development. The early warning index system of blocks development which includes the monitoring index and planning index was refined and formulated on the basis of researching and analyzing the theory of risk forecasting and early warning as well as the oilfield development. Based on the indexes of warning situation predicted by neural network, the method dividing the interval of warning degrees was presented by “3σ” rule; and a new method about forecasting and early warning of risk was proposed by introducing neural network to Bayesian networks. Case study shows that the results obtained in this paper are right and helpful to the management of oilfield development risk.
A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks
Energy Technology Data Exchange (ETDEWEB)
Santra, Tapesh, E-mail: tapesh.santra@ucd.ie [Systems Biology Ireland, University College Dublin, Dublin (Ireland)
2014-05-20
Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.
A Bayesian Framework that integrates heterogeneous data for inferring gene regulatory networks
Directory of Open Access Journals (Sweden)
Tapesh eSantra
2014-05-01
Full Text Available Reconstruction of gene regulatory networks (GRNs from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein protein interactions with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS and physical protein interactions (PPI among transcription factors (TFs in a Bayesian Variable Selection (BVS algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of LASSO regression based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression based method in some circumstances.
The design of a Bayesian Network for mobility management in Wireless Sensor Networks
Ballari, D.E.; Wachowicz, M.
2010-01-01
Mobility management functions in WSNs are mainly being developed from a ommunicational point of view, since the focus has been on maintaining the network connectivity. However, from a sensing point of view, sensor mobility has also an impact on the network spatial coverage. In mobile WSNs, the
Ferrazzi, Fulvia; Sebastiani, Paola; Ramoni, Marco F; Bellazzi, Riccardo
2007-05-24
Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs) seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively assessed, and most of the proposed approaches have dealt with linear Gaussian models. We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the impact of a different sampling time. The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit. Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model, but a better ability to recover the true underlying connections between variables.
Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561
Directory of Open Access Journals (Sweden)
Ramoni Marco F
2007-05-01
Full Text Available Abstract Background Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively assessed, and most of the proposed approaches have dealt with linear Gaussian models. Results We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the impact of a different sampling time. Conclusion The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit. Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model, but a better ability to recover the true underlying connections between
Rabelo, Cleverton Correa; Feres, Magda; Gonçalves, Cristiane; Figueiredo, Luciene C; Faveri, Marcelo; Tu, Yu-Kang; Chambrone, Leandro
2015-07-01
The aim of this study was to assess the effect of systemic antibiotic therapy on the treatment of aggressive periodontitis (AgP). This study was conducted and reported in accordance with the PRISMA statement. The MEDLINE, EMBASE and CENTRAL databases were searched up to June 2014 for randomized clinical trials comparing the treatment of subjects with AgP with either scaling and root planing (SRP) alone or associated with systemic antibiotics. Bayesian network meta-analysis was prepared using the Bayesian random-effects hierarchical models and the outcomes reported at 6-month post-treatment. Out of 350 papers identified, 14 studies were eligible. Greater gain in clinical attachment (CA) (mean difference [MD]: 1.08 mm; p < 0.0001) and reduction in probing depth (PD) (MD: 1.05 mm; p < 0.00001) were observed for SRP + metronidazole (Mtz), and for SRP + Mtz + amoxicillin (Amx) (MD: 0.45 mm, MD: 0.53 mm, respectively; p < 0.00001) than SRP alone/placebo. Bayesian network meta-analysis showed additional benefits in CA gain and PD reduction when SRP was associated with systemic antibiotics. SRP plus systemic antibiotics led to an additional clinical effect compared with SRP alone in the treatment of AgP. Of the antibiotic protocols available for inclusion into the Bayesian network meta-analysis, Mtz and Mtz/Amx provided to the most beneficial outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Counternetwork: Countering the Expansion of Transnational Criminal Networks
2017-01-01
swaths of territory. When this territory overlaps with important routes of the transportista networks, negotiations are undertaken with the local... Organisation for Economic Co-operation and Development, OECD Reviews of Risk Management Policies, 2015. 2 “Strategy to Combat Transnational Organized Crime...orga- nizations is a legitimate and important role for the U.S. Army, one in which its current efforts could be significantly expanded. The
A Bayesian network meta-analysis on second-line systemic therapy in advanced gastric cancer.
Zhu, Xiaofu; Ko, Yoo-Joung; Berry, Scott; Shah, Keya; Lee, Esther; Chan, Kelvin
2017-07-01
It is unclear which regimen is the most efficacious among the available therapies for advanced gastric cancer in the second-line setting. We performed a network meta-analysis to determine their relative benefits. We conducted a systematic review of randomized controlled trials (RCTs) through the MEDLINE, Embase, and Cochrane Central Register of Controlled Trials databases and American Society of Clinical Oncology abstracts up to June 2014 to identify phase III RCTs on advanced gastric cancer in the second-line setting. Overall survival (OS) data were the primary outcome of interest. Hazard ratios (HRs) were extracted from the publications on the basis of reported values or were extracted from survival curves by established methods. A Bayesian network meta-analysis was performed with WinBUGS to compare all regimens simultaneously. Eight RCTs (2439 patients) were identified and contained extractable data for quantitative analysis. Network meta-analysis showed that paclitaxel plus ramucirumab was superior to single-agent ramucirumab [OS HR 0.51, 95 % credible region (CR) 0.30-0.86], paclitaxel (OS HR 0.81, 95 % CR 0.68-0.96), docetaxel (OS HR 0.56, 95 % CR 0.33-0.94), and irinotecan (OS HR 0.71, 95 % CR 0.52-0.99). Paclitaxel plus ramucirumab also had an 89 % probability of being the best regimen among all these regimens. Single-agent ramucirumab, paclitaxel, docetaxel, and irinotecan were comparable to each other with respect to OS and were superior to best supportive care. This is the first network meta-analysis to compare all second-line regimens reported in phase III gastric cancer trials. The results suggest the paclitaxel plus ramucirumab combination is the most effective therapy and should be the reference regimen for future comparative trials.
Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.
Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida
2014-03-01
Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a
Khan, Safi U; Winnicka, Lydia; Saleem, Muhammad A; Rahman, Hammad; Rehman, Najeeb
Recent evidence challenges, the superiority of amiodarone, compared to other anti-arrhythmic medications, as the agent of choice in pulseless ventricular tachycardia (VT) or ventricular fibrillation (VF). We conducted Bayesian network and traditional meta-analyses to investigate the relative efficacies of amiodarone, lidocaine, magnesium (MgSO4) and placebo as treatments for pulseless VT or VF. Eleven studies [5200 patients, 7 randomized trials (4, 611 patients) and 4 non-randomized studies (589 patients)], were included in this meta-analysis. The search was conducted, from 1981 to February 2017, using MEDLINE, EMBASE and The Cochrane Library. Estimates were reported as odds ratio (OR) with 95% Credible Interval (CrI). Markov chain Monte Carlo (MCMC) modeling was used to estimate the relative ranking probability of each treatment group based on surface under cumulative ranking curve (SUCRA). Bayesian analysis demonstrated that lidocaine had superior effects on survival to hospital discharge, compared to amiodarone (OR, 2.18, 95% Cr.I 1.26-3.13), MgSO4 (OR, 2.03, 95% Cr.I 0.74-4.82) and placebo (OR, 2.42, 95% Cr.I 1.39-3.54). There were no statistical differences among treatment groups regarding survival to hospital admission/24 h (hrs) and return of spontaneous circulation (ROSC). Probability analysis revealed that lidocaine was the most effective therapy for survival to hospital discharge (SUCRA, 97%). We conclude that lidocaine may be the most effective anti-arrhythmic agent for survival to hospital discharge in patients with pulseless VT or VF. Copyright © 2017 Elsevier Inc. All rights reserved.
SU-F-R-44: Modeling Lung SBRT Tumor Response Using Bayesian Network Averaging
Energy Technology Data Exchange (ETDEWEB)
Diamant, A; Ybarra, N; Seuntjens, J [McGill University, Montreal, Quebec (Canada); El Naqa, I [University of Michigan, Ann Arbor, MI (United States)
2016-06-15
Purpose: The prediction of tumor control after a patient receives lung SBRT (stereotactic body radiation therapy) has proven to be challenging, due to the complex interactions between an individual’s biology and dose-volume metrics. Many of these variables have predictive power when combined, a feature that we exploit using a graph modeling approach based on Bayesian networks. This provides a probabilistic framework that allows for accurate and visually intuitive predictive modeling. The aim of this study is to uncover possible interactions between an individual patient’s characteristics and generate a robust model capable of predicting said patient’s treatment outcome. Methods: We investigated a cohort of 32 prospective patients from multiple institutions whom had received curative SBRT to the lung. The number of patients exhibiting tumor failure was observed to be 7 (event rate of 22%). The serum concentration of 5 biomarkers previously associated with NSCLC (non-small cell lung cancer) was measured pre-treatment. A total of 21 variables were analyzed including: dose-volume metrics with BED (biologically effective dose) correction and clinical variables. A Markov Chain Monte Carlo technique estimated the posterior probability distribution of the potential graphical structures. The probability of tumor failure was then estimated by averaging the top 100 graphs and applying Baye’s rule. Results: The optimal Bayesian model generated throughout this study incorporated the PTV volume, the serum concentration of the biomarker EGFR (epidermal growth factor receptor) and prescription BED. This predictive model recorded an area under the receiver operating characteristic curve of 0.94(1), providing better performance compared to competing methods in other literature. Conclusion: The use of biomarkers in conjunction with dose-volume metrics allows for the generation of a robust predictive model. The preliminary results of this report demonstrate that it is possible
DEFF Research Database (Denmark)
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
is largely due to the availability of efficient inference algorithms for answering probabilistic queries about the states of the variables in the network. Furthermore, to support the construction of Bayesian network models, learning algorithms are also available. We give an overview of the Bayesian network...
International Nuclear Information System (INIS)
Hargrave, C; Deegan, T; Gibbs, A; Poulsen, M; Moores, M; Harden, F; Mengersen, K
2014-01-01
A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.
A dynamic discretization method for reliability inference in Dynamic Bayesian Networks
International Nuclear Information System (INIS)
Zhu, Jiandao; Collette, Matthew
2015-01-01
The material and modeling parameters that drive structural reliability analysis for marine structures are subject to a significant uncertainty. This is especially true when time-dependent degradation mechanisms such as structural fatigue cracking are considered. Through inspection and monitoring, information such as crack location and size can be obtained to improve these parameters and the corresponding reliability estimates. Dynamic Bayesian Networks (DBNs) are a powerful and flexible tool to model dynamic system behavior and update reliability and uncertainty analysis with life cycle data for problems such as fatigue cracking. However, a central challenge in using DBNs is the need to discretize certain types of continuous random variables to perform network inference while still accurately tracking low-probability failure events. Most existing discretization methods focus on getting the overall shape of the distribution correct, with less emphasis on the tail region. Therefore, a novel scheme is presented specifically to estimate the likelihood of low-probability failure events. The scheme is an iterative algorithm which dynamically partitions the discretization intervals at each iteration. Through applications to two stochastic crack-growth example problems, the algorithm is shown to be robust and accurate. Comparisons are presented between the proposed approach and existing methods for the discretization problem. - Highlights: • A dynamic discretization method is developed for low-probability events in DBNs. • The method is compared to existing approaches on two crack growth problems. • The method is shown to improve on existing methods for low-probability events
Directory of Open Access Journals (Sweden)
Zhujie Chu
2016-02-01
Full Text Available Municipal household solid waste (MHSW has become a serious problem in China over the course of the last two decades, resulting in significant side effects to the environment. Therefore, effective management of MHSW has attracted wide attention from both researchers and practitioners. Separate collection, the first and crucial step to solve the MHSW problem, however, has not been thoroughly studied to date. An empirical survey has been conducted among 387 households in Harbin, China in this study. We use Bayesian Belief Networks model to determine the influencing factors on separate collection. Four types of factors are identified, including political, economic, social cultural and technological based on the PEST (political, economic, social and technological analytical method. In addition, we further analyze the influential power of different factors, based on the network structure and probability changes obtained by Netica software. Results indicate that technological dimension has the greatest impact on MHSW separate collection, followed by the political dimension and economic dimension; social cultural dimension impacts MHSW the least.
Based on Fuzzy Bayesian Network of Oil Wharf Handling Risk Assessment
Directory of Open Access Journals (Sweden)
Zhiqiang Hou
2016-01-01
Full Text Available In order to make the risk assessment method of oil wharf handling more reasonable, basic data calibration method more accurate, and assessment findings more objective, the fuzzy weights of the relative probability of basic events are calibrated by ANP decision-making (Analytic Network Process. ANP decision-making is appropriate for reflecting the dependence between the basic events and the feedback relationship. The calibration value is used as the probability value of each basic event. Based on the fault tree model, the relationship between the accidents caused by the Bayesian network is constructed, and the important degree of the basic events is quantitatively evaluated. The case focuses on wharf handling gasoline fire and explosions, using ANP method to calibrate probability, and analyzing and sorting the structural importance, the probability importance, and critical degree of each basic event through forward and backward reasoning. The results showed that the evaluation model can better characterize the effect of the basic events on the top events, which can be targeted to identify security weaknesses in oil wharf handling process. It has some practical significance for finding security risks and improving working conditions and the overall system safety level.
2016-05-31
Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics: Integration of Neural...Transfer N/A Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded
Sironi, Emanuele; Pinchi, Vilma; Pradella, Francesco; Focardi, Martina; Bozza, Silvia; Taroni, Franco
2018-04-01
Not only does the Bayesian approach offer a rational and logical environment for evidence evaluation in a forensic framework, but it also allows scientists to coherently deal with uncertainty related to a collection of multiple items of evidence, due to its flexible nature. Such flexibility might come at the expense of elevated computational complexity, which can be handled by using specific probabilistic graphical tools, namely Bayesian networks. In the current work, such probabilistic tools are used for evaluating dental evidence related to the development of third molars. A set of relevant properties characterizing the graphical models are discussed and Bayesian networks are implemented to deal with the inferential process laying beyond the estimation procedure, as well as to provide age estimates. Such properties include operationality, flexibility, coherence, transparence and sensitivity. A data sample composed of Italian subjects was employed for the analysis; results were in agreement with previous studies in terms of point estimate and age classification. The influence of the prior probability elicitation in terms of Bayesian estimate and classifies was also analyzed. Findings also supported the opportunity to take into consideration multiple teeth in the evaluative procedure, since it can be shown this results in an increased robustness towards the prior probability elicitation process, as well as in more favorable outcomes from a forensic perspective. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall
2016-01-01
Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.
On the Relevance of Using Bayesian Belief Networks in Wireless Sensor Networks Situation Recognition
Directory of Open Access Journals (Sweden)
Marco Zennaro
2010-12-01
Full Text Available Achieving situation recognition in ubiquitous sensor networks (USNs is an important issue that has been poorly addressed by both the research and practitioner communities. This paper describes some steps taken to address this issue by effecting USN middleware intelligence using an emerging situation awareness (ESA technology. We propose a situation recognition framework where temporal probabilistic reasoning is used to derive and emerge situation awareness in ubiquitous sensor networks. Using data collected from an outdoor environment monitoring in the city of Cape Town, we illustrate the use of the ESA technology in terms of sensor system operating conditions and environmental situation recognition.
Pinto, M. J.; Wagner, B. J.
2002-12-01
The design of groundwater monitoring networks is an important concern of regional-scale water-quality assessment programs because of the high cost of data collection. The work presented here addresses regional-scale design issues using ground-water simulation and optimization set within a Bayesian framework. The regional-scale design approach focuses on reducing the uncertainty associated with a fundamental quantity: the proportion of a subsurface water resource which exceeds a specified threshold concentration, such as a mandated maximum contaminant level. This proportion is hereafter referred to as the threshold proportion. The goal is to identify optimal or near-optimal sampling designs that reduce the threshold proportion uncertainty to an acceptable level. In the Bayesian approach, there is a probability density function (pdf) associated with the unknown threshold proportion before sampling. This function is known as the prior pdf. The form of the prior pdf, which is dependent on the information available regarding the distribution of water quality within the aquifer system, controls the amount of sampling needed. In the absence of information, the form of the prior pdf is uniform; however, if a ground-water flow and transport model is available, a Monte Carlo analysis of ground-water flow and transport simulations can be used to generate a prior pdf which is non-uniform and which contains the information available regarding solute sources, pathways and transport. After sampling, the prior pdf is conditioned on the sampling data. The conditional distribution is known as the posterior pdf. In most cases there is a reduction in uncertainty associated with conditioning. The reduction in uncertainty achieved after collecting samples can be explored for different combinations of prior pdf distribution and sampling method. Three scenarios are considered: (i) uniform prior pdf with random sampling; (ii) non-uniform prior pdf with random sampling; and (iii) non
Dondeynaz, C.; Lopez-Puga, J.; Carmona-Moreno, C.
2012-04-01
Improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). This inter-dependency has been recognised with the adoption of the "Integrated Water Resources Management" principles that push for the integration of these various dimensions involved in WSS delivery to ensure an efficient and sustainable management. The understanding of these interrelations appears as crucial for decision makers in the water sector in particular in developing countries where WSS still represent an important leverage for livelihood improvement. In this framework, the Joint Research Centre of the European Commission has developed a coherent database (WatSan4Dev database) containing 29 indicators from environmental, socio-economic, governance and financial aid flows data focusing on developing countries (Celine et al, 2011 under publication). The aim of this work is to model the WatSan4Dev dataset using probabilistic models to identify the key variables influencing or being influenced by the water supply and sanitation access levels. Bayesian Network Models are suitable to map the conditional dependencies between variables and also allows ordering variables by level of influence on the dependent variable. Separated models have been built for water supply and for sanitation because of different behaviour. The models are validated if complying with statistical criteria but either with scientific knowledge and literature. A two steps approach has been adopted to build the structure of the model; Bayesian network is first built for each thematic cluster of variables (e.g governance, agricultural pressure, or human development) keeping a detailed level for interpretation later one. A global model is then built based on significant indicators of each cluster being previously modelled. The structure of the
Pipeline network expansion crucial to economic development in India
Energy Technology Data Exchange (ETDEWEB)
Jha, Kiran Kumar; Tandon, Anil; Sati, Vipin Chandra [Indian Oil Corporation Ltd., Sadiq Nagar, New Delhi (India)
2008-07-01
Oil Sector plays a crucial role in the development of a country and provides the required balance and stability to the economy. Though traditionally coal has had the largest share in the energy basket in India, oil and gas as a source of energy have gradually gained importance and it is expected that oil and gas will continue to command a significant share in the years to come. Transportation of oil and gas by pipelines, which are recognized worldwide as the most reliable and cost effective mode for transportation is a developing business in India. With the increasing demand for oil and gas, a necessity has arisen for according priority attention to develop a well-spread out pipeline network throughout the country so as to facilitate efficient transportation to various consumption centres. The country has already opened its doors to private sector within the country as well as to multinationals. Thus, considerable scope exists not only for making investments but also for consultants, equipment and material manufacturers/suppliers and contractors for providing their services to the Indian pipeline industry. With growth of the economy, the opportunities for investment in the Indian pipeline industry are likely to improve further. (author)
Abiriand Bhekisipho Twala, Olufunminiyi
2017-08-01
In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.
Pirone, Jason R; Smith, Marjolein; Kleinstreuer, Nicole C; Burns, Thomas A; Strickland, Judy; Dancik, Yuri; Morris, Richard; Rinckel, Lori A; Casey, Warren; Jaworska, Joanna S
2014-01-01
An open-source implementation of a previously published integrated testing strategy (ITS) for skin sensitization using a Bayesian network has been developed using R, a free and open-source statistical computing language. The ITS model provides probabilistic predictions of skin sensitization potency based on in silico and in vitro information as well as skin penetration characteristics from a published bioavailability model (Kasting et al., 2008). The structure of the Bayesian network was designed to be consistent with the adverse outcome pathway published by the OECD (Jaworska et al., 2011, 2013). In this paper, the previously published data set (Jaworska et al., 2013) is improved by two data corrections and a modified application of the Kasting model. The new data set implemented in the original commercial software package and the new R version produced consistent results. The data and a fully documented version of the code are publicly available (http://ntp.niehs.nih.gov/go/its).
Noyes, Noelle; Cho, Kyu-Chul; Ravel, Jacques; Forney, Larry J.; Abdo, Zaid
2018-01-01
The vaginal microbiome plays an influential role in several disease states in reproductive age women, including bacterial vaginosis (BV). While demographic characteristics are associated with differences in vaginal microbiome community structure, little is known about the influence of sexual and hygiene habits. Furthermore, associations between the vaginal microbiome and risk symptoms of bacterial vaginosis have not been fully elucidated. Using Bayesian network (BN) analysis of 16S rRNA gene ...
Grzegorczyk, Marco; Husmeier, Dirk
2012-07-12
An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.
Directory of Open Access Journals (Sweden)
Gunal Bilek
2018-03-01
Full Text Available The aim of this paper is to investigate the factors influencing the Beck Depression Inventory score, the Beck Hopelessness Scale score and the Rosenberg Self-Esteem score and the relationships among the psychiatric, demographic and socio-economic variables with Bayesian network modeling. The data of 823 university students consist of 21 continuous and discrete relevant psychiatric, demographic and socio-economic variables. After the discretization of the continuous variables by two approaches, two Bayesian networks models are constructed using the b n l e a r n package in R, and the results are presented via figures and probabilities. One of the most significant results is that in the first Bayesian network model, the gender of the students influences the level of depression, with female students being more depressive. In the second model, social activity directly influences the level of depression. In each model, depression influences both the level of hopelessness and self-esteem in students; additionally, as the level of depression increases, the level of hopelessness increases, but the level of self-esteem drops.
A Hybrid Approach for Reliability Analysis Based on Analytic Hierarchy Process and Bayesian Network
International Nuclear Information System (INIS)
Zubair, Muhammad
2014-01-01
By using analytic hierarchy process (AHP) and Bayesian Network (BN) the present research signifies the technical and non-technical issues of nuclear accidents. The study exposed that the technical faults was one major reason of these accidents. Keep an eye on other point of view it becomes clearer that human behavior like dishonesty, insufficient training, and selfishness are also play a key role to cause these accidents. In this study, a hybrid approach for reliability analysis based on AHP and BN to increase nuclear power plant (NPP) safety has been developed. By using AHP, best alternative to improve safety, design, operation, and to allocate budget for all technical and non-technical factors related with nuclear safety has been investigated. We use a special structure of BN based on the method AHP. The graphs of the BN and the probabilities associated with nodes are designed to translate the knowledge of experts on the selection of best alternative. The results show that the improvement in regulatory authorities will decrease failure probabilities and increase safety and reliability in industrial area.
Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects
Niu, Z. M.; Liang, H. Z.
2018-03-01
Bayesian neural network (BNN) approach is employed to improve the nuclear mass predictions of various models. It is found that the noise error in the likelihood function plays an important role in the predictive performance of the BNN approach. By including a distribution for the noise error, an appropriate value can be found automatically in the sampling process, which optimizes the nuclear mass predictions. Furthermore, two quantities related to nuclear pairing and shell effects are added to the input layer in addition to the proton and mass numbers. As a result, the theoretical accuracies are significantly improved not only for nuclear masses but also for single-nucleon separation energies. Due to the inclusion of the shell effect, in the unknown region, the BNN approach predicts a similar shell-correction structure to that in the known region, e.g., the predictions of underestimation of nuclear mass around the magic numbers in the relativistic mean-field model. This manifests that better predictive performance can be achieved if more physical features are included in the BNN approach.
Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models
Directory of Open Access Journals (Sweden)
Juhwan Kim
2018-01-01
Full Text Available Recent developments in artificial intelligence (AI have led to a significant increase in the use of AI technologies. Many experts are researching and developing AI technologies in their respective fields, often submitting papers and patent applications as a result. In particular, owing to the characteristics of the patent system that is used to protect the exclusive rights to registered technology, patent documents contain detailed information on the developed technology. Therefore, in this study, we propose a statistical method for analyzing patent data on AI technology to improve our understanding of sustainable technology in the field of AI. We collect patent documents that are related to AI technology, and then analyze the patent data to identify sustainable AI technology. In our analysis, we develop a statistical method that combines social network analysis and Bayesian modeling. Based on the results of the proposed method, we provide a technological structure that can be applied to understand the sustainability of AI technology. To show how the proposed method can be applied to a practical problem, we apply the technological structure to a case study in order to analyze sustainable AI technology.
Bayesian network for estimating the interaction between ecological health and waterfowl abundance
Teng, Te Hui; Fang, Wei Ta; Yu, Hwa Lung
2013-04-01
The serious decrease of biodiversity which is mainly induced by Habitat disappear is important issue of species field and in the world. The study area chooses Tauyuan County at subtropical area because of the most artificial farm ponds in Taiwan where the total area includes 27 km2. The effectiveness of these ponds is storage and irrigation and also supplies all kinds of environment like refuges for migratory birds, especially for water birds. Due to human development, farm ponds in this city not only suffer from largely disappear recent year, but also lead to the habitat and bird species reduce. Biological research usually contains incomplete and uncertain information, therefore, this study adopts Bayesian Network model to analyze interaction between land use and water birds. The habitat parameters include elevation, urbanization, building area, farm area, reconsolidation, forest area, irrigation area, farm pond area and lawn area; the biological factors have reproductive capacity, habitat condition, hydrological condition and food source. Using this structure can estimate the interaction of spatiotemporal abundance distribution between habitat parameter and biological parameter. In addition, the former results can define all the reasonable relationship of all hidden states and provide decision-makers with reasonable evaluation.
Estimation of mutation rates from paternity cases using a Bayesian network
DEFF Research Database (Denmark)
Vicard, P.; Dawid, A.P.; Mortera, J.
We present a statistical model and methodology for making inferences about mutation rates from paternity casework. This takes proper account of a number of sources of potential bias, including hidden mutation, incomplete family triplets, uncertain paternity status and differing maternal and pater......We present a statistical model and methodology for making inferences about mutation rates from paternity casework. This takes proper account of a number of sources of potential bias, including hidden mutation, incomplete family triplets, uncertain paternity status and differing maternal...... and paternal mutation rates, while allowing a wide variety of mutation models. A Bayesian network is constructed to facilitate computation of the likelihood function for the mutation parameters. It can process both full and summary genotypic information, from both complete putative father-mother-child triplets...... and defective cases where only the child and one of its parents are observed. Detailed analysis of a specific dataset is used to illustrate the effects of the various types of biases, and of the assumed mutation model, on inferences about mutation parameters....
Yu, Jiangsheng; Chen, Xue-Wen
2005-06-01
The classification of high-dimensional data is always a challenge to statistical machine learning. We propose a novel method named shallow feature selection that assigns each feature a probability of being selected based on the structure of training data itself. Independent of particular classifiers, the high dimension of biodata can be fleetly reduced to an applicable case for consequential processing. Moreover, to improve both efficiency and performance of classification, these prior probabilities are further used to specify the distributions of top-level hyperparameters in hierarchical models of Bayesian neural network (BNN), as well as the parameters in Gaussian process models. Three BNN approaches were derived and then applied to identify ovarian cancer from NCI's high-resolution mass spectrometry data, which yielded an excellent performance in 1000 independent k-fold cross validations (k = 2,...,10). For instance, indices of average sensitivity and specificity of 98.56 and 98.42%, respectively, were achieved in the 2-fold cross validations. Furthermore, only one control and one cancer were misclassified in the leave-one-out cross validation. Some other popular classifiers were also tested for comparison. The programs implemented in MatLab, R and Neal's fbm.2004-11-10.
Using Bayesian Belief Network (BBN) modelling for Rapid Source Term Prediction. RASTEP Phase 1
Energy Technology Data Exchange (ETDEWEB)
Knochenhauer, M.; Swaling, V.H.; Alfheim, P. [Scandpower AB, Sundbyberg (Sweden)
2012-09-15
The project is connected to the development of RASTEP, a computerized source term prediction tool aimed at providing a basis for improving off-site emergency management. RASTEP uses Bayesian belief networks (BBN) to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, timing, and pathway of released radio-nuclides). The output is a set of possible source terms with associated probabilities. In the NKS project, a number of complex issues associated with the integration of probabilistic and deterministic analyses are addressed. This includes issues related to the method for estimating source terms, signal validation, and sensitivity analysis. One major task within Phase 1 of the project addressed the problem of how to make the source term module flexible enough to give reliable and valid output throughout the accident scenario. Of the alternatives evaluated, it is recommended that RASTEP is connected to a fast running source term prediction code, e.g., MARS, with a possibility of updating source terms based on real-time observations. (Author)
Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio
2017-11-01
The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mirzaei Aliabadi, Mostafa; Aghaei, Hamed; Kalatpour, Omid; Soltanian, Ali Reza; Nikravesh, Asghar
2018-03-21
The present study was aimed to analyze human and organizational factors involved in mining accidents and determine the relationships among these factors. In this study, Human Factors Analysis and Classification System (HFACS) with Bayesian network (BN) were combined in order to analyze contributing factors in mining accidents. BN was constructed based on a hierarchal structure of HFACS. The required data were collected from a total of 295 cases of Iranian mining accidents and analyzed using HFACS. Afterwards, prior probability of contributing factors was computed using the expectation-maximization algorithm. Sensitivity analysis was applied to determine which contributing factor had a higher influence on unsafe acts to select the best intervention strategy. The analyses showed that skill based errors, routine violations, environmental factors, and planned inappropriate operation had a higher relative importance in the accidents. Moreover, sensitivity analysis revealed that environmental factors, failed to correct known problem, and personnel factors had a higher influence on unsafe acts. The results of the present study could provide guidance to help safety and health management by adopting proper intervention strategies to reduce mining accidents.
Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks
Tsakmalis, Anestis; Chatzinotas, Symeon; Ottersten, Bjorn
2018-02-01
In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.
Yuan, Xi; Liu, Wen-Jie; Li, Bing; Shen, Ze-Tian; Shen, Jun-Shu; Zhu, Xi-Xu
2017-08-01
This study was conducted to compare the effects of whole brain radiotherapy (WBRT) and stereotactic radiotherapy (SRS) in treatment of brain metastasis.A systematical retrieval in PubMed and Embase databases was performed for relative literatures on the effects of WBRT and SRS in treatment of brain metastasis. A Bayesian network meta-analysis was performed by using the ADDIS software. The effect sizes included odds ratio (OR) and 95% confidence interval (CI). A random effects model was used for the pooled analysis for all the outcome measures, including 1-year distant control rate, 1-year local control rate, 1-year survival rate, and complication. The consistency was tested by using node-splitting analysis and inconsistency standard deviation. The convergence was estimated according to the Brooks-Gelman-Rubin method.A total of 12 literatures were included in this meta-analysis. WBRT + SRS showed higher 1-year distant control rate than SRS. WBRT + SRS was better for the 1-year local control rate than WBRT. SRS and WBRT + SRS had higher 1-year survival rate than the WBRT. In addition, there was no difference in complication among the three therapies.Comprehensively, WBRT + SRS might be the choice of treatment for brain metastasis.
Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam
Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit
2016-04-01
Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.
Nordmann, Jean-Philippe; Baudouin, Christian; Renard, Jean-Paul; Denis, Philippe; Regnault, Antoine; Berdeaux, Gilles
2010-01-01
Objective: To identify poorly compliant glaucoma patients, using the Eye-Drop Satisfaction Questionnaire (EDSQ). Methods: This was an observational cross-sectional study with compliance data collected by an electronic monitoring device. Patients with primary open-angle glaucoma or ocular hypertension completed the EDSQ, a six-dimension self-reported questionnaire addressing “treatment concern”, “disease concern”, “patient–clinician relationship”, “positive beliefs”, “treatment convenience”, and “self-declared compliance”. A Bayesian network (BN) was applied to explore compliance associations with EDSQ. Results: Among 169 patients who completed the EDSQ, 113 had valid Travalert® data, of whom 25 (22.1%) demonstrated low compliance. All six EDSQ dimensions were associated directly, or indirectly, with compliance. Two profiles exhibited low compliance, ie, patients aged younger than 77.5 years with a poor patient–physician relationship and self-declared poor compliance and patients aged older than 77.5 years with a poor patient–physician relationship and self-declared good compliance. The third profile showed high compliance, ie, patients aged younger than 77.5 years with a good patient-physician relationship and self-declared good compliance. Conclusion: Our results confirm a central role for the patient–physician relationship in the compliance process. Age, self-declared compliance, and patient satisfaction with the patient–physician relationship are all dimensions worth exploring before glaucoma medication is switched or proceeding to laser treatment or surgery. PMID:21191445
A nanomaterial release model for waste shredding using a Bayesian belief network
Shandilya, Neeraj; Ligthart, Tom; van Voorde, Imelda; Stahlmecke, Burkhard; Clavaguera, Simon; Philippot, Cecile; Ding, Yaobo; Goede, Henk
2018-02-01
The shredding of waste of electrical and electronic equipment (WEEE) and other products, incorporated with nanomaterials, can lead to a substantial release of nanomaterials. Considering the uncertainty, complexity, and scarcity of experimental data on release, we present the development of a Bayesian belief network (BBN) model. This baseline model aims to give a first prediction of the release of nanomaterials (excluding nanofibers) during their mechanical shredding. With a focus on the description of the model development methodology, we characterize nanomaterial release in terms of number, size, mass, and composition of released particles. Through a sensitivity analysis of the model, we find the material-specific parameters like affinity of nanomaterials to the matrix of the composite and their state of dispersion inside the matrix to reduce the nanomaterial release up to 50%. The shredder-specific parameters like number of shafts in a shredder and input and output size of the material for shredding could minimize it up to 98%. The comparison with two experimental test cases shows promising outcome on the prediction capacity of the model. As additional experimental data on nanomaterial release becomes available, the model is able to further adapt and update risk forecasts. When adapting the model with additional expert beliefs, experts should be selected using criteria, e.g., substantial contribution to nanomaterial and/or particulate matter release-related scientific literature, the capacity and willingness to contribute to further development of the BBN model, and openness to accepting deviating opinions. [Figure not available: see fulltext.
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
Bayesian-network-based safety risk assessment for steel construction projects.
Leu, Sou-Sen; Chang, Ching-Miao
2013-05-01
There are four primary accident types at steel building construction (SC) projects: falls (tumbles), object falls, object collapse, and electrocution. Several systematic safety risk assessment approaches, such as fault tree analysis (FTA) and failure mode and effect criticality analysis (FMECA), have been used to evaluate safety risks at SC projects. However, these traditional methods ineffectively address dependencies among safety factors at various levels that fail to provide early warnings to prevent occupational accidents. To overcome the limitations of traditional approaches, this study addresses the development of a safety risk-assessment model for SC projects by establishing the Bayesian networks (BN) based on fault tree (FT) transformation. The BN-based safety risk-assessment model was validated against the safety inspection records of six SC building projects and nine projects in which site accidents occurred. The ranks of posterior probabilities from the BN model were highly consistent with the accidents that occurred at each project site. The model accurately provides site safety-management abilities by calculating the probabilities of safety risks and further analyzing the causes of accidents based on their relationships in BNs. In practice, based on the analysis of accident risks and significant safety factors, proper preventive safety management strategies can be established to reduce the occurrence of accidents on SC sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Grover, Jeff
2016-01-01
This book is an extension of the author’s first book and serves as a guide and manual on how to specify and compute 2-, 3-, & 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for naïve learners and professionals, with a proof-based academic rigor. The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes’ theory and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem - as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes. It highlights the utility of an algorithm that served as ...
A Bayesian Belief Network Approach to Predict Damages Caused by Disturbance Agents
Directory of Open Access Journals (Sweden)
Alfred Radl
2017-12-01
Full Text Available In mountain forests of Central Europe, storm and snow breakage as well as bark beetles are the prevailing major disturbances. The complex interrelatedness between climate, disturbance agents, and forest management increases the need for an integrative approach explicitly addressing the multiple interactions between environmental changes, forest management, and disturbance agents to support forest resource managers in adaptive management. Empirical data with a comprehensive coverage for modelling the susceptibility of forests and the impact of disturbance agents are rare, thus making probabilistic models, based on expert knowledge, one of the few modelling approaches that are able to handle uncertainties due to the available information. Bayesian belief networks (BBNs are a kind of probabilistic graphical model that has become very popular to practitioners and scientists mainly due to considerations of risk and uncertainties. In this contribution, we present a development methodology to define and parameterize BBNs based on expert elicitation and approximation. We modelled storm and bark beetle disturbances agents, analyzed effects of the development methodology on model structure, and evaluated behavior with stand data from Norway spruce (Picea abies (L. Karst. forests in southern Austria. The high vulnerability of the case study area according to different disturbance agents makes it particularly suitable for testing the BBN model.
Taylor, Duncan; Biedermann, Alex; Hicks, Tacha; Champod, Christophe
2018-03-01
The hierarchy of propositions has been accepted amongst the forensic science community for some time. It is also accepted that the higher up the hierarchy the propositions are, against which the scientist are competent to evaluate their results, the more directly useful the testimony will be to the court. Because each case represents a unique set of circumstances and findings, it is difficult to come up with a standard structure for evaluation. One common tool that assists in this task is Bayesian networks (BNs). There is much diversity in the way that BN can be constructed. In this work, we develop a template for BN construction that allows sufficient flexibility to address most cases, but enough commonality and structure that the flow of information in the BN is readily recognised at a glance. We provide seven steps that can be used to construct BNs within this structure and demonstrate how they can be applied, using a case example. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Biedermann, A; Gittelson, S; Taroni, F
2011-10-10
This paper analyses and discusses arguments that emerge from a recent discussion about the proper assessment of the evidential value of correspondences observed between the characteristics of a crime stain and those of a sample from a suspect when (i) this latter individual is found as a result of a database search and (ii) remaining database members are excluded as potential sources (because of different analytical characteristics). Using a graphical probability approach (i.e., Bayesian networks), the paper here intends to clarify that there is no need to (i) introduce a correction factor equal to the size of the searched database (i.e., to reduce a likelihood ratio), nor to (ii) adopt a propositional level not directly related to the suspect matching the crime stain (i.e., a proposition of the kind 'some person in (outside) the database is the source of the crime stain' rather than 'the suspect (some other person) is the source of the crime stain'). The present research thus confirms existing literature on the topic that has repeatedly demonstrated that the latter two requirements (i) and (ii) should not be a cause of concern. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cereda, G; Biedermann, A; Hall, D; Taroni, F
2014-01-01
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Fuster-Parra, P; García-Mas, A; Ponseti, F J; Leo, F M
2015-04-01
The purpose of this paper was to discover the relationships among 22 relevant psychological features in semi-professional football players in order to study team's performance and collective efficacy via a Bayesian network (BN). The paper includes optimization of team's performance and collective efficacy using intercausal reasoning pattern which constitutes a very common pattern in human reasoning. The BN is used to make inferences regarding our problem, and therefore we obtain some conclusions; among them: maximizing the team's performance causes a decrease in collective efficacy and when team's performance achieves the minimum value it causes an increase in moderate/high values of collective efficacy. Similarly, we may reason optimizing team collective efficacy instead. It also allows us to determine the features that have the strongest influence on performance and which on collective efficacy. From the BN two different coaching styles were differentiated taking into account the local Markov property: training leadership and autocratic leadership. Copyright © 2014 Elsevier B.V. All rights reserved.
Design of Korean nuclear reliability data-base network using a two-stage Bayesian concept
International Nuclear Information System (INIS)
Kim, T.W.; Jeong, K.S.; Chae, S.K.
1987-01-01
In an analysis of probabilistic risk, safety, and reliability of a nuclear power plant, the reliability data base (DB) must be established first. As the importance of the reliability data base increases, event reporting systems such as the US Nuclear Regulatory Commission's Licensee Event Report and the International Atomic Energy Agency's Incident Reporting System have been developed. In Korea, however, the systematic reliability data base is not yet available. Therefore, foreign data bases have been directly quoted in reliability analyses of Korean plants. In order to develop a reliability data base for Korean plants, the problem is which methodology is to be used, and the application limits of the selected method must be solved and clarified. After starting the commercial operation of Korea Nuclear Unit-1 (KNU-1) in 1978, six nuclear power plants have begun operation. Of these, only KNU-3 is a Canada Deuterium Uranium pressurized heavy-water reactor, and the others are all pressurized water reactors. This paper describes the proposed reliability data-base network (KNRDS) for Korean nuclear power plants in the context of two-stage Bayesian (TSB) procedure of Kaplan. It describes the concept of TSB to obtain the Korean-specific plant reliability data base, which is updated with the incorporation of both the reported generic reliability data and the operation experiences of similar plants
Directory of Open Access Journals (Sweden)
Nataša Papić-Blagojević
2012-04-01
Full Text Available Marketing approach is associated to market conditions and achieving long term profitability of a company by satisfying consumers’ needs. This approach in tourism does not have to be related only to promoting one touristic destination, but is associated to relation between travel agency and its clients too. It considers that travel agencies adjust their offers to their clients’ needs. In that sense, it is important to analyze the behavior of tourists in the earlier periods with consideration of their preferences. Using Bayesian network, it could be graphically displayed the connection between tourists who have similar taste and relationships between them. On the other hand, the analytic hierarchy process (AHP is used to rank tourist attractions, with also relying on past experience. In this paper we examine possible applications of these two models in tourism in Serbia. The example is hypothetical, but it will serve as a base for future research. Three types of tourism are chosen as a representative in Vojvodina: Cultural, Rural and Business tourism, because they are the bright spot of touristic development in this area. Applied on these forms, analytic hierarchy process has shown its strength in predicting tourists’ preferences.
Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.
Halloran, John T; Bilmes, Jeff A; Noble, William S
2016-08-05
A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit .
Sensitivity Study on Availability of I&C Components Using Bayesian Network
Directory of Open Access Journals (Sweden)
Rahman Khalil Ur
2013-01-01
Full Text Available The objective of this study is to find out the impact of instrumentation and control (I&C components on the availability of I&C systems in terms of sensitivity analysis using Bayesian network. The analysis has been performed on I&C architecture of reactor protection system. The analysis results would be applied to develop I&C architecture which will meet the desire reliability features and save cost. RPS architecture unavailability P(x=0 and availability P(x=1 were estimated to 6.1276E-05 and 9.9994E-01 for failure (0 and perfect (1 states, respectively. The impact of I&C components on overall system risk has been studied in terms of risk achievement worth (RAW and risk reduction worth (RRW. It is found that circuit breaker failure (TCB, bi-stable processor (BP, sensor transmitter (TR, and pressure transmitter (PT have high impact on risk. The study concludes and recommends that circuit breaker bi-stable processor should be given more consideration while designing I&C architecture.
Directory of Open Access Journals (Sweden)
Chu He
2017-01-01
Full Text Available This paper presents a hierarchical classification approach for Synthetic Aperture Radar (SAR images. The Conditional Random Field (CRF and Bayesian Network (BN are employed to incorporate prior knowledge into this approach for facilitating SAR image classification. (1 A multilayer region pyramid is constructed based on multiscale oversegmentation, and then, CRF is used to model the spatial relationships among those extracted regions within each layer of the region pyramid; the boundary prior knowledge is exploited and integrated into the CRF model as a strengthened constraint to improve classification performance near the boundaries. (2 Multilayer BN is applied to establish the causal connections between adjacent layers of the constructed region pyramid, where the classification probabilities of those sub-regions in the lower layer, conditioned on their parents’ regions in the upper layer, are used as adjacent links. More contextual information is taken into account in this framework, which is a benefit to the performance improvement. Several experiments are conducted on real ESAR and TerraSAR data, and the results show that the proposed method achieves better classification accuracy.
Composite behavior analysis for video surveillance using hierarchical dynamic Bayesian networks
Cheng, Huanhuan; Shan, Yong; Wang, Runsheng
2011-03-01
Analyzing composite behaviors involving objects from multiple categories in surveillance videos is a challenging task due to the complicated relationships among human and objects. This paper presents a novel behavior analysis framework using a hierarchical dynamic Bayesian network (DBN) for video surveillance systems. The model is built for extracting objects' behaviors and their relationships by representing behaviors using spatial-temporal characteristics. The recognition of object behaviors is processed by the DBN at multiple levels: features of objects at low level, objects and their relationships at middle level, and event at high level, where event refers to behaviors of a single type object as well as behaviors consisting of several types of objects such as ``a person getting in a car.'' Furthermore, to reduce the complexity, a simple model selection criterion is addressed, by which the appropriated model is picked out from a pool of candidate models. Experiments are shown to demonstrate that the proposed framework could efficiently recognize and semantically describe composite object and human activities in surveillance videos.
A Risk Analysis of the Molybdenum-99 Supply Chain Using Bayesian Networks
Liang, Jeffrey Ryan
The production of Molybdenum-99 (99Mo) is critical to the field of nuclear medicine, where it is utilized in roughly 80% of all nuclear imaging procedures. In October of 2016, the National Research Universal (NRU) reactor in Canada, which historically had the highest 99Mo production capability worldwide, ceased routine production and will be permanently shut down in 2018. This loss of capacity has led to widespread concern over the ability of the 99Mo supply chain and to meet demand. There is significant disagreement among analyses from trade groups, governments, and other researchers, predicting everything from no significant impact to major worldwide shortages. Using Bayesian networks, this research focused on modeling the 99Mo supply chain to quantify how a disrupting event, such as the unscheduled downtime of a reactor, will impact the global supply. This not only includes quantifying the probability of a shortage occurring, but also identifying which nodes in the supply chain introduce the most risk to better inform decision makers on where future facilities or other risk mitigation techniques should be applied.
Combining data and meta-analysis to build Bayesian networks for clinical decision support.
Yet, Barbaros; Perkins, Zane B; Rasmussen, Todd E; Tai, Nigel R M; Marsh, D William R
2014-12-01
Complex clinical decisions require the decision maker to evaluate multiple factors that may interact with each other. Many clinical studies, however, report 'univariate' relations between a single factor and outcome. Such univariate statistics are often insufficient to provide useful support for complex clinical decisions even when they are pooled using meta-analysis. More useful decision support could be provided by evidence-based models that take the interaction between factors into account. In this paper, we propose a method of integrating the univariate results of a meta-analysis with a clinical dataset and expert knowledge to construct multivariate Bayesian network (BN) models. The technique reduces the size of the dataset needed to learn the parameters of a model of a given complexity. Supplementing the data with the meta-analysis results avoids the need to either simplify the model - ignoring some complexities of the problem - or to gather more data. The method is illustrated by a clinical case study into the prediction of the viability of severely injured lower extremities. The case study illustrates the advantages of integrating combined evidence into BN development: the BN developed using our method outperformed four different data-driven structure learning methods, and a well-known scoring model (MESS) in this domain. Copyright © 2014 Elsevier Inc. All rights reserved.
Zarringhalam, Kourosh; Enayetallah, Ahmed; Reddy, Padmalatha; Ziemek, Daniel
2014-06-15
Understanding and predicting an individual's response in a clinical trial is the key to better treatments and cost-: effective medicine. Over the coming years, more and more large-scale omics datasets will become available to characterize patients with complex and heterogeneous diseases at a molecular level. Unfortunately, genetic, phenotypical and environmental variation is much higher in a human trial population than currently modeled or measured in most animal studies. In our experience, this high variability can lead to failure of trained predictors in independent studies and undermines the credibility and utility of promising high-dimensional datasets. We propose a method that utilizes patient-level genome-wide expression data in conjunction with causal networks based on prior knowledge. Our approach determines a differential expression profile for each patient and uses a Bayesian approach to infer corresponding upstream regulators. These regulators and their corresponding posterior probabilities of activity are used in a regularized regression framework to predict response. We validated our approach using two clinically relevant phenotypes, namely acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. To demonstrate pitfalls in translating trained predictors across independent trials, we analyze performance characteristics of our approach as well as alternative feature sets in the regression on two independent datasets for each phenotype. We show that the proposed approach is able to successfully incorporate causal prior knowledge to give robust performance estimates. © The Author 2014. Published by Oxford University Press.
Directory of Open Access Journals (Sweden)
Sergio Branciamore
2018-02-01
Full Text Available The identity/recognition of tRNAs, in the context of aminoacyl tRNA synthetases (and other molecules, is a complex phenomenon that has major implications ranging from the origins and evolution of translation machinery and genetic code to the evolution and speciation of tRNAs themselves to human mitochondrial diseases to artificial genetic code engineering. Deciphering it via laboratory experiments, however, is difficult and necessarily time- and resource-consuming. In this study, we propose a mathematically rigorous two-pronged in silico approach to identifying and classifying tRNA positions important for tRNA identity/recognition, rooted in machine learning and information-theoretic methodology. We apply Bayesian Network modeling to elucidate the structure of intra-tRNA-molecule relationships, and distribution divergence analysis to identify meaningful inter-molecule differences between various tRNA subclasses. We illustrate the complementary application of these two approaches using tRNA examples across the three domains of life, and identify and discuss important (informative positions therein. In summary, we deliver to the tRNA research community a novel, comprehensive methodology for identifying the specific elements of interest in various tRNA molecules, which can be followed up by the corresponding experimental work and/or high-resolution position-specific statistical analyses.
Understanding Migration as an Adaptation in Deltas Using a Bayesian Network Model
Lázár, A. N.; Adams, H.; de Campos, R. S.; Mortreux, C. C.; Clarke, D.; Nicholls, R. J.; Amisigo, B. A.
2016-12-01
Deltas are hotspots of high population density, fertile lands and dramatic environmental and anthropogenic pressures and changes. Amongst other environmental factors, sea level rise, soil salinization, water shortages and erosion threaten people's livelihoods and wellbeing. As a result, there is a growing concern that significant environmental change induced migration might occur from these areas. Migration, however, is already happening for economic, education and other reasons (e.g. livelihood change, marriage, planned relocation, etc.). Migration hence has multiple, interlinked drivers and depending on the perspective, can be considered as a positive or negative phenomenon. The DECCMA project (Deltas, Vulnerability & Climate Change: Migration & Adaptation) studies migration as part of a suite of adaptation options available to the coastal populations in the Ganges delta in Bangladesh, the Mahanadi delta in India and the Volta delta in Ghana. It aims to develop a holistic framework of analysis that assesses the impact of climate and environmental change on the migration patterns of these areas. This assessment framework will couple environmental, socio-economics and governance dimensions in an attempt to synthesise drivers and barriers and allow testing of plausible future scenarios. One of the integrative methods of DECCMA is a Bayesian Belief Network (BBN) model describing the decision-making of a coastal household. BBN models are built on qualitative and quantitative observations/expert knowledge and describe the probability of different events/responses etc. BBN models are especially useful to capture uncertainties of large systems and engaging with stakeholders. The DECCMA BBN model is based on household survey results from delta migrant sending areas. This presentation will describe model elements (livelihood sensitivity to climate change, local and national adaptation options, household characteristics/attitude, social networks, household decision) and
Analysis of Roadway Traffic Accidents Based on Rough Sets and Bayesian Networks
Directory of Open Access Journals (Sweden)
Xiaoxia Xiong
2018-02-01
Full Text Available The paper integrates Rough Sets (RS and Bayesian Networks (BN for roadway traffic accident analysis. RS reduction of attributes is first employed to generate the key set of attributes affecting accident outcomes, which are then fed into a BN structure as nodes for BN construction and accident outcome classification. Such RS-based BN framework combines the advantages of RS in knowledge reduction capability and BN in describing interrelationships among different attributes. The framework is demonstrated using the 100-car naturalistic driving data from Virginia Tech Transportation Institute to predict accident type. Comparative evaluation with the baseline BNs shows the RS-based BNs generally have a higher prediction accuracy and lower network complexity while with comparable prediction coverage and receiver operating characteristic curve area, proving that the proposed RS-based BN overall outperforms the BNs with/without traditional feature selection approaches. The proposed RS-based BN indicates the most significant attributes that affect accident types include pre-crash manoeuvre, driver’s attention from forward roadway to centre mirror, number of secondary tasks undertaken, traffic density, and relation to junction, most of which feature pre-crash driver states and driver behaviours that have not been extensively researched in literature, and could give further insight into the nature of traffic accidents.
Neural network uncertainty assessment using Bayesian statistics: a remote sensing application
Aires, F.; Prigent, C.; Rossow, W. B.
2004-01-01
Neural network (NN) techniques have proved successful for many regression problems, in particular for remote sensing; however, uncertainty estimates are rarely provided. In this article, a Bayesian technique to evaluate uncertainties of the NN parameters (i.e., synaptic weights) is first presented. In contrast to more traditional approaches based on point estimation of the NN weights, we assess uncertainties on such estimates to monitor the robustness of the NN model. These theoretical developments are illustrated by applying them to the problem of retrieving surface skin temperature, microwave surface emissivities, and integrated water vapor content from a combined analysis of satellite microwave and infrared observations over land. The weight uncertainty estimates are then used to compute analytically the uncertainties in the network outputs (i.e., error bars and correlation structure of these errors). Such quantities are very important for evaluating any application of an NN model. The uncertainties on the NN Jacobians are then considered in the third part of this article. Used for regression fitting, NN models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis is put on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the regression model. The complex structure of dependency inside the NN is the essence of the model, and assessing its quality, coherency, and physical character makes all the difference between a blackbox model with small output errors and a reliable, robust, and physically coherent model. Such dependency structures are described to the first order by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model for given input data. We use a Monte Carlo integration procedure to estimate the robustness of the NN Jacobians. A regularization strategy based on principal component
User-Adapted Recommendation of Content on Mobile Devices Using Bayesian Networks
Iwasaki, Hirotoshi; Mizuno, Nobuhiro; Hara, Kousuke; Motomura, Yoichi
Mobile devices, such as cellular phones and car navigation systems, are essential to daily life. People acquire necessary information and preferred content over communication networks anywhere, anytime. However, usability issues arise from the simplicity of user interfaces themselves. Thus, a recommendation of content that is adapted to a user's preference and situation will help the user select content. In this paper, we describe a method to realize such a system using Bayesian networks. This user-adapted mobile system is based on a user model that provides recommendation of content (i.e., restaurants, shops, and music that are suitable to the user and situation) and that learns incrementally based on accumulated usage history data. However, sufficient samples are not always guaranteed, since a user model would require combined dependency among users, situations, and contents. Therefore, we propose the LK method for modeling, which complements incomplete and insufficient samples using knowledge data, and CPT incremental learning for adaptation based on a small number of samples. In order to evaluate the methods proposed, we applied them to restaurant recommendations made on car navigation systems. The evaluation results confirmed that our model based on the LK method can be expected to provide better generalization performance than that of the conventional method. Furthermore, our system would require much less operation than current car navigation systems from the beginning of use. Our evaluation results also indicate that learning a user's individual preference through CPT incremental learning would be beneficial to many users, even with only a few samples. As a result, we have developed the technology of a system that becomes more adapted to a user the more it is used.
Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Zeng, Fanjiang; Mao, Donglei; Zhang, Zhiwei
2017-11-01
There is an increasing consensus on the importance of coupling ecosystem services (ES) into integrated water resource management (IWRM), due to a wide range of benefits to human from the ES. This paper proposes an ES-based IWRM framework within which a participatory Bayesian network (BN) model is developed to assist with the coupling between ES and IWRM. The framework includes three steps: identifying water-related services of ecosystems; analysis of the tradeoff and synergy among users of water; and ES-based IWRM implementation using the participatory BN model. We present the development, evaluation and application of the participatory BN model with the involvement of four participant groups (stakeholders, water manager, water management experts, and research team) in Qira oasis area, Northwest China. As a typical catchment-scale region, the Qira oasis area is facing severe water competition between the demands of human activities and natural ecosystems. Results demonstrate that the BN model developed provides effective integration of ES into a quantitative IWMR framework via public negotiation and feedback. The network results, sensitivity evaluation, and management scenarios are broadly accepted by the participant groups. The intervention scenarios from the model conclude that any water management measure remains unable to sustain the ecosystem health in water-related ES. Greater cooperation among the stakeholders is highly necessary for dealing with such water conflicts. In particular, a proportion of the agricultural water saved through improving water-use efficiency should be transferred to natural ecosystems via water trade. The BN model developed is appropriate for areas throughout the world in which there is intense competition for water between human activities and ecosystems.
Lustgarten, Jonathan Lyle; Balasubramanian, Jeya Balaji; Visweswaran, Shyam; Gopalakrishnan, Vanathi
2017-03-01
The comprehensibility of good predictive models learned from high-dimensional gene expression data is attractive because it can lead to biomarker discovery. Several good classifiers provide comparable predictive performance but differ in their abilities to summarize the observed data. We extend a Bayesian Rule Learning (BRL-GSS) algorithm, previously shown to be a significantly better predictor than other classical approaches in this domain. It searches a space of Bayesian networks using a decision tree representation of its parameters with global constraints, and infers a set of IF-THEN rules. The number of parameters and therefore the number of rules are combinatorial to the number of predictor variables in the model. We relax these global constraints to a more generalizable local structure (BRL-LSS). BRL-LSS entails more parsimonious set of rules because it does not have to generate all combinatorial rules. The search space of local structures is much richer than the space of global structures. We design the BRL-LSS with the same worst-case time-complexity as BRL-GSS while exploring a richer and more complex model space. We measure predictive performance using Area Under the ROC curve (AUC) and Accuracy. We measure model parsimony performance by noting the average number of rules and variables needed to describe the observed data. We evaluate the predictive and parsimony performance of BRL-GSS, BRL-LSS and the state-of-the-art C4.5 decision tree algorithm, across 10-fold cross-validation using ten microarray gene-expression diagnostic datasets. In these experiments, we observe that BRL-LSS is similar to BRL-GSS in terms of predictive performance, while generating a much more parsimonious set of rules to explain the same observed data. BRL-LSS also needs fewer variables than C4.5 to explain the data with similar predictive performance. We also conduct a feasibility study to demonstrate the general applicability of our BRL methods on the newer RNA sequencing gene
International Nuclear Information System (INIS)
Marcos, J V; Hornero, R; Álvarez, D; Nabney, I T; Del Campo, F; Zamarrón, C
2010-01-01
In the present study, multilayer perceptron (MLP) neural networks were applied to help in the diagnosis of obstructive sleep apnoea syndrome (OSAS). Oxygen saturation (SaO 2 ) recordings from nocturnal pulse oximetry were used for this purpose. We performed time and spectral analysis of these signals to extract 14 features related to OSAS. The performance of two different MLP classifiers was compared: maximum likelihood (ML) and Bayesian (BY) MLP networks. A total of 187 subjects suspected of suffering from OSAS took part in the study. Their SaO 2 signals were divided into a training set with 74 recordings and a test set with 113 recordings. BY-MLP networks achieved the best performance on the test set with 85.58% accuracy (87.76% sensitivity and 82.39% specificity). These results were substantially better than those provided by ML-MLP networks, which were affected by overfitting and achieved an accuracy of 76.81% (86.42% sensitivity and 62.83% specificity). Our results suggest that the Bayesian framework is preferred to implement our MLP classifiers. The proposed BY-MLP networks could be used for early OSAS detection. They could contribute to overcome the difficulties of nocturnal polysomnography (PSG) and thus reduce the demand for these studies
Farrell, Michael M.
2006-01-01
This thesis will focus directly on the enhancement of an established Network Operations Center (NOC) and will extend the capabilities of this asset beyond its present scope. By defining the current infrastructure using present network management tools it will provide a better understanding of the present network, as well as enhance management for future field experiments. Finally, extending the CENETIX network via implementation of Virtual Private Networking (VPN) technology will allow othe...
Hertel-Fernandez, Alexander; Skocpol, Theda; Lynch, Daniel
2016-04-01
A major component of the Affordable Care Act involves the expansion of state Medicaid programs to cover the uninsured poor. In the wake of the 2012 Supreme Court decision upholding and modifying reform legislation, states can decide whether to expand Medicaid-and twenty states are still not proceeding as of August 2015. What explains state choices about participation in expansion, including governors' decisions to endorse expansion or not as well as final state decisions? We tackle this puzzle, focusing closely on outcomes and battles in predominantly Republican-led states. Like earlier scholars, we find that partisan differences between Democrats and Republicans are central, but we go beyond earlier analyses to measure added effects from two dueling factions within the Republican coalition: statewide business associations and cross-state networks of ideologically conservative organizations. Using both statistical modeling and case studies, we show that GOP-leaning or GOP-dominated states have been most likely to embrace the expansion when organized business support outweighs pressures from conservative networks. Our findings help make sense of ongoing state-level debates over a core part of health reform and shed new light on mounting policy tensions within the Republican Party. Copyright © 2016 by Duke University Press.
Xu, Yunfei; Dass, Sarat; Maiti, Tapabrata
2016-01-01
This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive di...
Burguet Marimón, Maria; Quinn, Claire; Stringer, Lindsay; Cerdà, Artemi
2017-04-01
The fate of the management and use of land is the result of economic, social and political factors (Tengberg et al., 2016). Stakeholder perceptions are relevant in understanding land management (Marques et al., 2015; Teshome et al., 2016) as perceptions can shape behaviours and actions. In the Canyoles River watershed (Eastern Spain), rainfed agriculture has been replaced by traditional irrigation systems at its valley bottom, and by drip irrigation on its slopes. The new irrigation systems in hilly citrus orchards, along with intensive farming, use of herbicides and high fertilization, are causing high erosion and land degradation rates due to the lack of vegetation cover, soil compaction and the loss of organic matter. Bayesian Belief Networks (BBN) are defined as a 'graphical tool for building decision support systems to help make decisions under uncertain conditions' (Cain, 2001). In this work, BBNs were used to incorporate the issues and objectives identified by stakeholders during interviews about their perceptions of different soil management practices in the Canyoles watershed. BBNs are appropriate for the modeling of geospatial data which can contain different kinds of uncertainties due to positional error, feature classification error, resolution, attribute error, data completeness, currency, and logical consistency, and can integrate qualitative and quantitative data. Our stakeholders were farmers, politicians (especially the mayors of the nearby towns), managers, farm employees and technicians. The questions asked to the stakeholders were related to their concern in keeping the farm active and profitable, the changes in the price of the farm products, the price of the fertilizers and tractors and if soil erosion is a key issue in their farms Preliminary results from the interviews performed with the stakeholders suggest that there is still a strong refusal to the use of different cover crops, as well as to the change in the tillage systems. Farmers do
Bayesian network modeling: A case study of an epidemiologic system analysis of cardiovascular risk.
Fuster-Parra, P; Tauler, P; Bennasar-Veny, M; Ligęza, A; López-González, A A; Aguiló, A
2016-04-01
An extensive, in-depth study of cardiovascular risk factors (CVRF) seems to be of crucial importance in the research of cardiovascular disease (CVD) in order to prevent (or reduce) the chance of developing or dying from CVD. The main focus of data analysis is on the use of models able to discover and understand the relationships between different CVRF. In this paper a report on applying Bayesian network (BN) modeling to discover the relationships among thirteen relevant epidemiological features of heart age domain in order to analyze cardiovascular lost years (CVLY), cardiovascular risk score (CVRS), and metabolic syndrome (MetS) is presented. Furthermore, the induced BN was used to make inference taking into account three reasoning patterns: causal reasoning, evidential reasoning, and intercausal reasoning. Application of BN tools has led to discovery of several direct and indirect relationships between different CVRF. The BN analysis showed several interesting results, among them: CVLY was highly influenced by smoking being the group of men the one with highest risk in CVLY; MetS was highly influence by physical activity (PA) being again the group of men the one with highest risk in MetS, and smoking did not show any influence. BNs produce an intuitive, transparent, graphical representation of the relationships between different CVRF. The ability of BNs to predict new scenarios when hypothetical information is introduced makes BN modeling an Artificial Intelligence (AI) tool of special interest in epidemiological studies. As CVD is multifactorial the use of BNs seems to be an adequate modeling tool. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report
Energy Technology Data Exchange (ETDEWEB)
Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K. [Lloyd' s Register Consulting AB, Sundbyberg (Sweden)
2013-10-15
The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)
Prokinetics for the treatment of functional dyspepsia: Bayesian network meta-analysis.
Yang, Young Joo; Bang, Chang Seok; Baik, Gwang Ho; Park, Tae Young; Shin, Suk Pyo; Suk, Ki Tae; Kim, Dong Joon
2017-06-26
Controversies persist regarding the effect of prokinetics for the treatment of functional dyspepsia (FD). This study aimed to assess the comparative efficacy of prokinetic agents for the treatment of FD. Randomized controlled trials (RCTs) of prokinetics for the treatment of FD were identified from core databases. Symptom response rates were extracted and analyzed using odds ratios (ORs). A Bayesian network meta-analysis was performed using the Markov chain Monte Carlo method in WinBUGS and NetMetaXL. In total, 25 RCTs, which included 4473 patients with FD who were treated with 6 different prokinetics or placebo, were identified and analyzed. Metoclopramide showed the best surface under the cumulative ranking curve (SUCRA) probability (92.5%), followed by trimebutine (74.5%) and mosapride (63.3%). However, the therapeutic efficacy of metoclopramide was not significantly different from that of trimebutine (OR:1.32, 95% credible interval: 0.27-6.06), mosapride (OR: 1.99, 95% credible interval: 0.87-4.72), or domperidone (OR: 2.04, 95% credible interval: 0.92-4.60). Metoclopramide showed better efficacy than itopride (OR: 2.79, 95% credible interval: 1.29-6.21) and acotiamide (OR: 3.07, 95% credible interval: 1.43-6.75). Domperidone (SUCRA probability 62.9%) showed better efficacy than itopride (OR: 1.37, 95% credible interval: 1.07-1.77) and acotiamide (OR: 1.51, 95% credible interval: 1.04-2.18). Metoclopramide, trimebutine, mosapride, and domperidone showed better efficacy for the treatment of FD than itopride or acotiamide. Considering the adverse events related to metoclopramide or domperidone, the short-term use of these agents or the alternative use of trimebutine or mosapride could be recommended for the symptomatic relief of FD.
The future of the London Buy-To-Let property market: Simulation with temporal Bayesian Networks.
Constantinou, Anthony C; Fenton, Norman
2017-01-01
In 2015 the British government announced a number of major tax reforms for individual landlords. To give landlords time to adjust, some of these tax measures are being introduced gradually from April 2017, with full effect in tax year 2020/21. The changes in taxation have received much media attention since there has been widespread belief that the new measures were sufficiently skewed against landlords that they could signal the end of the Buy-To-Let (BTL) investment era in the UK. This paper assesses the prospective performance of BTL investments in London from the investor's perspective, and examines the impact of incoming tax reforms using a novel Temporal Bayesian Network model. The model captures uncertainties of interest by simulating the impact of changing circumstances and the interventions available to an investor at various time-steps of a BTL investment portfolio. The simulation results suggest that the new tax reforms are likely to have a detrimental effect on net profits from rental income, and this hits risk-seeking investors who favour leverage much harder than risk-averse investors who do not seek to expand their property portfolio. The impact on net profits also poses substantial risks for lossmaking returns excluding capital gains, especially in the case of rising interest rates. While this makes it less desirable or even non-viable for some to continue being a landlord, based on the current status of all factors taken into consideration for simulation, investment prospects are still likely to remain good within a reasonable range of interest rate and capital growth rate variations. The results also suggest that the recent trend of property prices in London increasing faster than rents will not continue for much longer; either capital growth rates will have to decrease, rental growth rates will have to increase, or we shall observe a combination of the two events.
The future of the London Buy-To-Let property market: Simulation with temporal Bayesian Networks.
Directory of Open Access Journals (Sweden)
Anthony C Constantinou
Full Text Available In 2015 the British government announced a number of major tax reforms for individual landlords. To give landlords time to adjust, some of these tax measures are being introduced gradually from April 2017, with full effect in tax year 2020/21. The changes in taxation have received much media attention since there has been widespread belief that the new measures were sufficiently skewed against landlords that they could signal the end of the Buy-To-Let (BTL investment era in the UK. This paper assesses the prospective performance of BTL investments in London from the investor's perspective, and examines the impact of incoming tax reforms using a novel Temporal Bayesian Network model. The model captures uncertainties of interest by simulating the impact of changing circumstances and the interventions available to an investor at various time-steps of a BTL investment portfolio. The simulation results suggest that the new tax reforms are likely to have a detrimental effect on net profits from rental income, and this hits risk-seeking investors who favour leverage much harder than risk-averse investors who do not seek to expand their property portfolio. The impact on net profits also poses substantial risks for lossmaking returns excluding capital gains, especially in the case of rising interest rates. While this makes it less desirable or even non-viable for some to continue being a landlord, based on the current status of all factors taken into consideration for simulation, investment prospects are still likely to remain good within a reasonable range of interest rate and capital growth rate variations. The results also suggest that the recent trend of property prices in London increasing faster than rents will not continue for much longer; either capital growth rates will have to decrease, rental growth rates will have to increase, or we shall observe a combination of the two events.
Tierz, Pablo; Odbert, Henry; Phillips, Jeremy; Woodhouse, Mark; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner
2016-04-01
Quantification of volcanic hazards is a challenging task for modern volcanology. Assessing the large uncertainties involved in the hazard analysis requires the combination of volcanological data, physical and statistical models. This is a complex procedure even when taking into account only one type of volcanic hazard. However, volcanic systems are known to be multi-hazard environments where several hazardous phenomena (tephra fallout, Pyroclastic Density Currents -PDCs-, lahars, etc.) may occur whether simultaneous or sequentially. Bayesian Belief Networks (BBNs) are a flexible and powerful way of modelling uncertainty. They are statistical models that can merge information coming from data, physical models, other statistical models or expert knowledge into a unified probabilistic assessment. Therefore, they can be applied to model the interaction between different volcanic hazards in an efficient manner. In this work, we design and preliminarily parametrize a BBN with the aim of forecasting the occurrence and volume of rain-triggered lahars when considering: (1) input of pyroclastic material, in the form of tephra fallout and PDCs, over the catchments around the volcano; (2) remobilization of this material by antecedent lahar events. Input of fresh pyroclastic material can be modelled through a combination of physical models (e.g. advection-diffusion models for tephra fallout such as HAZMAP and shallow-layer continuum models for PDCs such as Titan2D) and uncertainty quantification techniques, while the remobilization efficiency can be constrained from datasets of lahar observations at different volcanoes. The applications of this kind of probabilistic multi-hazard approach can range from real-time forecasting of lahar activity to calibration of physical or statistical models (e.g. emulators) for long-term volcanic hazard assessment.
Predicting island biosecurity risk from introduced fauna using Bayesian Belief Networks.
Lohr, Cheryl; Wenger, Amelia; Woodberry, Owen; Pressey, Robert L; Morris, Keith
2017-12-01
Around the globe, islands are the last refuge for many threatened and endemic species. Islands are frequently also important sites for recreation, cultural activities, and industrial development, all of which facilitate the establishment of invasive species. Surveillance is employed on islands to detect the establishment of invasive species after their arrival, leading to decisions about follow-up actions. Unless surveillance is prioritised according to risk of establishment of invasives, it may be infeasible to implement efficiently over large tracts of publicly accessible land, especially in data-deficient areas. The key biosecurity problem for many regions is one of prioritizing sites for surveillance activities and identifying invasive species most likely to disperse to, and establish, and proliferate on those sites. We created a series of Bayesian Belief Networks (BBNs), linked by Java computing code and the freely available GeNIe application to automate the creation and computation of species- and site-specific biosecurity BBNs. The BBNs require data on island attributes, recreational or industrial visitor load, infrastructure, habitat availability, and animal behaviour and dispersal via swimming, flying, human movement, land bridges, or flood plumes. We used this biosecurity BBN to estimate the risk of 11 invasive faunal species arriving and establishing on 600 islands along the Pilbara coastline, Western Australia. Sensitivity analyses were conducted to identify nodes within the BBNs that required refined data inputs. Propagule pressure was the node with the greatest influence over the number of arrivals. Other nodes such as the number of visitors to islands and swimming capabilities of invasive animals greatly influenced the model results. Across the 11 species studied, our models predicted one arrival per 300 visitors. The biosecurity BBN can be used to identify the islands at highest risk from establishment of invasive species within any archipelago
Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report
International Nuclear Information System (INIS)
Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K.
2013-10-01
The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)
Odbert, Henry; Aspinall, Willy
2013-04-01
When volcanoes exhibit unrest or become eruptively active, science-based decision support invariably is sought by civil authorities. Evidence available to scientists about a volcano's internal state is usually indirect, secondary or very nebulous.Advancement of volcano monitoring technology in recent decades has increased the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Monitoring timeseries may be interpreted in real time by observatory staff and are often later subjected to further analytic scrutiny by the research community at large. With increasing variety and resolution of data, interpreting these multiple strands of parallel, partial evidence has become increasingly complex. In practice, interpretation of many timeseries involves familiarity with the idiosyncracies of the volcano, the monitoring techniques, the configuration of the recording instrumentation, observations from other datasets, and so on. Assimilation of this knowledge is necessary in order to select and apply the appropriate statistical techniques required to extract the required information. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple observations, model results and interpretations - and associated uncertainties - in a methodical manner. The formulation is usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic timeseries, the certainty with which inferences may be drawn, and how they can be updated dynamically. Such approaches provide a route to developing analytical interface(s) between volcano monitoring analyses and probabilistic hazard analysis. We discuss the use of BBNs in hazard
The future of the London Buy-To-Let property market: Simulation with temporal Bayesian Networks
Fenton, Norman
2017-01-01
In 2015 the British government announced a number of major tax reforms for individual landlords. To give landlords time to adjust, some of these tax measures are being introduced gradually from April 2017, with full effect in tax year 2020/21. The changes in taxation have received much media attention since there has been widespread belief that the new measures were sufficiently skewed against landlords that they could signal the end of the Buy-To-Let (BTL) investment era in the UK. This paper assesses the prospective performance of BTL investments in London from the investor’s perspective, and examines the impact of incoming tax reforms using a novel Temporal Bayesian Network model. The model captures uncertainties of interest by simulating the impact of changing circumstances and the interventions available to an investor at various time-steps of a BTL investment portfolio. The simulation results suggest that the new tax reforms are likely to have a detrimental effect on net profits from rental income, and this hits risk-seeking investors who favour leverage much harder than risk-averse investors who do not seek to expand their property portfolio. The impact on net profits also poses substantial risks for lossmaking returns excluding capital gains, especially in the case of rising interest rates. While this makes it less desirable or even non-viable for some to continue being a landlord, based on the current status of all factors taken into consideration for simulation, investment prospects are still likely to remain good within a reasonable range of interest rate and capital growth rate variations. The results also suggest that the recent trend of property prices in London increasing faster than rents will not continue for much longer; either capital growth rates will have to decrease, rental growth rates will have to increase, or we shall observe a combination of the two events. PMID:28654698
An Investigation Into Bayesian Networks for Modeling National Ignition Facility Capsule Implosions
Energy Technology Data Exchange (ETDEWEB)
Mitrani, J
2008-08-18
Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and it contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.
Directory of Open Access Journals (Sweden)
Jaime A. López-López
2016-07-01
Full Text Available This paper deals with the Transmission Network Expansion Planning (TNEP problem. The TNEP consists of finding a set of new circuits on a power system, which is needed to attend a future demand. In its classical version, the TNEP only considers as solution candidates the addition of new lines and transformers. The main contribution of this paper consists in the inclusion of nonconventional solution candidates, namely the repowering of existing circuits and the location of capacitor banks. To take into account these last ones an AC model of the transmission network is considered. The solution of the proposed model is carried out using a Hybrid Genetic Algorithm. Results are compared and validated with previous works in the technical literature. The test systems used are the Garver system and IEEE 24 bus system. The results obtained in both systems showed that the inclusion of the non-conventional candidates, proposed in this paper, allows to reduce the cost of network expansion. This fact may be useful as an indicator for the system planner to consider new possibilities in the expansion studies.
Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad
2016-09-01
Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.
Directory of Open Access Journals (Sweden)
Marco Scutari
2017-03-01
Full Text Available It is well known in the literature that the problem of learning the structure of Bayesian networks is very hard to tackle: Its computational complexity is super-exponential in the number of nodes in the worst case and polynomial in most real-world scenarios. Efficient implementations of score-based structure learning benefit from past and current research in optimization theory, which can be adapted to the task by using the network score as the objective function to maximize. This is not true for approaches based on conditional independence tests, called constraint-based learning algorithms. The only optimization in widespread use, backtracking, leverages the symmetries implied by the definitions of neighborhood and Markov blanket. In this paper we illustrate how backtracking is implemented in recent versions of the bnlearn R package, and how it degrades the stability of Bayesian network structure learning for little gain in terms of speed. As an alternative, we describe a software architecture and framework that can be used to parallelize constraint-based structure learning algorithms (also implemented in bnlearn and we demonstrate its performance using four reference networks and two real-world data sets from genetics and systems biology. We show that on modern multi-core or multiprocessor hardware parallel implementations are preferable over backtracking, which was developed when single-processor machines were the norm.
Dal Ferro, Nicola; Quinn, Claire Helen; Morari, Francesco
2017-04-01
A key challenge for soil scientists is predicting agricultural management scenarios that combine crop productions with high standards of environmental quality. In this context, reversing the soil organic carbon (SOC) decline in croplands is required for maintaining soil fertility and contributing to mitigate GHGs emissions. Bayesian belief networks (BBN) are probabilistic models able to accommodate uncertainty and variability in the predictions of the impacts of management and environmental changes. By linking multiple qualitative and quantitative variables in a cause-and-effect relationships, BBNs can be used as a decision support system at different spatial scales to find best management strategies in the agroecosystems. In this work we built a BBN to model SOC dynamics (0-30 cm layer) in the low-lying plain of Veneto region, north-eastern Italy, and define best practices leading to SOC accumulation and GHGs (CO2-equivalent) emissions reduction. Regional pedo-climatic, land use and management information were combined with experimental and modelled data on soil C dynamics as natural and anthropic key drivers affecting SOC stock change. Moreover, utility nodes were introduced to determine optimal decisions for mitigating GHGs emissions from croplands considering also three different IPCC climate scenarios. The network was finally validated with real field data in terms of SOC stock change. Results showed that the BBN was able to model real SOC stock changes, since validation slightly overestimated SOC reduction (+5%) at the expenses of its accumulation. At regional level, probability distributions showed 50% of SOC loss, while only 17% of accumulation. However, the greatest losses (34%) were associated with low reduction rates (100-500 kg C ha-1 y-1), followed by 33% of stabilized conditions (-100 < SOC < 100 kg ha-1 y-1). Land use management (especially tillage operations and soil cover) played a primary role to affect SOC stock change, while climate conditions
Online Expansion Technology for Dynamic Topology Changing ZigBee Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Md. Emdadul Haque
2014-03-01
Full Text Available In ZigBee, the router capable devices have restriction to accept a number of devices as children devices. A router capable device can not allow any new device to join as a child device if it reaches to the maximum capacity of children or depth limit. According to ZigBee specification each device has a permanent 64-bit MAC address. If a device joins a ZigBee network, it receives a short 16-bit MAC address from the parent device. If a device can not join a network, it isolates from the network and becomes an orphan node even though address spaces are available in the network. The orphan problem becomes worse when the topology of the network changes dynamically. In this paper we propose an online expansion technology to connect the maximum number of devices specially for dynamic topology changing ZigBee wireless sensor networks. The proposed technology shares available address spaces of the router devices to reduce the number of orphan nodes in the network.
Belciug, Smaranda; Gorunescu, Florin
2014-12-01
Automated medical diagnosis models are now ubiquitous, and research for developing new ones is constantly growing. They play an important role in medical decision-making, helping physicians to provide a fast and accurate diagnosis. Due to their adaptive learning and nonlinear mapping properties, the artificial neural networks are widely used to support the human decision capabilities, avoiding variability in practice and errors based on lack of experience. Among the most common learning approaches, one can mention either the classical back-propagation algorithm based on the partial derivatives of the error function with respect to the weights, or the Bayesian learning method based on posterior probability distribution of weights, given training data. This paper proposes a novel training technique gathering together the error-correction learning, the posterior probability distribution of weights given the error function, and the Goodman-Kruskal Gamma rank correlation to assembly them in a Bayesian learning strategy. This study had two main purposes; firstly, to develop anovel learning technique based on both the Bayesian paradigm and the error back-propagation, and secondly,to assess its effectiveness. The proposed model performance is compared with those obtained by traditional machine learning algorithms using real-life breast and lung cancer, diabetes, and heart attack medical databases. Overall, the statistical comparison results indicate that thenovellearning approach outperforms the conventional techniques in almost all respects. Copyright © 2014 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Karacaören Burak
2011-05-01
Full Text Available Abstract Background It has been shown that if genetic relationships among individuals are not taken into account for genome wide association studies, this may lead to false positives. To address this problem, we used Genome-wide Rapid Association using Mixed Model and Regression and principal component stratification analyses. To account for linkage disequilibrium among the significant markers, principal components loadings obtained from top markers can be included as covariates. Estimation of Bayesian networks may also be useful to investigate linkage disequilibrium among SNPs and their relation with environmental variables. For the quantitative trait we first estimated residuals while taking polygenic effects into account. We then used a single SNP approach to detect the most significant SNPs based on the residuals and applied principal component regression to take linkage disequilibrium among these SNPs into account. For the categorical trait we used principal component stratification methodology to account for background effects. For correction of linkage disequilibrium we used principal component logit regression. Bayesian networks were estimated to investigate relationship among SNPs. Results Using the Genome-wide Rapid Association using Mixed Model and Regression and principal component stratification approach we detected around 100 significant SNPs for the quantitative trait (p Conclusions GRAMMAR could efficiently incorporate the information regarding random genetic effects. Principal component stratification should be cautiously used with stringent multiple hypothesis testing correction to correct for ancestral stratification and association analyses for binary traits when there are systematic genetic effects such as half sib family structures. Bayesian networks are useful to investigate relationships among SNPs and environmental variables.
Bai, Y.; Xu, Y.; Pan, J.; Lan, J. Q.; Gao, W. W.
2016-07-01
A toy detector array is designed to detect a shower generated by the interaction between a TeV cosmic ray and the atmosphere. In the present paper, the primary energies of showers detected by the detector array are reconstructed with the algorithm of Bayesian neural networks (BNNs) and a standard method like the LHAASO experiment [1], respectively. Compared to the standard method, the energy resolutions are significantly improved using the BNNs. And the improvement is more obvious for the high energy showers than the low energy ones.
International Nuclear Information System (INIS)
Capra, B.; Le Drogo, J.; Wolff, V.
2006-01-01
Degradation modelling of concrete structures uses uncertain variables and leads, using reliability assessment, to time dependant evolution of failure probabilities. However, only few data are generally available to feed models leading to two types of uncertainties: an intrinsic one depending on the modelled phenomena and one related to the precision of the measurements. Each new data available is a piece of information which allows updating the initial prediction. In this article, an example of updating process, based on a Bayesian network, is presented and applied on the corrosion risk of a cooling tower in a nuclear plant. (authors)
Directory of Open Access Journals (Sweden)
R. Kenna
2014-09-01
Full Text Available We analyze the resistance between two nodes in a cobweb network of resistors. Based on an exact expression, we derive the asymptotic expansions for the resistance between the center node and a node on the boundary of the M x N cobweb network with resistors r and s in the two spatial directions. All coefficients in this expansion are expressed through analytical functions.
Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk
Energy Technology Data Exchange (ETDEWEB)
Lee, Sangkyu, E-mail: sangkyu.lee@mail.mcgill.ca; Ybarra, Norma; Jeyaseelan, Krishinima; Seuntjens, Jan; El Naqa, Issam [Medical Physics Unit, McGill University, Montreal, Quebec H3G1A4 (Canada); Faria, Sergio; Kopek, Neil; Brisebois, Pascale [Department of Radiation Oncology, Montreal General Hospital, Montreal, H3G1A4 (Canada); Bradley, Jeffrey D.; Robinson, Clifford [Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110 (United States)
2015-05-15
Purpose: Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP. Methods: The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls. Results: RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0
A methodology for a quantitative assessment of safety culture in NPPs based on Bayesian networks
International Nuclear Information System (INIS)
Kim, Young Gab; Lee, Seung Min; Seong, Poong Hyun
2017-01-01
Highlights: • A safety culture framework and a quantitative methodology to assess safety culture were proposed. • The relation among Norm system, Safety Management System and worker's awareness was established. • Safety culture probability at NPPs was updated by collecting actual organizational data. • Vulnerable areas and the relationship between safety culture and human error were confirmed. - Abstract: For a long time, safety has been recognized as a top priority in high-reliability industries such as aviation and nuclear power plants (NPPs). Establishing a safety culture requires a number of actions to enhance safety, one of which is changing the safety culture awareness of workers. The concept of safety culture in the nuclear power domain was established in the International Atomic Energy Agency (IAEA) safety series, wherein the importance of employee attitudes for maintaining organizational safety was emphasized. Safety culture assessment is a critical step in the process of enhancing safety culture. In this respect, assessment is focused on measuring the level of safety culture in an organization, and improving any weakness in the organization. However, many continue to think that the concept of safety culture is abstract and unclear. In addition, the results of safety culture assessments are mostly subjective and qualitative. Given the current situation, this paper suggests a quantitative methodology for safety culture assessments based on a Bayesian network. A proposed safety culture framework for NPPs would include the following: (1) a norm system, (2) a safety management system, (3) safety culture awareness of worker, and (4) Worker behavior. The level of safety culture awareness of workers at NPPs was reasoned through the proposed methodology. Then, areas of the organization that were vulnerable in terms of safety culture were derived by analyzing observational evidence. We also confirmed that the frequency of events involving human error
van Dam, A.; Gettel, G. M.; Kipkemboi, J.; Rahman, M. M.
2011-12-01
Papyrus wetlands in East Africa provide ecosystem services supporting the livelihoods of millions but are rapidly degrading due to economic development. For ecosystem conservation, an integrated understanding of the natural and social processes driving ecosystem change is needed. This research focuses on integrating the causal relationships between hydrology, ecosystem function, and livelihood sustainability in Nyando wetland, western Kenya. Livelihood sustainability is based on ecosystem services that include plant and animal harvest for building material and food, conversion of wetlands to crop and grazing land, water supply, and water quality regulation. Specific objectives were: to integrate studies of hydrology, ecology, and livelihood activities using a Bayesian Network (BN) model and include stakeholder involvement in model development. The BN model (Netica 4.16) had 35 nodes with seven decision nodes describing demography, economy, papyrus market, and rainfall, and two target nodes describing ecosystem function (defined by groundwater recharge, nutrient and sediment retention, and biodiversity) and livelihood sustainability (drinking water supply, crop production, livestock production, and papyrus yield). The conditional probability tables were populated using results of ecohydrological and socio-economic field work and consultations with stakeholders. The model was evaluated for an average year with decision node probabilities set according to data from research, expert opinion, and stakeholders' views. Then, scenarios for dry and wet seasons and for economic development (low population growth and unemployment) and policy development (more awareness of wetland value) were evaluated. In an average year, the probability for maintaining a "good" level of sediment and nutrient retention functions, groundwater recharge, and biodiversity was about 60%. ("Good" is defined by expert opinion based on ongoing field research.) In the dry season, the probability was