WorldWideScience

Sample records for bayesian microbial risk

  1. Bayesian predictive risk modeling of microbial criteria for Campylobacter in broilers

    DEFF Research Database (Denmark)

    Nauta, Maarten; Ranta, J.; Mikkelä, A.

    Microbial Criteria define the acceptability of food products, based on the presence or detected number of microorganisms in samples. The criteria are applied at the level of defined food lots. Generally, these are interpreted as statistical batches representing the production [1]. The batches...... be assessed by computing posterior distribution of the parameters - a Bayesian evidence synthesis. The outcome of a defined Microbial Criterion (MC) for a batch provides additional evidence concerning the batch. Posterior predictive consumer risk (probability of illness) was computed for such batch...

  2. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.

    Science.gov (United States)

    Schmidt, P J; Pintar, K D M; Fazil, A M; Flemming, C A; Lanthier, M; Laprade, N; Sunohara, M D; Simhon, A; Thomas, J L; Topp, E; Wilkes, G; Lapen, D R

    2013-06-15

    Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify

  3. A Bayesian framework for risk perception

    NARCIS (Netherlands)

    van Erp, H.R.N.

    2017-01-01

    We present here a Bayesian framework of risk perception. This framework encompasses plausibility judgments, decision making, and question asking. Plausibility judgments are modeled by way of Bayesian probability theory, decision making is modeled by way of a Bayesian decision theory, and relevancy

  4. Implementing the Bayesian paradigm in risk analysis

    International Nuclear Information System (INIS)

    Aven, T.; Kvaloey, J.T.

    2002-01-01

    The Bayesian paradigm comprises a unified and consistent framework for analyzing and expressing risk. Yet, we see rather few examples of applications where the full Bayesian setting has been adopted with specifications of priors of unknown parameters. In this paper, we discuss some of the practical challenges of implementing Bayesian thinking and methods in risk analysis, emphasizing the introduction of probability models and parameters and associated uncertainty assessments. We conclude that there is a need for a pragmatic view in order to 'successfully' apply the Bayesian approach, such that we can do the assignments of some of the probabilities without adopting the somewhat sophisticated procedure of specifying prior distributions of parameters. A simple risk analysis example is presented to illustrate ideas

  5. Bayesian parameter estimation in probabilistic risk assessment

    International Nuclear Information System (INIS)

    Siu, Nathan O.; Kelly, Dana L.

    1998-01-01

    Bayesian statistical methods are widely used in probabilistic risk assessment (PRA) because of their ability to provide useful estimates of model parameters when data are sparse and because the subjective probability framework, from which these methods are derived, is a natural framework to address the decision problems motivating PRA. This paper presents a tutorial on Bayesian parameter estimation especially relevant to PRA. It summarizes the philosophy behind these methods, approaches for constructing likelihood functions and prior distributions, some simple but realistic examples, and a variety of cautions and lessons regarding practical applications. References are also provided for more in-depth coverage of various topics

  6. Risk-sensitivity in Bayesian sensorimotor integration.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

  7. Bayesian Networks for enterprise risk assessment

    Science.gov (United States)

    Bonafede, C. E.; Giudici, P.

    2007-08-01

    According to different typologies of activity and priority, risks can assume diverse meanings and it can be assessed in different ways. Risk, in general, is measured in terms of a probability combination of an event (frequency) and its consequence (impact). To estimate the frequency and the impact (severity) historical data or expert opinions (either qualitative or quantitative data) are used. Moreover, qualitative data must be converted in numerical values or bounds to be used in the model. In the case of enterprise risk assessment the considered risks are, for instance, strategic, operational, legal and of image, which many times are difficult to be quantified. So in most cases only expert data, gathered by scorecard approaches, are available for risk analysis. The Bayesian Networks (BNs) are a useful tool to integrate different information and in particular to study the risk's joint distribution by using data collected from experts. In this paper we want to show a possible approach for building a BN in the particular case in which only prior probabilities of node states and marginal correlations between nodes are available, and when the variables have only two states.

  8. MATHEMATICAL RISK ANALYSIS: VIA NICHOLAS RISK MODEL AND BAYESIAN ANALYSIS

    Directory of Open Access Journals (Sweden)

    Anass BAYAGA

    2010-07-01

    Full Text Available The objective of this second part of a two-phased study was to explorethe predictive power of quantitative risk analysis (QRA method andprocess within Higher Education Institution (HEI. The method and process investigated the use impact analysis via Nicholas risk model and Bayesian analysis, with a sample of hundred (100 risk analysts in a historically black South African University in the greater Eastern Cape Province.The first findings supported and confirmed previous literature (KingIII report, 2009: Nicholas and Steyn, 2008: Stoney, 2007: COSA, 2004 that there was a direct relationship between risk factor, its likelihood and impact, certiris paribus. The second finding in relation to either controlling the likelihood or the impact of occurrence of risk (Nicholas risk model was that to have a brighter risk reward, it was important to control the likelihood ofoccurrence of risks as compared with its impact so to have a direct effect on entire University. On the Bayesian analysis, thus third finding, the impact of risk should be predicted along three aspects. These aspects included the human impact (decisions made, the property impact (students and infrastructural based and the business impact. Lastly, the study revealed that although in most business cases, where as business cycles considerably vary dependingon the industry and or the institution, this study revealed that, most impacts in HEI (University was within the period of one academic.The recommendation was that application of quantitative risk analysisshould be related to current legislative framework that affects HEI.

  9. Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2010-01-01

    This paper presents how Bayesian networks can be used to make optimal decisions for repairs of offshore wind turbines. The Bayesian network is an efficient tool for updating a deterioration model whenever new information becomes available from inspections/monitoring. The optimal decision is found...... such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Bayesian decision theory. The method is demonstrated through an application example....

  10. Bayesian uncertainty analyses of probabilistic risk models

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1989-01-01

    Applications of Bayesian principles to the uncertainty analyses are discussed in the paper. A short review of the most important uncertainties and their causes is provided. An application of the principle of maximum entropy to the determination of Bayesian prior distributions is described. An approach based on so called probabilistic structures is presented in order to develop a method of quantitative evaluation of modelling uncertainties. The method is applied to a small example case. Ideas for application areas for the proposed method are discussed

  11. Evolution of Subjective Hurricane Risk Perceptions: A Bayesian Approach

    OpenAIRE

    David Kelly; David Letson; Forest Nelson; David S. Nolan; Daniel Solis

    2009-01-01

    This paper studies how individuals update subjective risk perceptions in response to hurricane track forecast information, using a unique data set from an event market, the Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts how traders update their perceptions of the probability of a hurricane making landfall in a certain range of coastline. Our results suggest that traders behave in a way consistent with Bayesian updating but this behavior is based on t...

  12. Bayesian probabilistic network approach for managing earthquake risks of cities

    DEFF Research Database (Denmark)

    Bayraktarli, Yahya; Faber, Michael

    2011-01-01

    This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...... and a fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated...... on an example considering a portfolio of reinforced concrete structures in a city located close to the western part of the North Anatolian Fault in Turkey....

  13. Quantitative Microbial Risk Assessment Tutorial - Primer

    Science.gov (United States)

    This document provides a Quantitative Microbial Risk Assessment (QMRA) primer that organizes QMRA tutorials. The tutorials describe functionality of a QMRA infrastructure, guide the user through software use and assessment options, provide step-by-step instructions for implementi...

  14. Center for Advancing Microbial Risk Assessment

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Advancing Microbial Risk Assessment (CAMRA), based at Michigan State University and jointly funded by the U.S. Department of Homeland Security and the...

  15. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  16. Modeling operational risks of the nuclear industry with Bayesian networks

    International Nuclear Information System (INIS)

    Wieland, Patricia; Lustosa, Leonardo J.

    2009-01-01

    Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)

  17. Modeling operational risks of the nuclear industry with Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Patricia [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Industrial; Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: pwieland@cnen.gov.br; Lustosa, Leonardo J. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Industrial], e-mail: ljl@puc-rio.br

    2009-07-01

    Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)

  18. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    Science.gov (United States)

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Project Portfolio Risk Identification and Analysis, Considering Project Risk Interactions and Using Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Foroogh Ghasemi

    2018-05-01

    Full Text Available An organization’s strategic objectives are accomplished through portfolios. However, the materialization of portfolio risks may affect a portfolio’s sustainable success and the achievement of those objectives. Moreover, project interdependencies and cause–effect relationships between risks create complexity for portfolio risk analysis. This paper presents a model using Bayesian network (BN methodology for modeling and analyzing portfolio risks. To develop this model, first, portfolio-level risks and risks caused by project interdependencies are identified. Then, based on their cause–effect relationships all portfolio risks are organized in a BN. Conditional probability distributions for this network are specified and the Bayesian networks method is used to estimate the probability of portfolio risk. This model was applied to a portfolio of a construction company located in Iran and proved effective in analyzing portfolio risk probability. Furthermore, the model provided valuable information for selecting a portfolio’s projects and making strategic decisions.

  20. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  1. Development of a cyber security risk model using Bayesian networks

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Son, Hanseong; Khalil ur, Rahman; Heo, Gyunyoung

    2015-01-01

    Cyber security is an emerging safety issue in the nuclear industry, especially in the instrumentation and control (I and C) field. To address the cyber security issue systematically, a model that can be used for cyber security evaluation is required. In this work, a cyber security risk model based on a Bayesian network is suggested for evaluating cyber security for nuclear facilities in an integrated manner. The suggested model enables the evaluation of both the procedural and technical aspects of cyber security, which are related to compliance with regulatory guides and system architectures, respectively. The activity-quality analysis model was developed to evaluate how well people and/or organizations comply with the regulatory guidance associated with cyber security. The architecture analysis model was created to evaluate vulnerabilities and mitigation measures with respect to their effect on cyber security. The two models are integrated into a single model, which is called the cyber security risk model, so that cyber security can be evaluated from procedural and technical viewpoints at the same time. The model was applied to evaluate the cyber security risk of the reactor protection system (RPS) of a research reactor and to demonstrate its usefulness and feasibility. - Highlights: • We developed the cyber security risk model can be find the weak point of cyber security integrated two cyber analysis models by using Bayesian Network. • One is the activity-quality model signifies how people and/or organization comply with the cyber security regulatory guide. • Other is the architecture model represents the probability of cyber-attack on RPS architecture. • The cyber security risk model can provide evidence that is able to determine the key element for cyber security for RPS of a research reactor

  2. Improving default risk prediction using Bayesian model uncertainty techniques.

    Science.gov (United States)

    Kazemi, Reza; Mosleh, Ali

    2012-11-01

    Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis. © 2012 Society for Risk Analysis.

  3. Dynamic Bayesian Networks for Context-Aware Fall Risk Assessment

    Directory of Open Access Journals (Sweden)

    Gregory Koshmak

    2014-05-01

    Full Text Available Fall incidents among the elderly often occur in the home and can cause serious injuries affecting their independent living. This paper presents an approach where data from wearable sensors integrated in a smart home environment is combined using a dynamic Bayesian network. The smart home environment provides contextual data, obtained from environmental sensors, and contributes to assessing a fall risk probability. The evaluation of the developed system is performed through simulation. Each time step is represented by a single user activity and interacts with a fall sensors located on a mobile device. A posterior probability is calculated for each recognized activity or contextual information. The output of the system provides a total risk assessment of falling given a response from the fall sensor.

  4. Bayesian joint modelling of benefit and risk in drug development.

    Science.gov (United States)

    Costa, Maria J; Drury, Thomas

    2018-05-01

    To gain regulatory approval, a new medicine must demonstrate that its benefits outweigh any potential risks, ie, that the benefit-risk balance is favourable towards the new medicine. For transparency and clarity of the decision, a structured and consistent approach to benefit-risk assessment that quantifies uncertainties and accounts for underlying dependencies is desirable. This paper proposes two approaches to benefit-risk evaluation, both based on the idea of joint modelling of mixed outcomes that are potentially dependent at the subject level. Using Bayesian inference, the two approaches offer interpretability and efficiency to enhance qualitative frameworks. Simulation studies show that accounting for correlation leads to a more accurate assessment of the strength of evidence to support benefit-risk profiles of interest. Several graphical approaches are proposed that can be used to communicate the benefit-risk balance to project teams. Finally, the two approaches are illustrated in a case study using real clinical trial data. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Analysis of nasopharyngeal carcinoma risk factors with Bayesian networks.

    Science.gov (United States)

    Aussem, Alex; de Morais, Sérgio Rodrigues; Corbex, Marilys

    2012-01-01

    We propose a new graphical framework for extracting the relevant dietary, social and environmental risk factors that are associated with an increased risk of nasopharyngeal carcinoma (NPC) on a case-control epidemiologic study that consists of 1289 subjects and 150 risk factors. This framework builds on the use of Bayesian networks (BNs) for representing statistical dependencies between the random variables. We discuss a novel constraint-based procedure, called Hybrid Parents and Children (HPC), that builds recursively a local graph that includes all the relevant features statistically associated to the NPC, without having to find the whole BN first. The local graph is afterwards directed by the domain expert according to his knowledge. It provides a statistical profile of the recruited population, and meanwhile helps identify the risk factors associated to NPC. Extensive experiments on synthetic data sampled from known BNs show that the HPC outperforms state-of-the-art algorithms that appeared in the recent literature. From a biological perspective, the present study confirms that chemical products, pesticides and domestic fume intake from incomplete combustion of coal and wood are significantly associated with NPC risk. These results suggest that industrial workers are often exposed to noxious chemicals and poisonous substances that are used in the course of manufacturing. This study also supports previous findings that the consumption of a number of preserved food items, like house made proteins and sheep fat, are a major risk factor for NPC. BNs are valuable data mining tools for the analysis of epidemiologic data. They can explicitly combine both expert knowledge from the field and information inferred from the data. These techniques therefore merit consideration as valuable alternatives to traditional multivariate regression techniques in epidemiologic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A Bayesian approach to landscape ecological risk assessment applied to the upper Grande Ronde watershed, Oregon

    Science.gov (United States)

    Kimberley K. Ayre; Wayne G. Landis

    2012-01-01

    We present a Bayesian network model based on the ecological risk assessment framework to evaluate potential impacts to habitats and resources resulting from wildfire, grazing, forest management activities, and insect outbreaks in a forested landscape in northeastern Oregon. The Bayesian network structure consisted of three tiers of nodes: landscape disturbances,...

  7. Microbial translocation and cardiometabolic risk factors in HIV infection

    DEFF Research Database (Denmark)

    Trøseid, Marius; Manner, Ingjerd W; Pedersen, Karin K

    2014-01-01

    of microbial translocation are closely associated with several cardiovascular risk factors such as dyslipidemia, insulin resistance, hypertension, coagulation abnormalities, endothelial dysfunction, and carotid atherosclerosis. Future studies should investigate whether associations between microbial...

  8. A microbial identification framework for risk assessment.

    Science.gov (United States)

    Bernatchez, Stéphane; Anoop, Valar; Saikali, Zeina; Breton, Marie

    2018-06-01

    Micro-organisms are increasingly used in a variety of products for commercial uses, including cleaning products. Such microbial-based cleaning products (MBCP) are represented as a more environmentally-friendly alternative to chemically based cleaning products. The identity of the micro-organisms formulated into these products is often considered confidential business information and is not revealed or it is only partly revealed (i.e., identification to the genus, not to the species). That paucity of information complicates the evaluation of the risk associated with their use. The accurate taxonomic identification of those micro-organisms is important so that a suitable risk assessment of the products can be conducted. To alleviate difficulties associated with adequate identification of micro-organisms in MBCP and other products containing micro-organisms, a microbial identification framework for risk assessment (MIFRA) has been elaborated. It serves to provide guidance on a polyphasic tiered approach, combining the data obtained from the use of various methods (i.e., polyphasic approach) combined with the sequential selection of the methods (i.e., tiered) to achieve a satisfactory identity of the micro-organism to an acceptable taxonomic level. The MIFRA is suitable in various risk assessment contexts for micro-organisms used in any commercial product. Copyright © 2018. Published by Elsevier Ltd.

  9. A Bayesian Network approach for flash flood risk assessment

    Science.gov (United States)

    Boutkhamouine, Brahim; Roux, Hélène; Pérès, François

    2017-04-01

    Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments ( 10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio-temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by

  10. Bayesian inference in probabilistic risk assessment-The current state of the art

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Smith, Curtis L.

    2009-01-01

    Markov chain Monte Carlo (MCMC) approaches to sampling directly from the joint posterior distribution of aleatory model parameters have led to tremendous advances in Bayesian inference capability in a wide variety of fields, including probabilistic risk analysis. The advent of freely available software coupled with inexpensive computing power has catalyzed this advance. This paper examines where the risk assessment community is with respect to implementing modern computational-based Bayesian approaches to inference. Through a series of examples in different topical areas, it introduces salient concepts and illustrates the practical application of Bayesian inference via MCMC sampling to a variety of important problems

  11. Bayesian network as a modelling tool for risk management in agriculture

    DEFF Research Database (Denmark)

    Rasmussen, Svend; Madsen, Anders L.; Lund, Mogens

    . In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions......, and that it has the ability to link uncertainty from different external sources to budget figures and to quantify risk at the farm level....

  12. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Gupta, Abhinav

    2017-01-01

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  13. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung [North Carolina State University, Raleigh, NC 27695 (United States); Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [North Carolina State University, Raleigh, NC 27695 (United States)

    2017-04-15

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  14. Estimation of insurance premiums for coverage against natural disaster risk: an application of Bayesian Inference

    NARCIS (Netherlands)

    Paudel, Y.; Botzen, W.J.W.; Aerts, J.C.J.H.

    2013-01-01

    This study applies Bayesian Inference to estimate flood risk for 53 dyke ring areas in the Netherlands, and focuses particularly on the data scarcity and extreme behaviour of catastrophe risk. The probability density curves of flood damage are estimated through Monte Carlo simulations. Based on

  15. Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network

    Directory of Open Access Journals (Sweden)

    Ying Yan

    2013-01-01

    Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.

  16. Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings.

    Directory of Open Access Journals (Sweden)

    Elise Payzan-LeNestour

    Full Text Available Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome remains uncertain. Second, there is (parameter estimation uncertainty or ambiguity: payoff probabilities are unknown and need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no better explained by Bayesian updating than by (model-free reinforcement learning. Exit questionnaires revealed that participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which to implement Bayesian updating.

  17. Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.

    Science.gov (United States)

    Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis

    2016-08-01

    Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.

  18. Use of limited data to construct Bayesian networks for probabilistic risk assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina M.; Swiler, Laura Painton

    2013-03-01

    Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.

  19. Risk-based design of process systems using discrete-time Bayesian networks

    International Nuclear Information System (INIS)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2013-01-01

    Temporal Bayesian networks have gained popularity as a robust technique to model dynamic systems in which the components' sequential dependency, as well as their functional dependency, cannot be ignored. In this regard, discrete-time Bayesian networks have been proposed as a viable alternative to solve dynamic fault trees without resort to Markov chains. This approach overcomes the drawbacks of Markov chains such as the state-space explosion and the error-prone conversion procedure from dynamic fault tree. It also benefits from the inherent advantages of Bayesian networks such as probability updating. However, effective mapping of the dynamic gates of dynamic fault trees into Bayesian networks while avoiding the consequent huge multi-dimensional probability tables has always been a matter of concern. In this paper, a new general formalism has been developed to model two important elements of dynamic fault tree, i.e., cold spare gate and sequential enforcing gate, with any arbitrary probability distribution functions. Also, an innovative Neutral Dependency algorithm has been introduced to model dynamic gates such as priority-AND gate, thus reducing the dimension of conditional probability tables by an order of magnitude. The second part of the paper is devoted to the application of discrete-time Bayesian networks in the risk assessment and safety analysis of complex process systems. It has been shown how dynamic techniques can effectively be applied for optimal allocation of safety systems to obtain maximum risk reduction.

  20. Risk analysis of drinking water microbial contamination versus disinfection by-products (DBPs)

    International Nuclear Information System (INIS)

    Ashbolt, Nicholas John

    2004-01-01

    Managing the provision of safe drinking water has a renewed focus in light of the new World Health Organization (WHO) water safety plans. Risk analysis is a necessary component to assist in selecting priority hazards and identifying hazardous scenarios, be they qualitative to quantitative assessments. For any approach, acute diarrhoeal pathogens are often the higher risk issue for municipal water supplies, no matter how health burden is assessed. Furthermore, potential sequellae (myocarditis, diabetes, reactive arthritis and cancers) only further increase the potential health burden of pathogens; despite the enormous uncertainties in determining pathogen exposures and chemical dose-responses within respective microbial and chemical analyses. These interpretations are currently being improved by Bayesian and bootstrapping approaches to estimate parameters for stochastic assessments. A case example, covering the health benefits of ozonation for Cryptosporidium inactivation versus potential cancers from bromate exposures, illustrated the higher risks from a pathogen than one of the most likely disinfection by-products (DBPs). Such analyses help justify the industries long-held view of the benefits of multiple barriers to hazards and that microbial contamination of water supplies pose a clear public health risk when treatment is inadequate. Therefore, efforts to reduce potential health risks from DBP must not compromise pathogen control, despite socio-political issues

  1. Microbial ecology of terrestrial Antarctica: Are microbial systems at risk from human activities?

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.

    1996-08-01

    Many of the ecological systems found in continental Antarctica are comprised entirely of microbial species. Concerns have arisen that these microbial systems might be at risk either directly through the actions of humans or indirectly through increased competition from introduced species. Although protection of native biota is covered by the Protocol on Environmental Protection to the Antarctic Treaty, strict measures for preventing the introduction on non-native species or for protecting microbial habitats may be impractical. This report summarizes the research conducted to date on microbial ecosystems in continental Antarctica and discusses the need for protecting these ecosystems. The focus is on communities inhabiting soil and rock surfaces in non-coastal areas of continental Antarctica. Although current polices regarding waste management and other operations in Antarctic research stations serve to reduce the introduction on non- native microbial species, importation cannot be eliminated entirely. Increased awareness of microbial habitats by field personnel and protection of certain unique habitats from physical destruction by humans may be necessary. At present, small-scale impacts from human activities are occurring in certain areas both in terms of introduced species and destruction of habitat. On a large scale, however, it is questionable whether the introduction of non-native microbial species to terrestrial Antarctica merits concern.

  2. Bayesian Safety Risk Modeling of Human-Flightdeck Automation Interaction

    Science.gov (United States)

    Ancel, Ersin; Shih, Ann T.

    2015-01-01

    Usage of automatic systems in airliners has increased fuel efficiency, added extra capabilities, enhanced safety and reliability, as well as provide improved passenger comfort since its introduction in the late 80's. However, original automation benefits, including reduced flight crew workload, human errors or training requirements, were not achieved as originally expected. Instead, automation introduced new failure modes, redistributed, and sometimes increased workload, brought in new cognitive and attention demands, and increased training requirements. Modern airliners have numerous flight modes, providing more flexibility (and inherently more complexity) to the flight crew. However, the price to pay for the increased flexibility is the need for increased mode awareness, as well as the need to supervise, understand, and predict automated system behavior. Also, over-reliance on automation is linked to manual flight skill degradation and complacency in commercial pilots. As a result, recent accidents involving human errors are often caused by the interactions between humans and the automated systems (e.g., the breakdown in man-machine coordination), deteriorated manual flying skills, and/or loss of situational awareness due to heavy dependence on automated systems. This paper describes the development of the increased complexity and reliance on automation baseline model, named FLAP for FLightdeck Automation Problems. The model development process starts with a comprehensive literature review followed by the construction of a framework comprised of high-level causal factors leading to an automation-related flight anomaly. The framework was then converted into a Bayesian Belief Network (BBN) using the Hugin Software v7.8. The effects of automation on flight crew are incorporated into the model, including flight skill degradation, increased cognitive demand and training requirements along with their interactions. Besides flight crew deficiencies, automation system

  3. Competing risk models in reliability systems, a Weibull distribution model with Bayesian analysis approach

    International Nuclear Information System (INIS)

    Iskandar, Ismed; Gondokaryono, Yudi Satria

    2016-01-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  4. Predicting Drug Safety and Communicating Risk: Benefits of a Bayesian Approach.

    Science.gov (United States)

    Lazic, Stanley E; Edmunds, Nicholas; Pollard, Christopher E

    2018-03-01

    Drug toxicity is a major source of attrition in drug discovery and development. Pharmaceutical companies routinely use preclinical data to predict clinical outcomes and continue to invest in new assays to improve predictions. However, there are many open questions about how to make the best use of available data, combine diverse data, quantify risk, and communicate risk and uncertainty to enable good decisions. The costs of suboptimal decisions are clear: resources are wasted and patients may be put at risk. We argue that Bayesian methods provide answers to all of these problems and use hERG-mediated QT prolongation as a case study. Benefits of Bayesian machine learning models include intuitive probabilistic statements of risk that incorporate all sources of uncertainty, the option to include diverse data and external information, and visualizations that have a clear link between the output from a statistical model and what this means for risk. Furthermore, Bayesian methods are easy to use with modern software, making their adoption for safety screening straightforward. We include R and Python code to encourage the adoption of these methods.

  5. Software Delivery Risk Management: Application of Bayesian Networks in Agile Software Development

    Directory of Open Access Journals (Sweden)

    Ancveire Ieva

    2015-12-01

    Full Text Available The information technology industry cannot be imagined without large- or small-scale projects. They are implemented to develop systems enabling key business processes and improving performance and enterprise resource management. However, projects often experience various difficulties during their execution. These problems are usually related to the three objectives of the project – costs, quality and deadline. A way these challenges can be solved is project risk management. However, not always the main problems and their influencing factors can be easily identified. Usually there is a need for a more profound analysis of the problem situation. In this paper, we propose the use of a Bayesian Network concept for quantitative risk management in agile projects. The Bayesian Network is explored using a case study focusing on a project that faces difficulties during the software delivery process. We explain why an agile risk analysis is needed and assess the potential risk factors, which may occur during the project. Thereafter, we design the Bayesian Network to capture the actual problem situation and make suggestions how to improve the delivery process based on the measures to be taken to reduce the occurrence of project risks.

  6. The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation.

    Science.gov (United States)

    Money, Eric S; Reckhow, Kenneth H; Wiesner, Mark R

    2012-06-01

    We describe the use of Bayesian networks as a tool for nanomaterial risk forecasting and develop a baseline probabilistic model that incorporates nanoparticle specific characteristics and environmental parameters, along with elements of exposure potential, hazard, and risk related to nanomaterials. The baseline model, FINE (Forecasting the Impacts of Nanomaterials in the Environment), was developed using expert elicitation techniques. The Bayesian nature of FINE allows for updating as new data become available, a critical feature for forecasting risk in the context of nanomaterials. The specific case of silver nanoparticles (AgNPs) in aquatic environments is presented here (FINE(AgNP)). The results of this study show that Bayesian networks provide a robust method for formally incorporating expert judgments into a probabilistic measure of exposure and risk to nanoparticles, particularly when other knowledge bases may be lacking. The model is easily adapted and updated as additional experimental data and other information on nanoparticle behavior in the environment become available. The baseline model suggests that, within the bounds of uncertainty as currently quantified, nanosilver may pose the greatest potential risk as these particles accumulate in aquatic sediments. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Urban flooding and health risk analysis by use of quantitative microbial risk assessment

    DEFF Research Database (Denmark)

    Andersen, Signe Tanja

    D thesis is to identify the limitations and possibilities for optimising microbial risk assessments of urban flooding through more evidence-based solutions, including quantitative microbial data and hydrodynamic water quality models. The focus falls especially on the problem of data needs and the causes......, but also when wading through a flooded area. The results in this thesis have brought microbial risk assessments one step closer to more uniform and repeatable risk analysis by using actual and relevant measured data and hydrodynamic water quality models to estimate the risk from flooding caused...... are expected to increase in the future. To ensure public health during extreme rainfall, solutions are needed, but limited knowledge on microbial water quality, and related health risks, makes it difficult to implement microbial risk analysis as a part of the basis for decision making. The main aim of this Ph...

  8. Research on Risk Manage of Power Construction Project Based on Bayesian Network

    Science.gov (United States)

    Jia, Zhengyuan; Fan, Zhou; Li, Yong

    With China's changing economic structure and increasingly fierce competition in the market, the uncertainty and risk factors in the projects of electric power construction are increasingly complex, the projects will face huge risks or even fail if we don't consider or ignore these risk factors. Therefore, risk management in the projects of electric power construction plays an important role. The paper emphatically elaborated the influence of cost risk in electric power projects through study overall risk management and the behavior of individual in risk management, and introduced the Bayesian network to the project risk management. The paper obtained the order of key factors according to both scene analysis and causal analysis for effective risk management.

  9. Bayesian data analysis of severe fatal accident risk in the oil chain.

    Science.gov (United States)

    Eckle, Petrissa; Burgherr, Peter

    2013-01-01

    We analyze the risk of severe fatal accidents causing five or more fatalities and for nine different activities covering the entire oil chain. Included are exploration and extraction, transport by different modes, refining and final end use in power plants, heating or gas stations. The risks are quantified separately for OECD and non-OECD countries and trends are calculated. Risk is analyzed by employing a Bayesian hierarchical model yielding analytical functions for both frequency (Poisson) and severity distributions (Generalized Pareto) as well as frequency trends. This approach addresses a key problem in risk estimation-namely the scarcity of data resulting in high uncertainties in particular for the risk of extreme events, where the risk is extrapolated beyond the historically most severe accidents. Bayesian data analysis allows the pooling of information from different data sets covering, for example, the different stages of the energy chains or different modes of transportation. In addition, it also inherently delivers a measure of uncertainty. This approach provides a framework, which comprehensively covers risk throughout the oil chain, allowing the allocation of risk in sustainability assessments. It also permits the progressive addition of new data to refine the risk estimates. Frequency, severity, and trends show substantial differences between the activities, emphasizing the need for detailed risk analysis. © 2012 Paul Scherrer Institut.

  10. Application of Multivariate Probabilistic (Bayesian) Networks to Substance Use Disorder Risk Stratification and Cost Estimation

    OpenAIRE

    Weinstein, Lawrence; Radano, Todd A; Jack, Timothy; Kalina, Philip; Eberhardt, John S

    2009-01-01

    Introduction: This paper explores the use of machine learning and Bayesian classification models to develop broadly applicable risk stratification models to guide disease management of health plan enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD are understood by payers, who manage it through utilization review, acute interventions, coverage and cost limitations, and disease management, the literature shows mixed results for these modalitie...

  11. Estimation of insurance premiums for coverage against natural disaster risk: an application of Bayesian Inference

    Directory of Open Access Journals (Sweden)

    Y. Paudel

    2013-03-01

    Full Text Available This study applies Bayesian Inference to estimate flood risk for 53 dyke ring areas in the Netherlands, and focuses particularly on the data scarcity and extreme behaviour of catastrophe risk. The probability density curves of flood damage are estimated through Monte Carlo simulations. Based on these results, flood insurance premiums are estimated using two different practical methods that each account in different ways for an insurer's risk aversion and the dispersion rate of loss data. This study is of practical relevance because insurers have been considering the introduction of flood insurance in the Netherlands, which is currently not generally available.

  12. Estimation of insurance premiums for coverage against natural disaster risk: an application of Bayesian Inference

    Science.gov (United States)

    Paudel, Y.; Botzen, W. J. W.; Aerts, J. C. J. H.

    2013-03-01

    This study applies Bayesian Inference to estimate flood risk for 53 dyke ring areas in the Netherlands, and focuses particularly on the data scarcity and extreme behaviour of catastrophe risk. The probability density curves of flood damage are estimated through Monte Carlo simulations. Based on these results, flood insurance premiums are estimated using two different practical methods that each account in different ways for an insurer's risk aversion and the dispersion rate of loss data. This study is of practical relevance because insurers have been considering the introduction of flood insurance in the Netherlands, which is currently not generally available.

  13. Dynamic Bayesian modeling for risk prediction in credit operations

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andres

    2015-01-01

    Our goal is to do risk prediction in credit operations, and as data is collected continuously and reported on a monthly basis, this gives rise to a streaming data classification problem. Our analysis reveals some practical problems that have not previously been thoroughly analyzed in the context...

  14. Risk-Based Operation and Maintenance Using Bayesian Networks

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    This paper describes how risk-based decision making can be used for maintenance planning of components exposed to degradation such as fatigue in offshore wind turbines. In fatigue models, large epistemic uncertainties are usually present. These can be reduced if monitoring results are used to upd...

  15. Bayesian Monte Carlo and Maximum Likelihood Approach for Uncertainty Estimation and Risk Management: Application to Lake Oxygen Recovery Model

    Science.gov (United States)

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...

  16. Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    Lee, Chang-Ju; Lee, Kun Jai

    2006-01-01

    The scenario in a risk analysis can be defined as the propagating feature of specific initiating event which can go to a wide range of undesirable consequences. If we take various scenarios into consideration, the risk analysis becomes more complex than do without them. A lot of risk analyses have been performed to actually estimate a risk profile under both uncertain future states of hazard sources and undesirable scenarios. Unfortunately, in case of considering specific systems such as a radioactive waste disposal facility, since the behaviour of future scenarios is hardly predicted without special reasoning process, we cannot estimate their risk only with a traditional risk analysis methodology. Moreover, we believe that the sources of uncertainty at future states can be reduced pertinently by setting up dependency relationships interrelating geological, hydrological, and ecological aspects of the site with all the scenarios. It is then required current methodology of uncertainty analysis of the waste disposal facility be revisited under this belief. In order to consider the effects predicting from an evolution of environmental conditions of waste disposal facilities, this paper proposes a quantitative assessment framework integrating the inference process of Bayesian network to the traditional probabilistic risk analysis. We developed and verified an approximate probabilistic inference program for the specific Bayesian network using a bounded-variance likelihood weighting algorithm. Ultimately, specific models, including a model for uncertainty propagation of relevant parameters were developed with a comparison of variable-specific effects due to the occurrence of diverse altered evolution scenarios (AESs). After providing supporting information to get a variety of quantitative expectations about the dependency relationship between domain variables and AESs, we could connect the results of probabilistic inference from the Bayesian network with the consequence

  17. Assessing the Differences in Public Health Impact of Salmonella Subtypes Using a Bayesian Microbial Subtyping Approach for Source Attribution

    DEFF Research Database (Denmark)

    Pires, Sara Monteiro; Hald, Tine

    2010-01-01

    Salmonella is a major cause of human gastroenteritis worldwide. To prioritize interventions and assess the effectiveness of efforts to reduce illness, it is important to attribute salmonellosis to the responsible sources. Studies have suggested that some Salmonella subtypes have a higher health...... impact than others. Likewise, some food sources appear to have a higher impact than others. Knowledge of variability in the impact of subtypes and sources may provide valuable added information for research, risk management, and public health strategies. We developed a Bayesian model that attributes...... illness to specific sources and allows for a better estimation of the differences in the ability of Salmonella subtypes and food types to result in reported salmonellosis. The model accommodates data for multiple years and is based on the Danish Salmonella surveillance. The number of sporadic cases caused...

  18. A Bayesian network model for predicting type 2 diabetes risk based on electronic health records

    Science.gov (United States)

    Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen

    2017-07-01

    An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.

  19. Doctor, what does my positive test mean? From Bayesian textbook tasks to personalized risk communication

    Directory of Open Access Journals (Sweden)

    Gorka eNavarrete

    2015-09-01

    Full Text Available Most of the research on Bayesian reasoning aims to answer theoretical questions about the extent to which people are able to update their beliefs according to the Bayes Theorem (Baratgin & Politzer, 2006; Barbey & Sloman, 2007; Gigerenzer & Hoffrage, 1995 about the evolutionary nature of Bayesian inference (Brase, 2002, 2007; Gigerenzer & Hoffrage, 1995, or about the role of cognitive abilities in Bayesian inference (Johnson & Tubau, 2013; Lesage, Navarrete, & De Neys, 2013; Sirota, Juanchich, & Hagmayer, 2014. Few studies aim to answer practical, mainly health-related questions, such as, questions such as ‘What does it mean to have a positive test in a context of cancer screening?’ or ‘What is the best way to communicate a medical test result so a patient will understand it?. This type of research aims to translate the empirical finding into effective ways of providing risk information. In addition, the applied research often adopts the paradigms and methods of the theoretically-motivated research. But sometimes it works the other way around, and the theoretical research borrows the importance of the practical question in the medical context. The study of Bayesian reasoning is relevant to risk communication in that,, to be as useful as possible, applied research should employ specifically tailored methods and contexts specific to the recipients of the risk information. In this paper, we concentrate on the communication of the result of medical tests and outline the epidemiological and test parameters that affect the predictive power of a test – whether it is correct or not. Building on this, we draw up recommendations for better practice to convey the results of medical tests that could inform health policy makers (e.g. what are the drawbacks of mass screenings?, be used by health practitioners and, in turn, help patients to make better and more informed decisions.

  20. A new approach for supply chain risk management: Mapping SCOR into Bayesian network

    Directory of Open Access Journals (Sweden)

    Mahdi Abolghasemi

    2015-01-01

    Full Text Available Purpose: Increase of costs and complexities in organizations beside the increase of uncertainty and risks have led the managers to use the risk management in order to decrease risk taking and deviation from goals. SCRM has a close relationship with supply chain performance. During the years different methods have been used by researchers in order to manage supply chain risk but most of them are either qualitative or quantitative. Supply chain operation reference (SCOR is a standard model for SCP evaluation which have uncertainty in its metrics. In This paper by combining qualitative and quantitative metrics of SCOR, supply chain performance will be measured by Bayesian Networks. Design/methodology/approach: First qualitative assessment will be done by recognizing uncertain metrics of SCOR model and then by quantifying them, supply chain performance will be measured by Bayesian Networks (BNs and supply chain operations reference (SCOR in which making decision on uncertain variables will be done by predictive and diagnostic capabilities. Findings: After applying the proposed method in one of the biggest automotive companies in Iran, we identified key factors of supply chain performance based on SCOR model through predictive and diagnostic capability of Bayesian Networks. After sensitivity analysis, we find out that ‘Total cost’ and its criteria that include costs of labors, warranty, transportation and inventory have the widest range and most effect on supply chain performance. So, managers should take their importance into account for decision making. We can make decisions simply by running model in different situations. Research limitations/implications: A more precise model consisted of numerous factors but it is difficult and sometimes impossible to solve big models, if we insert all of them in a Bayesian model. We have adopted real world characteristics with our software and method abilities. On the other hand, fewer data exist for some

  1. Microbial aerosol generation during laboratory accidents and subsequent risk assessment.

    Science.gov (United States)

    Bennett, A; Parks, S

    2006-04-01

    To quantify microbial aerosols generated by a series of laboratory accidents and to use these data in risk assessment. A series of laboratory accident scenarios have been devised and the microbial aerosol generated by them has been measured using a range of microbial air samplers. The accident scenarios generating the highest aerosol concentrations were, dropping a fungal plate, dropping a large bottle, centrifuge rotor leaks and a blocked syringe filter. Many of these accidents generated low particle size aerosols, which would be inhaled into the lungs of any exposed laboratory staff. Spray factors (SFs) have been calculated using the results of these experiments as an indicator of the potential for accidents to generate microbial aerosols. Model risk assessments have been described using the SF data. Quantitative risk assessment of laboratory accidents can provide data that can aid the design of containment laboratories and the response to laboratory accidents. A methodology has been described and supporting data provided to allow microbiological safety officers to carry out quantitative risk assessment of laboratory accidents.

  2. Modeling Logistic Performance in Quantitative Microbial Risk Assessment

    NARCIS (Netherlands)

    Rijgersberg, H.; Tromp, S.O.; Jacxsens, L.; Uyttendaele, M.

    2010-01-01

    In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage

  3. Bayesian estimation of covariance matrices: Application to market risk management at EDF

    International Nuclear Information System (INIS)

    Jandrzejewski-Bouriga, M.

    2012-01-01

    In this thesis, we develop new methods of regularized covariance matrix estimation, under the Bayesian setting. The regularization methodology employed is first related to shrinkage. We investigate a new Bayesian modeling of covariance matrix, based on hierarchical inverse-Wishart distribution, and then derive different estimators under standard loss functions. Comparisons between shrunk and empirical estimators are performed in terms of frequentist performance under different losses. It allows us to highlight the critical importance of the definition of cost function and show the persistent effect of the shrinkage-type prior on inference. In a second time, we consider the problem of covariance matrix estimation in Gaussian graphical models. If the issue is well treated for the decomposable case, it is not the case if you also consider non-decomposable graphs. We then describe a Bayesian and operational methodology to carry out the estimation of covariance matrix of Gaussian graphical models, decomposable or not. This procedure is based on a new and objective method of graphical-model selection, combined with a constrained and regularized estimation of the covariance matrix of the model chosen. The procedures studied effectively manage missing data. These estimation techniques were applied to calculate the covariance matrices involved in the market risk management for portfolios of EDF (Electricity of France), in particular for problems of calculating Value-at-Risk or in Asset Liability Management. (author)

  4. Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks.

    Science.gov (United States)

    Zhang, Jinfen; Teixeira, Ângelo P; Guedes Soares, C; Yan, Xinping; Liu, Kezhong

    2016-06-01

    This article develops a Bayesian belief network model for the prediction of accident consequences in the Tianjin port. The study starts with a statistical analysis of historical accident data of six years from 2008 to 2013. Then a Bayesian belief network is constructed to express the dependencies between the indicator variables and accident consequences. The statistics and expert knowledge are synthesized in the Bayesian belief network model to obtain the probability distribution of the consequences. By a sensitivity analysis, several indicator variables that have influence on the consequences are identified, including navigational area, ship type and time of the day. The results indicate that the consequences are most sensitive to the position where the accidents occurred, followed by time of day and ship length. The results also reflect that the navigational risk of the Tianjin port is at the acceptable level, despite that there is more room of improvement. These results can be used by the Maritime Safety Administration to take effective measures to enhance maritime safety in the Tianjin port. © 2016 Society for Risk Analysis.

  5. Risk Assessments of Minefields in Humanitarian Mine Action - a Bayesian Approach

    DEFF Research Database (Denmark)

    Vistisen, Jan Bastholm

    2006-01-01

    thesis, has concentrated on the development of a risk model quantifying to what extent a minefield poses a risk to a society. The risk model is derived in two steps: First, a general model, which requires detailed information about the mined area in question, is derived. Secondly, by the introduction...... risk model seems to be the lack of actual information about the binomial parameter q. A considerable part of the enclosed thesis focuses therefore on ways to provide information about q through statistical modelling. Depending on the level of historical information available to a hypothetical decision....... The possibility of making updates of the entering probability distributions p(m) and p(q) through incoming accident statistics by the use of Bayes' rule makes the suggested risk model dynamic. Moreover, the application of Bayesian data analysis gives the derived risk model a very flexible structure which allows...

  6. Introduction of Bayesian network in risk analysis of maritime accidents in Bangladesh

    Science.gov (United States)

    Rahman, Sohanur

    2017-12-01

    Due to the unique geographic location, complex navigation environment and intense vessel traffic, a considerable number of maritime accidents occurred in Bangladesh which caused serious loss of life, property and environmental contamination. Based on the historical data of maritime accidents from 1981 to 2015, which has been collected from Department of Shipping (DOS) and Bangladesh Inland Water Transport Authority (BIWTA), this paper conducted a risk analysis of maritime accidents by applying Bayesian network. In order to conduct this study, a Bayesian network model has been developed to find out the relation among parameters and the probability of them which affect accidents based on the accident investigation report of Bangladesh. Furthermore, number of accidents in different categories has also been investigated in this paper. Finally, some viable recommendations have been proposed in order to ensure greater safety of inland vessels in Bangladesh.

  7. Impact of microbial count distributions on human health risk estimates

    DEFF Research Database (Denmark)

    Ribeiro Duarte, Ana Sofia; Nauta, Maarten

    2015-01-01

    Quantitative microbiological risk assessment (QMRA) is influenced by the choice of the probability distribution used to describe pathogen concentrations, as this may eventually have a large effect on the distribution of doses at exposure. When fitting a probability distribution to microbial...... enumeration data, several factors may have an impact on the accuracy of that fit. Analysis of the best statistical fits of different distributions alone does not provide a clear indication of the impact in terms of risk estimates. Thus, in this study we focus on the impact of fitting microbial distributions...... on risk estimates, at two different concentration scenarios and at a range of prevalence levels. By using five different parametric distributions, we investigate whether different characteristics of a good fit are crucial for an accurate risk estimate. Among the factors studied are the importance...

  8. An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit.

    Science.gov (United States)

    Wong, Rowena Syn Yin; Ismail, Noor Azina

    2016-01-01

    There are not many studies that attempt to model intensive care unit (ICU) risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU. This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV) model. Bayesian Markov Chain Monte Carlo (MCMC) simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method. The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS) was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC) values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05) for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study. Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes.

  9. An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Rowena Syn Yin Wong

    Full Text Available There are not many studies that attempt to model intensive care unit (ICU risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU.This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV model. Bayesian Markov Chain Monte Carlo (MCMC simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method.The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05 for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study.Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes.

  10. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    Science.gov (United States)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model

  11. Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project

    International Nuclear Information System (INIS)

    Wu, Wei-Shing; Yang, Chen-Feng; Chang, Jung-Chuan; Château, Pierre-Alexandre; Chang, Yang-Chi

    2015-01-01

    The sound development of marine resource usage relies on a strong maritime engineering industry. The perilous marine environment poses the highest risk to all maritime work. It is therefore imperative to reduce the risk associated with maritime work by using some analytical methods other than engineering techniques. This study addresses this issue by using an integrated interpretive structure modeling (ISM) and Bayesian network (BN) approach in a risk assessment context. Mitigating or managing maritime risk relies primarily on domain expert experience and knowledge. ISM can be used to incorporate expert knowledge in a systematic manner and helps to impose order and direction on complex relationships that exist among system elements. Working with experts, this research used ISM to clearly specify an engineering risk factor relationship represented by a cause–effect diagram, which forms the structure of the BN. The expert subjective judgments were further transformed into a prior and conditional probability set to be embedded in the BN. We used the BN to evaluate the risks of two offshore pipeline projects in Taiwan. The results indicated that the BN can provide explicit risk information to support better project management. - Highlights: • We adopt an integrated method for risk assessment of offshore pipeline projects. • We conduct semi-structural interview with the experts for risk factor identification. • Interpretive structural modeling helps to form the digraph of Bayesian network (BN) • We perform the risk analysis with the experts by building a BN. • Risk evaluations of two case studies using the BN show effectiveness of the methods

  12. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Science.gov (United States)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Exploring the Influence of Neighborhood Characteristics on Burglary Risks: A Bayesian Random Effects Modeling Approach

    Directory of Open Access Journals (Sweden)

    Hongqiang Liu

    2016-06-01

    Full Text Available A Bayesian random effects modeling approach was used to examine the influence of neighborhood characteristics on burglary risks in Jianghan District, Wuhan, China. This random effects model is essentially spatial; a spatially structured random effects term and an unstructured random effects term are added to the traditional non-spatial Poisson regression model. Based on social disorganization and routine activity theories, five covariates extracted from the available data at the neighborhood level were used in the modeling. Three regression models were fitted and compared by the deviance information criterion to identify which model best fit our data. A comparison of the results from the three models indicates that the Bayesian random effects model is superior to the non-spatial models in fitting the data and estimating regression coefficients. Our results also show that neighborhoods with above average bar density and department store density have higher burglary risks. Neighborhood-specific burglary risks and posterior probabilities of neighborhoods having a burglary risk greater than 1.0 were mapped, indicating the neighborhoods that should warrant more attention and be prioritized for crime intervention and reduction. Implications and limitations of the study are discussed in our concluding section.

  14. Bayesian risk-based decision method for model validation under uncertainty

    International Nuclear Information System (INIS)

    Jiang Xiaomo; Mahadevan, Sankaran

    2007-01-01

    This paper develops a decision-making methodology for computational model validation, considering the risk of using the current model, data support for the current model, and cost of acquiring new information to improve the model. A Bayesian decision theory-based method is developed for this purpose, using a likelihood ratio as the validation metric for model assessment. An expected risk or cost function is defined as a function of the decision costs, and the likelihood and prior of each hypothesis. The risk is minimized through correctly assigning experimental data to two decision regions based on the comparison of the likelihood ratio with a decision threshold. A Bayesian validation metric is derived based on the risk minimization criterion. Two types of validation tests are considered: pass/fail tests and system response value measurement tests. The methodology is illustrated for the validation of reliability prediction models in a tension bar and an engine blade subjected to high cycle fatigue. The proposed method can effectively integrate optimal experimental design into model validation to simultaneously reduce the cost and improve the accuracy of reliability model assessment

  15. Bayesian Hierarchical Structure for Quantifying Population Variability to Inform Probabilistic Health Risk Assessments.

    Science.gov (United States)

    Shao, Kan; Allen, Bruce C; Wheeler, Matthew W

    2017-10-01

    Human variability is a very important factor considered in human health risk assessment for protecting sensitive populations from chemical exposure. Traditionally, to account for this variability, an interhuman uncertainty factor is applied to lower the exposure limit. However, using a fixed uncertainty factor rather than probabilistically accounting for human variability can hardly support probabilistic risk assessment advocated by a number of researchers; new methods are needed to probabilistically quantify human population variability. We propose a Bayesian hierarchical model to quantify variability among different populations. This approach jointly characterizes the distribution of risk at background exposure and the sensitivity of response to exposure, which are commonly represented by model parameters. We demonstrate, through both an application to real data and a simulation study, that using the proposed hierarchical structure adequately characterizes variability across different populations. © 2016 Society for Risk Analysis.

  16. A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment.

    Science.gov (United States)

    Waddingham, Ed; Mt-Isa, Shahrul; Nixon, Richard; Ashby, Deborah

    2016-01-01

    Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit-risk assessment to formalize trade-offs between benefits and risks, providing transparency to the assessment process. There is however no well-established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit-risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo-controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit-risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing-remitting multiple sclerosis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River

    International Nuclear Information System (INIS)

    Zhang, D.; Yan, X.P.; Yang, Z.L.; Wall, A.; Wang, J.

    2013-01-01

    Formal safety assessment (FSA), as a structured and systematic risk evaluation methodology, has been increasingly and broadly used in the shipping industry around the world. Concerns have been raised as to navigational safety of the Yangtze River, China's largest and the world's busiest inland waterway. Over the last few decades, the throughput of ships in the Yangtze River has increased rapidly due to the national development of the Middle and Western parts of China. Accidents such as collisions, groundings, contacts, oil-spills and fires occur repeatedly, often causing serious consequences. In order to improve the navigational safety in the Yangtze River, this paper estimates the navigational risk of the Yangtze River using the FSA concept and a Bayesian network (BN) technique. The navigational risk model is established by considering both probability and consequences of accidents with respect to a risk matrix method, followed by a scenario analysis to demonstrate the application of the proposed model

  18. Risk-Based Operation and Maintenance of Offshore Wind Turbines using Bayesian Networks

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    the lifetime. Two different approaches are used; one uses a threshold value of the failure probability, and one uses a Limited Memory Influence Diagram. Both methods are tested for an application example using MonteCarlo sampling, and they are both found to be efficient and equally good.......For offshore wind farms, the costs due to operation and maintenance are large, and more optimal planning has the potential of reducing these costs. This paper presents how Bayesian networks can be used for risk-based inspection planning, where the inspection plans are updated each year through...

  19. Application of Bayesian network methodology to the probabilistic risk assessment of nuclear waste disposal facility

    International Nuclear Information System (INIS)

    Lee, Chang Ju

    2006-02-01

    The scenario in a risk analysis can be defined as the propagating feature of specific initiating event which can go to a wide range of undesirable consequences. If one takes various scenarios into consideration, the risk analysis becomes more complex than do without them. A lot of risk analyses have been performed to actually estimate a risk profile under both uncertain future states of hazard sources and undesirable scenarios. Unfortunately, in case of considering some stochastic passive systems such as a radioactive waste disposal facility, since the behaviour of future scenarios is hardly predicted without special reasoning process, we cannot estimate their risk only with a traditional risk analysis methodology. Moreover, it is believed that the sources of uncertainty at future states can be reduced pertinently by setting up dependency relationships interrelating geological, hydrological, and ecological aspects of the site with all the scenarios. It is then required current methodology of uncertainty analysis of the waste disposal facility be revisited under this belief. In order to consider the effects predicting from an evolution of environmental conditions of waste disposal facilities, this study proposes a quantitative assessment framework integrating the inference process of Bayesian network to the traditional probabilistic risk analysis. In this study an approximate probabilistic inference program for the specific Bayesian network developed and verified using a bounded-variance likelihood weighting algorithm. Ultimately, specific models, including a Monte-Carlo model for uncertainty propagation of relevant parameters, were developed with a comparison of variable-specific effects due to the occurrence of diverse altered evolution scenarios (AESs). After providing supporting information to get a variety of quantitative expectations about the dependency relationship between domain variables and AESs, this study could connect the results of probabilistic

  20. A decision‐making framework for flood risk management based on a Bayesian Influence Diagram

    DEFF Research Database (Denmark)

    Åstrøm, Helena Lisa Alexandra; Madsen, Henrik; Friis-Hansen, Peter

    2014-01-01

    We develop a Bayesian Influence Diagram (ID) approach for risk‐based decision‐ making in flood management. We show that it is a flexible decision‐making tool to assess flood risk in a non‐stationary environment and with an ability to test different adaptation measures in order to agree on the best...... means to describe uncertainty in the system. Hence, an ID contributes with several advantages in risk assessment and decision‐making. We present an ID approach for risk‐ based decision‐making in which we improve conventional flood risk assessments by including several types of hazards...... measures and combinations of these. Adaptation options can be tested at different points in time (in different time slices) which allows for finding the optimal time to invest. The usefulness of our decision‐making framework was exemplified through case studies in Aarhus and Copenhagen. Risk‐based decision‐making...

  1. Can Bayesian Belief Networks help tackling conceptual model uncertainties in contaminated site risk assessment?

    DEFF Research Database (Denmark)

    Troldborg, Mads; Thomsen, Nanna Isbak; McKnight, Ursula S.

    different conceptual models may describe the same contaminated site equally well. In many cases, conceptual model uncertainty has been shown to be one of the dominant sources for uncertainty and is therefore essential to account for when quantifying uncertainties in risk assessments. We present here......A key component in risk assessment of contaminated sites is the formulation of a conceptual site model. The conceptual model is a simplified representation of reality and forms the basis for the mathematical modelling of contaminant fate and transport at the site. A conceptual model should...... a Bayesian Belief Network (BBN) approach for evaluating the uncertainty in risk assessment of groundwater contamination from contaminated sites. The approach accounts for conceptual model uncertainty by considering multiple conceptual models, each of which represents an alternative interpretation of the site...

  2. The importance of virulence prediction and gene networks in microbial risk assessment

    DEFF Research Database (Denmark)

    Wassenaar, Gertrude Maria; Gamieldien, Junaid; Shatkin, JoAnne

    2007-01-01

    For microbial risk assessment, it is necessary to recognize and predict Virulence of bacterial pathogens, including their ability to contaminate foods. Hazard characterization requires data on strain variability regarding virulence and survival during food processing. Moreover, information...... and characterization of microbial hazards, including emerging pathogens, in the context of microbial risk assessment....

  3. Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach.

    Science.gov (United States)

    Fernandes, G S; Bhattacharya, A; McWilliams, D F; Ingham, S L; Doherty, M; Zhang, W

    2017-03-20

    Twenty-five percent of the British population over the age of 50 years experiences knee pain. Knee pain can limit physical ability and cause distress and bears significant socioeconomic costs. The objectives of this study were to develop and validate the first risk prediction model for incident knee pain in the Nottingham community and validate this internally within the Nottingham cohort and externally within the Osteoarthritis Initiative (OAI) cohort. A total of 1822 participants from the Nottingham community who were at risk for knee pain were followed for 12 years. Of this cohort, two-thirds (n = 1203) were used to develop the risk prediction model, and one-third (n = 619) were used to validate the model. Incident knee pain was defined as pain on most days for at least 1 month in the past 12 months. Predictors were age, sex, body mass index, pain elsewhere, prior knee injury and knee alignment. A Bayesian logistic regression model was used to determine the probability of an OR >1. The Hosmer-Lemeshow χ 2 statistic (HLS) was used for calibration, and ROC curve analysis was used for discrimination. The OAI cohort from the United States was also used to examine the performance of the model. A risk prediction model for knee pain incidence was developed using a Bayesian approach. The model had good calibration, with an HLS of 7.17 (p = 0.52) and moderate discriminative ability (ROC 0.70) in the community. Individual scenarios are given using the model. However, the model had poor calibration (HLS 5866.28, p prediction model for knee pain, regardless of underlying structural changes of knee osteoarthritis, in the community using a Bayesian modelling approach. The model appears to work well in a community-based population but not in individuals with a higher risk for knee osteoarthritis, and it may provide a convenient tool for use in primary care to predict the risk of knee pain in the general population.

  4. An urban flood risk assessment method using the Bayesian Network approach

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra

    and water resources management studies, whereas climate risk studies have not yet fully adapted the BN method. A BN is a graphical model that utilizes causal relationships to describe the overall system where risk occurs. A BN can be further extended into a Bayesian Influence diagram (ID) by including...... for inclusion of multiple hazards in FRAs. Lastly, the inclusion of multiple hazards in FRA may be challenging, among others because concurrent events are rare. However, with climate change, the annual variation of hazards may change, and concurrent events may become more frequent. Large-scale atmospheric...... circulation influences local and regional climate and is considered an important factor when aiming at improving our understanding of local weather conditions and the occurrence of extreme events. Hence, this thesis presents a study that explores the relationship between flood generating hazards and large...

  5. Microbial Translocation in HIV Infection is Associated with Dyslipidemia, Insulin Resistance, and Risk of Myocardial Infarction

    DEFF Research Database (Denmark)

    Pedersen, Karin Kaereby; Pedersen, Maria; Trøseid, Marius

    2013-01-01

    Microbial translocation has been suggested to be a driver of immune activation and inflammation. We hypothesized that microbial translocation may be related to dyslipidemia, insulin resistance, and the risk of coronary heart disease in HIV-infected individuals.......Microbial translocation has been suggested to be a driver of immune activation and inflammation. We hypothesized that microbial translocation may be related to dyslipidemia, insulin resistance, and the risk of coronary heart disease in HIV-infected individuals....

  6. A Bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions

    International Nuclear Information System (INIS)

    Brito, Mario; Griffiths, Gwyn

    2016-01-01

    Autonomous Underwater Vehicles (AUVs) are effective platforms for science research and monitoring, and for military and commercial data-gathering purposes. However, there is an inevitable risk of loss during any mission. Quantifying the risk of loss is complex, due to the combination of vehicle reliability and environmental factors, and cannot be determined through analytical means alone. An alternative approach – formal expert judgment – is a time-consuming process; consequently a method is needed to broaden the applicability of judgments beyond the narrow confines of an elicitation for a defined environment. We propose and explore a solution founded on a Bayesian Belief Network (BBN), where the results of the expert judgment elicitation are taken as the initial prior probability of loss due to failure. The network topology captures the causal effects of the environment separately on the vehicle and on the support platform, and combines these to produce an updated probability of loss due to failure. An extended version of the Kaplan–Meier estimator is then used to update the mission risk profile with travelled distance. Sensitivity analysis of the BBN is presented and a case study of Autosub3 AUV deployment in the Amundsen Sea is discussed in detail. - Highlights: • Novel method to estimate risk of autonomous vehicle loss in uncertain environments. • A framework to integrate frequentist and subjective probability modelling. • A Bayesian belief updating method for capturing variation in operating environment. • Graphical approach for sensitivity analysis, applicable to any BBN model validation. • Pragmatic case studies showing the application of the proposed framework.

  7. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2017-04-01

    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  8. Model estimation of claim risk and premium for motor vehicle insurance by using Bayesian method

    Science.gov (United States)

    Sukono; Riaman; Lesmana, E.; Wulandari, R.; Napitupulu, H.; Supian, S.

    2018-01-01

    Risk models need to be estimated by the insurance company in order to predict the magnitude of the claim and determine the premiums charged to the insured. This is intended to prevent losses in the future. In this paper, we discuss the estimation of risk model claims and motor vehicle insurance premiums using Bayesian methods approach. It is assumed that the frequency of claims follow a Poisson distribution, while a number of claims assumed to follow a Gamma distribution. The estimation of parameters of the distribution of the frequency and amount of claims are made by using Bayesian methods. Furthermore, the estimator distribution of frequency and amount of claims are used to estimate the aggregate risk models as well as the value of the mean and variance. The mean and variance estimator that aggregate risk, was used to predict the premium eligible to be charged to the insured. Based on the analysis results, it is shown that the frequency of claims follow a Poisson distribution with parameter values λ is 5.827. While a number of claims follow the Gamma distribution with parameter values p is 7.922 and θ is 1.414. Therefore, the obtained values of the mean and variance of the aggregate claims respectively are IDR 32,667,489.88 and IDR 38,453,900,000,000.00. In this paper the prediction of the pure premium eligible charged to the insured is obtained, which amounting to IDR 2,722,290.82. The prediction of the claims and premiums aggregate can be used as a reference for the insurance company’s decision-making in management of reserves and premiums of motor vehicle insurance.

  9. Radiological risk assessment for the public under the loss of medium and large sources using bayesian methodology

    International Nuclear Information System (INIS)

    Kim, Joo Yeon; Jang, Han Ki; Lee, Jai Ki

    2005-01-01

    Bayesian methodology is appropriated for use in PRA because subjective knowledges as well as objective data are applied to assessment. In this study, radiological risk based on Bayesian methodology is assessed for the loss of source in field radiography. The exposure scenario for the lost source presented in U.S. NRC is reconstructed by considering the domestic situation and Bayes theorem is applied to updating of failure probabilities of safety functions. In case of updating of failure probabilities, it shows that 5% Bayes credible intervals using Jeffreys prior distribution are lower than ones using vague prior distribution. It is noted that Jeffreys prior distribution is appropriated in risk assessment for systems having very low failure probabilities. And, it shows that the mean of the expected annual dose for the public based on Bayesian methodology is higher than the dose based on classical methodology because the means of the updated probabilities are higher than classical probabilities. The database for radiological risk assessment are sparse in domestic. It summarizes that Bayesian methodology can be applied as an useful alternative for risk assessment and the study on risk assessment will be contributed to risk-informed regulation in the field of radiation safety

  10. Application of multivariate probabilistic (Bayesian) networks to substance use disorder risk stratification and cost estimation.

    Science.gov (United States)

    Weinstein, Lawrence; Radano, Todd A; Jack, Timothy; Kalina, Philip; Eberhardt, John S

    2009-09-16

    This paper explores the use of machine learning and Bayesian classification models to develop broadly applicable risk stratification models to guide disease management of health plan enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD are understood by payers, who manage it through utilization review, acute interventions, coverage and cost limitations, and disease management, the literature shows mixed results for these modalities in improving patient outcomes and controlling cost. Our objective is to evaluate the potential of data mining methods to identify novel risk factors for chronic disease and stratification of enrollee utilization, which can be used to develop new methods for targeting disease management services to maximize benefits to both enrollees and payers. For our evaluation, we used DecisionQ machine learning algorithms to build Bayesian network models of a representative sample of data licensed from Thomson-Reuters' MarketScan consisting of 185,322 enrollees with three full-year claim records. Data sets were prepared, and a stepwise learning process was used to train a series of Bayesian belief networks (BBNs). The BBNs were validated using a 10 percent holdout set. The networks were highly predictive, with the risk-stratification BBNs producing area under the curve (AUC) for SUD positive of 0.948 (95 percent confidence interval [CI], 0.944-0.951) and 0.736 (95 percent CI, 0.721-0.752), respectively, and SUD negative of 0.951 (95 percent CI, 0.947-0.954) and 0.738 (95 percent CI, 0.727-0.750), respectively. The cost estimation models produced area under the curve ranging from 0.72 (95 percent CI, 0.708-0.731) to 0.961 (95 percent CI, 0.95-0.971). We were able to successfully model a large, heterogeneous population of commercial enrollees, applying state-of-the-art machine learning technology to develop complex and accurate multivariate models that support near-real-time scoring of novel payer

  11. [New approach for managing microbial risks in food].

    Science.gov (United States)

    Augustin, Jean-Christophe

    2015-01-01

    The aim of the food legislation is to ensure the protection of human health. Traditionally, the food legislation requires food business operators to apply good hygiene practices and specific procedures to control foodborne pathogens. These regulations allowed reaching a high level of health protection. The improvement of the system will require risk-based approaches. Firstly, risk assessment should allow the identification of high-risk situations where resources should be allocated for a better targeting of risk management. Then, management measures should be adapted to the health objective. In this approach, the appropriate level of protection is converted intofood safety and performance objectives on the food chain, i.e., maximum microbial contamination to fulfil the acceptable risk level. When objectives are defined, the food business operators and competent authorities can identify control options to comply with the objectives and establish microbiological criteria to verify compliance with these objectives. This approach, described for approximately 10 years, operative thanks to the development of quantitative risk assessment techniques, is still difficult to use in practical terms since it requires a commitment of competent authorities to define the acceptable risk and needs also the implementation of sometimes complex risk models.

  12. Predicting the microbial exposure risks in urban floods using GIS, building simulation, and microbial models.

    Science.gov (United States)

    Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man

    2013-01-01

    London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Risk assessment of pre-hospital trauma airway management by anaesthesiologists using the predictive Bayesian approach

    Directory of Open Access Journals (Sweden)

    Nakstad Anders R

    2010-04-01

    Full Text Available Abstract Introduction Endotracheal intubation (ETI has been considered an essential part of pre-hospital advanced life support. Pre-hospital ETI, however, is a complex intervention also for airway specialist like anaesthesiologists working as pre-hospital emergency physicians. We therefore wanted to investigate the quality of pre-hospital airway management by anaesthesiologists in severely traumatised patients and identify possible areas for improvement. Method We performed a risk assessment according to the predictive Bayesian approach, in a typical anaesthesiologist-manned Norwegian helicopter emergency medical service (HEMS. The main focus of the risk assessment was the event where a patient arrives in the emergency department without ETI despite a pre-hospital indication for it. Results In the risk assessment, we assigned a high probability (29% for the event assessed, that a patient arrives without ETI despite a pre-hospital indication. However, several uncertainty factors in the risk assessment were identified related to data quality, indications for use of ETI, patient outcome and need for special training of ETI providers. Conclusion Our risk assessment indicated a high probability for trauma patients with an indication for pre-hospital ETI not receiving it in the studied HEMS. The uncertainty factors identified in the assessment should be further investigated to better understand the problem assessed and consequences for the patients. Better quality of pre-hospital airway management data could contribute to a reduction of these uncertainties.

  14. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    OpenAIRE

    Shan, Xian; Liu, Kang; Sun, Pei-Liang

    2017-01-01

    Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential...

  15. On The Value at Risk Using Bayesian Mixture Laplace Autoregressive Approach for Modelling the Islamic Stock Risk Investment

    Science.gov (United States)

    Miftahurrohmah, Brina; Iriawan, Nur; Fithriasari, Kartika

    2017-06-01

    Stocks are known as the financial instruments traded in the capital market which have a high level of risk. Their risks are indicated by their uncertainty of their return which have to be accepted by investors in the future. The higher the risk to be faced, the higher the return would be gained. Therefore, the measurements need to be made against the risk. Value at Risk (VaR) as the most popular risk measurement method, is frequently ignore when the pattern of return is not uni-modal Normal. The calculation of the risks using VaR method with the Normal Mixture Autoregressive (MNAR) approach has been considered. This paper proposes VaR method couple with the Mixture Laplace Autoregressive (MLAR) that would be implemented for analysing the first three biggest capitalization Islamic stock return in JII, namely PT. Astra International Tbk (ASII), PT. Telekomunikasi Indonesia Tbk (TLMK), and PT. Unilever Indonesia Tbk (UNVR). Parameter estimation is performed by employing Bayesian Markov Chain Monte Carlo (MCMC) approaches.

  16. Analytic Bayesian solution of the two-stage poisson-type problem in probabilistic risk analysis

    International Nuclear Information System (INIS)

    Frohner, F.H.

    1985-01-01

    The basic purpose of probabilistic risk analysis is to make inferences about the probabilities of various postulated events, with an account of all relevant information such as prior knowledge and operating experience with the specific system under study, as well as experience with other similar systems. Estimation of the failure rate of a Poisson-type system leads to an especially simple Bayesian solution in closed form if the prior probabilty implied by the invariance properties of the problem is properly taken into account. This basic simplicity persists if a more realistic prior, representing order of magnitude knowledge of the rate parameter, is employed instead. Moreover, the more realistic prior allows direct incorporation of experience gained from other similar systems, without need to postulate a statistical model for an underlying ensemble. The analytic formalism is applied to actual nuclear reactor data

  17. Pregnancy, thrombophilia, and the risk of a first venous thrombosis : Systematic review and bayesian meta-analysis

    NARCIS (Netherlands)

    Croles, F. Nanne; Nasserinejad, Kazem; Duvekot, Johannes J.; Kruip, Marieke J. H. A.; Meijer, Karina; Leebeek, Frank W. G.

    2017-01-01

    Objective: To provide evidence to support updated guidelines for the management of pregnant women with hereditary thrombophilia in order to reduce the risk of a first venous thromboembolism (VTE) in pregnancy. Design: Systematic review and bayesian meta-analysis. Data sources: Embase, Medline, Web

  18. Pregnancy, thrombophilia, and the risk of a first venous thrombosis: systematic review and bayesian meta-analysis

    NARCIS (Netherlands)

    F.N. Croles (F. Nanne); K. Nasserinejad (Kazem); J.J. Duvekot (Hans); M.J.H.A. Kruip (Marieke); K. Meijer; F.W.G. Leebeek (Frank)

    2017-01-01

    textabstractObjective To provide evidence to support updated guidelines for the management of pregnant women with hereditary thrombophilia in order to reduce the risk of a first venous thromboembolism (VTE) in pregnancy.Design Systematic review and bayesian meta-analysis.Data sources Embase,

  19. A risk management process for reinforced concrete structures by coupling modelling, monitoring and Bayesian approaches

    International Nuclear Information System (INIS)

    Capra, Bruno; Li, Kefei; Wolff, Valentin; Bernard, Olivier; Gerard, Bruno

    2004-01-01

    The impact of steel corrosion on the durability of reinforced concrete structures has since a long time been a major concern in civil engineering. The main electrochemical mechanisms of the steel corrosion are know well known. The material and structure degradation is attributed to the progressive formation of an expansive corrosion product at the steel-concrete interface. To assess quantitatively the structure lifetime, a two-stage service life model has been accepted widely. So far, the research attention is mainly given to the corrosion in an un-cracked concrete. However. practically one is often confronted to the reinforcement corrosion in an already cracked concrete. How to quantify the corrosion risk is of great interest for the long term durability of these cracked structures. To this end, this paper proposes a service life modeling for the corrosion process by carbonation in a cracked or un-cracked concrete depending on the observation or monitoring data available. Some recent experimental investigations are used to calibrate the models. Then, the models are applied to a shell structure to quantify the corrosion process and determine the optimal maintenance strategy. As corrosion processes are very difficult to model and subjected to material and environmental random variations, an example of structure reassessment is presented taking into account in situ information by the mean of Bayesian approaches. The coupling of monitoring, modelling and updating leads to a new global maintenance strategy of infrastructure. In conclusion: This paper presents an unified methodology coupling predictive models, observations and Bayesian approaches in order to assess the degradation degree of an ageing structure. The particular case of corrosion is treated on an innovative way by the development of a service life model taking into account cracking effects on the kinetics of the phenomena. At a material level, the dominant factors are the crack opening and the crack nature

  20. Bayesian spatio-temporal analysis and geospatial risk factors of human monocytic ehrlichiosis.

    Directory of Open Access Journals (Sweden)

    Ram K Raghavan

    Full Text Available Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005-2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER], and socio-economic conditions (US Census Bureau were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005-2012, and identified poverty status, relative humidity, and an interactive factor, 'diurnal temperature range x mixed forest area' as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases.

  1. Early-life family structure and microbially induced cancer risk.

    Science.gov (United States)

    Blaser, Martin J; Nomura, Abraham; Lee, James; Stemmerman, Grant N; Perez-Perez, Guillermo I

    2007-01-01

    Cancer may follow exposure to an environmental agent after many decades. The bacterium Helicobacter pylori, known to be acquired early in life, increases risk for gastric adenocarcinoma, but other factors are also important. In this study, we considered whether early-life family structure affects the risk of later developing gastric cancer among H. pylori+ men. We examined a long-term cohort of Japanese-American men followed for 28 y, and performed a nested case-control study among those carrying H. pylori or the subset carrying the most virulent cagA+ H. pylori strains to address whether family structure predicted cancer development. We found that among the men who were H. pylori+ and/or cagA+ (it is possible to be cagA+ and H. pylori- if the H. pylori test is falsely negative), belonging to a large sibship or higher birth order was associated with a significantly increased risk of developing gastric adenocarcinoma late in life. For those with cagA+ strains, the risk of developing gastric cancer was more than twice as high (odds ratio 2.2; 95% confidence interval 1.2-4.0) among those in a sibship of seven or more individuals than in a sibship of between one and three persons. These results provide evidence that early-life social environment plays a significant role in risk of microbially induced malignancies expressing five to eight decades later, and these findings lead to new models to explain these interactions.

  2. Microbial risk assessment and its implications for risk management in urban water systems

    OpenAIRE

    Westrell, Therese

    2004-01-01

    Infectious disease can be transmitted via various environmental pathways, many of which are incorporated into our water and wastewater systems. Quantitative microbial risk assessment (QMRA) can be a valuable tool in identifying hazard exposure pathways and estimating their associated health impacts. QMRA can be applied to establish standards and guidelines and has been adopted by the World Health Organisation for the management of risks from water-related infectious diseases. This thesis aims...

  3. A Bayesian framework for early risk prediction in traumatic brain injury

    Science.gov (United States)

    Chaganti, Shikha; Plassard, Andrew J.; Wilson, Laura; Smith, Miya A.; Patel, Mayur B.; Landman, Bennett A.

    2016-03-01

    Early detection of risk is critical in determining the course of treatment in traumatic brain injury (TBI). Computed tomography (CT) acquired at admission has shown latent prognostic value in prior studies; however, no robust clinical risk predictions have been achieved based on the imaging data in large-scale TBI analysis. The major challenge lies in the lack of consistent and complete medical records for patients, and an inherent bias associated with the limited number of patients samples with high-risk outcomes in available TBI datasets. Herein, we propose a Bayesian framework with mutual information-based forward feature selection to handle this type of data. Using multi-atlas segmentation, 154 image-based features (capturing intensity, volume and texture) were computed over 22 ROIs in 1791 CT scans. These features were combined with 14 clinical parameters and converted into risk likelihood scores using Bayes modeling. We explore the prediction power of the image features versus the clinical measures for various risk outcomes. The imaging data alone were more predictive of outcomes than the clinical data (including Marshall CT classification) for discharge disposition with an area under the curve of 0.81 vs. 0.67, but less predictive than clinical data for discharge Glasgow Coma Scale (GCS) score with an area under the curve of 0.65 vs. 0.85. However, in both cases, combining imaging and clinical data increased the combined area under the curve with 0.86 for discharge disposition and 0.88 for discharge GCS score. In conclusion, CT data have meaningful prognostic value for TBI patients beyond what is captured in clinical measures and the Marshall CT classification.

  4. Comparison of Bayesian and frequentist approaches in modelling risk of preterm birth near the Sydney Tar Ponds, Nova Scotia, Canada

    Directory of Open Access Journals (Sweden)

    Canty Angelo

    2007-09-01

    Full Text Available Abstract Background This study compares the Bayesian and frequentist (non-Bayesian approaches in the modelling of the association between the risk of preterm birth and maternal proximity to hazardous waste and pollution from the Sydney Tar Pond site in Nova Scotia, Canada. Methods The data includes 1604 observed cases of preterm birth out of a total population of 17559 at risk of preterm birth from 144 enumeration districts in the Cape Breton Regional Municipality. Other covariates include the distance from the Tar Pond; the rate of unemployment to population; the proportion of persons who are separated, divorced or widowed; the proportion of persons who have no high school diploma; the proportion of persons living alone; the proportion of single parent families and average income. Bayesian hierarchical Poisson regression, quasi-likelihood Poisson regression and weighted linear regression models were fitted to the data. Results The results of the analyses were compared together with their limitations. Conclusion The results of the weighted linear regression and the quasi-likelihood Poisson regression agrees with the result from the Bayesian hierarchical modelling which incorporates the spatial effects.

  5. Quantitative Microbial Risk Assessment for in Natural and Processed Cheeses

    Directory of Open Access Journals (Sweden)

    Heeyoung Lee

    2016-08-01

    Full Text Available This study evaluated the risk of Clostridium perfringens (C. perfringens foodborne illness from natural and processed cheeses. Microbial risk assessment in this study was conducted according to four steps: hazard identification, hazard characterization, exposure assessment, and risk characterization. The hazard identification of C. perfringens on cheese was identified through literature, and dose response models were utilized for hazard characterization of the pathogen. For exposure assessment, the prevalence of C. perfringens, storage temperatures, storage time, and annual amounts of cheese consumption were surveyed. Eventually, a simulation model was developed using the collected data and the simulation result was used to estimate the probability of C. perfringens foodborne illness by cheese consumption with @RISK. C. perfringens was determined to be low risk on cheese based on hazard identification, and the exponential model (r = 1.82×10−11 was deemed appropriate for hazard characterization. Annual amounts of natural and processed cheese consumption were 12.40±19.43 g and 19.46±14.39 g, respectively. Since the contamination levels of C. perfringens on natural (0.30 Log CFU/g and processed cheeses (0.45 Log CFU/g were below the detection limit, the initial contamination levels of natural and processed cheeses were estimated by beta distribution (α1 = 1, α2 = 91; α1 = 1, α2 = 309×uniform distribution (a = 0, b = 2; a = 0, b = 2.8 to be −2.35 and −2.73 Log CFU/g, respectively. Moreover, no growth of C. perfringens was observed for exposure assessment to simulated conditions of distribution and storage. These data were used for risk characterization by a simulation model, and the mean values of the probability of C. perfringens foodborne illness by cheese consumption per person per day for natural and processed cheeses were 9.57×10−14 and 3.58×10−14, respectively. These results indicate that probability of C. perfringens

  6. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    Science.gov (United States)

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Risk Analysis of the Molybdenum-99 Supply Chain Using Bayesian Networks

    Science.gov (United States)

    Liang, Jeffrey Ryan

    The production of Molybdenum-99 (99Mo) is critical to the field of nuclear medicine, where it is utilized in roughly 80% of all nuclear imaging procedures. In October of 2016, the National Research Universal (NRU) reactor in Canada, which historically had the highest 99Mo production capability worldwide, ceased routine production and will be permanently shut down in 2018. This loss of capacity has led to widespread concern over the ability of the 99Mo supply chain and to meet demand. There is significant disagreement among analyses from trade groups, governments, and other researchers, predicting everything from no significant impact to major worldwide shortages. Using Bayesian networks, this research focused on modeling the 99Mo supply chain to quantify how a disrupting event, such as the unscheduled downtime of a reactor, will impact the global supply. This not only includes quantifying the probability of a shortage occurring, but also identifying which nodes in the supply chain introduce the most risk to better inform decision makers on where future facilities or other risk mitigation techniques should be applied.

  8. Bayesian Algorithm Implementation in a Real Time Exposure Assessment Model on Benzene with Calculation of Associated Cancer Risks

    Directory of Open Access Journals (Sweden)

    Pavlos A. Kassomenos

    2009-02-01

    Full Text Available The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural. Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations.

  9. Bayesian algorithm implementation in a real time exposure assessment model on benzene with calculation of associated cancer risks.

    Science.gov (United States)

    Sarigiannis, Dimosthenis A; Karakitsios, Spyros P; Gotti, Alberto; Papaloukas, Costas L; Kassomenos, Pavlos A; Pilidis, Georgios A

    2009-01-01

    The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK) risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural). Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations.

  10. A Bayesian approach to the evaluation of risk-based microbiological criteria for Campylobacter in broiler meat

    DEFF Research Database (Denmark)

    Ranta, Jukka; Lindqvist, Roland; Hansson, Ingrid

    2015-01-01

    Shifting from traditional hazard-based food safety management toward risk-based management requires statistical methods for evaluating intermediate targets in food production, such as microbiological criteria (MC), in terms of their effects on human risk of illness. A fully risk-based evaluation...... of MC involves several uncertainties that are related to both the underlying Quantitative Microbiological Risk Assessment (QMRA) model and the production-specific sample data on the prevalence and concentrations of microbes in production batches. We used Bayesian modeling for statistical inference...

  11. Bayesian network representing system dynamics in risk analysis of nuclear systems

    Science.gov (United States)

    Varuttamaseni, Athi

    2011-12-01

    A dynamic Bayesian network (DBN) model is used in conjunction with the alternating conditional expectation (ACE) regression method to analyze the risk associated with the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed operation in the Zion-1 nuclear power plant. The use of the DBN allows the joint probability distribution to be factorized, enabling the analysis to be done on many simpler network structures rather than on one complicated structure. The construction of the DBN model assumes conditional independence relations among certain key reactor parameters. The choice of parameter to model is based on considerations of the macroscopic balance statements governing the behavior of the reactor under a quasi-static assumption. The DBN is used to relate the peak clad temperature to a set of independent variables that are known to be important in determining the success of the feed and bleed operation. A simple linear relationship is then used to relate the clad temperature to the core damage probability. To obtain a quantitative relationship among different nodes in the DBN, surrogates of the RELAP5 reactor transient analysis code are used. These surrogates are generated by applying the ACE algorithm to output data obtained from about 50 RELAP5 cases covering a wide range of the selected independent variables. These surrogates allow important safety parameters such as the fuel clad temperature to be expressed as a function of key reactor parameters such as the coolant temperature and pressure together with important independent variables such as the scram delay time. The time-dependent core damage probability is calculated by sampling the independent variables from their probability distributions and propagate the information up through the Bayesian network to give the clad temperature. With the knowledge of the clad temperature and the assumption that the core damage probability has a one-to-one relationship to it, we have

  12. 77 FR 45350 - Notice of Availability of Microbial Risk Assessment Guideline: Pathogenic Microorganisms With...

    Science.gov (United States)

    2012-07-31

    ... ENVIRONMENTAL PROTECTION AGENCY Notice of Availability of Microbial Risk Assessment Guideline: Pathogenic Microorganisms With Focus on Food and Water AGENCY: Environmental Protection Agency (EPA). ACTION... risk assessment and also promote consistency in approaches and methods. The MRA Guideline can be...

  13. Accounting for inherent variability of growth in microbial risk assessment.

    Science.gov (United States)

    Marks, H M; Coleman, M E

    2005-04-15

    Risk assessments of pathogens need to account for the growth of small number of cells under varying conditions. In order to determine the possible risks that occur when there are small numbers of cells, stochastic models of growth are needed that would capture the distribution of the number of cells over replicate trials of the same scenario or environmental conditions. This paper provides a simple stochastic growth model, accounting only for inherent cell-growth variability, assuming constant growth kinetic parameters, for an initial, small, numbers of cells assumed to be transforming from a stationary to an exponential phase. Two, basic, microbial sets of assumptions are considered: serial, where it is assume that cells transform through a lag phase before entering the exponential phase of growth; and parallel, where it is assumed that lag and exponential phases develop in parallel. The model is based on, first determining the distribution of the time when growth commences, and then modelling the conditional distribution of the number of cells. For the latter distribution, it is found that a Weibull distribution provides a simple approximation to the conditional distribution of the relative growth, so that the model developed in this paper can be easily implemented in risk assessments using commercial software packages.

  14. Modeling logistic performance in quantitative microbial risk assessment.

    Science.gov (United States)

    Rijgersberg, Hajo; Tromp, Seth; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2010-01-01

    In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage times, temperatures, gas conditions, and their distributions) are determined. However, the logistic chain with its queues (storages, shelves) and mechanisms for ordering products is usually not taken into account. As a consequence, storage times-mutually dependent in successive steps in the chain-cannot be described adequately. This may have a great impact on the tails of risk distributions. Because food safety risks are generally very small, it is crucial to model the tails of (underlying) distributions as accurately as possible. Logistic performance can be modeled by describing the underlying planning and scheduling mechanisms in discrete-event modeling. This is common practice in operations research, specifically in supply chain management. In this article, we present the application of discrete-event modeling in the context of a QMRA for Listeria monocytogenes in fresh-cut iceberg lettuce. We show the potential value of discrete-event modeling in QMRA by calculating logistic interventions (modifications in the logistic chain) and determining their significance with respect to food safety.

  15. Notes for a workshop on risk analysis and decision under uncertainty. The practical use of probabilistic and Bayesian methodology inreal life risk assessment and decision problems

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The use of probabilistic, and especially Bayesian, methods is explained. The concepts of risk and decision, and probability and frequency are elucidated. The mechanics of probability and probabilistic calculations is discussed. The use of the method for particular problems, such as the frequency of aircraft crashes at a specified nuclear reactor site, is illustrated. 64 figures, 20 tables. (RWR)

  16. Notes for a workshop on risk analysis and decision under uncertainty. The practical use of probabilistic and Bayesian methodology inreal life risk assessment and decision problems

    International Nuclear Information System (INIS)

    1979-01-01

    The use of probabilistic, and especially Bayesian, methods is explained. The concepts of risk and decision, and probability and frequency are elucidated. The mechanics of probability and probabilistic calculations is discussed. The use of the method for particular problems, such as the frequency of aircraft crashes at a specified nuclear reactor site, is illustrated. 64 figures, 20 tables

  17. Early-life family structure and microbially induced cancer risk.

    Directory of Open Access Journals (Sweden)

    Martin J Blaser

    2007-01-01

    Full Text Available Cancer may follow exposure to an environmental agent after many decades. The bacterium Helicobacter pylori, known to be acquired early in life, increases risk for gastric adenocarcinoma, but other factors are also important. In this study, we considered whether early-life family structure affects the risk of later developing gastric cancer among H. pylori+ men.We examined a long-term cohort of Japanese-American men followed for 28 y, and performed a nested case-control study among those carrying H. pylori or the subset carrying the most virulent cagA+ H. pylori strains to address whether family structure predicted cancer development. We found that among the men who were H. pylori+ and/or cagA+ (it is possible to be cagA+ and H. pylori- if the H. pylori test is falsely negative, belonging to a large sibship or higher birth order was associated with a significantly increased risk of developing gastric adenocarcinoma late in life. For those with cagA+ strains, the risk of developing gastric cancer was more than twice as high (odds ratio 2.2; 95% confidence interval 1.2-4.0 among those in a sibship of seven or more individuals than in a sibship of between one and three persons.These results provide evidence that early-life social environment plays a significant role in risk of microbially induced malignancies expressing five to eight decades later, and these findings lead to new models to explain these interactions.

  18. Applications of Bayesian approach in modelling risk of malaria-related hospital mortality

    Directory of Open Access Journals (Sweden)

    Simbeye Jupiter S

    2008-02-01

    Full Text Available Abstract Background Malaria is a major public health problem in Malawi, however, quantifying its burden in a population is a challenge. Routine hospital data provide a proxy for measuring the incidence of severe malaria and for crudely estimating morbidity rates. Using such data, this paper proposes a method to describe trends, patterns and factors associated with in-hospital mortality attributed to the disease. Methods We develop semiparametric regression models which allow joint analysis of nonlinear effects of calendar time and continuous covariates, spatially structured variation, unstructured heterogeneity, and other fixed covariates. Modelling and inference use the fully Bayesian approach via Markov Chain Monte Carlo (MCMC simulation techniques. The methodology is applied to analyse data arising from paediatric wards in Zomba district, Malawi, between 2002 and 2003. Results and Conclusion We observe that the risk of dying in hospital is lower in the dry season, and for children who travel a distance of less than 5 kms to the hospital, but increases for those who are referred to the hospital. The results also indicate significant differences in both structured and unstructured spatial effects, and the health facility effects reveal considerable differences by type of facility or practice. More importantly, our approach shows non-linearities in the effect of metrical covariates on the probability of dying in hospital. The study emphasizes that the methodological framework used provides a useful tool for analysing the data at hand and of similar structure.

  19. Application of Bayesian and cost benefit risk analysis in water resources management

    Science.gov (United States)

    Varouchakis, E. A.; Palogos, I.; Karatzas, G. P.

    2016-03-01

    Decision making is a significant tool in water resources management applications. This technical note approaches a decision dilemma that has not yet been considered for the water resources management of a watershed. A common cost-benefit analysis approach, which is novel in the risk analysis of hydrologic/hydraulic applications, and a Bayesian decision analysis are applied to aid the decision making on whether or not to construct a water reservoir for irrigation purposes. The alternative option examined is a scaled parabolic fine variation in terms of over-pumping violations in contrast to common practices that usually consider short-term fines. The methodological steps are analytically presented associated with originally developed code. Such an application, and in such detail, represents new feedback. The results indicate that the probability uncertainty is the driving issue that determines the optimal decision with each methodology, and depending on the unknown probability handling, each methodology may lead to a different optimal decision. Thus, the proposed tool can help decision makers to examine and compare different scenarios using two different approaches before making a decision considering the cost of a hydrologic/hydraulic project and the varied economic charges that water table limit violations can cause inside an audit interval. In contrast to practices that assess the effect of each proposed action separately considering only current knowledge of the examined issue, this tool aids decision making by considering prior information and the sampling distribution of future successful audits.

  20. Assessing systematic risk in the S&P500 index between 2000 and 2011: A Bayesian nonparametric approach

    OpenAIRE

    Rodríguez, Abel; Wang, Ziwei; Kottas, Athanasios

    2017-01-01

    We develop a Bayesian nonparametric model to assess the effect of systematic risks on multiple financial markets, and apply it to understand the behavior of the S&P500 sector indexes between January 1, 2000 and December 31, 2011. More than prediction, our main goal is to understand the evolution of systematic and idiosyncratic risks in the U.S. economy over this particular time period, leading to novel sector-specific risk indexes. To accomplish this goal, we model the appearance of extreme l...

  1. Bayesian Analysis for Risk Assessment of Selected Medical Events in Support of the Integrated Medical Model Effort

    Science.gov (United States)

    Gilkey, Kelly M.; Myers, Jerry G.; McRae, Michael P.; Griffin, Elise A.; Kallrui, Aditya S.

    2012-01-01

    The Exploration Medical Capability project is creating a catalog of risk assessments using the Integrated Medical Model (IMM). The IMM is a software-based system intended to assist mission planners in preparing for spaceflight missions by helping them to make informed decisions about medical preparations and supplies needed for combating and treating various medical events using Probabilistic Risk Assessment. The objective is to use statistical analyses to inform the IMM decision tool with estimated probabilities of medical events occurring during an exploration mission. Because data regarding astronaut health are limited, Bayesian statistical analysis is used. Bayesian inference combines prior knowledge, such as data from the general U.S. population, the U.S. Submarine Force, or the analog astronaut population located at the NASA Johnson Space Center, with observed data for the medical condition of interest. The posterior results reflect the best evidence for specific medical events occurring in flight. Bayes theorem provides a formal mechanism for combining available observed data with data from similar studies to support the quantification process. The IMM team performed Bayesian updates on the following medical events: angina, appendicitis, atrial fibrillation, atrial flutter, dental abscess, dental caries, dental periodontal disease, gallstone disease, herpes zoster, renal stones, seizure, and stroke.

  2. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    Science.gov (United States)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  3. Potential microbial risk factors related to soil amendments and irrigation water of potato crops.

    Science.gov (United States)

    Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I

    2007-12-01

    This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.

  4. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...

  5. Using Integrated Environmental Modeling to Automate a Process-Based Quantitative Microbial Risk Assessment (presentation)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...

  6. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    Directory of Open Access Journals (Sweden)

    Xian Shan

    2017-01-01

    Full Text Available Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential risk factors and consequences of the failure. Then construct the Bow-tie model, use the quantitative analysis of Bayesian network to find the weak links in the system, and make a prediction of the control measures to reduce the rate of the accident. In order to deal with the uncertainty existing in the determination of the probability of basic events, fuzzy logic method is used. Results of a case study show that the most likely causes of natural gas pipeline leakage occurrence are parties ignore signage, implicit signage, overload, and design defect of auxiliaries. Once the leakage occurs, it is most likely to result in fire and explosion. Corresponding measures taken on time will reduce the disaster degree of accidents to the least extent.

  7. Quantitative Microbial Risk Assessment Tutorial Installation of Software for Watershed Modeling in Support of QMRA - Updated 2017

    Science.gov (United States)

    This tutorial provides instructions for accessing, retrieving, and downloading the following software to install on a host computer in support of Quantitative Microbial Risk Assessment (QMRA) modeling: • QMRA Installation • SDMProjectBuilder (which includes the Microbial ...

  8. Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk

    International Nuclear Information System (INIS)

    Lee, Sangkyu; Ybarra, Norma; Jeyaseelan, Krishinima; Seuntjens, Jan; El Naqa, Issam; Faria, Sergio; Kopek, Neil; Brisebois, Pascale; Bradley, Jeffrey D.; Robinson, Clifford

    2015-01-01

    Purpose: Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP. Methods: The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls. Results: RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0

  9. Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkyu, E-mail: sangkyu.lee@mail.mcgill.ca; Ybarra, Norma; Jeyaseelan, Krishinima; Seuntjens, Jan; El Naqa, Issam [Medical Physics Unit, McGill University, Montreal, Quebec H3G1A4 (Canada); Faria, Sergio; Kopek, Neil; Brisebois, Pascale [Department of Radiation Oncology, Montreal General Hospital, Montreal, H3G1A4 (Canada); Bradley, Jeffrey D.; Robinson, Clifford [Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110 (United States)

    2015-05-15

    Purpose: Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP. Methods: The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls. Results: RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0

  10. A Bayesian method to mine spatial data sets to evaluate the vulnerability of human beings to catastrophic risk.

    Science.gov (United States)

    Li, Lianfa; Wang, Jinfeng; Leung, Hareton; Zhao, Sisi

    2012-06-01

    Vulnerability of human beings exposed to a catastrophic disaster is affected by multiple factors that include hazard intensity, environment, and individual characteristics. The traditional approach to vulnerability assessment, based on the aggregate-area method and unsupervised learning, cannot incorporate spatial information; thus, vulnerability can be only roughly assessed. In this article, we propose Bayesian network (BN) and spatial analysis techniques to mine spatial data sets to evaluate the vulnerability of human beings. In our approach, spatial analysis is leveraged to preprocess the data; for example, kernel density analysis (KDA) and accumulative road cost surface modeling (ARCSM) are employed to quantify the influence of geofeatures on vulnerability and relate such influence to spatial distance. The knowledge- and data-based BN provides a consistent platform to integrate a variety of factors, including those extracted by KDA and ARCSM to model vulnerability uncertainty. We also consider the model's uncertainty and use the Bayesian model average and Occam's Window to average the multiple models obtained by our approach to robust prediction of the risk and vulnerability. We compare our approach with other probabilistic models in the case study of seismic risk and conclude that our approach is a good means to mining spatial data sets for evaluating vulnerability. © 2012 Society for Risk Analysis.

  11. Characterizing health risks associated with recreational swimming at Taiwanese beaches by using quantitative microbial risk assessment.

    Science.gov (United States)

    Jang, Cheng-Shin; Liang, Ching-Ping

    2018-01-01

    Taiwan is surrounded by oceans, and therefore numerous pleasure beaches attract millions of tourists annually to participate in recreational swimming activities. However, impaired water quality because of fecal pollution poses a potential threat to the tourists' health. This study probabilistically characterized the health risks associated with recreational swimming engendered by waterborne enterococci at 13 Taiwanese beaches by using quantitative microbial risk assessment. First, data on enterococci concentrations at coastal beaches monitored by the Taiwan Environmental Protection Administration were reproduced using nonparametric Monte Carlo simulation (MCS). The ingestion volumes of recreational swimming based on uniform and gamma distributions were subsequently determined using MCS. Finally, after the distribution combination of the two parameters, the beta-Poisson dose-response function was employed to quantitatively estimate health risks to recreational swimmers. Moreover, various levels of risk to recreational swimmers were classified and spatially mapped to explore feasible recreational and environmental management strategies at the beaches. The study results revealed that although the health risks associated with recreational swimming did not exceed an acceptable benchmark of 0.019 illnesses daily at all beaches, they approached to this benchmark at certain beaches. Beaches with relatively high risks are located in Northwestern Taiwan owing to the current movements.

  12. Bayesian risk maps for Schistosoma mansoni and hookworm mono-infections in a setting where both parasites co-exist

    Directory of Open Access Journals (Sweden)

    Giovanna Raso

    2007-11-01

    Full Text Available There is growing interest in the use of Bayesian geostatistical models for predicting the spatial distribution of parasitic infections, including hookworm, Schistosoma mansoni and co-infections with both parasites. The aim of this study was to predict the spatial distribution of mono-infections with either hookworm or S. mansoni in a setting where both parasites co-exist. School-based cross-sectional parasitological and questionnaire surveys were carried out in 57 rural schools in the Man region, western Côte d’Ivoire. A single stool specimen was obtained from each schoolchild attending grades 3-5. Stool specimens were processed by the Kato-Katz technique and an ether concentration method and examined for the presence of hookworm and S. mansoni eggs. The combined results from the two diagnostic approaches were considered for the infection status of each child. Demographic data (i.e. age and sex were obtained from readily available school registries. Each child’s socio-economic status was estimated, using the questionnaire data following a household-based asset approach. Environmental data were extracted from satellite imagery. The different data sources were incorporated into a geographical information system. Finally, a Bayesian spatial multinomial regression model was constructed and the spatial patterns of S. mansoni and hookworm mono-infections were investigated using Bayesian kriging. Our approach facilitated the production of smooth risk maps for hookworm and S. mansoni mono-infections that can be utilized for targeting control interventions. We argue that in settings where S. mansoni and hookworm co-exist and control efforts are under way, there is a need for both mono- and co-infection risk maps to enhance the cost-effectiveness of control programmes.

  13. Application of Bayesian networks in a hierarchical structure for environmental risk assessment: a case study of the Gabric Dam, Iran.

    Science.gov (United States)

    Malekmohammadi, Bahram; Tayebzadeh Moghadam, Negar

    2018-04-13

    Environmental risk assessment (ERA) is a commonly used, effective tool applied to reduce adverse effects of environmental risk factors. In this study, ERA was investigated using the Bayesian network (BN) model based on a hierarchical structure of variables in an influence diagram (ID). ID facilitated ranking of the different alternatives under uncertainty that were then used to evaluate comparisons of the different risk factors. BN was used to present a new model for ERA applicable to complicated development projects such as dam construction. The methodology was applied to the Gabric Dam, in southern Iran. The main environmental risk factors in the region, presented by the Gabric Dam, were identified based on the Delphi technique and specific features of the study area. These included the following: flood, water pollution, earthquake, changes in land use, erosion and sedimentation, effects on the population, and ecosensitivity. These risk factors were then categorized based on results from the output decision node of the BN, including expected utility values for risk factors in the decision node. ERA was performed for the Gabric Dam using the analytical hierarchy process (AHP) method to compare results of BN modeling with those of conventional methods. Results determined that a BN-based hierarchical structure to ERA present acceptable and reasonable risk assessment prioritization in proposing suitable solutions to reduce environmental risks and can be used as a powerful decision support system for evaluating environmental risks.

  14. A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk

    Directory of Open Access Journals (Sweden)

    Lewei Duan

    2013-01-01

    Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.

  15. Disposable contact lens use as a risk factor for microbial keratitis

    OpenAIRE

    Radford, C.; Minassian, D.; Dart, J.

    1998-01-01

    AIMS—A case-control study was performed to evaluate soft contact lens (SCL) wear modality as a risk factor for microbial keratitis.
METHODS—Contact lens wearers presenting as new patients to Moorfields Eye Hospital accident and emergency department during a 12 month period completed a self administered questionnaire detailing demographic data and contact lens use habits. Cases were patients with a clinical diagnosis of SCL related microbial keratitis. Controls were SCL users attending with di...

  16. Evaluating nonindigenous species management in a Bayesian networks derived relative risk framework for Padilla Bay, WA, USA.

    Science.gov (United States)

    Herring, Carlie E; Stinson, Jonah; Landis, Wayne G

    2015-10-01

    Many coastal regions are encountering issues with the spread of nonindigenous species (NIS). In this study, we conducted a regional risk assessment using a Bayesian network relative risk model (BN-RRM) to analyze multiple vectors of NIS introductions to Padilla Bay, Washington, a National Estuarine Research Reserve. We had 3 objectives in this study. The 1st objective was to determine whether the BN-RRM could be used to calculate risk from NIS introductions for Padilla Bay. Our 2nd objective was to determine which regions and endpoints were at greatest risk from NIS introductions. Our 3rd objective was to incorporate a management option into the model and predict endpoint risk if it were to be implemented. Eradication can occur at different stages of NIS invasions, such as the elimination of these species before being introduced to the habitat or removal of the species after settlement. We incorporated the ballast water treatment management scenario into the model, observed the risk to the endpoints, and compared this risk with the initial risk estimates. The model results indicated that the southern portion of the bay was at greatest risk because of NIS. Changes in community composition, Dungeness crab, and eelgrass were the endpoints most at risk from NIS introductions. The currents node, which controls the exposure of NIS to the bay from the surrounding marine environment, was the parameter that had the greatest influence on risk. The ballast water management scenario displayed an approximate 1% reduction in risk in this Padilla Bay case study. The models we developed provide an adaptable template for decision makers interested in managing NIS in other coastal regions and large bodies of water. © 2015 SETAC.

  17. A flexible Bayesian hierarchical model of preterm birth risk among US Hispanic subgroups in relation to maternal nativity and education.

    Science.gov (United States)

    Kaufman, Jay S; MacLehose, Richard F; Torrone, Elizabeth A; Savitz, David A

    2011-04-19

    Previous research has documented heterogeneity in the effects of maternal education on adverse birth outcomes by nativity and Hispanic subgroup in the United States. In this article, we considered the risk of preterm birth (PTB) using 9 years of vital statistics birth data from New York City. We employed finer categorizations of exposure than used previously and estimated the risk dose-response across the range of education by nativity and ethnicity. Using Bayesian random effects logistic regression models with restricted quadratic spline terms for years of completed maternal education, we calculated and plotted the estimated posterior probabilities of PTB (gestational age education by ethnic and nativity subgroups adjusted for only maternal age, as well as with more extensive covariate adjustments. We then estimated the posterior risk difference between native and foreign born mothers by ethnicity over the continuous range of education exposures. The risk of PTB varied substantially by education, nativity and ethnicity. Native born groups showed higher absolute risk of PTB and declining risk associated with higher levels of education beyond about 10 years, as did foreign-born Puerto Ricans. For most other foreign born groups, however, risk of PTB was flatter across the education range. For Mexicans, Central Americans, Dominicans, South Americans and "Others", the protective effect of foreign birth diminished progressively across the educational range. Only for Puerto Ricans was there no nativity advantage for the foreign born, although small numbers of foreign born Cubans limited precision of estimates for that group. Using flexible Bayesian regression models with random effects allowed us to estimate absolute risks without strong modeling assumptions. Risk comparisons for any sub-groups at any exposure level were simple to calculate. Shrinkage of posterior estimates through the use of random effects allowed for finer categorization of exposures without

  18. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    Science.gov (United States)

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  19. Current trends in Bayesian methodology with applications

    CERN Document Server

    Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia

    2015-01-01

    Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on

  20. A Bayesian Stepwise Discriminant Model for Predicting Risk Factors of Preterm Premature Rupture of Membranes: A Case-control Study.

    Science.gov (United States)

    Zhang, Li-Xia; Sun, Yang; Zhao, Hai; Zhu, Na; Sun, Xing-De; Jin, Xing; Zou, Ai-Min; Mi, Yang; Xu, Ji-Ru

    2017-10-20

    Preterm premature rupture of membrane (PPROM) can lead to serious consequences such as intrauterine infection, prolapse of the umbilical cord, and neonatal respiratory distress syndrome. Genital infection is a very important risk which closely related with PPROM. The preliminary study only made qualitative research on genital infection, but there was no deep and clear judgment about the effects of pathogenic bacteria. This study was to analyze the association of infections with PPROM in pregnant women in Shaanxi, China, and to establish Bayesian stepwise discriminant analysis to predict the incidence of PPROM. In training group, the 112 pregnant women with PPROM were enrolled in the case subgroup, and 108 normal pregnant women in the control subgroup using an unmatched case-control method. The sociodemographic characteristics of these participants were collected by face-to-face interviews. Vaginal excretions from each participant were sampled at 28-36+6 weeks of pregnancy using a sterile swab. DNA corresponding to Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), Candida albicans, group B streptococci (GBS), herpes simplex virus-1 (HSV-1), and HSV-2 were detected in each participant by real-time polymerase chain reaction. A model of Bayesian discriminant analysis was established and then verified by a multicenter validation group that included 500 participants in the case subgroup and 500 participants in the control subgroup from five different hospitals in the Shaanxi province, respectively. The sociological characteristics were not significantly different between the case and control subgroups in both training and validation groups (all P > 0.05). In training group, the infection rates of UU (11.6% vs. 3.7%), CT (17.0% vs. 5.6%), and GBS (22.3% vs. 6.5%) showed statistically different between the case and control subgroups (all P case and control subgroups (P case and control subgroup were 84.1% and 86.8% in the training and validation groups, respectively

  1. Bayesian approach to the assessment of the population-specific risk of inhibitors in hemophilia A patients: a case study

    Directory of Open Access Journals (Sweden)

    Cheng J

    2016-10-01

    Full Text Available Ji Cheng,1,2 Alfonso Iorio,2,3 Maura Marcucci,4 Vadim Romanov,5 Eleanor M Pullenayegum,6,7 John K Marshall,3,8 Lehana Thabane1,2 1Biostatistics Unit, St Joseph’s Healthcare Hamilton, 2Department of Clinical Epidemiology and Biostatistics, 3Department of Medicine, McMaster University, Hamilton, ON, Canada; 4Geriatrics, Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy; 5Baxter HealthCare, Global Medical Affairs, Westlake Village, CA, USA; 6Child Health Evaluation Sciences, Hospital for Sick Children, 7Dalla Lana School of Public Health, University of Toronto, Toronto, 8Division of Gastroenterology, Hamilton Health Science, Hamilton, ON, Canada Background: Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information.Methods: We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population – patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1 or random-effects (Case 2 and Case 3 logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical

  2. Applying biotic ligand models and Bayesian techniques: ecological risk assessment of copper and nickel in Tokyo rivers.

    Science.gov (United States)

    Hayashi, Takehiko I

    2013-01-01

    Biotic ligand models (BLMs) have been broadly accepted and used in ecological risk assessment of heavy metals for toxicity normalization with respect to water chemistry. However, the importance of assessing bioavailability by using BLMs has not been widely recognized among Japanese stakeholders. Failing to consider bioavailability may result in less effective risk management than would be possible if currently available state-of-the-art methods were used to relate bioavailable concentrations to toxic effects. In this study, an ecological risk assessment was conducted using BLMs for 6 rivers in Tokyo to stimulate discussion about bioavailability of heavy metals and the use of BLMs in ecological risk management in Japan. In the risk analysis, a Bayesian approach was used to take advantage of information from previous analyses and to calculate uncertainties in the estimation of risk. Risks were judged to be a concern if the predicted environmental concentration exceeded the 5th percentile concentration (HC5) of the species sensitivity distribution. Based on this criterion, risks to stream biota from exposure to Cu were judged not to be very severe, but it would be desirable to conduct further monitoring and field surveys to determine whether temporary exposure to concentrations exceeding the HC5 causes any irreversible effects on the river ecosystem. The risk of exposure to Ni was a concern at only 1 of the 6 sites. BLM corrections affected these conclusions in the case of Cu but were moot in the case of Ni. The use of BLMs in risk assessment calculations for Japanese rivers requires water quality information that is, unfortunately, not always available. Copyright © 2012 SETAC.

  3. Risk mapping of clonorchiasis in the People's Republic of China: A systematic review and Bayesian geostatistical analysis.

    Directory of Open Access Journals (Sweden)

    Ying-Si Lai

    2017-03-01

    Full Text Available Clonorchiasis, one of the most important food-borne trematodiases, affects more than 12 million people in the People's Republic of China (P.R. China. Spatially explicit risk estimates of Clonorchis sinensis infection are needed in order to target control interventions.Georeferenced survey data pertaining to infection prevalence of C. sinensis in P.R. China from 2000 onwards were obtained via a systematic review in PubMed, ISI Web of Science, Chinese National Knowledge Internet, and Wanfang Data from January 1, 2000 until January 10, 2016, with no restriction of language or study design. Additional disease data were provided by the National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention in Shanghai. Environmental and socioeconomic proxies were extracted from remote-sensing and other data sources. Bayesian variable selection was carried out to identify the most important predictors of C. sinensis risk. Geostatistical models were applied to quantify the association between infection risk and the predictors of the disease, and to predict the risk of infection across P.R. China at high spatial resolution (over a grid with grid cell size of 5×5 km.We obtained clonorchiasis survey data at 633 unique locations in P.R. China. We observed that the risk of C. sinensis infection increased over time, particularly from 2005 onwards. We estimate that around 14.8 million (95% Bayesian credible interval 13.8-15.8 million people in P.R. China were infected with C. sinensis in 2010. Highly endemic areas (≥ 20% were concentrated in southern and northeastern parts of the country. The provinces with the highest risk of infection and the largest number of infected people were Guangdong, Guangxi, and Heilongjiang.Our results provide spatially relevant information for guiding clonorchiasis control interventions in P.R. China. The trend toward higher risk of C. sinensis infection in the recent past urges the Chinese government to

  4. Bayesian network as a modelling tool for risk management in agriculture

    DEFF Research Database (Denmark)

    Rasmussen, Svend; Madsen, Anders Læsø; Lund, Mogens

    The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools. In ......, and that it has the ability to link uncertainty from different external sources to budget figures and to quantify risk at the farm level....

  5. Bayesian networks: a new method for the modeling of bibliographic knowledge: application to fall risk assessment in geriatric patients.

    Science.gov (United States)

    Lalande, Laure; Bourguignon, Laurent; Carlier, Chloé; Ducher, Michel

    2013-06-01

    Falls in geriatry are associated with important morbidity, mortality and high healthcare costs. Because of the large number of variables related to the risk of falling, determining patients at risk is a difficult challenge. The aim of this work was to validate a tool to detect patients with high risk of fall using only bibliographic knowledge. Thirty articles corresponding to 160 studies were used to modelize fall risk. A retrospective case-control cohort including 288 patients (88 ± 7 years) and a prospective cohort including 106 patients (89 ± 6 years) from two geriatric hospitals were used to validate the performances of our model. We identified 26 variables associated with an increased risk of fall. These variables were split into illnesses, medications, and environment. The combination of the three associated scores gives a global fall score. The sensitivity and the specificity were 31.4, 81.6, 38.5, and 90 %, respectively, for the retrospective and the prospective cohort. The performances of the model are similar to results observed with already existing prediction tools using model adjustment to data from numerous cohort studies. This work demonstrates that knowledge from the literature can be synthesized with Bayesian networks.

  6. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures

    International Nuclear Information System (INIS)

    Khakzad, Nima

    2015-01-01

    A domino effect is a low frequency high consequence chain of accidents where a primary accident (usually fire and explosion) in a unit triggers secondary accidents in adjacent units. High complexity and growing interdependencies of chemical infrastructures make them increasingly vulnerable to domino effects. Domino effects can be considered as time dependent processes. Thus, not only the identification of involved units but also their temporal entailment in the chain of accidents matter. More importantly, in the case of domino-induced fires which can generally last much longer compared to explosions, foreseeing the temporal evolution of domino effects and, in particular, predicting the most probable sequence of accidents (or involved units) in a domino effect can be of significance in the allocation of preventive and protective safety measures. Although many attempts have been made to identify the spatial evolution of domino effects, the temporal evolution of such accidents has been overlooked. We have proposed a methodology based on dynamic Bayesian network to model both the spatial and temporal evolutions of domino effects and also to quantify the most probable sequence of accidents in a potential domino effect. The application of the developed methodology has been demonstrated via a hypothetical fuel storage plant. - Highlights: • A Dynamic Bayesian Network methodology has been developed to model domino effects. • Considering time-dependencies, both spatial and temporal evolutions of domino effects have been modeled. • The concept of most probable sequence of accidents has been proposed instead of the most probable combination of accidents. • Using backward analysis, the most vulnerable units have been identified during a potential domino effect. • The proposed methodology does not need to identify a unique primary unit (accident) for domino effect modeling

  7. Risk factors for subclinical intramammary infection in dairy goats in two longitudinal field studies evaluated by Bayesian logistic regression

    DEFF Research Database (Denmark)

    Koop, Gerrit; Collar, Carol A.; Toft, Nils

    2013-01-01

    Identification of risk factors for subclinical intramammary infections (IMI) in dairy goats should contribute to improved udder health. Intramammary infection may be diagnosed by bacteriological culture or by somatic cell count (SCC) of a milk sample. Both bacteriological culture and SCC are impe......Identification of risk factors for subclinical intramammary infections (IMI) in dairy goats should contribute to improved udder health. Intramammary infection may be diagnosed by bacteriological culture or by somatic cell count (SCC) of a milk sample. Both bacteriological culture and SCC...... are imperfect tests, particularly lacking sensitivity, which leads to misclassification and thus to biased estimates of odds ratios in risk factor studies. The objective of this study was to evaluate risk factors for the true (latent) IMI status of major pathogens in dairy goats. We used Bayesian logistic...... regression models that accounted for imperfect measurement of IMI by both culture and SCC. Udder half milk samples were collected from 530 Dutch and 438 California dairy goats in 10 herds on 3 occasions during lactation. Udder halves were classified as positive or negative for isolation of a major pathogen...

  8. Bayesian approach to the assessment of the population-specific risk of inhibitors in hemophilia A patients: a case study.

    Science.gov (United States)

    Cheng, Ji; Iorio, Alfonso; Marcucci, Maura; Romanov, Vadim; Pullenayegum, Eleanor M; Marshall, John K; Thabane, Lehana

    2016-01-01

    Developing inhibitors is a rare event during the treatment of hemophilia A. The multifacets and uncertainty surrounding the development of inhibitors further complicate the process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides a useful tool in generating, enhancing, and exploring the evidence through incorporating all the available information. We built our Bayesian analysis using three study cases to estimate the inhibitor rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of PTP cohorts; and Case 3, a previously unexplored patient population - patients with baseline low-titer inhibitor or history of inhibitor development. The data used in this study were extracted from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for treating hemophilia A) post-authorization surveillance studies. Noninformative and informative priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting prior information or scaling up the study data was evaluated. Results based on noninformative priors were similar to the classical approach. Using priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 [0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. Increasing the number of patients by two and ten times substantially narrowed the credible intervals for the single cohort study (1.4 [0.7, 2

  9. The Impact of Microbiology Instruction on Students' Perceptions of Risks Related to Microbial Illness

    Science.gov (United States)

    Jones, Gail; Gardner, Grant E.; Lee, Tammy; Poland, Kayla; Robert, Sarah

    2013-01-01

    This study examined students' perceptions of the risks associated with microbial transmission before and after taking a microbiology class. Participants included undergraduate students (n = 132) enrolled in a microbiology course at two universities and one community college. Students completed a survey at the beginning and end of the course and a…

  10. Return and Risk of Pairs Trading Using a Simulation-Based Bayesian Procedure for Predicting Stable Ratios of Stock Prices

    Directory of Open Access Journals (Sweden)

    David Ardia

    2016-03-01

    Full Text Available We investigate the direct connection between the uncertainty related to estimated stable ratios of stock prices and risk and return of two pairs trading strategies: a conditional statistical arbitrage method and an implicit arbitrage one. A simulation-based Bayesian procedure is introduced for predicting stable stock price ratios, defined in a cointegration model. Using this class of models and the proposed inferential technique, we are able to connect estimation and model uncertainty with risk and return of stock trading. In terms of methodology, we show the effect that using an encompassing prior, which is shown to be equivalent to a Jeffreys’ prior, has under an orthogonal normalization for the selection of pairs of cointegrated stock prices and further, its effect for the estimation and prediction of the spread between cointegrated stock prices. We distinguish between models with a normal and Student t distribution since the latter typically provides a better description of daily changes of prices on financial markets. As an empirical application, stocks are used that are ingredients of the Dow Jones Composite Average index. The results show that normalization has little effect on the selection of pairs of cointegrated stocks on the basis of Bayes factors. However, the results stress the importance of the orthogonal normalization for the estimation and prediction of the spread—the deviation from the equilibrium relationship—which leads to better results in terms of profit per capital engagement and risk than using a standard linear normalization.

  11. Estimating micro area behavioural risk factor prevalence from large population-based surveys: a full Bayesian approach

    Directory of Open Access Journals (Sweden)

    L. Seliske

    2016-06-01

    Full Text Available Abstract Background An important public health goal is to decrease the prevalence of key behavioural risk factors, such as tobacco use and obesity. Survey information is often available at the regional level, but heterogeneity within large geographic regions cannot be assessed. Advanced spatial analysis techniques are demonstrated to produce sensible micro area estimates of behavioural risk factors that enable identification of areas with high prevalence. Methods A spatial Bayesian hierarchical model was used to estimate the micro area prevalence of current smoking and excess bodyweight for the Erie-St. Clair region in southwestern Ontario. Estimates were mapped for male and female respondents of five cycles of the Canadian Community Health Survey (CCHS. The micro areas were 2006 Census Dissemination Areas, with an average population of 400–700 people. Two individual-level models were specified: one controlled for survey cycle and age group (model 1, and one controlled for survey cycle, age group and micro area median household income (model 2. Post-stratification was used to derive micro area behavioural risk factor estimates weighted to the population structure. SaTScan analyses were conducted on the granular, postal-code level CCHS data to corroborate findings of elevated prevalence. Results Current smoking was elevated in two urban areas for both sexes (Sarnia and Windsor, and an additional small community (Chatham for males only. Areas of excess bodyweight were prevalent in an urban core (Windsor among males, but not females. Precision of the posterior post-stratified current smoking estimates was improved in model 2, as indicated by narrower credible intervals and a lower coefficient of variation. For excess bodyweight, both models had similar precision. Aggregation of the micro area estimates to CCHS design-based estimates validated the findings. Conclusions This is among the first studies to apply a full Bayesian model to complex

  12. Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network

    International Nuclear Information System (INIS)

    Kohda, Takehisa; Cui Weimin

    2007-01-01

    To prevent an abnormal event from leading to an accident, the role of its safety monitoring system is very important. The safety monitoring system detects symptoms of an abnormal event to mitigate its effect at its early stage. As the operation time passes by, the sensor reliability decreases, which implies that the decision criteria of the safety monitoring system should be modified depending on the sensor reliability as well as the system reliability. This paper presents a framework for the decision criteria (or diagnosis logic) of the safety monitoring system. The logic can be dynamically modified based on sensor output data monitored at regular intervals to minimize the expected loss caused by two types of safety monitoring system failure events: failed-dangerous (FD) and failed-safe (FS). The former corresponds to no response under an abnormal system condition, while the latter implies a spurious activation under a normal system condition. Dynamic Bayesian network theory can be applied to modeling the entire system behavior composed of the system and its safety monitoring system. Using the estimated state probabilities, the optimal decision criterion is given to obtain the optimal diagnosis logic. An illustrative example of a three-sensor system shows the merits and characteristics of the proposed method, where the reasonable interpretation of sensor data can be obtained

  13. Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Jamieson, Rob; Rainham, Daniel

    2017-01-01

    into the terrestrial and aquatic environment at random times. Northern communities rely heavily on their local surroundings as a source of food, drinking water, and recreation, thus creating the possibility of human exposure to wastewater effluent. Human exposure to microbial hazards present in municipal wastewater....... This review offers a conceptual framework and evaluation of current knowledge to enable the first microbial risk assessment of exposure scenarios associated with food-harvesting and recreational activities in Arctic communities, where simplified wastewater systems are being operated....

  14. Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models.

    Science.gov (United States)

    Salmerón, Diego; Cano, Juan A; Chirlaque, María D

    2015-08-30

    In cohort studies, binary outcomes are very often analyzed by logistic regression. However, it is well known that when the goal is to estimate a risk ratio, the logistic regression is inappropriate if the outcome is common. In these cases, a log-binomial regression model is preferable. On the other hand, the estimation of the regression coefficients of the log-binomial model is difficult owing to the constraints that must be imposed on these coefficients. Bayesian methods allow a straightforward approach for log-binomial regression models and produce smaller mean squared errors in the estimation of risk ratios than the frequentist methods, and the posterior inferences can be obtained using the software WinBUGS. However, Markov chain Monte Carlo methods implemented in WinBUGS can lead to large Monte Carlo errors in the approximations to the posterior inferences because they produce correlated simulations, and the accuracy of the approximations are inversely related to this correlation. To reduce correlation and to improve accuracy, we propose a reparameterization based on a Poisson model and a sampling algorithm coded in R. Copyright © 2015 John Wiley & Sons, Ltd.

  15. A bayesian nework based risk model for volume loss in soft soils in mechanized bored tunnels

    NARCIS (Netherlands)

    Chivatá Cárdenas, Ibsen; Al-Jibouri, Saad H.S.; Halman, Johannes I.M.

    2012-01-01

    Volume loss is one of the most important risks when boring a tunnel. This is particularly true when a tunnel is being constructed in soft soils. The risk of excessive volume loss, if materialised can lead to large consequences such as damage in buildings on the surface. This paper describes the

  16. Bayesian biostatistics

    CERN Document Server

    Lesaffre, Emmanuel

    2012-01-01

    The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd

  17. Coupling of Bayesian Networks with GIS for wildfire risk assessment on natural and agricultural areas of the Mediterranean

    Science.gov (United States)

    Scherb, Anke; Papakosta, Panagiota; Straub, Daniel

    2014-05-01

    Wildfires cause severe damages to ecosystems, socio-economic assets, and human lives in the Mediterranean. To facilitate coping with wildfire risks, an understanding of the factors influencing wildfire occurrence and behavior (e.g. human activity, weather conditions, topography, fuel loads) and their interaction is of importance, as is the implementation of this knowledge in improved wildfire hazard and risk prediction systems. In this project, a probabilistic wildfire risk prediction model is developed, with integrated fire occurrence and fire propagation probability and potential impact prediction on natural and cultivated areas. Bayesian Networks (BNs) are used to facilitate the probabilistic modeling. The final BN model is a spatial-temporal prediction system at the meso scale (1 km2 spatial and 1 day temporal resolution). The modeled consequences account for potential restoration costs and production losses referred to forests, agriculture, and (semi-) natural areas. BNs and a geographic information system (GIS) are coupled within this project to support a semi-automated BN model parameter learning and the spatial-temporal risk prediction. The coupling also enables the visualization of prediction results by means of daily maps. The BN parameters are learnt for Cyprus with data from 2006-2009. Data from 2010 is used as validation data set. A special focus is put on the performance evaluation of the BN for fire occurrence, which is modeled as binary classifier and thus, could be validated by means of Receiver Operator Characteristic (ROC) curves. With the final best models, AUC values of more than 70% for validation could be achieved, which indicates potential for reliable prediction performance via BN. Maps of selected days in 2010 are shown to illustrate final prediction results. The resulting system can be easily expanded to predict additional expected damages in the mesoscale (e.g. building and infrastructure damages). The system can support planning of

  18. Spatial analysis and risk mapping of soil-transmitted helminth infections in Brazil, using Bayesian geostatistical models.

    Science.gov (United States)

    Scholte, Ronaldo G C; Schur, Nadine; Bavia, Maria E; Carvalho, Edgar M; Chammartin, Frédérique; Utzinger, Jürg; Vounatsou, Penelope

    2013-11-01

    Soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm) negatively impact the health and wellbeing of hundreds of millions of people, particularly in tropical and subtropical countries, including Brazil. Reliable maps of the spatial distribution and estimates of the number of infected people are required for the control and eventual elimination of soil-transmitted helminthiasis. We used advanced Bayesian geostatistical modelling, coupled with geographical information systems and remote sensing to visualize the distribution of the three soil-transmitted helminth species in Brazil. Remotely sensed climatic and environmental data, along with socioeconomic variables from readily available databases were employed as predictors. Our models provided mean prevalence estimates for A. lumbricoides, T. trichiura and hookworm of 15.6%, 10.1% and 2.5%, respectively. By considering infection risk and population numbers at the unit of the municipality, we estimate that 29.7 million Brazilians are infected with A. lumbricoides, 19.2 million with T. trichiura and 4.7 million with hookworm. Our model-based maps identified important risk factors related to the transmission of soiltransmitted helminths and confirm that environmental variables are closely associated with indices of poverty. Our smoothed risk maps, including uncertainty, highlight areas where soil-transmitted helminthiasis control interventions are most urgently required, namely in the North and along most of the coastal areas of Brazil. We believe that our predictive risk maps are useful for disease control managers for prioritising control interventions and for providing a tool for more efficient surveillance-response mechanisms.

  19. Bayesian prediction of microbial oxygen requirement [v1; ref status: indexed, http://f1000r.es/1m6

    Directory of Open Access Journals (Sweden)

    Dan B. Jensen

    2013-09-01

    Full Text Available Background: Prediction of the optimal habitat conditions for a given bacterium, based on genome sequence alone would be of value for scientific as well as industrial purposes. One example of such a habitat adaptation is the requirement for oxygen. In spite of good genome data availability, there have been only a few prediction attempts of bacterial oxygen requirements, using genome sequences. Here, we describe a method for distinguishing aerobic, anaerobic and facultative anaerobic bacteria, based on genome sequence-derived input, using naive Bayesian inference. In contrast, other studies found in literature only demonstrate the ability to distinguish two classes at a time. Results: The results shown in the present study are as good as or better than comparable methods previously described in the scientific literature, with an arguably simpler method, when results are directly compared. This method further compares the performance of a single-step naive Bayesian prediction of the three included classifications, compared to a simple Bayesian network with two steps. A two-step network, distinguishing first respiring from non-respiring organisms, followed by the distinction of aerobe and facultative anaerobe organisms within the respiring group, is found to perform best. Conclusions: A simple naive Bayesian network based on the presence or absence of specific protein domains within a genome is an effective and easy way to predict bacterial habitat preferences, such as oxygen requirement.

  20. The Impact of Consumer Phase Models in Microbial Risk Analysis

    DEFF Research Database (Denmark)

    Nauta, Maarten; Christensen, Bjarke Bak

    2011-01-01

    In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) describes the part of the food chain between purchase of the food product at retail and exposure. Construction of a CPM is complicated by the large variation in consumer food handling practices and a limited...... availability of data. Therefore, several subjective (simplifying) assumptions have to be made when a CPM is constructed, but with a single CPM their impact on the QMRA results is unclear. We therefore compared the performance of eight published CPMs for Campylobacter in broiler meat in an example of a QMRA......, where all the CPMs were analyzed using one single input distribution of concentrations at retail, and the same dose-response relationship. It was found that, between CPMs, there may be a considerable difference in the estimated probability of illness per serving. However, the estimated relative risk...

  1. Microbiological community in biogas systems and evaluation of microbial risks from gas usage

    Energy Technology Data Exchange (ETDEWEB)

    Vinneraas, B.; Nordin, A. [Swedish Univ. of Agricultural Sciences, Dept. of Biometry and Engineering, Uppsala (Sweden); Schoenning, C. [Swedish Inst. for Infectious Disease Control, Dept. of Parasitology, Mycology, Environmental Mirobiology and Water, Solna (Sweden)

    2007-12-15

    The plans for introducing biogas produced from organic waste to the pipe system for natural gas have raised concerns about the risk of transmitting disease via the gas. To assess this risk, condensate water from gas pipes and gas from different parts of biogas upgrading systems were sampled and cultured for microbial content. The number of microorganisms found in the biogas correspond to the densities in sampled natural gas. Since no pathogens were identified and since the exposure to gas from e. g. cookers and refueling of cars may only result in the inhalation of small volumes of gas, the risk of spreading disease via biogas was judged to be very low. (orig.)

  2. A Bayesian Network methodology for railway risk, safety and decision support

    OpenAIRE

    Mahboob, Qamar

    2014-01-01

    For railways, risk analysis is carried out to identify hazardous situations and their consequences. Until recently, classical methods such as Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) were applied in modelling the linear and logically deterministic aspects of railway risks, safety and reliability. However, it has been proven that modern railway systems are rather complex, involving multi-dependencies between system variables and uncertainties about these dependencies. For train ...

  3. Bayesian Utilitarianism

    OpenAIRE

    ZHOU, Lin

    1996-01-01

    In this paper I consider social choices under uncertainty. I prove that any social choice rule that satisfies independence of irrelevant alternatives, translation invariance, and weak anonymity is consistent with ex post Bayesian utilitarianism

  4. A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation

    International Nuclear Information System (INIS)

    Trucco, P.; Cagno, E.; Ruggeri, F.; Grande, O.

    2008-01-01

    The paper presents an innovative approach to integrate Human and Organisational Factors (HOF) into risk analysis. The approach has been developed and applied to a case study in the maritime industry, but it can also be utilised in other sectors. A Bayesian Belief Network (BBN) has been developed to model the Maritime Transport System (MTS), by taking into account its different actors (i.e., ship-owner, shipyard, port and regulator) and their mutual influences. The latter have been modelled by means of a set of dependent variables whose combinations express the relevant functions performed by each actor. The BBN model of the MTS has been used in a case study for the quantification of HOF in the risk analysis carried out at the preliminary design stage of High Speed Craft (HSC). The study has focused on a collision in open sea hazard carried out by means of an original method of integration of a Fault Tree Analysis (FTA) of technical elements with a BBN model of the influences of organisational functions and regulations, as suggested by the International Maritime Organisation's (IMO) Guidelines for Formal Safety Assessment (FSA). The approach has allowed the identification of probabilistic correlations between the basic events of a collision accident and the BBN model of the operational and organisational conditions. The linkage can be exploited in different ways, especially to support identification and evaluation of risk control options also at the organisational level. Conditional probabilities for the BBN have been estimated by means of experts' judgments, collected from an international panel of different European countries. Finally, a sensitivity analysis has been carried out over the model to identify configurations of the MTS leading to a significant reduction of accident probability during the operation of the HSC

  5. Risk-based cost-benefit analysis for evaluating microbial risk mitigation in a drinking water system.

    Science.gov (United States)

    Bergion, Viktor; Lindhe, Andreas; Sokolova, Ekaterina; Rosén, Lars

    2018-04-01

    Waterborne outbreaks of gastrointestinal diseases can cause large costs to society. Risk management needs to be holistic and transparent in order to reduce these risks in an effective manner. Microbial risk mitigation measures in a drinking water system were investigated using a novel approach combining probabilistic risk assessment and cost-benefit analysis. Lake Vomb in Sweden was used to exemplify and illustrate the risk-based decision model. Four mitigation alternatives were compared, where the first three alternatives, A1-A3, represented connecting 25, 50 and 75%, respectively, of on-site wastewater treatment systems in the catchment to the municipal wastewater treatment plant. The fourth alternative, A4, represented installing a UV-disinfection unit in the drinking water treatment plant. Quantitative microbial risk assessment was used to estimate the positive health effects in terms of quality adjusted life years (QALYs), resulting from the four mitigation alternatives. The health benefits were monetised using a unit cost per QALY. For each mitigation alternative, the net present value of health and environmental benefits and investment, maintenance and running costs was calculated. The results showed that only A4 can reduce the risk (probability of infection) below the World Health Organization guidelines of 10 -4 infections per person per year (looking at the 95th percentile). Furthermore, all alternatives resulted in a negative net present value. However, the net present value would be positive (looking at the 50 th percentile using a 1% discount rate) if non-monetised benefits (e.g. increased property value divided evenly over the studied time horizon and reduced microbial risks posed to animals), estimated at 800-1200 SEK (€100-150) per connected on-site wastewater treatment system per year, were included. This risk-based decision model creates a robust and transparent decision support tool. It is flexible enough to be tailored and applied to local

  6. Microbial processes in North Atlantic pelagic sediments, and potential risks of deep-sea waste disposal

    International Nuclear Information System (INIS)

    Bolliger, R.; Hanselmann, K.W.; Bachofen, R.

    1989-01-01

    From the results for waste disposal on deep sea sediments, it was concluded: As waste canisters are buried in the sediment to a depth of 15 to 20 cm, they are in contact with the zone that contains the highest potential bacterial activity through a relatively large surface. An input of oxidizable organic matter to the sediment surface zone will stimulate microbial activity and therefore increase the risk for solubilization and redistribution of elements in the ocean water. Waste canisters lying on the sediment surface cut off the oxygen supply from the ocean water and ease the shift to anaerobiosis. This initiates microbial activities through which metals are changed into their mobile species as a consequence of the altered environmental redox potential. The risk for steel corrosion by hydrogen sulfide, which could be produced by sulfate reducing bacteria, is minimal since this physiological group is not active in the North Atlantic sediments examined

  7. Spatiotemporal analysis and mapping of oral cancer risk in changhua county (taiwan): an application of generalized bayesian maximum entropy method.

    Science.gov (United States)

    Yu, Hwa-Lung; Chiang, Chi-Ting; Lin, Shu-De; Chang, Tsun-Kuo

    2010-02-01

    Incidence rate of oral cancer in Changhua County is the highest among the 23 counties of Taiwan during 2001. However, in health data analysis, crude or adjusted incidence rates of a rare event (e.g., cancer) for small populations often exhibit high variances and are, thus, less reliable. We proposed a generalized Bayesian Maximum Entropy (GBME) analysis of spatiotemporal disease mapping under conditions of considerable data uncertainty. GBME was used to study the oral cancer population incidence in Changhua County (Taiwan). Methodologically, GBME is based on an epistematics principles framework and generates spatiotemporal estimates of oral cancer incidence rates. In a way, it accounts for the multi-sourced uncertainty of rates, including small population effects, and the composite space-time dependence of rare events in terms of an extended Poisson-based semivariogram. The results showed that GBME analysis alleviates the noises of oral cancer data from population size effect. Comparing to the raw incidence data, the maps of GBME-estimated results can identify high risk oral cancer regions in Changhua County, where the prevalence of betel quid chewing and cigarette smoking is relatively higher than the rest of the areas. GBME method is a valuable tool for spatiotemporal disease mapping under conditions of uncertainty. 2010 Elsevier Inc. All rights reserved.

  8. A tight excess risk bound via a unified PAC-Bayesian-Rademacher-Shtarkov-MDL complexity

    NARCIS (Netherlands)

    P.D. Grünwald (Peter); N.A. Mehta (Nishant)

    2017-01-01

    htmlabstractWe present a novel notion of complexity that interpolates between and generalizes some classic existing complexity notions in learning theory: for estimators like empirical risk minimization (ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher

  9. Microbial communities and greenhouse gas emissions associated with the biodegradation of specified risk material in compost

    International Nuclear Information System (INIS)

    Xu, Shanwei; Reuter, Tim; Gilroyed, Brandon H.; Tymensen, Lisa; Hao, Yongxin; Hao, Xiying; Belosevic, Miodrag; Leonard, Jerry J.; McAllister, Tim A.

    2013-01-01

    Highlights: ► Addition of feathers altered bacterial and fungal communities in compost. ► Microbial communities degrading SRM and compost matrix were distinct. ► Addition of feathers may enrich for microbial communities that degrade SRM. ► Inclusion of feather in compost increased both CH 4 and N 2 O emissions from compost. ► Density of methanogens and methanotrophs were weakly associated with CH 4 emissions. - Abstract: Provided that infectious prions (PrP Sc ) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P 4 primarily during the early stages of the first cycle and N 2 O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrP Sc

  10. 76 FR 44586 - Notice of Availability of the External Review Draft of the Microbial Risk Assessment Guideline...

    Science.gov (United States)

    2011-07-26

    ... assessments will foster better interaction among participating agencies leading to a more efficient and... document addresses the full range of microbial risk assessment topics: Definition of the roles and...

  11. Bayesian methods in reliability

    Science.gov (United States)

    Sander, P.; Badoux, R.

    1991-11-01

    The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.

  12. Microbial risk assessment of Vibrio spp. in seafood products in Mexico

    Directory of Open Access Journals (Sweden)

    Karla M López-Hernández

    2014-05-01

    Full Text Available Food-borne diseases are among the major public health problems that currently exist. Microbiological risk assessment is a process used to evaluate the hidden hazards in food, the likelihood of exposure to these hazards and their impact on public health. Risk assessment is performed in four steps: hazard identification, hazard characterization, assessment of exposure and risk characterization. According to the process/response microbial risk assessment is classified in two categories, qualitative and quantitative. The aim of this review is to underline the importance of implementing assessments in seafood that is usually consumed raw, strengthening access to good quality and safe food for the consumer’s benefit and to stress the necessity of microbiological risks assessments in Mexico.

  13. Developing a Risk Model for Fire in Passenger Ships - Based on Bayesian Belief Network

    OpenAIRE

    Dokmo, Hanne Bjørkås

    2016-01-01

    Passenger ships, especially cruise ships, are rapidly increasing in size. With larger vessels, comes a greater risk to the passengers if something where to happen. A fire on a passenger vessel can spread quickly, and with as much as thousands of people needing to be evacuated many things could go wrong. The issue of the safety on board is therefore crucial to consider, seeing as the consequences could be tremendous. There are three types of passenger ships; Passenger vessel, RoPax vessel and ...

  14. Subjective Bayesian Beliefs

    DEFF Research Database (Denmark)

    Antoniou, Constantinos; Harrison, Glenn W.; Lau, Morten I.

    2015-01-01

    A large literature suggests that many individuals do not apply Bayes’ Rule when making decisions that depend on them correctly pooling prior information and sample data. We replicate and extend a classic experimental study of Bayesian updating from psychology, employing the methods of experimenta...... economics, with careful controls for the confounding effects of risk aversion. Our results show that risk aversion significantly alters inferences on deviations from Bayes’ Rule....

  15. Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks

    Directory of Open Access Journals (Sweden)

    Gareth W. Peters

    2017-09-01

    Full Text Available The main objective of this work is to develop a detailed step-by-step guide to the development and application of a new class of efficient Monte Carlo methods to solve practically important problems faced by insurers under the new solvency regulations. In particular, a novel Monte Carlo method to calculate capital allocations for a general insurance company is developed, with a focus on coherent capital allocation that is compliant with the Swiss Solvency Test. The data used is based on the balance sheet of a representative stylized company. For each line of business in that company, allocations are calculated for the one-year risk with dependencies based on correlations given by the Swiss Solvency Test. Two different approaches for dealing with parameter uncertainty are discussed and simulation algorithms based on (pseudo-marginal Sequential Monte Carlo algorithms are described and their efficiency is analysed.

  16. Analysis of regional scale risk to whirling disease in populations of Colorado and Rio Grande cutthroat trout using Bayesian belief network model

    Science.gov (United States)

    Kolb Ayre, Kimberley; Caldwell, Colleen A.; Stinson, Jonah; Landis, Wayne G.

    2014-01-01

    Introduction and spread of the parasite Myxobolus cerebralis, the causative agent of whirling disease, has contributed to the collapse of wild trout populations throughout the intermountain west. Of concern is the risk the disease may have on conservation and recovery of native cutthroat trout. We employed a Bayesian belief network to assess probability of whirling disease in Colorado River and Rio Grande cutthroat trout (Oncorhynchus clarkii pleuriticus and Oncorhynchus clarkii virginalis, respectively) within their current ranges in the southwest United States. Available habitat (as defined by gradient and elevation) for intermediate oligochaete worm host, Tubifex tubifex, exerted the greatest influence on the likelihood of infection, yet prevalence of stream barriers also affected the risk outcome. Management areas that had the highest likelihood of infected Colorado River cutthroat trout were in the eastern portion of their range, although the probability of infection was highest for populations in the southern, San Juan subbasin. Rio Grande cutthroat trout had a relatively low likelihood of infection, with populations in the southernmost Pecos management area predicted to be at greatest risk. The Bayesian risk assessment model predicted the likelihood of whirling disease infection from its principal transmission vector, fish movement, and suggested that barriers may be effective in reducing risk of exposure to native trout populations. Data gaps, especially with regard to location of spawning, highlighted the importance in developing monitoring plans that support future risk assessments and adaptive management for subspecies of cutthroat trout.

  17. Carboy Security Risk Analysis Model of I and C System Using Bayesian Network

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Son, Hanseong [Joongbu Univ., Geumsan (Korea, Republic of); Park, Jaekwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The Korea Institute of Nuclear Safety (KINS) as a regulatory agency declares the R. G 8.22 for applying cyber security in Korea in 2011. In nuclear power industrial, ShinUljin 1, 2 unit and Shingori 3, 4 unit are demonstrating the cyber security for the first time. And in terms of research, the National Security Research Institute and the Korea Atomic Energy Research Institute are developing the nuclear power plant cyber security system in Korean. Currently, these cyber securities like regulation, demonstration and research are focused on nuclear power plant. However, cyber security is also important for the nuclear research reactor like a HANARO which is in Daejeon, primarily due to its characteristic as research reactor since since people access more than power plant. Analysis of the key elements of cyber security is possible to study through the activity-quality and architecture analysis model of cyber security. It is possible to analyze the extent reflected final risk by evaluating input score for each checklist. In this way, you can see an important checklist. Further, if the cyber-attack occurs, it is possible to provide an evidentiary material that is able to determine the key check element corresponding to each situation via a reverse calculation of BN. Finally, Utilization is possible to create a simulated penetratio test scenario according to each situation. Analysis of the key elements of cyber security is possible to study through the activity-quality and architecture analysis model of cyber security. It is possible to analyze the extent reflected in the final risk by evaluating input score for each checklist, in this way, you can see an important checklist. Furthermore, if the cyber-attack occurs, it is possible to provide an evidentiary material that enables to determine the key check element corresponding to each situation via a reverse calculation of BN. Finally, Utilization is possible to create a simulated penetration test scenario according to

  18. Carboy Security Risk Analysis Model of I and C System Using Bayesian Network

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Heo, Gyunyoung; Son, Hanseong; Park, Jaekwan

    2013-01-01

    The Korea Institute of Nuclear Safety (KINS) as a regulatory agency declares the R. G 8.22 for applying cyber security in Korea in 2011. In nuclear power industrial, ShinUljin 1, 2 unit and Shingori 3, 4 unit are demonstrating the cyber security for the first time. And in terms of research, the National Security Research Institute and the Korea Atomic Energy Research Institute are developing the nuclear power plant cyber security system in Korean. Currently, these cyber securities like regulation, demonstration and research are focused on nuclear power plant. However, cyber security is also important for the nuclear research reactor like a HANARO which is in Daejeon, primarily due to its characteristic as research reactor since since people access more than power plant. Analysis of the key elements of cyber security is possible to study through the activity-quality and architecture analysis model of cyber security. It is possible to analyze the extent reflected final risk by evaluating input score for each checklist. In this way, you can see an important checklist. Further, if the cyber-attack occurs, it is possible to provide an evidentiary material that is able to determine the key check element corresponding to each situation via a reverse calculation of BN. Finally, Utilization is possible to create a simulated penetratio test scenario according to each situation. Analysis of the key elements of cyber security is possible to study through the activity-quality and architecture analysis model of cyber security. It is possible to analyze the extent reflected in the final risk by evaluating input score for each checklist, in this way, you can see an important checklist. Furthermore, if the cyber-attack occurs, it is possible to provide an evidentiary material that enables to determine the key check element corresponding to each situation via a reverse calculation of BN. Finally, Utilization is possible to create a simulated penetration test scenario according to

  19. A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain

    Directory of Open Access Journals (Sweden)

    Rodríguez-Prieto Víctor

    2012-08-01

    Full Text Available Abstract Background Bovine tuberculosis (bTB is a chronic infectious disease mainly caused by Mycobacterium bovis. Although eradication is a priority for the European authorities, bTB remains active or even increasing in many countries, causing significant economic losses. The integral consideration of epidemiological factors is crucial to more cost-effectively allocate control measures. The aim of this study was to identify the nature and extent of the association between TB distribution and a list of potential risk factors regarding cattle, wild ungulates and environmental aspects in Ciudad Real, a Spanish province with one of the highest TB herd prevalences. Results We used a Bayesian mixed effects multivariable logistic regression model to predict TB occurrence in either domestic or wild mammals per municipality in 2007 by using information from the previous year. The municipal TB distribution and endemicity was clustered in the western part of the region and clearly overlapped with the explanatory variables identified in the final model: (1 incident cattle farms, (2 number of years of veterinary inspection of big game hunting events, (3 prevalence in wild boar, (4 number of sampled cattle, (5 persistent bTB-infected cattle farms, (6 prevalence in red deer, (7 proportion of beef farms, and (8 farms devoted to bullfighting cattle. Conclusions The combination of these eight variables in the final model highlights the importance of the persistence of the infection in the hosts, surveillance efforts and some cattle management choices in the circulation of M. bovis in the region. The spatial distribution of these variables, together with particular Mediterranean features that favour the wildlife-livestock interface may explain the M. bovis persistence in this region. Sanitary authorities should allocate efforts towards specific areas and epidemiological situations where the wildlife-livestock interface seems to critically hamper the definitive b

  20. A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain.

    Science.gov (United States)

    Rodríguez-Prieto, Víctor; Martínez-López, Beatriz; Barasona, José Angel; Acevedo, Pelayo; Romero, Beatriz; Rodriguez-Campos, Sabrina; Gortázar, Christian; Sánchez-Vizcaíno, José Manuel; Vicente, Joaquín

    2012-08-30

    Bovine tuberculosis (bTB) is a chronic infectious disease mainly caused by Mycobacterium bovis. Although eradication is a priority for the European authorities, bTB remains active or even increasing in many countries, causing significant economic losses. The integral consideration of epidemiological factors is crucial to more cost-effectively allocate control measures. The aim of this study was to identify the nature and extent of the association between TB distribution and a list of potential risk factors regarding cattle, wild ungulates and environmental aspects in Ciudad Real, a Spanish province with one of the highest TB herd prevalences. We used a Bayesian mixed effects multivariable logistic regression model to predict TB occurrence in either domestic or wild mammals per municipality in 2007 by using information from the previous year. The municipal TB distribution and endemicity was clustered in the western part of the region and clearly overlapped with the explanatory variables identified in the final model: (1) incident cattle farms, (2) number of years of veterinary inspection of big game hunting events, (3) prevalence in wild boar, (4) number of sampled cattle, (5) persistent bTB-infected cattle farms, (6) prevalence in red deer, (7) proportion of beef farms, and (8) farms devoted to bullfighting cattle. The combination of these eight variables in the final model highlights the importance of the persistence of the infection in the hosts, surveillance efforts and some cattle management choices in the circulation of M. bovis in the region. The spatial distribution of these variables, together with particular Mediterranean features that favour the wildlife-livestock interface may explain the M. bovis persistence in this region. Sanitary authorities should allocate efforts towards specific areas and epidemiological situations where the wildlife-livestock interface seems to critically hamper the definitive bTB eradication success.

  1. Correction the Bias of Odds Ratio resulting from the Misclassification of Exposures in the Study of Environmental Risk Factors of Lung Cancer using Bayesian Methods

    Directory of Open Access Journals (Sweden)

    Alireza Abadi

    2015-07-01

    Full Text Available Background & Objective: Inability to measure exact exposure in epidemiological studies is a common problem in many studies, especially cross-sectional studies. Depending on the extent of misclassification, results may be affected. Existing methods for solving this problem require a lot of time and money and it is not practical for some of the exposures. Recently, new methods have been proposed in 1:1 matched case–control studies that have solved these problems to some extent. In the present study we have aimed to extend the existing Bayesian method to adjust for misclassification in matched case–control Studies with 1:2 matching. Methods: Here, the standard Dirichlet prior distribution for a multinomial model was extended to allow the data of exposure–disease (OR parameter to be imported into the model excluding other parameters. Information that exist in literature about association between exposure and disease were used as prior information about OR. In order to correct the misclassification Sensitivity Analysis was accomplished and the results were obtained under three Bayesian Methods. Results: The results of naïve Bayesian model were similar to the classic model. The second Bayesian model by employing prior information about the OR, was heavily affected by these information. The third proposed model provides maximum bias adjustment for the risk of heavy metals, smoking and drug abuse. This model showed that heavy metals are not an important risk factor although raw model (logistic regression Classic detected this exposure as an influencing factor on the incidence of lung cancer. Sensitivity analysis showed that third model is robust regarding to different levels of Sensitivity and Specificity. Conclusion: The present study showed that although in most of exposures the results of the second and third model were similar but the proposed model would be able to correct the misclassification to some extent.

  2. Microbial health risks associated with exposure to stormwater in a water plaza.

    Science.gov (United States)

    Sales-Ortells, Helena; Medema, Gertjan

    2015-05-01

    Climate change scenarios predict an increase of intense rainfall events in summer in Western Europe. Current urban drainage systems cannot cope with such intense precipitation events. Cities are constructing stormwater storage facilities to prevent pluvial flooding. Combining storage with other functions, such as recreation, may lead to exposure to contaminants. This study assessed the microbial quality of rainwater collected in a water plaza and the health risks associated with recreational exposure. The water plaza collects street run-off, diverges first flush to the sewer system and stores the rest of the run-off in the plaza as open water. Campylobacter, Cryptosporidium and Legionella pneumophila were the pathogens investigated. Microbial source tracking tools were used to determine the origin (human, animal) of the intestinal pathogens. Cryptosporidium was not found in any sample. Campylobacter was found in all samples, with higher concentrations in samples containing human Bacteroides than in samples with zoonotic contamination (15 vs 3.7 gc (genomic copies)/100 mL). In both cases, the estimated disease risk associated with Campylobacter and recreational exposure was higher than the Dutch national incidence. This indicates that the health risk associated with recreational exposure to the water plaza is significant. L. pneumophila was found only in two out of ten pond samples. Legionnaire's disease risks were lower than the Dutch national incidence. Presence of human Bacteroides indicates possible cross-connections with the CSS that should be identified and removed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A Bayesian Approach to Integrate Real-Time Data into Probabilistic Risk Analysis of Remediation Efforts in NAPL Sites

    Science.gov (United States)

    Fernandez-Garcia, D.; Sanchez-Vila, X.; Bolster, D.; Tartakovsky, D. M.

    2010-12-01

    The release of non-aqueous phase liquids (NAPLs) such as petroleum hydrocarbons and chlorinated solvents in the subsurface is a severe source of groundwater and vapor contamination. Because these liquids are essentially immiscible due to low solubility, these contaminants get slowly dissolved in groundwater and/or volatilized in the vadoze zone threatening the environment and public health over a long period. Many remediation technologies and strategies have been developed in the last decades for restoring the water quality properties of these contaminated sites. The failure of an on-site treatment technology application is often due to the unnoticed presence of dissolved NAPL entrapped in low permeability areas (heterogeneity) and/or the remaining of substantial amounts of pure phase after remediation efforts. Full understanding of the impact of remediation efforts is complicated due to the role of many interlink physical and biochemical processes taking place through several potential pathways of exposure to multiple receptors in a highly unknown heterogeneous environment. Due to these difficulties, the design of remediation strategies and definition of remediation endpoints have been traditionally determined without quantifying the risk associated with the failure of such efforts. We conduct a probabilistic risk analysis (PRA) of the likelihood of success of an on-site NAPL treatment technology that easily integrates all aspects of the problem (causes, pathways, and receptors) without doing extensive modeling. Importantly, the method is further capable to incorporate the inherent uncertainty that often exist in the exact location where the dissolved NAPL plume leaves the source zone. This is achieved by describing the failure of the system as a function of this source zone exit location, parameterized in terms of a vector of parameters. Using a Bayesian interpretation of the system and by means of the posterior multivariate distribution, the failure of the

  4. A method for risk-informed safety significance categorization using the analytic hierarchy process and bayesian belief networks

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2004-01-01

    A risk-informed safety significance categorization (RISSC) is to categorize structures, systems, or components (SSCs) of a nuclear power plant (NPP) into two or more groups, according to their safety significance using both probabilistic and deterministic insights. In the conventional methods for the RISSC, the SSCs are quantitatively categorized according to their importance measures for the initial categorization. The final decisions (categorizations) of SSCs, however, are qualitatively made by an expert panel through discussions and adjustments of opinions by using the probabilistic insights compiled in the initial categorization process and combining the probabilistic insights with the deterministic insights. Therefore, owing to the qualitative and linear decision-making process, the conventional methods have the demerits as follows: (1) they are very costly in terms of time and labor, (2) it is not easy to reach the final decision, when the opinions of the experts are in conflict and (3) they have an overlapping process due to the linear paradigm (the categorization is performed twice - first, by the engineers who propose the method, and second, by the expert panel). In this work, a method for RISSC using the analytic hierarchy process (AHP) and bayesian belief networks (BBN) is proposed to overcome the demerits of the conventional methods and to effectively arrive at a final decision (or categorization). By using the AHP and BBN, the expert panel takes part in the early stage of the categorization (that is, the quantification process) and the safety significance based on both probabilistic and deterministic insights is quantified. According to that safety significance, SSCs are quantitatively categorized into three categories such as high safety significant category (Hi), potentially safety significant category (Po), or low safety significant category (Lo). The proposed method was applied to the components such as CC-V073, CV-V530, and SI-V644 in Ulchin Unit

  5. Quantitative assessment of the microbial risk of leafy greens from farm to consumption: preliminary framework, data, and risk estimates.

    Science.gov (United States)

    Danyluk, Michelle D; Schaffner, Donald W

    2011-05-01

    This project was undertaken to relate what is known about the behavior of Escherichia coli O157:H7 under laboratory conditions and integrate this information to what is known regarding the 2006 E. coli O157:H7 spinach outbreak in the context of a quantitative microbial risk assessment. The risk model explicitly assumes that all contamination arises from exposure in the field. Extracted data, models, and user inputs were entered into an Excel spreadsheet, and the modeling software @RISK was used to perform Monte Carlo simulations. The model predicts that cut leafy greens that are temperature abused will support the growth of E. coli O157:H7, and populations of the organism may increase by as much a 1 log CFU/day under optimal temperature conditions. When the risk model used a starting level of -1 log CFU/g, with 0.1% of incoming servings contaminated, the predicted numbers of cells per serving were within the range of best available estimates of pathogen levels during the outbreak. The model predicts that levels in the field of -1 log CFU/g and 0.1% prevalence could have resulted in an outbreak approximately the size of the 2006 E. coli O157:H7 outbreak. This quantitative microbial risk assessment model represents a preliminary framework that identifies available data and provides initial risk estimates for pathogenic E. coli in leafy greens. Data gaps include retail storage times, correlations between storage time and temperature, determining the importance of E. coli O157:H7 in leafy greens lag time models, and validation of the importance of cross-contamination during the washing process.

  6. The influence of processing on the microbial risk associated with Rooibos (Aspalathus linearis) tea.

    Science.gov (United States)

    Gouws, Pieter; Hartel, Toni; van Wyk, Rudean

    2014-12-01

    This review discusses the influence of processing on the microbial risk associated with Salmonella in Rooibos tea, the identification of Salmonella and preventative and control measures to control microbial contamination. Rooibos tea, like other plant products, naturally contains a high microbial load. Downstream processing steps of these products usually help in reducing any contaminants present. Due to the delicate flavour properties and nature of Rooibos, gentle processing techniques are necessary for the production of good quality tea. However, this has a major influence on the microbiological status of the product. The presence of Salmonella in Rooibos is poorly understood. The ubiquitous distribution of Salmonella in the natural environment and its prevalence in the global food chain, the physiological adaptability, virulence of the bacterial pathogen and its serious economic impact on the food industry, emphasises the need for continued awareness and stringent controls at all levels of food production. With the advances of technology and information at hand, the processing of Rooibos needs to be re-evaluated. Since the delicate nature of Rooibos prohibits the use of harsh methods to control Salmonella, alternative methods for the steam pasteurisation of Rooibos show great potential to control Salmonella in a fast, efficient and cost-effective manner. These alternative methods will significantly improve the microbiological quality of Rooibos and provide a product that is safe to consumers. © 2014 Society of Chemical Industry.

  7. Quantitative Microbial Risk Assessment in Occupational Settings Applied to the Airborne Human Adenovirus Infection

    Directory of Open Access Journals (Sweden)

    Annalaura Carducci

    2016-07-01

    Full Text Available Quantitative Microbial Risk Assessment (QMRA methodology, which has already been applied to drinking water and food safety, may also be applied to risk assessment and management at the workplace. The present study developed a preliminary QMRA model to assess microbial risk that is associated with inhaling bioaerosols that are contaminated with human adenovirus (HAdV. This model has been applied to air contamination data from different occupational settings, including wastewater systems, solid waste landfills, and toilets in healthcare settings and offices, with different exposure times. Virological monitoring showed the presence of HAdVs in all the evaluated settings, thus confirming that HAdV is widespread, but with different average concentrations of the virus. The QMRA results, based on these concentrations, showed that toilets had the highest probability of viral infection, followed by wastewater treatment plants and municipal solid waste landfills. Our QMRA approach in occupational settings is novel, and certain caveats should be considered. Nonetheless, we believe it is worthy of further discussions and investigations.

  8. Microbial communities and greenhouse gas emissions associated with the biodegradation of specified risk material in compost

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shanwei [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (Canada); Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Reuter, Tim [Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (Canada); Gilroyed, Brandon H. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Tymensen, Lisa [Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (Canada); Hao, Yongxin; Hao, Xiying [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada); Belosevic, Miodrag [Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 (Canada); Leonard, Jerry J. [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (Canada); McAllister, Tim A., E-mail: tim.mcallister@agr.gc.ca [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1 (Canada)

    2013-06-15

    Highlights: ► Addition of feathers altered bacterial and fungal communities in compost. ► Microbial communities degrading SRM and compost matrix were distinct. ► Addition of feathers may enrich for microbial communities that degrade SRM. ► Inclusion of feather in compost increased both CH{sub 4} and N{sub 2}O emissions from compost. ► Density of methanogens and methanotrophs were weakly associated with CH{sub 4} emissions. - Abstract: Provided that infectious prions (PrP{sup Sc}) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P < 0.05) headspace concentrations of CH{sub 4} primarily during the early stages of the first cycle and N{sub 2}O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrP{sup Sc}.

  9. Bayesian Averaging over Many Dynamic Model Structures with Evidence on the Great Ratios and Liquidity Trap Risk

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2008-01-01

    textabstractA Bayesian model averaging procedure is presented that makes use of a finite mixture of many model structures within the class of vector autoregressive (VAR) processes. It is applied to two empirical issues. First, stability of the Great Ratios in U.S. macro-economic time series is

  10. Microbial quality of reclaimed water for urban reuses: Probabilistic risk-based investigation and recommendations.

    Science.gov (United States)

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-01-15

    Although Canada has abundant freshwater resources, many cities still experience seasonal water shortage. Supply-side and demand-side management is a core strategy to address this water shortage. Under this strategy, reclaimed water, which the Canadian public is willing to use for non-potable purposes, is an option. However, no universal guidelines exist for reclaimed water use. Despite the federal government's long-term goal to develop guidelines for many water reuse applications, guidelines have only been prescribed for reclaimed water use in toilet and urinal flushing in Canada. At the provincial level, British Columbia (BC) has promulgated guidelines for wide applications of reclaimed water but only at broad class levels. This research has investigated and proposed probabilistic risk-based recommended values for microbial quality of reclaimed water in various non-potable urban reuses. The health risk was estimated by using quantitative microbial risk assessment. Two-dimensional Monte Carlo simulations were used in the analysis to include variability and uncertainty in input data. The proposed recommended values are based on the indicator organism E. coli. The required treatment levels for reuse were also estimated. In addition, the recommended values were successfully applied to three wastewater treatment effluents in the Okanagan Valley, BC, Canada. The health risks associated with other bacterial pathogens (Campylobacter jejuni and Salmonella spp.), virus (adenovirus, norovirus, and rotavirus), and protozoa (Cryptosporidium parvum and Giardia spp.), were also estimated. The estimated risks indicate the effectiveness of the E. coli-based water quality recommended values. Sensitivity analysis shows the pathogenic E. coli ratio and morbidity are the most sensitive input parameters for all water reuses. The proposed recommended values could be further improved by using national or regional data on water exposures, disease burden per case, and the susceptibility

  11. Risk-benefit assessment of cold-smoked salmon: microbial risk versus nutritional benefit

    DEFF Research Database (Denmark)

    Berjia, Firew Lemma; Hoekstra, Jeljer; Andersen, Rikke

    2012-01-01

    Heart Disease (CHD) mortality and stroke, as well as enhanced cognitive (IQ) development of unborns following maternal intake, are identified as the main health benefits of omega-3 fatty acid from CSS. Contrary, risk of meningitis, septicemia and abortion/stillborn are identified as a major health risk......The objective of the study is to perform an integrated analysis of microbiological risks and nutritional benefits in a fish product, Cold Smoked Salmon (CSS). Literature study identified the major health risks and benefits in connection with CSS consumption. The reduction of the risk of Coronary...

  12. Direct potable reuse microbial risk assessment methodology: Sensitivity analysis and application to State log credit allocations.

    Science.gov (United States)

    Soller, Jeffrey A; Eftim, Sorina E; Nappier, Sharon P

    2018-01-01

    Understanding pathogen risks is a critically important consideration in the design of water treatment, particularly for potable reuse projects. As an extension to our published microbial risk assessment methodology to estimate infection risks associated with Direct Potable Reuse (DPR) treatment train unit process combinations, herein, we (1) provide an updated compilation of pathogen density data in raw wastewater and dose-response models; (2) conduct a series of sensitivity analyses to consider potential risk implications using updated data; (3) evaluate the risks associated with log credit allocations in the United States; and (4) identify reference pathogen reductions needed to consistently meet currently applied benchmark risk levels. Sensitivity analyses illustrated changes in cumulative annual risks estimates, the significance of which depends on the pathogen group driving the risk for a given treatment train. For example, updates to norovirus (NoV) raw wastewater values and use of a NoV dose-response approach, capturing the full range of uncertainty, increased risks associated with one of the treatment trains evaluated, but not the other. Additionally, compared to traditional log-credit allocation approaches, our results indicate that the risk methodology provides more nuanced information about how consistently public health benchmarks are achieved. Our results indicate that viruses need to be reduced by 14 logs or more to consistently achieve currently applied benchmark levels of protection associated with DPR. The refined methodology, updated model inputs, and log credit allocation comparisons will be useful to regulators considering DPR projects and design engineers as they consider which unit treatment processes should be employed for particular projects. Published by Elsevier Ltd.

  13. Causation in risk assessment and management: models, inference, biases, and a microbial risk-benefit case study.

    Science.gov (United States)

    Cox, L A; Ricci, P F

    2005-04-01

    Causal inference of exposure-response relations from data is a challenging aspect of risk assessment with important implications for public and private risk management. Such inference, which is fundamentally empirical and based on exposure (or dose)-response models, seldom arises from a single set of data; rather, it requires integrating heterogeneous information from diverse sources and disciplines including epidemiology, toxicology, and cell and molecular biology. The causal aspects we discuss focus on these three aspects: drawing sound inferences about causal relations from one or more observational studies; addressing and resolving biases that can affect a single multivariate empirical exposure-response study; and applying the results from these considerations to the microbiological risk management of human health risks and benefits of a ban on antibiotic use in animals, in the context of banning enrofloxacin or macrolides, antibiotics used against bacterial illnesses in poultry, and the effects of such bans on changing the risk of human food-borne campylobacteriosis infections. The purposes of this paper are to describe novel causal methods for assessing empirical causation and inference; exemplify how to deal with biases that routinely arise in multivariate exposure- or dose-response modeling; and provide a simplified discussion of a case study of causal inference using microbial risk analysis as an example. The case study supports the conclusion that the human health benefits from a ban are unlikely to be greater than the excess human health risks that it could create, even when accounting for uncertainty. We conclude that quantitative causal analysis of risks is a preferable to qualitative assessments because it does not involve unjustified loss of information and is sound under the inferential use of risk results by management.

  14. Quantitative microbial risk assessment to estimate the health risk from exposure to noroviruses in polluted surface water in South Africa.

    Science.gov (United States)

    Van Abel, Nicole; Mans, Janet; Taylor, Maureen B

    2017-10-01

    This study assessed the risks posed by noroviruses (NoVs) in surface water used for drinking, domestic, and recreational purposes in South Africa (SA), using a quantitative microbial risk assessment (QMRA) methodology that took a probabilistic approach coupling an exposure assessment with four dose-response models to account for uncertainty. Water samples from three rivers were found to be contaminated with NoV GI (80-1,900 gc/L) and GII (420-9,760 gc/L) leading to risk estimates that were lower for GI than GII. The volume of water consumed and the probabilities of infection were lower for domestic (2.91 × 10 -8 to 5.19 × 10 -1 ) than drinking water exposures (1.04 × 10 -5 to 7.24 × 10 -1 ). The annual probabilities of illness varied depending on the type of recreational water exposure with boating (3.91 × 10 -6 to 5.43 × 10 -1 ) and swimming (6.20 × 10 -6 to 6.42 × 10 -1 ) being slightly greater than playing next to/in the river (5.30 × 10 -7 to 5.48 × 10 -1 ). The QMRA was sensitive to the choice of dose-response model. The risk of NoV infection or illness from contaminated surface water is extremely high in SA, especially for lower socioeconomic individuals, but is similar to reported risks from limited international studies.

  15. Microbial Health Risks Associated with Exposure to Stormwater in a Water Plaza

    Science.gov (United States)

    Sales-Ortells, Helena; Medema, Gertjan

    2015-04-01

    Climate change scenarios predict an increase of intense rainfall events in summer in Western Europe. Current urban drainage systems cannot cope with such intense precipitation events. Cities are constructing local stormwater storage facilities to prevent pluvial flooding. Combining storage with other functions, such as recreation, may lead to exposure to contaminants. This study assessed the microbial quality of rainwater collected in a water plaza in Rotterdam (The Netherlands) and the health risks associated with recreational exposure. The water plaza collects street run-off, diverges first flush to the sewer system and stores the rest of the run-off in the plaza as open water. A rain simulation experiment was conducted using drinking water from fire hydrants. The water flowed over the street pavement into the street gutters and into the square. Samples were collected from the first flush diverted water and from two different levels of the water plaza at different points in time. Campylobacter spp., Cryptosporidium, and Legionella pneumophila were the pathogens investigated, using quantitative PCR. Escherichia coli was quantified with culture methods to obtain information on faecal contamination. Microbial source tracking tools (human Bacteroides, avian Helicobacter and canine mitochondrial DNA, all analysed with quantitative PCR) were used to determine the origin (human, animal) of the intestinal pathogens. To estimate the health risks for children playing in the water plaza after a rain event, a quantitative microbial risk assessment model was built. The volume of water ingested was obtained from literature on similar locations (flooded streets). Published dose-response models were used to calculate the risk per event. Exposure frequency was estimated using weather data (precipitation events). E. coli concentrations were below the level for excellent bathing water in the EU Bathing Water Directive. Cryptosporidium was not found in any sample. Campylobacter spp

  16. A Bayesian kriging model for estimating residential exposure to air pollution of children living in a high-risk area in Italy

    Directory of Open Access Journals (Sweden)

    Ana M. Vicedo-Cabrera

    2013-11-01

    Full Text Available A core challenge in epidemiological analysis of the impact of exposure to air pollution on health is assessment of the individual exposure for subjects at risk. Geographical information systems (GIS-based pollution mapping, such as kriging, has become one of the main tools for evaluating individual exposure to ambient pollutants. We applied universal Bayesian kriging to estimate the residential exposure to gaseous air pollutants for children living in a high-risk area (Milazzo- Valle del Mela in Sicily, Italy. Ad hoc air quality monitoring campaigns were carried out: 12 weekly measurements for sulphur dioxide (SO2 and nitrogen dioxide (NO2 were obtained from 21 passive dosimeters located at each school yard of the study area from November 2007 to April 2008. Universal Bayesian kriging was performed to predict individual exposure levels at each residential address for all 6- to 12-years-old children attending primary school at various locations in the study area. Land use, altitude, distance to main roads and population density were included as covariates in the models. A large geographical heterogeneity in air quality was recorded suggesting complex exposure patterns. We obtained a predicted mean level of 25.78 (±10.61 μg/m3 of NO2 and 4.10 (±2.71 μg/m3 of SO2 at 1,682 children’s residential addresses, with a normalised root mean squared error of 28% and 25%, respectively. We conclude that universal Bayesian kriging approach is a useful tool for the assessment of realistic exposure estimates with regard to ambient pollutants at home addresses. Its prediction uncertainty is highly informative and can be used for both designing subsequent campaigns and for improved modelling of epidemiological associations.

  17. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance.

    Science.gov (United States)

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-03-10

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments.

  18. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension

    CSIR Research Space (South Africa)

    Abia

    2016-10-01

    Full Text Available of The Total Environment, 556-557, pp 1143-1151 Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension Akebe Luther King Abia a...

  19. Microbial Risk Assessment of Tidal−Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Hong Quan Nguyen

    2017-11-01

    Full Text Available Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively, while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., “living with floods”, in the Mekong Delta should also consider health risk issues.

  20. Microbial Risk Assessment of Tidal−Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam)

    Science.gov (United States)

    Huynh, Thi Thao Nguyen; Van der Steen, Peter

    2017-01-01

    Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., “living with floods”, in the Mekong Delta should also consider health risk issues. PMID:29189715

  1. Microbial Risk Assessment of Tidal-Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam).

    Science.gov (United States)

    Nguyen, Hong Quan; Huynh, Thi Thao Nguyen; Pathirana, Assela; Van der Steen, Peter

    2017-11-30

    Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., "living with floods", in the Mekong Delta should also consider health risk issues.

  2. Bayesian programming

    CERN Document Server

    Bessiere, Pierre; Ahuactzin, Juan Manuel; Mekhnacha, Kamel

    2013-01-01

    Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean

  3. A Bayesian model averaging approach for estimating the relative risk of mortality associated with heat waves in 105 U.S. cities.

    Science.gov (United States)

    Bobb, Jennifer F; Dominici, Francesca; Peng, Roger D

    2011-12-01

    Estimating the risks heat waves pose to human health is a critical part of assessing the future impact of climate change. In this article, we propose a flexible class of time series models to estimate the relative risk of mortality associated with heat waves and conduct Bayesian model averaging (BMA) to account for the multiplicity of potential models. Applying these methods to data from 105 U.S. cities for the period 1987-2005, we identify those cities having a high posterior probability of increased mortality risk during heat waves, examine the heterogeneity of the posterior distributions of mortality risk across cities, assess sensitivity of the results to the selection of prior distributions, and compare our BMA results to a model selection approach. Our results show that no single model best predicts risk across the majority of cities, and that for some cities heat-wave risk estimation is sensitive to model choice. Although model averaging leads to posterior distributions with increased variance as compared to statistical inference conditional on a model obtained through model selection, we find that the posterior mean of heat wave mortality risk is robust to accounting for model uncertainty over a broad class of models. © 2011, The International Biometric Society.

  4. A quantitative microbial risk assessment model for Listeria monocytogenes in RTE sandwiches

    DEFF Research Database (Denmark)

    Tirloni, E.; Stella, S.; de Knegt, Leonardo

    2018-01-01

    within each serving. Then, two dose-response models were alternatively applied: the first used a fixed r value for each of the three population groups, while the second considered a variable r value (lognormal distribution), taking into account the variability in strain virulence and different host...... subpopulations susceptibility. The stochastic model predicted zero cases for total population for both the substrates by using the fixed r approach, while 3 cases were expected when a higher variability (in virulence and susceptibility) was considered in the model; the number of cases increased to 45......A Quantitative Microbial Risk Assessment (QMRA) was performed to estimate the expected number of listeriosis cases due to the consumption, on the last day of shelf life, of 20 000 servings of multi-ingredient sandwiches produced by a medium scale food producer in Italy, by different population...

  5. Quantitative Microbial Risk Assessment for Escherichia coli O157:H7 in Fresh-Cut Lettuce.

    Science.gov (United States)

    Pang, Hao; Lambertini, Elisabetta; Buchanan, Robert L; Schaffner, Donald W; Pradhan, Abani K

    2017-02-01

    Leafy green vegetables, including lettuce, are recognized as potential vehicles for foodborne pathogens such as Escherichia coli O157:H7. Fresh-cut lettuce is potentially at high risk of causing foodborne illnesses, as it is generally consumed without cooking. Quantitative microbial risk assessments (QMRAs) are gaining more attention as an effective tool to assess and control potential risks associated with foodborne pathogens. This study developed a QMRA model for E. coli O157:H7 in fresh-cut lettuce and evaluated the effects of different potential intervention strategies on the reduction of public health risks. The fresh-cut lettuce production and supply chain was modeled from field production, with both irrigation water and soil as initial contamination sources, to consumption at home. The baseline model (with no interventions) predicted a mean probability of 1 illness per 10 million servings and a mean of 2,160 illness cases per year in the United States. All intervention strategies evaluated (chlorine, ultrasound and organic acid, irradiation, bacteriophage, and consumer washing) significantly reduced the estimated mean number of illness cases when compared with the baseline model prediction (from 11.4- to 17.9-fold reduction). Sensitivity analyses indicated that retail and home storage temperature were the most important factors affecting the predicted number of illness cases. The developed QMRA model provided a framework for estimating risk associated with consumption of E. coli O157:H7-contaminated fresh-cut lettuce and can guide the evaluation and development of intervention strategies aimed at reducing such risk.

  6. Middle East Desert Dust Exposure: Health Risks from Metals and Microbial Pathogens

    Science.gov (United States)

    Lyles, M. B.

    2014-12-01

    In the Middle East, dust and sand storms are a persistent problem and can deliver significant amounts of micro-particulates via inhalation into the mouth, nasal pharynx, & lungs due to the fine size and abundance of these micro-particulates. The chronic and acute health risks of this dust inhalation have not been well studied nor has the dust been effectively characterized as to its chemical composition, mineral content, or microbial flora. Scientific experiments were designed to study the Kuwaiti and Iraqi dust as to its physical, chemical, and biological characteristics and for its potential to cause adverse health effects. First, dust samples from different locations were collected and processed and exposure data collected. Initial chemical and physical characterization of each sample including particle size distribution and inorganic analysis was conducted, followed by characterization of biologic flora of the dust, including bacteria, fungi and viruses. Data indicates that the mineralized dust is composed of calcium carbonate over a matrix of metallic silicate nanocrystals containing a variety of trace and heavy metals constituting ~3 % of the PM10 particles by weight, of which ~1% is bioaccessible aluminum and reactive iron, each. The particles also consist of ~1% bioavailable aluminum and reactive iron each. Microbial analysis reveals a significant biodiversity of bacterial, fungi, and viruses of which ~30% are known pathogens. Of the microbes identified, several have hemolytic properties and most have significant antibiotic resistance. Viral analysis indicates a tremendous amount of virons with a large percent of RNA viruses. The level of total suspended particle mass at PM 10 along with environmental & physiological conditions present constitute an excessive exposure to micro-particulates including PM 2.5 and the potential for adverse health effects. Reported data on cell culture and animal studies have indicated a high level of toxicity to these dust

  7. Bayesian networks improve causal environmental ...

    Science.gov (United States)

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  8. Identification of the microbiological community in biogas systems and evaluation of microbial risks from gas usage

    Energy Technology Data Exchange (ETDEWEB)

    Vinneraas, Bjoern [Swedish University of Agricultural Sciences, Department of Biometry and Engineering, Box 7032, SE-750 07 Uppsala (Sweden); Schoenning, Caroline [Swedish Institute for Infectious Disease Control, Department of Parasitology, Mycology, Environmental Mirobiology and Water, SE-171 82 Solna (Sweden); Nordin, Annika [National Veterinary Institute, Department of Wild Life, Fish and Environment, SE-751 89 Uppsala (Sweden)

    2006-08-31

    The plans for introducing biogas produced from organic waste to the pipe system for natural gas has raised concerns about the risk of transmitting disease via the gas. To assess this risk, condensate water from gas pipes and gas from different parts of a biogas upgrading system were sampled and cultured for microbial content. On average, 10{sup 5} cfu ml{sup -1} were found in the condensate water throughout the system, while in the gas between 10 and 100 cfu m{sup -3} were found. The microorganisms were subjected to further identification and found to represent a wide variety, e.g. fungi and spore-forming and non-spore-forming bacteria, including species such as Enterobacteriaceae. The number of microorganisms found in the biogas corresponded to the densities in sampled natural gas, which also held 10-100 cfu m{sup -3}. Since no pathogens were identified and since the exposure to gas from e.g. cookers and refuelling of cars may only result in the inhalation of small volumes of gas, the risk of spreading disease via biogas was judged to be very low. (author)

  9. Bayesian Graphical Models

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...

  10. Bayesian geostatistical modelling of malaria and lymphatic filariasis infections in Uganda: predictors of risk and geographical patterns of co-endemicity

    Directory of Open Access Journals (Sweden)

    Pedersen Erling M

    2011-10-01

    Full Text Available Abstract Background In Uganda, malaria and lymphatic filariasis (causative agent Wuchereria bancrofti are transmitted by the same vector species of Anopheles mosquitoes, and thus are likely to share common environmental risk factors and overlap in geographical space. In a comprehensive nationwide survey in 2000-2003 the geographical distribution of W. bancrofti was assessed by screening school-aged children for circulating filarial antigens (CFA. Concurrently, blood smears were examined for malaria parasites. In this study, the resultant malariological data are analysed for the first time and the CFA data re-analysed in order to identify risk factors, produce age-stratified prevalence maps for each infection, and to define the geographical patterns of Plasmodium sp. and W. bancrofti co-endemicity. Methods Logistic regression models were fitted separately for Plasmodium sp. and W. bancrofti within a Bayesian framework. Models contained covariates representing individual-level demographic effects, school-level environmental effects and location-based random effects. Several models were fitted assuming different random effects to allow for spatial structuring and to capture potential non-linearity in the malaria- and filariasis-environment relation. Model-based risk predictions at unobserved locations were obtained via Bayesian predictive distributions for the best fitting models. Maps of predicted hyper-endemic malaria and filariasis were furthermore overlaid in order to define areas of co-endemicity. Results Plasmodium sp. parasitaemia was found to be highly endemic in most of Uganda, with an overall population adjusted parasitaemia risk of 47.2% in the highest risk age-sex group (boys 5-9 years. High W. bancrofti prevalence was predicted for a much more confined area in northern Uganda, with an overall population adjusted infection risk of 7.2% in the highest risk age-group (14-19 year olds. Observed overall prevalence of individual co

  11. Evaluation of the spatial patterns and risk factors, including backyard pigs, for classical swine fever occurrence in Bulgaria using a Bayesian model

    Directory of Open Access Journals (Sweden)

    Beatriz Martínez-López

    2014-05-01

    Full Text Available The spatial pattern and epidemiology of backyard pig farming and other low bio-security pig production systems and their role in the occurrence of classical swine fever (CSF is described and evaluated. A spatial Bayesian model was used to explore the risk factors, including human demographics, socioeconomic and environmental factors. The analyses were performed for Bulgaria, which has a large number of backyard farms (96% of all pig farms in the country are classified as backyard farms, and it is one of the countries for which both backyard pig and farm counts were available. Results reveal that the high-risk areas are typically concentrated in areas with small family farms, high numbers of outgoing pig shipments and low levels of personal consumption (i.e. economically deprived areas. Identification of risk factors and high-risk areas for CSF will allow to targeting risk-based surveillance strategies leading to prevention, control and, ultimately, elimination of the disease in Bulgaria and other countries with similar socio-epidemiological conditions.

  12. Endogenous microbial contamination of melons (Cucumis melo) from international trade: an underestimated risk for the consumer?

    Science.gov (United States)

    Esteban-Cuesta, Irene; Drees, Nathalie; Ulrich, Sebastian; Stauch, Peter; Sperner, Brigitte; Schwaiger, Karin; Gareis, Manfred; Gottschalk, Christoph

    2018-03-31

    Fruits and vegetables have increasingly been related to foodborne outbreaks. Besides surface contamination, a possible internalization of microorganisms into edible parts of plants during growth has already been observed. To examine an actual risk for the consumer, microbial contamination of the rind and pulp of 147 muskmelons from international trade was assessed using cultural and biochemical methods, polymerase chain reaction and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. One hundred percent of the rind samples [3.69-8.92 log colony forming units (CFU) g -1 ] and 89.8% of the pulp samples (maximum load 3.66 log CFU g -1 ) were microbiologically contaminated. Among the 432 pulp isolates, opportunistic and potentially pathogenic bacteria were identified, mainly Staphylococcus spp. (48.9%), Clostridium spp. (42.9%) and Enterobacteriaceae (27.9%). Salmonella spp., Escherichia coli and isolates of the Bacillus cereus group were found on the rind (1.4%, 0.7% and 42.9%, respectively) and in the pulp (0.7%, 1.4% and 4.7%). Clostridium perfringens was isolated from the rind of seven melons. The present study revealed a regularly occurring internal contamination of melons. Possible health risks for consumers because of an occurrence of microorganisms in melon pulp should be considered in future food safety assessments. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Microbial Diversity and Toxin Risk in Tropical Freshwater Reservoirs of Cape Verde.

    Science.gov (United States)

    Semedo-Aguiar, Ana P; Pereira-Leal, Jose B; Leite, Ricardo B

    2018-05-05

    The Cape Verde islands are part of the African Sahelian arid belt that possesses an erratic rain pattern prompting the need for water reservoirs, which are now critical for the country’s sustainability. Worldwide, freshwater cyanobacterial blooms are increasing in frequency due to global climate change and the eutrophication of water bodies, particularly in reservoirs. To date, there have been no risk assessments of cyanobacterial toxin production in these man-made structures. We evaluated this potential risk using 16S rRNA gene amplicon sequencing and full metagenome sequencing in freshwater reservoirs of Cape Verde. Our analysis revealed the presence of several potentially toxic cyanobacterial genera in all sampled reservoirs. Faveta potentially toxic and bloom-forming Microcystis sp., dominated our samples, while a Cryptomonas green algae and Gammaproteobacteria dominated Saquinho and Poilão reservoirs. We reconstructed and assembled the Microcystis genome, extracted from the metagenome of bulk DNA from Faveta water. Phylogenetic analysis of Microcystis cf. aeruginosa CV01’s genome revealed its close relationship with other Microcystis genomes, as well as clustering with other continental African strains, suggesting geographical coherency. In addition, it revealed several clusters of known toxin-producing genes. This survey reinforces the need to better understand the country’s microbial ecology as a whole of water reservoirs on the rise.

  14. Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk.

    Directory of Open Access Journals (Sweden)

    Evangelina López de Maturana

    Full Text Available The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL, a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.

  15. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  16. Data in support of a central role of plasminogen activator inhibitor-2 polymorphism in recurrent cardiovascular disease risk in the setting of high HDL cholesterol and C-reactive protein using Bayesian network modeling

    Directory of Open Access Journals (Sweden)

    James P. Corsetti

    2016-09-01

    Full Text Available Data is presented that was utilized as the basis for Bayesian network modeling of influence pathways focusing on the central role of a polymorphism of plasminogen activator inhibitor-2 (PAI-2 on recurrent cardiovascular disease risk in patients with high levels of HDL cholesterol and C-reactive protein (CRP as a marker of inflammation, “Influences on Plasminogen Activator Inhibitor-2 Polymorphism-Associated Recurrent Cardiovascular Disease Risk in Patients with High HDL Cholesterol and Inflammation” (Corsetti et al., 2016; [1]. The data consist of occurrence of recurrent coronary events in 166 post myocardial infarction patients along with 1. clinical data on gender, race, age, and body mass index; 2. blood level data on 17 biomarkers; and 3. genotype data on 53 presumptive CVD-related single nucleotide polymorphisms. Additionally, a flow diagram of the Bayesian modeling procedure is presented along with Bayesian network subgraphs (root nodes to outcome events utilized as the data from which PAI-2 associated influence pathways were derived (Corsetti et al., 2016; [1]. Keywords: Recurrent cardiovascular disease risk, Pathophysiology, Plasminogen activator inhibitor-2, Bayesian network

  17. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  18. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  19. Bovine and Caprine Brucellosis in Bangladesh: Bayesian evaluation of four serological tests, true prevalence, and associated risk factors in household animals.

    Science.gov (United States)

    Ahasan, Md Shamim; Rahman, Md Siddiqur; Rahman, A K M Anisur; Berkvens, Dirk

    2017-01-01

    A cross-sectional study was carried out to estimate the true prevalence of Brucella spp. and identify allied risk factors/indicators associated with brucellosis in the Dinajpur and Mymensingh districts of Bangladesh. A total 320 stratified random blood samples were collected and tested in parallel for Brucella antibodies using Rose Bengal (RBT), slow agglutination (SAT), and indirect and competitive ELISA. In addition, a structured questionnaire was administered to each household herd owner to gather information regarding potential risk factors. Both univariate and multivariate logistic regression analyses were used to identify potential risk factors or indicators at animal level. A Bayesian approach was used to estimate the true prevalence of brucellosis along with the test performances (Se and Sp). The estimated animal level true prevalence in cattle was 9.70 % (95 % CPI 5.0-16 %) and in goat 6.3 % (95 % CPI 2.8-11.0 %). The highest sensitivity was achieved by SAT ranges from 69.6 to 78.9 %, and iELISA was found to be more specific (97.4 to 98.8 %) in comparison with other tests. On the other hand, a significant level of (P tests can be recommended to apply alone for the diagnosis of bovine and caprine brucellosis.

  20. Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer's disease.

    Science.gov (United States)

    Li, Rui; Yu, Jing; Zhang, Shouzi; Bao, Feng; Wang, Pengyun; Huang, Xin; Li, Juan

    2013-01-01

    Alzheimer's disease (AD) is associated with abnormal functioning of the default mode network (DMN). Functional connectivity (FC) changes to the DMN have been found in patients with amnestic mild cognitive impairment (aMCI), which is the prodromal stage of AD. However, whether or not aMCI also alters the effective connectivity (EC) of the DMN remains unknown. We employed a combined group independent component analysis (ICA) and Bayesian network (BN) learning approach to resting-state functional MRI (fMRI) data from 17 aMCI patients and 17 controls, in order to establish the EC pattern of DMN, and to evaluate changes occurring in aMCI. BN analysis demonstrated heterogeneous regional convergence degree across DMN regions, which were organized into two closely interacting subsystems. Compared to controls, the aMCI group showed altered directed connectivity weights between DMN regions in the fronto-parietal, temporo-frontal, and temporo-parietal pathways. The aMCI group also exhibited altered regional convergence degree in the right inferior parietal lobule. Moreover, we found EC changes in DMN regions in aMCI were correlated with regional FC levels, and the connectivity metrics were associated with patients' cognitive performance. This study provides novel sights into our understanding of the functional architecture of the DMN and adds to a growing body of work demonstrating the importance of the DMN as a mechanism of aMCI.

  1. Comparison of recreational health risks associated with surfing and swimming in dry weather and post-storm conditions at Southern California beaches using quantitative microbial risk assessment (QMRA).

    Science.gov (United States)

    Tseng, Linda Y; Jiang, Sunny C

    2012-05-01

    Southern California is an increasingly urbanized hotspot for surfing, thus it is of great interest to assess the human illness risks associated with this popular ocean recreational water sport from exposure to fecal bacteria contaminated coastal waters. Quantitative microbial risk assessments were applied to eight popular Southern California beaches using readily available enterococcus and fecal coliform data and dose-response models to compare health risks associated with surfing during dry weather and storm conditions. The results showed that the level of gastrointestinal illness risks from surfing post-storm events was elevated, with the probability of exceeding the US EPA health risk guideline up to 28% of the time. The surfing risk was also elevated in comparison with swimming at the same beach due to ingestion of greater volume of water. The study suggests that refinement of dose-response model, improving monitoring practice and better surfer behavior surveillance will improve the risk estimation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. FDA-iRISK--a comparative risk assessment system for evaluating and ranking food-hazard pairs: case studies on microbial hazards.

    Science.gov (United States)

    Chen, Yuhuan; Dennis, Sherri B; Hartnett, Emma; Paoli, Greg; Pouillot, Régis; Ruthman, Todd; Wilson, Margaret

    2013-03-01

    Stakeholders in the system of food safety, in particular federal agencies, need evidence-based, transparent, and rigorous approaches to estimate and compare the risk of foodborne illness from microbial and chemical hazards and the public health impact of interventions. FDA-iRISK (referred to here as iRISK), a Web-based quantitative risk assessment system, was developed to meet this need. The modeling tool enables users to assess, compare, and rank the risks posed by multiple food-hazard pairs at all stages of the food supply system, from primary production, through manufacturing and processing, to retail distribution and, ultimately, to the consumer. Using standard data entry templates, built-in mathematical functions, and Monte Carlo simulation techniques, iRISK integrates data and assumptions from seven components: the food, the hazard, the population of consumers, process models describing the introduction and fate of the hazard up to the point of consumption, consumption patterns, dose-response curves, and health effects. Beyond risk ranking, iRISK enables users to estimate and compare the impact of interventions and control measures on public health risk. iRISK provides estimates of the impact of proposed interventions in various ways, including changes in the mean risk of illness and burden of disease metrics, such as losses in disability-adjusted life years. Case studies for Listeria monocytogenes and Salmonella were developed to demonstrate the application of iRISK for the estimation of risks and the impact of interventions for microbial hazards. iRISK was made available to the public at http://irisk.foodrisk.org in October 2012.

  3. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection?

    Science.gov (United States)

    Horrocks, Nicholas Pc; Hine, Kathryn; Hegemann, Arne; Ndithia, Henry K; Shobrak, Mohammed; Ostrowski, Stéphane; Williams, Joseph B; Matson, Kevin D; Tieleman, B Irene

    2014-01-01

    All bird eggs are exposed to microbes in the environment, which if transmitted to the developing embryo, could cause hatching failure. However, the risk of trans-shell infection varies with environmental conditions and is higher for eggs laid in wetter environments. This might relate to generally higher microbial abundances and diversity in more humid environments, including on the surface of eggshells, as well as the need for moisture to facilitate microbial penetration of the eggshell. To protect against microbial infection, the albumen of avian eggs contains antimicrobial proteins, including lysozyme and ovotransferrin. We tested whether lysozyme and ovotransferrin activities varied in eggs of larks (Alaudidae) living along an arid-mesic gradient of environmental aridity, which we used as a proxy for risk of trans-shell infection. Contrary to expectations, lysozyme activity was highest in eggs from hotter, more arid locations, where we predicted the risk of trans-shell infection would be lower. Ovotransferrin concentrations did not vary with climatic factors. Temperature was a much better predictor of antimicrobial protein activity than precipitation, a result inconsistent with studies stressing the importance of moisture for trans-shell infection. Our study raises interesting questions about the links between temperature and lysozyme activity in eggs, but we find no support for the hypothesis that antimicrobial protein deposition is higher in eggs laid in wetter environments.

  4. Bayesian Mediation Analysis

    OpenAIRE

    Yuan, Ying; MacKinnon, David P.

    2009-01-01

    This article proposes Bayesian analysis of mediation effects. Compared to conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian mediation analysis, inference is straightforward and exact, which makes it appealing for studies with small samples. Third, the Bayesian approach is conceptua...

  5. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    Science.gov (United States)

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  6. Bayesian benefits with JASP

    NARCIS (Netherlands)

    Marsman, M.; Wagenmakers, E.-J.

    2017-01-01

    We illustrate the Bayesian approach to data analysis using the newly developed statistical software program JASP. With JASP, researchers are able to take advantage of the benefits that the Bayesian framework has to offer in terms of parameter estimation and hypothesis testing. The Bayesian

  7. Linking quantitative microbial risk assessment and epidemiological data: informing safe drinking water trials in developing countries.

    Science.gov (United States)

    Enger, Kyle S; Nelson, Kara L; Clasen, Thomas; Rose, Joan B; Eisenberg, Joseph N S

    2012-05-01

    Intervention trials are used extensively to assess household water treatment (HWT) device efficacy against diarrheal disease in developing countries. Using these data for policy, however, requires addressing issues of generalizability (relevance of one trial in other contexts) and systematic bias associated with design and conduct of a study. To illustrate how quantitative microbial risk assessment (QMRA) can address water safety and health issues, we analyzed a published randomized controlled trial (RCT) of the LifeStraw Family Filter in the Congo. The model accounted for bias due to (1) incomplete compliance with filtration, (2) unexpected antimicrobial activity by the placebo device, and (3) incomplete recall of diarrheal disease. Effectiveness was measured using the longitudinal prevalence ratio (LPR) of reported diarrhea. The Congo RCT observed an LPR of 0.84 (95% CI: 0.61, 1.14). Our model predicted LPRs, assuming a perfect placebo, ranging from 0.50 (2.5-97.5 percentile: 0.33, 0.77) to 0.86 (2.5-97.5 percentile: 0.68, 1.09) for high (but not perfect) and low (but not zero) compliance, respectively. The calibration step provided estimates of the concentrations of three pathogen types (modeled as diarrheagenic E. coli, Giardia, and rotavirus) in drinking water, consistent with the longitudinal prevalence of reported diarrhea measured in the trial, and constrained by epidemiological data from the trial. Use of a QMRA model demonstrated the importance of compliance in HWT efficacy, the need for pathogen data from source waters, the effect of quantifying biases associated with epidemiological data, and the usefulness of generalizing the effectiveness of HWT trials to other contexts. © 2012 American Chemical Society

  8. QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment.

    Science.gov (United States)

    Schijven, Jack; Derx, Julia; de Roda Husman, Ana Maria; Blaschke, Alfred Paul; Farnleitner, Andreas H

    2015-09-01

    Given the complex hydrologic dynamics of water catchments and conflicts between nature protection and public water supply, models may help to understand catchment dynamics and evaluate contamination scenarios and may support best environmental practices and water safety management. A catchment model can be an educative tool for investigating water quality and for communication between parties with different interests in the catchment. This article introduces an interactive computational tool, QMRAcatch, that was developed to simulate concentrations in water resources of , a human-associated microbial source tracking (MST) marker, enterovirus, norovirus, , and as target microorganisms and viruses (TMVs). The model domain encompasses a main river with wastewater discharges and a floodplain with a floodplain river. Diffuse agricultural sources of TMVs that discharge into the main river are not included in this stage of development. The floodplain river is fed by the main river and may flood the plain. Discharged TMVs in the river are subject to dilution and temperature-dependent degradation. River travel times are calculated using the Manning-Gauckler-Strickler formula. Fecal deposits from wildlife, birds, and visitors in the floodplain are resuspended in flood water, runoff to the floodplain river, or infiltrate groundwater. Fecal indicator and MST marker data facilitate calibration. Infection risks from exposure to the pathogenic TMVs by swimming or drinking water consumption are calculated, and the required pathogen removal by treatment to meet a health-based quality target can be determined. Applicability of QMRAcatch is demonstrated by calibrating the tool for a study site at the River Danube near Vienna, Austria, using field TMV data, including a sensitivity analysis and evaluation of the model outcomes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Assessment of microbial infection risks posed by ingestion of water during domestic water use and full-contact recreation in a mid-southern African region

    CSIR Research Space (South Africa)

    Steyn, M

    2004-01-01

    Full Text Available -adverse-effect-level approach (OAELA) and a quantitative microbial risk assessment (QMRA). The OAELA was based on the occurrence of E coli in the study waters to determine the possible risk of infection and the QMRA probable risk of infection by salmonellae. The WRQMRA...

  10. Advance Liquid Metal Reactor Discrete Dynamic Event Tree/Bayesian Network Analysis and Incident Management Guidelines (Risk Management for Sodium Fast Reactors)

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Groth, Katrina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self-correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the system's design to manage the accident. Inherently and passively safe designs are laudable, but nonetheless extreme boundary conditions can interfere with the design attributes which facilitate inherent safety, thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayesian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The authors would like to acknowledge the U.S. Department of Energy's Office of Nuclear Energy for funding this research through Work Package SR-14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at Argonne National Laboratory, Oak Ridge National Laboratory, and Idaho National Laboratory for their continue d contributions to the advanced reactor PRA mission area.

  11. Quantification of microbial risks to human health caused by waterborne viruses and bacteria in an urban slum.

    Science.gov (United States)

    Katukiza, A Y; Ronteltap, M; van der Steen, P; Foppen, J W A; Lens, P N L

    2014-02-01

    To determine the magnitude of microbial risks from waterborne viruses and bacteria in Bwaise III in Kampala (Uganda), a typical slum in Sub-Saharan Africa. A quantitative microbial risk assessment (QMRA) was carried out to determine the magnitude of microbial risks from waterborne pathogens through various exposure pathways in Bwaise III in Kampala (Uganda). This was based on the concentration of Escherichia coli O157:H7, Salmonella spp., rotavirus (RV) and human adenoviruses F and G (HAdV) in spring water, tap water, surface water, grey water and contaminated soil samples. The total disease burden was 680 disability-adjusted life years (DALYs) per 1000 persons per year. The highest disease burden contribution was caused by exposure to surface water open drainage channels (39%) followed by exposure to grey water in tertiary drains (24%), storage containers (22%), unprotected springs (8%), contaminated soil (7%) and tap water (0.02%). The highest percentage of the mean estimated infections was caused by E. coli O157:H7 (41%) followed by HAdV (32%), RV (20%) and Salmonella spp. (7%). In addition, the highest infection risk was 1 caused by HAdV in surface water at the slum outlet, while the lowest infection risk was 2.71 × 10(-6) caused by E. coli O157:H7 in tap water. The results show that the slum environment is polluted, and the disease burden from each of the exposure routes in Bwaise III slum, with the exception of tap water, was much higher than the WHO reference level of tolerable risk of 1 × 10(-6) DALYs per person per year. The findings of this study provide guidance to governments, local authorities and nongovernment organizations in making decisions on measures to reduce infection risk and the disease burden by 10(2) to 10(5) depending on the source of exposure to achieve the desired health impacts. The infection risk may be reduced by sustainable management of human excreta and grey water, coupled with risk communication during hygiene awareness

  12. Application of Bayesian network and multi-criteria decision analysis to risk-based design of chemical plants

    NARCIS (Netherlands)

    Khakzad Rostami, N.; Reniers, G.L.L.M.E.

    2016-01-01

    Fires and explosions in chemical plants are still among the major accidents threatening human lives and causing huge asset losses. Although might not completely be eliminated, the risks of such accidents can be reduced by allocating safety measures, applying inherently safer design (ISD) methods,

  13. Bayesian Algorithm Implementation in a Real Time Exposure Assessment Model on Benzene with Calculation of Associated Cancer Risks

    OpenAIRE

    Sarigiannis, Dimosthenis A.; Karakitsios, Spyros P.; Gotti, Alberto; Papaloukas, Costas L.; Kassomenos, Pavlos A.; Pilidis, Georgios A.

    2009-01-01

    The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based...

  14. Geographical Inequalities and Social and Environmental Risk Factors for Under-Five Mortality in Ghana in 2000 and 2010: Bayesian Spatial Analysis of Census Data.

    Science.gov (United States)

    Arku, Raphael E; Bennett, James E; Castro, Marcia C; Agyeman-Duah, Kofi; Mintah, Samilia E; Ware, James H; Nyarko, Philomena; Spengler, John D; Agyei-Mensah, Samuel; Ezzati, Majid

    2016-06-01

    Under-five mortality is declining in Ghana and many other countries. Very few studies have measured under-five mortality-and its social and environmental risk factors-at fine spatial resolutions, which is relevant for policy purposes. Our aim was to estimate under-five mortality and its social and environmental risk factors at the district level in Ghana. We used 10% random samples of Ghana's 2000 and 2010 National Population and Housing Censuses. We applied indirect demographic methods and a Bayesian spatial model to the information on total number of children ever born and children surviving to estimate under-five mortality (probability of dying by 5 y of age, 5q0) for each of Ghana's 110 districts. We also used the census data to estimate the distributions of households or persons in each district in terms of fuel used for cooking, sanitation facility, drinking water source, and parental education. Median district 5q0 declined from 99 deaths per 1,000 live births in 2000 to 70 in 2010. The decline ranged from 40% in southern districts, where it had been lower in 2000, exacerbating existing inequalities. Primary education increased in men and women, and more households had access to improved water and sanitation and cleaner cooking fuels. Higher use of liquefied petroleum gas for cooking was associated with lower 5q0 in multivariate analysis. Under-five mortality has declined in all of Ghana's districts, but the cross-district inequality in mortality has increased. There is a need for additional data, including on healthcare, and additional environmental and socioeconomic measurements, to understand the reasons for the variations in mortality levels and trends.

  15. Geographical Inequalities and Social and Environmental Risk Factors for Under-Five Mortality in Ghana in 2000 and 2010: Bayesian Spatial Analysis of Census Data.

    Directory of Open Access Journals (Sweden)

    Raphael E Arku

    2016-06-01

    Full Text Available Under-five mortality is declining in Ghana and many other countries. Very few studies have measured under-five mortality-and its social and environmental risk factors-at fine spatial resolutions, which is relevant for policy purposes. Our aim was to estimate under-five mortality and its social and environmental risk factors at the district level in Ghana.We used 10% random samples of Ghana's 2000 and 2010 National Population and Housing Censuses. We applied indirect demographic methods and a Bayesian spatial model to the information on total number of children ever born and children surviving to estimate under-five mortality (probability of dying by 5 y of age, 5q0 for each of Ghana's 110 districts. We also used the census data to estimate the distributions of households or persons in each district in terms of fuel used for cooking, sanitation facility, drinking water source, and parental education. Median district 5q0 declined from 99 deaths per 1,000 live births in 2000 to 70 in 2010. The decline ranged from 40% in southern districts, where it had been lower in 2000, exacerbating existing inequalities. Primary education increased in men and women, and more households had access to improved water and sanitation and cleaner cooking fuels. Higher use of liquefied petroleum gas for cooking was associated with lower 5q0 in multivariate analysis.Under-five mortality has declined in all of Ghana's districts, but the cross-district inequality in mortality has increased. There is a need for additional data, including on healthcare, and additional environmental and socioeconomic measurements, to understand the reasons for the variations in mortality levels and trends.

  16. Microbial risk in wastewater irrigated lettuce: comparing Escherichia coli contamination from an experimental site with a laboratory approach.

    Science.gov (United States)

    Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J

    This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.

  17. A quantitative microbial risk assessment for meatborne Toxoplasma gondii infection in The Netherlands

    NARCIS (Netherlands)

    Opsteegh, M.; Prickaerts, S.; Frankena, K.; Evers, E.G.

    2011-01-01

    Toxoplasma gondii is an important foodborne pathogen, and the cause of a high disease burden due to congenital toxoplasmosis in The Netherlands. The aim of this study was to quantify the relative contribution of sheep, beef and pork products to human T. gondii infections by Quantitative Microbial

  18. Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species

    Science.gov (United States)

    Kurt O. Reinhart; Alejandro A. Royo; Stacie A. Kageyama; Keith. Clay

    2010-01-01

    Canopy disturbances such as windthrowevents have obvious impacts on forest structure and composition aboveground, but changes in soil microbial communities and the consequences of these changes are less understood.We characterized the densities of a soil-borne pathogenic oomycete (Pythium) and a common saprotrophic zygomycete (Mortierella...

  19. Occurrence and quantitative microbial risk assessment of Cryptosporidium and Giardia in soil and air samples

    Directory of Open Access Journals (Sweden)

    Ana Paola Balderrama-Carmona

    2014-09-01

    Conclusions: Soil and air inhalation and/or ingestion are important vehicles for these parasites. To our knowledge, the results obtained in the present study represent the first QMRAs for cryptosporidiosis and giardiasis due to soil and air inhalation/ingestion in Mexico. In addition, this is the first evidence of the microbial air quality around these parasites in rural zones.

  20. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending

    Science.gov (United States)

    Chaudhry, Rabia M.; Hamilton, Kerry A.; Haas, Charles N.; Nelson, Kara L.

    2017-01-01

    Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0–100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0–100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10−4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10−4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR. PMID:28608808

  1. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending

    Directory of Open Access Journals (Sweden)

    Rabia M. Chaudhry

    2017-06-01

    Full Text Available Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water with four hypothetical Direct Potable Reuse (DPR scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0–100% treated wastewater effluent were assessed. Additionally, we assessed risks for different blending ratios (0–100% surface water blended into advanced-treated DPR water when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10−4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10−4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.

  2. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending.

    Science.gov (United States)

    Chaudhry, Rabia M; Hamilton, Kerry A; Haas, Charles N; Nelson, Kara L

    2017-06-13

    Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium , and Salmonella . Consumer microbial risks of surface source water quality (impacted by 0-100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0-100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10 -4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10 -4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.

  3. Bayesian analysis of rare events

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Daniel, E-mail: straub@tum.de; Papaioannou, Iason; Betz, Wolfgang

    2016-06-01

    In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.

  4. Understanding Computational Bayesian Statistics

    CERN Document Server

    Bolstad, William M

    2011-01-01

    A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic

  5. Bayesian statistics an introduction

    CERN Document Server

    Lee, Peter M

    2012-01-01

    Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as wel

  6. Computational framework for risk-based planning of inspections, maintenance, and condition monitoring using discrete Bayesian networks

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; Sørensen, John Dalsgaard

    2018-01-01

    This paper presents a computational framework for risk-based planning of inspections and repairs for deteriorating components. Two distinct types of decision rules are used to model decisions: simple decision rules that depend on constants or observed variables (e.g. inspection outcome...... expecte d life-cycle costs. For advanced decision rules, simulations are performed to estimate the expected costs, and dBNs are used within the simulations for decision-making. Information from inspections and condition monitoring are included if available. An example in the paper demonstrates...... the framework and the implemented strategies and decision rules, including various types of condition-based maintenance. The strategies using advanced decision rules lead to reduced costs compared to the simple decision rules when condition monitoring is applied, and the value of condition monitoring...

  7. Reduced neonatal regulatory T cell response to microbial stimuli associates with subsequent eczema in high-risk infants.

    Science.gov (United States)

    Ismail, Intan H; Boyle, Robert J; Mah, Li-Jeen; Licciardi, Paul V; Tang, Mimi L K

    2014-11-01

    Regulatory T cells (Treg) play an essential role in early immune programming and shaping the immune response towards a pro-allergic or tolerant state. We evaluated cord blood Treg and cytokine responses to microbial and non-microbial stimuli in infants at high risk of allergic disease and their associations with development of allergic disease in the first year. Cord blood mononuclear cells from 72 neonates were cultured with toll-like receptors (TLR2) ligands: lipoteichoic acid (LTA) and heat-killed Lactobacillus rhamnosus GG (HKL); TLR4 ligand: lipopolysaccharide (LPS); ovalbumin (OVA); anti-CD3; or media for 48 h. Treg numbers and Treg cytokines were assessed in relation to allergic disease outcomes during the first year of life (eczema and atopic sensitization). Infants with eczema (n = 24) had reduced percentages of FoxP3(hi)CD25(hi) Treg in LTA (p = 0.01, adj p = 0.005) and HKL (p = 0.04, adj p = 0.02) stimulated cultures as well as reduced IL-10 (p = 0.01) production following HKL stimulation compared to those without eczema (n = 48). No differences in Treg or cytokine responses to LPS, OVA or anti-CD3 were seen. Infants who developed sensitization had lower percentages of Treg following TLR2 stimulation (but not other stimuli) compared to non-sensitized infants. High-risk children who develop allergic disease in the first year of life have deficient Treg responses to microbial stimuli but not allergen from the time of birth, which may contribute to failure of immune tolerance development in infancy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Quantitative microbial risk assessment for spray irrigation of dairy manure based on an empirical fate and transport model

    Science.gov (United States)

    Burch, Tucker R; Spencer, Susan K.; Stokdyk, Joel; Kieke, Burney A; Larson, Rebecca A; Firnstahl, Aaron; Rule, Ana M; Borchardt, Mark A.

    2017-01-01

    BACKGROUND: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well understood. OBJECTIVES: We aimed to a) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and b) determine which factors (e.g., distance, weather conditions) have the greatest influence on risk estimates. METHODS: We sampled downwind air concentrations of manure-borne fecal indicators and zoonotic pathogens during 21 full-scale dairy manure irri- gation events at three farms. We fit these data to hierarchical empirical models and used model outputs in a quantitative microbial risk assessment (QMRA) to estimate risk [probability of acute gastrointestinal illness (AGI)] for individuals exposed to spray-irrigated dairy manure containing Campylobacter jejuni, enterohemorrhagic Escherichia coli (EHEC), or Salmonella spp. RESULTS: Median risk estimates from Monte Carlo simulations ranged from 10−5 to 10−2 and decreased with distance from the source. Risk estimates for Salmonella or EHEC-related AGI were most sensitive to the assumed level of pathogen prevalence in dairy manure, while risk estimates for C. jejuni were not sensitive to any single variable. Airborne microbe concentrations were negatively associated with distance and positively associated with wind speed, both of which were retained in models as a significant predictor more often than relative humidity, solar irradiation, or temperature. CONCLUSIONS: Our model-based estimates suggest that reducing pathogen prevalence and concentration in source manure would reduce the risk of AGI from exposure to manure irrigation, and that increasing the distance from irrigated manure (i.e., setbacks) and limiting irrigation to times of low wind speed may also reduce risk.

  9. Microbial spoilage, instability risk of antacid suspension in the presence of commonly used preservative system.

    Science.gov (United States)

    Khan, Jamshaid Ali; Khan, Imran Ullah; Iqbal, Zafar; Nasir, Fazli; Muhammad, Salar; Hannan, Peer Abdul; Ullah, Irfan

    2015-09-01

    Manifestation of microbial spoilage of any product by bacteria and to assess the effectiveness of the anti-microbial preservatives (parabens) used for the prevention and stability purpose. The aim of the present work is to study the effectiveness of preservatives used in the antacid suspensions and to analyze the effect of microbial growth on the quality of respective antacid suspensions. Samples of various antacid suspensions were randomly collected from local market and Government hospital pharmacies. Three different antacid formulations were prepared in the laboratory. All the formulations were preliminarily evaluated on the basis of organoleptic characteristics, pH, viscosity and assay. Efficacy of the preservative system in suspension formulation was determined by inoculating the samples in its final container, with specific strains of bacteria i.e. Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 6538, taking samples from the inoculated preparation at specified intervals of time i.e. 0 time, 07 days, 14 days and 28 days, growing it on nutrient agar medium and colony forming units (CFUs) were scored by plate count. At the same time the samples were also subjected to qualitative and quantitative testing. The decrease in CFU and alteration in assay, pH and viscosity was observed in all the formulations except formulation M2 and F3 that showed stability throughout the study period.

  10. 基于区间贝叶斯模型的科技项目风险决策%Risk Decision Making of Science and Technology Project Based on Interval Bayesian Model

    Institute of Scientific and Technical Information of China (English)

    董正国; 王凭慧

    2012-01-01

    Because the science and technology project involves an innovative process with high difficulty and high risk,its risk decision making and risk controlling is regarded as the most important part among the whole project management.As it is difficult to obtain the integrated and accurate information in risk decision making and risk controlling process and most of the data are interval,the conventional Bayesian model cannot deal with this issue.In this paper,the theory of interval data is introduced into the traditional Bayesian model,combining with the theory of possibility,and then the traditional Bayesian model is generalized to the interval data condition.Therefore,this method can be used to deal with the risk decision problem of the technology projects.The analysis of one example shows that this interval Bayesian model commendably can solve the risk decision making of technology project.The content of this study provides a certain reference for the further research in this area.%科技项目是一个高难度和高风险的创新过程,其风险决策与控制是整个项目管理的一项重要内容。鉴于该过程中往往缺乏准确的信息,出现较多的区间数据,利用传统的贝叶斯模型很难对其进行处理。本文运用区间数理论将传统的贝叶斯风险决策模型推广应用到了区间不确定型问题,并结合可能度理论很好地解决了科技项目的风险决策问题。通过具体的实例分析,取得了很好地效果,证实了该理论模型应用于科技项目风险决策的可行性,给相关领域的研究工作提供了参考。

  11. Bayesian Mediation Analysis

    Science.gov (United States)

    Yuan, Ying; MacKinnon, David P.

    2009-01-01

    In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…

  12. The Bayesian Score Statistic

    NARCIS (Netherlands)

    Kleibergen, F.R.; Kleijn, R.; Paap, R.

    2000-01-01

    We propose a novel Bayesian test under a (noninformative) Jeffreys'priorspecification. We check whether the fixed scalar value of the so-calledBayesian Score Statistic (BSS) under the null hypothesis is aplausiblerealization from its known and standardized distribution under thealternative. Unlike

  13. Bayesian Probability Theory

    Science.gov (United States)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  14. Use of static Quantitative Microbial Risk Assessment to determine pathogen risks in an unconfined carbonate aquifer used for Managed Aquifer Recharge.

    Science.gov (United States)

    Toze, Simon; Bekele, Elise; Page, Declan; Sidhu, Jatinder; Shackleton, Mark

    2010-02-01

    Managed Aquifer Recharge (MAR) is becoming a mechanism used for recycling treated wastewater and captured urban stormwater and is being used as a treatment barrier to remove contaminants such as pathogens from the recharged water. There is still a need, however, to demonstrate the effectiveness of MAR to reduce any residual risk of pathogens in the recovered water. A MAR research site recharging secondary treated wastewater in an unconfined carbonate aquifer was used in conjunction with a static Quantitative Microbial Risk Assessment (QMRA) to assess the microbial pathogen risk in the recovered water following infiltration and aquifer passage. The research involved undertaking a detailed hydrogeological assessment of the aquifer at the MAR site and determining the decay rates of reference pathogens from an in-situ decay study. These variables along with literature data were then used in the static QMRA which demonstrated that the recovered water at this site did not meet the Australian Guidelines for recycled water when used for differing private green space irrigation scenarios. The results also confirmed the importance of obtaining local hydrogeological data as local heterogeneity can influence of residence time in the aquifer which, in turn, influences the outcomes. The research demonstrated that a static QMRA can be used to determine the residual risk from pathogens in recovered water and showed that it can be a valuable tool in the preliminary design and operation of MAR systems and the incorporation of complementary engineered treatment processes to ensure that there is acceptable health risk from the recovered water. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  15. Quantitative microbial risk assessment of Cryptosporidium and Giardia in well water from a native community of Mexico.

    Science.gov (United States)

    Balderrama-Carmona, Ana Paola; Gortáres-Moroyoqui, Pablo; Álvarez-Valencia, Luis Humberto; Castro-Espinoza, Luciano; Balderas-Cortés, José de Jesús; Mondaca-Fernández, Iram; Chaidez-Quiroz, Cristóbal; Meza-Montenegro, María Mercedes

    2015-01-01

    Cryptosporidium and Giardia are gastrointestinal disease-causing organisms transmitted by the fecal-oral route, zoonotic and prevalent in all socioeconomic segments with greater emphasis in rural communities. The goal of this study was to assess the risk of cryptosporidiosis and giardiasis of Potam dwellers consuming drinking water from communal well water. To achieve the goal, quantitative microbial risk assessment (QMRA) was carried out as follows: (a) identification of Cryptosporidium oocysts and Giardia cysts in well water samples by information collection rule method, (b) assessment of exposure to healthy Potam residents, (c) dose-response modelling, and (d) risk characterization using an exponential model. All well water samples tested were positive for Cryptosporidium and Giardia. The QMRA results indicate a mean of annual risks of 99:100 (0.99) for cryptosporidiosis and 1:1 (1.0) for giardiasis. The outcome of the present study may drive decision-makers to establish an educational and treatment program to reduce the incidence of parasite-borne intestinal infection in the Potam community, and to conduct risk analysis programs in other similar rural communities in Mexico.

  16. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Genthe, Bettina; Momba, Maggy Ndombo Benteke

    2016-10-01

    Although higher microbial concentrations have been reported in sediments than in the overlying water column, most quantitative microbial risk assessment (QMRA) studies have not clearly indicated the contribution of sediment-borne pathogens to estimated risks. Thus, the present study aimed at determining the public health risk associated with exposure to pathogenic bacteria in polluted river water under undisturbed conditions and conditions of sediment resuspension in the Apies River, Gauteng, South Africa. Microbial pathogens were isolated and identified using culture and molecular methods. The beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with the various pathogens, following accidental/intentional ingestion of 1mL or 100mL (or 50mL) of untreated river water. Mean wet season Escherichia coli counts ranged between 5.8E+01 and 8.8E+04MPN/100mL (water column) and between 2.40E+03 and 1.28E+05MPN/100mL (sediments). Mean dry season E. coli counts ranged between 5.11E+00 and 3.40E+03MPN/100mL (water column) and between 5.09E+00 and 6.30E+03MPN/100mL (sediments). Overall (water and sediments) Vibrio cholerae was the most detected pathogen (58.8%) followed by Salmonella spp. (23.9%) and Shigella (10.1%). Ingestion of 1mL of river water could lead to 0%-4% and 1%-74% Pi with E. coli during the dry and wet season, respectively. During the dry season, the Pi with V. cholerae, Salmonella spp. and Shigella spp. were 0%-1.39%, 0%-4.11% and 0%-0.16% respectively, depending on volume of water ingested. The risks of infections with all microorganisms increased during the wet season. A 2-log increase in water E. coli count following sediments disturbance led to approximately 10 times higher Pi with E. coli than when sediments were undisturbed. Therefore, the use of the untreated water from the Apies River for drinking, household purposes or recreational activities poses a potential health risk to the users of the river. Copyright © 2016

  17. Customized vs population-based growth charts to identify neonates at risk of adverse outcome: systematic review and Bayesian meta-analysis of observational studies.

    Science.gov (United States)

    Chiossi, G; Pedroza, C; Costantine, M M; Truong, V T T; Gargano, G; Saade, G R

    2017-08-01

    To compare the effectiveness of customized vs population-based growth charts for the prediction of adverse pregnancy outcomes. MEDLINE, ClinicalTrials.gov and The Cochrane Library were searched up to 31 May 2016 to identify interventional and observational studies comparing adverse outcomes among large- (LGA) and small- (SGA) for-gestational-age neonates, when classified according to customized vs population-based growth charts. Perinatal mortality and admission to the neonatal intensive care unit (NICU) of both SGA and LGA neonates, intrauterine fetal demise (IUFD) and neonatal mortality of SGA neonates, and neonatal shoulder dystocia and hypoglycemia as well as maternal third- and fourth-degree perineal lacerations in LGA pregnancies were evaluated. The electronic search identified 237 records that were examined based on title and abstract, of which 27 full-text articles were examined for eligibility. After excluding seven articles, 20 observational studies were included in a Bayesian meta-analysis. Neonates classified as SGA according to customized growth charts had higher risks of IUFD (odds ratio (OR), 7.8 (95% CI, 4.2-12.3)), neonatal death (OR, 3.5 (95% CI, 1.1-8.0)), perinatal death (OR, 5.8 (95% CI, 3.8-7.8)) and NICU admission (OR, 3.6 (95% CI, 2.0-5.5)) than did non-SGA cases. Neonates classified as SGA according to population-based growth charts also had increased risk for adverse outcomes, albeit the point estimates of the pooled ORs were smaller: IUFD (OR, 3.3 (95% CI, 1.9-5.0)), neonatal death (OR, 2.9 (95% CI, 1.2-4.5)), perinatal death (OR, 4.0 (95% CI, 2.8-5.1)) and NICU admission (OR, 2.4 (95% CI, 1.7-3.2)). For LGA vs non-LGA, there were no differences in pooled ORs for perinatal death, NICU admission, hypoglycemia and maternal third- and fourth-degree perineal lacerations when classified according to either the customized or the population-based approach. In contrast, both approaches indicated that LGA neonates are at increased risk for

  18. Bayesian computation with R

    CERN Document Server

    Albert, Jim

    2009-01-01

    There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry. Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The earl

  19. Bayesian data analysis for newcomers.

    Science.gov (United States)

    Kruschke, John K; Liddell, Torrin M

    2018-02-01

    This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.

  20. Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments.

    Science.gov (United States)

    Keswani, Anisha; Oliver, David M; Gutierrez, Tony; Quilliam, Richard S

    2016-07-01

    Marine plastic debris is well characterized in terms of its ability to negatively impact terrestrial and marine environments, endanger coastal wildlife, and interfere with navigation, tourism and commercial fisheries. However, the impacts of potentially harmful microorganisms and pathogens colonising plastic litter are not well understood. The hard surface of plastics provides an ideal environment for opportunistic microbial colonisers to form biofilms and might offer a protective niche capable of supporting a diversity of different microorganisms, known as the "Plastisphere". This biotope could act as an important vector for the persistence and spread of pathogens, faecal indicator organisms (FIOs) and harmful algal bloom species (HABs) across beach and bathing environments. This review will focus on the existent knowledge and research gaps, and identify the possible consequences of plastic-associated microbes on human health, the spread of infectious diseases and bathing water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Bayesian methods for data analysis

    CERN Document Server

    Carlin, Bradley P.

    2009-01-01

    Approaches for statistical inference Introduction Motivating Vignettes Defining the Approaches The Bayes-Frequentist Controversy Some Basic Bayesian Models The Bayes approach Introduction Prior Distributions Bayesian Inference Hierarchical Modeling Model Assessment Nonparametric Methods Bayesian computation Introduction Asymptotic Methods Noniterative Monte Carlo Methods Markov Chain Monte Carlo Methods Model criticism and selection Bayesian Modeling Bayesian Robustness Model Assessment Bayes Factors via Marginal Density Estimation Bayes Factors

  2. Optimal Detection under the Restricted Bayesian Criterion

    Directory of Open Access Journals (Sweden)

    Shujun Liu

    2017-07-01

    Full Text Available This paper aims to find a suitable decision rule for a binary composite hypothesis-testing problem with a partial or coarse prior distribution. To alleviate the negative impact of the information uncertainty, a constraint is considered that the maximum conditional risk cannot be greater than a predefined value. Therefore, the objective of this paper becomes to find the optimal decision rule to minimize the Bayes risk under the constraint. By applying the Lagrange duality, the constrained optimization problem is transformed to an unconstrained optimization problem. In doing so, the restricted Bayesian decision rule is obtained as a classical Bayesian decision rule corresponding to a modified prior distribution. Based on this transformation, the optimal restricted Bayesian decision rule is analyzed and the corresponding algorithm is developed. Furthermore, the relation between the Bayes risk and the predefined value of the constraint is also discussed. The Bayes risk obtained via the restricted Bayesian decision rule is a strictly decreasing and convex function of the constraint on the maximum conditional risk. Finally, the numerical results including a detection example are presented and agree with the theoretical results.

  3. Noncausal Bayesian Vector Autoregression

    DEFF Research Database (Denmark)

    Lanne, Markku; Luoto, Jani

    We propose a Bayesian inferential procedure for the noncausal vector autoregressive (VAR) model that is capable of capturing nonlinearities and incorporating effects of missing variables. In particular, we devise a fast and reliable posterior simulator that yields the predictive distribution...

  4. Statistics: a Bayesian perspective

    National Research Council Canada - National Science Library

    Berry, Donald A

    1996-01-01

    ...: it is the only introductory textbook based on Bayesian ideas, it combines concepts and methods, it presents statistics as a means of integrating data into the significant process, it develops ideas...

  5. Bayesian psychometric scaling

    NARCIS (Netherlands)

    Fox, Gerardus J.A.; van den Berg, Stéphanie Martine; Veldkamp, Bernard P.; Irwing, P.; Booth, T.; Hughes, D.

    2015-01-01

    In educational and psychological studies, psychometric methods are involved in the measurement of constructs, and in constructing and validating measurement instruments. Assessment results are typically used to measure student proficiency levels and test characteristics. Recently, Bayesian item

  6. Microbial contamination of syringes during preparation: the direct influence of environmental cleanliness and risk manipulations on end-product quality.

    Science.gov (United States)

    Stucki, Cyril; Sautter, Anna-Maria; Favet, Jocelyne; Bonnabry, Pascal

    2009-11-15

    The direct influence of environmental cleanliness and risk manipulations on prepared syringes was evaluated. Media-fill testing was used to estimate potential microbial contamination. Syringes were prepared in three different environments using four different uncontrolled high-risk manipulations. The three environments included an International Organization for Standardization (ISO) class 5 horizontal laminar-airflow hood in an ISO class 6 cleanroom (in accordance with United States Pharmacopeia [USP] chapter 797), an ISO class 7 drug preparation area of an operating room, and an uncontrolled decentralized pharmacy in a ward. For each combination of environment and manipulation, 100 syringes were filled by a single operator. The four high-risk manipulations used included simple filling of syringes with trypticase soy broth, three-second contact by the ungloved fingers of the operator with the hub of the syringe, three-second contact between an object and the hub of the syringe, and exposure of the filled syringes to ambient air for 10 minutes. Of the 1500 syringes prepared in three different environments, none produced within the cleanroom contained microorganisms, 6% were contaminated in the operating room, and 16% were contaminated in the ward (p ISO class 5 cleanroom in accordance with USP chapter 797 requirements was demonstrated to be the best way to avoid bacterial or fungal contamination of injectable drugs directly resulting in patient infections.

  7. Bayesian Networks An Introduction

    CERN Document Server

    Koski, Timo

    2009-01-01

    Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include:.: An introduction to Dirichlet Distribution, Exponential Families and their applications.; A detailed description of learni

  8. A Bayesian encourages dropout

    OpenAIRE

    Maeda, Shin-ichi

    2014-01-01

    Dropout is one of the key techniques to prevent the learning from overfitting. It is explained that dropout works as a kind of modified L2 regularization. Here, we shed light on the dropout from Bayesian standpoint. Bayesian interpretation enables us to optimize the dropout rate, which is beneficial for learning of weight parameters and prediction after learning. The experiment result also encourages the optimization of the dropout.

  9. Quantitative Microbial Risk Assessment for Escherichia coli O157 : H7, Salmonella, and Listeria monocytogenes in Leafy Green Vegetables Consumed at Salad Bars

    NARCIS (Netherlands)

    Franz, E.; Tromp, S.O.; Rijgersberg, H.; Fels-Klerx, van der H.J.

    2010-01-01

    Fresh vegetables are increasingly recognized as a source of foodborne outbreaks in many parts of the world. The purpose of this study was to conduct a quantitative microbial risk assessment for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes infection from consumption of leafy green

  10. Application of the Central Limit Theorem in microbial risk assessment: High number of serving reduces the Coefficient of Variation of food-borne burden-of-illness

    NARCIS (Netherlands)

    Pérez-Rodríguez, F.; Zwietering, M.H.

    2012-01-01

    The Central Limit Theorem (CLT) is proposed as a means of understanding microbial risk in foods from a Public Health perspective. One variant of the CLT states that as the number of random variables, each with a finite mean and variance, increases (¿8), the distribution of the sum (or mean) of those

  11. Effects of a 20 year rain event: a quantitative microbial risk assessment of a case of contaminated bathing water in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Andersen, Signe Tanja; Erichsen, A. C.; Mark, O.

    2013-01-01

    Quantitative microbial risk assessments (QMRAs) often lack data on water quality leading to great uncertainty in the QMRA because of the many assumptions. The quantity of waste water contamination was estimated and included in a QMRA on an extreme rain event leading to combined sewer overflow (CS...

  12. Simulation of enteric pathogen concentrations in locally-collected greywater and wastewater for microbial risk assessments

    Science.gov (United States)

    As decentralized water reuse continues to gain popularity, risk-based treatment guidance is increasingly sought for the protection of public health. However, efforts to evaluate pathogen risks and log-reduction requirements have been hindered by an incomplete understanding of pat...

  13. 77 FR 45329 - Availability of Microbial Risk Assessment Guideline: Pathogenic Microorganisms With Focus on Food...

    Science.gov (United States)

    2012-07-31

    ... impact the risk assessment and facilitates reproducible risk evaluation. Using the guidelines, agencies.... Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation...

  14. Application of Quantitative Microbial Risk Assessment to analyze the public health risk from poor drinking water quality in a low income area in Accra, Ghana.

    Science.gov (United States)

    Machdar, E; van der Steen, N P; Raschid-Sally, L; Lens, P N L

    2013-04-01

    In Accra, Ghana, a majority of inhabitants lives in over-crowded areas with limited access to piped water supply, which is often also intermittent. This study assessed in a densely populated area the risk from microbial contamination of various sources of drinking water, by conducting a Quantitative Microbiological Risk Assessment (QMRA) to estimate the risk to human health from microorganism exposure and dose-response relationships. Furthermore the cost-effectiveness in reducing the disease burden through targeted interventions was evaluated. Five risk pathways for drinking water were identified through a survey (110 families), namely household storage, private yard taps, communal taps, communal wells and water sachets. Samples from each source were analyzed for Escherichia coli and Ascaris contamination. Published ratios between E. coli and other pathogens were used for the QMRA and disease burden calculations. The major part of the burden of disease originated from E. coli O157:H7 (78%) and the least important contributor was Cryptosporidium (0.01%). Other pathogens contributed 16% (Campylobacter), 5% (Rotavirus) and 0.3% (Ascaris). The sum of the disease burden of these pathogens was 0.5 DALYs per person per year, which is much higher than the WHO reference level. The major contamination pathway was found to be household storage. Disinfection of water at household level was the most cost-effective intervention (Water supply network improvements were significantly less cost-effective. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Quantitative microbial risk assessment of Salmonella in dry fermented sausage (salami) in Southern Brazil

    DEFF Research Database (Denmark)

    Corbellini, Luis Gustavo; Costa, Eduardo de Freitas; Cardoso, Marisa

    2017-01-01

    Dry fermented sausage (salami) is a very popular ready-to-eat product in Southern Brazil, of which the raw materials can be contaminated with pathogens such as Salmonella. This product can put consumers at risk if a failure occurs during the manufacturing process. To investigate this risk...... and heterogeneous). In general, it was observed that the mean exposure to Salmonella due to ingestion of a portion of contaminated salami was very low; "zero risks" (with no cases of salmonellosis among 100,000 consumed portions of salami) were found in 65% of the scenarios (265/405) assessed and low risks were...... low, selling dry fermented sausage before complete maturation of the product and failure in fermentation can pose a risk to the consumers from the studied region. It was found that a maturation period of 24 days can be considered safe, even in a situation with high initial levels of contamination....

  16. Basics of Bayesian methods.

    Science.gov (United States)

    Ghosh, Sujit K

    2010-01-01

    Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.

  17. Experiences in applying Bayesian integrative models in interdisciplinary modeling: the computational and human challenges

    DEFF Research Database (Denmark)

    Kuikka, Sakari; Haapasaari, Päivi Elisabet; Helle, Inari

    2011-01-01

    We review the experience obtained in using integrative Bayesian models in interdisciplinary analysis focusing on sustainable use of marine resources and environmental management tasks. We have applied Bayesian models to both fisheries and environmental risk analysis problems. Bayesian belief...... be time consuming and research projects can be difficult to manage due to unpredictable technical problems related to parameter estimation. Biology, sociology and environmental economics have their own scientific traditions. Bayesian models are becoming traditional tools in fisheries biology, where...

  18. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    Science.gov (United States)

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  19. Microbial xanthophylls.

    Science.gov (United States)

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  20. Reduction in infection risk through treatment of microbially contaminated surfaces with a novel, portable, saturated steam vapor disinfection system.

    Science.gov (United States)

    Tanner, Benjamin D

    2009-02-01

    Surface-mediated infectious disease transmission is a major concern in various settings, including schools, hospitals, and food-processing facilities. Chemical disinfectants are frequently used to reduce contamination, but many pose significant risks to humans, surfaces, and the environment, and all must be properly applied in strict accordance with label instructions to be effective. This study set out to determine the capability of a novel chemical-free, saturated steam vapor disinfection system to kill microorganisms, reduce surface-mediated infection risks, and serve as an alternative to chemical disinfectants. High concentrations of Escherichia coli, Shigella flexneri, vancomycin-resistant Enterococcus faecalis (VRE), methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enterica, methicillin-sensitive Staphylococcus aureus, MS2 coliphage (used as a surrogate for nonenveloped viruses including norovirus), Candida albicans, Aspergillus niger, and the endospores of Clostridium difficile were dried individually onto porous clay test surfaces. Surfaces were treated with the saturated steam vapor disinfection system for brief periods and then numbers of surviving microorganisms were determined. Infection risks were calculated from the kill-time data using microbial dose-response relationships published in the scientific literature, accounting for surface-to-hand and hand-to-mouth transfer efficiencies. A diverse assortment of pathogenic microorganisms was rapidly killed by the steam disinfection system; all of the pathogens tested were completely inactivated within 5 seconds. Risks of infection from the contaminated surfaces decreased rapidly with increasing periods of treatment by the saturated steam vapor disinfection system. The saturated steam vapor disinfection system tested for this study is chemical-free, broadly active, rapidly efficacious, and therefore represents a novel alternative to liquid chemical disinfectants.

  1. Risk factors, microbiological findings, and clinical outcomes in cases of microbial keratitis admitted to a tertiary referral center in ireland.

    LENUS (Irish Health Repository)

    Saeed, Ayman

    2012-02-01

    AIM: To identify the risk factors for, and to report the microbiological findings and clinical outcomes of, severe microbial keratitis (MK). METHODS: This was a retrospective study of all cases of presumed MK admitted to a tertiary referral center over a 2-year period (September 2001 to August 2003). Data recorded included demographic data, details relating to possible risk factors, results of microbiological studies, clinical findings at presentation, and clinical and visual outcomes. RESULTS: Ninety patients were admitted with a diagnosis of presumed MK during the study period. The mean age of patients was 45 +\\/- 32 years, and the male to female ratio was 47:43 (52.2%:47.7%). Predisposing risk factors for MK included contact lens wear (37; 41.1%), anterior segment disease (19; 21.1%), ocular trauma (13; 14.4%), systemic disease (5; 5.6%), and previous ocular surgery (1; 1.1%). Cultured organisms included gram-negative bacteria (17; 51.5%), gram-positive bacteria (11, 33.3%), acanthamoeba (2; 6.1%), and fungi (1; 3%). Visual acuity improved significantly after treatment [mean best-corrected visual acuity (+\\/-standard deviation) at presentation: 0.76 (+\\/-0.11); mean best-corrected visual acuity at last follow-up: 0.24 (+\\/-0.07); P < 0.001]. Secondary surgical procedures were required in 18 (20%) cases, and these included punctal cautery (1; 1.1%), tissue glue repair of corneal perforation (2; 2.2%), tarsorrhaphy (9; 9.9%), Botulinum toxin-induced ptosis (1; 1.1%), penetrating keratoplasty (3; 3.3%), and evisceration (2; 2.2%). CONCLUSIONS: Contact lens wear remains a significant risk factor for severe MK. MK remains a threat to vision and to the eye, but the majority of cases respond to prompt and appropriate antimicrobial therapy.

  2. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose

    DEFF Research Database (Denmark)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K.

    2017-01-01

    physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study......The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10− 5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different...... attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio...

  3. Application of risk assessment techniques to microbial monitoring data: a South-African perspective

    CSIR Research Space (South Africa)

    Rodda, N

    1993-01-01

    Full Text Available (-1) and 5x10(-4) - 1x10(-2), respectively. A number of complicating factors were identified. Detection limits were high and volumes of water monitored were low. There was no information on viral pathogen removal during treatment. Application of risk...

  4. Bayesian networks with examples in R

    CERN Document Server

    Scutari, Marco

    2014-01-01

    Introduction. The Discrete Case: Multinomial Bayesian Networks. The Continuous Case: Gaussian Bayesian Networks. More Complex Cases. Theory and Algorithms for Bayesian Networks. Real-World Applications of Bayesian Networks. Appendices. Bibliography.

  5. Bayesian policy reuse

    CSIR Research Space (South Africa)

    Rosman, Benjamin

    2016-02-01

    Full Text Available Keywords Policy Reuse · Reinforcement Learning · Online Learning · Online Bandits · Transfer Learning · Bayesian Optimisation · Bayesian Decision Theory. 1 Introduction As robots and software agents are becoming more ubiquitous in many applications.... The agent has access to a library of policies (pi1, pi2 and pi3), and has previously experienced a set of task instances (τ1, τ2, τ3, τ4), as well as samples of the utilities of the library policies on these instances (the black dots indicate the means...

  6. An ecosystem service approach to support integrated pond management: a case study using Bayesian belief networks--highlighting opportunities and risks.

    Science.gov (United States)

    Landuyt, Dries; Lemmens, Pieter; D'hondt, Rob; Broekx, Steven; Liekens, Inge; De Bie, Tom; Declerck, Steven A J; De Meester, Luc; Goethals, Peter L M

    2014-12-01

    Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Bayesian approach and application to operation safety

    International Nuclear Information System (INIS)

    Procaccia, H.; Suhner, M.Ch.

    2003-01-01

    The management of industrial risks requires the development of statistical and probabilistic analyses which use all the available convenient information in order to compensate the insufficient experience feedback in a domain where accidents and incidents remain too scarce to perform a classical statistical frequency analysis. The Bayesian decision approach is well adapted to this problem because it integrates both the expertise and the experience feedback. The domain of knowledge is widen, the forecasting study becomes possible and the decisions-remedial actions are strengthen thanks to risk-cost-benefit optimization analyzes. This book presents the bases of the Bayesian approach and its concrete applications in various industrial domains. After a mathematical presentation of the industrial operation safety concepts and of the Bayesian approach principles, this book treats of some of the problems that can be solved thanks to this approach: softwares reliability, controls linked with the equipments warranty, dynamical updating of databases, expertise modeling and weighting, Bayesian optimization in the domains of maintenance, quality control, tests and design of new equipments. A synthesis of the mathematical formulae used in this approach is given in conclusion. (J.S.)

  8. Human activities and microbial geographies. An anthropological approach to the risk of infections in West African hospitals.

    Science.gov (United States)

    d'Alessandro, Eugénie

    2015-07-01

    In hospital care, management of the risk of infection represents a crucial issue. Nevertheless, this question remains a neglected area in anthropological research, especially in African countries. To shed new light on this question, we conducted an anthropological investigation in the infectious disease department of a hospital in Niger. Daily observation of the work of the hospital staff for a total period of 6 months was spread out over 2008 and 2009. During our prolonged stay, we also collected 64 in-depth interviews of health care workers and attendants in the department. This study method made it possible to describe many of the practices and discourses related to the issues of medical and personal care and hospital hygiene and to compare the practices observed to standard principles for preventing hospital-acquired infections. Our ethnographic attention to the behavior of the actors showed the absence of formal spatial segmentations between different activities. The care provided by the untrained relatives serving as personal attendants introduced territorial enclaves governed by home hygiene standards into the interior of technical spaces. At the same time, privatizing equipment and space for their diverse activities, the medical staff disrupted technical chains and generated the recurrent crossing of microbial geographies. These results allow us to offer two principal guidelines for improving the quality of care and the management of risks of infection in hospitals in West Africa: (1) the essential role of the attendants in the care provided to hospital inpatients must be officially taken into account, especially by including them in the organization of medical hygiene procedures; (2) the different overlapping technical activities and social activities in the work space must be limited by their geographic and architectural segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Management of risk of microbial cross-contamination from uncooked frozen hamburgers by alcohol-based hand sanitizer.

    Science.gov (United States)

    Schaffner, Donald W; Schaffner, Kristin M

    2007-01-01

    This research was undertaken to determine the effectiveness of an alcohol-based hand sanitizer on hands contaminated with a nonpathogen surrogate for Escherichia coli O157:H7, where the source of the contamination was frozen hamburger patties. A nonpathogenic nalidixic acid-resistant food-grade strain of Enterobacter aerogenes was used to inoculate frozen hamburger patties composed of 76% lean beef and 24% fat. Thirty-two individuals participated to produce the data used in this study. Each participant handled nine patties at least three times, a sample for microbiological analysis was collected from the surface of one hand, the participant sanitized both hands, and a sample was collected from the other hand. Burger handling created perceptible and visible food debris on the hands of most participants. Computer simulations also were used to perform a variety of risk calculations. The average reduction in bacteria from the use of sanitizer on hands contaminated by frozen burgers containing E. aerogenes was 2.6 +/- 0.7 log CFU per hand. An experiment designed to simultaneously test the effect of sanitizer on E. aerogenes and E. coli O157:H7 also revealed no significant difference in sanitizer effectiveness against the two organisms. The results of the real-world risk estimation calculations (using the actual prevalence and concentration of E. coli O157:H7 in ground beef) predict that once in 1 million trials, a single pathogen cell will be transferred to a single lettuce piece. The effectiveness of this sanitizer intervention was similar to that for hand washing and glove use previously reported. The person-to-person microbial reduction variability from sanitizer use is similar to published data for glove use and was less variable than published data on hand washing effectiveness.

  10. Bayesian methods for hackers probabilistic programming and Bayesian inference

    CERN Document Server

    Davidson-Pilon, Cameron

    2016-01-01

    Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...

  11. Bayesian logistic regression analysis

    NARCIS (Netherlands)

    Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.

    2012-01-01

    In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an

  12. Bayesian Dark Knowledge

    NARCIS (Netherlands)

    Korattikara, A.; Rathod, V.; Murphy, K.; Welling, M.; Cortes, C.; Lawrence, N.D.; Lee, D.D.; Sugiyama, M.; Garnett, R.

    2015-01-01

    We consider the problem of Bayesian parameter estimation for deep neural networks, which is important in problem settings where we may have little data, and/ or where we need accurate posterior predictive densities p(y|x, D), e.g., for applications involving bandits or active learning. One simple

  13. Bayesian Geostatistical Design

    DEFF Research Database (Denmark)

    Diggle, Peter; Lophaven, Søren Nymand

    2006-01-01

    locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model...

  14. Bayesian statistical inference

    Directory of Open Access Journals (Sweden)

    Bruno De Finetti

    2017-04-01

    Full Text Available This work was translated into English and published in the volume: Bruno De Finetti, Induction and Probability, Biblioteca di Statistica, eds. P. Monari, D. Cocchi, Clueb, Bologna, 1993.Bayesian statistical Inference is one of the last fundamental philosophical papers in which we can find the essential De Finetti's approach to the statistical inference.

  15. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...

  16. Bayesian Independent Component Analysis

    DEFF Research Database (Denmark)

    Winther, Ole; Petersen, Kaare Brandt

    2007-01-01

    In this paper we present an empirical Bayesian framework for independent component analysis. The framework provides estimates of the sources, the mixing matrix and the noise parameters, and is flexible with respect to choice of source prior and the number of sources and sensors. Inside the engine...

  17. Bayesian Exponential Smoothing.

    OpenAIRE

    Forbes, C.S.; Snyder, R.D.; Shami, R.S.

    2000-01-01

    In this paper, a Bayesian version of the exponential smoothing method of forecasting is proposed. The approach is based on a state space model containing only a single source of error for each time interval. This model allows us to improve current practices surrounding exponential smoothing by providing both point predictions and measures of the uncertainty surrounding them.

  18. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  19. Characterizing Species at Risk II: Using Bayesian Belief Networks as Decision Support Tools to Determine Species Conservation Categories Under the Northwest Forest Plan

    Directory of Open Access Journals (Sweden)

    Bruce G. Marcot

    2006-12-01

    Full Text Available We developed a set of decision-aiding models as Bayesian belief networks (BBNs that represented a complex set of evaluation guidelines used to determine the appropriate conservation of hundreds of potentially rare species on federally-administered lands in the Pacific Northwest United States. The models were used in a structured assessment and paneling procedure as part of an adaptive management process that evaluated new scientific information under the Northwest Forest Plan. The models were not prescriptive but helped resource managers and specialists to evaluate complicated and at times conflicting conservation guidelines and to reduce bias and uncertainty in evaluating the scientific data. We concluded that applying the BBN modeling framework to complex and equivocal evaluation guidelines provided a set of clear, intuitive decision-aiding tools that greatly aided the species evaluation and conservation process.

  20. Probabilistic risk analysis of aging components which fail on demand. A Bayesian model. Application to maintenance optimization of Diesel engine linings

    International Nuclear Information System (INIS)

    Procaccia, H.; Lannoy, A.; Clarotti, C.A.

    1997-01-01

    The optimization of preventive maintenance of aging materials can be well modelled through the application of the two-parameters Weibull law. Unfortunately there is no theoretical model describing the aging of components implied in emergency interventions which may fail in very moment of demand. These components are relevant to the safety of Nuclear Power Plants and the main problem with them is the optimization of the maintenance and the test schedule. Indeed the effect of any test is twofold, namely: the test reveals failures which otherwise would occur when the Power Plant would need urgent intervention but at the same time it causes the aging process to step up. The aging process is suspected to affect certain safeguard equipment, but it does not exist a theoretical model of component aging in function of demands. Sections 2.1 and 2.2 of the paper are devoted to the description of a Bayesian model of discrete aging, deriving the likelihood function of the model (data modelling) and to selecting 'the best prior' (Analyst knowledge) that can be associated to the likelihood, respectively. The aspects of numerical integration relative to assessing the predictive reliability of the aging components are discussed in Section 2.3. Section 3 reports a Reliability Centered Maintenance application of the model to cylinders of emergency electrical generators of the NPP nuclear sectors. These components are subjected to an annual endoscopic checking and to a systematical replacement at every 5 years. The statistical Bayesian decision theory was applied to determine an optimal period of cylinder replacement based on the aging model presented in this paper. It is shown that the optimal value is between 10 to 12 years. (author)

  1. Comparison of keypads and touch-screen mobile phones/devices as potential risk for microbial contamination.

    Science.gov (United States)

    Koroglu, Mehmet; Gunal, Selami; Yildiz, Fatma; Savas, Mehtap; Ozer, Ali; Altindis, Mustafa

    2015-12-30

    Touch-screen mobile phones/devices (TMPs/Ds) are increasingly used in hospitals. They may act as a mobile reservoir for microbial pathogens. The rates of microbial contamination of TMPs/Ds and keypad mobile phones (KMPs) with respect to different variables including use by healthcare workers (HCWs)/non-HCWs and the demographic characteristics of users were investigated. A total of 205 mobile phones/devices were screened for microbial contamination: 76 devices belonged to HCWs and 129 devices belonged to the non-HCW group. By rubbing swabs to front screen, back, keypad, and metallic surfaces of devices, 444 samples were collected. Of 205 mobile phones/devices, 143 (97.9%) of the TMPs/Ds and 58 (98.3%) of the KMPs were positive for microbial contamination, and there were no significant differences in contamination rates between these groups, although TMPs/Ds had significantly higher microbial load than KMPs (p mobile phones ≥ 5". Microbial contamination rates increased significantly as phone size increased (p <0.05). Higher numbers of coagulase-negative Staphylococci (CNS) were isolated from KMPs than TMPs/Ds (p = 0.049). The incidence of Enterococcus spp. was higher on the KMPs of HCWs, and methicillin resistant CNS was higher from the TMPs/Ds of non-HCWs (p <0.05). Isolation of CNS, Streptococcus spp. and Escherichia coli was higher from the TMPs/Ds of HCWs (p <0.05). We found no significant difference between TMP/Ds and KMPs in terms of microbial contamination, but TMP/Ds harboured more colonies and total microbial counts increased with screen size.

  2. Probability and Bayesian statistics

    CERN Document Server

    1987-01-01

    This book contains selected and refereed contributions to the "Inter­ national Symposium on Probability and Bayesian Statistics" which was orga­ nized to celebrate the 80th birthday of Professor Bruno de Finetti at his birthplace Innsbruck in Austria. Since Professor de Finetti died in 1985 the symposium was dedicated to the memory of Bruno de Finetti and took place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa­ pers are published especially by the relationship to Bruno de Finetti's scientific work. The evolution of stochastics shows growing importance of probability as coherent assessment of numerical values as degrees of believe in certain events. This is the basis for Bayesian inference in the sense of modern statistics. The contributions in this volume cover a broad spectrum ranging from foundations of probability across psychological aspects of formulating sub­ jective probability statements, abstract measure theoretical considerations, contributions to theoretical statistics an...

  3. Bayesian community detection

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N

    2012-01-01

    Many networks of scientific interest naturally decompose into clusters or communities with comparatively fewer external than internal links; however, current Bayesian models of network communities do not exert this intuitive notion of communities. We formulate a nonparametric Bayesian model...... for community detection consistent with an intuitive definition of communities and present a Markov chain Monte Carlo procedure for inferring the community structure. A Matlab toolbox with the proposed inference procedure is available for download. On synthetic and real networks, our model detects communities...... consistent with ground truth, and on real networks, it outperforms existing approaches in predicting missing links. This suggests that community structure is an important structural property of networks that should be explicitly modeled....

  4. Assessment of microbial contamination and oral health risks associated with handling of Indian currency notes circulating in Bengaluru city: A cross-sectional survey

    Directory of Open Access Journals (Sweden)

    D P Narayan

    2015-01-01

    Full Text Available Introduction: Accumulated data obtained over the last 20 years on the microbial status and survival of pathogens on currency notes indicate that this could represent a potential cause of sporadic cases of food borne illness. Objectives: To identify the micro-organisms present on the Indian currency notes and the oral health risks due to microbial contamination of Indian currency notes circulating in Bengaluru city. Materials and Methods: A cross-sectional survey was conducted and the Indian currency notes of various denominations (Rs. 10, Rs. 20, Rs. 50, Rs. 100, Rs. 500, and Rs. 1000 were collected from fruit vendors, hawkers, vegetable vendors, bus conductors, railway ticket counters, hotel counters, and butchers. Sample size was determined to be 70 Indian currency notes. Convenience sampling technique was used. Microbiological analysis of the collected currency notes was done. Results: The contamination rate of collected currency notes from the butchers and hawkers were 80% and 60% respectively. Staphylococcus aureus was present on 15 currency notes (21.42% and was found to be higher in Rs. 10 than in other currency denominations. Streptococcus pyogenes was present on four currency notes (5.714% of Rs. 10. Conclusion: The Indian currency notes circulating in Bengaluru city were contaminated with pathogenic bacteria. The oral health risks due to microbial contamination of Indian currency notes are acute pharyngitis, peritonsillar or retropharyngeal abscess, mastoiditis, sinusitis, otitis media, mild cellulitis, angular cheilitis, some endodontic infections, osteomyelitis of the jaw, parotitis, and oral mucositis.

  5. Approximate Bayesian recursive estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav

    2014-01-01

    Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf

  6. Bayesian Hypothesis Testing

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Stephen A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sigeti, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-15

    These are a set of slides about Bayesian hypothesis testing, where many hypotheses are tested. The conclusions are the following: The value of the Bayes factor obtained when using the median of the posterior marginal is almost the minimum value of the Bayes factor. The value of τ2 which minimizes the Bayes factor is a reasonable choice for this parameter. This allows a likelihood ratio to be computed with is the least favorable to H0.

  7. Introduction to Bayesian statistics

    CERN Document Server

    Koch, Karl-Rudolf

    2007-01-01

    This book presents Bayes' theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters. It does so in a simple manner that is easy to comprehend. The book compares traditional and Bayesian methods with the rules of probability presented in a logical way allowing an intuitive understanding of random variables and their probability distributions to be formed.

  8. Bayesian ARTMAP for regression.

    Science.gov (United States)

    Sasu, L M; Andonie, R

    2013-10-01

    Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Bayesian theory and applications

    CERN Document Server

    Dellaportas, Petros; Polson, Nicholas G; Stephens, David A

    2013-01-01

    The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...

  10. Daniel Goodman’s empirical approach to Bayesian statistics

    Science.gov (United States)

    Gerrodette, Tim; Ward, Eric; Taylor, Rebecca L.; Schwarz, Lisa K.; Eguchi, Tomoharu; Wade, Paul; Himes Boor, Gina

    2016-01-01

    Bayesian statistics, in contrast to classical statistics, uses probability to represent uncertainty about the state of knowledge. Bayesian statistics has often been associated with the idea that knowledge is subjective and that a probability distribution represents a personal degree of belief. Dr. Daniel Goodman considered this viewpoint problematic for issues of public policy. He sought to ground his Bayesian approach in data, and advocated the construction of a prior as an empirical histogram of “similar” cases. In this way, the posterior distribution that results from a Bayesian analysis combined comparable previous data with case-specific current data, using Bayes’ formula. Goodman championed such a data-based approach, but he acknowledged that it was difficult in practice. If based on a true representation of our knowledge and uncertainty, Goodman argued that risk assessment and decision-making could be an exact science, despite the uncertainties. In his view, Bayesian statistics is a critical component of this science because a Bayesian analysis produces the probabilities of future outcomes. Indeed, Goodman maintained that the Bayesian machinery, following the rules of conditional probability, offered the best legitimate inference from available data. We give an example of an informative prior in a recent study of Steller sea lion spatial use patterns in Alaska.

  11. Bayesian network learning for natural hazard assessments

    Science.gov (United States)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables

  12. Bayesian analysis in plant pathology.

    Science.gov (United States)

    Mila, A L; Carriquiry, A L

    2004-09-01

    ABSTRACT Bayesian methods are currently much discussed and applied in several disciplines from molecular biology to engineering. Bayesian inference is the process of fitting a probability model to a set of data and summarizing the results via probability distributions on the parameters of the model and unobserved quantities such as predictions for new observations. In this paper, after a short introduction of Bayesian inference, we present the basic features of Bayesian methodology using examples from sequencing genomic fragments and analyzing microarray gene-expressing levels, reconstructing disease maps, and designing experiments.

  13. Pharmacokinetics, microbial response, and pulmonary outcomes of multidose intravenous azithromycin in preterm infants at risk for Ureaplasma respiratory colonization.

    Science.gov (United States)

    Merchan, L Marcela; Hassan, Hazem E; Terrin, Michael L; Waites, Ken B; Kaufman, David A; Ambalavanan, Namasivayam; Donohue, Pamela; Dulkerian, Susan J; Schelonka, Robert; Magder, Laurence S; Shukla, Sagar; Eddington, Natalie D; Viscardi, Rose M

    2015-01-01

    The study objectives were to refine the population pharmacokinetics (PK) model, determine microbial clearance, and assess short-term pulmonary outcomes of multiple-dose azithromycin treatment in preterm infants at risk for Ureaplasma respiratory colonization. Fifteen subjects (7 of whom were Ureaplasma positive) received intravenous azithromycin at 20 mg/kg of body weight every 24 h for 3 doses. Azithromycin concentrations were determined in plasma samples obtained up to 168 h post-first dose by using a validated liquid chromatography-tandem mass spectrometry method. Respiratory samples were obtained predose and at three time points post-last dose for Ureaplasma culture, PCR, antibiotic susceptibility testing, and cytokine concentration determinations. Pharmacokinetic data from these 15 subjects as well as 25 additional subjects (who received either a single 10-mg/kg dose [n = 12] or a single 20-mg/kg dose [n = 13]) were analyzed by using a nonlinear mixed-effect population modeling (NONMEM) approach. Pulmonary outcomes were assessed at 36 weeks post-menstrual age and 6 months adjusted age. A 2-compartment model with all PK parameters allometrically scaled on body weight best described the azithromycin pharmacokinetics in preterm neonates. The population pharmacokinetics parameter estimates for clearance, central volume of distribution, intercompartmental clearance, and peripheral volume of distribution were 0.15 liters/h · kg(0.75), 1.88 liters · kg, 1.79 liters/h · kg(0.75), and 13 liters · kg, respectively. The estimated area under the concentration-time curve over 24 h (AUC24)/MIC90 value was ∼ 4 h. All posttreatment cultures were negative, and there were no drug-related adverse events. One Ureaplasma-positive infant died at 4 months of age, but no survivors were hospitalized for respiratory etiologies during the first 6 months (adjusted age). Thus, a 3-day course of 20 mg/kg/day intravenous azithromycin shows preliminary efficacy in eradicating

  14. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  15. Anti - microbial resistance stratified by risk factor among Escherichia coli strains isolated from the urinary tract at a rural clinic in Central India

    Directory of Open Access Journals (Sweden)

    Chatterjee B

    2009-01-01

    Full Text Available Background: The failure of empirical therapy is frequently observed, even in community-acquired urinary tract infections. We, therefore, conducted a prospective, clinic-based study in 2004-2005 to document anti-microbial resistance rates and correlate them with possible risk factors to assist empirical decision-making. Materials and Methods: Symptomatic patients with pyuria underwent urine culture. Isolates were identified using standard methods and anti-microbial resistance was determined by disk-diffusion. Ultrasonography was used to detect complicating factors. Patients were stratified by the presence of complicating factors and history of invasive procedures for comparison of resistance rates. Statistical Method Used: Chi-square or Fisher exact tests, as appropriate. Results: There were 156 E. coli isolates, of which 105 were community-acquired. Twenty-three community-acquired isolates were from patients with complicating factors while 82 were from patients without any. Fifty-one isolates were from patients who had recently undergone invasive procedures on the urinary tract. Thirty-two community-acquired isolates from reproductive-age women without apparent complicating factors had resistance rates of 50% or above against tetracyclines, Co-trimoxazole, aminopenicillins, Nalidixic acid, Ciprofloxacin and 1 st generation cephalosporins. Resistance rates were significantly higher among isolates from patients subjected to invasive procedures, except against Co-trimoxazole, tetracyclines and Amikacin. Conclusion: High rates of anti-microbial resistance in community-acquired uropathogens have made antimicrobial sensitivity testing necessary even in a rural, primary-care setting.

  16. Quantitative assessment of the risk of microbial spoilage in foods. Prediction of non-stability at 55 °C caused by Geobacillus stearothermophilus in canned green beans.

    Science.gov (United States)

    Rigaux, Clémence; André, Stéphane; Albert, Isabelle; Carlin, Frédéric

    2014-02-03

    Microbial spoilage of canned foods by thermophilic and highly heat-resistant spore-forming bacteria, such as Geobacillus stearothermophilus, is a persistent problem in the food industry. An incubation test at 55 °C for 7 days, then validation of biological stability, is used as an indicator of compliance with good manufacturing practices. We propose a microbial risk assessment model predicting the percentage of non-stability due to G. stearothermophilus in canned green beans manufactured by a French company. The model accounts for initial microbial contaminations of fresh unprocessed green beans with G. stearothermophilus, cross-contaminations in the processing chain, inactivation processes and probability of survival and growth. The sterilization process is modeled by an equivalent heating time depending on sterilization value F₀ and on G. stearothermophilus resistance parameter z(T). Following the recommendations of international organizations, second order Monte-Carlo simulations are used, separately propagating uncertainty and variability on parameters. As a result of the model, the mean predicted non-stability rate is of 0.5%, with a 95% uncertainty interval of [0.1%; 1.2%], which is highly similar to data communicated by the French industry. A sensitivity analysis based on Sobol indices and some scenario tests underline the importance of cross-contamination at the blanching step, in addition to inactivation due to the sterilization process. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Bayesian nonparametric data analysis

    CERN Document Server

    Müller, Peter; Jara, Alejandro; Hanson, Tim

    2015-01-01

    This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.

  18. Applied Bayesian modelling

    CERN Document Server

    Congdon, Peter

    2014-01-01

    This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU

  19. Environment of care: Is it time to reassess microbial contamination of the operating room air as a risk factor for surgical site infection in total joint arthroplasty?

    Science.gov (United States)

    Parvizi, Javad; Barnes, Sue; Shohat, Noam; Edmiston, Charles E

    2017-11-01

    In the modern operating room (OR), traditional surgical mask, frequent air exchanges, and architectural barriers are viewed as effective in reducing airborne microbial populations. Intraoperative sampling of airborne particulates is rarely performed in the OR because of technical difficulties associated with sampling methodologies and a common belief that airborne contamination is infrequently associated with surgical site infections (SSIs). Recent studies suggest that viable airborne particulates are readily disseminated throughout the OR, placing patients at risk for postoperative SSI. In 2017, virtually all surgical disciplines are engaged in the implantation of selective biomedical devices, and these implants have been documented to be at high risk for intraoperative contamination. Approximately 1.2 million arthroplasties are performed annually in the United States, and that number is expected to increase to 3.8 million by the year 2030. The incidence of periprosthetic joint infection is perceived to be low (<2.5%); however, the personal and fiscal morbidity is significant. Although the pharmaceutic and computer industries enforce stringent air quality standards on their manufacturing processes, there is currently no U.S. standard for acceptable air quality within the OR environment. This review documents the contribution of air contamination to the etiology of periprosthetic joint infection, and evidence for selective innovative strategies to reduce the risk of intraoperative microbial aerosols. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  1. Searching Algorithm Using Bayesian Updates

    Science.gov (United States)

    Caudle, Kyle

    2010-01-01

    In late October 1967, the USS Scorpion was lost at sea, somewhere between the Azores and Norfolk Virginia. Dr. Craven of the U.S. Navy's Special Projects Division is credited with using Bayesian Search Theory to locate the submarine. Bayesian Search Theory is a straightforward and interesting application of Bayes' theorem which involves searching…

  2. Bayesian Data Analysis (lecture 2)

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    framework but we will also go into more detail and discuss for example the role of the prior. The second part of the lecture will cover further examples and applications that heavily rely on the bayesian approach, as well as some computational tools needed to perform a bayesian analysis.

  3. Bayesian Data Analysis (lecture 1)

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    framework but we will also go into more detail and discuss for example the role of the prior. The second part of the lecture will cover further examples and applications that heavily rely on the bayesian approach, as well as some computational tools needed to perform a bayesian analysis.

  4. The Bayesian Covariance Lasso.

    Science.gov (United States)

    Khondker, Zakaria S; Zhu, Hongtu; Chu, Haitao; Lin, Weili; Ibrahim, Joseph G

    2013-04-01

    Estimation of sparse covariance matrices and their inverse subject to positive definiteness constraints has drawn a lot of attention in recent years. The abundance of high-dimensional data, where the sample size ( n ) is less than the dimension ( d ), requires shrinkage estimation methods since the maximum likelihood estimator is not positive definite in this case. Furthermore, when n is larger than d but not sufficiently larger, shrinkage estimation is more stable than maximum likelihood as it reduces the condition number of the precision matrix. Frequentist methods have utilized penalized likelihood methods, whereas Bayesian approaches rely on matrix decompositions or Wishart priors for shrinkage. In this paper we propose a new method, called the Bayesian Covariance Lasso (BCLASSO), for the shrinkage estimation of a precision (covariance) matrix. We consider a class of priors for the precision matrix that leads to the popular frequentist penalties as special cases, develop a Bayes estimator for the precision matrix, and propose an efficient sampling scheme that does not precalculate boundaries for positive definiteness. The proposed method is permutation invariant and performs shrinkage and estimation simultaneously for non-full rank data. Simulations show that the proposed BCLASSO performs similarly as frequentist methods for non-full rank data.

  5. Bayesian dynamic mediation analysis.

    Science.gov (United States)

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Approximate Bayesian computation.

    Directory of Open Access Journals (Sweden)

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  7. Bayesian inference with ecological applications

    CERN Document Server

    Link, William A

    2009-01-01

    This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analyt...

  8. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  9. Risk factor meta-analysis and Bayesian estimation of genetic parameters and breeding values for hypersensibility to cutaneous habronematidosis in donkeys.

    Science.gov (United States)

    Navas González, Francisco Javier; Jordana Vidal, Jordi; Camacho Vallejo, María Esperanza; León Jurado, Jose Manuel; de la Haba Giraldo, Manuel Rafael; Barba Capote, Cecilio; Delgado Bermejo, Juan Vicente

    2018-03-15

    Cutaneous habronematidosis (CH) is a highly prevalent seasonally recurrent skin disease that affects donkeys as a result from the action of spirurid stomach worm larvae. Carrier flies mistakenly deposit these larvae on previous skin lesions or on the moisture of natural orifices, causing distress and inflicting relapsing wounds to the animals. First, we carried out a meta-analysis of the predisposing factors that could condition the development of CH in Andalusian donkeys. Second, basing on the empirical existence of an inter and intrafamilial variation previously addressed by owners, we isolated the genetic background behind the hypersensibility to this parasitological disease. To this aim, we designed a Bayesian linear model (BLM) to estimate the breeding values and genetic parameters for the hypersensibility to CH as a way to infer the potential selection suitability of this trait, seeking the improvement of donkey conservation programs. We studied the historical record of the cases of CH of 765 donkeys from 1984 to 2017. Fixed effects included birth year, birth season, sex, farm/owner, and husbandry system. Age was included as a linear and quadratic covariate. Although the effects of birth season and birth year were statistically non-significant (P > 0.05), their respective interactions with sex and farm/owner were statistically significant (P < 0.01), what translated into an increase of 40.5% in the specificity and of 0.6% of the sensibility of the model designed, when such interactions were included. Our BLM reported highly accurate genetic parameters as suggested by the low error of around 0.005, and the 95% credible interval for the heritability of ±0.0012. The CH hypersensibility heritability was 0.0346. The value of 0.1232 for additive genetic variance addresses a relatively low genetic variation in the Andalusian donkey breed. Our results suggest that farms managed under extensive husbandry conditions are the most protective ones against

  10. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose.

    Science.gov (United States)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K; Abaidoo, Robert C; Dalsgaard, Anders; Hald, Tine

    2017-12-01

    The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10 -5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio to estimate the norovirus count. In all scenarios of using different water sources, the application of the fecal indicator conversion ratio underestimated the norovirus disease burden, measured by the Disability Adjusted Life Years (DALYs), when compared to results using the genome copies norovirus data. In some cases the difference was >2 orders of magnitude. All scenarios using genome copies met the 10 -4 DALY per person per year for consumption of vegetables irrigated with wastewater, although these results are considered to be highly conservative risk estimates. The fecal indicator conversion ratio model of stream-water and drain-water sources of wastewater achieved the 10 -6 DALY per person per year threshold, which tends to indicate an underestimation of health risk when compared to using genome copies for estimating the dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?

    NARCIS (Netherlands)

    Borsboom, D.; Haig, B.D.

    2013-01-01

    Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science

  12. Can natural selection encode Bayesian priors?

    Science.gov (United States)

    Ramírez, Juan Camilo; Marshall, James A R

    2017-08-07

    The evolutionary success of many organisms depends on their ability to make decisions based on estimates of the state of their environment (e.g., predation risk) from uncertain information. These decision problems have optimal solutions and individuals in nature are expected to evolve the behavioural mechanisms to make decisions as if using the optimal solutions. Bayesian inference is the optimal method to produce estimates from uncertain data, thus natural selection is expected to favour individuals with the behavioural mechanisms to make decisions as if they were computing Bayesian estimates in typically-experienced environments, although this does not necessarily imply that favoured decision-makers do perform Bayesian computations exactly. Each individual should evolve to behave as if updating a prior estimate of the unknown environment variable to a posterior estimate as it collects evidence. The prior estimate represents the decision-maker's default belief regarding the environment variable, i.e., the individual's default 'worldview' of the environment. This default belief has been hypothesised to be shaped by natural selection and represent the environment experienced by the individual's ancestors. We present an evolutionary model to explore how accurately Bayesian prior estimates can be encoded genetically and shaped by natural selection when decision-makers learn from uncertain information. The model simulates the evolution of a population of individuals that are required to estimate the probability of an event. Every individual has a prior estimate of this probability and collects noisy cues from the environment in order to update its prior belief to a Bayesian posterior estimate with the evidence gained. The prior is inherited and passed on to offspring. Fitness increases with the accuracy of the posterior estimates produced. Simulations show that prior estimates become accurate over evolutionary time. In addition to these 'Bayesian' individuals, we also

  13. Bayesian Monte Carlo method

    International Nuclear Information System (INIS)

    Rajabalinejad, M.

    2010-01-01

    To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.

  14. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  15. Early Bayesian modeling of a potassium lab-on-a-chip for monitoring of heart failure patients at increased risk of hyperkalaemia.

    NARCIS (Netherlands)

    van de Wetering, Gijs; Steuten, Lotte Maria Gertruda; von Birgelen, Clemens; Adang, E.M.; IJzerman, Maarten Joost

    2012-01-01

    Objectives: Innovative point-of-care (POC) diagnostics are likely to have a strong impact on 18 health care. The aim of this study is to conduct an early assessment of a point-of-care chip 19 for the detection of a pathological deviation of the potassium levels in patients at increased 20 risk,

  16. Quantitative microbial risk assessment for Escherichia coli O157 on lettuce, based on survival data from controlled studies in a climate chamber.

    Science.gov (United States)

    Ottoson, Jakob R; Nyberg, Karin; Lindqvist, Roland; Albihn, Ann

    2011-12-01

    The aims of the study were to determine the survival of Escherichia coli O157 on lettuce as a function of temperature and light intensity, and to use that information in a screening-level quantitative microbial risk assessment (QMRA) in order to evaluate risk-reducing strategies including irrigation water quality guidelines, rinsing, and holding time between last irrigation and harvest. Iceberg lettuce was grown in a climate chamber and inoculated with E. coli O157. Bacterial numbers were determined with the standard plate count method after inoculation and 1, 2, 4, and 7 day(s) postinoculation. The experiments were carried out at 11, 18, and 25°C in light intensities of 0, 400, and 600 mmol (m(2))(-1) s(-1). There was a significant effect of temperature and light intensity on survival, with less bacteria isolated from lettuce incubated at 25 and 18°C compared with 11°C (P < 0.0001), and in light intensities of 400 and 600 mmol (m(2))(-1) s(-1) compared with 0 mmol (m(2))(-1) s(-1) (P < 0.001). The average log reductions after 1, 2, 4, and 7 day(s) were 1.14, 1.71, 2.04, and 3.0, respectively. The QMRA compared the relative risk with lettuce consumption from 20 scenarios. A stricter water quality guideline gave a mean fivefold risk reduction. Holding times of 1, 2, 4, and 7 day(s) reduced the risk 3, 8, 8, and 18 times, respectively, compared with harvest the same day as the last irrigation. Finally, rinsing lettuce for 15 s in cold tap water prior to consumption gave a sixfold risk reduction compared with eating unrinsed lettuce. Sensitivity analyses indicated that variation in bacterial inactivation had the most significant effect on the risk outcome. A QMRA determining the relative risks between scenarios reduces uncertainty and can provide risk managers with decision support.

  17. Book review: Bayesian analysis for population ecology

    Science.gov (United States)

    Link, William A.

    2011-01-01

    Brian Dennis described the field of ecology as “fertile, uncolonized ground for Bayesian ideas.” He continued: “The Bayesian propagule has arrived at the shore. Ecologists need to think long and hard about the consequences of a Bayesian ecology. The Bayesian outlook is a successful competitor, but is it a weed? I think so.” (Dennis 2004)

  18. A contribution towards the risk assessment of soils from the São Domingos Mine (Portugal): Chemical, microbial and ecotoxicological indicators

    International Nuclear Information System (INIS)

    Alvarenga, Paula; Palma, Patrícia; Varennes, Amarilis de; Cunha-Queda, Ana C.

    2012-01-01

    This study is a contribution towards a risk assessment of the São Domingos Mine area (Portugal), integrating information from: soil physicochemical characteristics, pseudo-total and bioavailable trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn), ecotoxicological evaluation, and microbial indicators. The bioassays using soil eluates (seed germination, luminescent inhibition of Vibrio fischeri and Daphnia magna immobilization) confirmed the soil toxicity categorization obtained with the bioassays using soil (plant growth tests, Eisenia fetida mortality and avoidance behaviour). However, the soil identified as the most toxic using bioassays, was different from the expected when considering the results from pseudo-total and effective bioavailable trace elements. Taking in consideration the observations, it is highly recommended to complement the results from environmental chemistry with results from bioassays, in order to provide a more complete and relevant information on the bioavailability of contaminants and to characterize the risk of contaminated soils. - Highlights: ► Impaired soil retention and habitat functions for all tested soils. ► Aquatic and terrestrial bioassays agreed in the soil toxicity categorization. ► Do results obtained by chemical methods really translate into “biological availability”? ► In multi-contaminated sites, risk estimation based only on chemical methods is inadequate. ► Bioassays provide a more realistic risk assessment of contaminated sites. - Bioassays provide a more complete and relevant information to characterize the risk of contaminated soils, and should be used to complement chemical results.

  19. QMRA (quantitative microbial risk assessment) and HACCP (hazard analysis and critical control points) for management of pathogens in wastewater and sewage sludge treatment and reuse.

    Science.gov (United States)

    Westrell, T; Schönning, C; Stenström, T A; Ashbolt, N J

    2004-01-01

    Hazard Analysis and Critical Control Points (HACCP) was applied for identifying and controlling exposure to pathogenic microorganisms encountered during normal sludge and wastewater handling at a 12,500 m3/d treatment plant utilising tertiary wastewater treatment and mesophilic sludge digestion. The hazardous scenarios considered were human exposure during treatment, handling, soil application and crop consumption, and exposure via water at the wetland-area and recreational swimming. A quantitative microbial risk assessment (QMRA), including rotavirus, adenovirus, haemorrhagic E. coli, Salmonella, Giardia and Cryptosporidium, was performed in order to prioritise pathogen hazards for control purposes. Human exposures were treated as individual risks but also related to the endemic situation in the general population. The highest individual health risk from a single exposure was via aerosols for workers at the belt press for sludge dewatering (virus infection risk = 1). The largest impact on the community would arise if children ingested sludge at the unprotected storage site, although in the worst-case situation the largest number of infections would arise through vegetables fertilised with sludge and eaten raw (not allowed in Sweden). Acceptable risk for various hazardous scenarios, treatment and/or reuse strategies could be tested in the model.

  20. Numerical methods for Bayesian inference in the face of aging

    International Nuclear Information System (INIS)

    Clarotti, C.A.; Villain, B.; Procaccia, H.

    1996-01-01

    In recent years, much attention has been paid to Bayesian methods for Risk Assessment. Until now, these methods have been studied from a theoretical point of view. Researchers have been mainly interested in: studying the effectiveness of Bayesian methods in handling rare events; debating about the problem of priors and other philosophical issues. An aspect central to the Bayesian approach is numerical computation because any safety/reliability problem, in a Bayesian frame, ends with a problem of numerical integration. This aspect has been neglected until now because most Risk studies assumed the Exponential model as the basic probabilistic model. The existence of conjugate priors makes numerical integration unnecessary in this case. If aging is to be taken into account, no conjugate family is available and the use of numerical integration becomes compulsory. EDF (National Board of Electricity, of France) and ENEA (National Committee for Energy, New Technologies and Environment, of Italy) jointly carried out a research program aimed at developing quadrature methods suitable for Bayesian Interference with underlying Weibull or gamma distributions. The paper will illustrate the main results achieved during the above research program and will discuss, via some sample cases, the performances of the numerical algorithms which on the appearance of stress corrosion cracking in the tubes of Steam Generators of PWR French power plants. (authors)

  1. Bayesian image restoration, using configurations

    OpenAIRE

    Thorarinsdottir, Thordis

    2006-01-01

    In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the re...

  2. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

     Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...

  3. A cross-sectional study examining the prevalence and risk factors for anti-microbial-resistant generic Escherichia coli in domestic dogs that frequent dog parks in three cities in south-western Ontario, Canada.

    Science.gov (United States)

    Procter, T D; Pearl, D L; Finley, R L; Leonard, E K; Janecko, N; Reid-Smith, R J; Weese, J S; Peregrine, A S; Sargeant, J M

    2014-06-01

    Anti-microbial resistance can threaten health by limiting treatment options and increasing the risk of hospitalization and severity of infection. Companion animals can shed anti-microbial-resistant bacteria that may result in the exposure of other dogs and humans to anti-microbial-resistant genes. The prevalence of anti-microbial-resistant generic Escherichia coli in the faeces of dogs that visited dog parks in south-western Ontario was examined and risk factors for shedding anti-microbial-resistant generic E. coli identified. From May to August 2009, canine faecal samples were collected at ten dog parks in three cities in south-western Ontario, Canada. Owners completed a questionnaire related to pet characteristics and management factors including recent treatment with antibiotics. Faecal samples were collected from 251 dogs, and 189 surveys were completed. Generic E. coli was isolated from 237 of the faecal samples, and up to three isolates per sample were tested for anti-microbial susceptibility. Eighty-nine percent of isolates were pan-susceptible; 82.3% of dogs shed isolates that were pan-susceptible. Multiclass resistance was detected in 7.2% of the isolates from 10.1% of the dogs. Based on multilevel multivariable logistic regression, a risk factor for the shedding of generic E. coli resistant to ampicillin was attending dog day care. Risk factors for the shedding of E. coli resistant to at least one anti-microbial included attending dog day care and being a large mixed breed dog, whereas consumption of commercial dry and home cooked diets was protective factor. In a multilevel multivariable model for the shedding of multiclass-resistant E. coli, exposure to compost and being a large mixed breed dog were risk factors, while consumption of a commercial dry diet was a sparing factor. Pet dogs are a potential reservoir of anti-microbial-resistant generic E. coli; some dog characteristics and management factors are associated with the prevalence of anti-microbial

  4. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed.

    Science.gov (United States)

    Liao, Hehuan; Krometis, Leigh-Anne H; Kline, Karen

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126CFU/100mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed

  5. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  6. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  7. Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models

    NARCIS (Netherlands)

    Mohammadi, A.; Abegaz, F.; van den Heuvel, E.R.; Wit, E.C.

    2017-01-01

    Dupuytren disease is a fibroproliferative disorder with unknown aetiology that often progresses and eventually can cause permanent contractures of the fingers affected. We provide a computationally efficient Bayesian framework to discover potential risk factors and investigate which fingers are

  8. Quantitative Microbial Risk Assessment for Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in Leafy Green Vegetables Consumed at Salad Bars, Based on Modeling Supply Chain Logistics

    NARCIS (Netherlands)

    Tromp, S.O.; Rijgersberg, H.; Franz, E.

    2010-01-01

    Quantitative microbial risk assessments do not usually account for the planning and ordering mechanisms (logistics) of a food supply chain. These mechanisms and consumer demand determine the storage and delay times of products. The aim of this study was to quantitatively assess the difference

  9. A bayesian approach to classification criteria for spectacled eiders

    Science.gov (United States)

    Taylor, B.L.; Wade, P.R.; Stehn, R.A.; Cochrane, J.F.

    1996-01-01

    To facilitate decisions to classify species according to risk of extinction, we used Bayesian methods to analyze trend data for the Spectacled Eider, an arctic sea duck. Trend data from three independent surveys of the Yukon-Kuskokwim Delta were analyzed individually and in combination to yield posterior distributions for population growth rates. We used classification criteria developed by the recovery team for Spectacled Eiders that seek to equalize errors of under- or overprotecting the species. We conducted both a Bayesian decision analysis and a frequentist (classical statistical inference) decision analysis. Bayesian decision analyses are computationally easier, yield basically the same results, and yield results that are easier to explain to nonscientists. With the exception of the aerial survey analysis of the 10 most recent years, both Bayesian and frequentist methods indicated that an endangered classification is warranted. The discrepancy between surveys warrants further research. Although the trend data are abundance indices, we used a preliminary estimate of absolute abundance to demonstrate how to calculate extinction distributions using the joint probability distributions for population growth rate and variance in growth rate generated by the Bayesian analysis. Recent apparent increases in abundance highlight the need for models that apply to declining and then recovering species.

  10. Probabilistic quantitative microbial risk assessment model of farmer exposure to Cryptosporidium spp. in irrigation water within Kumasi Metropolis-Ghana

    DEFF Research Database (Denmark)

    Sampson, Angelina; Owusu-Ansah, Emmanuel de-Graft Johnson; Mills-Robertson, Felix C.

    2017-01-01

    causing gastroenteritis. The results indicate high positive levels of Cryptosporidium in the irrigation water, however, the levels of Cryptosporidium decreases during the rainfall seasons, risk assessment results show that, farmers face a higher risk of being infected by Cryptosporidium due to frequent...

  11. Bayesian Latent Class Analysis Tutorial.

    Science.gov (United States)

    Li, Yuelin; Lord-Bessen, Jennifer; Shiyko, Mariya; Loeb, Rebecca

    2018-01-01

    This article is a how-to guide on Bayesian computation using Gibbs sampling, demonstrated in the context of Latent Class Analysis (LCA). It is written for students in quantitative psychology or related fields who have a working knowledge of Bayes Theorem and conditional probability and have experience in writing computer programs in the statistical language R . The overall goals are to provide an accessible and self-contained tutorial, along with a practical computation tool. We begin with how Bayesian computation is typically described in academic articles. Technical difficulties are addressed by a hypothetical, worked-out example. We show how Bayesian computation can be broken down into a series of simpler calculations, which can then be assembled together to complete a computationally more complex model. The details are described much more explicitly than what is typically available in elementary introductions to Bayesian modeling so that readers are not overwhelmed by the mathematics. Moreover, the provided computer program shows how Bayesian LCA can be implemented with relative ease. The computer program is then applied in a large, real-world data set and explained line-by-line. We outline the general steps in how to extend these considerations to other methodological applications. We conclude with suggestions for further readings.

  12. Kernel Bayesian ART and ARTMAP.

    Science.gov (United States)

    Masuyama, Naoki; Loo, Chu Kiong; Dawood, Farhan

    2018-02-01

    Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Interactive Instruction in Bayesian Inference

    DEFF Research Database (Denmark)

    Khan, Azam; Breslav, Simon; Hornbæk, Kasper

    2018-01-01

    An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction. These pri......An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction....... These principles concern coherence, personalization, signaling, segmenting, multimedia, spatial contiguity, and pretraining. Principles of self-explanation and interactivity are also applied. Four experiments on the Mammography Problem showed that these principles help participants answer the questions...... that an instructional approach to improving human performance in Bayesian inference is a promising direction....

  14. Probability biases as Bayesian inference

    Directory of Open Access Journals (Sweden)

    Andre; C. R. Martins

    2006-11-01

    Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.

  15. Bayesian analysis of CCDM models

    Science.gov (United States)

    Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.

    2017-09-01

    Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.

  16. Bayesian analysis of CCDM models

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, J.F. [Universidade Estadual Paulista (Unesp), Câmpus Experimental de Itapeva, Rua Geraldo Alckmin 519, Vila N. Sra. de Fátima, Itapeva, SP, 18409-010 Brazil (Brazil); Valentim, R. [Departamento de Física, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Rua São Nicolau No. 210, Diadema, SP, 09913-030 Brazil (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: valentim.rodolfo@unifesp.br, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation—University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX United Kingdom (United Kingdom)

    2017-09-01

    Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3α H {sub 0} model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.

  17. Comparative assessment of managed aquifer recharge versus constructed wetlands in managing chemical and microbial risks during wastewater reuse: A review

    KAUST Repository

    Hamadeh, Ahmed F.

    2014-03-01

    Constructed wetlands (CWs) and managed aquifer recharge (MAR) represent commonly used natural treatment systems for reclamation and reuse of wastewater. However, each of these technologies have some limitations with respect to removal of different contaminants. Combining these two technologies into a hybrid CW-MAR system will lead to synergy in terms of both water quality and costs. This promising technology will help in the reduction of bacteria and viruses, trace and heavy metals, organic micropollutants, and nutrients. Use of subsurface flow CWs as pre-treatment for MAR has multiple benefits: (i) it creates a barrier for different microbial and chemical pollutants, (ii) it reduces the residence time for water recovery, and (iii) it avoids clogging during MAR as CWs can remove suspended solids and enhance the reclaimed water quality. This paper analyzes the removal of different contaminants by CW and MAR systems based on a literature review. It is expected that a combination of these natural treatment systems (CWs and MAR) could become an attractive, efficient and cost-effective technology for water reclamation and reuse. © IWA Publishing 2014.

  18. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Hehuan, E-mail: hehuan86@vt.edu [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Krometis, Leigh-Anne H. [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Kline, Karen [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Center for Watershed Studies, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States)

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126 CFU/100 mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to

  19. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed

    International Nuclear Information System (INIS)

    Liao, Hehuan; Krometis, Leigh-Anne H.; Kline, Karen

    2016-01-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126 CFU/100 mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed

  20. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming; Zhang, Jian

    2009-01-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly

  1. Bayesian Network Induction via Local Neighborhoods

    National Research Council Canada - National Science Library

    Margaritis, Dimitris

    1999-01-01

    .... We present an efficient algorithm for learning Bayesian networks from data. Our approach constructs Bayesian networks by first identifying each node's Markov blankets, then connecting nodes in a consistent way...

  2. Can a significance test be genuinely Bayesian?

    OpenAIRE

    Pereira, Carlos A. de B.; Stern, Julio Michael; Wechsler, Sergio

    2008-01-01

    The Full Bayesian Significance Test, FBST, is extensively reviewed. Its test statistic, a genuine Bayesian measure of evidence, is discussed in detail. Its behavior in some problems of statistical inference like testing for independence in contingency tables is discussed.

  3. Bayesian modeling using WinBUGS

    CERN Document Server

    Ntzoufras, Ioannis

    2009-01-01

    A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...

  4. Bayesian approaches for detecting significant deterioration

    International Nuclear Information System (INIS)

    Roed, Willy; Aven, Terje

    2009-01-01

    Risk indicators can provide useful input to risk management processes and are given increased attention in the Norwegian petroleum industry. Examples include indicators expressing the proportion of test failures of safety and barrier systems. Such indicators give valuable information about the performance of the systems and provide a basis for trend evaluations. Early warning of a possible deterioration is essential due to the importance of the systems in focus, but what should be the basis for the warning criterion? This paper presents and discusses several Bayesian approaches for the establishment of a warning criterion to disclose significant deterioration. The Norwegian petroleum industry is the starting point for this paper, but the study is relevant for other application areas as well

  5. Application of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA on Testing for Surface-Coated Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    YounJung Jung

    2015-07-01

    Full Text Available Four different manufactured surface-coated silver nanoparticles (AgNPs with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (LumiMARA using multi-species of luminescent bacteria. The salt stability of four different AgNPs was measured by UV absorbance at 400 nm wavelength, and different surface-charged AgNPs in combination with bacteria were observed using scanning electron microscopy (SEM. Both branched polyethylenimine (BPEI-AgNPs and polyethylene glycol (PEG-AgNPs were shown to be stable with 2% NaCl (non-aggregation, whereas both citrate (Cit-AgNPs and tannic acid (Tan-AgNPs rapidly aggregated in 2% NaCl solution. The values of the 50% effective concentration (EC50 for BPEI-AgNPs in marine bacteria strains (1.57 to 5.19 mg/L were lower than those for the other surface-coated AgNPs (i.e., Cit-AgNPs, Tan-AgNPs, and PEG-AgNPs. It appears that the toxicity of AgNPs could be activated by the interaction of positively charged AgNPs with the negatively charged bacterial cell wall from the results of LumiMARA. LumiMARA for toxicity screening has advantageous compared to a single-species bioassay and is applicable for environmental samples as displaying ranges of assessment results.

  6. Inference in hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio

    2009-01-01

    Since the 1980s, Bayesian networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability techniques (like fault trees and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (the so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability.

  7. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  8. Quantitative microbial risk assessment for Escherichia coli O157:H7, salmonella, and Listeria monocytogenes in leafy green vegetables consumed at salad bars.

    Science.gov (United States)

    Franz, E; Tromp, S O; Rijgersberg, H; van der Fels-Klerx, H J

    2010-02-01

    Fresh vegetables are increasingly recognized as a source of foodborne outbreaks in many parts of the world. The purpose of this study was to conduct a quantitative microbial risk assessment for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes infection from consumption of leafy green vegetables in salad from salad bars in The Netherlands. Pathogen growth was modeled in Aladin (Agro Logistics Analysis and Design Instrument) using time-temperature profiles in the chilled supply chain and one particular restaurant with a salad bar. A second-order Monte Carlo risk assessment model was constructed (using @Risk) to estimate the public health effects. The temperature in the studied cold chain was well controlled below 5 degrees C. Growth of E. coli O157:H7 and Salmonella was minimal (17 and 15%, respectively). Growth of L. monocytogenes was considerably greater (194%). Based on first-order Monte Carlo simulations, the average number of cases per year in The Netherlands associated the consumption leafy greens in salads from salad bars was 166, 187, and 0.3 for E. coli O157:H7, Salmonella, and L. monocytogenes, respectively. The ranges of the average number of annual cases as estimated by second-order Monte Carlo simulation (with prevalence and number of visitors as uncertain variables) were 42 to 551 for E. coli O157:H7, 81 to 281 for Salmonella, and 0.1 to 0.9 for L. monocytogenes. This study included an integration of modeling pathogen growth in the supply chain of fresh leafy vegetables destined for restaurant salad bars using software designed to model and design logistics and modeling the public health effects using probabilistic risk assessment software.

  9. Multiple-Strain Approach and Probabilistic Modeling of Consumer Habits in Quantitative Microbial Risk Assessment: A Quantitative Assessment of Exposure to Staphylococcal Enterotoxin A in Raw Milk.

    Science.gov (United States)

    Crotta, Matteo; Rizzi, Rita; Varisco, Giorgio; Daminelli, Paolo; Cunico, Elena Cosciani; Luini, Mario; Graber, Hans Ulrich; Paterlini, Franco; Guitian, Javier

    2016-03-01

    Quantitative microbial risk assessment (QMRA) models are extensively applied to inform management of a broad range of food safety risks. Inevitably, QMRA modeling involves an element of simplification of the biological process of interest. Two features that are frequently simplified or disregarded are the pathogenicity of multiple strains of a single pathogen and consumer behavior at the household level. In this study, we developed a QMRA model with a multiple-strain approach and a consumer phase module (CPM) based on uncertainty distributions fitted from field data. We modeled exposure to staphylococcal enterotoxin A in raw milk in Lombardy; a specific enterotoxin production module was thus included. The model is adaptable and could be used to assess the risk related to other pathogens in raw milk as well as other staphylococcal enterotoxins. The multiplestrain approach, implemented as a multinomial process, allowed the inclusion of variability and uncertainty with regard to pathogenicity at the bacterial level. Data from 301 questionnaires submitted to raw milk consumers were used to obtain uncertainty distributions for the CPM. The distributions were modeled to be easily updatable with further data or evidence. The sources of uncertainty due to the multiple-strain approach and the CPM were identified, and their impact on the output was assessed by comparing specific scenarios to the baseline. When the distributions reflecting the uncertainty in consumer behavior were fixed to the 95th percentile, the risk of exposure increased up to 160 times. This reflects the importance of taking into consideration the diversity of consumers' habits at the household level and the impact that the lack of knowledge about variables in the CPM can have on the final QMRA estimates. The multiple-strain approach lends itself to use in other food matrices besides raw milk and allows the model to better capture the complexity of the real world and to be capable of geographical

  10. Bayesian methods for proteomic biomarker development

    Directory of Open Access Journals (Sweden)

    Belinda Hernández

    2015-12-01

    In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.

  11. Bayesian model averaging in vector autoregressive processes with an investigation of stability of the US great ratios and risk of a liquidity trap in the USA, UK and Japan

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2007-01-01

    textabstractA Bayesian model averaging procedure is presented within the class of vector autoregressive (VAR) processes and applied to two empirical issues. First, stability of the "Great Ratios" in U.S. macro-economic time series is investigated, together with the presence and e¤ects of permanent

  12. Bayesian networks and food security - An introduction

    NARCIS (Netherlands)

    Stein, A.

    2004-01-01

    This paper gives an introduction to Bayesian networks. Networks are defined and put into a Bayesian context. Directed acyclical graphs play a crucial role here. Two simple examples from food security are addressed. Possible uses of Bayesian networks for implementation and further use in decision

  13. Plug & Play object oriented Bayesian networks

    DEFF Research Database (Denmark)

    Bangsø, Olav; Flores, J.; Jensen, Finn Verner

    2003-01-01

    been shown to be quite suitable for dynamic domains as well. However, processing object oriented Bayesian networks in practice does not take advantage of their modular structure. Normally the object oriented Bayesian network is transformed into a Bayesian network and, inference is performed...... dynamic domains. The communication needed between instances is achieved by means of a fill-in propagation scheme....

  14. Bayesian risk-based acceptance criteria

    International Nuclear Information System (INIS)

    Martz, H.F.; Abramson, L.R.; Johnson, J.W.

    1996-04-01

    Mechanistic (or deterministic) analysis is traditionally performed in the process of designing a new nuclear reactor or reactor core and also as part of the safety analysis of existing reactors or reload cores. Mechanistic accident analysis is characterized by the specification of an initial operating condition, an initiating event, and subsequent system faults. These subsequent faults are often chosen, through such mechanisms as the worst single failure criterion, so as to maximize the consequences of the accident. Thus, the behavior of all reactor system hardware is prescribed before this analysis begins. Mechanistic analysis then attempts to predict the dynamic response of the system and usually involves detailed reactor physics and thermal-hydraulic predictions of the system behavior, including such parameters as power distributions in the reactor core, coolant temperatures and flow rates, and fuel clad temperature distributions. The objective of this analysis has typically been to establish and verify reactor operating limits and technical specifications, so that severe core damage (SCD) is prevented for a wide variety of reactor accidents

  15. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection?

    NARCIS (Netherlands)

    Horrocks, N.P.C.; Hine, K.; Hegemann, A.; Ndithia, H.K.; Shobrak, M.; Ostrowski, S.; Williams, J.B.; Matson, K.D.; Tieleman, B.I.

    2014-01-01

    Introduction All bird eggs are exposed to microbes in the environment, which if transmitted to the developing embryo, could cause hatching failure. However, the risk of trans-shell infection varies with environmental conditions and is higher for eggs laid in wetter environments. This might relate to

  16. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection?

    NARCIS (Netherlands)

    Horrocks, Nicholas P. C.; Hine, Kathryn; Hegemann, Arne; Ndithia, Henry K.; Shobrak, Mohammed; Ostrowski, Stephane; Williams, Joseph B.; Matson, Kevin D.; Tieleman, B. Irene

    2014-01-01

    Introduction: All bird eggs are exposed to microbes in the environment, which if transmitted to the developing embryo, could cause hatching failure. However, the risk of trans-shell infection varies with environmental conditions and is higher for eggs laid in wetter environments. This might relate

  17. Quantitative microbial risk assessment for an indoor swimming pool with chlorination compared to a UV-based treatment

    NARCIS (Netherlands)

    Peters, M.C.F.M.; Keuten, M.G.A.; de Kreuk, M.K.; Vrouwenvelder, J.S.; Rietveld, L.C.; Medema, G.

    2017-01-01

    Aims Most swimming pools use residual disinfectants like chlorine for disinfection. The use of chlorine has several drawbacks: some waterborne-pathogens are chlorine resistant and disinfection by-products (DBPs) may be formed which are associated with various health risks. Therefore, an alternative

  18. Bayesian detection of causal rare variants under posterior consistency.

    KAUST Repository

    Liang, Faming

    2013-07-26

    Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD), to tackle this problem. The new method simultaneously addresses two issues: (i) (Global association test) Are there any of the variants associated with the disease, and (ii) (Causal variant detection) Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI) Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  19. Bayesian detection of causal rare variants under posterior consistency.

    Directory of Open Access Journals (Sweden)

    Faming Liang

    Full Text Available Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD, to tackle this problem. The new method simultaneously addresses two issues: (i (Global association test Are there any of the variants associated with the disease, and (ii (Causal variant detection Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  20. Bayesian detection of causal rare variants under posterior consistency.

    KAUST Repository

    Liang, Faming; Xiong, Momiao

    2013-01-01

    Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD), to tackle this problem. The new method simultaneously addresses two issues: (i) (Global association test) Are there any of the variants associated with the disease, and (ii) (Causal variant detection) Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI) Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  1. Bayesian NL interpretation and learning

    NARCIS (Netherlands)

    Zeevat, H.

    2011-01-01

    Everyday natural language communication is normally successful, even though contemporary computational linguistics has shown that NL is characterised by very high degree of ambiguity and the results of stochastic methods are not good enough to explain the high success rate. Bayesian natural language

  2. Bayesian image restoration, using configurations

    DEFF Research Database (Denmark)

    Thorarinsdottir, Thordis

    configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed...

  3. Bayesian image restoration, using configurations

    DEFF Research Database (Denmark)

    Thorarinsdottir, Thordis Linda

    2006-01-01

    configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for the salt and pepper noise. The inference in the model is discussed...

  4. Differentiated Bayesian Conjoint Choice Designs

    NARCIS (Netherlands)

    Z. Sándor (Zsolt); M. Wedel (Michel)

    2003-01-01

    textabstractPrevious conjoint choice design construction procedures have produced a single design that is administered to all subjects. This paper proposes to construct a limited set of different designs. The designs are constructed in a Bayesian fashion, taking into account prior uncertainty about

  5. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...

  6. Bayesian Sampling using Condition Indicators

    DEFF Research Database (Denmark)

    Faber, Michael H.; Sørensen, John Dalsgaard

    2002-01-01

    of condition indicators introduced by Benjamin and Cornell (1970) a Bayesian approach to quality control is formulated. The formulation is then extended to the case where the quality control is based on sampling of indirect information about the condition of the components, i.e. condition indicators...

  7. Bayesian Classification of Image Structures

    DEFF Research Database (Denmark)

    Goswami, Dibyendu; Kalkan, Sinan; Krüger, Norbert

    2009-01-01

    In this paper, we describe work on Bayesian classi ers for distinguishing between homogeneous structures, textures, edges and junctions. We build semi-local classiers from hand-labeled images to distinguish between these four different kinds of structures based on the concept of intrinsic dimensi...

  8. Bayesian estimates of linkage disequilibrium

    Directory of Open Access Journals (Sweden)

    Abad-Grau María M

    2007-06-01

    Full Text Available Abstract Background The maximum likelihood estimator of D' – a standard measure of linkage disequilibrium – is biased toward disequilibrium, and the bias is particularly evident in small samples and rare haplotypes. Results This paper proposes a Bayesian estimation of D' to address this problem. The reduction of the bias is achieved by using a prior distribution on the pair-wise associations between single nucleotide polymorphisms (SNPs that increases the likelihood of equilibrium with increasing physical distances between pairs of SNPs. We show how to compute the Bayesian estimate using a stochastic estimation based on MCMC methods, and also propose a numerical approximation to the Bayesian estimates that can be used to estimate patterns of LD in large datasets of SNPs. Conclusion Our Bayesian estimator of D' corrects the bias toward disequilibrium that affects the maximum likelihood estimator. A consequence of this feature is a more objective view about the extent of linkage disequilibrium in the human genome, and a more realistic number of tagging SNPs to fully exploit the power of genome wide association studies.

  9. 3-D contextual Bayesian classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    In this paper we will consider extensions of a series of Bayesian 2-D contextual classification pocedures proposed by Owen (1984) Hjort & Mohn (1984) and Welch & Salter (1971) and Haslett (1985) to 3 spatial dimensions. It is evident that compared to classical pixelwise classification further...

  10. Bayesian Alternation During Tactile Augmentation

    Directory of Open Access Journals (Sweden)

    Caspar Mathias Goeke

    2016-10-01

    Full Text Available A large number of studies suggest that the integration of multisensory signals by humans is well described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition, rotation only (native condition, and both augmented and native information (bimodal condition. Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants’ responses with a probit model and calculated the just notable difference (JND. Then we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67 than the Bayesian integration model (χred2= 4.34. Slightly higher accuracy showed a non-Bayesian winner takes all model (χred2= 1.64, which either used only native or only augmented values per subject for prediction. However the performance of the Bayesian alternation model could be substantially improved (χred2= 1.09 utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in

  11. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology.

    Science.gov (United States)

    Hamilton, Kerry A; Weir, Mark H; Haas, Charles N

    2017-02-01

    Mycobacterium avium complex (MAC) is a group of environmentally-transmitted pathogens of great public health importance. This group is known to be harbored, amplified, and selected for more human-virulent characteristics by amoeba species in aquatic biofilms. However, a quantitative microbial risk assessment (QMRA) has not been performed due to the lack of dose response models resulting from significant heterogeneity within even a single species or subspecies of MAC, as well as the range of human susceptibilities to mycobacterial disease. The primary human-relevant species and subspecies responsible for the majority of the human disease burden and present in drinking water, biofilms, and soil are M. avium subsp. hominissuis, M. intracellulare, and M. chimaera. A critical review of the published literature identified important health endpoints, exposure routes, and susceptible populations for MAC risk assessment. In addition, data sets for quantitative dose-response functions were extracted from published in vivo animal dosing experiments. As a result, seven new exponential dose response models for human-relevant species of MAC with endpoints of lung lesions, death, disseminated infection, liver infection, and lymph node lesions are proposed. Although current physical and biochemical tests used in clinical settings do not differentiate between M. avium and M. intracellulare, differentiating between environmental species and subspecies of the MAC can aid in the assessment of health risks and control of MAC sources. A framework is proposed for incorporating the proposed dose response models into susceptible population- and exposure route-specific QMRA models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.

    1998-12-01

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  13. Microbial glycoproteomics

    DEFF Research Database (Denmark)

    Halim, Adnan; Anonsen, Jan Haug

    2017-01-01

    Mass spectrometry-based "-omics" technologies are important tools for global and detailed mapping of post-translational modifications. Protein glycosylation is an abundant and important post translational modification widespread throughout all domains of life. Characterization of glycoproteins...... and research in this area is rapidly accelerating. Here, we review recent developments in glycoproteomic technologies with a special focus on microbial protein glycosylation....

  14. Does early indoor microbial exposure reduce the risk of asthma? The Prevention and Incidence of Asthma and Mite Allergy birth cohort study

    NARCIS (Netherlands)

    Douwes, J; van Strien, R; Doekes, G; Smit, Jet; Kerkhof, M; Gerritsen, J; Postma, D; Travier, N; Brunekreef, B

    Background: Exposure to microbial agents might inhibit the development of atopy and asthma. Objective: We measured the association between microbial exposure assessed at 3 months and the development of atopic sensitization and doctor-diagnosed (DD) asthma and wheeze in the first 4 years in a birth

  15. Effects of a 20 year rain event: a quantitative microbial risk assessment of a case of contaminated bathing water in Copenhagen, Denmark.

    Science.gov (United States)

    Andersen, S T; Erichsen, A C; Mark, O; Albrechtsen, H-J

    2013-12-01

    Quantitative microbial risk assessments (QMRAs) often lack data on water quality leading to great uncertainty in the QMRA because of the many assumptions. The quantity of waste water contamination was estimated and included in a QMRA on an extreme rain event leading to combined sewer overflow (CSO) to bathing water where an ironman competition later took place. Two dynamic models, (1) a drainage model and (2) a 3D hydrodynamic model, estimated the dilution of waste water from source to recipient. The drainage model estimated that 2.6% of waste water was left in the system before CSO and the hydrodynamic model estimated that 4.8% of the recipient bathing water came from the CSO, so on average there was 0.13% of waste water in the bathing water during the ironman competition. The total estimated incidence rate from a conservative estimate of the pathogenic load of five reference pathogens was 42%, comparable to 55% in an epidemiological study of the case. The combination of applying dynamic models and exposure data led to an improved QMRA that included an estimate of the dilution factor. This approach has not been described previously.

  16. A Bayesian hierarchical approach to comparative audit for carotid surgery.

    Science.gov (United States)

    Kuhan, G; Marshall, E C; Abidia, A F; Chetter, I C; McCollum, P T

    2002-12-01

    the aim of this study was to illustrate how a Bayesian hierarchical modelling approach can aid the reliable comparison of outcome rates between surgeons. retrospective analysis of prospective and retrospective data. binary outcome data (death/stroke within 30 days), together with information on 15 possible risk factors specific for CEA were available on 836 CEAs performed by four vascular surgeons from 1992-99. The median patient age was 68 (range 38-86) years and 60% were men. the model was developed using the WinBUGS software. After adjusting for patient-level risk factors, a cross-validatory approach was adopted to identify "divergent" performance. A ranking exercise was also carried out. the overall observed 30-day stroke/death rate was 3.9% (33/836). The model found diabetes, stroke and heart disease to be significant risk factors. There was no significant difference between the predicted and observed outcome rates for any surgeon (Bayesian p -value>0.05). Each surgeon had a median rank of 3 with associated 95% CI 1.0-5.0, despite the variability of observed stroke/death rate from 2.9-4.4%. After risk adjustment, there was very little residual between-surgeon variability in outcome rate. Bayesian hierarchical models can help to accurately quantify the uncertainty associated with surgeons' performance and rank.

  17. Bayesian Spatial Modelling with R-INLA

    Directory of Open Access Journals (Sweden)

    Finn Lindgren

    2015-02-01

    Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.

  18. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers

    International Nuclear Information System (INIS)

    Fuhrimann, Samuel; Pham-Duc, Phuc; Cissé, Guéladio; Tram, Nguyen Thuy; Thu Ha, Hoang; Dung, Do Trung; Ngoc, Pham; Nguyen-Viet, Hung; Anh Vuong, Tuan; Utzinger, Jürg; Schindler, Christian; Winkler, Mirko S.

    2016-01-01

    The use of wastewater in agriculture and aquaculture has a long tradition throughout Asia. For example, in Hanoi, it creates important livelihood opportunities for > 500,000 farmers in peri-urban communities. Discharge of domestic effluents pollute the water streams with potential pathogenic organisms posing a public health threat to farmers and consumers of wastewater-fed foodstuff. We determined the effectiveness of Hanoi's wastewater conveyance system, placing particular emphasis on the quality of wastewater used in agriculture and aquaculture. Between April and June 2014, a total of 216 water samples were obtained from 24 sampling points and the concentrations of total coliforms (TC), Escherichia coli, Salmonella spp. and helminth eggs determined. Despite applied wastewater treatment, agricultural field irrigation water was heavily contaminated with TC (1.3 × 10"7 colony forming unit (CFU)/100 mL), E. coli (1.1 × 10"6 CFU/100 mL) and Salmonella spp. (108 most probable number (MPN)/100 mL). These values are 110-fold above Vietnamese discharge limits for restricted agriculture and 260-fold above the World Health Organization (WHO)'s tolerable safety limits for unrestricted agriculture. Mean helminth egg concentrations were below WHO tolerable levels in all study systems (< 1 egg/L). Hence, elevated levels of bacterial contamination, but not helminth infections, pose a major health risk for farmers and consumers of wastewater fed-products. We propose a set of control measures that might protect the health of exposed population groups without compromising current urban farming activities. This study presents an important example for sanitation safety planning in a rapidly expanding Asian city and can guide public and private entities working towards Sustainable Development Goal target 6.3, that is to improve water quality by reducing pollution, halving the proportion of untreated wastewater and increasing recycling and safe reuse globally. - Highlights: • We

  19. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrimann, Samuel, E-mail: samuel.fuhrimann@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland); Pham-Duc, Phuc [Center for Public Health and Ecosystem Research, Hanoi School of Public Health, Hanoi (Viet Nam); Cissé, Guéladio [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland); Tram, Nguyen Thuy; Thu Ha, Hoang [Department of Microbiology, National Institute of Hygiene and Epidemiology, Hanoi (Viet Nam); Dung, Do Trung [Department of Parasitology, National Institute of Malaria, Parasitology, and Entomology, Hanoi (Viet Nam); Ngoc, Pham [Department of Animal Hygiene, National Institute for Veterinary Research, Hanoi (Viet Nam); Nguyen-Viet, Hung [Center for Public Health and Ecosystem Research, Hanoi School of Public Health, Hanoi (Viet Nam); International Livestock Research Institute, Hanoi (Viet Nam); Anh Vuong, Tuan [Department of Microbiology, National Institute of Hygiene and Epidemiology, Hanoi (Viet Nam); Utzinger, Jürg; Schindler, Christian; Winkler, Mirko S. [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland)

    2016-10-01

    The use of wastewater in agriculture and aquaculture has a long tradition throughout Asia. For example, in Hanoi, it creates important livelihood opportunities for > 500,000 farmers in peri-urban communities. Discharge of domestic effluents pollute the water streams with potential pathogenic organisms posing a public health threat to farmers and consumers of wastewater-fed foodstuff. We determined the effectiveness of Hanoi's wastewater conveyance system, placing particular emphasis on the quality of wastewater used in agriculture and aquaculture. Between April and June 2014, a total of 216 water samples were obtained from 24 sampling points and the concentrations of total coliforms (TC), Escherichia coli, Salmonella spp. and helminth eggs determined. Despite applied wastewater treatment, agricultural field irrigation water was heavily contaminated with TC (1.3 × 10{sup 7} colony forming unit (CFU)/100 mL), E. coli (1.1 × 10{sup 6} CFU/100 mL) and Salmonella spp. (108 most probable number (MPN)/100 mL). These values are 110-fold above Vietnamese discharge limits for restricted agriculture and 260-fold above the World Health Organization (WHO)'s tolerable safety limits for unrestricted agriculture. Mean helminth egg concentrations were below WHO tolerable levels in all study systems (< 1 egg/L). Hence, elevated levels of bacterial contamination, but not helminth infections, pose a major health risk for farmers and consumers of wastewater fed-products. We propose a set of control measures that might protect the health of exposed population groups without compromising current urban farming activities. This study presents an important example for sanitation safety planning in a rapidly expanding Asian city and can guide public and private entities working towards Sustainable Development Goal target 6.3, that is to improve water quality by reducing pollution, halving the proportion of untreated wastewater and increasing recycling and safe reuse globally

  20. Bayesian estimation methods in metrology

    International Nuclear Information System (INIS)

    Cox, M.G.; Forbes, A.B.; Harris, P.M.

    2004-01-01

    In metrology -- the science of measurement -- a measurement result must be accompanied by a statement of its associated uncertainty. The degree of validity of a measurement result is determined by the validity of the uncertainty statement. In recognition of the importance of uncertainty evaluation, the International Standardization Organization in 1995 published the Guide to the Expression of Uncertainty in Measurement and the Guide has been widely adopted. The validity of uncertainty statements is tested in interlaboratory comparisons in which an artefact is measured by a number of laboratories and their measurement results compared. Since the introduction of the Mutual Recognition Arrangement, key comparisons are being undertaken to determine the degree of equivalence of laboratories for particular measurement tasks. In this paper, we discuss the possible development of the Guide to reflect Bayesian approaches and the evaluation of key comparison data using Bayesian estimation methods

  1. Deep Learning and Bayesian Methods

    Directory of Open Access Journals (Sweden)

    Prosper Harrison B.

    2017-01-01

    Full Text Available A revolution is underway in which deep neural networks are routinely used to solve diffcult problems such as face recognition and natural language understanding. Particle physicists have taken notice and have started to deploy these methods, achieving results that suggest a potentially significant shift in how data might be analyzed in the not too distant future. We discuss a few recent developments in the application of deep neural networks and then indulge in speculation about how such methods might be used to automate certain aspects of data analysis in particle physics. Next, the connection to Bayesian methods is discussed and the paper ends with thoughts on a significant practical issue, namely, how, from a Bayesian perspective, one might optimize the construction of deep neural networks.

  2. Bayesian inference on proportional elections.

    Directory of Open Access Journals (Sweden)

    Gabriel Hideki Vatanabe Brunello

    Full Text Available Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software.

  3. BAYESIAN IMAGE RESTORATION, USING CONFIGURATIONS

    Directory of Open Access Journals (Sweden)

    Thordis Linda Thorarinsdottir

    2011-05-01

    Full Text Available In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed in detail for 3 X 3 and 5 X 5 configurations and examples of the performance of the procedure are given.

  4. Space Shuttle RTOS Bayesian Network

    Science.gov (United States)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores

  5. Multiview Bayesian Correlated Component Analysis

    DEFF Research Database (Denmark)

    Kamronn, Simon Due; Poulsen, Andreas Trier; Hansen, Lars Kai

    2015-01-01

    are identical. Here we propose a hierarchical probabilistic model that can infer the level of universality in such multiview data, from completely unrelated representations, corresponding to canonical correlation analysis, to identical representations as in correlated component analysis. This new model, which...... we denote Bayesian correlated component analysis, evaluates favorably against three relevant algorithms in simulated data. A well-established benchmark EEG data set is used to further validate the new model and infer the variability of spatial representations across multiple subjects....

  6. Optimal soil venting design using Bayesian Decision analysis

    OpenAIRE

    Kaluarachchi, J. J.; Wijedasa, A. H.

    1994-01-01

    Remediation of hydrocarbon-contaminated sites can be costly and the design process becomes complex in the presence of parameter uncertainty. Classical decision theory related to remediation design requires the parameter uncertainties to be stipulated in terms of statistical estimates based on site observations. In the absence of detailed data on parameter uncertainty, classical decision theory provides little contribution in designing a risk-based optimal design strategy. Bayesian decision th...

  7. Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air.

    Science.gov (United States)

    Piñar, Guadalupe; Piombino-Mascali, Dario; Maixner, Frank; Zink, Albert; Sterflinger, Katja

    2013-11-01

    The Capuchin Catacombs of Palermo contain over 1800 preserved bodies dating from the 16th to 20th centuries AD and showing evidence of biodeterioration. An extensive microbiological and molecular investigation was recently performed. Samples were taken from skin, muscle, hair, bone, stuffing materials, clothes, and surrounding walls as well as from the indoor air. In this study, we witnessed that the different degradation phenomena observed on the variety of materials located at the Capuchin Catacombs of Palermo are biological in origin. Molecular techniques showed the dominance of halophilic species of the domains Bacteria and Archaea on the walls and - as a result of salt emanating from the walls - on the mummies themselves. Nevertheless, specialized microorganisms belonging to taxa well-known for their cellulolytic and proteolytic activities were detected on clothes and stuffing material, and on skin, muscle, hair, and bone, respectively. This specialized microbiota is threatening the conservation of the mummies themselves. Additionally, sequences related to the human skin microbiome and to some pathogenic Bacteria (order Clostridiales) and fungi (genus Phialosimplex) were identified on samples derived from the mummies. Furthermore, a phosphate-reducing fungus, Penicillium radicum, was detected on bone. Finally, the high concentration of airborne fungal spores is not conducive to the conservation of the human remains and is posing a potential health risk for visitors. © 2013 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  8. Application of a predictive Bayesian model to environmental accounting.

    Science.gov (United States)

    Anex, R P; Englehardt, J D

    2001-03-30

    Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.

  9. Bayesian geostatistical modeling of leishmaniasis incidence in Brazil.

    Directory of Open Access Journals (Sweden)

    Dimitrios-Alexios Karagiannis-Voules

    Full Text Available BACKGROUND: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. METHODOLOGY: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001-2010. Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. PRINCIPAL FINDINGS: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676 for cutaneous leishmaniasis and 4,889 (SD: 288 for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. CONCLUSIONS/SIGNIFICANCE: Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence.

  10. 12th Brazilian Meeting on Bayesian Statistics

    CERN Document Server

    Louzada, Francisco; Rifo, Laura; Stern, Julio; Lauretto, Marcelo

    2015-01-01

    Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesia...

  11. Probabilistic risk model to assess the potential for resistance selection following the use of anti-microbial medicated feed in pigs.

    Science.gov (United States)

    Filippitzi, Maria Eleni; Chantziaras, Ilias; Devreese, Mathias; Dewulf, Jeroen

    2018-05-30

    The cross-contamination of non-medicated feed with residues of anti-microbials (AM) causes a public and animal health concern associated with the potential for selection and dissemination of resistance. To analyse the associated risks, a probabilistic model was built using @Risk® (Palisade Corporation®) to show the potential extent of the effect of cross-contaminated pig feed on resistance selection. The results of the model include estimations of the proportion of pigs per production stage with residues of doxycycline, chlortetracycline, sulfadiazine and trimethoprim in their intestinal contents, as a result of exposure to cross-contaminated feed with different carry-over levels, in Belgium. By using a semi-quantitative approach, these estimations were combined with experimental data on AM concentrations associated with potential for resistance-selection pressure. Based on this model, it is estimated that 7.76% (min = 1.67; max = 36.94) of sows, 4.23% (min = 1.01%; max = 18.78%) of piglets and 2.8% (min = 0.51%; max = 14.9%) of fatteners in Belgium have residues of doxycycline in their intestinal tract due to consumption of feed with at least 1% carry-over. These values were estimated to be almost triple for sulfadiazine, but substantially lower for chlortetracycline and trimethoprim. Doxycycline concentrations as low as 1 mg/L (corresponding to consumed feed with at least 1% carry-over) can select for resistant porcine commensal Escherichia coli in vitro and in vivo. Conclusions on this risk could not be drawn for other AM at this stage, due to the lack of data on concentrations associated with resistance development. However, since the possibility of resistance mechanisms (e.g. co-selection) occurring cannot be excluded, the results of this model highlight that the use of AM medicated feed should be minimised where possible. In case of medicated feed production, good practice should be followed thoroughly at all levels of production, distribution

  12. A Bayesian model for binary Markov chains

    Directory of Open Access Journals (Sweden)

    Belkheir Essebbar

    2004-02-01

    Full Text Available This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.

  13. 3rd Bayesian Young Statisticians Meeting

    CERN Document Server

    Lanzarone, Ettore; Villalobos, Isadora; Mattei, Alessandra

    2017-01-01

    This book is a selection of peer-reviewed contributions presented at the third Bayesian Young Statisticians Meeting, BAYSM 2016, Florence, Italy, June 19-21. The meeting provided a unique opportunity for young researchers, M.S. students, Ph.D. students, and postdocs dealing with Bayesian statistics to connect with the Bayesian community at large, to exchange ideas, and to network with others working in the same field. The contributions develop and apply Bayesian methods in a variety of fields, ranging from the traditional (e.g., biostatistics and reliability) to the most innovative ones (e.g., big data and networks).

  14. Microbial effects

    International Nuclear Information System (INIS)

    Sharpe, V.J.

    1985-10-01

    The long term safety and integrity of radioactive waste disposal sites proposed for use by Ontario Hydro may be affected by the release of radioactive gases. Microbes mediate the primary pathways of waste degradation and hence an assessment of their potential to produce gaseous end products from the breakdown of low level waste was performed. Due to a number of unknown variables, assumptions were made regarding environmental and waste conditions that controlled microbial activity; however, it was concluded that 14 C and 3 H would be produced, albeit over a long time scale of about 1500 years for 14 C in the worst case situation

  15. Quantitative microbial risk assessment for Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in leafy green vegetables consumed at salad bars, based on modeling supply chain logistics.

    Science.gov (United States)

    Tromp, S O; Rijgersberg, H; Franz, E

    2010-10-01

    Quantitative microbial risk assessments do not usually account for the planning and ordering mechanisms (logistics) of a food supply chain. These mechanisms and consumer demand determine the storage and delay times of products. The aim of this study was to quantitatively assess the difference between simulating supply chain logistics (MOD) and assuming fixed storage times (FIX) in microbial risk estimation for the supply chain of fresh-cut leafy green vegetables destined for working-canteen salad bars. The results of the FIX model were previously published (E. Franz, S. O. Tromp, H. Rijgersberg, and H. J. van der Fels-Klerx, J. Food Prot. 73:274-285, 2010). Pathogen growth was modeled using stochastic discrete-event simulation of the applied logistics concept. The public health effects were assessed by conducting an exposure assessment and risk characterization. The relative growths of Escherichia coli O157 (17%) and Salmonella enterica (15%) were identical in the MOD and FIX models. In contrast, the relative growth of Listeria monocytogenes was considerably higher in the MOD model (1,156%) than in the FIX model (194%). The probability of L. monocytogenes infection in The Netherlands was higher in the MOD model (5.18×10(-8)) than in the FIX model (1.23×10(-8)). The risk of listeriosis-induced fetal mortality in the perinatal population increased from 1.24×10(-4) (FIX) to 1.66×10(-4) (MOD). Modeling the probabilistic nature of supply chain logistics is of additional value for microbial risk assessments regarding psychrotrophic pathogens in food products for which time and temperature are the postharvest preventive measures in guaranteeing food safety.

  16. Bayesian Methods and Universal Darwinism

    Science.gov (United States)

    Campbell, John

    2009-12-01

    Bayesian methods since the time of Laplace have been understood by their practitioners as closely aligned to the scientific method. Indeed a recent Champion of Bayesian methods, E. T. Jaynes, titled his textbook on the subject Probability Theory: the Logic of Science. Many philosophers of science including Karl Popper and Donald Campbell have interpreted the evolution of Science as a Darwinian process consisting of a `copy with selective retention' algorithm abstracted from Darwin's theory of Natural Selection. Arguments are presented for an isomorphism between Bayesian Methods and Darwinian processes. Universal Darwinism, as the term has been developed by Richard Dawkins, Daniel Dennett and Susan Blackmore, is the collection of scientific theories which explain the creation and evolution of their subject matter as due to the Operation of Darwinian processes. These subject matters span the fields of atomic physics, chemistry, biology and the social sciences. The principle of Maximum Entropy states that Systems will evolve to states of highest entropy subject to the constraints of scientific law. This principle may be inverted to provide illumination as to the nature of scientific law. Our best cosmological theories suggest the universe contained much less complexity during the period shortly after the Big Bang than it does at present. The scientific subject matter of atomic physics, chemistry, biology and the social sciences has been created since that time. An explanation is proposed for the existence of this subject matter as due to the evolution of constraints in the form of adaptations imposed on Maximum Entropy. It is argued these adaptations were discovered and instantiated through the Operations of a succession of Darwinian processes.

  17. Bayesian phylogeography finds its roots.

    Directory of Open Access Journals (Sweden)

    Philippe Lemey

    2009-09-01

    Full Text Available As a key factor in endemic and epidemic dynamics, the geographical distribution of viruses has been frequently interpreted in the light of their genetic histories. Unfortunately, inference of historical dispersal or migration patterns of viruses has mainly been restricted to model-free heuristic approaches that provide little insight into the temporal setting of the spatial dynamics. The introduction of probabilistic models of evolution, however, offers unique opportunities to engage in this statistical endeavor. Here we introduce a Bayesian framework for inference, visualization and hypothesis testing of phylogeographic history. By implementing character mapping in a Bayesian software that samples time-scaled phylogenies, we enable the reconstruction of timed viral dispersal patterns while accommodating phylogenetic uncertainty. Standard Markov model inference is extended with a stochastic search variable selection procedure that identifies the parsimonious descriptions of the diffusion process. In addition, we propose priors that can incorporate geographical sampling distributions or characterize alternative hypotheses about the spatial dynamics. To visualize the spatial and temporal information, we summarize inferences using virtual globe software. We describe how Bayesian phylogeography compares with previous parsimony analysis in the investigation of the influenza A H5N1 origin and H5N1 epidemiological linkage among sampling localities. Analysis of rabies in West African dog populations reveals how virus diffusion may enable endemic maintenance through continuous epidemic cycles. From these analyses, we conclude that our phylogeographic framework will make an important asset in molecular epidemiology that can be easily generalized to infer biogeogeography from genetic data for many organisms.

  18. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  19. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....

  20. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    2013-01-01

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....

  1. Numeracy, frequency, and Bayesian reasoning

    Directory of Open Access Journals (Sweden)

    Gretchen B. Chapman

    2009-02-01

    Full Text Available Previous research has demonstrated that Bayesian reasoning performance is improved if uncertainty information is presented as natural frequencies rather than single-event probabilities. A questionnaire study of 342 college students replicated this effect but also found that the performance-boosting benefits of the natural frequency presentation occurred primarily for participants who scored high in numeracy. This finding suggests that even comprehension and manipulation of natural frequencies requires a certain threshold of numeracy abilities, and that the beneficial effects of natural frequency presentation may not be as general as previously believed.

  2. A Bayesian method for detecting pairwise associations in compositional data.

    Directory of Open Access Journals (Sweden)

    Emma Schwager

    2017-11-01

    Full Text Available Compositional data consist of vectors of proportions normalized to a constant sum from a basis of unobserved counts. The sum constraint makes inference on correlations between unconstrained features challenging due to the information loss from normalization. However, such correlations are of long-standing interest in fields including ecology. We propose a novel Bayesian framework (BAnOCC: Bayesian Analysis of Compositional Covariance to estimate a sparse precision matrix through a LASSO prior. The resulting posterior, generated by MCMC sampling, allows uncertainty quantification of any function of the precision matrix, including the correlation matrix. We also use a first-order Taylor expansion to approximate the transformation from the unobserved counts to the composition in order to investigate what characteristics of the unobserved counts can make the correlations more or less difficult to infer. On simulated datasets, we show that BAnOCC infers the true network as well as previous methods while offering the advantage of posterior inference. Larger and more realistic simulated datasets further showed that BAnOCC performs well as measured by type I and type II error rates. Finally, we apply BAnOCC to a microbial ecology dataset from the Human Microbiome Project, which in addition to reproducing established ecological results revealed unique, competition-based roles for Proteobacteria in multiple distinct habitats.

  3. Bayesian Option Pricing using Mixed Normal Heteroskedasticity Models

    DEFF Research Database (Denmark)

    Rombouts, Jeroen; Stentoft, Lars

    2014-01-01

    Option pricing using mixed normal heteroscedasticity models is considered. It is explained how to perform inference and price options in a Bayesian framework. The approach allows to easily compute risk neutral predictive price densities which take into account parameter uncertainty....... In an application to the S&P 500 index, classical and Bayesian inference is performed on the mixture model using the available return data. Comparing the ML estimates and posterior moments small differences are found. When pricing a rich sample of options on the index, both methods yield similar pricing errors...... measured in dollar and implied standard deviation losses, and it turns out that the impact of parameter uncertainty is minor. Therefore, when it comes to option pricing where large amounts of data are available, the choice of the inference method is unimportant. The results are robust to different...

  4. Predicting Software Suitability Using a Bayesian Belief Network

    Science.gov (United States)

    Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.

    2005-01-01

    The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.

  5. Bayesian analysis of log Gaussian Cox processes for disease mapping

    DEFF Research Database (Denmark)

    Benes, Viktor; Bodlák, Karel; Møller, Jesper

    We consider a data set of locations where people in Central Bohemia have been infected by tick-borne encephalitis, and where population census data and covariates concerning vegetation and altitude are available. The aims are to estimate the risk map of the disease and to study the dependence...... of the risk on the covariates. Instead of using the common area level approaches we consider a Bayesian analysis for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of the log Gaussian Cox process are computed using markov chain Monte Carlo methods...

  6. Impact of microbial distributions on food safety

    NARCIS (Netherlands)

    Bassett, J.; Jackson, T.; Jewell, K.; Jongenburger, I.; Zwietering, M.H.

    2010-01-01

    This document discusses mechanisms impacting on physical distributions of microorganisms in foods, characteristics and suitability of frequency distributions employed to model microbial distributions, and the impact of both physical and frequency distributions on illness risk and food safety

  7. Bayesian analysis of magnetic island dynamics

    International Nuclear Information System (INIS)

    Preuss, R.; Maraschek, M.; Zohm, H.; Dose, V.

    2003-01-01

    We examine a first order differential equation with respect to time used to describe magnetic islands in magnetically confined plasmas. The free parameters of this equation are obtained by employing Bayesian probability theory. Additionally, a typical Bayesian change point is solved in the process of obtaining the data

  8. Learning dynamic Bayesian networks with mixed variables

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned...

  9. Using Bayesian Networks to Improve Knowledge Assessment

    Science.gov (United States)

    Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra

    2013-01-01

    In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…

  10. Using Bayesian belief networks in adaptive management.

    Science.gov (United States)

    J.B. Nyberg; B.G. Marcot; R. Sulyma

    2006-01-01

    Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...

  11. Bayesian Decision Theoretical Framework for Clustering

    Science.gov (United States)

    Chen, Mo

    2011-01-01

    In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…

  12. Robust Bayesian detection of unmodelled bursts

    International Nuclear Information System (INIS)

    Searle, Antony C; Sutton, Patrick J; Tinto, Massimo; Woan, Graham

    2008-01-01

    We develop a Bayesian treatment of the problem of detecting unmodelled gravitational wave bursts using the new global network of interferometric detectors. We also compare this Bayesian treatment with existing coherent methods, and demonstrate that the existing methods make implicit assumptions on the distribution of signals that make them sub-optimal for realistic signal populations

  13. Bayesian models: A statistical primer for ecologists

    Science.gov (United States)

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  14. Particle identification in ALICE: a Bayesian approach

    NARCIS (Netherlands)

    Adam, J.; Adamova, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnafoeldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Camejo, A. Batista; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boggild, H.; Boldizsar, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossu, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Diaz, L. Calero; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; del Valle, Z. Conesa; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortes Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Denes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divia, R.; Djuvsland, O.; Dobrin, A.; Gimenez, D. Domenicis; Doenigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernandez Tellez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhoje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glaessel, P.; Gomez Coral, D. M.; Ramirez, A. Gomez; Gonzalez, A. S.; Gonzalez, V.; Gonzalez-Zamora, P.; Gorbunov, S.; Goerlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Haake, R.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbaer, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, J. S.; Kim, M.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein-Boesing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Kralik, I.; Kravcakova, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kucera, V.; Kuijer, P. G.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Monzon, I. Leon; Leon Vargas, H.; Leoncino, M.; Levai, P.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; Torres, E. Lopez; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mares, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marin, A.; Markert, C.; Marquard, M.; Martin, N. A.; Blanco, J. Martin; Martinengo, P.; Martinez, M. I.; Garcia, G. Martinez; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Perez, J. Mercado; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muehlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paic, G.; Pal, S. K.; Pan, J.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Da Costa, H. Pereira; Peresunko, D.; Lara, C. E. Perez; Lezama, E. Perez; Peskov, V.; Pestov, Y.; Petracek, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Raesaenen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodriguez Cahuantzi, M.; Manso, A. Rodriguez; Roed, K.; Rogochaya, E.; Rohr, D.; Roehrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Safarik, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Sefcik, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Sumbera, M.; Sumowidagdo, S.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thaeder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Palomo, L. Valencia; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vyvre, P. Vande; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limon, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Voelkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Watanabe, D.; Watanabe, Y.; Weiser, D. F.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, H.; Yano, S.; Yasin, Z.; Yokoyama, H.; Yoo, I. -K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Zavada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, C.; Zhao, C.; Zhigareva, N.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-01-01

    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian

  15. Advances in Bayesian Modeling in Educational Research

    Science.gov (United States)

    Levy, Roy

    2016-01-01

    In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…

  16. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  17. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  18. BELM: Bayesian extreme learning machine.

    Science.gov (United States)

    Soria-Olivas, Emilio; Gómez-Sanchis, Juan; Martín, José D; Vila-Francés, Joan; Martínez, Marcelino; Magdalena, José R; Serrano, Antonio J

    2011-03-01

    The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap; and presents high generalization capabilities. Bayesian ELM is benchmarked against classical ELM in several artificial and real datasets that are widely used for the evaluation of machine learning algorithms. Achieved results show that the proposed approach produces a competitive accuracy with some additional advantages, namely, automatic production of CIs, reduction of probability of model overfitting, and use of a priori knowledge.

  19. BAYESIAN BICLUSTERING FOR PATIENT STRATIFICATION.

    Science.gov (United States)

    Khakabimamaghani, Sahand; Ester, Martin

    2016-01-01

    The move from Empirical Medicine towards Personalized Medicine has attracted attention to Stratified Medicine (SM). Some methods are provided in the literature for patient stratification, which is the central task of SM, however, there are still significant open issues. First, it is still unclear if integrating different datatypes will help in detecting disease subtypes more accurately, and, if not, which datatype(s) are most useful for this task. Second, it is not clear how we can compare different methods of patient stratification. Third, as most of the proposed stratification methods are deterministic, there is a need for investigating the potential benefits of applying probabilistic methods. To address these issues, we introduce a novel integrative Bayesian biclustering method, called B2PS, for patient stratification and propose methods for evaluating the results. Our experimental results demonstrate the superiority of B2PS over a popular state-of-the-art method and the benefits of Bayesian approaches. Our results agree with the intuition that transcriptomic data forms a better basis for patient stratification than genomic data.

  20. Bayesian Nonparametric Longitudinal Data Analysis.

    Science.gov (United States)

    Quintana, Fernando A; Johnson, Wesley O; Waetjen, Elaine; Gold, Ellen

    2016-01-01

    Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet Process Mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.

  1. 2nd Bayesian Young Statisticians Meeting

    CERN Document Server

    Bitto, Angela; Kastner, Gregor; Posekany, Alexandra

    2015-01-01

    The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Université Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session ...

  2. Bayesian natural language semantics and pragmatics

    CERN Document Server

    Zeevat, Henk

    2015-01-01

    The contributions in this volume focus on the Bayesian interpretation of natural languages, which is widely used in areas of artificial intelligence, cognitive science, and computational linguistics. This is the first volume to take up topics in Bayesian Natural Language Interpretation and make proposals based on information theory, probability theory, and related fields. The methodologies offered here extend to the target semantic and pragmatic analyses of computational natural language interpretation. Bayesian approaches to natural language semantics and pragmatics are based on methods from signal processing and the causal Bayesian models pioneered by especially Pearl. In signal processing, the Bayesian method finds the most probable interpretation by finding the one that maximizes the product of the prior probability and the likelihood of the interpretation. It thus stresses the importance of a production model for interpretation as in Grice's contributions to pragmatics or in interpretation by abduction.

  3. Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.

    Science.gov (United States)

    Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu

    2017-07-05

    We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers

  4. First step in using molecular data for microbial food safety risk assessment; hazard identification of Escherichia coli O157:H7 by coupling genomic data with in vitro adherence to human epithelial cells.

    Science.gov (United States)

    Pielaat, Annemarie; Boer, Martin P; Wijnands, Lucas M; van Hoek, Angela H A M; Bouw, El; Barker, Gary C; Teunis, Peter F M; Aarts, Henk J M; Franz, Eelco

    2015-11-20

    The potential for using whole genome sequencing (WGS) data in microbiological risk assessment (MRA) has been discussed on several occasions since the beginning of this century. Still, the proposed heuristic approaches have never been applied in a practical framework. This is due to the non-trivial problem of mapping microbial information consisting of thousands of loci onto a probabilistic scale for risks. The paradigm change for MRA involves translation of multidimensional microbial genotypic information to much reduced (integrated) phenotypic information and onwards to a single measure of human risk (i.e. probability of illness). In this paper a first approach in methodology development is described for the application of WGS data in MRA; this is supported by a practical example. That is, combining genetic data (single nucleotide polymorphisms; SNPs) for Shiga toxin-producing Escherichia coli (STEC) O157 with phenotypic data (in vitro adherence to epithelial cells as a proxy for virulence) leads to hazard identification in a Genome Wide Association Study (GWAS). This application revealed practical implications when using SNP data for MRA. These can be summarized by considering the following main issues: optimum sample size for valid inference on population level, correction for population structure, quantification and calibration of results, reproducibility of the analysis, links with epidemiological data, anchoring and integration of results into a systems biology approach for the translation of molecular studies to human health risk. Future developments in genetic data analysis for MRA should aim at resolving the mapping problem of processing genetic sequences to come to a quantitative description of risk. The development of a clustering scheme focusing on biologically relevant information of the microbe involved would be a useful approach in molecular data reduction for risk assessment. Copyright © 2015. Published by Elsevier B.V.

  5. A Bayesian Reflection on Surfaces

    Directory of Open Access Journals (Sweden)

    David R. Wolf

    1999-10-01

    Full Text Available Abstract: The topic of this paper is a novel Bayesian continuous-basis field representation and inference framework. Within this paper several problems are solved: The maximally informative inference of continuous-basis fields, that is where the basis for the field is itself a continuous object and not representable in a finite manner; the tradeoff between accuracy of representation in terms of information learned, and memory or storage capacity in bits; the approximation of probability distributions so that a maximal amount of information about the object being inferred is preserved; an information theoretic justification for multigrid methodology. The maximally informative field inference framework is described in full generality and denoted the Generalized Kalman Filter. The Generalized Kalman Filter allows the update of field knowledge from previous knowledge at any scale, and new data, to new knowledge at any other scale. An application example instance, the inference of continuous surfaces from measurements (for example, camera image data, is presented.

  6. Attention in a bayesian framework

    DEFF Research Database (Denmark)

    Whiteley, Louise Emma; Sahani, Maneesh

    2012-01-01

    , and include both selective phenomena, where attention is invoked by cues that point to particular stimuli, and integrative phenomena, where attention is invoked dynamically by endogenous processing. However, most previous Bayesian accounts of attention have focused on describing relatively simple experimental...... selective and integrative roles, and thus cannot be easily extended to complex environments. We suggest that the resource bottleneck stems from the computational intractability of exact perceptual inference in complex settings, and that attention reflects an evolved mechanism for approximate inference which...... can be shaped to refine the local accuracy of perception. We show that this approach extends the simple picture of attention as prior, so as to provide a unified and computationally driven account of both selective and integrative attentional phenomena....

  7. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  8. Nonparametric Bayesian inference in biostatistics

    CERN Document Server

    Müller, Peter

    2015-01-01

    As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...

  9. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  10. Bayesian estimation in homodyne interferometry

    International Nuclear Information System (INIS)

    Olivares, Stefano; Paris, Matteo G A

    2009-01-01

    We address phase-shift estimation by means of squeezed vacuum probe and homodyne detection. We analyse Bayesian estimator, which is known to asymptotically saturate the classical Cramer-Rao bound to the variance, and discuss convergence looking at the a posteriori distribution as the number of measurements increases. We also suggest two feasible adaptive methods, acting on the squeezing parameter and/or the homodyne local oscillator phase, which allow us to optimize homodyne detection and approach the ultimate bound to precision imposed by the quantum Cramer-Rao theorem. The performances of our two-step methods are investigated by means of Monte Carlo simulated experiments with a small number of homodyne data, thus giving a quantitative meaning to the notion of asymptotic optimality.

  11. Bayesian Kernel Mixtures for Counts.

    Science.gov (United States)

    Canale, Antonio; Dunson, David B

    2011-12-01

    Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online.

  12. Bayesian networks in educational assessment

    CERN Document Server

    Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M

    2015-01-01

    Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...

  13. Oral chlorhexidine and microbial contamination during endoscopy

    DEFF Research Database (Denmark)

    Donatsky, Anders Meller; Holzknecht, Barbara Juliane; Arpi, Magnus

    2013-01-01

    BACKGROUND: One of the biggest concerns associated with transgastric surgery is contamination and risk of intra-abdominal infection with microbes introduced from the access route. The purpose of this study was to evaluate the effect of oral decontamination with chlorhexidine on microbial contamin......BACKGROUND: One of the biggest concerns associated with transgastric surgery is contamination and risk of intra-abdominal infection with microbes introduced from the access route. The purpose of this study was to evaluate the effect of oral decontamination with chlorhexidine on microbial...... contamination of the endoscope. METHODS: In a prospective, randomized, single-blinded, clinical trial the effect of chlorhexidine mouth rinse was evaluated. As a surrogate for the risk of intra-abdominal contamination during transgastric surgery, microbial contamination of the endoscope during upper endoscopy...... microbial contamination of the endoscope, but micro-organisms with abscess forming capabilities were still present. PPI treatment significantly increased CFU and should be discontinued before transgastric surgery....

  14. Robust bayesian analysis of an autoregressive model with ...

    African Journals Online (AJOL)

    In this work, robust Bayesian analysis of the Bayesian estimation of an autoregressive model with exponential innovations is performed. Using a Bayesian robustness methodology, we show that, using a suitable generalized quadratic loss, we obtain optimal Bayesian estimators of the parameters corresponding to the ...

  15. Bayesian models a statistical primer for ecologists

    CERN Document Server

    Hobbs, N Thompson

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili

  16. Bayesian Option Pricing Framework with Stochastic Volatility for FX Data

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2016-12-01

    Full Text Available The application of stochastic volatility (SV models in the option pricing literature usually assumes that the market has sufficient option data to calibrate the model’s risk-neutral parameters. When option data are insufficient or unavailable, market practitioners must estimate the model from the historical returns of the underlying asset and then transform the resulting model into its risk-neutral equivalent. However, the likelihood function of an SV model can only be expressed in a high-dimensional integration, which makes the estimation a highly challenging task. The Bayesian approach has been the classical way to estimate SV models under the data-generating (physical probability measure, but the transformation from the estimated physical dynamic into its risk-neutral counterpart has not been addressed. Inspired by the generalized autoregressive conditional heteroskedasticity (GARCH option pricing approach by Duan in 1995, we propose an SV model that enables us to simultaneously and conveniently perform Bayesian inference and transformation into risk-neutral dynamics. Our model relaxes the normality assumption on innovations of both return and volatility processes, and our empirical study shows that the estimated option prices generate realistic implied volatility smile shapes. In addition, the volatility premium is almost flat across strike prices, so adding a few option data to the historical time series of the underlying asset can greatly improve the estimation of option prices.

  17. Prediction of road accidents: A Bayesian hierarchical approach.

    Science.gov (United States)

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T; Köhler, Jochen; Faber, Michael H

    2013-03-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models. Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions of the model response variables, conditional on the values of the risk indicating variables. The methodology is illustrated through a case study using data of the Austrian rural motorway network. In the case study, on randomly selected road segments the methodology is used to produce a model to predict the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link between two Austrian cities. It is shown that the proposed methodology can be used to develop models to estimate the occurrence of road accidents for any

  18. Bayesian modeling of the mass and density of asteroids

    Science.gov (United States)

    Dotson, Jessie L.; Mathias, Donovan

    2017-10-01

    Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.

  19. Microbial micropatches within microbial hotspots

    Science.gov (United States)

    Smith, Renee J.; Tobe, Shanan S.; Paterson, James S.; Seymour, Justin R.; Oliver, Rod L.; Mitchell, James G.

    2018-01-01

    The spatial distributions of organism abundance and diversity are often heterogeneous. This includes the sub-centimetre distributions of microbes, which have ‘hotspots’ of high abundance, and ‘coldspots’ of low abundance. Previously we showed that 300 μl abundance hotspots, coldspots and background regions were distinct at all taxonomic levels. Here we build on these results by showing taxonomic micropatches within these 300 μl microscale hotspots, coldspots and background regions at the 1 μl scale. This heterogeneity among 1 μl subsamples was driven by heightened abundance of specific genera. The micropatches were most pronounced within hotspots. Micropatches were dominated by Pseudomonas, Bacteroides, Parasporobacterium and Lachnospiraceae incertae sedis, with Pseudomonas and Bacteroides being responsible for a shift in the most dominant genera in individual hotspot subsamples, representing up to 80.6% and 47.3% average abundance, respectively. The presence of these micropatches implies the ability these groups have to create, establish themselves in, or exploit heterogeneous microenvironments. These genera are often particle-associated, from which we infer that these micropatches are evidence for sub-millimetre aggregates and the aquatic polymer matrix. These findings support the emerging paradigm that the microscale distributions of planktonic microbes are numerically and taxonomically heterogeneous at scales of millimetres and less. We show that microscale microbial hotspots have internal structure within which specific local nutrient exchanges and cellular interactions might occur. PMID:29787564

  20. Bayesian adaptive methods for clinical trials

    National Research Council Canada - National Science Library

    Berry, Scott M

    2011-01-01

    .... One is that Bayesian approaches implemented with the majority of their informative content coming from the current data, and not any external prior informa- tion, typically have good frequentist properties (e.g...

  1. A Bayesian approach to model uncertainty

    International Nuclear Information System (INIS)

    Buslik, A.

    1994-01-01

    A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given

  2. Structure-based bayesian sparse reconstruction

    KAUST Repository

    Quadeer, Ahmed Abdul; Al-Naffouri, Tareq Y.

    2012-01-01

    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical

  3. An Intuitive Dashboard for Bayesian Network Inference

    International Nuclear Information System (INIS)

    Reddy, Vikas; Farr, Anna Charisse; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K D V

    2014-01-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++

  4. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming

    2009-02-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.

  5. An Intuitive Dashboard for Bayesian Network Inference

    Science.gov (United States)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  6. Bayesian optimization for computationally extensive probability distributions.

    Science.gov (United States)

    Tamura, Ryo; Hukushima, Koji

    2018-01-01

    An efficient method for finding a better maximizer of computationally extensive probability distributions is proposed on the basis of a Bayesian optimization technique. A key idea of the proposed method is to use extreme values of acquisition functions by Gaussian processes for the next training phase, which should be located near a local maximum or a global maximum of the probability distribution. Our Bayesian optimization technique is applied to the posterior distribution in the effective physical model estimation, which is a computationally extensive probability distribution. Even when the number of sampling points on the posterior distributions is fixed to be small, the Bayesian optimization provides a better maximizer of the posterior distributions in comparison to those by the random search method, the steepest descent method, or the Monte Carlo method. Furthermore, the Bayesian optimization improves the results efficiently by combining the steepest descent method and thus it is a powerful tool to search for a better maximizer of computationally extensive probability distributions.

  7. Correct Bayesian and frequentist intervals are similar

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1986-01-01

    This paper argues that Bayesians and frequentists will normally reach numerically similar conclusions, when dealing with vague data or sparse data. It is shown that both statistical methodologies can deal reasonably with vague data. With sparse data, in many important practical cases Bayesian interval estimates and frequentist confidence intervals are approximately equal, although with discrete data the frequentist intervals are somewhat longer. This is not to say that the two methodologies are equally easy to use: The construction of a frequentist confidence interval may require new theoretical development. Bayesians methods typically require numerical integration, perhaps over many variables. Also, Bayesian can easily fall into the trap of over-optimism about their amount of prior knowledge. But in cases where both intervals are found correctly, the two intervals are usually not very different. (orig.)

  8. An overview on Approximate Bayesian computation*

    Directory of Open Access Journals (Sweden)

    Baragatti Meïli

    2014-01-01

    Full Text Available Approximate Bayesian computation techniques, also called likelihood-free methods, are one of the most satisfactory approach to intractable likelihood problems. This overview presents recent results since its introduction about ten years ago in population genetics.

  9. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    OpenAIRE

    Huawei Wang; Jun Gao

    2013-01-01

    Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...

  10. Bayesian probability theory and inverse problems

    International Nuclear Information System (INIS)

    Kopec, S.

    1994-01-01

    Bayesian probability theory is applied to approximate solving of the inverse problems. In order to solve the moment problem with the noisy data, the entropic prior is used. The expressions for the solution and its error bounds are presented. When the noise level tends to zero, the Bayesian solution tends to the classic maximum entropy solution in the L 2 norm. The way of using spline prior is also shown. (author)

  11. A Bayesian classifier for symbol recognition

    OpenAIRE

    Barrat , Sabine; Tabbone , Salvatore; Nourrissier , Patrick

    2007-01-01

    URL : http://www.buyans.com/POL/UploadedFile/134_9977.pdf; International audience; We present in this paper an original adaptation of Bayesian networks to symbol recognition problem. More precisely, a descriptor combination method, which enables to improve significantly the recognition rate compared to the recognition rates obtained by each descriptor, is presented. In this perspective, we use a simple Bayesian classifier, called naive Bayes. In fact, probabilistic graphical models, more spec...

  12. Bayesian Modeling of a Human MMORPG Player

    Science.gov (United States)

    Synnaeve, Gabriel; Bessière, Pierre

    2011-03-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  13. Variations on Bayesian Prediction and Inference

    Science.gov (United States)

    2016-05-09

    inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle

  14. Bayesian target tracking based on particle filter

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.

  15. MCMC for parameters estimation by bayesian approach

    International Nuclear Information System (INIS)

    Ait Saadi, H.; Ykhlef, F.; Guessoum, A.

    2011-01-01

    This article discusses the parameter estimation for dynamic system by a Bayesian approach associated with Markov Chain Monte Carlo methods (MCMC). The MCMC methods are powerful for approximating complex integrals, simulating joint distributions, and the estimation of marginal posterior distributions, or posterior means. The MetropolisHastings algorithm has been widely used in Bayesian inference to approximate posterior densities. Calibrating the proposal distribution is one of the main issues of MCMC simulation in order to accelerate the convergence.

  16. Bayesian Networks for Modeling Dredging Decisions

    Science.gov (United States)

    2011-10-01

    years, that algorithms have been developed to solve these problems efficiently. Most modern Bayesian network software uses junction tree (a.k.a. join... software was used to develop the network . This is by no means an exhaustive list of Bayesian network applications, but it is representative of recent...characteristic node (SCN), state- defining node ( SDN ), effect node (EFN), or value node. The five types of nodes can be described as follows: ERDC/EL TR-11

  17. Fully probabilistic design of hierarchical Bayesian models

    Czech Academy of Sciences Publication Activity Database

    Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine

    2016-01-01

    Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf

  18. A Bayesian Method for Weighted Sampling

    OpenAIRE

    Lo, Albert Y.

    1993-01-01

    Bayesian statistical inference for sampling from weighted distribution models is studied. Small-sample Bayesian bootstrap clone (BBC) approximations to the posterior distribution are discussed. A second-order property for the BBC in unweighted i.i.d. sampling is given. A consequence is that BBC approximations to a posterior distribution of the mean and to the sampling distribution of the sample average, can be made asymptotically accurate by a proper choice of the random variables that genera...

  19. Philosophy and the practice of Bayesian statistics.

    Science.gov (United States)

    Gelman, Andrew; Shalizi, Cosma Rohilla

    2013-02-01

    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.

  20. Defining Probability in Sex Offender Risk Assessment.

    Science.gov (United States)

    Elwood, Richard W

    2016-12-01

    There is ongoing debate and confusion over using actuarial scales to predict individuals' risk of sexual recidivism. Much of the debate comes from not distinguishing Frequentist from Bayesian definitions of probability. Much of the confusion comes from applying Frequentist probability to individuals' risk. By definition, only Bayesian probability can be applied to the single case. The Bayesian concept of probability resolves most of the confusion and much of the debate in sex offender risk assessment. Although Bayesian probability is well accepted in risk assessment generally, it has not been widely used to assess the risk of sex offenders. I review the two concepts of probability and show how the Bayesian view alone provides a coherent scheme to conceptualize individuals' risk of sexual recidivism.

  1. Implementation of a Bayesian Engine for Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leng Vang; Curtis Smith; Steven Prescott

    2014-08-01

    In probabilistic risk assessment, it is important to have an environment where analysts have access to a shared and secured high performance computing and a statistical analysis tool package. As part of the advanced small modular reactor probabilistic risk analysis framework implementation, we have identified the need for advanced Bayesian computations. However, in order to make this technology available to non-specialists, there is also a need of a simplified tool that allows users to author models and evaluate them within this framework. As a proof-of-concept, we have implemented an advanced open source Bayesian inference tool, OpenBUGS, within the browser-based cloud risk analysis framework that is under development at the Idaho National Laboratory. This development, the “OpenBUGS Scripter” has been implemented as a client side, visual web-based and integrated development environment for creating OpenBUGS language scripts. It depends on the shared server environment to execute the generated scripts and to transmit results back to the user. The visual models are in the form of linked diagrams, from which we automatically create the applicable OpenBUGS script that matches the diagram. These diagrams can be saved locally or stored on the server environment to be shared with other users.

  2. Dynamic safety assessment of natural gas stations using Bayesian network

    International Nuclear Information System (INIS)

    Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj

    2017-01-01

    Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.

  3. Dynamic safety assessment of natural gas stations using Bayesian network

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Esmaeil, E-mail: smlzarei65@gmail.com [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Azadeh, Ali [School of Industrial and Systems Engineering, Center of Excellence for Intelligent-Based Experimental Mechanic, College of Engineering, University of Tehran (Iran, Islamic Republic of); Khakzad, Nima [Safety and Security Science Section, Delft University of Technology, Delft (Netherlands); Aliabadi, Mostafa Mirzaei [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Mohammadfam, Iraj, E-mail: mohammadfam@umsha.ac.ir [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of)

    2017-01-05

    Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.

  4. EXONEST: The Bayesian Exoplanetary Explorer

    Directory of Open Access Journals (Sweden)

    Kevin H. Knuth

    2017-10-01

    Full Text Available The fields of astronomy and astrophysics are currently engaged in an unprecedented era of discovery as recent missions have revealed thousands of exoplanets orbiting other stars. While the Kepler Space Telescope mission has enabled most of these exoplanets to be detected by identifying transiting events, exoplanets often exhibit additional photometric effects that can be used to improve the characterization of exoplanets. The EXONEST Exoplanetary Explorer is a Bayesian exoplanet inference engine based on nested sampling and originally designed to analyze archived Kepler Space Telescope and CoRoT (Convection Rotation et Transits planétaires exoplanet mission data. We discuss the EXONEST software package and describe how it accommodates plug-and-play models of exoplanet-associated photometric effects for the purpose of exoplanet detection, characterization and scientific hypothesis testing. The current suite of models allows for both circular and eccentric orbits in conjunction with photometric effects, such as the primary transit and secondary eclipse, reflected light, thermal emissions, ellipsoidal variations, Doppler beaming and superrotation. We discuss our new efforts to expand the capabilities of the software to include more subtle photometric effects involving reflected and refracted light. We discuss the EXONEST inference engine design and introduce our plans to port the current MATLAB-based EXONEST software package over to the next generation Exoplanetary Explorer, which will be a Python-based open source project with the capability to employ third-party plug-and-play models of exoplanet-related photometric effects.

  5. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  6. Inverse problems in the Bayesian framework

    International Nuclear Information System (INIS)

    Calvetti, Daniela; Somersalo, Erkki; Kaipio, Jari P

    2014-01-01

    The history of Bayesian methods dates back to the original works of Reverend Thomas Bayes and Pierre-Simon Laplace: the former laid down some of the basic principles on inverse probability in his classic article ‘An essay towards solving a problem in the doctrine of chances’ that was read posthumously in the Royal Society in 1763. Laplace, on the other hand, in his ‘Memoirs on inverse probability’ of 1774 developed the idea of updating beliefs and wrote down the celebrated Bayes’ formula in the form we know today. Although not identified yet as a framework for investigating inverse problems, Laplace used the formalism very much in the spirit it is used today in the context of inverse problems, e.g., in his study of the distribution of comets. With the evolution of computational tools, Bayesian methods have become increasingly popular in all fields of human knowledge in which conclusions need to be drawn based on incomplete and noisy data. Needless to say, inverse problems, almost by definition, fall into this category. Systematic work for developing a Bayesian inverse problem framework can arguably be traced back to the 1980s, (the original first edition being published by Elsevier in 1987), although articles on Bayesian methodology applied to inverse problems, in particular in geophysics, had appeared much earlier. Today, as testified by the articles in this special issue, the Bayesian methodology as a framework for considering inverse problems has gained a lot of popularity, and it has integrated very successfully with many traditional inverse problems ideas and techniques, providing novel ways to interpret and implement traditional procedures in numerical analysis, computational statistics, signal analysis and data assimilation. The range of applications where the Bayesian framework has been fundamental goes from geophysics, engineering and imaging to astronomy, life sciences and economy, and continues to grow. There is no question that Bayesian

  7. Microbial keratitis in West and East Malaysia

    OpenAIRE

    Vanitha Ratnalingam; Thiageswari Umapathy; Kala Sumugam; Hanida Hanafi; Shamala Retnasabapathy

    2017-01-01

    AIM: To evaluate the epidemiological and etiological factors of microbial keratitis seen in tertiary hospitals in West and East Malaysia.METHODS: A total of 207 patients were enrolled. Patients referred for microbial keratitis to Sungai Buloh Hospital and Kuala Lumpur Hospital in West Malaysia and Queen Elizabeth Hospital and Kuching General Hospital in East Malaysia were recruited. Risk factors were documented. Corneal scrapings for microscopy and culture were performed.RESULTS: The most com...

  8. Bayesian Dose-Response Modeling in Sparse Data

    Science.gov (United States)

    Kim, Steven B.

    This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a

  9. A Bayesian CUSUM plot: Diagnosing quality of treatment.

    Science.gov (United States)

    Rosthøj, Steen; Jacobsen, Rikke-Line

    2017-12-01

    To present a CUSUM plot based on Bayesian diagnostic reasoning displaying evidence in favour of "healthy" rather than "sick" quality of treatment (QOT), and to demonstrate a technique using Kaplan-Meier survival curves permitting application to case series with ongoing follow-up. For a case series with known final outcomes: Consider each case a diagnostic test of good versus poor QOT (expected vs. increased failure rates), determine the likelihood ratio (LR) of the observed outcome, convert LR to weight taking log to base 2, and add up weights sequentially in a plot showing how many times odds in favour of good QOT have been doubled. For a series with observed survival times and an expected survival curve: Divide the curve into time intervals, determine "healthy" and specify "sick" risks of failure in each interval, construct a "sick" survival curve, determine the LR of survival or failure at the given observation times, convert to weights, and add up. The Bayesian plot was applied retrospectively to 39 children with acute lymphoblastic leukaemia with completed follow-up, using Nordic collaborative results as reference, showing equal odds between good and poor QOT. In the ongoing treatment trial, with 22 of 37 children still at risk for event, QOT has been monitored with average survival curves as reference, odds so far favoring good QOT 2:1. QOT in small patient series can be assessed with a Bayesian CUSUM plot, retrospectively when all treatment outcomes are known, but also in ongoing series with unfinished follow-up. © 2017 John Wiley & Sons, Ltd.

  10. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  11. Molecular microbial ecology manual

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Bruijn, de F.J.; Head, I.M.; Akkermans, A.D.L.

    2004-01-01

    The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has

  12. Microbial Rechargeable Battery

    NARCIS (Netherlands)

    Molenaar, Sam D.; Mol, Annemerel R.; Sleutels, Tom H.J.A.; Heijne, Ter Annemiek; Buisman, Cees J.N.

    2016-01-01

    Bioelectrochemical systems hold potential for both conversion of electricity into chemicals through microbial electrosynthesis (MES) and the provision of electrical power by oxidation of organics using microbial fuel cells (MFCs). This study provides a proof of concept for a microbial

  13. Childhood microbial keratitis

    Directory of Open Access Journals (Sweden)

    Abdullah G Al Otaibi

    2012-01-01

    Conclusion: Children with suspected microbial keratitis require comprehensive evaluation and management. Early recognition, identifying the predisposing factors and etiological microbial organisms, and instituting appropriate treatment measures have a crucial role in outcome. Ocular trauma was the leading cause of childhood microbial keratitis in our study.

  14. Estimation of initiating event distribution at nuclear power plants by Bayesian procedure

    International Nuclear Information System (INIS)

    Chen Guangming

    1995-01-01

    Initiating events at nuclear power plants such as human errors or components failures may lead to a nuclear accident. The study of the frequency of these events or the distribution of the failure rate is necessary in probabilistic risk assessment for nuclear power plants. This paper presents Bayesian modelling methods for the analysis of the distribution of the failure rate. The method can also be utilized in other related fields especially where the data is sparse. An application of the Bayesian modelling in the analysis of distribution of the time to recover Loss of Off-Site Power ( LOSP) is discussed in the paper

  15. Bayesian analogy with relational transformations.

    Science.gov (United States)

    Lu, Hongjing; Chen, Dawn; Holyoak, Keith J

    2012-07-01

    How can humans acquire relational representations that enable analogical inference and other forms of high-level reasoning? Using comparative relations as a model domain, we explore the possibility that bottom-up learning mechanisms applied to objects coded as feature vectors can yield representations of relations sufficient to solve analogy problems. We introduce Bayesian analogy with relational transformations (BART) and apply the model to the task of learning first-order comparative relations (e.g., larger, smaller, fiercer, meeker) from a set of animal pairs. Inputs are coded by vectors of continuous-valued features, based either on human magnitude ratings, normed feature ratings (De Deyne et al., 2008), or outputs of the topics model (Griffiths, Steyvers, & Tenenbaum, 2007). Bootstrapping from empirical priors, the model is able to induce first-order relations represented as probabilistic weight distributions, even when given positive examples only. These learned representations allow classification of novel instantiations of the relations and yield a symbolic distance effect of the sort obtained with both humans and other primates. BART then transforms its learned weight distributions by importance-guided mapping, thereby placing distinct dimensions into correspondence. These transformed representations allow BART to reliably solve 4-term analogies (e.g., larger:smaller::fiercer:meeker), a type of reasoning that is arguably specific to humans. Our results provide a proof-of-concept that structured analogies can be solved with representations induced from unstructured feature vectors by mechanisms that operate in a largely bottom-up fashion. We discuss potential implications for algorithmic and neural models of relational thinking, as well as for the evolution of abstract thought. Copyright 2012 APA, all rights reserved.

  16. Bayesian tomographic reconstruction of microsystems

    International Nuclear Information System (INIS)

    Salem, Sofia Fekih; Vabre, Alexandre; Mohammad-Djafari, Ali

    2007-01-01

    The microtomography by X ray transmission plays an increasingly dominating role in the study and the understanding of microsystems. Within this framework, an experimental setup of high resolution X ray microtomography was developed at CEA-List to quantify the physical parameters related to the fluids flow in microsystems. Several difficulties rise from the nature of experimental data collected on this setup: enhanced error measurements due to various physical phenomena occurring during the image formation (diffusion, beam hardening), and specificities of the setup (limited angle, partial view of the object, weak contrast).To reconstruct the object we must solve an inverse problem. This inverse problem is known to be ill-posed. It therefore needs to be regularized by introducing prior information. The main prior information we account for is that the object is composed of a finite known number of different materials distributed in compact regions. This a priori information is introduced via a Gauss-Markov field for the contrast distributions with a hidden Potts-Markov field for the class materials in the Bayesian estimation framework. The computations are done by using an appropriate Markov Chain Monte Carlo (MCMC) technique.In this paper, we present first the basic steps of the proposed algorithms. Then we focus on one of the main steps in any iterative reconstruction method which is the computation of forward and adjoint operators (projection and backprojection). A fast implementation of these two operators is crucial for the real application of the method. We give some details on the fast computation of these steps and show some preliminary results of simulations

  17. Bayesian graphical models for genomewide association studies.

    Science.gov (United States)

    Verzilli, Claudio J; Stallard, Nigel; Whittaker, John C

    2006-07-01

    As the extent of human genetic variation becomes more fully characterized, the research community is faced with the challenging task of using this information to dissect the heritable components of complex traits. Genomewide association studies offer great promise in this respect, but their analysis poses formidable difficulties. In this article, we describe a computationally efficient approach to mining genotype-phenotype associations that scales to the size of the data sets currently being collected in such studies. We use discrete graphical models as a data-mining tool, searching for single- or multilocus patterns of association around a causative site. The approach is fully Bayesian, allowing us to incorporate prior knowledge on the spatial dependencies around each marker due to linkage disequilibrium, which reduces considerably the number of possible graphical structures. A Markov chain-Monte Carlo scheme is developed that yields samples from the posterior distribution of graphs conditional on the data from which probabilistic statements about the strength of any genotype-phenotype association can be made. Using data simulated under scenarios that vary in marker density, genotype relative risk of a causative allele, and mode of inheritance, we show that the proposed approach has better localization properties and leads to lower false-positive rates than do single-locus analyses. Finally, we present an application of our method to a quasi-synthetic data set in which data from the CYP2D6 region are embedded within simulated data on 100K single-nucleotide polymorphisms. Analysis is quick (<5 min), and we are able to localize the causative site to a very short interval.

  18. Objective Bayesianism and the Maximum Entropy Principle

    Directory of Open Access Journals (Sweden)

    Jon Williamson

    2013-09-01

    Full Text Available Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities; they should be calibrated to our evidence of physical probabilities; and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief function should be a probability function, from all those that are calibrated to evidence, that has maximum entropy. However, the three norms of objective Bayesianism are usually justified in different ways. In this paper, we show that the three norms can all be subsumed under a single justification in terms of minimising worst-case expected loss. This, in turn, is equivalent to maximising a generalised notion of entropy. We suggest that requiring language invariance, in addition to minimising worst-case expected loss, motivates maximisation of standard entropy as opposed to maximisation of other instances of generalised entropy. Our argument also provides a qualified justification for updating degrees of belief by Bayesian conditionalisation. However, conditional probabilities play a less central part in the objective Bayesian account than they do under the subjective view of Bayesianism, leading to a reduced role for Bayes’ Theorem.

  19. A default Bayesian hypothesis test for mediation.

    Science.gov (United States)

    Nuijten, Michèle B; Wetzels, Ruud; Matzke, Dora; Dolan, Conor V; Wagenmakers, Eric-Jan

    2015-03-01

    In order to quantify the relationship between multiple variables, researchers often carry out a mediation analysis. In such an analysis, a mediator (e.g., knowledge of a healthy diet) transmits the effect from an independent variable (e.g., classroom instruction on a healthy diet) to a dependent variable (e.g., consumption of fruits and vegetables). Almost all mediation analyses in psychology use frequentist estimation and hypothesis-testing techniques. A recent exception is Yuan and MacKinnon (Psychological Methods, 14, 301-322, 2009), who outlined a Bayesian parameter estimation procedure for mediation analysis. Here we complete the Bayesian alternative to frequentist mediation analysis by specifying a default Bayesian hypothesis test based on the Jeffreys-Zellner-Siow approach. We further extend this default Bayesian test by allowing a comparison to directional or one-sided alternatives, using Markov chain Monte Carlo techniques implemented in JAGS. All Bayesian tests are implemented in the R package BayesMed (Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2014).

  20. Classifying emotion in Twitter using Bayesian network

    Science.gov (United States)

    Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya

    2018-03-01

    Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.