WorldWideScience

Sample records for bayesian learning method

  1. Deep Learning and Bayesian Methods

    Science.gov (United States)

    Prosper, Harrison B.

    2017-03-01

    A revolution is underway in which deep neural networks are routinely used to solve diffcult problems such as face recognition and natural language understanding. Particle physicists have taken notice and have started to deploy these methods, achieving results that suggest a potentially significant shift in how data might be analyzed in the not too distant future. We discuss a few recent developments in the application of deep neural networks and then indulge in speculation about how such methods might be used to automate certain aspects of data analysis in particle physics. Next, the connection to Bayesian methods is discussed and the paper ends with thoughts on a significant practical issue, namely, how, from a Bayesian perspective, one might optimize the construction of deep neural networks.

  2. Deep Learning and Bayesian Methods

    Directory of Open Access Journals (Sweden)

    Prosper Harrison B.

    2017-01-01

    Full Text Available A revolution is underway in which deep neural networks are routinely used to solve diffcult problems such as face recognition and natural language understanding. Particle physicists have taken notice and have started to deploy these methods, achieving results that suggest a potentially significant shift in how data might be analyzed in the not too distant future. We discuss a few recent developments in the application of deep neural networks and then indulge in speculation about how such methods might be used to automate certain aspects of data analysis in particle physics. Next, the connection to Bayesian methods is discussed and the paper ends with thoughts on a significant practical issue, namely, how, from a Bayesian perspective, one might optimize the construction of deep neural networks.

  3. Approximation methods for efficient learning of Bayesian networks

    CERN Document Server

    Riggelsen, C

    2008-01-01

    This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.

  4. Application of Bayesian Network Learning Methods to Land Resource Evaluation

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiejun; HE Xiaorong; WAN Youchuan

    2006-01-01

    Bayesian network has a powerful ability for reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to deal with prediction, classification and clustering. Firstly, this paper presented an overview of Bayesian network and its characteristics, and discussed how to learn a Bayesian network structure from given data, and then constructed a Bayesian network model for land resource evaluation with expert knowledge and the dataset. The experimental results based on the test dataset are that evaluation accuracy is 87.5%, and Kappa index is 0.826. All these prove the method is feasible and efficient, and indicate that Bayesian network is a promising approach for land resource evaluation.

  5. Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

    NARCIS (Netherlands)

    Dimitrakakis, C.; Filipe, J.; Fred, A.; Sharp, B.

    2010-01-01

    There has been a lot of recent work on Bayesian methods for reinforcement learning exhibiting near-optimal online performance. The main obstacle facing such methods is that in most problems of interest, the optimal solution involves planning in an infinitely large tree. However, it is possible to ob

  6. Applied Bayesian Hierarchical Methods

    CERN Document Server

    Congdon, Peter D

    2010-01-01

    Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.

  7. Approximation Methods for Efficient Learning of Bayesian Networks

    NARCIS (Netherlands)

    Riggelsen, C.

    2006-01-01

    Learning from data ranges between extracting essentials from the data, to the more fundamental and very challenging task of learning the underlying data generating process in terms of a probability distribution. In particular, in this thesis we assume that this distribution can be modelled as a Baye

  8. Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

    CERN Document Server

    Dimitrakakis, Christos

    2009-01-01

    There has been a lot of recent work on Bayesian methods for reinforcement learning exhibiting near-optimal online performance. The main obstacle facing such methods is that in most problems of interest, the optimal solution involves planning in an infinitely large tree. However, it is possible to obtain stochastic lower and upper bounds on the value of each tree node. This enables us to use stochastic branch and bound algorithms to search the tree efficiently. This paper proposes two such algorithms and examines their complexity in this setting.

  9. A nonparametric Bayesian method of translating machine learning scores to probabilities in clinical decision support.

    Science.gov (United States)

    Connolly, Brian; Cohen, K Bretonnel; Santel, Daniel; Bayram, Ulya; Pestian, John

    2017-08-07

    Probabilistic assessments of clinical care are essential for quality care. Yet, machine learning, which supports this care process has been limited to categorical results. To maximize its usefulness, it is important to find novel approaches that calibrate the ML output with a likelihood scale. Current state-of-the-art calibration methods are generally accurate and applicable to many ML models, but improved granularity and accuracy of such methods would increase the information available for clinical decision making. This novel non-parametric Bayesian approach is demonstrated on a variety of data sets, including simulated classifier outputs, biomedical data sets from the University of California, Irvine (UCI) Machine Learning Repository, and a clinical data set built to determine suicide risk from the language of emergency department patients. The method is first demonstrated on support-vector machine (SVM) models, which generally produce well-behaved, well understood scores. The method produces calibrations that are comparable to the state-of-the-art Bayesian Binning in Quantiles (BBQ) method when the SVM models are able to effectively separate cases and controls. However, as the SVM models' ability to discriminate classes decreases, our approach yields more granular and dynamic calibrated probabilities comparing to the BBQ method. Improvements in granularity and range are even more dramatic when the discrimination between the classes is artificially degraded by replacing the SVM model with an ad hoc k-means classifier. The method allows both clinicians and patients to have a more nuanced view of the output of an ML model, allowing better decision making. The method is demonstrated on simulated data, various biomedical data sets and a clinical data set, to which diverse ML methods are applied. Trivially extending the method to (non-ML) clinical scores is also discussed.

  10. A novel Bayesian learning method for information aggregation in modular neural networks

    DEFF Research Database (Denmark)

    Wang, Pan; Xu, Lida; Zhou, Shang-Ming;

    2010-01-01

    Modular neural network is a popular neural network model which has many successful applications. In this paper, a sequential Bayesian learning (SBL) is proposed for modular neural networks aiming at efficiently aggregating the outputs of members of the ensemble. The experimental results on eight ...

  11. DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning

    KAUST Repository

    Soufan, Othman

    2016-11-10

    Background Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods for extracting useful information from these assays. Virtual screening and a wide variety of databases, methods and solutions proposed to-date, did not completely overcome these challenges. This study is based on a multi-label classification (MLC) technique for modeling correlations between several HTS assays, meaning that a single prediction represents a subset of assigned correlated labels instead of one label. Thus, the devised method provides an increased probability for more accurate predictions of compounds that were not tested in particular assays. Results Here we present DRABAL, a novel MLC solution that incorporates structure learning of a Bayesian network as a step to model dependency between the HTS assays. In this study, DRABAL was used to process more than 1.4 million interactions of over 400,000 compounds and analyze the existing relationships between five large HTS assays from the PubChem BioAssay Database. Compared to different MLC methods, DRABAL significantly improves the F1Score by about 22%, on average. We further illustrated usefulness and utility of DRABAL through screening FDA approved drugs and reported ones that have a high probability to interact with several targets, thus enabling drug-multi-target repositioning. Specifically DRABAL suggests the Thiabendazole drug as a common activator of the NCP1 and Rab-9A proteins, both of which are designed to identify treatment modalities for the Niemann–Pick type C disease. Conclusion We developed a novel MLC solution based on a Bayesian active learning framework to overcome the challenge of lacking fully labeled training data and exploit actual dependencies between the HTS assays. The solution is motivated by the need to model dependencies between existing

  12. A functional-dependencies-based Bayesian networks learning method and its application in a mobile commerce system.

    Science.gov (United States)

    Liao, Stephen Shaoyi; Wang, Huai Qing; Li, Qiu Dan; Liu, Wei Yi

    2006-06-01

    This paper presents a new method for learning Bayesian networks from functional dependencies (FD) and third normal form (3NF) tables in relational databases. The method sets up a linkage between the theory of relational databases and probabilistic reasoning models, which is interesting and useful especially when data are incomplete and inaccurate. The effectiveness and practicability of the proposed method is demonstrated by its implementation in a mobile commerce system.

  13. Bayesian methods for the physical sciences learning from examples in astronomy and physics

    CERN Document Server

    Andreon, Stefano

    2015-01-01

    Statistical literacy is critical for the modern researcher in Physics and Astronomy. This book empowers researchers in these disciplines by providing the tools they will need to analyze their own data. Chapters in this book provide a statistical base from which to approach new problems, including numerical advice and a profusion of examples. The examples are engaging analyses of real-world problems taken from modern astronomical research. The examples are intended to be starting points for readers as they learn to approach their own data and research questions. Acknowledging that scientific progress now hinges on the availability of data and the possibility to improve previous analyses, data and code are distributed throughout the book. The JAGS symbolic language used throughout the book makes it easy to perform Bayesian analysis and is particularly valuable as readers may use it in a myriad of scenarios through slight modifications.

  14. A Bayesian Concept Learning Approach to Crowdsourcing

    DEFF Research Database (Denmark)

    Viappiani, Paolo Renato; Zilles, Sandra; Hamilton, Howard J.;

    2011-01-01

    techniques, inference methods, and query selection strategies to assist a user charged with choosing a configuration that satisfies some (partially known) concept. Our model is able to simultaneously learn the concept definition and the types of the experts. We evaluate our model with simulations, showing......We develop a Bayesian approach to concept learning for crowdsourcing applications. A probabilistic belief over possible concept definitions is maintained and updated according to (noisy) observations from experts, whose behaviors are modeled using discrete types. We propose recommendation...... that our Bayesian strategies are effective even in large concept spaces with many uninformative experts....

  15. Learning Bayesian Networks from Correlated Data

    Science.gov (United States)

    Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola

    2016-05-01

    Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

  16. Learning Bayesian Networks from Correlated Data.

    Science.gov (United States)

    Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H; Perls, Thomas T; Sebastiani, Paola

    2016-05-05

    Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

  17. Machine learning a Bayesian and optimization perspective

    CERN Document Server

    Theodoridis, Sergios

    2015-01-01

    This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...

  18. Bayesian Methods for Statistical Analysis

    OpenAIRE

    Puza, Borek

    2015-01-01

    Bayesian methods for statistical analysis is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical models, Markov chain Monte Carlo methods, finite population inference, biased sampling and nonignorable nonresponse. The book contains many exercises, all with worked solutions, including complete c...

  19. Effective Bayesian Transfer Learning

    Science.gov (United States)

    2010-03-01

    insufficient (most models) and models where clusters containing more than a few variables are too costly (e.g., stereopsis ). 10 Models where...detections 2D hypoth 3D hypoth 32 Stanford Traffic Vision: Year 1 Summary PI: Thrun •! Developed transfer machine learning technique. •! Transfer at...Detection, classification, and prediction of vehicular traffic . •! Is an application of Transfer Learning to the Visual Domain •! Impact: May make

  20. Bayesian Methods for the Physical Sciences. Learning from Examples in Astronomy and Physics.

    Science.gov (United States)

    Andreon, Stefano; Weaver, Brian

    2015-05-01

    Chapter 1: This chapter presents some basic steps for performing a good statistical analysis, all summarized in about one page. Chapter 2: This short chapter introduces the basics of probability theory inan intuitive fashion using simple examples. It also illustrates, again with examples, how to propagate errors and the difference between marginal and profile likelihoods. Chapter 3: This chapter introduces the computational tools and methods that we use for sampling from the posterior distribution. Since all numerical computations, and Bayesian ones are no exception, may end in errors, we also provide a few tips to check that the numerical computation is sampling from the posterior distribution. Chapter 4: Many of the concepts of building, running, and summarizing the resultsof a Bayesian analysis are described with this step-by-step guide using a basic (Gaussian) model. The chapter also introduces examples using Poisson and Binomial likelihoods, and how to combine repeated independent measurements. Chapter 5: All statistical analyses make assumptions, and Bayesian analyses are no exception. This chapter emphasizes that results depend on data and priors (assumptions). We illustrate this concept with examples where the prior plays greatly different roles, from major to negligible. We also provide some advice on how to look for information useful for sculpting the prior. Chapter 6: In this chapter we consider examples for which we want to estimate more than a single parameter. These common problems include estimating location and spread. We also consider examples that require the modeling of two populations (one we are interested in and a nuisance population) or averaging incompatible measurements. We also introduce quite complex examples dealing with upper limits and with a larger-than-expected scatter. Chapter 7: Rarely is a sample randomly selected from the population we wish to study. Often, samples are affected by selection effects, e.g., easier

  1. Bayesian NL interpretation and learning

    NARCIS (Netherlands)

    Zeevat, H.

    2011-01-01

    Everyday natural language communication is normally successful, even though contemporary computational linguistics has shown that NL is characterised by very high degree of ambiguity and the results of stochastic methods are not good enough to explain the high success rate. Bayesian natural language

  2. PAC-Bayesian Policy Evaluation for Reinforcement Learning

    CERN Document Server

    Fard, Mahdi MIlani; Szepesvari, Csaba

    2012-01-01

    Bayesian priors offer a compact yet general means of incorporating domain knowledge into many learning tasks. The correctness of the Bayesian analysis and inference, however, largely depends on accuracy and correctness of these priors. PAC-Bayesian methods overcome this problem by providing bounds that hold regardless of the correctness of the prior distribution. This paper introduces the first PAC-Bayesian bound for the batch reinforcement learning problem with function approximation. We show how this bound can be used to perform model-selection in a transfer learning scenario. Our empirical results confirm that PAC-Bayesian policy evaluation is able to leverage prior distributions when they are informative and, unlike standard Bayesian RL approaches, ignore them when they are misleading.

  3. Bayesian methods for hackers probabilistic programming and Bayesian inference

    CERN Document Server

    Davidson-Pilon, Cameron

    2016-01-01

    Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...

  4. Bayesian Methods and Universal Darwinism

    CERN Document Server

    Campbell, John

    2010-01-01

    Bayesian methods since the time of Laplace have been understood by their practitioners as closely aligned to the scientific method. Indeed a recent champion of Bayesian methods, E. T. Jaynes, titled his textbook on the subject Probability Theory: the Logic of Science. Many philosophers of science including Karl Popper and Donald Campbell have interpreted the evolution of Science as a Darwinian process consisting of a 'copy with selective retention' algorithm abstracted from Darwin's theory of Natural Selection. Arguments are presented for an isomorphism between Bayesian Methods and Darwinian processes. Universal Darwinism, as the term has been developed by Richard Dawkins, Daniel Dennett and Susan Blackmore, is the collection of scientific theories which explain the creation and evolution of their subject matter as due to the operation of Darwinian processes. These subject matters span the fields of atomic physics, chemistry, biology and the social sciences. The principle of Maximum Entropy states that system...

  5. Bayesian Inference Methods for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand

    2013-01-01

    This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...

  6. Supplementary Material for: DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning

    KAUST Repository

    Soufan, Othman

    2016-01-01

    Abstract Background Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods for extracting useful information from these assays. Virtual screening and a wide variety of databases, methods and solutions proposed to-date, did not completely overcome these challenges. This study is based on a multi-label classification (MLC) technique for modeling correlations between several HTS assays, meaning that a single prediction represents a subset of assigned correlated labels instead of one label. Thus, the devised method provides an increased probability for more accurate predictions of compounds that were not tested in particular assays. Results Here we present DRABAL, a novel MLC solution that incorporates structure learning of a Bayesian network as a step to model dependency between the HTS assays. In this study, DRABAL was used to process more than 1.4 million interactions of over 400,000 compounds and analyze the existing relationships between five large HTS assays from the PubChem BioAssay Database. Compared to different MLC methods, DRABAL significantly improves the F1Score by about 22%, on average. We further illustrated usefulness and utility of DRABAL through screening FDA approved drugs and reported ones that have a high probability to interact with several targets, thus enabling drug-multi-target repositioning. Specifically DRABAL suggests the Thiabendazole drug as a common activator of the NCP1 and Rab-9A proteins, both of which are designed to identify treatment modalities for the Niemannâ Pick type C disease. Conclusion We developed a novel MLC solution based on a Bayesian active learning framework to overcome the challenge of lacking fully labeled training data and exploit actual dependencies between the HTS assays. The solution is motivated by the need to model dependencies between

  7. Learning dynamic Bayesian networks with mixed variables

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learn....... An automated procedure for specifying prior distributions for the parameters in a dynamic Bayesian network is presented. It is a simple extension of the procedure for the ordinary Bayesian networks. Finally the W¨olfer?s sunspot numbers are analyzed....

  8. Stochastic margin-based structure learning of Bayesian network classifiers.

    Science.gov (United States)

    Pernkopf, Franz; Wohlmayr, Michael

    2013-02-01

    The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are applied to determine the classifier structures. In the experiments, we demonstrate the advantages of maximum margin optimized Bayesian network structures in terms of classification performance compared to traditionally used discriminative structure learning methods. Stochastic simulated annealing requires less score evaluations than greedy heuristics. Additionally, we compare generative and discriminative parameter learning on both generatively and discriminatively structured Bayesian network classifiers. Margin-optimized Bayesian network classifiers achieve similar classification performance as support vector machines. Moreover, missing feature values during classification can be handled by discriminatively optimized Bayesian network classifiers, a case where purely discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  9. Semisupervised learning using Bayesian interpretation: application to LS-SVM.

    Science.gov (United States)

    Adankon, Mathias M; Cheriet, Mohamed; Biem, Alain

    2011-04-01

    Bayesian reasoning provides an ideal basis for representing and manipulating uncertain knowledge, with the result that many interesting algorithms in machine learning are based on Bayesian inference. In this paper, we use the Bayesian approach with one and two levels of inference to model the semisupervised learning problem and give its application to the successful kernel classifier support vector machine (SVM) and its variant least-squares SVM (LS-SVM). Taking advantage of Bayesian interpretation of LS-SVM, we develop a semisupervised learning algorithm for Bayesian LS-SVM using our approach based on two levels of inference. Experimental results on both artificial and real pattern recognition problems show the utility of our method.

  10. A parallel framework for Bayesian reinforcement learning

    Science.gov (United States)

    Barrett, Enda; Duggan, Jim; Howley, Enda

    2014-01-01

    Solving a finite Markov decision process using techniques from dynamic programming such as value or policy iteration require a complete model of the environmental dynamics. The distribution of rewards, transition probabilities, states and actions all need to be fully observable, discrete and complete. For many problem domains, a complete model containing a full representation of the environmental dynamics may not be readily available. Bayesian reinforcement learning (RL) is a technique devised to make better use of the information observed through learning than simply computing Q-functions. However, this approach can often require extensive experience in order to build up an accurate representation of the true values. To address this issue, this paper proposes a method for parallelising a Bayesian RL technique aimed at reducing the time it takes to approximate the missing model. We demonstrate the technique on learning next state transition probabilities without prior knowledge. The approach is general enough for approximating any probabilistically driven component of the model. The solution involves multiple learning agents learning in parallel on the same task. Agents share probability density estimates amongst each other in an effort to speed up convergence to the true values.

  11. Bayesian adaptive methods for clinical trials

    CERN Document Server

    Berry, Scott M; Muller, Peter

    2010-01-01

    Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adaptive Methods for Clinical Trials explores the growing role of Bayesian thinking in the rapidly changing world of clinical trial analysis. The book first summarizes the current state of clinical trial design and analysis and introduces the main ideas and potential benefits of a Bayesian alternative. It then gives an overview of basic Bayesian methodological and computational tools needed for Bayesian clinical trials. With a focus on Bayesian designs that achieve good power and Type I error, the next chapters present Bayesian tools useful in early (Phase I) and middle (Phase II) clinical trials as well as two recent Bayesian adaptive Phase II studies: the BATTLE and ISP...

  12. A Bayesian Concept Learning Approach to Crowdsourcing

    DEFF Research Database (Denmark)

    Viappiani, Paolo Renato; Zilles, Sandra; Hamilton, Howard J.

    2011-01-01

    We develop a Bayesian approach to concept learning for crowdsourcing applications. A probabilistic belief over possible concept definitions is maintained and updated according to (noisy) observations from experts, whose behaviors are modeled using discrete types. We propose recommendation...

  13. BNFinder2: Faster Bayesian network learning and Bayesian classification.

    Science.gov (United States)

    Dojer, Norbert; Bednarz, Pawel; Podsiadlo, Agnieszka; Wilczynski, Bartek

    2013-08-15

    Bayesian Networks (BNs) are versatile probabilistic models applicable to many different biological phenomena. In biological applications the structure of the network is usually unknown and needs to be inferred from experimental data. BNFinder is a fast software implementation of an exact algorithm for finding the optimal structure of the network given a number of experimental observations. Its second version, presented in this article, represents a major improvement over the previous version. The improvements include (i) a parallelized learning algorithm leading to an order of magnitude speed-ups in BN structure learning time; (ii) inclusion of an additional scoring function based on mutual information criteria; (iii) possibility of choosing the resulting network specificity based on statistical criteria and (iv) a new module for classification by BNs, including cross-validation scheme and classifier quality measurements with receiver operator characteristic scores. BNFinder2 is implemented in python and freely available under the GNU general public license at the project Web site https://launchpad.net/bnfinder, together with a user's manual, introductory tutorial and supplementary methods.

  14. Basics of Bayesian Learning - Basically Bayes

    DEFF Research Database (Denmark)

    Larsen, Jan

    Tutorial presented at the IEEE Machine Learning for Signal Processing Workshop 2006, Maynooth, Ireland, September 8, 2006. The tutorial focuses on the basic elements of Bayesian learning and its relation to classical learning paradigms. This includes a critical discussion of the pros and cons....... The theory is illustrated by specific models and examples....

  15. Learning Bayesian network structure with immune algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Cai; Shubin Si; Shudong Sun; Hongyan Dui

    2015-01-01

    Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa-per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further-more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Final y, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.

  16. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming

    2009-02-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.

  17. Bayesian Methods and Universal Darwinism

    Science.gov (United States)

    Campbell, John

    2009-12-01

    Bayesian methods since the time of Laplace have been understood by their practitioners as closely aligned to the scientific method. Indeed a recent Champion of Bayesian methods, E. T. Jaynes, titled his textbook on the subject Probability Theory: the Logic of Science. Many philosophers of science including Karl Popper and Donald Campbell have interpreted the evolution of Science as a Darwinian process consisting of a `copy with selective retention' algorithm abstracted from Darwin's theory of Natural Selection. Arguments are presented for an isomorphism between Bayesian Methods and Darwinian processes. Universal Darwinism, as the term has been developed by Richard Dawkins, Daniel Dennett and Susan Blackmore, is the collection of scientific theories which explain the creation and evolution of their subject matter as due to the Operation of Darwinian processes. These subject matters span the fields of atomic physics, chemistry, biology and the social sciences. The principle of Maximum Entropy states that Systems will evolve to states of highest entropy subject to the constraints of scientific law. This principle may be inverted to provide illumination as to the nature of scientific law. Our best cosmological theories suggest the universe contained much less complexity during the period shortly after the Big Bang than it does at present. The scientific subject matter of atomic physics, chemistry, biology and the social sciences has been created since that time. An explanation is proposed for the existence of this subject matter as due to the evolution of constraints in the form of adaptations imposed on Maximum Entropy. It is argued these adaptations were discovered and instantiated through the Operations of a succession of Darwinian processes.

  18. Bayesian methods for measures of agreement

    CERN Document Server

    Broemeling, Lyle D

    2009-01-01

    Using WinBUGS to implement Bayesian inferences of estimation and testing hypotheses, Bayesian Methods for Measures of Agreement presents useful methods for the design and analysis of agreement studies. It focuses on agreement among the various players in the diagnostic process.The author employs a Bayesian approach to provide statistical inferences based on various models of intra- and interrater agreement. He presents many examples that illustrate the Bayesian mode of reasoning and explains elements of a Bayesian application, including prior information, experimental information, the likelihood function, posterior distribution, and predictive distribution. The appendices provide the necessary theoretical foundation to understand Bayesian methods as well as introduce the fundamentals of programming and executing the WinBUGS software.Taking a Bayesian approach to inference, this hands-on book explores numerous measures of agreement, including the Kappa coefficient, the G coefficient, and intraclass correlation...

  19. Variational bayesian method of estimating variance components.

    Science.gov (United States)

    Arakawa, Aisaku; Taniguchi, Masaaki; Hayashi, Takeshi; Mikawa, Satoshi

    2016-07-01

    We developed a Bayesian analysis approach by using a variational inference method, a so-called variational Bayesian method, to determine the posterior distributions of variance components. This variational Bayesian method and an alternative Bayesian method using Gibbs sampling were compared in estimating genetic and residual variance components from both simulated data and publically available real pig data. In the simulated data set, we observed strong bias toward overestimation of genetic variance for the variational Bayesian method in the case of low heritability and low population size, and less bias was detected with larger population sizes in both methods examined. The differences in the estimates of variance components between the variational Bayesian and the Gibbs sampling were not found in the real pig data. However, the posterior distributions of the variance components obtained with the variational Bayesian method had shorter tails than those obtained with the Gibbs sampling. Consequently, the posterior standard deviations of the genetic and residual variances of the variational Bayesian method were lower than those of the method using Gibbs sampling. The computing time required was much shorter with the variational Bayesian method than with the method using Gibbs sampling.

  20. A Bayesian Approach to Learning Scoring Systems.

    Science.gov (United States)

    Ertekin, Şeyda; Rudin, Cynthia

    2015-12-01

    We present a Bayesian method for building scoring systems, which are linear models with coefficients that have very few significant digits. Usually the construction of scoring systems involve manual effort-humans invent the full scoring system without using data, or they choose how logistic regression coefficients should be scaled and rounded to produce a scoring system. These kinds of heuristics lead to suboptimal solutions. Our approach is different in that humans need only specify the prior over what the coefficients should look like, and the scoring system is learned from data. For this approach, we provide a Metropolis-Hastings sampler that tends to pull the coefficient values toward their "natural scale." Empirically, the proposed method achieves a high degree of interpretability of the models while maintaining competitive generalization performances.

  1. SYNTHESIZED EXPECTED BAYESIAN METHOD OF PARAMETRIC ESTIMATE

    Institute of Scientific and Technical Information of China (English)

    Ming HAN; Yuanyao DING

    2004-01-01

    This paper develops a new method of parametric estimate, which is named as "synthesized expected Bayesian method". When samples of products are tested and no failure events occur, thedefinition of expected Bayesian estimate is introduced and the estimates of failure probability and failure rate are provided. After some failure information is introduced by making an extra-test, a synthesized expected Bayesian method is defined and used to estimate failure probability, failure rateand some other parameters in exponential distribution and Weibull distribution of populations. Finally,calculations are performed according to practical problems, which show that the synthesized expected Bayesian method is feasible and easy to operate.

  2. Bayesian learning of sparse multiscale image representations.

    Science.gov (United States)

    Hughes, James Michael; Rockmore, Daniel N; Wang, Yang

    2013-12-01

    Multiscale representations of images have become a standard tool in image analysis. Such representations offer a number of advantages over fixed-scale methods, including the potential for improved performance in denoising, compression, and the ability to represent distinct but complementary information that exists at various scales. A variety of multiresolution transforms exist, including both orthogonal decompositions such as wavelets as well as nonorthogonal, overcomplete representations. Recently, techniques for finding adaptive, sparse representations have yielded state-of-the-art results when applied to traditional image processing problems. Attempts at developing multiscale versions of these so-called dictionary learning models have yielded modest but encouraging results. However, none of these techniques has sought to combine a rigorous statistical formulation of the multiscale dictionary learning problem and the ability to share atoms across scales. We present a model for multiscale dictionary learning that overcomes some of the drawbacks of previous approaches by first decomposing an input into a pyramid of distinct frequency bands using a recursive filtering scheme, after which we perform dictionary learning and sparse coding on the individual levels of the resulting pyramid. The associated image model allows us to use a single set of adapted dictionary atoms that is shared--and learned--across all scales in the model. The underlying statistical model of our proposed method is fully Bayesian and allows for efficient inference of parameters, including the level of additive noise for denoising applications. We apply the proposed model to several common image processing problems including non-Gaussian and nonstationary denoising of real-world color images.

  3. On local optima in learning bayesian networks

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Kocka, Tomas; Pena, Jose

    2003-01-01

    This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...

  4. Incremental Bayesian Category Learning from Natural Language

    Science.gov (United States)

    Frermann, Lea; Lapata, Mirella

    2016-01-01

    Models of category learning have been extensively studied in cognitive science and primarily tested on perceptual abstractions or artificial stimuli. In this paper, we focus on categories acquired from natural language stimuli, that is, words (e.g., "chair" is a member of the furniture category). We present a Bayesian model that, unlike…

  5. Multisnapshot Sparse Bayesian Learning for DOA

    DEFF Research Database (Denmark)

    Gerstoft, Peter; Mecklenbrauker, Christoph F.; Xenaki, Angeliki

    2016-01-01

    The directions of arrival (DOA) of plane waves are estimated from multisnapshot sensor array data using sparse Bayesian learning (SBL). The prior for the source amplitudes is assumed independent zero-mean complex Gaussian distributed with hyperparameters, the unknown variances (i.e., the source...... is discussed and evaluated competitively against LASSO (l(1)-regularization), conventional beamforming, and MUSIC....

  6. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  7. Variance-Based Rewards for Approximate Bayesian Reinforcement Learning

    CERN Document Server

    Sorg, Jonathan; Lewis, Richard L

    2012-01-01

    The explore{exploit dilemma is one of the central challenges in Reinforcement Learning (RL). Bayesian RL solves the dilemma by providing the agent with information in the form of a prior distribution over environments; however, full Bayesian planning is intractable. Planning with the mean MDP is a common myopic approximation of Bayesian planning. We derive a novel reward bonus that is a function of the posterior distribution over environments, which, when added to the reward in planning with the mean MDP, results in an agent which explores efficiently and effectively. Although our method is similar to existing methods when given an uninformative or unstructured prior, unlike existing methods, our method can exploit structured priors. We prove that our method results in a polynomial sample complexity and empirically demonstrate its advantages in a structured exploration task.

  8. Structure Learning in Bayesian Sensorimotor Integration.

    Directory of Open Access Journals (Sweden)

    Tim Genewein

    2015-08-01

    Full Text Available Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration.

  9. Discriminative Bayesian Dictionary Learning for Classification.

    Science.gov (United States)

    Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal

    2016-12-01

    We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.

  10. A Structure Learning Algorithm for Bayesian Network Using Prior Knowledge

    Institute of Scientific and Technical Information of China (English)

    徐俊刚; 赵越; 陈健; 韩超

    2015-01-01

    Learning structure from data is one of the most important fundamental tasks of Bayesian network research. Particularly, learning optional structure of Bayesian network is a non-deterministic polynomial-time (NP) hard problem. To solve this problem, many heuristic algorithms have been proposed, and some of them learn Bayesian network structure with the help of different types of prior knowledge. However, the existing algorithms have some restrictions on the prior knowledge, such as quality restriction and use restriction. This makes it difficult to use the prior knowledge well in these algorithms. In this paper, we introduce the prior knowledge into the Markov chain Monte Carlo (MCMC) algorithm and propose an algorithm called Constrained MCMC (C-MCMC) algorithm to learn the structure of the Bayesian network. Three types of prior knowledge are defined: existence of parent node, absence of parent node, and distribution knowledge including the conditional probability distribution (CPD) of edges and the probability distribution (PD) of nodes. All of these types of prior knowledge are easily used in this algorithm. We conduct extensive experiments to demonstrate the feasibility and effectiveness of the proposed method C-MCMC.

  11. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

    Science.gov (United States)

    Huang, Yanping; Rao, Rajesh P N

    2016-08-01

    Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

  12. Bayesian multitask inverse reinforcement learning

    CERN Document Server

    Dimitrakakis, Christos

    2011-01-01

    We generalise the problem of inverse reinforcement learning to multiple tasks, from a set of demonstrations. Each demonstration may represent one expert trying to solve a different task. Alternatively, one may see each demonstration as given by a different expert trying to solve the same task. Our main technical contribution is to solve the problem by formalising it as statistical preference elicitation, via a number of structured priors, whose form captures our biases about the relatedness of different tasks or expert policies. We show that our methodology allows us not only to learn to efficiently from multiple experts but to also effectively differentiate between the goals of each. Possible applications include analysing the intrinsic motivations of subjects in behavioural experiments and imitation learning from multiple teachers.

  13. Bayesian network learning for natural hazard assessments

    Science.gov (United States)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables

  14. Variational Bayesian Approximation methods for inverse problems

    Science.gov (United States)

    Mohammad-Djafari, Ali

    2012-09-01

    Variational Bayesian Approximation (VBA) methods are recent tools for effective Bayesian computations. In this paper, these tools are used for inverse problems where the prior models include hidden variables and where where the estimation of the hyper parameters has also to be addressed. In particular two specific prior models (Student-t and mixture of Gaussian models) are considered and details of the algorithms are given.

  15. Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data

    Science.gov (United States)

    2015-07-01

    Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data Guy Van den Broeck∗ and Karthika Mohan∗ and Arthur Choi and Adnan...We propose a family of efficient algorithms for learning the parameters of a Bayesian network from incomplete data. Our approach is based on recent...algorithms like EM (which require inference). 1 INTRODUCTION When learning the parameters of a Bayesian network from data with missing values, the

  16. A Sparse Bayesian Learning Algorithm for Longitudinal Image Data.

    Science.gov (United States)

    Sabuncu, Mert R

    2015-10-01

    Longitudinal imaging studies, where serial (multiple) scans are collected on each individual, are becoming increasingly widespread. The field of machine learning has in general neglected the longitudinal design, since many algorithms are built on the assumption that each datapoint is an independent sample. Thus, the application of general purpose machine learning tools to longitudinal image data can be sub-optimal. Here, we present a novel machine learning algorithm designed to handle longitudinal image datasets. Our approach builds on a sparse Bayesian image-based prediction algorithm. Our empirical results demonstrate that the proposed method can offer a significant boost in prediction performance with longitudinal clinical data.

  17. Structure learning for Bayesian networks as models of biological networks.

    Science.gov (United States)

    Larjo, Antti; Shmulevich, Ilya; Lähdesmäki, Harri

    2013-01-01

    Bayesian networks are probabilistic graphical models suitable for modeling several kinds of biological systems. In many cases, the structure of a Bayesian network represents causal molecular mechanisms or statistical associations of the underlying system. Bayesian networks have been applied, for example, for inferring the structure of many biological networks from experimental data. We present some recent progress in learning the structure of static and dynamic Bayesian networks from data.

  18. Sparse Bayesian learning in ISAR tomography imaging

    Institute of Scientific and Technical Information of China (English)

    SU Wu-ge; WANG Hong-qiang; DENG Bin; WANG Rui-jun; QIN Yu-liang

    2015-01-01

    Inverse synthetic aperture radar (ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography (CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm (PFA) and the convolution back projection algorithm (CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing (CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning (SBL) acts as an effective tool in regression and classification, which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of thel0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed. Experimental results based on simulated and electromagnetic (EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.

  19. Learning Bayesian networks using genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Chen Fei; Wang Xiufeng; Rao Yimei

    2007-01-01

    A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.

  20. Multisnapshot Sparse Bayesian Learning for DOA

    Science.gov (United States)

    Gerstoft, Peter; Mecklenbrauker, Christoph F.; Xenaki, Angeliki; Nannuru, Santosh

    2016-10-01

    The directions of arrival (DOA) of plane waves are estimated from multi-snapshot sensor array data using Sparse Bayesian Learning (SBL). The prior source amplitudes is assumed independent zero-mean complex Gaussian distributed with hyperparameters the unknown variances (i.e. the source powers). For a complex Gaussian likelihood with hyperparameter the unknown noise variance, the corresponding Gaussian posterior distribution is derived. For a given number of DOAs, the hyperparameters are automatically selected by maximizing the evidence and promote sparse DOA estimates. The SBL scheme for DOA estimation is discussed and evaluated competitively against LASSO ($\\ell_1$-regularization), conventional beamforming, and MUSIC

  1. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  2. Bayesian learning for cardiac SPECT image interpretation.

    Science.gov (United States)

    Sacha, Jarosław P; Goodenday, Lucy S; Cios, Krzysztof J

    2002-01-01

    In this paper, we describe a system for automating the diagnosis of myocardial perfusion from single-photon emission computerized tomography (SPECT) images of male and female hearts. Initially we had several thousand of SPECT images, other clinical data and physician-interpreter's descriptions of the images. The images were divided into segments based on the Yale system. Each segment was described by the physician as showing one of the following conditions: normal perfusion, reversible perfusion defect, partially reversible perfusion defect, fixed perfusion defect, defect showing reverse redistribution, equivocal defect or artifact. The physician's diagnosis of overall left ventricular (LV) perfusion, based on the above descriptions, categorizes a study as showing one or more of eight possible conditions: normal, ischemia, infarct and ischemia, infarct, reverse redistribution, equivocal, artifact or LV dysfunction. Because of the complexity of the task, we decided to use the knowledge discovery approach, consisting of these steps: problem understanding, data understanding, data preparation, data mining, evaluating the discovered knowledge and its implementation. After going through the data preparation step, in which we constructed normal gender-specific models of the LV and image registration, we ended up with 728 patients for whom we had both SPECT images and corresponding diagnoses. Another major contribution of the paper is the data mining step, in which we used several new Bayesian learning classification methods. The approach we have taken, namely the six-step knowledge discovery process has proven to be very successful in this complex data mining task and as such the process can be extended to other medical data mining projects.

  3. Bayesian Learning and the Psychology of Rule Induction

    Science.gov (United States)

    Endress, Ansgar D.

    2013-01-01

    In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to…

  4. Bayesian nonparametric dictionary learning for compressed sensing MRI.

    Science.gov (United States)

    Huang, Yue; Paisley, John; Lin, Qin; Ding, Xinghao; Fu, Xueyang; Zhang, Xiao-Ping

    2014-12-01

    We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.

  5. Measure Transformer Semantics for Bayesian Machine Learning

    Science.gov (United States)

    Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; van Gael, Jurgen

    The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define combinators for measure transformers, based on theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that has a straightforward semantics via factor graphs, data structures that enable many efficient inference algorithms. We use an existing inference engine for efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.

  6. Sparse Bayesian learning for DOA estimation with mutual coupling.

    Science.gov (United States)

    Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi

    2015-10-16

    Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.

  7. Sparse Bayesian Learning for DOA Estimation with Mutual Coupling

    Directory of Open Access Journals (Sweden)

    Jisheng Dai

    2015-10-01

    Full Text Available Sparse Bayesian learning (SBL has given renewed interest to the problem of direction-of-arrival (DOA estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs. Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.

  8. Learning Local Components to Understand Large Bayesian Networks

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge

    2009-01-01

    Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... (domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....

  9. Hessian PDF reweighting meets the Bayesian methods

    CERN Document Server

    Paukkunen, Hannu

    2014-01-01

    We discuss the Hessian PDF reweighting - a technique intended to estimate the effects that new measurements have on a set of PDFs. The method stems straightforwardly from considering new data in a usual $\\chi^2$-fit and it naturally incorporates also non-zero values for the tolerance, $\\Delta\\chi^2>1$. In comparison to the contemporary Bayesian reweighting techniques, there is no need to generate large ensembles of PDF Monte-Carlo replicas, and the observables need to be evaluated only with the central and the error sets of the original PDFs. In spite of the apparently rather different methodologies, we find that the Hessian and the Bayesian techniques are actually equivalent if the $\\Delta\\chi^2$ criterion is properly included to the Bayesian likelihood function that is a simple exponential.

  10. Language Evolution by Iterated Learning with Bayesian Agents

    Science.gov (United States)

    Griffiths, Thomas L.; Kalish, Michael L.

    2007-01-01

    Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…

  11. Learning Bayesian Networks from Data by Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal. The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms.

  12. BONNSAI: correlated stellar observables in Bayesian methods

    CERN Document Server

    Schneider, F R N; Fossati, L; Langer, N; de Koter, A

    2016-01-01

    In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code BONNSAI by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounte...

  13. A Gaussian Mixed Model for Learning Discrete Bayesian Networks.

    Science.gov (United States)

    Balov, Nikolay

    2011-02-01

    In this paper we address the problem of learning discrete Bayesian networks from noisy data. Considered is a graphical model based on mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network. The network learning is formulated as a Maximum Likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable - from simple regression analysis to learning gene/protein regulatory networks from microarray data.

  14. Prediction in Health Domain Using Bayesian Networks Optimization Based on Induction Learning Techniques

    Science.gov (United States)

    Felgaer, Pablo; Britos, Paola; García-Martínez, Ramón

    A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.

  15. Bayesian methods of astronomical source extraction

    CERN Document Server

    Oliver, R S S S

    2005-01-01

    We present two new source extraction methods, based on the Bayesian statistical formalism. The first is a source detection filter, able to simultaneously detect point sources and estimate the image background. The second is an advanced photometry technique, which measures the flux, position (to sub-pixel accuracy), local background and point spread function of a previously-detected source. In both cases, we use the Bayesian Information Criterion (BIC) to compare the relative likelihood of different models. We apply the source detection filter to simulated Herschel-SPIRE data and show the filter's ability to both detect point sources and also simultaneously estimate the image background. We use the photometry method to analyse a simple simulated image containing a source of unknown flux, position and point spread function; we not only accurately measure these parameters, but also determine their uncertainties (using Markov-Chain Monte Carlo sampling). We also characterise the nature of the source (for example,...

  16. Sparse kernel learning with LASSO and Bayesian inference algorithm.

    Science.gov (United States)

    Gao, Junbin; Kwan, Paul W; Shi, Daming

    2010-03-01

    Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318-324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In International conference on artificial intelligence and statistics (pp. 580-587). San Juan, Puerto Rico: MIT Press]. This paper is concerned with learning kernels under the LASSO formulation via adopting a generative Bayesian learning and inference approach. A new robust learning algorithm is proposed which produces a sparse kernel model with the capability of learning regularized parameters and kernel hyperparameters. A comparison with state-of-the-art methods for constructing sparse regression models such as the relevance vector machine (RVM) and the local regularization assisted orthogonal least squares regression (LROLS) is given. The new algorithm is also demonstrated to possess considerable computational advantages. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Prior approval: the growth of Bayesian methods in psychology.

    Science.gov (United States)

    Andrews, Mark; Baguley, Thom

    2013-02-01

    Within the last few years, Bayesian methods of data analysis in psychology have proliferated. In this paper, we briefly review the history or the Bayesian approach to statistics, and consider the implications that Bayesian methods have for the theory and practice of data analysis in psychology.

  18. A Bayesian method for pulsar template generation

    CERN Document Server

    Imgrund, M; Kramer, M; Lesch, H

    2015-01-01

    Extracting Times of Arrival from pulsar radio signals depends on the knowledge of the pulsars pulse profile and how this template is generated. We examine pulsar template generation with Bayesian methods. We will contrast the classical generation mechanism of averaging intensity profiles with a new approach based on Bayesian inference. We introduce the Bayesian measurement model imposed and derive the algorithm to reconstruct a "statistical template" out of noisy data. The properties of these "statistical templates" are analysed with simulated and real measurement data from PSR B1133+16. We explain how to put this new form of template to use in analysing secondary parameters of interest and give various examples: We implement a nonlinear filter for determining ToAs of pulsars. Applying this method to data from PSR J1713+0747 we derive ToAs self consistently, meaning all epochs were timed and we used the same epochs for template generation. While the average template contains fluctuations and noise as unavoida...

  19. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  20. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  1. Compressive dynamic range imaging via Bayesian shrinkage dictionary learning

    Science.gov (United States)

    Yuan, Xin

    2016-12-01

    We apply the Bayesian shrinkage dictionary learning into compressive dynamic-range imaging. By attenuating the luminous intensity impinging upon the detector at the pixel level, we demonstrate a conceptual design of an 8-bit camera to sample high-dynamic-range scenes with a single snapshot. Coding strategies for both monochrome and color cameras are proposed. A Bayesian reconstruction algorithm is developed to learn a dictionary in situ on the sampled image, for joint reconstruction and demosaicking. We use global-local shrinkage priors to learn the dictionary and dictionary coefficients representing the data. Simulation results demonstrate the feasibility of the proposed camera and the superior performance of the Bayesian shrinkage dictionary learning algorithm.

  2. Root Sparse Bayesian Learning for Off-Grid DOA Estimation

    Science.gov (United States)

    Dai, Jisheng; Bao, Xu; Xu, Weichao; Chang, Chunqi

    2017-01-01

    The performance of the existing sparse Bayesian learning (SBL) methods for off-gird DOA estimation is dependent on the trade off between the accuracy and the computational workload. To speed up the off-grid SBL method while remain a reasonable accuracy, this letter describes a computationally efficient root SBL method for off-grid DOA estimation, where a coarse refinable grid, whose sampled locations are viewed as the adjustable parameters, is adopted. We utilize an expectation-maximization (EM) algorithm to iteratively refine this coarse grid, and illustrate that each updated grid point can be simply achieved by the root of a certain polynomial. Simulation results demonstrate that the computational complexity is significantly reduced and the modeling error can be almost eliminated.

  3. Bayesian online algorithms for learning in discrete Hidden Markov Models

    OpenAIRE

    Alamino, Roberto C.; Caticha, Nestor

    2008-01-01

    We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.

  4. Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data.

    Science.gov (United States)

    Shah, Abhik; Woolf, Peter

    2009-06-01

    In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing.

  5. Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data

    OpenAIRE

    Shah, Abhik; Woolf, Peter

    2009-01-01

    In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing.

  6. Bayesian non- and semi-parametric methods and applications

    CERN Document Server

    Rossi, Peter

    2014-01-01

    This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number

  7. Bayesian and L$_\\mathbf{1}$ Approaches to Sparse Unsupervised Learning

    CERN Document Server

    Mohamed, Shakir; Ghahramani, Zoubin

    2011-01-01

    The use of $L_1$ regularisation for sparse learning has generated immense research interest, with successful application in such diverse areas as signal acquisition, image coding, genomics and collaborative filtering. While existing work highlights the many advantages of $L_1$ methods, in this paper we find that $L_1$ regularisation often dramatically underperforms in terms of predictive performance when compared with other methods for inferring sparsity. We focus on unsupervised latent variable models, and develop $L_1$ minimising factor models, Bayesian variants of "$L_1$", and Bayesian models with a stronger $L_0$-like sparsity induced through spike-and-slab distributions. These spike-and-slab Bayesian factor models encourage sparsity while accounting for uncertainty in a principled manner and avoiding unnecessary shrinkage of non-zero values. We demonstrate on a number of data sets that in practice spike-and-slab Bayesian methods outperform $L_1$ minimisation, even on a computational budget. We thus highl...

  8. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    Science.gov (United States)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  9. Visual tracker using sequential bayesian learning: discriminative, generative, and hybrid.

    Science.gov (United States)

    Lei, Yun; Ding, Xiaoqing; Wang, Shengjin

    2008-12-01

    This paper presents a novel solution to track a visual object under changes in illumination, viewpoint, pose, scale, and occlusion. Under the framework of sequential Bayesian learning, we first develop a discriminative model-based tracker with a fast relevance vector machine algorithm, and then, a generative model-based tracker with a novel sequential Gaussian mixture model algorithm. Finally, we present a three-level hierarchy to investigate different schemes to combine the discriminative and generative models for tracking. The presented hierarchical model combination contains the learner combination (at level one), classifier combination (at level two), and decision combination (at level three). The experimental results with quantitative comparisons performed on many realistic video sequences show that the proposed adaptive combination of discriminative and generative models achieves the best overall performance. Qualitative comparison with some state-of-the-art methods demonstrates the effectiveness and efficiency of our method in handling various challenges during tracking.

  10. Algorithms and Complexity Results for Exact Bayesian Structure Learning

    CERN Document Server

    Ordyniak, Sebastian

    2012-01-01

    Bayesian structure learning is the NP-hard problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian structure learning under graph theoretic restrictions on the super-structure. The super-structure (a concept introduced by Perrier, Imoto, and Miyano, JMLR 2008) is an undirected graph that contains as subgraphs the skeletons of solution networks. Our results apply to several variants of score-based Bayesian structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth and in linear time if in addition the super-structure has bounded maximum degree. We complement this with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform ...

  11. Numerical Methods for Bayesian Inverse Problems

    KAUST Repository

    Ernst, Oliver

    2014-01-06

    We present recent results on Bayesian inversion for a groundwater flow problem with an uncertain conductivity field. In particular, we show how direct and indirect measurements can be used to obtain a stochastic model for the unknown. The main tool here is Bayes’ theorem which merges the indirect data with the stochastic prior model for the conductivity field obtained by the direct measurements. Further, we demonstrate how the resulting posterior distribution of the quantity of interest, in this case travel times of radionuclide contaminants, can be obtained by Markov Chain Monte Carlo (MCMC) simulations. Moreover, we investigate new, promising MCMC methods which exploit geometrical features of the posterior and which are suited to infinite dimensions.

  12. Robust Learning of Fixed-Structure Bayesian Networks

    OpenAIRE

    Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair

    2016-01-01

    We investigate the problem of learning Bayesian networks in an agnostic model where an $\\epsilon$-fraction of the samples are adversarially corrupted. Our agnostic learning model is similar to -- in fact, stronger than -- Huber's contamination model in robust statistics. In this work, we study the fully observable Bernoulli case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent facto...

  13. Bayesian Unsupervised Learning of DNA Regulatory Binding Regions

    Directory of Open Access Journals (Sweden)

    Jukka Corander

    2009-01-01

    positions within a set of DNA sequences are very rare in the literature. Here we show how such a learning problem can be formulated using a Bayesian model that targets to simultaneously maximize the marginal likelihood of sequence data arising under multiple motif types as well as under the background DNA model, which equals a variable length Markov chain. It is demonstrated how the adopted Bayesian modelling strategy combined with recently introduced nonstandard stochastic computation tools yields a more tractable learning procedure than is possible with the standard Monte Carlo approaches. Improvements and extensions of the proposed approach are also discussed.

  14. A Bayesian Approach for Structural Learning with Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Cen Li

    2002-01-01

    Full Text Available Hidden Markov Models(HMM have proved to be a successful modeling paradigm for dynamic and spatial processes in many domains, such as speech recognition, genomics, and general sequence alignment. Typically, in these applications, the model structures are predefined by domain experts. Therefore, the HMM learning problem focuses on the learning of the parameter values of the model to fit the given data sequences. However, when one considers other domains, such as, economics and physiology, model structure capturing the system dynamic behavior is not available. In order to successfully apply the HMM methodology in these domains, it is important that a mechanism is available for automatically deriving the model structure from the data. This paper presents a HMM learning procedure that simultaneously learns the model structure and the maximum likelihood parameter values of a HMM from data. The HMM model structures are derived based on the Bayesian model selection methodology. In addition, we introduce a new initialization procedure for HMM parameter value estimation based on the K-means clustering method. Experimental results with artificially generated data show the effectiveness of the approach.

  15. Bayesian Network Enhanced with Structural Reliability Methods: Methodology

    OpenAIRE

    Straub, Daniel; Der Kiureghian, Armen

    2012-01-01

    We combine Bayesian networks (BNs) and structural reliability methods (SRMs) to create a new computational framework, termed enhanced Bayesian network (eBN), for reliability and risk analysis of engineering structures and infrastructure. BNs are efficient in representing and evaluating complex probabilistic dependence structures, as present in infrastructure and structural systems, and they facilitate Bayesian updating of the model when new information becomes available. On the other hand, SR...

  16. Complexity of stochastic branch and bound for belief tree search in Bayesian reinforcement learning

    NARCIS (Netherlands)

    Dimitrakakis, C.

    2009-01-01

    There has been a lot of recent work on Bayesian methods for reinforcement learning exhibiting near-optimal online performance. The main obstacle facing such methods is that in most problems of interest, the optimal solution involves planning in an infinitely large tree. However, it is possible to ob

  17. Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method

    Science.gov (United States)

    Tsai, F. T. C.; Elshall, A. S.

    2014-12-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.

  18. Learning Bayesian Network Structure%贝叶斯网络结构学习分析

    Institute of Scientific and Technical Information of China (English)

    王双成; 林士敏; 陆玉昌

    2000-01-01

    In this paper the analysis of principle and process of Bayesian network structure learning is given. Bayesian network structure learning is a process that seeks the best network structure fitting the prior knowledge and data. The computing of posterior can be closed when data are completed and some other conditions are satisfied ,while the computing is not closed when some data are missing. One solution for missing data is fill-in methods,another is to approximate the likelihood of structure,then to compute the probabilities of structure.

  19. A Bayesian foundation for individual learning under uncertainty

    Directory of Open Access Journals (Sweden)

    Christoph eMathys

    2011-05-01

    Full Text Available Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty. The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next higher level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i are analytical and extremely efficient, enabling real-time learning, (ii have a natural interpretation in terms of RL, and (iii contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty. These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability

  20. A bayesian foundation for individual learning under uncertainty.

    Science.gov (United States)

    Mathys, Christoph; Daunizeau, Jean; Friston, Karl J; Stephan, Klaas E

    2011-01-01

    Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL) and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty). The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next highest level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean-field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i) are analytical and extremely efficient, enabling real-time learning, (ii) have a natural interpretation in terms of RL, and (iii) contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty). These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability theory.

  1. Testing students' e-learning via Facebook through Bayesian structural equation modeling.

    Science.gov (United States)

    Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.

  2. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors

    DEFF Research Database (Denmark)

    Antal, P.; Fannes, G.; Timmerman, D.

    2004-01-01

    Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate...... information from free-text resources with statistical data in learning Bayesian networks. Firstly, we report on the collection of prior information resources in the ovarian cancer domain, which includes "kernel" annotations of the domain variables. We introduce methods based on the annotations and literature...... an expert reference and against data scores (the mutual information (MI) and a Bayesian score). Next, we transform the text-based dependency measures into informative text-based priors for Bayesian network structures. Finally, we report the benefit of such informative text-based priors on the performance...

  3. BAYESIAN DEMONSTRATION TEST METHOD WITH MIXED BETA DISTRIBUTION

    Institute of Scientific and Technical Information of China (English)

    MING Zhimao; TAO Junyong; CHEN Xun; ZHANG Yunan

    2008-01-01

    A complex mechatronics system Bayesian plan of demonstration test is studied based on the mixed beta distribution. During product design and improvement various information is appropriately considered by introducing inheritance factor, moreover, the inheritance factor is thought as a random variable, and the Bayesian decision of the qualification test plan is obtained, and the correctness of a Bayesian model presented is verified. The results show that the quantity of the test is too conservative according to classical methods under small binomial samples. Although traditional Bayesian analysis can consider test information of related or similar products, it ignores differences between such products. The method has solved the above problem, furthermore, considering the requirement in many practical projects, the differences among this method, the classical method and Bayesian with beta distribution are compared according to the plan of reliability acceptance test.

  4. BONNSAI: correlated stellar observables in Bayesian methods

    Science.gov (United States)

    Schneider, F. R. N.; Castro, N.; Fossati, L.; Langer, N.; de Koter, A.

    2017-02-01

    In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that

  5. A Bayesian method for microseismic source inversion

    Science.gov (United States)

    Pugh, D. J.; White, R. S.; Christie, P. A. F.

    2016-08-01

    Earthquake source inversion is highly dependent on location determination and velocity models. Uncertainties in both the model parameters and the observations need to be rigorously incorporated into an inversion approach. Here, we show a probabilistic Bayesian method that allows formal inclusion of the uncertainties in the moment tensor inversion. This method allows the combination of different sets of far-field observations, such as P-wave and S-wave polarities and amplitude ratios, into one inversion. Additional observations can be included by deriving a suitable likelihood function from the uncertainties. This inversion produces samples from the source posterior probability distribution, including a best-fitting solution for the source mechanism and associated probability. The inversion can be constrained to the double-couple space or allowed to explore the gamut of moment tensor solutions, allowing volumetric and other non-double-couple components. The posterior probability of the double-couple and full moment tensor source models can be evaluated from the Bayesian evidence, using samples from the likelihood distributions for the two source models, producing an estimate of whether or not a source is double-couple. Such an approach is ideally suited to microseismic studies where there are many sources of uncertainty and it is often difficult to produce reliability estimates of the source mechanism, although this can be true of many other cases. Using full-waveform synthetic seismograms, we also show the effects of noise, location, network distribution and velocity model uncertainty on the source probability density function. The noise has the largest effect on the results, especially as it can affect other parts of the event processing. This uncertainty can lead to erroneous non-double-couple source probability distributions, even when no other uncertainties exist. Although including amplitude ratios can improve the constraint on the source probability

  6. Implementation of an Adaptive Learning System Using a Bayesian Network

    Science.gov (United States)

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  7. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    Science.gov (United States)

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological

  8. Bayesian data analysis in population ecology: motivations, methods, and benefits

    Science.gov (United States)

    Dorazio, Robert

    2016-01-01

    During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.

  9. Best Response Bayesian Reinforcement Learning for Multiagent Systems with State Uncertainty

    NARCIS (Netherlands)

    F.A. Oliehoek; C. Amato

    2014-01-01

    It is often assumed that agents in multiagent systems with state uncertainty have full knowledge of the model of dy- namics and sensors, but in many cases this is not feasible. A more realistic assumption is that agents must learn about the environment and other agents while acting. Bayesian methods

  10. The choice of sample size for mortality forecasting : A Bayesian learning approach

    NARCIS (Netherlands)

    Li, Hong; De Waegenaere, Anja; Melenberg, Bertrand

    2015-01-01

    Forecasted mortality rates using mortality models proposed in the recent literature are sensitive to the sample size. In this paper we propose a method based on Bayesian learning to determine model-specific posterior distributions of the sample sizes. In particular, the sample size is included as an

  11. HEURISTIC DISCRETIZATION METHOD FOR BAYESIAN NETWORKS

    Directory of Open Access Journals (Sweden)

    Mariana D.C. Lima

    2014-01-01

    Full Text Available Bayesian Network (BN is a classification technique widely used in Artificial Intelligence. Its structure is a Direct Acyclic Graph (DAG used to model the association of categorical variables. However, in cases where the variables are numerical, a previous discretization is necessary. Discretization methods are usually based on a statistical approach using the data distribution, such as division by quartiles. In this article we present a discretization using a heuristic that identifies events called peak and valley. Genetic Algorithm was used to identify these events having the minimization of the error between the estimated average for BN and the actual value of the numeric variable output as the objective function. The BN has been modeled from a database of Bit’s Rate of Penetration of the Brazilian pre-salt layer with 5 numerical variables and one categorical variable, using the proposed discretization and the division of the data by the quartiles. The results show that the proposed heuristic discretization has higher accuracy than the quartiles discretization.

  12. Model Diagnostics for Bayesian Networks

    Science.gov (United States)

    Sinharay, Sandip

    2006-01-01

    Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…

  13. An Efficient Bayesian Iterative Method for Solving Linear Systems

    Institute of Scientific and Technical Information of China (English)

    Deng DING; Kin Sio FONG; Ka Hou CHAN

    2012-01-01

    This paper concerns with the statistical methods for solving general linear systems.After a brief review of Bayesian perspective for inverse problems,a new and efficient iterative method for general linear systems from a Bayesian perspective is proposed.The convergence of this iterative method is proved,and the corresponding error analysis is studied.Finally,numerical experiments are given to support the efficiency of this iterative method,and some conclusions are obtained.

  14. Stochastic back analysis of permeability coefficient using generalized Bayesian method

    Institute of Scientific and Technical Information of China (English)

    Zheng Guilan; Wang Yuan; Wang Fei; Yang Jian

    2008-01-01

    Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coefficient and measured hydraulic head, a stochastic back analysis taking consideration of uncertainties of parameters was performed using the generalized Bayesian method. Based on the stochastic finite element method (SFEM) for a seepage field, the variable metric algorithm and the generalized Bayesian method, formulas for stochastic back analysis of the permeability coefficient were derived. A case study of seepage analysis of a sluice foundation was performed to illustrate the proposed method. The results indicate that, with the generalized Bayesian method that considers the uncertainties of measured hydraulic head, the permeability coefficient and the hydraulic head at the boundary, both the mean and standard deviation of the permeability coefficient can be obtained and the standard deviation is less than that obtained by the conventional Bayesian method. Therefore, the present method is valid and applicable.

  15. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.

    Science.gov (United States)

    Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T

    2015-02-01

    Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks.

  16. Bayesian Multitask Learning with Latent Hierarchies

    CERN Document Server

    Daumé, Hal

    2009-01-01

    We learn multiple hypotheses for related tasks under a latent hierarchical relationship between tasks. We exploit the intuition that for domain adaptation, we wish to share classifier structure, but for multitask learning, we wish to share covariance structure. Our hierarchical model is seen to subsume several previously proposed multitask learning models and performs well on three distinct real-world data sets.

  17. A COMPOUND POISSON MODEL FOR LEARNING DISCRETE BAYESIAN NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Abdelaziz GHRIBI; Afif MASMOUDI

    2013-01-01

    We introduce here the concept of Bayesian networks, in compound Poisson model, which provides a graphical modeling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We suggest an approach proposal which offers a new mixed implicit estimator. We show that the implicit approach applied in compound Poisson model is very attractive for its ability to understand data and does not require any prior information. A comparative study between learned estimates given by implicit and by standard Bayesian approaches is established. Under some conditions and based on minimal squared error calculations, we show that the mixed implicit estimator is better than the standard Bayesian and the maximum likelihood estimators. We illustrate our approach by considering a simulation study in the context of mobile communication networks.

  18. Near-Optimal Bayesian Active Learning with Noisy Observations

    CERN Document Server

    Golovin, Daniel; Ray, Debajyoti

    2010-01-01

    We tackle the fundamental problem of Bayesian active learning with noise, where we need to adaptively select from a number of expensive tests in order to identify an unknown hypothesis sampled from a known prior distribution. In the case of noise-free observations, a greedy algorithm called generalized binary search (GBS) is known to perform near-optimally. We show that if the observations are noisy, perhaps surprisingly, GBS can perform very poorly. We develop EC2, a novel, greedy active learning algorithm and prove that it is competitive with the optimal policy, thus obtaining the first competitiveness guarantees for Bayesian active learning with noisy observations. Our bounds rely on a recently discovered diminishing returns property called adaptive submodularity, generalizing the classical notion of submodular set functions to adaptive policies. Our results hold even if the tests have non-uniform cost and their noise is correlated. We also propose EffECXtive, a particularly fast approximation of EC2, and ...

  19. Nonparametric, Coupled ,Bayesian ,Dictionary ,and Classifier Learning for Hyperspectral Classification.

    Science.gov (United States)

    Akhtar, Naveed; Mian, Ajmal

    2017-10-03

    We present a principled approach to learn a discriminative dictionary along a linear classifier for hyperspectral classification. Our approach places Gaussian Process priors over the dictionary to account for the relative smoothness of the natural spectra, whereas the classifier parameters are sampled from multivariate Gaussians. We employ two Beta-Bernoulli processes to jointly infer the dictionary and the classifier. These processes are coupled under the same sets of Bernoulli distributions. In our approach, these distributions signify the frequency of the dictionary atom usage in representing class-specific training spectra, which also makes the dictionary discriminative. Due to the coupling between the dictionary and the classifier, the popularity of the atoms for representing different classes gets encoded into the classifier. This helps in predicting the class labels of test spectra that are first represented over the dictionary by solving a simultaneous sparse optimization problem. The labels of the spectra are predicted by feeding the resulting representations to the classifier. Our approach exploits the nonparametric Bayesian framework to automatically infer the dictionary size--the key parameter in discriminative dictionary learning. Moreover, it also has the desirable property of adaptively learning the association between the dictionary atoms and the class labels by itself. We use Gibbs sampling to infer the posterior probability distributions over the dictionary and the classifier under the proposed model, for which, we derive analytical expressions. To establish the effectiveness of our approach, we test it on benchmark hyperspectral images. The classification performance is compared with the state-of-the-art dictionary learning-based classification methods.

  20. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  1. Approximate Bayesian computation for machine learning, inverse problems and big data

    Science.gov (United States)

    Mohammad-Djafari, Ali

    2017-06-01

    This paper summarizes my tutorial talk in MaxEnt 2016 workshop. Starting from the basics of the Bayesian approach and simple example of low dimensional parameter estimation where almost all the computations can be done easily, we go very fast to high dimensional case. In those real world cases, even for the sample case of linear model with Gaussian prior, where the posterior law is also Gaussian, the cost of the computation of the posterior covariance becomes important and needs approximate and fast algorithms. Different approximation methods for model comparison and model selection in machine learning problems are presented in summary. Among the existing methods, we mention Laplace approximation, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Variational Bayesian Approximation (VBA) Methods. Finally, through two examples of inverse problems in imaging systems: X ray and Diffraction wave Computed Tomography (CT), we show how to handle the real great dimensional problems.

  2. Radiation Source Mapping with Bayesian Inverse Methods

    Science.gov (United States)

    Hykes, Joshua Michael

    We present a method to map the spectral and spatial distributions of radioactive sources using a small number of detectors. Locating and identifying radioactive materials is important for border monitoring, accounting for special nuclear material in processing facilities, and in clean-up operations. Most methods to analyze these problems make restrictive assumptions about the distribution of the source. In contrast, the source-mapping method presented here allows an arbitrary three-dimensional distribution in space and a flexible group and gamma peak distribution in energy. To apply the method, the system's geometry and materials must be known. A probabilistic Bayesian approach is used to solve the resulting inverse problem (IP) since the system of equations is ill-posed. The probabilistic approach also provides estimates of the confidence in the final source map prediction. A set of adjoint flux, discrete ordinates solutions, obtained in this work by the Denovo code, are required to efficiently compute detector responses from a candidate source distribution. These adjoint fluxes are then used to form the linear model to map the state space to the response space. The test for the method is simultaneously locating a set of 137Cs and 60Co gamma sources in an empty room. This test problem is solved using synthetic measurements generated by a Monte Carlo (MCNP) model and using experimental measurements that we collected for this purpose. With the synthetic data, the predicted source distributions identified the locations of the sources to within tens of centimeters, in a room with an approximately four-by-four meter floor plan. Most of the predicted source intensities were within a factor of ten of their true value. The chi-square value of the predicted source was within a factor of five from the expected value based on the number of measurements employed. With a favorable uniform initial guess, the predicted source map was nearly identical to the true distribution

  3. Theory-based Bayesian models of inductive learning and reasoning.

    Science.gov (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  4. Advanced Bayesian Methods for Lunar Surface Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of this project is the application of advanced Bayesian methods to integrate real-time dense stereo vision and high-speed optical flow with an...

  5. Advanced Bayesian Methods for Lunar Surface Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of this project will be the application of advanced Bayesian methods to integrate real-time dense stereo vision and high-speed optical flow with...

  6. Proceedings of the First Astrostatistics School: Bayesian Methods in Cosmology

    CERN Document Server

    Hortúa, Héctor J

    2014-01-01

    These are the proceedings of the First Astrostatistics School: Bayesian Methods in Cosmology, held in Bogot\\'a D.C., Colombia, June 9-13, 2014. The first astrostatistics school has been the first event in Colombia where statisticians and cosmologists from some universities in Bogot\\'a met to discuss the statistic methods applied to cosmology, especially the use of Bayesian statistics in the study of Cosmic Microwave Background (CMB), Baryonic Acoustic Oscillations (BAO), Large Scale Structure (LSS) and weak lensing.

  7. Using multi-step proposal distribution for improved MCMC convergence in Bayesian network structure learning.

    Science.gov (United States)

    Larjo, Antti; Lähdesmäki, Harri

    2015-12-01

    Bayesian networks have become popular for modeling probabilistic relationships between entities. As their structure can also be given a causal interpretation about the studied system, they can be used to learn, for example, regulatory relationships of genes or proteins in biological networks and pathways. Inference of the Bayesian network structure is complicated by the size of the model structure space, necessitating the use of optimization methods or sampling techniques, such Markov Chain Monte Carlo (MCMC) methods. However, convergence of MCMC chains is in many cases slow and can become even a harder issue as the dataset size grows. We show here how to improve convergence in the Bayesian network structure space by using an adjustable proposal distribution with the possibility to propose a wide range of steps in the structure space, and demonstrate improved network structure inference by analyzing phosphoprotein data from the human primary T cell signaling network.

  8. Estimating Tree Height-Diameter Models with the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Xiongqing Zhang

    2014-01-01

    Full Text Available Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS and the maximum likelihood method (ML. The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.

  9. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

    Directory of Open Access Journals (Sweden)

    Guangyi Liu

    2014-01-01

    Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

  10. A Modified Extended Bayesian Method for Parameter Estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a modified extended Bayesian method for parameter estimation. In this method the mean value of the a priori estimation is taken from the values of the estimated parameters in the previous iteration step. In this way, the parameter covariance matrix can be automatically updated during the estimation procedure, thereby avoiding the selection of an empirical parameter. Because the extended Bayesian method can be regarded as a Tikhonov regularization, this new method is more stable than both the least-squares method and the maximum likelihood method. The validity of the proposed method is illustrated by two examples: one based on simulated data and one based on real engineering data.

  11. An overview of component qualification using Bayesian statistics and energy methods.

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, Jeffrey Lynn

    2011-09-01

    The below overview is designed to give the reader a limited understanding of Bayesian and Maximum Likelihood (MLE) estimation; a basic understanding of some of the mathematical tools to evaluate the quality of an estimation; an introduction to energy methods and a limited discussion of damage potential. This discussion then goes on to presented a limited presentation as to how energy methods and Bayesian estimation are used together to qualify components. Example problems with solutions have been supplied as a learning aid. Bold letters are used to represent random variables. Un-bolded letter represent deterministic values. A concluding section presents a discussion of attributes and concerns.

  12. Bayesian methods for the design and analysis of noninferiority trials.

    Science.gov (United States)

    Gamalo-Siebers, Margaret; Gao, Aijun; Lakshminarayanan, Mani; Liu, Guanghan; Natanegara, Fanni; Railkar, Radha; Schmidli, Heinz; Song, Guochen

    2016-01-01

    The gold standard for evaluating treatment efficacy of a medical product is a placebo-controlled trial. However, when the use of placebo is considered to be unethical or impractical, a viable alternative for evaluating treatment efficacy is through a noninferiority (NI) study where a test treatment is compared to an active control treatment. The minimal objective of such a study is to determine whether the test treatment is superior to placebo. An assumption is made that if the active control treatment remains efficacious, as was observed when it was compared against placebo, then a test treatment that has comparable efficacy with the active control, within a certain range, must also be superior to placebo. Because of this assumption, the design, implementation, and analysis of NI trials present challenges for sponsors and regulators. In designing and analyzing NI trials, substantial historical data are often required on the active control treatment and placebo. Bayesian approaches provide a natural framework for synthesizing the historical data in the form of prior distributions that can effectively be used in design and analysis of a NI clinical trial. Despite a flurry of recent research activities in the area of Bayesian approaches in medical product development, there are still substantial gaps in recognition and acceptance of Bayesian approaches in NI trial design and analysis. The Bayesian Scientific Working Group of the Drug Information Association provides a coordinated effort to target the education and implementation issues on Bayesian approaches for NI trials. In this article, we provide a review of both frequentist and Bayesian approaches in NI trials, and elaborate on the implementation for two common Bayesian methods including hierarchical prior method and meta-analytic-predictive approach. Simulations are conducted to investigate the properties of the Bayesian methods, and some real clinical trial examples are presented for illustration.

  13. Learning Continuous Time Bayesian Network Classifiers Using MapReduce

    Directory of Open Access Journals (Sweden)

    Simone Villa

    2014-12-01

    Full Text Available Parameter and structural learning on continuous time Bayesian network classifiers are challenging tasks when you are dealing with big data. This paper describes an efficient scalable parallel algorithm for parameter and structural learning in the case of complete data using the MapReduce framework. Two popular instances of classifiers are analyzed, namely the continuous time naive Bayes and the continuous time tree augmented naive Bayes. Details of the proposed algorithm are presented using Hadoop, an open-source implementation of a distributed file system and the MapReduce framework for distributed data processing. Performance evaluation of the designed algorithm shows a robust parallel scaling.

  14. Computer-aided diagnosis system: a Bayesian hybrid classification method.

    Science.gov (United States)

    Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J

    2013-10-01

    A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.

  15. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

    CERN Document Server

    Brochu, Eric; de Freitas, Nando

    2010-01-01

    We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective function, which must take into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling areas likely to offer improvement over the current best observation). We also present two detailed extensions of Bayesian optimization, with experiments---active user modelling with preferences, and hierarchical reinforcement learning---and a discussion of the pros and cons of Bayesian optimization based on our experiences.

  16. Robust full Bayesian learning for radial basis networks.

    Science.gov (United States)

    Andrieu, C; de Freitas, N; Doucet, A

    2001-10-01

    We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to perform the Bayesian computation. We find that the results obtained using this method are not only better than the ones reported previously, but also appear to be robust with respect to the prior specification. In addition, we propose a novel and computationally efficient reversible-jump MCMC simulated annealing algorithm to optimize neural networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis function. It performs a global search in the joint space of the parameters and number of parameters, thereby surmounting the problem of local minima to a large extent. We show that by calibrating the full hierarchical Bayesian prior, we can obtain the classical Akaike information criterion, Bayesian information criterion, and minimum description length model selection criteria within a penalized likelihood framework. Finally, we present a geometric convergence theorem for the algorithm with homogeneous transition kernel and a convergence theorem for the reversible-jump MCMC simulated annealing method.

  17. Bayesian Social Learning with Local Interactions

    Directory of Open Access Journals (Sweden)

    Antonella Ianni

    2010-10-01

    Full Text Available We study social learning in a large population of agents who only observe the actions taken by their neighbours. Agents have to choose one, out of two, reversible actions, each optimal in one, out of two, unknown states of the world. Each agent chooses rationally, on the basis of private information and of the observation of his neighbours’ actions. Agents can repeatedly update their choices at revision opportunities that they receive in a random sequential order. We show that if agents receive equally informative signals and observe both neighbours, then actions converge exponentially fast to a configuration where some agents are permanently wrong. In contrast, if agents are unequally informed (in that some agents receive a perfectly informative signal and others are uninformed and observe one neighbour only, then everyone will eventually choose the correct action. Convergence, however, obtains very slowly, at rate √t.

  18. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    DEFF Research Database (Denmark)

    Tully, Philip J; Lindén, Henrik; Hennig, Matthias H

    2016-01-01

    of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx). We show that the learning......Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed...... in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods...

  19. A Bayesian Sampling Approach to Exploration in Reinforcement Learning

    CERN Document Server

    Asmuth, John; Littman, Michael L; Nouri, Ali; Wingate, David

    2012-01-01

    We present a modular approach to reinforcement learning that uses a Bayesian representation of the uncertainty over models. The approach, BOSS (Best of Sampled Set), drives exploration by sampling multiple models from the posterior and selecting actions optimistically. It extends previous work by providing a rule for deciding when to resample and how to combine the models. We show that our algorithm achieves nearoptimal reward with high probability with a sample complexity that is low relative to the speed at which the posterior distribution converges during learning. We demonstrate that BOSS performs quite favorably compared to state-of-the-art reinforcement-learning approaches and illustrate its flexibility by pairing it with a non-parametric model that generalizes across states.

  20. High-throughput Bayesian Network Learning using Heterogeneous Multicore Computers.

    Science.gov (United States)

    Linderman, Michael D; Athalye, Vivek; Meng, Teresa H; Asadi, Narges Bani; Bruggner, Robert; Nolan, Garry P

    2010-06-01

    Aberrant intracellular signaling plays an important role in many diseases. The causal structure of signal transduction networks can be modeled as Bayesian Networks (BNs), and computationally learned from experimental data. However, learning the structure of Bayesian Networks (BNs) is an NP-hard problem that, even with fast heuristics, is too time consuming for large, clinically important networks (20-50 nodes). In this paper, we present a novel graphics processing unit (GPU)-accelerated implementation of a Monte Carlo Markov Chain-based algorithm for learning BNs that is up to 7.5-fold faster than current general-purpose processor (GPP)-based implementations. The GPU-based implementation is just one of several implementations within the larger application, each optimized for a different input or machine configuration. We describe the methodology we use to build an extensible application, assembled from these variants, that can target a broad range of heterogeneous systems, e.g., GPUs, multicore GPPs. Specifically we show how we use the Merge programming model to efficiently integrate, test and intelligently select among the different potential implementations.

  1. A Comparison of Imputation Methods for Bayesian Factor Analysis Models

    Science.gov (United States)

    Merkle, Edgar C.

    2011-01-01

    Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted…

  2. Stochastic back analysis of permeability coefficient using generalized Bayesian method

    Directory of Open Access Journals (Sweden)

    Gui-lan ZHENG

    2008-09-01

    Full Text Available Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coefficient and measured hydraulic head, a stochastic back analysis taking consideration of uncertainties of parameters was performed using the generalized Bayesian method. Based on the stochastic finite element method (SFEM for a seepage field, the variable metric algorithm and the generalized Bayesian method, formulas for stochastic back analysis of the permeability coefficient were derived. A case study of seepage analysis of a sluice foundation was performed to illustrate the proposed method. The results indicate that, with the generalized Bayesian method that considers the uncertainties of measured hydraulic head, the permeability coefficient and the hydraulic head at the boundary, both the mean and standard deviation of the permeability coefficient can be obtained and the standard deviation is less than that obtained by the conventional Bayesian method. Therefore, the present method is valid and applicable.

  3. Learning priors for Bayesian computations in the nervous system.

    Directory of Open Access Journals (Sweden)

    Max Berniker

    Full Text Available Our nervous system continuously combines new information from our senses with information it has acquired throughout life. Numerous studies have found that human subjects manage this by integrating their observations with their previous experience (priors in a way that is close to the statistical optimum. However, little is known about the way the nervous system acquires or learns priors. Here we present results from experiments where the underlying distribution of target locations in an estimation task was switched, manipulating the prior subjects should use. Our experimental design allowed us to measure a subject's evolving prior while they learned. We confirm that through extensive practice subjects learn the correct prior for the task. We found that subjects can rapidly learn the mean of a new prior while the variance is learned more slowly and with a variable learning rate. In addition, we found that a Bayesian inference model could predict the time course of the observed learning while offering an intuitive explanation for the findings. The evidence suggests the nervous system continuously updates its priors to enable efficient behavior.

  4. Bayesian Network Structure Learning Based On Rough Set and Mutual Information

    Directory of Open Access Journals (Sweden)

    Zuhong Feng

    2013-09-01

    Full Text Available Abstract In Bayesian network structure learning for incomplete data set, a common problem is too many attributes causing low efficiency and high computation complexity. In this paper, an algorithm of attribute reduction based on rough set is introduced. The algorithm can effectively reduce the dimension of attributes and quickly determine the network structure using mutual information for Bayesian network structure learning.

  5. Bayesian methods to estimate urban growth potential

    Science.gov (United States)

    Smith, Jordan W.; Smart, Lindsey S.; Dorning, Monica; Dupéy, Lauren Nicole; Méley, Andréanne; Meentemeyer, Ross K.

    2017-01-01

    Urban growth often influences the production of ecosystem services. The impacts of urbanization on landscapes can subsequently affect landowners’ perceptions, values and decisions regarding their land. Within land-use and land-change research, very few models of dynamic landscape-scale processes like urbanization incorporate empirically-grounded landowner decision-making processes. Very little attention has focused on the heterogeneous decision-making processes that aggregate to influence broader-scale patterns of urbanization. We examine the land-use tradeoffs faced by individual landowners in one of the United States’ most rapidly urbanizing regions − the urban area surrounding Charlotte, North Carolina. We focus on the land-use decisions of non-industrial private forest owners located across the region’s development gradient. A discrete choice experiment is used to determine the critical factors influencing individual forest owners’ intent to sell their undeveloped properties across a series of experimentally varied scenarios of urban growth. Data are analyzed using a hierarchical Bayesian approach. The estimates derived from the survey data are used to modify a spatially-explicit trend-based urban development potential model, derived from remotely-sensed imagery and observed changes in the region’s socioeconomic and infrastructural characteristics between 2000 and 2011. This modeling approach combines the theoretical underpinnings of behavioral economics with spatiotemporal data describing a region’s historical development patterns. By integrating empirical social preference data into spatially-explicit urban growth models, we begin to more realistically capture processes as well as patterns that drive the location, magnitude and rates of urban growth.

  6. Bayesian Monte Carlo Method for Nuclear Data Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Koning, A.J., E-mail: koning@nrg.eu

    2015-01-15

    A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using TALYS. The result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by an experiment based weight.

  7. The neighborhood MCMC sampler for learning Bayesian networks

    Science.gov (United States)

    Alyami, Salem A.; Azad, A. K. M.; Keith, Jonathan M.

    2016-07-01

    Getting stuck in local maxima is a problem that arises while learning Bayesian networks (BNs) structures. In this paper, we studied a recently proposed Markov chain Monte Carlo (MCMC) sampler, called the Neighbourhood sampler (NS), and examined how efficiently it can sample BNs when local maxima are present. We assume that a posterior distribution f(N,E|D) has been defined, where D represents data relevant to the inference, N and E are the sets of nodes and directed edges, respectively. We illustrate the new approach by sampling from such a distribution, and inferring BNs. The simulations conducted in this paper show that the new learning approach substantially avoids getting stuck in local modes of the distribution, and achieves a more rapid rate of convergence, compared to other common algorithms e.g. the MCMC Metropolis-Hastings sampler.

  8. Inferring on the intentions of others by hierarchical Bayesian learning.

    Directory of Open Access Journals (Sweden)

    Andreea O Diaconescu

    2014-09-01

    Full Text Available Inferring on others' (potentially time-varying intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to "player" or "adviser" roles interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i employ hierarchical generative models to infer on the changing intentions of others, (ii use volatility estimates to inform decision-making in social interactions, and (iii integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition.

  9. Inferring on the intentions of others by hierarchical Bayesian learning.

    Science.gov (United States)

    Diaconescu, Andreea O; Mathys, Christoph; Weber, Lilian A E; Daunizeau, Jean; Kasper, Lars; Lomakina, Ekaterina I; Fehr, Ernst; Stephan, Klaas E

    2014-09-01

    Inferring on others' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to "player" or "adviser" roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition.

  10. Application of an efficient Bayesian discretization method to biomedical data

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2011-07-01

    Full Text Available Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.

  11. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.

    Directory of Open Access Journals (Sweden)

    Philip J Tully

    2016-05-01

    Full Text Available Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx. We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.

  12. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.

    Science.gov (United States)

    Tully, Philip J; Lindén, Henrik; Hennig, Matthias H; Lansner, Anders

    2016-05-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx). We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.

  13. Involving stakeholders in building integrated fisheries models using Bayesian methods.

    Science.gov (United States)

    Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari

    2013-06-01

    A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts.

  14. Involving Stakeholders in Building Integrated Fisheries Models Using Bayesian Methods

    Science.gov (United States)

    Haapasaari, Päivi; Mäntyniemi, Samu; Kuikka, Sakari

    2013-06-01

    A participatory Bayesian approach was used to investigate how the views of stakeholders could be utilized to develop models to help understand the Central Baltic herring fishery. In task one, we applied the Bayesian belief network methodology to elicit the causal assumptions of six stakeholders on factors that influence natural mortality, growth, and egg survival of the herring stock in probabilistic terms. We also integrated the expressed views into a meta-model using the Bayesian model averaging (BMA) method. In task two, we used influence diagrams to study qualitatively how the stakeholders frame the management problem of the herring fishery and elucidate what kind of causalities the different views involve. The paper combines these two tasks to assess the suitability of the methodological choices to participatory modeling in terms of both a modeling tool and participation mode. The paper also assesses the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology provides a flexible tool that can be adapted to different kinds of needs and challenges of participatory modeling. The ability of the approach to deal with small data sets makes it cost-effective in participatory contexts. However, the BMA methodology used in modeling the biological uncertainties is so complex that it needs further development before it can be introduced to wider use in participatory contexts.

  15. Exploiting Bivariate Dependencies to Speedup Structure Learning in Bayesian Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    Amin Nikanjam; Adel Rahmani

    2012-01-01

    Bayesian optimization algorithm (BOA) is one of the successful and widely used estimation of distribution algorithms (EDAs) which have been employed to solve different optimization problems.In EDAs,a model is learned from the selected population that encodes interactions among problem variables.New individuals are generated by sampling the model and incorporated into the population.Different probabilistic models have been used in EDAs to learn interactions.Bayesian network (BN) is a well-known graphical model which is used in BOA.Learning a proper model in EDAs and particularly in BOA is distinguished as a computationally expensive task.Different methods have been proposed in the literature to improve the complexity of model building in EDAs.This paper employs bivariate dependencies to learn accurate BNs in BOA efficiently.The proposed approach extracts the bivariate dependencies using an appropriate pairwise interaction-detection metric.Due to the static structure of the underlying problems,these dependencies are used in each generation of BOA to learn an accurate network.By using this approach,the computational cost of model building is reduced dramatically.Various optimization problems are selected to be solved by the algorithm.The experimental results show that the proposed approach successfully finds the optimum in problems with different types of interactions efficiently.Significant speedups are observed in the model building procedure as well.

  16. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    Science.gov (United States)

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  17. Optimal execution in high-frequency trading with Bayesian learning

    Science.gov (United States)

    Du, Bian; Zhu, Hongliang; Zhao, Jingdong

    2016-11-01

    We consider optimal trading strategies in which traders submit bid and ask quotes to maximize the expected quadratic utility of total terminal wealth in a limit order book. The trader's bid and ask quotes will be changed by the Poisson arrival of market orders. Meanwhile, the trader may update his estimate of other traders' target sizes and directions by Bayesian learning. The solution of optimal execution in the limit order book is a two-step procedure. First, we model an inactive trading with no limit order in the market. The dealer simply holds dollars and shares of stocks until terminal time. Second, he calibrates his bid and ask quotes to the limit order book. The optimal solutions are given by dynamic programming and in fact they are globally optimal. We also give numerical simulation to the value function and optimal quotes at the last part of the article.

  18. A Bayesian Network Approach to Modeling Learning Progressions and Task Performance. CRESST Report 776

    Science.gov (United States)

    West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.

    2010-01-01

    A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…

  19. An Overview of Bayesian Methods for Neural Spike Train Analysis

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2013-01-01

    Full Text Available Neural spike train analysis is an important task in computational neuroscience which aims to understand neural mechanisms and gain insights into neural circuits. With the advancement of multielectrode recording and imaging technologies, it has become increasingly demanding to develop statistical tools for analyzing large neuronal ensemble spike activity. Here we present a tutorial overview of Bayesian methods and their representative applications in neural spike train analysis, at both single neuron and population levels. On the theoretical side, we focus on various approximate Bayesian inference techniques as applied to latent state and parameter estimation. On the application side, the topics include spike sorting, tuning curve estimation, neural encoding and decoding, deconvolution of spike trains from calcium imaging signals, and inference of neuronal functional connectivity and synchrony. Some research challenges and opportunities for neural spike train analysis are discussed.

  20. Bayesian Methods for Analysis and Adaptive Scheduling of Exoplanet Observations

    CERN Document Server

    Loredo, Thomas J; Chernoff, David F; Clyde, Merlise A; Liu, Bin

    2011-01-01

    We describe work in progress by a collaboration of astronomers and statisticians developing a suite of Bayesian data analysis tools for extrasolar planet (exoplanet) detection, planetary orbit estimation, and adaptive scheduling of observations. Our work addresses analysis of stellar reflex motion data, where a planet is detected by observing the "wobble" of its host star as it responds to the gravitational tug of the orbiting planet. Newtonian mechanics specifies an analytical model for the resulting time series, but it is strongly nonlinear, yielding complex, multimodal likelihood functions; it is even more complex when multiple planets are present. The parameter spaces range in size from few-dimensional to dozens of dimensions, depending on the number of planets in the system, and the type of motion measured (line-of-sight velocity, or position on the sky). Since orbits are periodic, Bayesian generalizations of periodogram methods facilitate the analysis. This relies on the model being linearly separable, ...

  1. Bayesian analysis of the flutter margin method in aeroelasticity

    Science.gov (United States)

    Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit

    2016-12-01

    A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the flutter speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. It will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.

  2. Nonlinear Bayesian cue integration explains the dynamics of vocal learning

    Science.gov (United States)

    Zhou, Baohua; Sober, Samuel; Nemenman, Ilya

    The acoustics of vocal production in songbirds is tightly regulated during both development and adulthood as birds progressively refine their song using sensory feedback to match an acoustic target. Here, we perturb this sensory feedback using headphones to shift the pitch (fundamental frequency) of song. When the pitch is shifted upwards (downwards), birds eventually learn to compensate and sing lower (higher), bringing the experienced pitch closer to the target. Paradoxically, the speed and amplitude of this motor learning decrease with increases in the introduced error size, so that birds respond rapidly to a small sensory perturbation, while seemingly never correcting a much bigger one. Similar results are observed broadly across the animal kingdom, and they do not derive from a limited plasticity of the adult brain since birds can compensate for a large error as long as the error is imposed gradually. We develop a mathematical model based on nonlinear Bayesian integration of two sensory modalities (one perturbed and the other not) that quantitatively explains all of these observations. The model makes predictions about the structure of the probability distribution of the pitches sung by birds during the pitch shift experiments, which we confirm using experimental data. This work was supported in part by James S. McDonnell Foundation Grant # 220020321, NSF Grant # IOS/1208126, NSF Grant # IOS/1456912 and NIH Grants # R01NS084844.

  3. A Bayesian Generative Model for Learning Semantic Hierarchies

    Directory of Open Access Journals (Sweden)

    Roni eMittelman

    2014-05-01

    Full Text Available Building fine-grained visual recognition systems that are capable of recognizing tens of thousands of categories, has received much attention in recent years. The well known semantic hierarchical structure of categories and concepts, has been shown to provide a key prior which allows for optimal predictions. The hierarchical organization of various domains and concepts has been subject to extensive research, and led to the development of the WordNet domains hierarchy [18], which was also used to organize the images in the ImageNet [11] dataset, in which the category count approaches the human capacity. Still, for the human visual system, the form of the hierarchy must be discovered with minimal use of supervision or innate knowledge. In this work, we propose a new Bayesian generative model for learning such domain hierarchies, based on semantic input. Our model is motivated by the super-subordinate organization of domain labels and concepts that characterizes WordNet, and accounts for several important challenges: maintaining context information when progressing deeper into the hierarchy, learning a coherent semantic concept for each node, and modeling uncertainty in the perception process.

  4. A Bayesian generative model for learning semantic hierarchies.

    Science.gov (United States)

    Mittelman, Roni; Sun, Min; Kuipers, Benjamin; Savarese, Silvio

    2014-01-01

    Building fine-grained visual recognition systems that are capable of recognizing tens of thousands of categories, has received much attention in recent years. The well known semantic hierarchical structure of categories and concepts, has been shown to provide a key prior which allows for optimal predictions. The hierarchical organization of various domains and concepts has been subject to extensive research, and led to the development of the WordNet domains hierarchy (Fellbaum, 1998), which was also used to organize the images in the ImageNet (Deng et al., 2009) dataset, in which the category count approaches the human capacity. Still, for the human visual system, the form of the hierarchy must be discovered with minimal use of supervision or innate knowledge. In this work, we propose a new Bayesian generative model for learning such domain hierarchies, based on semantic input. Our model is motivated by the super-subordinate organization of domain labels and concepts that characterizes WordNet, and accounts for several important challenges: maintaining context information when progressing deeper into the hierarchy, learning a coherent semantic concept for each node, and modeling uncertainty in the perception process.

  5. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  6. Mocapy++ - a toolkit for inference and learning in dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Paluszewski, Martin; Hamelryck, Thomas Wim

    2010-01-01

    Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...

  7. Approach to the Correlation Discovery of Chinese Linguistic Parameters Based on Bayesian Method

    Institute of Scientific and Technical Information of China (English)

    WANG Wei(王玮); CAI LianHong(蔡莲红)

    2003-01-01

    Bayesian approach is an important method in statistics. The Bayesian belief network is a powerful knowledge representation and reasoning tool under the conditions of uncertainty.It is a graphics model that encodes probabilistic relationships among variables of interest. In this paper, an approach to Bayesian network construction is given for discovering the Chinese linguistic parameter relationship in the corpus.

  8. Error-correction learning for artificial neural networks using the Bayesian paradigm. Application to automated medical diagnosis.

    Science.gov (United States)

    Belciug, Smaranda; Gorunescu, Florin

    2014-12-01

    Automated medical diagnosis models are now ubiquitous, and research for developing new ones is constantly growing. They play an important role in medical decision-making, helping physicians to provide a fast and accurate diagnosis. Due to their adaptive learning and nonlinear mapping properties, the artificial neural networks are widely used to support the human decision capabilities, avoiding variability in practice and errors based on lack of experience. Among the most common learning approaches, one can mention either the classical back-propagation algorithm based on the partial derivatives of the error function with respect to the weights, or the Bayesian learning method based on posterior probability distribution of weights, given training data. This paper proposes a novel training technique gathering together the error-correction learning, the posterior probability distribution of weights given the error function, and the Goodman-Kruskal Gamma rank correlation to assembly them in a Bayesian learning strategy. This study had two main purposes; firstly, to develop anovel learning technique based on both the Bayesian paradigm and the error back-propagation, and secondly,to assess its effectiveness. The proposed model performance is compared with those obtained by traditional machine learning algorithms using real-life breast and lung cancer, diabetes, and heart attack medical databases. Overall, the statistical comparison results indicate that thenovellearning approach outperforms the conventional techniques in almost all respects.

  9. An improved Bayesian matting method based on image statistic characteristics

    Science.gov (United States)

    Sun, Wei; Luo, Siwei; Wu, Lina

    2015-03-01

    Image matting is an important task in image and video editing and has been studied for more than 30 years. In this paper we propose an improved interactive matting method. Starting from a coarse user-guided trimap, we first perform a color estimation based on texture and color information and use the result to refine the original trimap. Then with the new trimap, we apply soft matting process which is improved Bayesian matting with smoothness constraints. Experimental results on natural image show that this method is useful, especially for the images have similar texture feature in the background or the images which is hard to give a precise trimap.

  10. Assessment of substitution model adequacy using frequentist and Bayesian methods.

    Science.gov (United States)

    Ripplinger, Jennifer; Sullivan, Jack

    2010-12-01

    In order to have confidence in model-based phylogenetic methods, such as maximum likelihood (ML) and Bayesian analyses, one must use an appropriate model of molecular evolution identified using statistically rigorous criteria. Although model selection methods such as the likelihood ratio test and Akaike information criterion are widely used in the phylogenetic literature, model selection methods lack the ability to reject all models if they provide an inadequate fit to the data. There are two methods, however, that assess absolute model adequacy, the frequentist Goldman-Cox (GC) test and Bayesian posterior predictive simulations (PPSs), which are commonly used in conjunction with the multinomial log likelihood test statistic. In this study, we use empirical and simulated data to evaluate the adequacy of common substitution models using both frequentist and Bayesian methods and compare the results with those obtained with model selection methods. In addition, we investigate the relationship between model adequacy and performance in ML and Bayesian analyses in terms of topology, branch lengths, and bipartition support. We show that tests of model adequacy based on the multinomial likelihood often fail to reject simple substitution models, especially when the models incorporate among-site rate variation (ASRV), and normally fail to reject less complex models than those chosen by model selection methods. In addition, we find that PPSs often fail to reject simpler models than the GC test. Use of the simplest substitution models not rejected based on fit normally results in similar but divergent estimates of tree topology and branch lengths. In addition, use of the simplest adequate substitution models can affect estimates of bipartition support, although these differences are often small with the largest differences confined to poorly supported nodes. We also find that alternative assumptions about ASRV can affect tree topology, tree length, and bipartition support. Our

  11. Bayesian Methods for Nonlinear System Identification of Civil Structures

    Directory of Open Access Journals (Sweden)

    Conte Joel P.

    2015-01-01

    Full Text Available This paper presents a new framework for the identification of mechanics-based nonlinear finite element (FE models of civil structures using Bayesian methods. In this approach, recursive Bayesian estimation methods are utilized to update an advanced nonlinear FE model of the structure using the input-output dynamic data recorded during an earthquake event. Capable of capturing the complex damage mechanisms and failure modes of the structural system, the updated nonlinear FE model can be used to evaluate the state of health of the structure after a damage-inducing event. To update the unknown time-invariant parameters of the FE model, three alternative stochastic filtering methods are used: the extended Kalman filter (EKF, the unscented Kalman filter (UKF, and the iterated extended Kalman filter (IEKF. For those estimation methods that require the computation of structural FE response sensitivities with respect to the unknown modeling parameters (EKF and IEKF, the accurate and computationally efficient direct differentiation method (DDM is used. A three-dimensional five-story two-by-one bay reinforced concrete (RC frame is used to illustrate the performance of the framework and compare the performance of the different filters in terms of convergence, accuracy, and robustness. Excellent estimation results are obtained with the UKF, EKF, and IEKF. Because of the analytical linearization used in the EKF and IEKF, abrupt and large jumps in the estimates of the modeling parameters are observed when using these filters. The UKF slightly outperforms the EKF and IEKF.

  12. Towards an inclusion driven learning of Bayesian Networks

    NARCIS (Netherlands)

    Castelo, R.; Kocka, T.

    2002-01-01

    Two or more Bayesian Networks are Markov equivalent when their corresponding acyclic digraphs encode the same set of conditional independence (= CI) restrictions. Therefore, the search space of Bayesian Networks may be organized in classes of equivalence, where each of them consists of a particular

  13. Efficient Bayesian Learning in Social Networks with Gaussian Estimators

    CERN Document Server

    Mossel, Elchanan

    2010-01-01

    We propose a simple and efficient Bayesian model of iterative learning on social networks. This model is efficient in two senses: the process both results in an optimal belief, and can be carried out with modest computational resources for large networks. This result extends Condorcet's Jury Theorem to general social networks, while preserving rationality and computational feasibility. The model consists of a group of agents who belong to a social network, so that a pair of agents can observe each other's actions only if they are neighbors. We assume that the network is connected and that the agents have full knowledge of the structure of the network. The agents try to estimate some state of the world S (say, the price of oil a year from today). Each agent has a private measurement of S. This is modeled, for agent v, by a number S_v picked from a Gaussian distribution with mean S and standard deviation one. Accordingly, agent v's prior belief regarding S is a normal distribution with mean S_v and standard dev...

  14. Robust Face Recognition via Block Sparse Bayesian Learning

    Directory of Open Access Journals (Sweden)

    Taiyong Li

    2013-01-01

    Full Text Available Face recognition (FR is an important task in pattern recognition and computer vision. Sparse representation (SR has been demonstrated to be a powerful framework for FR. In general, an SR algorithm treats each face in a training dataset as a basis function and tries to find a sparse representation of a test face under these basis functions. The sparse representation coefficients then provide a recognition hint. Early SR algorithms are based on a basic sparse model. Recently, it has been found that algorithms based on a block sparse model can achieve better recognition rates. Based on this model, in this study, we use block sparse Bayesian learning (BSBL to find a sparse representation of a test face for recognition. BSBL is a recently proposed framework, which has many advantages over existing block-sparse-model-based algorithms. Experimental results on the Extended Yale B, the AR, and the CMU PIE face databases show that using BSBL can achieve better recognition rates and higher robustness than state-of-the-art algorithms in most cases.

  15. A Bayesian nonparametric method for prediction in EST analysis

    Directory of Open Access Journals (Sweden)

    Prünster Igor

    2007-09-01

    Full Text Available Abstract Background Expressed sequence tags (ESTs analyses are a fundamental tool for gene identification in organisms. Given a preliminary EST sample from a certain library, several statistical prediction problems arise. In particular, it is of interest to estimate how many new genes can be detected in a future EST sample of given size and also to determine the gene discovery rate: these estimates represent the basis for deciding whether to proceed sequencing the library and, in case of a positive decision, a guideline for selecting the size of the new sample. Such information is also useful for establishing sequencing efficiency in experimental design and for measuring the degree of redundancy of an EST library. Results In this work we propose a Bayesian nonparametric approach for tackling statistical problems related to EST surveys. In particular, we provide estimates for: a the coverage, defined as the proportion of unique genes in the library represented in the given sample of reads; b the number of new unique genes to be observed in a future sample; c the discovery rate of new genes as a function of the future sample size. The Bayesian nonparametric model we adopt conveys, in a statistically rigorous way, the available information into prediction. Our proposal has appealing properties over frequentist nonparametric methods, which become unstable when prediction is required for large future samples. EST libraries, previously studied with frequentist methods, are analyzed in detail. Conclusion The Bayesian nonparametric approach we undertake yields valuable tools for gene capture and prediction in EST libraries. The estimators we obtain do not feature the kind of drawbacks associated with frequentist estimators and are reliable for any size of the additional sample.

  16. Distance and extinction determination for APOGEE stars with Bayesian method

    CERN Document Server

    Wang, Jianling; Pan, Kaike; Chen, Bingqiu; Zhao, Yongheng; Wicker, James

    2016-01-01

    Using a Bayesian technology we derived distances and extinctions for over 100,000 red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey by taking into account spectroscopic constraints from the APOGEE stellar parameters and photometric constraints from 2MASS, as well as a prior knowledge on the Milky Way. Derived distances are compared with those from four other independent methods, the Hipparcos parallaxes, star clusters, APOGEE red clump stars, and asteroseismic distances from APOKASC (Rodrigues et al. 2014) and SAGA Catalogues (Casagrande et al. 2014). These comparisons covers four orders of magnitude in the distance scale from 0.02 kpc to 20 kpc. The results show that our distances agree very well with those from other methods: the mean relative difference between our Bayesian distances and those derived from other methods ranges from -4.2% to +3.6%, and the dispersion ranges from 15% to 25%. The extinctions toward all stars are also derived and compared wi...

  17. Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.

    Science.gov (United States)

    Zhang, Yu; Wang, Yu; Jin, Jing; Wang, Xingyu

    2017-03-01

    Effective common spatial pattern (CSP) feature extraction for motor imagery (MI) electroencephalogram (EEG) recordings usually depends on the filter band selection to a large extent. Subband optimization has been suggested to enhance classification accuracy of MI. Accordingly, this study introduces a new method that implements sparse Bayesian learning of frequency bands (named SBLFB) from EEG for MI classification. CSP features are extracted on a set of signals that are generated by a filter bank with multiple overlapping subbands from raw EEG data. Sparse Bayesian learning is then exploited to implement selection of significant features with a linear discriminant criterion for classification. The effectiveness of SBLFB is demonstrated on the BCI Competition IV IIb dataset, in comparison with several other competing methods. Experimental results indicate that the SBLFB method is promising for development of an effective classifier to improve MI classification.

  18. Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings.

    Directory of Open Access Journals (Sweden)

    Elise Payzan-LeNestour

    Full Text Available Recently, evidence has emerged that humans approach learning using Bayesian updating rather than (model-free reinforcement algorithms in a six-arm restless bandit problem. Here, we investigate what this implies for human appreciation of uncertainty. In our task, a Bayesian learner distinguishes three equally salient levels of uncertainty. First, the Bayesian perceives irreducible uncertainty or risk: even knowing the payoff probabilities of a given arm, the outcome remains uncertain. Second, there is (parameter estimation uncertainty or ambiguity: payoff probabilities are unknown and need to be estimated. Third, the outcome probabilities of the arms change: the sudden jumps are referred to as unexpected uncertainty. We document how the three levels of uncertainty evolved during the course of our experiment and how it affected the learning rate. We then zoom in on estimation uncertainty, which has been suggested to be a driving force in exploration, in spite of evidence of widespread aversion to ambiguity. Our data corroborate the latter. We discuss neural evidence that foreshadowed the ability of humans to distinguish between the three levels of uncertainty. Finally, we investigate the boundaries of human capacity to implement Bayesian learning. We repeat the experiment with different instructions, reflecting varying levels of structural uncertainty. Under this fourth notion of uncertainty, choices were no better explained by Bayesian updating than by (model-free reinforcement learning. Exit questionnaires revealed that participants remained unaware of the presence of unexpected uncertainty and failed to acquire the right model with which to implement Bayesian updating.

  19. A Parallel and Incremental Approach for Data-Intensive Learning of Bayesian Networks.

    Science.gov (United States)

    Yue, Kun; Fang, Qiyu; Wang, Xiaoling; Li, Jin; Liu, Weiyi

    2015-12-01

    Bayesian network (BN) has been adopted as the underlying model for representing and inferring uncertain knowledge. As the basis of realistic applications centered on probabilistic inferences, learning a BN from data is a critical subject of machine learning, artificial intelligence, and big data paradigms. Currently, it is necessary to extend the classical methods for learning BNs with respect to data-intensive computing or in cloud environments. In this paper, we propose a parallel and incremental approach for data-intensive learning of BNs from massive, distributed, and dynamically changing data by extending the classical scoring and search algorithm and using MapReduce. First, we adopt the minimum description length as the scoring metric and give the two-pass MapReduce-based algorithms for computing the required marginal probabilities and scoring the candidate graphical model from sample data. Then, we give the corresponding strategy for extending the classical hill-climbing algorithm to obtain the optimal structure, as well as that for storing a BN by pairs. Further, in view of the dynamic characteristics of the changing data, we give the concept of influence degree to measure the coincidence of the current BN with new data, and then propose the corresponding two-pass MapReduce-based algorithms for BNs incremental learning. Experimental results show the efficiency, scalability, and effectiveness of our methods.

  20. Bayesian Monte Carlo method for nuclear data evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Koning, A.J. [Nuclear Research and Consultancy Group NRG, P.O. Box 25, ZG Petten (Netherlands)

    2015-12-15

    A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using the nuclear model code TALYS and the experimental nuclear reaction database EXFOR. The method is applied to all nuclides at the same time. First, the global predictive power of TALYS is numerically assessed, which enables to set the prior space of nuclear model solutions. Next, the method gradually zooms in on particular experimental data per nuclide, until for each specific target nuclide its existing experimental data can be used for weighted Monte Carlo sampling. To connect to the various different schools of uncertainty propagation in applied nuclear science, the result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by the EXFOR-based weight. (orig.)

  1. Bayesian Monte Carlo method for nuclear data evaluation

    Science.gov (United States)

    Koning, A. J.

    2015-12-01

    A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using the nuclear model code TALYS and the experimental nuclear reaction database EXFOR. The method is applied to all nuclides at the same time. First, the global predictive power of TALYS is numerically assessed, which enables to set the prior space of nuclear model solutions. Next, the method gradually zooms in on particular experimental data per nuclide, until for each specific target nuclide its existing experimental data can be used for weighted Monte Carlo sampling. To connect to the various different schools of uncertainty propagation in applied nuclear science, the result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by the EXFOR-based weight.

  2. Bayesian statistic methods and theri application in probabilistic simulation models

    Directory of Open Access Journals (Sweden)

    Sergio Iannazzo

    2007-03-01

    Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.

  3. Bayesian structural equation modeling method for hierarchical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xiaomo [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: xiaomo.jiang@vanderbilt.edu; Mahadevan, Sankaran [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: sankaran.mahadevan@vanderbilt.edu

    2009-04-15

    A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system, comparing model predictions with experimental observations at each level. Usually, experimental data becomes scarce as one proceeds from lower to higher levels. This paper presents a structural equation modeling approach to make use of the lower-level data for higher-level model validation under uncertainty, integrating several components: lower-level data, higher-level data, computational model, and latent variables. The method proposed in this paper uses latent variables to model two sets of relationships, namely, the computational model to system-level data, and lower-level data to system-level data. A Bayesian network with Markov chain Monte Carlo simulation is applied to represent the two relationships and to estimate the influencing factors between them. Bayesian hypothesis testing is employed to quantify the confidence in the predictive model at the system level, and the role of lower-level data in the model validation assessment at the system level. The proposed methodology is implemented for hierarchical assessment of three validation problems, using discrete observations and time-series data.

  4. A noise tolerant fine tuning algorithm for the Naïve Bayesian learning algorithm

    Directory of Open Access Journals (Sweden)

    Khalil El Hindi

    2014-07-01

    Full Text Available This work improves on the FTNB algorithm to make it more tolerant to noise. The FTNB algorithm augments the Naïve Bayesian (NB learning algorithm with a fine-tuning stage in an attempt to find better estimations of the probability terms involved. The fine-tuning stage has proved to be effective in improving the classification accuracy of the NB; however, it makes the NB algorithm more sensitive to noise in a training set. This work presents several modifications of the fine tuning stage to make it more tolerant to noise. Our empirical results using 47 data sets indicate that the proposed methods greatly enhance the algorithm tolerance to noise. Furthermore, one of the proposed methods improved the performance of the fine tuning method on many noise-free data sets.

  5. Bayesian methods in the search for MH370

    CERN Document Server

    Davey, Sam; Holland, Ian; Rutten, Mark; Williams, Jason

    2016-01-01

    This book demonstrates how nonlinear/non-Gaussian Bayesian time series estimation methods were used to produce a probability distribution of potential MH370 flight paths. It provides details of how the probabilistic models of aircraft flight dynamics, satellite communication system measurements, environmental effects and radar data were constructed and calibrated. The probability distribution was used to define the search zone in the southern Indian Ocean. The book describes particle-filter based numerical calculation of the aircraft flight-path probability distribution and validates the method using data from several of the involved aircraft’s previous flights. Finally it is shown how the Reunion Island flaperon debris find affects the search probability distribution.

  6. Metainference: A Bayesian Inference Method for Heterogeneous Systems

    CERN Document Server

    Bonomi, Massimiliano; Cavalli, Andrea; Vendruscolo, Michele

    2015-01-01

    Modelling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model, and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system populates simultaneously an ensemble of different states and experimental data are measured as averages over such states. To address this problem we present a method, called metainference, that combines Bayesian inference, which is a powerful strategy to deal with errors in experimental measurements, with the maximum entropy principle, which represents a rigorous approach to deal with experimental measurements averaged over multiple states. To illustrate the method we present its application to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to model complex systems with...

  7. QUEST+: A general multidimensional Bayesian adaptive psychometric method.

    Science.gov (United States)

    Watson, Andrew B

    2017-03-01

    QUEST+ is a Bayesian adaptive psychometric testing method that allows an arbitrary number of stimulus dimensions, psychometric function parameters, and trial outcomes. It is a generalization and extension of the original QUEST procedure and incorporates many subsequent developments in the area of parametric adaptive testing. With a single procedure, it is possible to implement a wide variety of experimental designs, including conventional threshold measurement; measurement of psychometric function parameters, such as slope and lapse; estimation of the contrast sensitivity function; measurement of increment threshold functions; measurement of noise-masking functions; Thurstone scale estimation using pair comparisons; and categorical ratings on linear and circular stimulus dimensions. QUEST+ provides a general method to accelerate data collection in many areas of cognitive and perceptual science.

  8. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  9. A variational Bayesian method to inverse problems with impulsive noise

    KAUST Repository

    Jin, Bangti

    2012-01-01

    We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.

  10. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    Science.gov (United States)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  11. Ontology for E-Learning: A Bayesian Approach

    Science.gov (United States)

    Colace, F.; De Santo, M.

    2010-01-01

    In the last decade, the evolution of educational technologies has forced an extraordinary interest in new methods for delivering learning content to learners. Today, distance education represents an effective way for supporting and sometimes substituting the traditional formative processes, thanks to the technological improvements achieved in the…

  12. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.

    Science.gov (United States)

    Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune

    2016-01-01

    Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.

  13. On Bayesian methods of exploring qualitative interactions for targeted treatment.

    Science.gov (United States)

    Chen, Wei; Ghosh, Debashis; Raghunathan, Trivellore E; Norkin, Maxim; Sargent, Daniel J; Bepler, Gerold

    2012-12-10

    Providing personalized treatments designed to maximize benefits and minimizing harms is of tremendous current medical interest. One problem in this area is the evaluation of the interaction between the treatment and other predictor variables. Treatment effects in subgroups having the same direction but different magnitudes are called quantitative interactions, whereas those having opposite directions in subgroups are called qualitative interactions (QIs). Identifying QIs is challenging because they are rare and usually unknown among many potential biomarkers. Meanwhile, subgroup analysis reduces the power of hypothesis testing and multiple subgroup analyses inflate the type I error rate. We propose a new Bayesian approach to search for QI in a multiple regression setting with adaptive decision rules. We consider various regression models for the outcome. We illustrate this method in two examples of phase III clinical trials. The algorithm is straightforward and easy to implement using existing software packages. We provide a sample code in Appendix A. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Bayesian Analysis of Multiple Populations I: Statistical and Computational Methods

    CERN Document Server

    Stenning, D C; Robinson, E; van Dyk, D A; von Hippel, T; Sarajedini, A; Stein, N

    2016-01-01

    We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations (vanDyk et al. 2009, Stein et al. 2013). Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties---age, metallicity, helium abundance, distance, absorption, and initial mass---are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and al...

  15. A Tractable Method for Measuring Nanomaterial Risk Using Bayesian Networks

    Science.gov (United States)

    Murphy, Finbarr; Sheehan, Barry; Mullins, Martin; Bouwmeester, Hans; Marvin, Hans J. P.; Bouzembrak, Yamine; Costa, Anna L.; Das, Rasel; Stone, Vicki; Tofail, Syed A. M.

    2016-11-01

    While control banding has been identified as a suitable framework for the evaluation and the determination of potential human health risks associated with exposure to nanomaterials (NMs), the approach currently lacks any implementation that enjoys widespread support. Large inconsistencies in characterisation data, toxicological measurements and exposure scenarios make it difficult to map and compare the risk associated with NMs based on physicochemical data, concentration and exposure route. Here we demonstrate the use of Bayesian networks as a reliable tool for NM risk estimation. This tool is tractable, accessible and scalable. Most importantly, it captures a broad span of data types, from complete, high quality data sets through to data sets with missing data and/or values with a relatively high spread of probability distribution. The tool is able to learn iteratively in order to further refine forecasts as the quality of data available improves. We demonstrate how this risk measurement approach works on NMs with varying degrees of risk potential, namely, carbon nanotubes, silver and titanium dioxide. The results afford even non-experts an accurate picture of the occupational risk probabilities associated with these NMs and, in doing so, demonstrated how NM risk can be evaluated into a tractable, quantitative risk comparator.

  16. Insights on the Bayesian spectral density method for operational modal analysis

    Science.gov (United States)

    Au, Siu-Kui

    2016-01-01

    This paper presents a study on the Bayesian spectral density method for operational modal analysis. The method makes Bayesian inference of the modal properties by using the sample power spectral density (PSD) matrix averaged over independent sets of ambient data. In the typical case with a single set of data, it is divided into non-overlapping segments and they are assumed to be independent. This study is motivated by a recent paper that reveals a mathematical equivalence of the method with the Bayesian FFT method. The latter does not require averaging concepts or the independent segment assumption. This study shows that the equivalence does not hold in reality because the theoretical long data asymptotic distribution of the PSD matrix may not be valid. A single time history can be considered long for the Bayesian FFT method but not necessarily for the Bayesian PSD method, depending on the number of segments.

  17. Bayesian signal processing classical, modern, and particle filtering methods

    CERN Document Server

    Candy, James V

    2016-01-01

    This book aims to give readers a unified Bayesian treatment starting from the basics (Baye's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on "Sequential Bayesian Detection," a new section on "Ensemble Kalman Filters" as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to "fill-in-the gaps" of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical "sanity testing" lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed an...

  18. Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation learning based artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Lalit Mohan [Department of Electrical Engineering, National Institute of Technology, Kurukshetra, Haryana 136119 (India)

    2008-07-15

    Up to 7 days ahead electrical peak load forecasting has been done using feed forward neural network based on Steepest descent, Bayesian regularization, Resilient and adaptive backpropagation learning methods, by incorporating the effect of eleven weather parameters and past peak load information. To avoid trapping of network into a state of local minima, the optimization of user-defined parameters viz., learning rate and error goal has been performed. The sliding window concept has been incorporated for selection of training data set. It was then reduced as per relevant selection according to the day type and season for which the forecast is made. To reduce the dimensionality of input matrix, the Principal Component Analysis method of factor extraction or correlation analysis technique has been used and their performance has been compared. The resultant data set was used for training of three-layered neural network. In order to increase the learning speed, the weights and biases were initialized according to Nguyen and Widrow method. To avoid over fitting, early stopping of training was done at the minimum validation error. (author)

  19. Trends in epidemiology in the 21st century: time to adopt Bayesian methods

    Directory of Open Access Journals (Sweden)

    Edson Zangiacomi Martinez

    2014-04-01

    Full Text Available 2013 marked the 250th anniversary of the presentation of Bayes’ theorem by the philosopher Richard Price. Thomas Bayes was a figure little known in his own time, but in the 20th century the theorem that bears his name became widely used in many fields of research. The Bayes theorem is the basis of the so-called Bayesian methods, an approach to statistical inference that allows studies to incorporate prior knowledge about relevant data characteristics into statistical analysis. Nowadays, Bayesian methods are widely used in many different areas such as astronomy, economics, marketing, genetics, bioinformatics and social sciences. This study observed that a number of authors discussed recent advances in techniques and the advantages of Bayesian methods for the analysis of epidemiological data. This article presents an overview of Bayesian methods, their application to epidemiological research and the main areas of epidemiology which should benefit from the use of Bayesian methods in coming years.

  20. Bayesian Method with Spatial Constraint for Retinal Vessel Segmentation

    Directory of Open Access Journals (Sweden)

    Zhiyong Xiao

    2013-01-01

    Full Text Available A Bayesian method with spatial constraint is proposed for vessel segmentation in retinal images. The proposed model makes the assumption that the posterior probability of each pixel is dependent on posterior probabilities of their neighboring pixels. An energy function is defined for the proposed model. By applying the modified level set approach to minimize the proposed energy function, we can identify blood vessels in the retinal image. Evaluation of the developed method is done on real retinal images which are from the DRIVE database and the STARE database. The performance is analyzed and compared to other published methods using a number of measures which include accuracy, sensitivity, and specificity. The proposed approach is proved to be effective on these two databases. The average accuracy, sensitivity, and specificity on the DRIVE database are 0.9529, 0.7513, and 0.9792, respectively, and for the STARE database 0.9476, 0.7147, and 0.9735, respectively. The performance is better than that of other vessel segmentation methods.

  1. Effective Structure Learning for Estimation of Distribution Algorithms via L1-Regularized Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2013-01-01

    Full Text Available Estimation of distribution algorithms (EDAs, as an extension of genetic algorithms, samples new solutions from the probabilistic model, which characterizes the distribution of promising solutions in the search space at each generation. This paper introduces and evaluates a novel estimation of a distribution algorithm, called L1-regularized Bayesian optimization algorithm, L1BOA. In L1BOA, Bayesian networks as probabilistic models are learned in two steps. First, candidate parents of each variable in Bayesian networks are detected by means of L1-regularized logistic regression, with the aim of leading a sparse but nearly optimized network structure. Second, the greedy search, which is restricted to the candidate parent-child pairs, is deployed to identify the final structure. Compared with the Bayesian optimization algorithm (BOA, L1BOA improves the efficiency of structure learning due to the reduction and automated control of network complexity introduced with L1-regularized learning. Experimental studies on different types of benchmark problems show that L1BOA not only outperforms BOA when no prior knowledge about problem structure is available, but also achieves and even exceeds the best performance of BOA that applies explicit controls on network complexity. Furthermore, Bayesian networks built by L1BOA and BOA during evolution are analysed and compared, which demonstrates that L1BOA is able to build simpler, yet more accurate probabilistic models.

  2. A Bayesian least-squares support vector machine method for predicting the remaining useful life of a microwave component

    Directory of Open Access Journals (Sweden)

    Fuqiang Sun

    2017-01-01

    Full Text Available Rapid and accurate lifetime prediction of critical components in a system is important to maintaining the system’s reliable operation. To this end, many lifetime prediction methods have been developed to handle various failure-related data collected in different situations. Among these methods, machine learning and Bayesian updating are the most popular ones. In this article, a Bayesian least-squares support vector machine method that combines least-squares support vector machine with Bayesian inference is developed for predicting the remaining useful life of a microwave component. A degradation model describing the change in the component’s power gain over time is developed, and the point and interval remaining useful life estimates are obtained considering a predefined failure threshold. In our case study, the radial basis function neural network approach is also implemented for comparison purposes. The results indicate that the Bayesian least-squares support vector machine method is more precise and stable in predicting the remaining useful life of this type of components.

  3. Online estimation of lithium-ion battery capacity using sparse Bayesian learning

    Science.gov (United States)

    Hu, Chao; Jain, Gaurav; Schmidt, Craig; Strief, Carrie; Sullivan, Melani

    2015-09-01

    Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years' continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.

  4. Gaussian kernel width optimization for sparse Bayesian learning.

    Science.gov (United States)

    Mohsenzadeh, Yalda; Sheikhzadeh, Hamid

    2015-04-01

    Sparse kernel methods have been widely used in regression and classification applications. The performance and the sparsity of these methods are dependent on the appropriate choice of the corresponding kernel functions and their parameters. Typically, the kernel parameters are selected using a cross-validation approach. In this paper, a learning method that is an extension of the relevance vector machine (RVM) is presented. The proposed method can find the optimal values of the kernel parameters during the training procedure. This algorithm uses an expectation-maximization approach for updating kernel parameters as well as other model parameters; therefore, the speed of convergence and computational complexity of the proposed method are the same as the standard RVM. To control the convergence of this fully parameterized model, the optimization with respect to the kernel parameters is performed using a constraint on these parameters. The proposed method is compared with the typical RVM and other competing methods to analyze the performance. The experimental results on the commonly used synthetic data, as well as benchmark data sets, demonstrate the effectiveness of the proposed method in reducing the performance dependency on the initial choice of the kernel parameters.

  5. Extracting a Whisper from the DIN: A Bayesian-Inductive Approach to Learning an Anticipatory Model of Cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1999-11-07

    For several reasons, Bayesian parameter estimation is superior to other methods for inductively learning a model for an anticipatory system. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since "nuisance parameters" can be removed from the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit of perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian methods approach this ideal limit of performance more closely than other methods. These capabilities provide a strategy for addressing a major unsolved problem in pump operation: the identification of precursors of cavitation. Cavitation causes immediate degradation of pump performance and ultimate destruction of the pump. However, the most efficient point to operate a pump is just below the threshold of cavitation. It might be hoped that a straightforward method to minimize pump cavitation damage would be to simply adjust the operating point until the inception of cavitation is detected and then to slightly readjust the operating point to let the cavitation vanish. However, due to the continuously evolving state of the fluid moving through the pump, the threshold of cavitation tends to wander. What is needed is to anticipate cavitation, and this requires the detection and identification of precursor features that occur just before cavitation starts.

  6. Bayesian prediction of placebo analgesia in an instrumental learning model

    Science.gov (United States)

    Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2017-01-01

    Placebo analgesia can be primarily explained by the Pavlovian conditioning paradigm in which a passively applied cue becomes associated with less pain. In contrast, instrumental conditioning employs an active paradigm that might be more similar to clinical settings. In the present study, an instrumental conditioning paradigm involving a modified trust game in a simulated clinical situation was used to induce placebo analgesia. Additionally, Bayesian modeling was applied to predict the placebo responses of individuals based on their choices. Twenty-four participants engaged in a medical trust game in which decisions to receive treatment from either a doctor (more effective with high cost) or a pharmacy (less effective with low cost) were made after receiving a reference pain stimulus. In the conditioning session, the participants received lower levels of pain following both choices, while high pain stimuli were administered in the test session even after making the decision. The choice-dependent pain in the conditioning session was modulated in terms of both intensity and uncertainty. Participants reported significantly less pain when they chose the doctor or the pharmacy for treatment compared to the control trials. The predicted pain ratings based on Bayesian modeling showed significant correlations with the actual reports from participants for both of the choice categories. The instrumental conditioning paradigm allowed for the active choice of optional cues and was able to induce the placebo analgesia effect. Additionally, Bayesian modeling successfully predicted pain ratings in a simulated clinical situation that fits well with placebo analgesia induced by instrumental conditioning. PMID:28225816

  7. Modeling Causal Learning Using Bayesian Generic Priors on Generative and Preventive Powers

    OpenAIRE

    Lu, Hongjing; Yuille, Alan L; Liljeholm, Mimi; Cheng, Patricia W.; Holyoak, Keith J.

    2006-01-01

    We present a Bayesian model of causal learning that incorporates generic priors on distributions of weights representing potential powers to either produce or prevent an effect. These generic priors favor necessary and sufficient causes. Across three experiments, the model explains the systematic pattern of human judgments observed for questions regarding support for a causal link, for both generative and preventive causes.

  8. CEO emotional bias and investment decision, Bayesian network method

    Directory of Open Access Journals (Sweden)

    Jarboui Anis

    2012-08-01

    Full Text Available This research examines the determinants of firms’ investment introducing a behavioral perspective that has received little attention in corporate finance literature. The following central hypothesis emerges from a set of recently developed theories: Investment decisions are influenced not only by their fundamentals but also depend on some other factors. One factor is the biasness of any CEO to their investment, biasness depends on the cognition and emotions, because some leaders use them as heuristic for the investment decision instead of fundamentals. This paper shows how CEO emotional bias (optimism, loss aversion and overconfidence affects the investment decisions. The proposed model of this paper uses Bayesian Network Method to examine this relationship. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some 100 Tunisian executives. Our results have revealed that the behavioral analysis of investment decision implies leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its investment choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.

  9. CEO emotional bias and dividend policy: Bayesian network method

    Directory of Open Access Journals (Sweden)

    Azouzi Mohamed Ali

    2012-10-01

    Full Text Available This paper assumes that managers, investors, or both behave irrationally. In addition, even though scholars have investigated behavioral irrationality from three angles, investor sentiment, investor biases and managerial biases, we focus on the relationship between one of the managerial biases, overconfidence and dividend policy. Previous research investigating the relationship between overconfidence and financial decisions has studied investment, financing decisions and firm values. However, there are only a few exceptions to examine how a managerial emotional bias (optimism, loss aversion and overconfidence affects dividend policies. This stream of research contends whether to distribute dividends or not depends on how managers perceive of the company’s future. I will use Bayesian network method to examine this relation. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some100 Tunisian executives. Our results have revealed that leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its dividend policy choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.

  10. Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory

    OpenAIRE

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but ...

  11. Multifrequency Bayesian compressive sensing methods for microwave imaging.

    Science.gov (United States)

    Poli, Lorenzo; Oliveri, Giacomo; Ding, Ping Ping; Moriyama, Toshifumi; Massa, Andrea

    2014-11-01

    The Bayesian retrieval of sparse scatterers under multifrequency transverse magnetic illuminations is addressed. Two innovative imaging strategies are formulated to process the spectral content of microwave scattering data according to either a frequency-hopping multistep scheme or a multifrequency one-shot scheme. To solve the associated inverse problems, customized implementations of single-task and multitask Bayesian compressive sensing are introduced. A set of representative numerical results is discussed to assess the effectiveness and the robustness against the noise of the proposed techniques also in comparison with some state-of-the-art deterministic strategies.

  12. Evaluating Bayesian Networks' Precision for Detecting Students' Learning Styles

    Science.gov (United States)

    Garcia, Patricio; Amandi, Analia; Schiaffino, Silvia; Campo, Marcelo

    2007-01-01

    Students are characterized by different learning styles, focusing on different types of information and processing this information in different ways. One of the desirable characteristics of a Web-based education system is that all the students can learn despite their different learning styles. To achieve this goal we have to detect how students…

  13. A Bayesian theory of sequential causal learning and abstract transfer

    NARCIS (Netherlands)

    Lu, H.; Rojas, R.R.; Beckers, T.; Yuille, A.L.

    2016-01-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect lin

  14. The threshold EM algorithm for parameter learning in bayesian network with incomplete data

    CERN Document Server

    Lamine, Fradj Ben; Mahjoub, Mohamed Ali

    2012-01-01

    Bayesian networks (BN) are used in a big range of applications but they have one issue concerning parameter learning. In real application, training data are always incomplete or some nodes are hidden. To deal with this problem many learning parameter algorithms are suggested foreground EM, Gibbs sampling and RBE algorithms. In order to limit the search space and escape from local maxima produced by executing EM algorithm, this paper presents a learning parameter algorithm that is a fusion of EM and RBE algorithms. This algorithm incorporates the range of a parameter into the EM algorithm. This range is calculated by the first step of RBE algorithm allowing a regularization of each parameter in bayesian network after the maximization step of the EM algorithm. The threshold EM algorithm is applied in brain tumor diagnosis and show some advantages and disadvantages over the EM algorithm.

  15. Learning emergent behaviours for a hierarchical Bayesian framework for active robotic perception.

    Science.gov (United States)

    Ferreira, João Filipe; Tsiourti, Christiana; Dias, Jorge

    2012-08-01

    In this research work, we contribute with a behaviour learning process for a hierarchical Bayesian framework for multimodal active perception, devised to be emergent, scalable and adaptive. This framework is composed by models built upon a common spatial configuration for encoding perception and action that is naturally fitting for the integration of readings from multiple sensors, using a Bayesian approach devised in previous work. The proposed learning process is shown to reproduce goal-dependent human-like active perception behaviours by learning model parameters (referred to as "attentional sets") for different free-viewing and active search tasks. Learning was performed by presenting several 3D audiovisual virtual scenarios using a head-mounted display, while logging the spatial distribution of fixations of the subject (in 2D, on left and right images, and in 3D space), data which are consequently used as the training set for the framework. As a consequence, the hierarchical Bayesian framework adequately implements high-level behaviour resulting from low-level interaction of simpler building blocks by using the attentional sets learned for each task, and is able to change these attentional sets "on the fly," allowing the implementation of goal-dependent behaviours (i.e., top-down influences).

  16. parallelMCMCcombine: an R package for bayesian methods for big data and analytics.

    Directory of Open Access Journals (Sweden)

    Alexey Miroshnikov

    Full Text Available Recent advances in big data and analytics research have provided a wealth of large data sets that are too big to be analyzed in their entirety, due to restrictions on computer memory or storage size. New Bayesian methods have been developed for data sets that are large only due to large sample sizes. These methods partition big data sets into subsets and perform independent Bayesian Markov chain Monte Carlo analyses on the subsets. The methods then combine the independent subset posterior samples to estimate a posterior density given the full data set. These approaches were shown to be effective for Bayesian models including logistic regression models, Gaussian mixture models and hierarchical models. Here, we introduce the R package parallelMCMCcombine which carries out four of these techniques for combining independent subset posterior samples. We illustrate each of the methods using a Bayesian logistic regression model for simulation data and a Bayesian Gamma model for real data; we also demonstrate features and capabilities of the R package. The package assumes the user has carried out the Bayesian analysis and has produced the independent subposterior samples outside of the package. The methods are primarily suited to models with unknown parameters of fixed dimension that exist in continuous parameter spaces. We envision this tool will allow researchers to explore the various methods for their specific applications and will assist future progress in this rapidly developing field.

  17. parallelMCMCcombine: an R package for bayesian methods for big data and analytics.

    Science.gov (United States)

    Miroshnikov, Alexey; Conlon, Erin M

    2014-01-01

    Recent advances in big data and analytics research have provided a wealth of large data sets that are too big to be analyzed in their entirety, due to restrictions on computer memory or storage size. New Bayesian methods have been developed for data sets that are large only due to large sample sizes. These methods partition big data sets into subsets and perform independent Bayesian Markov chain Monte Carlo analyses on the subsets. The methods then combine the independent subset posterior samples to estimate a posterior density given the full data set. These approaches were shown to be effective for Bayesian models including logistic regression models, Gaussian mixture models and hierarchical models. Here, we introduce the R package parallelMCMCcombine which carries out four of these techniques for combining independent subset posterior samples. We illustrate each of the methods using a Bayesian logistic regression model for simulation data and a Bayesian Gamma model for real data; we also demonstrate features and capabilities of the R package. The package assumes the user has carried out the Bayesian analysis and has produced the independent subposterior samples outside of the package. The methods are primarily suited to models with unknown parameters of fixed dimension that exist in continuous parameter spaces. We envision this tool will allow researchers to explore the various methods for their specific applications and will assist future progress in this rapidly developing field.

  18. Frequency-domain sparse Bayesian learning inversion of AVA data for elastic parameters reflectivities

    Science.gov (United States)

    Ji, Yongzhen; Yuan, Sanyi; Wang, Shangxu; Deng, Li

    2016-10-01

    The prestack amplitude variation with angle (AVA) inversion method utilising angle information to obtain the elastic parameters estimation of subsurface rock is vital to reservoir characterisation. Under the assumption of blocky layered media, an AVA inversion algorithm combining prestack spectral reflectivity inversion with sparse Bayesian learning (SBL) is presented. Prior information of the model parameters is involved in the inversion through the hierarchical Gaussian distribution where each parameter has a unique variance instead of sharing a common one. The frequency-domain prestack SBL inversion method retrieves sparse P- and S-wave impedance reflectivities by sequentially adding, deleting or re-estimating hyper-parameters without pre-setting the number of non-zero P- and S-wave reflectivity spikes. The selection of frequency components can help get rid of noise outside the selected frequency band. The precondition of the parameters helps to balance the weight of different parameters and incorporate the relationship between those parameters into the inversion process, thus improves the inversion result. Synthetic and real data examples illustrate the effectiveness of the method.

  19. Bayesian Population Forecasting: Extending the Lee-Carter Method.

    Science.gov (United States)

    Wiśniowski, Arkadiusz; Smith, Peter W F; Bijak, Jakub; Raymer, James; Forster, Jonathan J

    2015-06-01

    In this article, we develop a fully integrated and dynamic Bayesian approach to forecast populations by age and sex. The approach embeds the Lee-Carter type models for forecasting the age patterns, with associated measures of uncertainty, of fertility, mortality, immigration, and emigration within a cohort projection model. The methodology may be adapted to handle different data types and sources of information. To illustrate, we analyze time series data for the United Kingdom and forecast the components of population change to the year 2024. We also compare the results obtained from different forecast models for age-specific fertility, mortality, and migration. In doing so, we demonstrate the flexibility and advantages of adopting the Bayesian approach for population forecasting and highlight areas where this work could be extended.

  20. Bayesian methods for the analysis of inequality constrained contingency tables.

    Science.gov (United States)

    Laudy, Olav; Hoijtink, Herbert

    2007-04-01

    A Bayesian methodology for the analysis of inequality constrained models for contingency tables is presented. The problem of interest lies in obtaining the estimates of functions of cell probabilities subject to inequality constraints, testing hypotheses and selection of the best model. Constraints on conditional cell probabilities and on local, global, continuation and cumulative odds ratios are discussed. A Gibbs sampler to obtain a discrete representation of the posterior distribution of the inequality constrained parameters is used. Using this discrete representation, the credibility regions of functions of cell probabilities can be constructed. Posterior model probabilities are used for model selection and hypotheses are tested using posterior predictive checks. The Bayesian methodology proposed is illustrated in two examples.

  1. Understanding data better with Bayesian and global statistical methods

    CERN Document Server

    Press, W H

    1996-01-01

    To understand their data better, astronomers need to use statistical tools that are more advanced than traditional ``freshman lab'' statistics. As an illustration, the problem of combining apparently incompatible measurements of a quantity is presented from both the traditional, and a more sophisticated Bayesian, perspective. Explicit formulas are given for both treatments. Results are shown for the value of the Hubble Constant, and a 95% confidence interval of 66 < H0 < 82 (km/s/Mpc) is obtained.

  2. Gradient-based stochastic optimization methods in Bayesian experimental design

    OpenAIRE

    2012-01-01

    Optimal experimental design (OED) seeks experiments expected to yield the most useful data for some purpose. In practical circumstances where experiments are time-consuming or resource-intensive, OED can yield enormous savings. We pursue OED for nonlinear systems from a Bayesian perspective, with the goal of choosing experiments that are optimal for parameter inference. Our objective in this context is the expected information gain in model parameters, which in general can only be estimated u...

  3. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    the kernel function which depends on the application and the model user. This research uses the most popular kernel function, the radial basis...an important role in the nation’s economy. Unfortunately, the system’s reliability is declining due to the aging components of the network [Grier...kernel function. Gaussian Bayesian kernel models became very popular recently and were extended and applied to a number of classification problems. An

  4. Prediction of conversion from mild cognitive impairment to Alzheimer disease based on bayesian data mining with ensemble learning.

    Science.gov (United States)

    Chen, R; Young, K; Chao, L L; Miller, B; Yaffe, K; Weiner, M W; Herskovits, E H

    2012-03-01

    Prediction of disease progress is of great importance to Alzheimer disease (AD) researchers and clinicians. Previous attempts at constructing predictive models have been hindered by undersampling, and restriction to linear associations among variables, among other problems. To address these problems, we propose a novel Bayesian data-mining method called Bayesian Outcome Prediction with Ensemble Learning (BOPEL). BOPEL uses a Bayesian-network representation with boosting, to allow the detection of nonlinear multivariate associations, and incorporates resampling-based feature selection to prevent over-fitting caused by undersampling. We demonstrate the use of this approach in predicting conversion to AD in individuals with mild cognitive impairment (MCI), based on structural magnetic-resonance and magnetic-resonance- spectroscopy data. This study includes 26 subjects with amnestic MCI: the converter group (n = 8) met MCI criteria at baseline, but converted to AD within five years, whereas the non-converter group (n = 18) met MCI criteria at baseline and at follow-up. We found that BOPEL accurately differentiates MCI converters from non-converters, based on the baseline volumes of the left hippocampus, the banks of the right superior temporal sulcus, the right entorhinal cortex, the left lingual gyrus, and the rostral aspect of the left middle frontal gyrus. Prediction accuracy was 0.81, sensitivity was 0.63 and specificity was 0.89. We validated the generated predictive model with an independent data set constructed from the Alzheimer Disease Neuroimaging Initiative database, and again found high predictive accuracy (0.75).

  5. A self-growing Bayesian network classifier for online learning of human motion patterns

    OpenAIRE

    Yung, NHC; Chen, Z

    2010-01-01

    This paper proposes a new self-growing Bayesian network classifier for online learning of human motion patterns (HMPs) in dynamically changing environments. The proposed classifier is designed to represent HMP classes based on a set of historical trajectories labeled by unsupervised clustering. It then assigns HMP class labels to current trajectories. Parameters of the proposed classifier are recalculated based on the augmented dataset of labeled trajectories and all HMP classes are according...

  6. Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion.

    Science.gov (United States)

    Ball, R D

    2001-11-01

    We describe an approximate method for the analysis of quantitative trait loci (QTL) based on model selection from multiple regression models with trait values regressed on marker genotypes, using a modification of the easily calculated Bayesian information criterion to estimate the posterior probability of models with various subsets of markers as variables. The BIC-delta criterion, with the parameter delta increasing the penalty for additional variables in a model, is further modified to incorporate prior information, and missing values are handled by multiple imputation. Marginal probabilities for model sizes are calculated, and the posterior probability of nonzero model size is interpreted as the posterior probability of existence of a QTL linked to one or more markers. The method is demonstrated on analysis of associations between wood density and markers on two linkage groups in Pinus radiata. Selection bias, which is the bias that results from using the same data to both select the variables in a model and estimate the coefficients, is shown to be a problem for commonly used non-Bayesian methods for QTL mapping, which do not average over alternative possible models that are consistent with the data.

  7. Wideband DOA Estimation via Sparse Bayesian Learning over a Khatri-Rao Dictionary

    Directory of Open Access Journals (Sweden)

    Yujian Pan

    2015-06-01

    Full Text Available This paper deals with the wideband direction-of-arrival (DOA estimation by exploiting the multiple measurement vectors (MMV based sparse Bayesian learning (SBL framework. First, the array covariance matrices at different frequency bins are focused to the reference frequency by the conventional focusing technique and then transformed into the vector form. Then a matrix called the Khatri-Rao dictionary is constructed by using the Khatri-Rao product and the multiple focused array covariance vectors are set as the new observations. DOA estimation is to find the sparsest representations of the new observations over the Khatri-Rao dictionary via SBL. The performance of the proposed method is compared with other well-known focusing based wideband algorithms and the Cramer-Rao lower bound (CRLB. The results show that it achieves higher resolution and accuracy and can reach the CRLB under relative demanding conditions. Moreover, the method imposes no restriction on the pattern of signal power spectral density and due to the increased number of rows of the dictionary, it can resolve more sources than sensors.

  8. Differences between fully Bayesian and pragmatic methods to assess predictive uncertainty and optimal monitoring designs

    Science.gov (United States)

    Wöhling, Thomas; Geiges, Andreas; Gosses, Moritz; Nowak, Wolfgang

    2015-04-01

    Data acquisition for monitoring the state in different compartments of complex, coupled environmental systems is often time consuming and expensive. Therefore, experimental monitoring strategies are ideally designed such that most can be learned about the system at minimal costs. Bayesian methods for uncertainty quantification and optimal design (OD) of monitoring strategies are well suited to handle the non-linearity exhibited by most coupled environmental systems. However, their high computational demand restricts their applicability to models with comparatively low run-times. Therefore, pragmatic approaches have been used predominantly in the past where data worth and OD analyses have been restricted to linear or linearised problems and methods. Bayesian (nonlinear) and pragmatic (linear) OD approaches are founded on different assumptions and typically follow different steps in the modelling chain of 1) model calibration, 2) uncertainty quantification, and 3) optimal design analysis. The goal of this study is to follow through these steps for a Bayesian and a pragmatic approach and to discuss the impact of different assumptions (prior uncertainty), calibration strategies, and OD analysis methods on the proposed monitoring designs and their reliability to reduce predictive uncertainty. The OD framework PreDIA (Leube et al. 2012) is used for the nonlinear assessment with a conditional model ensemble obtained with Markov-chain Monte Carlo simulation representing the initial predictive uncertainty. PreDIA can consider any kind of uncertainties and non-linear (statistical) dependencies in data, models, parameters and system drivers during the OD process. In the pragmatic OD approach, the parameter calibration was performed with a non-linear global search and the initial predictive uncertainty was estimated using the PREDUNC utility (Moore and Doherty 2005) of PEST. PREDUNC was also used for the linear OD analysis. We applied PreDIA and PREDUNC for uncertainty

  9. A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating

    Science.gov (United States)

    Yang, Jinsong; He, Jingjing; Guan, Xuefei; Wang, Dengjiang; Chen, Huipeng; Zhang, Weifang; Liu, Yongming

    2016-10-01

    This paper presents a new crack size quantification method based on in-situ Lamb wave testing and Bayesian method. The proposed method uses coupon test to develop a baseline quantification model between the crack size and damage sensitive features. In-situ Lamb wave testing data on actual structures are used to update the baseline model parameters using Bayesian method to achieve more accurate crack size predictions. To demonstrate the proposed method, Lamb wave testing on simple plates with artificial cracks of different sizes is performed using surface-bonded piezoelectric wafers, and the data are used to obtain the baseline model. Two damage sensitive features, namely, the phase change and normalized amplitude are identified using signal processing techniques and used in the model. To validate the effectiveness of the method, the damage data from an in-situ fatigue testing on a realistic lap-joint component are used to update the baseline model using Bayesian method.

  10. Method for Building a Medical Training Simulator with Bayesian Networks: SimDeCS.

    Science.gov (United States)

    Flores, Cecilia Dias; Fonseca, João Marcelo; Bez, Marta Rosecler; Respício, Ana; Coelho, Helder

    2014-01-01

    Distance education has grown in importance with the advent of the internet. An adequate evaluation of students in this mode is still difficult. Distance tests or occasional on-site exams do not meet the needs of evaluation of the learning process for distance education. Bayesian networks are adequate for simulating several aspects of clinical reasoning. The possibility of integrating them in distance education student evaluation has not yet been explored much. The present work describes a Simulator based on probabilistic networks built to represent knowledge of clinical practice guidelines in Family and Community Medicine. The Bayesian Network, the basis of the simulator, was modeled to playable by the student, to give immediate feedback according to pedagogical strategies adapted to the student according to past performance, and to give a broad evaluation of performance at the end of the game. Simulators structured by Bayesian Networks may become alternatives in the evaluation of students of Medical Distance Education.

  11. Bayesian network modeling method based on case reasoning for emergency decision-making

    Directory of Open Access Journals (Sweden)

    XU Lei

    2013-06-01

    Full Text Available Bayesian network has the abilities of probability expression, uncertainty management and multi-information fusion.It can support emergency decision-making, which can improve the efficiency of decision-making.Emergency decision-making is highly time sensitive, which requires shortening the Bayesian Network modeling time as far as possible.Traditional Bayesian network modeling methods are clearly unable to meet that requirement.Thus, a Bayesian network modeling method based on case reasoning for emergency decision-making is proposed.The method can obtain optional cases through case matching by the functions of similarity degree and deviation degree.Then,new Bayesian network can be built through case adjustment by case merging and pruning.An example is presented to illustrate and test the proposed method.The result shows that the method does not have a huge search space or need sample data.The only requirement is the collection of expert knowledge and historical case models.Compared with traditional methods, the proposed method can reuse historical case models, which can reduce the modeling time and improve the efficiency.

  12. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods.

    Science.gov (United States)

    O'Neill, Philip D

    2002-01-01

    Recent Bayesian methods for the analysis of infectious disease outbreak data using stochastic epidemic models are reviewed. These methods rely on Markov chain Monte Carlo methods. Both temporal and non-temporal data are considered. The methods are illustrated with a number of examples featuring different models and datasets.

  13. Off-Grid Radar Coincidence Imaging Based on Variational Sparse Bayesian Learning

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2016-01-01

    Full Text Available Radar coincidence imaging (RCI is a high-resolution staring imaging technique motivated by classical optical coincidence imaging. In RCI, sparse reconstruction methods are commonly used to achieve better imaging result, while the performance guarantee is based on the general assumption that the scatterers are located at the prediscretized grid-cell centers. However, the widely existing off-grid problem degrades the RCI performance considerably. In this paper, an algorithm based on variational sparse Bayesian learning (VSBL is developed to solve the off-grid RCI. Applying Taylor expansion, the unknown true dictionary is approximated accurately to a linear model. Then target reconstruction is reformulated as a joint sparse recovery problem that recovers three groups of sparse coefficients over three known dictionaries with the constraint of the common support shared by the groups. VSBL is then applied to solve the problem by assigning appropriate priors to the three groups of coefficients. Results of numerical experiments demonstrate that the algorithm can achieve outstanding reconstruction performance and yield superior performance both in suppressing noise and in adapting to off-grid error.

  14. Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases

    Institute of Scientific and Technical Information of China (English)

    郑建军; 刘玉树; 陈立潮

    2003-01-01

    The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.

  15. Analyzing bioassay data using Bayesian methods -- A primer

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.; Inkret, W.C.; Schillaci, M.E.

    1997-10-16

    The classical statistics approach used in health physics for the interpretation of measurements is deficient in that it does not allow for the consideration of needle in a haystack effects, where events that are rare in a population are being detected. In fact, this is often the case in health physics measurements, and the false positive fraction is often very large using the prescriptions of classical statistics. Bayesian statistics provides an objective methodology to ensure acceptably small false positive fractions. The authors present the basic methodology and a heuristic discussion. Examples are given using numerically generated and real bioassay data (Tritium). Various analytical models are used to fit the prior probability distribution, in order to test the sensitivity to choice of model. Parametric studies show that the normalized Bayesian decision level k{sub {alpha}}-L{sub c}/{sigma}{sub 0}, where {sigma}{sub 0} is the measurement uncertainty for zero true amount, is usually in the range from 3 to 5 depending on the true positive rate. Four times {sigma}{sub 0} rather than approximately two times {sigma}{sub 0}, as in classical statistics, would often seem a better choice for the decision level.

  16. Bayesian data augmentation methods for the synthesis of qualitative and quantitative research findings

    Science.gov (United States)

    Crandell, Jamie L.; Voils, Corrine I.; Chang, YunKyung; Sandelowski, Margarete

    2010-01-01

    The possible utility of Bayesian methods for the synthesis of qualitative and quantitative research has been repeatedly suggested but insufficiently investigated. In this project, we developed and used a Bayesian method for synthesis, with the goal of identifying factors that influence adherence to HIV medication regimens. We investigated the effect of 10 factors on adherence. Recognizing that not all factors were examined in all studies, we considered standard methods for dealing with missing data and chose a Bayesian data augmentation method. We were able to summarize, rank, and compare the effects of each of the 10 factors on medication adherence. This is a promising methodological development in the synthesis of qualitative and quantitative research. PMID:21572970

  17. Bayesian methods for the conformational classification of eight-membered rings

    DEFF Research Database (Denmark)

    Pérez, J.; Nolsøe, Kim; Kessler, M.;

    2005-01-01

    Two methods for the classification of eight-membered rings based on a Bayesian analysis are presented. The two methods share the same probabilistic model for the measurement of torsion angles, but while the first method uses the canonical forms of cyclooctane and, given an empirical sequence of e...

  18. Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm

    Institute of Scientific and Technical Information of China (English)

    Gui-xia Liu; Wei Feng; Han Wang; Lei Liu; Chun-guang Zhou

    2009-01-01

    In the post-genomic biology era, the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system, and it has been a challenging task in bioinformatics. The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages, but how to determine the network structure and parameters is still important to be explored. This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network .The new algorithm is evaluated with the use of both simulated and yeast cell cycle data. The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.

  19. Efficient Approximation of the Conditional Relative Entropy with Applications to Discriminative Learning of Bayesian Network Classifiers

    Directory of Open Access Journals (Sweden)

    Paulo Mateus

    2013-07-01

    Full Text Available We propose a minimum variance unbiased approximation to the conditional relative entropy of the distribution induced by the observed frequency estimates, for multi-classification tasks. Such approximation is an extension of a decomposable scoring criterion, named approximate conditional log-likelihood (aCLL, primarily used for discriminative learning of augmented Bayesian network classifiers. Our contribution is twofold: (i it addresses multi-classification tasks and not only binary-classification ones; and (ii it covers broader stochastic assumptions than uniform distribution over the parameters. Specifically, we considered a Dirichlet distribution over the parameters, which was experimentally shown to be a very good approximation to CLL. In addition, for Bayesian network classifiers, a closed-form equation is found for the parameters that maximize the scoring criterion.

  20. Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference

    CERN Document Server

    Regier, Jeffrey; Giordano, Ryan; Thomas, Rollin; Schlegel, David; McAuliffe, Jon; Prabhat,

    2016-01-01

    Celeste is a procedure for inferring astronomical catalogs that attains state-of-the-art scientific results. To date, Celeste has been scaled to at most hundreds of megabytes of astronomical images: Bayesian posterior inference is notoriously demanding computationally. In this paper, we report on a scalable, parallel version of Celeste, suitable for learning catalogs from modern large-scale astronomical datasets. Our algorithmic innovations include a fast numerical optimization routine for Bayesian posterior inference and a statistically efficient scheme for decomposing astronomical optimization problems into subproblems. Our scalable implementation is written entirely in Julia, a new high-level dynamic programming language designed for scientific and numerical computing. We use Julia's high-level constructs for shared and distributed memory parallelism, and demonstrate effective load balancing and efficient scaling on up to 8192 Xeon cores on the NERSC Cori supercomputer.

  1. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    DEFF Research Database (Denmark)

    Tully, Philip J; Lindén, Henrik; Hennig, Matthias H;

    2016-01-01

    of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx). We show that the learning...... and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times...

  2. A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2015-01-01

    Full Text Available This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach.

  3. CEO Emotional Intelligence and Firms’ Financial Policies. Bayesian Network Method

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Azouzi

    2014-03-01

    Full Text Available The aim of this paper is to explore the determinants of firms’ financial policies according to the manager’s psychological characteristics. More specifically, it examines the links between emotional intelligence, decision biases and the effectiveness of firms’ financial policies. The article finds that the main cause of an organization’s problems is the CEO’s emotional intelligence level. We introduce an approach based on Bayesian network techniques with a series of semi-directive interviews. The research paper represents an original approach because it characterizes behavioral corporate policy choices in emerging markets. To the best of our knowledge, this is the first study in the Tunisian context to explore this area of research. Our results show that Tunisian leaders adjust their decisions (on investments and distributions to minimize the risk of loss of compensation or reputation. They opt for decisions that minimize agency costs, transaction costs, and cognitive costs.

  4. Bayesian Regression and Neuro-Fuzzy Methods Reliability Assessment for Estimating Streamflow

    Directory of Open Access Journals (Sweden)

    Yaseen A. Hamaamin

    2016-07-01

    Full Text Available Accurate and efficient estimation of streamflow in a watershed’s tributaries is prerequisite parameter for viable water resources management. This study couples process-driven and data-driven methods of streamflow forecasting as a more efficient and cost-effective approach to water resources planning and management. Two data-driven methods, Bayesian regression and adaptive neuro-fuzzy inference system (ANFIS, were tested separately as a faster alternative to a calibrated and validated Soil and Water Assessment Tool (SWAT model to predict streamflow in the Saginaw River Watershed of Michigan. For the data-driven modeling process, four structures were assumed and tested: general, temporal, spatial, and spatiotemporal. Results showed that both Bayesian regression and ANFIS can replicate global (watershed and local (subbasin results similar to a calibrated SWAT model. At the global level, Bayesian regression and ANFIS model performance were satisfactory based on Nash-Sutcliffe efficiencies of 0.99 and 0.97, respectively. At the subbasin level, Bayesian regression and ANFIS models were satisfactory for 155 and 151 subbasins out of 155 subbasins, respectively. Overall, the most accurate method was a spatiotemporal Bayesian regression model that outperformed other models at global and local scales. However, all ANFIS models performed satisfactory at both scales.

  5. Learning Discriminative Bayesian Networks from High-Dimensional Continuous Neuroimaging Data.

    Science.gov (United States)

    Zhou, Luping; Wang, Lei; Liu, Lingqiao; Ogunbona, Philip; Shen, Dinggang

    2016-11-01

    Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the underlying data relationship in exploratory studies, such as brain research. Despite its success in modeling the probability distribution of variables, BN is naturally a generative model, which is not necessarily discriminative. This may cause the ignorance of subtle but critical network changes that are of investigation values across populations. In this paper, we propose to improve the discriminative power of BN models for continuous variables from two different perspectives. This brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In the first framework, we employ Fisher kernel to bridge the generative models of GBN and the discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel learning via minimizing a generalization error bound of SVMs. In the second framework, we employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the classification performance of the GBNs. The advantages and disadvantages of the two frameworks are discussed and experimentally compared. Both of them demonstrate strong power in learning discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as maintaining reasonable representation capacity. The contributions of this paper also include a new Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity of GBN.

  6. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.

    Directory of Open Access Journals (Sweden)

    Michael Jae-Yoon Chung

    Full Text Available A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i learn probabilistic models of actions through self-discovery and experience, (ii utilize these learned models for inferring the goals of human actions, and (iii perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i a simulated robot that learns human-like gaze following behavior, and (ii a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.

  7. A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods

    Energy Technology Data Exchange (ETDEWEB)

    Katrinia M. Groth; Curtis L. Smith; Laura P. Swiler

    2014-08-01

    In the past several years, several international organizations have begun to collect data on human performance in nuclear power plant simulators. The data collected provide a valuable opportunity to improve human reliability analysis (HRA), but these improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this paper, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existing HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.

  8. Safety assessment of infrastructures using a new Bayesian Monte Carlo method

    NARCIS (Netherlands)

    Rajabalinejad, M.; Demirbilek, Z.

    2011-01-01

    A recently developed Bayesian Monte Carlo (BMC) method and its application to safety assessment of structures are described in this paper. We use a one-dimensional BMC method that was proposed in 2009 by Rajabalinejad in order to develop a weighted logical dependence between successive Monte Carlo s

  9. Efficient Inversion in Underwater Acoustics with Analytic, Iterative and Sequential Bayesian Methods

    Science.gov (United States)

    2015-09-30

    Iterative and Sequential Bayesian Methods Zoi-Heleni Michalopoulou Department of Mathematical Sciences New Jersey Institute of Technology...exploiting (fully or partially) the physics of the propagation medium. Algorithms are designed for inversion via the extraction of features of the...statistical modeling. • Develop methods for passive localization and inversion of environmental parameters that select features of propagation that are

  10. A Bayesian Model of Biases in Artificial Language Learning: The Case of a Word-Order Universal

    Science.gov (United States)

    Culbertson, Jennifer; Smolensky, Paul

    2012-01-01

    In this article, we develop a hierarchical Bayesian model of learning in a general type of artificial language-learning experiment in which learners are exposed to a mixture of grammars representing the variation present in real learners' input, particularly at times of language change. The modeling goal is to formalize and quantify hypothesized…

  11. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    Science.gov (United States)

    McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T

    2014-06-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  12. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    Directory of Open Access Journals (Sweden)

    Michael J McGeachie

    2014-06-01

    Full Text Available Bayesian Networks (BN have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  13. A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data.

    Science.gov (United States)

    Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P; Engel, Lawrence S; Kwok, Richard K; Blair, Aaron; Stewart, Patricia A

    2016-01-01

    Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method's performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the

  14. Application of a data-mining method based on Bayesian networks to lesion-deficit analysis

    Science.gov (United States)

    Herskovits, Edward H.; Gerring, Joan P.

    2003-01-01

    Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.

  15. The social Bayesian brain: does mentalizing make a difference when we learn?

    Directory of Open Access Journals (Sweden)

    Marie Devaine

    2014-12-01

    Full Text Available When it comes to interpreting others' behaviour, we almost irrepressibly engage in the attribution of mental states (beliefs, emotions…. Such "mentalizing" can become very sophisticated, eventually endowing us with highly adaptive skills such as convincing, teaching or deceiving. Here, sophistication can be captured in terms of the depth of our recursive beliefs, as in "I think that you think that I think…" In this work, we test whether such sophisticated recursive beliefs subtend learning in the context of social interaction. We asked participants to play repeated games against artificial (Bayesian mentalizing agents, which differ in their sophistication. Critically, we made people believe either that they were playing against each other, or that they were gambling like in a casino. Although both framings are similarly deceiving, participants win against the artificial (sophisticated mentalizing agents in the social framing of the task, and lose in the non-social framing. Moreover, we find that participants' choice sequences are best explained by sophisticated mentalizing Bayesian learning models only in the social framing. This study is the first demonstration of the added-value of mentalizing on learning in the context of repeated social interactions. Importantly, our results show that we would not be able to decipher intentional behaviour without a priori attributing mental states to others.

  16. The Social Bayesian Brain: Does Mentalizing Make a Difference When We Learn?

    Science.gov (United States)

    Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean

    2014-01-01

    When it comes to interpreting others' behaviour, we almost irrepressibly engage in the attribution of mental states (beliefs, emotions…). Such "mentalizing" can become very sophisticated, eventually endowing us with highly adaptive skills such as convincing, teaching or deceiving. Here, sophistication can be captured in terms of the depth of our recursive beliefs, as in "I think that you think that I think…" In this work, we test whether such sophisticated recursive beliefs subtend learning in the context of social interaction. We asked participants to play repeated games against artificial (Bayesian) mentalizing agents, which differ in their sophistication. Critically, we made people believe either that they were playing against each other, or that they were gambling like in a casino. Although both framings are similarly deceiving, participants win against the artificial (sophisticated) mentalizing agents in the social framing of the task, and lose in the non-social framing. Moreover, we find that participants' choice sequences are best explained by sophisticated mentalizing Bayesian learning models only in the social framing. This study is the first demonstration of the added-value of mentalizing on learning in the context of repeated social interactions. Importantly, our results show that we would not be able to decipher intentional behaviour without a priori attributing mental states to others. PMID:25474637

  17. A bayesian approach for learning and tracking switching, non-stationary opponents

    CSIR Research Space (South Africa)

    Hernandez-Leal, P

    2016-02-01

    Full Text Available and Multiagent Systems, 9-13 May 2016, Singapore A Bayesian Approach for Learning and Tracking Switching, Non- Stationary Opponents (Extended Abstract) Pablo Hernandez-Leal Instituto Nacional de Astrofísica, Óptica y Electrónica Puebla, México pablohl...@ccc.inaoep.mx Benjamin Rosman Council for Scientific and Industrial Research, and the University of the Witwatersrand, South Africa brosman@csir.co.za Matthew E. Taylor Washington State University, Pullman, Washington, USA taylorm@eecs.wsu.edu L. Enrique Sucar...

  18. Low Complexity Sparse Bayesian Learning for Channel Estimation Using Generalized Mean Field

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri

    2014-01-01

    constrain the auxiliary function approximating the posterior probability density function of the unknown variables to factorize over disjoint groups of contiguous entries in the sparse vector - the size of these groups dictates the degree of complexity reduction. The original high-complexity algorithms......We derive low complexity versions of a wide range of algorithms for sparse Bayesian learning (SBL) in underdetermined linear systems. The proposed algorithms are obtained by applying the generalized mean field (GMF) inference framework to a generic SBL probabilistic model. In the GMF framework, we...

  19. Observing the observer (I): meta-bayesian models of learning and decision-making.

    Science.gov (United States)

    Daunizeau, Jean; den Ouden, Hanneke E M; Pessiglione, Matthias; Kiebel, Stefan J; Stephan, Klaas E; Friston, Karl J

    2010-12-14

    In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological) responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility") function, which measures the cost incurred by making any admissible decision for any given (hidden) state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context- or subject-dependent) prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions). In a companion paper ('Observing the observer (II): deciding when to decide'), we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.

  20. Observing the observer (I: meta-bayesian models of learning and decision-making.

    Directory of Open Access Journals (Sweden)

    Jean Daunizeau

    Full Text Available In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility" function, which measures the cost incurred by making any admissible decision for any given (hidden state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior beliefs and utility (loss functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context- or subject-dependent prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions. In a companion paper ('Observing the observer (II: deciding when to decide', we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.

  1. Bayesian method for system reliability assessment of overlapping pass/fail data

    Institute of Scientific and Technical Information of China (English)

    Zhipeng Hao; Shengkui Zeng; Jianbin Guo

    2015-01-01

    For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing, the Bayesian analysis can improve the precision of the system reli-ability assessment. If the multi-level pass/fail data are overlapping, one chal enging problem for the Bayesian analysis is to develop a likelihood function. Since the computation burden of the existing methods makes them infeasible for multi-component systems, this paper proposes an improved Bayesian approach for the system reliability assessment in light of overlapping data. This approach includes three steps: fristly searching for feasible paths based on the binary decision diagram, then screening feasible points based on space partition and constraint decomposition, and final y sim-plifying the likelihood function. An example of a satel ite rol ing control system demonstrates the feasibility and the efficiency of the proposed approach.

  2. SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events

    Science.gov (United States)

    Sekara, Vedran; Jonsson, Håkan; Larsen, Jakob Eg; Lehmann, Sune

    2017-01-01

    We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals’ daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient. PMID:28076375

  3. The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2011-01-01

    This paper presents the Relevance VoxelMachine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed to ...

  4. Modelling access to renal transplantation waiting list in a French healthcare network using a Bayesian method.

    Science.gov (United States)

    Bayat, Sahar; Cuggia, Marc; Kessler, Michel; Briançon, Serge; Le Beux, Pierre; Frimat, Luc

    2008-01-01

    Evaluation of adult candidates for kidney transplantation diverges from one centre to another. Our purpose was to assess the suitability of Bayesian method for describing the factors associated to registration on the waiting list in a French healthcare network. We have found no published paper using Bayesian method in this domain. Eight hundred and nine patients starting renal replacement therapy were included in the analysis. The data were extracted from the information system of the healthcare network. We performed conventional statistical analysis and data mining analysis using mainly Bayesian networks. The Bayesian model showed that the probability of registration on the waiting list is associated to age, cardiovascular disease, diabetes, serum albumin level, respiratory disease, physical impairment, follow-up in the department performing transplantation and past history of malignancy. These results are similar to conventional statistical method. The comparison between conventional analysis and data mining analysis showed us the contribution of the data mining method for sorting variables and having a global view of the variables' associations. Moreover theses approaches constitute an essential step toward a decisional information system for healthcare networks.

  5. A Bayesian MCMC method for point process models with intractable normalising constants

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper

    2004-01-01

    to simulate from the "unknown distribution", perfect simulation algorithms become useful. We illustrate the method in cases whre the likelihood is given by a Markov point process model. Particularly, we consider semi-parametric Bayesian inference in connection to both inhomogeneous Markov point process models...

  6. Landslide hazards mapping using uncertain Naïve Bayesian classification method

    Institute of Scientific and Technical Information of China (English)

    毛伊敏; 张茂省; 王根龙; 孙萍萍

    2015-01-01

    Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naïve Bayesian classification technique, which is difficult in quantifying those uncertain triggering factors, the main purpose of this work is to evaluate the predictive power of landslide spatial models based on uncertain Naïve Bayesian classification method in Baota district of Yan’an city in Shaanxi province, China. Firstly, thematic maps representing various factors that are related to landslide activity were generated. Secondly, by using field data and GIS techniques, a landslide hazard map was performed. To improve the accuracy of the resulting landslide hazard map, the strategies were designed, which quantified the uncertain triggering factor to design landslide spatial models based on uncertain Naïve Bayesian classification method named NBU algorithm. The accuracies of the area under relative operating characteristics curves (AUC) in NBU and Naïve Bayesian algorithm are 87.29%and 82.47%respectively. Thus, NBU algorithm can be used efficiently for landslide hazard analysis and might be widely used for the prediction of various spatial events based on uncertain classification technique.

  7. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  8. Research on Evaluation Method Based on Modified Buckley Decision Making and Bayesian Network

    Directory of Open Access Journals (Sweden)

    Neng-pu Yang

    2015-01-01

    Full Text Available This work presents a novel evaluation method, which can be applied in the field of risk assessment, project management, cause analysis, and so forth. Two core technologies are used in the method, namely, modified Buckley Decision Making and Bayesian Network. Based on the modified Buckley Decision Making, the fuzzy probabilities of element factors are calibrated. By the forward and backward calculation of Bayesian Network, the structure importance, probability importance, and criticality importance of each factor are calculated and discussed. A numerical example of risk evaluation for dangerous goods transport process is given to verify the method. The results indicate that the method can efficiently identify the weakest element factor. In addition, the method can improve the reliability and objectivity for evaluation.

  9. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  10. Bayesian Graphical Models

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...... is largely due to the availability of efficient inference algorithms for answering probabilistic queries about the states of the variables in the network. Furthermore, to support the construction of Bayesian network models, learning algorithms are also available. We give an overview of the Bayesian network...

  11. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.

    Science.gov (United States)

    Gopnik, Alison; Wellman, Henry M

    2012-11-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.

  12. Bayesian Computation Methods for Inferring Regulatory Network Models Using Biomedical Data.

    Science.gov (United States)

    Tian, Tianhai

    2016-01-01

    The rapid advancement of high-throughput technologies provides huge amounts of information for gene expression and protein activity in the genome-wide scale. The availability of genomics, transcriptomics, proteomics, and metabolomics dataset gives an unprecedented opportunity to study detailed molecular regulations that is very important to precision medicine. However, it is still a significant challenge to design effective and efficient method to infer the network structure and dynamic property of regulatory networks. In recent years a number of computing methods have been designed to explore the regulatory mechanisms as well as estimate unknown model parameters. Among them, the Bayesian inference method can combine both prior knowledge and experimental data to generate updated information regarding the regulatory mechanisms. This chapter gives a brief review for Bayesian statistical methods that are used to infer the network structure and estimate model parameters based on experimental data.

  13. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    Energy Technology Data Exchange (ETDEWEB)

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas [Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany); Gagnon-Moisan, Francis [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2015-01-13

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E{sub n} ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics.

  14. Unsupervised learning applied in MER and ECG signals through Gaussians mixtures with the Expectation-Maximization algorithm and Variational Bayesian Inference.

    Science.gov (United States)

    Vargas Cardona, Hernán Darío; Orozco, Álvaro Ángel; Álvarez, Mauricio A

    2013-01-01

    Automatic identification of biosignals is one of the more studied fields in biomedical engineering. In this paper, we present an approach for the unsupervised recognition of biomedical signals: Microelectrode Recordings (MER) and Electrocardiography signals (ECG). The unsupervised learning is based in classic and bayesian estimation theory. We employ gaussian mixtures models with two estimation methods. The first is derived from the frequentist estimation theory, known as Expectation-Maximization (EM) algorithm. The second is obtained from bayesian probabilistic estimation and it is called variational inference. In this framework, both methods are used for parameters estimation of Gaussian mixtures. The mixtures models are used for unsupervised pattern classification, through the responsibility matrix. The algorithms are applied in two real databases acquired in Parkinson's disease surgeries and electrocardiograms. The results show an accuracy over 85% in MER and 90% in ECG for identification of two classes. These results are statistically equal or even better than parametric (Naive Bayes) and nonparametric classifiers (K-nearest neighbor).

  15. Bayesian methods to determine performance differences and to quantify variability among centers in multi-center trials: the IHAST trial.

    Science.gov (United States)

    Bayman, Emine O; Chaloner, Kathryn M; Hindman, Bradley J; Todd, Michael M

    2013-01-16

    To quantify the variability among centers and to identify centers whose performance are potentially outside of normal variability in the primary outcome and to propose a guideline that they are outliers. Novel statistical methodology using a Bayesian hierarchical model is used. Bayesian methods for estimation and outlier detection are applied assuming an additive random center effect on the log odds of response: centers are similar but different (exchangeable). The Intraoperative Hypothermia for Aneurysm Surgery Trial (IHAST) is used as an example. Analyses were adjusted for treatment, age, gender, aneurysm location, World Federation of Neurological Surgeons scale, Fisher score and baseline NIH stroke scale scores. Adjustments for differences in center characteristics were also examined. Graphical and numerical summaries of the between-center standard deviation (sd) and variability, as well as the identification of potential outliers are implemented. In the IHAST, the center-to-center variation in the log odds of favorable outcome at each center is consistent with a normal distribution with posterior sd of 0.538 (95% credible interval: 0.397 to 0.726) after adjusting for the effects of important covariates. Outcome differences among centers show no outlying centers. Four potential outlying centers were identified but did not meet the proposed guideline for declaring them as outlying. Center characteristics (number of subjects enrolled from the center, geographical location, learning over time, nitrous oxide, and temporary clipping use) did not predict outcome, but subject and disease characteristics did. Bayesian hierarchical methods allow for determination of whether outcomes from a specific center differ from others and whether specific clinical practices predict outcome, even when some centers/subgroups have relatively small sample sizes. In the IHAST no outlying centers were found. The estimated variability between centers was moderately large.

  16. Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods

    Science.gov (United States)

    Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.

    2012-03-01

    In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.

  17. A Fully Bayesian Method for Jointly Fitting Instrumental Calibration and X-Ray Spectral Models

    Science.gov (United States)

    Xu, Jin; van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Connors, Alanna; Drake, Jeremy; Meng, Xiao-Li; Ratzlaff, Pete; Yu, Yaming

    2014-10-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is "pragmatic" in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  18. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jin; Yu, Yaming [Department of Statistics, University of California, Irvine, Irvine, CA 92697-1250 (United States); Van Dyk, David A. [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 2AZ (United Kingdom); Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Connors, Alanna; Meng, Xiao-Li, E-mail: jinx@uci.edu, E-mail: yamingy@ics.uci.edu, E-mail: dvandyk@imperial.ac.uk, E-mail: vkashyap@cfa.harvard.edu, E-mail: asiemiginowska@cfa.harvard.edu, E-mail: jdrake@cfa.harvard.edu, E-mail: pratzlaff@cfa.harvard.edu, E-mail: meng@stat.harvard.edu [Department of Statistics, Harvard University, 1 Oxford Street, Cambridge, MA 02138 (United States)

    2014-10-20

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  19. Active Learning Methods

    Science.gov (United States)

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  20. Estimating Steatosis Prevalence in Overweight and Obese Children: Comparison of Bayesian Small Area and Direct Methods

    Directory of Open Access Journals (Sweden)

    Hamid Reza Khalkhali

    2016-09-01

    Full Text Available Background Often, there is no access to sufficient sample size to estimate the prevalence using the method of direct estimator in all areas. The aim of this study was to compare small area’s Bayesian method and direct method in estimating the prevalence of steatosis in obese and overweight children. Materials and Methods: In this cross-sectional study, was conducted on 150 overweight and obese children aged 2 to 15 years referred to the Children's digestive clinic of Urmia University of Medical Sciences- Iran, in 2013. After Body mass index (BMI calculation, children with overweight and obese were assessed in terms of primary tests of obesity screening. Then children with steatosis confirmed by abdominal Ultrasonography, were referred to the laboratory for doing further tests. Steatosis prevalence was estimated by direct and Bayesian method and their efficiency were evaluated using mean-square error Jackknife method. The study data was analyzed using the open BUGS3.1.2 and R2.15.2 software. Results: The findings indicated that estimation of steatosis prevalence in children using Bayesian and direct methods were between 0.3098 to 0.493, and 0.355 to 0.560 respectively, in Health Districts; 0.3098 to 0.502, and 0.355 to 0.550 in Education Districts; 0.321 to 0.582, and 0.357 to 0.615 in age groups; 0.313 to 0.429, and 0.383 to 0.536 in sex groups. In general, according to the results, mean-square error of Bayesian estimation was smaller than direct estimation (P

  1. Bayesian biostatistics

    CERN Document Server

    Lesaffre, Emmanuel

    2012-01-01

    The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd

  2. SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events

    DEFF Research Database (Denmark)

    Cuttone, Andrea; Bækgaard, Per; Sekara, Vedran

    2017-01-01

    We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals' daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400...... to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient....

  3. Bayesian classifier with simplified learning phase for detecting microcalcifications in digital mammograms.

    Science.gov (United States)

    Zyout, Imad; Abdel-Qader, Ikhlas; Jacobs, Christina

    2009-01-01

    Detection of clustered microcalcifications (MCs) in mammograms represents a significant step towards successful detection of breast cancer since their existence is one of the early signs of cancer. In this paper, a new framework that integrates Bayesian classifier and a pattern synthesizing scheme for detecting microcalcification clusters is proposed. This proposed work extracts textural, spectral, and statistical features of each input mammogram and generates models of real MCs to be used as training samples through a simplified learning phase of the Bayesian classifier. Followed by an estimation of the classifier's decision function parameters, a mammogram is segmented into the identified targets (MCs) against background (healthy tissue). The proposed algorithm has been tested using 23 mammograms from the mini-MIAS database. Experimental results achieved MCs detection with average true positive (sensitivity) and false positive (specificity) of 91.3% and 98.6%, respectively. Results also indicate that the modeling of the real MCs plays a significant role in the performance of the classifier and thus should be given further investigation.

  4. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics

    Science.gov (United States)

    Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.

  5. A Bayesian hybrid method for context-sensitive spelling correction

    CERN Document Server

    Golding, A R

    1996-01-01

    Two classes of methods have been shown to be useful for resolving lexical ambiguity. The first relies on the presence of particular words within some distance of the ambiguous target word; the second uses the pattern of words and part-of-speech tags around the target word. These methods have complementary coverage: the former captures the lexical ``atmosphere'' (discourse topic, tense, etc.), while the latter captures local syntax. Yarowsky has exploited this complementarity by combining the two methods using decision lists. The idea is to pool the evidence provided by the component methods, and to then solve a target problem by applying the single strongest piece of evidence, whatever type it happens to be. This paper takes Yarowsky's work as a starting point, applying decision lists to the problem of context-sensitive spelling correction. Decision lists are found, by and large, to outperform either component method. However, it is found that further improvements can be obtained by taking into account not ju...

  6. Using hierarchical Bayesian methods to examine the tools of decision-making

    Directory of Open Access Journals (Sweden)

    Michael D. Lee

    2011-12-01

    Full Text Available Hierarchical Bayesian methods offer a principled and comprehensive way to relate psychological models to data. Here we use them to model the patterns of information search, stopping and deciding in a simulated binary comparison judgment task. The simulation involves 20 subjects making 100 forced choice comparisons about the relative magnitudes of two objects (which of two German cities has more inhabitants. Two worked-examples show how hierarchical models can be developed to account for and explain the diversity of both search and stopping rules seen across the simulated individuals. We discuss how the results provide insight into current debates in the literature on heuristic decision making and argue that they demonstrate the power and flexibility of hierarchical Bayesian methods in modeling human decision-making.

  7. Bayesian methods for model uncertainty analysis with application to future sea level rise

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, A.; Small, M.J. (Carnegie Mellon Univ., Pittsburgh, PA (United States))

    1992-12-01

    This paper addresses the use of data for identifying and characterizing uncertainties in model parameters and predictions. The Bayesian Monte Carlo method is formally presented and elaborated, and applied to the analysis of the uncertainty in a predictive model for global mean sea level change. The method uses observations of output variables, made with an assumed error structure, to determine a posterior distribution of model outputs. This is used to derive a posterior distribution for the model parameters. Results demonstrate the resolution of the uncertainty that is obtained as a result of the Bayesian analysis and also indicate the key contributors to the uncertainty in the sea level rise model. While the technique is illustrated with a simple, preliminary model, the analysis provides an iterative framework for model refinement. The methodology developed in this paper provides a mechanism for the incorporation of ongoing data collection and research in decision-making for problems involving uncertain environmental change.

  8. Maximum margin Bayesian network classifiers.

    Science.gov (United States)

    Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian

    2012-03-01

    We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  9. Heart rate variability estimation in photoplethysmography signals using Bayesian learning approach

    Science.gov (United States)

    Alwosheel, Ahmad; Alasaad, Amr

    2016-01-01

    Heart rate variability (HRV) has become a marker for various health and disease conditions. Photoplethysmography (PPG) sensors integrated in wearable devices such as smart watches and phones are widely used to measure heart activities. HRV requires accurate estimation of time interval between consecutive peaks in the PPG signal. However, PPG signal is very sensitive to motion artefact which may lead to poor HRV estimation if false peaks are detected. In this Letter, the authors propose a probabilistic approach based on Bayesian learning to better estimate HRV from PPG signal recorded by wearable devices and enhance the performance of the automatic multi scale-based peak detection (AMPD) algorithm used for peak detection. The authors’ experiments show that their approach enhances the performance of the AMPD algorithm in terms of number of HRV related metrics such as sensitivity, positive predictive value, and average temporal resolution. PMID:27382483

  10. Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks

    Directory of Open Access Journals (Sweden)

    Hamelryck Thomas

    2010-03-01

    Full Text Available Abstract Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs. It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations. Results The program package is freely available under the GNU General Public Licence (GPL from SourceForge http://sourceforge.net/projects/mocapy. The package contains the source for building the Mocapy++ library, several usage examples and the user manual. Conclusions Mocapy++ is especially suitable for constructing probabilistic models of biomolecular structure, due to its support for directional statistics. In particular, it supports the Kent distribution on the sphere and the bivariate von Mises distribution on the torus. These distributions have proven useful to formulate probabilistic models of protein and RNA structure in atomic detail.

  11. Bayesian methods for model choice and propagation of model uncertainty in groundwater transport modeling

    Science.gov (United States)

    Mendes, B. S.; Draper, D.

    2008-12-01

    The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission

  12. A note on the robustness of a full Bayesian method for nonignorable missing data analysis

    OpenAIRE

    Zhang, Zhiyong; Wang,Lijuan

    2012-01-01

    A full Bayesian method utilizing data augmentation and Gibbs sampling algorithms is presented for analyzing nonignorable missing data. The discussion focuses on a simplified selection model for regression analysis. Regardless of missing mechanisms, it is assumed that missingness only depends on the missing variable itself. Simulation results demonstrate that the simplified selection model can recover regression model parameters under both correctly specified situations and many misspecified s...

  13. Fission yield covariances for JEFF: A Bayesian Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Leray Olivier

    2017-01-01

    Full Text Available The JEFF library does not contain fission yield covariances, but simply best estimates and uncertainties. This situation is not unique as all libraries are facing this deficiency, firstly due to the lack of a defined format. An alternative approach is to provide a set of random fission yields, themselves reflecting covariance information. In this work, these random files are obtained combining the information from the JEFF library (fission yields and uncertainties and the theoretical knowledge from the GEF code. Examples of this method are presented for the main actinides together with their impacts on simple burn-up and decay heat calculations.

  14. Bayesian methods for multivariate modeling of pleiotropic SNP associations and genetic risk prediction

    Directory of Open Access Journals (Sweden)

    Stephen W Hartley

    2012-09-01

    Full Text Available Genome-wide association studies (GWAS have identified numerous associations between genetic loci and individual phenotypes; however, relatively few GWAS have attempted to detect pleiotropic associations, in which loci are simultaneously associated with multiple distinct phenotypes. We show that pleiotropic associations can be directly modeled via the construction of simple Bayesian networks, and that these models can be applied to produce single or ensembles of Bayesian classifiers that leverage pleiotropy to improve genetic risk prediction.The proposed method includes two phases: (1 Bayesian model comparison, to identify SNPs associated with one or more traits; and (2 cross validation feature selection, in which a final set of SNPs is selected to optimize prediction.To demonstrate the capabilities and limitations of the method, a total of 1600 case-control GWAS datasets with 2 dichotomous phenotypes were simulated under 16 scenarios, varying the association strengths of causal SNPs, the size of the discovery sets, the balance between cases and controls, and the number of pleiotropic causal SNPs.Across the 16 scenarios, prediction accuracy varied from 90% to 50%. In the 14 scenarios that included pleiotropically-associated SNPs, the pleiotropic model search and prediction methods consistently outperformed the naive model search and prediction. In the 2 scenarios in which there were no true pleiotropic SNPs, the differences between the pleiotropic and naive model searches were minimal.

  15. Learning Bayesian network classifiers for credit scoring using Markov Chain Monte Carlo search

    NARCIS (Netherlands)

    Baesens, B.; Egmont-Petersen, M.; Castelo, R.; Vanthienen, J.

    2002-01-01

    In this paper, we will evaluate the power and usefulness of Bayesian network classifiers for credit scoring. Various types of Bayesian network classifiers will be evaluated and contrasted including unrestricted Bayesian network classifiers learnt using Markov Chain Monte Carlo (MCMC) search. The exp

  16. Bayesian Blocks, A New Method to Analyze Structure in Photon Counting Data

    CERN Document Server

    Scargle, J D

    1997-01-01

    I describe a new time-domain algorithm for detecting localized structures (bursts), revealing pulse shapes, and generally characterizing intensity variations. The input is raw counting data, in any of three forms: time-tagged photon events (TTE), binned counts, or time-to-spill (TTS) data. The output is the most likely segmentation of the observation into time intervals during which the photon arrival rate is perceptibly constant -- i.e. has a fixed intensity without statistically significant variations. Since the analysis is based on Bayesian statistics, I call the resulting structures Bayesian Blocks. Unlike most, this method does not stipulate time bins -- instead the data themselves determine a piecewise constant representation. Therefore the analysis procedure itself does not impose a lower limit to the time scale on which variability can be detected. Locations, amplitudes, and rise and decay times of pulses within a time series can be estimated, independent of any pulse-shape model -- but only if they d...

  17. A generalized bayesian inference method for constraining the interiors of super Earths and sub-Neptunes

    CERN Document Server

    Dorn, C; Khan, A; Heng, K; Alibert, Y; Helled, R; Rivoldini, A; Benz, W

    2016-01-01

    We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces. Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star's photospheric composition. We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncertainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core, mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmosp...

  18. Anisotropic interaction rules in circular motions of pigeon flocks: An empirical study based on sparse Bayesian learning

    Science.gov (United States)

    Chen, Duxin; Xu, Bowen; Zhu, Tao; Zhou, Tao; Zhang, Hai-Tao

    2017-08-01

    Coordination shall be deemed to the result of interindividual interaction among natural gregarious animal groups. However, revealing the underlying interaction rules and decision-making strategies governing highly coordinated motion in bird flocks is still a long-standing challenge. Based on analysis of high spatial-temporal resolution GPS data of three pigeon flocks, we extract the hidden interaction principle by using a newly emerging machine learning method, namely the sparse Bayesian learning. It is observed that the interaction probability has an inflection point at pairwise distance of 3-4 m closer than the average maximum interindividual distance, after which it decays strictly with rising pairwise metric distances. Significantly, the density of spatial neighbor distribution is strongly anisotropic, with an evident lack of interactions along individual velocity. Thus, it is found that in small-sized bird flocks, individuals reciprocally cooperate with a variational number of neighbors in metric space and tend to interact with closer time-varying neighbors, rather than interacting with a fixed number of topological ones. Finally, extensive numerical investigation is conducted to verify both the revealed interaction and decision-making principle during circular flights of pigeon flocks.

  19. Bayesian methods

    OpenAIRE

    Bauwens, Luc; Korobilis, Dimitris

    2011-01-01

    This comprehensive Handbook presents the current state of art in the theory and methodology of macroeconomic data analysis. It is intended as a reference for graduate students and researchers interested in exploring new methodologies, but can also be employed as a graduate text. The Handbook concentrates on the most important issues, models and techniques for research in macroeconomics, and highlights the core methodologies and their empirical application in an accessible manner. Each chapter...

  20. A method for Bayesian estimation of the probability of local intensity for some cities in Japan

    Directory of Open Access Journals (Sweden)

    G. C. Koravos

    2002-06-01

    Full Text Available Seismic hazard in terms of probability of exceedance of a given intensity in a given time span,was assessed for 12 sites in Japan.The method does not use any attenuation law.Instead,the dependence of local intensity on epicentral intensity I 0 is calculated directly from the data,using a Bayesian model.According to this model (Meroni et al., 1994,local intensity follows the binomial distribution with parameters (I 0 ,p .The parameter p is considered as a random variable following the Beta distribution.This manner of Bayesian estimates of p are assessed for various values of epicentral intensity and epicentral distance.In order to apply this model for the assessment of seismic hazard,the area under consideration is divided into seismic sources (zonesof known seismicity.The contribution of each source on the seismic hazard at every site is calculated according to the Bayesian model and the result is the combined effect of all the sources.High probabilities of exceedance were calculated for the sites that are in the central part of the country,with hazard decreasing slightly towards the north and the south parts.

  1. BLGAN: Bayesian learning and genetic algorithm for supporting negotiation with incomplete information.

    Science.gov (United States)

    Sim, Kwang Mong; Guo, Yuanyuan; Shi, Benyun

    2009-02-01

    Automated negotiation provides a means for resolving differences among interacting agents. For negotiation with complete information, this paper provides mathematical proofs to show that an agent's optimal strategy can be computed using its opponent's reserve price (RP) and deadline. The impetus of this work is using the synergy of Bayesian learning (BL) and genetic algorithm (GA) to determine an agent's optimal strategy in negotiation (N) with incomplete information. BLGAN adopts: 1) BL and a deadline-estimation process for estimating an opponent's RP and deadline and 2) GA for generating a proposal at each negotiation round. Learning the RP and deadline of an opponent enables the GA in BLGAN to reduce the size of its search space (SP) by adaptively focusing its search on a specific region in the space of all possible proposals. SP is dynamically defined as a region around an agent's proposal P at each negotiation round. P is generated using the agent's optimal strategy determined using its estimations of its opponent's RP and deadline. Hence, the GA in BLGAN is more likely to generate proposals that are closer to the proposal generated by the optimal strategy. Using GA to search around a proposal generated by its current strategy, an agent in BLGAN compensates for possible errors in estimating its opponent's RP and deadline. Empirical results show that agents adopting BLGAN reached agreements successfully, and achieved: 1) higher utilities and better combined negotiation outcomes (CNOs) than agents that only adopt GA to generate their proposals, 2) higher utilities than agents that adopt BL to learn only RP, and 3) higher utilities and better CNOs than agents that do not learn their opponents' RPs and deadlines.

  2. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation.

    Science.gov (United States)

    Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting.

  3. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation

    Directory of Open Access Journals (Sweden)

    Robert eBauer

    2015-02-01

    Full Text Available Restorative brain-computer interfaces (BCI are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation.In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting.

  4. Uncertainty estimation of a complex water quality model: The influence of Box-Cox transformation on Bayesian approaches and comparison with a non-Bayesian method

    Science.gov (United States)

    Freni, Gabriele; Mannina, Giorgio

    In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the

  5. A Bayesian design space for analytical methods based on multivariate models and predictions.

    Science.gov (United States)

    Lebrun, Pierre; Boulanger, Bruno; Debrus, Benjamin; Lambert, Philippe; Hubert, Philippe

    2013-01-01

    The International Conference for Harmonization (ICH) has released regulatory guidelines for pharmaceutical development. In the document ICH Q8, the design space of a process is presented as the set of factor settings providing satisfactory results. However, ICH Q8 does not propose any practical methodology to define, derive, and compute design space. In parallel, in the last decades, it has been observed that the diversity and the quality of analytical methods have evolved exponentially, allowing substantial gains in selectivity and sensitivity. However, there is still a lack of a rationale toward the development of robust separation methods in a systematic way. Applying ICH Q8 to analytical methods provides a methodology for predicting a region of the space of factors in which results will be reliable. Combining design of experiments and Bayesian standard multivariate regression, an identified form of the predictive distribution of a new response vector has been identified and used, under noninformative as well as informative prior distributions of the parameters. From the responses and their predictive distribution, various critical quality attributes can be easily derived. This Bayesian framework was then extended to the multicriteria setting to estimate the predictive probability that several critical quality attributes will be jointly achieved in the future use of an analytical method. An example based on a high-performance liquid chromatography (HPLC) method is given. For this example, a constrained sampling scheme was applied to ensure the modeled responses have desirable properties.

  6. Bayesian approach to noninferiority trials for proportions.

    Science.gov (United States)

    Gamalo, Mark A; Wu, Rui; Tiwari, Ram C

    2011-09-01

    Noninferiority trials are unique because they are dependent upon historical information in order to make meaningful interpretation of their results. Hence, a direct application of the Bayesian paradigm in sequential learning becomes apparently useful in the analysis. This paper describes a Bayesian procedure for testing noninferiority in two-arm studies with a binary primary endpoint that allows the incorporation of historical data on an active control via the use of informative priors. In particular, the posteriors of the response in historical trials are assumed as priors for its corresponding parameters in the current trial, where that treatment serves as the active control. The Bayesian procedure includes a fully Bayesian method and two normal approximation methods on the prior and/or on the posterior distributions. Then a common Bayesian decision criterion is used but with two prespecified cutoff levels, one for the approximation methods and the other for the fully Bayesian method, to determine whether the experimental treatment is noninferior to the active control. This criterion is evaluated and compared with the frequentist method using simulation studies in keeping with regulatory framework that new methods must protect type I error and arrive at a similar conclusion with existing standard strategies. Results show that both methods arrive at comparable conclusions of noninferiority when applied to a modified real data set. The advantage of the proposed Bayesian approach lies in its ability to provide posterior probabilities for effect sizes of the experimental treatment over the active control.

  7. Bayesian methods for uncertainty factor application for derivation of reference values.

    Science.gov (United States)

    Simon, Ted W; Zhu, Yiliang; Dourson, Michael L; Beck, Nancy B

    2016-10-01

    In 2014, the National Research Council (NRC) published Review of EPA's Integrated Risk Information System (IRIS) Process that considers methods EPA uses for developing toxicity criteria for non-carcinogens. These criteria are the Reference Dose (RfD) for oral exposure and Reference Concentration (RfC) for inhalation exposure. The NRC Review suggested using Bayesian methods for application of uncertainty factors (UFs) to adjust the point of departure dose or concentration to a level considered to be without adverse effects for the human population. The NRC foresaw Bayesian methods would be potentially useful for combining toxicity data from disparate sources-high throughput assays, animal testing, and observational epidemiology. UFs represent five distinct areas for which both adjustment and consideration of uncertainty may be needed. NRC suggested UFs could be represented as Bayesian prior distributions, illustrated the use of a log-normal distribution to represent the composite UF, and combined this distribution with a log-normal distribution representing uncertainty in the point of departure (POD) to reflect the overall uncertainty. Here, we explore these suggestions and present a refinement of the methodology suggested by NRC that considers each individual UF as a distribution. From an examination of 24 evaluations from EPA's IRIS program, when individual UFs were represented using this approach, the geometric mean fold change in the value of the RfD or RfC increased from 3 to over 30, depending on the number of individual UFs used and the sophistication of the assessment. We present example calculations and recommendations for implementing the refined NRC methodology.

  8. Bayesian methods for the conformational classification of eight-membered rings

    DEFF Research Database (Denmark)

    Pérez, J.; Nolsøe, Kim; Kessler, M.

    2005-01-01

    Two methods for the classification of eight-membered rings based on a Bayesian analysis are presented. The two methods share the same probabilistic model for the measurement of torsion angles, but while the first method uses the canonical forms of cyclooctane and, given an empirical sequence...... of eight torsion angles, yields the probability that the associated structure corresponds to each of the ten canonical conformations, the second method does not assume previous knowledge of existing conformations and yields a clustering classification of a data set, allowing new conformations...... to be detected. Both methods have been tested using the conformational classification of Csp3 eight-membered rings described in the literature. The methods have also been employed to classify the solidstate conformation in Csp3 eight-membered rings using data retrieved from an updated version of the Cambridge...

  9. The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2011-01-01

    to utilize a small number of spatially clustered sets of voxels that are particularly suited for clinical interpretation. RVoxM automatically tunes all its free parameters during the training phase, and offers the additional advantage of producing probabilistic prediction outcomes. Experiments on age......This paper presents the Relevance VoxelMachine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed...... prediction from structural brain MRI indicate that RVoxM yields biologically meaningful models that provide excellent predictive accuracy....

  10. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  11. Nonparametric bayesian reward segmentation for skill discovery using inverse reinforcement learning

    CSIR Research Space (South Africa)

    Ranchod, P

    2015-10-01

    Full Text Available We present a method for segmenting a set of unstructured demonstration trajectories to discover reusable skills using inverse reinforcement learning (IRL). Each skill is characterised by a latent reward function which the demonstrator is assumed...

  12. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    Science.gov (United States)

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  13. A Study of New Method for Weapon System Effectiveness Evaluation Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    YAN Dai-wei; GU Liang-xian; PAN Lei

    2008-01-01

    As weapon system effectiveness is affected by many factors, its evaluation is essentially a multi-criterion decision making problem for its complexity. The evaluation model of the effectiveness is established on the basis of metrics architecture of the effectiveness. The Bayesian network, which is used to evaluate the effectiveness, is established based on the metrics architecture and the evaluation models. For getting the weights of the metrics by Bayesian network, subjective initial values of the weights are given, gradient ascent algorithm is adopted, and the reasonable values of the weights are achieved. And then the effectiveness of every weapon system project is gained. The weapon system, whose effectiveness is relative maximum, is the optimization system. The research result shows that this method can solve the problem of AHP method which evaluation results are not compatible to the practice results and overcome the shortcoming of neural network in multilayer and multi-criterion decision. The method offers a new approaeh for evaluating the effectiveness.

  14. An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2015-09-01

    Full Text Available Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakeholders of the electricity energy market. Thus, there is increasing interest determining how to forecast wind power production accurately. Most the methods that have been published in the relevant literature provided deterministic forecasts even though great interest has been focused recently on probabilistic forecast methods. In this paper, an advanced probabilistic method is proposed for short-term forecasting of wind power production. A mixture of two Weibull distributions was used as a probability function to model the uncertainties associated with wind speed. Then, a Bayesian inference approach with a particularly-effective, autoregressive, integrated, moving-average model was used to determine the parameters of the mixture Weibull distribution. Numerical applications also are presented to provide evidence of the forecasting performance of the Bayesian-based approach.

  15. Sparse Bayesian learning machine for real-time management of reservoir releases

    Science.gov (United States)

    Khalil, Abedalrazq; McKee, Mac; Kemblowski, Mariush; Asefa, Tirusew

    2005-11-01

    Water scarcity and uncertainties in forecasting future water availabilities present serious problems for basin-scale water management. These problems create a need for intelligent prediction models that learn and adapt to their environment in order to provide water managers with decision-relevant information related to the operation of river systems. This manuscript presents examples of state-of-the-art techniques for forecasting that combine excellent generalization properties and sparse representation within a Bayesian paradigm. The techniques are demonstrated as decision tools to enhance real-time water management. A relevance vector machine, which is a probabilistic model, has been used in an online fashion to provide confident forecasts given knowledge of some state and exogenous conditions. In practical applications, online algorithms should recognize changes in the input space and account for drift in system behavior. Support vectors machines lend themselves particularly well to the detection of drift and hence to the initiation of adaptation in response to a recognized shift in system structure. The resulting model will normally have a structure and parameterization that suits the information content of the available data. The utility and practicality of this proposed approach have been demonstrated with an application in a real case study involving real-time operation of a reservoir in a river basin in southern Utah.

  16. Learn the effective connectivity pattern of attention networks: a resting functional MRI and Bayesian network study

    Science.gov (United States)

    Li, Juan; Li, Rui; Yao, Li; Wu, Xia

    2011-03-01

    Task-based neuroimaging studies revealed that different attention operations were carried out by the functional interaction and cooperation between two attention systems: the dorsal attention network (DAN) and the ventral attention network (VAN), which were respectively involved in the "top-down" endogenous attention orienting and the "bottomup" exogenous attention reorienting process. Recent focused resting functional MRI (fMRI) studies found the two attention systems were inherently organized in the human brain regardless of whether or not the attention process were required, but how the two attention systems interact with each other in the absence of task is yet to be investigated. In this study, we first separated the DAN and VAN by applying the group independent component analysis (ICA) to the resting fMRI data acquired from 12 healthy young subjects, then used Gaussian Bayesian network (BN) learning approach to explore the plausible effective connectivity pattern of the two attention systems. It was found regions from the same attention network were strongly intra-dependent, and all the connections were located in the information flow from VAN to DAN, which suggested that an orderly functional interactions and information exchanges between the two attention networks existed in the intrinsic spontaneous brain activity, and the inherent connections might benefit the efficient cognitive process between DAN and VAN, such as the "top-down" and "bottom-up" reciprocal interaction when attention-related tasks were involved.

  17. Probabilistic Short-Term Wind Power Forecasting Using Sparse Bayesian Learning and NWP

    Directory of Open Access Journals (Sweden)

    Kaikai Pan

    2015-01-01

    Full Text Available Probabilistic short-term wind power forecasting is greatly significant for the operation of wind power scheduling and the reliability of power system. In this paper, an approach based on Sparse Bayesian Learning (SBL and Numerical Weather Prediction (NWP for probabilistic wind power forecasting in the horizon of 1–24 hours was investigated. In the modeling process, first, the wind speed data from NWP results was corrected, and then the SBL was used to build a relationship between the combined data and the power generation to produce probabilistic power forecasts. Furthermore, in each model, the application of SBL was improved by using modified-Gaussian kernel function and parameters optimization through Particle Swarm Optimization (PSO. To validate the proposed approach, two real-world datasets were used for construction and testing. For deterministic evaluation, the simulation results showed that the proposed model achieves a greater improvement in forecasting accuracy compared with other wind power forecast models. For probabilistic evaluation, the results of indicators also demonstrate that the proposed model has an outstanding performance.

  18. Family-based Bayesian collapsing method for rare-variant association study.

    Science.gov (United States)

    He, Liang; Pitkäniemi, Janne M

    2014-01-01

    In this study, we analyze the Genetic Analysis Workshop 18 data to identify the genes and underlying single-nucleotide polymorphisms on 11 chromosomes that exhibit significant association with systolic blood pressure. We propose a novel family-based method for rare-variant association detection based on the hierarchical Bayesian framework. The method controls spurious associations caused by population stratification, and improves the statistical power to detect not only individual rare variants, but also genes with either continuous or binary outcomes. Our method utilizes nuclear family information, and takes into account the effects of all single-nucleotide polymorphisms in a gene, using a hierarchical model. When we apply this method to the genome-wide Genetic Analysis Workshop 18 data, several genes and single-nucleotide polymorphisms are identified as potentially related to systolic blood pressure.

  19. Overview of methods of reverse engineering of gene regulatory networks: Boolean and Bayesian networks

    Directory of Open Access Journals (Sweden)

    Frolova A. O.

    2012-06-01

    Full Text Available Reverse engineering of gene regulatory networks is an intensively studied topic in Systems Biology as it reconstructs regulatory interactions between all genes in the genome in the most complete form. The extreme computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene regulatory network is a significant obstacle to further development of this area. In this article the two most common methods for modeling gene regulatory networks are surveyed: Boolean and Bayesian networks. The mathematical description of each method is given, as well as several algorithmic approaches to modeling gene networks using these methods; the complexity of algorithms and the problems that arise during its implementation are also noted.

  20. Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods

    Science.gov (United States)

    Davis, A. D.

    2015-12-01

    The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity

  1. Low Energy Wireless Body-Area Networks for Fetal ECG Telemonitoring via the Framework of Block Sparse Bayesian Learning

    CERN Document Server

    Zhang, Zhilin; Makeig, Scott; Rao, Bhaskar D

    2012-01-01

    Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a low-power wireless body-area network for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing data with low power consumption. However, due to some specific characteristics of FECG recordings such as non-sparsity and strong noise contamination, current CS algorithms generally fail in this application. In this work we utilize the block sparse Bayesian learning (bSBL) framework, a recently developed framework solving the CS problems. To illustrate the ability of the bSBL methods, we apply it to two representative FECG datasets. In one dataset the fetal heartbeat signals are visible, while in the other dataset are barely visible. The experiment results show that the bSBL framework is capable of compressing FECG raw recordings and successfully reconstructing them. These successes rely on two unique features of the bSBL framework; on...

  2. Photoacoustic discrimination of vascular and pigmented lesions using classical and Bayesian methods

    Science.gov (United States)

    Swearingen, Jennifer A.; Holan, Scott H.; Feldman, Mary M.; Viator, John A.

    2010-01-01

    Discrimination of pigmented and vascular lesions in skin can be difficult due to factors such as size, subungual location, and the nature of lesions containing both melanin and vascularity. Misdiagnosis may lead to precancerous or cancerous lesions not receiving proper medical care. To aid in the rapid and accurate diagnosis of such pathologies, we develop a photoacoustic system to determine the nature of skin lesions in vivo. By irradiating skin with two laser wavelengths, 422 and 530 nm, we induce photoacoustic responses, and the relative response at these two wavelengths indicates whether the lesion is pigmented or vascular. This response is due to the distinct absorption spectrum of melanin and hemoglobin. In particular, pigmented lesions have ratios of photoacoustic amplitudes of approximately 1.4 to 1 at the two wavelengths, while vascular lesions have ratios of about 4.0 to 1. Furthermore, we consider two statistical methods for conducting classification of lesions: standard multivariate analysis classification techniques and a Bayesian-model-based approach. We study 15 human subjects with eight vascular and seven pigmented lesions. Using the classical method, we achieve a perfect classification rate, while the Bayesian approach has an error rate of 20%.

  3. Distinguishing real from fake ivory products by elemental analyses: A Bayesian hybrid classification method.

    Science.gov (United States)

    Buddhachat, Kittisak; Brown, Janine L; Thitaram, Chatchote; Klinhom, Sarisa; Nganvongpanit, Korakot

    2017-03-01

    As laws tighten to limit commercial ivory trading and protect threatened species like whales and elephants, increased sales of fake ivory products have become widespread. This study describes a method, handheld X-ray fluorescence (XRF) as a noninvasive technique for elemental analysis, to differentiate quickly between ivory (Asian and African elephant, mammoth) from non-ivory (bones, teeth, antler, horn, wood, synthetic resin, rock) materials. An equation consisting of 20 elements and light elements from a stepwise discriminant analysis was used to classify samples, followed by Bayesian binary regression to determine the probability of a sample being 'ivory', with complementary log log analysis to identify the best fit model for this purpose. This Bayesian hybrid classification model was 93% accurate with 92% precision in discriminating ivory from non-ivory materials. The method was then validated by scanning an additional ivory and non-ivory samples, correctly identifying bone as not ivory with >95% accuracy, except elephant bone, which was 72%. It was less accurate for wood and rock (25-85%); however, a preliminary screening to determine if samples are not Ca-dominant could eliminate inorganic materials. In conclusion, elemental analyses by XRF can be used to identify several forms of fake ivory samples, which could have forensic application.

  4. OVarCall: Bayesian Mutation Calling Method Utilizing Overlapping Paired-End Reads.

    Science.gov (United States)

    Moriyama, Takuya; Shiraishi, Yuichi; Chiba, Kenichi; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2017-03-01

    Detection of somatic mutations from tumor and matched normal sequencing data has become a standard approach in cancer research. Although a number of mutation callers have been developed, it is still difficult to detect mutations with low allele frequency even in exome sequencing. We expect that overlapping paired-end read information is effective for this purpose, but no mutation caller has modeled overlapping information statistically in a proper form in exome sequence data. Here, we develop a Bayesian hierarchical method, OVar- Call (https://github.com/takumorizo/OVarCall), where overlapping paired-end read information improves the accuracy of low allele frequency mutation detection. Firstly, we construct two generative models: one is for reads with somatic variants generated from tumor cells and the other is for reads that does not have somatic variants but potentially includes sequence errors. Secondly, we calculate marginal likelihood for each model using a variational Bayesian algorithm to compute Bayes factor for the detection of somatic mutations. We empirically evaluated the performance of OVarCall and confirmed its better performance than other existing methods.

  5. Estimation model of life insurance claims risk for cancer patients by using Bayesian method

    Science.gov (United States)

    Sukono; Suyudi, M.; Islamiyati, F.; Supian, S.

    2017-01-01

    This paper discussed the estimation model of the risk of life insurance claims for cancer patients using Bayesian method. To estimate the risk of the claim, the insurance participant data is grouped into two: the number of policies issued and the number of claims incurred. Model estimation is done using a Bayesian approach method. Further, the estimator model was used to estimate the risk value of life insurance claims each age group for each sex. The estimation results indicate that a large risk premium for insured males aged less than 30 years is 0.85; for ages 30 to 40 years is 3:58; for ages 41 to 50 years is 1.71; for ages 51 to 60 years is 2.96; and for those aged over 60 years is 7.82. Meanwhile, for insured women aged less than 30 years was 0:56; for ages 30 to 40 years is 3:21; for ages 41 to 50 years is 0.65; for ages 51 to 60 years is 3:12; and for those aged over 60 years is 9.99. This study is useful in determining the risk premium in homogeneous groups based on gender and age.

  6. Learning about Bayesian networks for forensic interpretation: an example based on the 'the problem of multiple propositions'.

    Science.gov (United States)

    Biedermann, A; Voisard, R; Taroni, F

    2012-09-01

    Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.

  7. ObStruct: a method to objectively analyse factors driving population structure using Bayesian ancestry profiles.

    Directory of Open Access Journals (Sweden)

    Velimir Gayevskiy

    Full Text Available Bayesian inference methods are extensively used to detect the presence of population structure given genetic data. The primary output of software implementing these methods are ancestry profiles of sampled individuals. While these profiles robustly partition the data into subgroups, currently there is no objective method to determine whether the fixed factor of interest (e.g. geographic origin correlates with inferred subgroups or not, and if so, which populations are driving this correlation. We present ObStruct, a novel tool to objectively analyse the nature of structure revealed in Bayesian ancestry profiles using established statistical methods. ObStruct evaluates the extent of structural similarity between sampled and inferred populations, tests the significance of population differentiation, provides information on the contribution of sampled and inferred populations to the observed structure and crucially determines whether the predetermined factor of interest correlates with inferred population structure. Analyses of simulated and experimental data highlight ObStruct's ability to objectively assess the nature of structure in populations. We show the method is capable of capturing an increase in the level of structure with increasing time since divergence between simulated populations. Further, we applied the method to a highly structured dataset of 1,484 humans from seven continents and a less structured dataset of 179 Saccharomyces cerevisiae from three regions in New Zealand. Our results show that ObStruct provides an objective metric to classify the degree, drivers and significance of inferred structure, as well as providing novel insights into the relationships between sampled populations, and adds a final step to the pipeline for population structure analyses.

  8. A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization.

    Directory of Open Access Journals (Sweden)

    Sarah A Gagliano

    Full Text Available The increasing quantity and quality of functional genomic information motivate the assessment and integration of these data with association data, including data originating from genome-wide association studies (GWAS. We used previously described GWAS signals ("hits" to train a regularized logistic model in order to predict SNP causality on the basis of a large multivariate functional dataset. We show how this model can be used to derive Bayes factors for integrating functional and association data into a combined Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of DNA Elements (ENCODE, from published expression quantitative trait loci (eQTL, and from other sources of genome-wide characteristics. We trained the model using all GWAS signals combined, and also using phenotype specific signals for autoimmune, brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the autoimmune GWAS signals gave the most reliable results. We found SNPs with higher probabilities of causality from functional characteristics showed an enrichment of more significant p-values compared to all GWAS SNPs in three large GWAS studies of complex traits. We investigated the ability of our Bayesian method to improve the identification of true causal signals in a psoriasis GWAS dataset and found that combining functional data with association data improves the ability to prioritise novel hits. We used the predictions from the penalized logistic regression model to calculate Bayes factors relating to functional characteristics and supply these online alongside resources to integrate these data with association data.

  9. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.

    Directory of Open Access Journals (Sweden)

    Nazia Afreen

    2016-03-01

    Full Text Available Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.

  10. Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system.

    Science.gov (United States)

    Huang, Yangxin; Liu, Dacheng; Wu, Hulin

    2006-06-01

    HIV dynamics studies have significantly contributed to the understanding of HIV infection and antiviral treatment strategies. But most studies are limited to short-term viral dynamics due to the difficulty of establishing a relationship of antiviral response with multiple treatment factors such as drug exposure and drug susceptibility during long-term treatment. In this article, a mechanism-based dynamic model is proposed for characterizing long-term viral dynamics with antiretroviral therapy, described by a set of nonlinear differential equations without closed-form solutions. In this model we directly incorporate drug concentration, adherence, and drug susceptibility into a function of treatment efficacy, defined as an inhibition rate of virus replication. We investigate a Bayesian approach under the framework of hierarchical Bayesian (mixed-effects) models for estimating unknown dynamic parameters. In particular, interest focuses on estimating individual dynamic parameters. The proposed methods not only help to alleviate the difficulty in parameter identifiability, but also flexibly deal with sparse and unbalanced longitudinal data from individual subjects. For illustration purposes, we present one simulation example to implement the proposed approach and apply the methodology to a data set from an AIDS clinical trial. The basic concept of the longitudinal HIV dynamic systems and the proposed methodologies are generally applicable to any other biomedical dynamic systems.

  11. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.

    Science.gov (United States)

    Afreen, Nazia; Naqvi, Irshad H; Broor, Shobha; Ahmed, Anwar; Kazim, Syed Naqui; Dohare, Ravins; Kumar, Manoj; Parveen, Shama

    2016-03-01

    Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.

  12. bcrm: Bayesian Continual Reassessment Method Designs for Phase I Dose-Finding Trials

    Directory of Open Access Journals (Sweden)

    Michael Sweeting

    2013-09-01

    Full Text Available This paper presents the R package bcrm for conducting and assessing Bayesian continual reassessment method (CRM designs in Phase I dose-escalation trials. CRM designsare a class of adaptive design that select the dose to be given to the next recruited patient based on accumulating toxicity data from patients already recruited into the trial, often using Bayesian methodology. Despite the original CRM design being proposed in 1990, the methodology is still not widely implemented within oncology Phase I trials. The aim of this paper is to demonstrate, through example of the bcrm package, how a variety of possible designs can be easily implemented within the R statistical software, and how properties of the designs can be communicated to trial investigators using simple textual and graphical output obtained from the package. This in turn should facilitate an iterative process to allow a design to be chosen that is suitable to the needs of the investigator. Our bcrm package is the first to offer a large comprehensive choice of CRM designs, priors and escalation procedures, which can be easily compared and contrasted within the package through the assessment of operating characteristics.

  13. Oscillation frequencies for 35 \\Kepler solar-type planet-hosting stars using Bayesian techniques and machine learning

    CERN Document Server

    Davies, G R; Bedding, T R; Handberg, R; Lund, M N; Chaplin, W J; Huber, D; White, T R; Benomar, O; Hekker, S; Basu, S; Campante, T L; Christensen-Dalsgaard, J; Elsworth, Y; Karoff, C; Kjeldsen, H; Lundkvist, M S; Metcalfe, T S; Stello, D

    2015-01-01

    \\Kepler has revolutionised our understanding of both exoplanets and their host stars. Asteroseismology is a valuable tool in the characterisation of stars and \\Kepler is an excellent observing facility to perform asteroseismology. Here we select a sample of 35 \\Kepler solar-type stars which host transiting exoplanets (or planet candidates) with detected solar-like oscillations. Using available \\Kepler short cadence data up to Quarter 16 we create power spectra optimised for asteroseismology of solar-type stars. We identify modes of oscillation and estimate mode frequencies by ``peak bagging'' using a Bayesian MCMC framework. In addition, we expand the methodology of quality assurance using a Bayesian unsupervised machine learning approach. We report the measured frequencies of the modes of oscillation for all 35 stars and frequency ratios commonly used in detailed asteroseismic modelling. Due to the high correlations associated with frequency ratios we report the covariance matrix of all frequencies measured ...

  14. A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2010-01-01

    Full Text Available Studies of the relationship between DNA variation and gene expression variation, often referred to as "expression quantitative trait loci (eQTL mapping", have been conducted in many species and resulted in many significant findings. Because of the large number of genes and genetic markers in such analyses, it is extremely challenging to discover how a small number of eQTLs interact with each other to affect mRNA expression levels for a set of co-regulated genes. We present a Bayesian method to facilitate the task, in which co-expressed genes mapped to a common set of markers are treated as a module characterized by latent indicator variables. A Markov chain Monte Carlo algorithm is designed to search simultaneously for the module genes and their linked markers. We show by simulations that this method is more powerful for detecting true eQTLs and their target genes than traditional QTL mapping methods. We applied the procedure to a data set consisting of gene expression and genotypes for 112 segregants of S. cerevisiae. Our method identified modules containing genes mapped to previously reported eQTL hot spots, and dissected these large eQTL hot spots into several modules corresponding to possibly different biological functions or primary and secondary responses to regulatory perturbations. In addition, we identified nine modules associated with pairs of eQTLs, of which two have been previously reported. We demonstrated that one of the novel modules containing many daughter-cell expressed genes is regulated by AMN1 and BPH1. In conclusion, the Bayesian partition method which simultaneously considers all traits and all markers is more powerful for detecting both pleiotropic and epistatic effects based on both simulated and empirical data.

  15. Parameter Control of Genetic Algorithms by Learning and Simulation of Bayesian Networks——A Case Study for the Optimal Ordering of Tables

    Institute of Scientific and Technical Information of China (English)

    Concha Bielza; Juan A.Fernández del Pozo; Pedro Larra(n)aga

    2013-01-01

    Parameter setting for evolutionary algorithms is still an important issue in evolutionary computation.There are two main approaches to parameter setting:parameter tuning and parameter control.In this paper,we introduce self-adaptive parameter control of a genetic algorithm based on Bayesian network learning and simulation.The nodes of this Bayesian network are genetic algorithm parameters to be controlled.Its structure captures probabilistic conditional (in)dependence relationships between the parameters.They are learned from the best individuals,i.e.,the best configurations of the genetic algorithm.Individuals are evaluated by running the genetic algorithm for the respective parameter configuration.Since all these runs are time-consuming tasks,each genetic algorithm uses a small-sized population and is stopped before convergence.In this way promising individuals should not be lost.Experiments with an optimal search problem for simultaneous row and column orderings yield the same optima as state-of-the-art methods but with a sharp reduction in computational time.Moreover,our approach can cope with as yet unsolved high-dimensional problems.

  16. Bayesian method for the analysis of the dust emission in the Far-Infrared and Submillimeter

    CERN Document Server

    Veneziani, M; Noriega-Crespo, A; Carey, S; Paladini, R; Paradis, D

    2013-01-01

    We present a method, based on Bayesian statistics, to fit the dust emission parameters in the far-infrared and submillimeter wavelengths. The method estimates the dust temperature and spectral emissivity index, plus their relationship, taking into account properly the statistical and systematic uncertainties. We test it on three sets of simulated sources detectable by the Herschel Space Observatory in the PACS and SPIRE spectral bands (70-500 micron), spanning over a wide range of dust temperatures. The simulated observations are a one-component Interstellar Medium, and two two-component sources, both warm (HII regions) and cold (cold clumps). We first define a procedure to identify the better model, then we recover the parameters of the model and measure their physical correlations by means of a Monte Carlo Markov Chain algorithm adopting multi-variate Gaussian priors. In this process we assess the reliability of the model recovery, and of parameters estimation. We conclude that the model and parameters are ...

  17. Statistical analysis using the Bayesian nonparametric method for irradiation embrittlement of reactor pressure vessels

    Science.gov (United States)

    Takamizawa, Hisashi; Itoh, Hiroto; Nishiyama, Yutaka

    2016-10-01

    In order to understand neutron irradiation embrittlement in high fluence regions, statistical analysis using the Bayesian nonparametric (BNP) method was performed for the Japanese surveillance and material test reactor irradiation database. The BNP method is essentially expressed as an infinite summation of normal distributions, with input data being subdivided into clusters with identical statistical parameters, such as mean and standard deviation, for each cluster to estimate shifts in ductile-to-brittle transition temperature (DBTT). The clusters typically depend on chemical compositions, irradiation conditions, and the irradiation embrittlement. Specific variables contributing to the irradiation embrittlement include the content of Cu, Ni, P, Si, and Mn in the pressure vessel steels, neutron flux, neutron fluence, and irradiation temperatures. It was found that the measured shifts of DBTT correlated well with the calculated ones. Data associated with the same materials were subdivided into the same clusters even if neutron fluences were increased.

  18. A Fast Edge Preserving Bayesian Reconstruction Method for Parallel Imaging Applications in Cardiac MRI

    Science.gov (United States)

    Singh, Gurmeet; Raj, Ashish; Kressler, Bryan; Nguyen, Thanh D.; Spincemaille, Pascal; Zabih, Ramin; Wang, Yi

    2010-01-01

    Among recent parallel MR imaging reconstruction advances, a Bayesian method called Edge-preserving Parallel Imaging with GRAph cut Minimization (EPIGRAM) has been demonstrated to significantly improve signal to noise ratio (SNR) compared to conventional regularized sensitivity encoding (SENSE) method. However, EPIGRAM requires a large number of iterations in proportion to the number of intensity labels in the image, making it computationally expensive for high dynamic range images. The objective of this study is to develop a Fast EPIGRAM reconstruction based on the efficient binary jump move algorithm that provides a logarithmic reduction in reconstruction time while maintaining image quality. Preliminary in vivo validation of the proposed algorithm is presented for 2D cardiac cine MR imaging and 3D coronary MR angiography at acceleration factors of 2-4. Fast EPIGRAM was found to provide similar image quality to EPIGRAM and maintain the previously reported SNR improvement over regularized SENSE, while reducing EPIGRAM reconstruction time by 25-50 times. PMID:20939095

  19. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang

    2017-02-16

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  20. Bayesian network modeling applied to coastal geomorphology: lessons learned from a decade of experimentation and application

    Science.gov (United States)

    Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.

    2016-12-01

    We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will

  1. Suspected pulmonary embolism and lung scan interpretation: trial of a Bayesian reporting method.

    Science.gov (United States)

    Becker, D M; Philbrick, J T; Schoonover, F W; Teates, C D

    1990-01-01

    To determine whether a Bayesian method of lung scan (LS) reporting could influence the management of patients with suspected pulmonary embolism (PE). 1) A descriptive study of the diagnostic process for suspected PE using the new reporting method; 2) a non-experimental evaluation of the reporting method comparing prospective patients and historical controls; and 3) a survey of physicians' reactions to the reporting innovation. University of Virginia Hospital. Of 148 consecutive patients enrolled at the time of LS, 129 were completely evaluated; 75 patients scanned the previous year served as controls. The LS results of patients with suspected PE were reported as posttest probabilities of PE calculated from physician-provided pretest probabilities and the likelihood ratios for PE of LS interpretations. Despite the Bayesian intervention, the confirmation or exclusion of PE was often based on inconclusive evidence. PE was considered by the clinician to be ruled out in 98% of patients with posttest probabilities less than 25% and ruled in for 95% of patients with posttest probabilities greater than 75%. Prospective patients and historical controls were similar in terms of tests ordered after the LS (e.g., pulmonary angiography). Patients with intermediate or indeterminate lung scan results had the highest proportion of subsequent testing. Most physicians (80%) found the reporting innovation to be helpful, either because it confirmed clinical judgement (94 cases) or because it led to additional testing (7 cases). Despite the probabilistic guidance provided by the study, the diagnosis of PE was often neither clearly established nor excluded. While physicians appreciated the innovation and were not confused by the terminology, their clinical decision making was not clearly enhanced.

  2. A computer program for uncertainty analysis integrating regression and Bayesian methods

    Science.gov (United States)

    Lu, Dan; Ye, Ming; Hill, Mary C.; Poeter, Eileen P.; Curtis, Gary

    2014-01-01

    This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al. (2009), which estimates the posterior probability density function of model parameters in high-dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior probability distributions and three ways to initialize the sampling process. It evaluates parametric and predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive transport model. The use of the MCMC capability is made straightforward and flexible by adopting the JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals which require linearity and Gaussian error assumptions and typically 10s–100s of highly parallelizable model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective function surface and Gaussian observation error assumptions and typically 100s–1,000s of partially parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require few assumptions and commonly 10,000s–100,000s or more partially parallelizable model runs. Ready access allows users to select methods best suited to their work, and to compare methods in many circumstances.

  3. Machine learning methods for nanolaser characterization

    CERN Document Server

    Zibar, Darko; Winther, Ole; Moerk, Jesper; Schaeffer, Christian

    2016-01-01

    Nanocavity lasers, which are an integral part of an on-chip integrated photonic network, are setting stringent requirements on the sensitivity of the techniques used to characterize the laser performance. Current characterization tools cannot provide detailed knowledge about nanolaser noise and dynamics. In this progress article, we will present tools and concepts from the Bayesian machine learning and digital coherent detection that offer novel approaches for highly-sensitive laser noise characterization and inference of laser dynamics. The goal of the paper is to trigger new research directions that combine the fields of machine learning and nanophotonics for characterizing nanolasers and eventually integrated photonic networks

  4. Machine learning methods in chemoinformatics

    Science.gov (United States)

    Mitchell, John B O

    2014-01-01

    Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160

  5. Bayesian Inference for LISA Pathfinder using Markov Chain Monte Carlo Methods

    CERN Document Server

    Ferraioli, Luigi; Plagnol, Eric

    2012-01-01

    We present a parameter estimation procedure based on a Bayesian framework by applying a Markov Chain Monte Carlo algorithm to the calibration of the dynamical parameters of a space based gravitational wave detector. The method is based on the Metropolis-Hastings algorithm and a two-stage annealing treatment in order to ensure an effective exploration of the parameter space at the beginning of the chain. We compare two versions of the algorithm with an application to a LISA Pathfinder data analysis problem. The two algorithms share the same heating strategy but with one moving in coordinate directions using proposals from a multivariate Gaussian distribution, while the other uses the natural logarithm of some parameters and proposes jumps in the eigen-space of the Fisher Information matrix. The algorithm proposing jumps in the eigen-space of the Fisher Information matrix demonstrates a higher acceptance rate and a slightly better convergence towards the equilibrium parameter distributions in the application to...

  6. Bayesian methods for meta-analysis of causal relationships estimated using genetic instrumental variables

    DEFF Research Database (Denmark)

    2010-01-01

    Genetic markers can be used as instrumental variables, in an analogous way to randomization in a clinical trial, to estimate the causal relationship between a phenotype and an outcome variable. Our purpose is to extend the existing methods for such Mendelian randomization studies to the context...... of multiple genetic markers measured in multiple studies, based on the analysis of individual participant data. First, for a single genetic marker in one study, we show that the usual ratio of coefficients approach can be reformulated as a regression with heterogeneous error in the explanatory variable....... This can be implemented using a Bayesian approach, which is next extended to include multiple genetic markers. We then propose a hierarchical model for undertaking a meta-analysis of multiple studies, in which it is not necessary that the same genetic markers are measured in each study. This provides...

  7. Bayesian methods for model uncertainty analysis with application to future sea level rise

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, A.; Small, M.J.

    1992-01-01

    In no other area is the need for effective analysis of uncertainty more evident than in the problem of evaluating the consequences of increasing atmospheric concentrations of radiatively active gases. The major consequences of concern is global warming, with related environmental effects that include changes in local patterns of precipitation, soil moisture, forest and agricultural productivity, and a potential increase in global mean sea level. In order to identify an optimum set of responses to sea level change, a full characterization of the uncertainties associated with the predictions of future sea level rise is essential. The paper addresses the use of data for identifying and characterizing uncertainties in model parameters and predictions. The Bayesian Monte Carlo method is formally presented and elaborated, and applied to the analysis of the uncertainty in a predictive model for global mean sea level change.

  8. Bayesian Method of Moments (BMOM) Analysis of Mean and Regression Models

    CERN Document Server

    Zellner, Arnold

    2008-01-01

    A Bayesian method of moments/instrumental variable (BMOM/IV) approach is developed and applied in the analysis of the important mean and multiple regression models. Given a single set of data, it is shown how to obtain posterior and predictive moments without the use of likelihood functions, prior densities and Bayes' Theorem. The posterior and predictive moments, based on a few relatively weak assumptions, are then used to obtain maximum entropy densities for parameters, realized error terms and future values of variables. Posterior means for parameters and realized error terms are shown to be equal to certain well known estimates and rationalized in terms of quadratic loss functions. Conditional maxent posterior densities for means and regression coefficients given scale parameters are in the normal form while scale parameters' maxent densities are in the exponential form. Marginal densities for individual regression coefficients, realized error terms and future values are in the Laplace or double-exponenti...

  9. Bayesian analysis of general failure data from an ageing distribution: advances in numerical methods

    Energy Technology Data Exchange (ETDEWEB)

    Procaccia, H.; Villain, B. [Electricite de France (EDF), 93 - Saint-Denis (France); Clarotti, C.A. [ENEA, Casaccia (Italy)

    1996-12-31

    EDF and ENEA carried out a joint research program for developing the numerical methods and computer codes needed for Bayesian analysis of component-lives in the case of ageing. Early results of this study were presented at ESREL`94. Since then the following further steps have been gone: input data have been generalized to the case that observed lives are censored both on the right and on the left; allowable life distributions are Weibull and gamma - their parameters are both unknown and can be statistically dependent; allowable priors are histograms relative to different parametrizations of the life distribution of concern; first-and-second-order-moments of the posterior distributions can be computed. In particular the covariance will give some important information about the degree of the statistical dependence between the parameters of interest. An application of the code to the appearance of a stress corrosion cracking in a tube of the PWR Steam Generator system is presented. (authors). 10 refs.

  10. Physics-based, Bayesian sequential detection method and system for radioactive contraband

    Science.gov (United States)

    Candy, James V; Axelrod, Michael C; Breitfeller, Eric F; Chambers, David H; Guidry, Brian L; Manatt, Douglas R; Meyer, Alan W; Sale, Kenneth E

    2014-03-18

    A distributed sequential method and system for detecting and identifying radioactive contraband from highly uncertain (noisy) low-count, radionuclide measurements, i.e. an event mode sequence (EMS), using a statistical approach based on Bayesian inference and physics-model-based signal processing based on the representation of a radionuclide as a monoenergetic decomposition of monoenergetic sources. For a given photon event of the EMS, the appropriate monoenergy processing channel is determined using a confidence interval condition-based discriminator for the energy amplitude and interarrival time and parameter estimates are used to update a measured probability density function estimate for a target radionuclide. A sequential likelihood ratio test is then used to determine one of two threshold conditions signifying that the EMS is either identified as the target radionuclide or not, and if not, then repeating the process for the next sequential photon event of the EMS until one of the two threshold conditions is satisfied.

  11. Reflexive Learning through Visual Methods

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth

    2014-01-01

    What. This chapter concerns how visual methods and visual materials can support visually oriented, collaborative, and creative learning processes in education. The focus is on facilitation (guiding, teaching) with visual methods in learning processes that are designerly or involve design. Visual...... or professional, to facilitate with visual methods in a critical, reflective, and experimental way. The chapter offers recommendations for facilitating with visual methods to support playful, emergent designerly processes. The chapter also has a critical, situated perspective. Where. This chapter offers case...... methods are exemplified through two university classroom cases about collaborative idea generation processes. The visual methods and materials in the cases are photo elicitation using photo cards, and modeling with LEGO Serious Play sets. Why. The goal is to encourage the reader, whether student...

  12. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    Science.gov (United States)

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University

  13. Adaptive Methods within a Sequential Bayesian Approach for Structural Health Monitoring

    Science.gov (United States)

    Huff, Daniel W.

    Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time

  14. Incremental learning of Bayesian sensorimotor models: from low-level behaviours to large-scale structure of the environment

    Science.gov (United States)

    Diard, Julien; Gilet, Estelle; Simonin, Éva; Bessière, Pierre

    2010-12-01

    This paper concerns the incremental learning of hierarchies of representations of space in artificial or natural cognitive systems. We propose a mathematical formalism for defining space representations (Bayesian Maps) and modelling their interaction in hierarchies of representations (sensorimotor interaction operator). We illustrate our formalism with a robotic experiment. Starting from a model based on the proximity to obstacles, we learn a new one related to the direction of the light source. It provides new behaviours, like phototaxis and photophobia. We then combine these two maps so as to identify parts of the environment where the way the two modalities interact is recognisable. This classification is a basis for learning a higher level of abstraction map that describes the large-scale structure of the environment. In the final model, the perception-action cycle is modelled by a hierarchy of sensorimotor models of increasing time and space scales, which provide navigation strategies of increasing complexities.

  15. Unification of Field Theory and Maximum Entropy Methods for Learning Probability Densities

    CERN Document Server

    Kinney, Justin B

    2014-01-01

    Bayesian field theory and maximum entropy are two methods for learning smooth probability distributions (a.k.a. probability densities) from finite sampled data. Both methods were inspired by statistical physics, but the relationship between them has remained unclear. Here I show that Bayesian field theory subsumes maximum entropy density estimation. In particular, the most common maximum entropy methods are shown to be limiting cases of Bayesian inference using field theory priors that impose no boundary conditions on candidate densities. This unification provides a natural way to test the validity of the maximum entropy assumption on one's data. It also provides a better-fitting nonparametric density estimate when the maximum entropy assumption is rejected.

  16. Extraction of Active Regions and Coronal Holes from EUV Images Using the Unsupervised Segmentation Method in the Bayesian Framework

    CERN Document Server

    Arish, Saeid; Safari, Hossein; Amiri, Ali

    2016-01-01

    The solar corona is the origin of very dynamic events that are mostly produced in active regions (AR) and coronal holes (CH). The exact location of these large-scale features can be determined by applying image-processing approaches to extreme-ultraviolet (EUV) data. We here investigate the problem of segmentation of solar EUV images into ARs, CHs, and quiet-Sun (QS) images in a firm Bayesian way. On the basis of Bayes' rule, we need to obtain both prior and likelihood models. To find the prior model of an image, we used a Potts model in non-local mode. To construct the likelihood model, we combined a mixture of a Markov-Gauss model and non-local means. After estimating labels and hyperparameters with the Gibbs estimator, cellular learning automata were employed to determine the label of each pixel. We applied the proposed method to a Solar Dynamics Observatory/ Atmospheric Imaging Assembly (SDO/AIA) dataset recorded during 2011 and found that the mean value of the filling factor of ARs is 0.032 and 0.057 for...

  17. Bayesian Methods for Analyzing Structural Equation Models with Covariates, Interaction, and Quadratic Latent Variables

    Science.gov (United States)

    Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng

    2007-01-01

    The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…

  18. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    Directory of Open Access Journals (Sweden)

    Huawei Wang

    2013-01-01

    Full Text Available Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN have been used to build the aviation operation safety assessment model based on flight delay. The structure and parameters learning of the model have been researched. By using BN model, some airline in China has been selected to assess safety risk of civil aviation. The civil aviation safety risk of BN model has been assessed by GeNIe software. The research results show that flight delay, which increases the safety risk of civil aviation, can be seen as incremental safety risk. The effectiveness and correctness of the model have been tested and verified.

  19. A Hybrid Optimization Method for Solving Bayesian Inverse Problems under Uncertainty.

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    Full Text Available In this paper, we investigate the application of a new method, the Finite Difference and Stochastic Gradient (Hybrid method, for history matching in reservoir models. History matching is one of the processes of solving an inverse problem by calibrating reservoir models to dynamic behaviour of the reservoir in which an objective function is formulated based on a Bayesian approach for optimization. The goal of history matching is to identify the minimum value of an objective function that expresses the misfit between the predicted and measured data of a reservoir. To address the optimization problem, we present a novel application using a combination of the stochastic gradient and finite difference methods for solving inverse problems. The optimization is constrained by a linear equation that contains the reservoir parameters. We reformulate the reservoir model's parameters and dynamic data by operating the objective function, the approximate gradient of which can guarantee convergence. At each iteration step, we obtain the relatively 'important' elements of the gradient, which are subsequently substituted by the values from the Finite Difference method through comparing the magnitude of the components of the stochastic gradient, which forms a new gradient, and we subsequently iterate with the new gradient. Through the application of the Hybrid method, we efficiently and accurately optimize the objective function. We present a number numerical simulations in this paper that show that the method is accurate and computationally efficient.

  20. A Hybrid Optimization Method for Solving Bayesian Inverse Problems under Uncertainty.

    Science.gov (United States)

    Zhang, Kai; Wang, Zengfei; Zhang, Liming; Yao, Jun; Yan, Xia

    2015-01-01

    In this paper, we investigate the application of a new method, the Finite Difference and Stochastic Gradient (Hybrid method), for history matching in reservoir models. History matching is one of the processes of solving an inverse problem by calibrating reservoir models to dynamic behaviour of the reservoir in which an objective function is formulated based on a Bayesian approach for optimization. The goal of history matching is to identify the minimum value of an objective function that expresses the misfit between the predicted and measured data of a reservoir. To address the optimization problem, we present a novel application using a combination of the stochastic gradient and finite difference methods for solving inverse problems. The optimization is constrained by a linear equation that contains the reservoir parameters. We reformulate the reservoir model's parameters and dynamic data by operating the objective function, the approximate gradient of which can guarantee convergence. At each iteration step, we obtain the relatively 'important' elements of the gradient, which are subsequently substituted by the values from the Finite Difference method through comparing the magnitude of the components of the stochastic gradient, which forms a new gradient, and we subsequently iterate with the new gradient. Through the application of the Hybrid method, we efficiently and accurately optimize the objective function. We present a number numerical simulations in this paper that show that the method is accurate and computationally efficient.

  1. Locating disease genes using Bayesian variable selection with the Haseman-Elston method

    Directory of Open Access Journals (Sweden)

    He Qimei

    2003-12-01

    Full Text Available Abstract Background We applied stochastic search variable selection (SSVS, a Bayesian model selection method, to the simulated data of Genetic Analysis Workshop 13. We used SSVS with the revisited Haseman-Elston method to find the markers linked to the loci determining change in cholesterol over time. To study gene-gene interaction (epistasis and gene-environment interaction, we adopted prior structures, which incorporate the relationship among the predictors. This allows SSVS to search in the model space more efficiently and avoid the less likely models. Results In applying SSVS, instead of looking at the posterior distribution of each of the candidate models, which is sensitive to the setting of the prior, we ranked the candidate variables (markers according to their marginal posterior probability, which was shown to be more robust to the prior. Compared with traditional methods that consider one marker at a time, our method considers all markers simultaneously and obtains more favorable results. Conclusions We showed that SSVS is a powerful method for identifying linked markers using the Haseman-Elston method, even for weak effects. SSVS is very effective because it does a smart search over the entire model space.

  2. A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model

    Science.gov (United States)

    Liu, Y. R.; Li, Y. P.; Huang, G. H.; Zhang, J. L.; Fan, Y. R.

    2017-10-01

    In this study, a Bayesian-based multilevel factorial analysis (BMFA) method is developed to assess parameter uncertainties and their effects on hydrological model responses. In BMFA, Differential Evolution Adaptive Metropolis (DREAM) algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference; factorial analysis (FA) technique is used for measuring the specific variations of hydrological responses in terms of posterior distributions to investigate the individual and interactive effects of parameters on model outputs. BMFA is then applied to a case study of the Jinghe River watershed in the Loess Plateau of China to display its validity and applicability. The uncertainties of four sensitive parameters, including soil conservation service runoff curve number to moisture condition II (CN2), soil hydraulic conductivity (SOL_K), plant available water capacity (SOL_AWC), and soil depth (SOL_Z), are investigated. Results reveal that (i) CN2 has positive effect on peak flow, implying that the concentrated rainfall during rainy season can cause infiltration-excess surface flow, which is an considerable contributor to peak flow in this watershed; (ii) SOL_K has positive effect on average flow, implying that the widely distributed cambisols can lead to medium percolation capacity; (iii) the interaction between SOL_AWC and SOL_Z has noticeable effect on the peak flow and their effects are dependent upon each other, which discloses that soil depth can significant influence the processes of plant uptake of soil water in this watershed. Based on the above findings, the significant parameters and the relationship among uncertain parameters can be specified, such that hydrological model's capability for simulating/predicting water resources of the Jinghe River watershed can be improved.

  3. Bayesian data analysis for newcomers.

    Science.gov (United States)

    Kruschke, John K; Liddell, Torrin M

    2017-04-12

    This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.

  4. Estimation of fine particulate matter in Taipei using landuse regression and bayesian maximum entropy methods.

    Science.gov (United States)

    Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming

    2011-06-01

    Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.

  5. Bayesian Method for Building Frequent Landsat-Like NDVI Datasets by Integrating MODIS and Landsat NDVI

    Directory of Open Access Journals (Sweden)

    Limin Liao

    2016-05-01

    Full Text Available Studies related to vegetation dynamics in heterogeneous landscapes often require Normalized Difference Vegetation Index (NDVI datasets with both high spatial resolution and frequent coverage, which cannot be satisfied by a single sensor due to technical limitations. In this study, we propose a new method called NDVI-Bayesian Spatiotemporal Fusion Model (NDVI-BSFM for accurately and effectively building frequent high spatial resolution Landsat-like NDVI datasets by integrating Moderate Resolution Imaging Spectroradiometer (MODIS and Landsat NDVI. Experimental comparisons with the results obtained using other popular methods (i.e., the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM, the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, and the Flexible Spatiotemporal DAta Fusion (FSDAF method showed that our proposed method has the following advantages: (1 it can obtain more accurate estimates; (2 it can retain more spatial detail; (3 its prediction accuracy is less dependent on the quality of the MODIS NDVI on the specific prediction date; and (4 it produces smoother NDVI time series profiles. All of these advantages demonstrate the strengths and the robustness of the proposed NDVI-BSFM in providing reliable high spatial and temporal resolution NDVI datasets to support other land surface process studies.

  6. Fault Diagnosis for Fuel Cell Based on Naive Bayesian Classification

    Directory of Open Access Journals (Sweden)

    Liping Fan

    2013-07-01

    Full Text Available Many kinds of uncertain factors may exist in the process of fault diagnosis and affect diagnostic results. Bayesian network is one of the most effective theoretical models for uncertain knowledge expression and reasoning. The method of naive Bayesian classification is used in this paper in fault diagnosis of a proton exchange membrane fuel cell (PEMFC system. Based on the model of PEMFC, fault data are obtained through simulation experiment, learning and training of the naive Bayesian classification are finished, and some testing samples are selected to validate this method. Simulation results demonstrate that the method is feasible.    

  7. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes

    Science.gov (United States)

    Dorn, Caroline; Venturini, Julia; Khan, Amir; Heng, Kevin; Alibert, Yann; Helled, Ravit; Rivoldini, Attilio; Benz, Willy

    2017-01-01

    Aims: We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces. Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star's photospheric composition. Methods: We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncertainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core, mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmospheric models that are tailored for modeling thick and thin atmospheres, respectively. Results: First, we validate our method against Neptune. Second, we apply it to synthetic exoplanets of fixed mass and determine the effect on interior structure and composition when (1) radius; (2) atmospheric model; (3) data uncertainties; (4) semi-major axes; (5) atmospheric composition (i.e., a priori assumption of enriched envelopes versus pure H/He envelopes); and (6) prior distributions are varied. Conclusions: Our main conclusions are: (1) given available data, the range of possible interior structures is large; quantification of the degeneracy of possible interiors is therefore indispensable for meaningful planet characterization. (2) Our method predicts models that agree with independent estimates of Neptune's interior. (3) Increasing the precision in mass and radius leads to much improved constraints on ice mass fraction, size of rocky interior, but

  8. Using Bayesian methods to predict climate impacts on groundwater availability and agricultural production in Punjab, India

    Science.gov (United States)

    Russo, T. A.; Devineni, N.; Lall, U.

    2015-12-01

    Lasting success of the Green Revolution in Punjab, India relies on continued availability of local water resources. Supplying primarily rice and wheat for the rest of India, Punjab supports crop irrigation with a canal system and groundwater, which is vastly over-exploited. The detailed data required to physically model future impacts on water supplies agricultural production is not readily available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements for an under-constrained mass balance model. Using measured values of historical precipitation, total canal water delivery, crop yield, and water table elevation, we present a method using a Markov chain Monte Carlo (MCMC) algorithm to solve for a distribution of values for each unknown parameter in a conceptual mass balance model. Due to heterogeneity across the state, and the resolution of input data, we estimate model parameters at the district-scale using spatial pooling. The resulting model is used to predict the impact of precipitation change scenarios on groundwater availability under multiple cropping options. Predicted groundwater declines vary across the state, suggesting that crop selection and water management strategies should be determined at a local scale. This computational method can be applied in data-scarce regions across the world, where water resource management is required to resolve competition between food security and available resources in a changing climate.

  9. Bayesian zero-failure reliability modeling and assessment method for multiple numerical control (NC) machine tools

    Institute of Scientific and Technical Information of China (English)

    阚英男; 杨兆军; 李国发; 何佳龙; 王彦鹍; 李洪洲

    2016-01-01

    A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools (NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert−judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo (MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in WinBUGS, and a mean time between failures (MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.

  10. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors

    DEFF Research Database (Denmark)

    Antal, P.; Fannes, G.; Timmerman, D.

    2004-01-01

    Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate...

  11. Evaluation of the dynamic processes of a landslide with laser scanners and Bayesian methods

    Directory of Open Access Journals (Sweden)

    A. Guarnieri

    2015-07-01

    Full Text Available This paper deals with the study of the dynamics of a landslide from two different but complementary point of views. The landslide is situated within the Miozza basin, an area of approximately 10.7 km2 located in the Alpine region of Carnia (Italy. In the first part of the paper, the macro-scale analysis of volumetric changes occurred after the reactivation of landslide in 2004 is addressed by using a two-epoch laser scanning surveys from airborne (ALS and terrestrial (TLS platforms. airborne laser scanning (ALS data were collected in 2003 (before reactivation of the phenomenon with an ALTM 3033 OPTECH sensor while terrestrial laser scanning (TLS measurements were acquired in 2008 with a Riegl LMS-Z620. The second part of the paper deals with the study of dynamic processes of the landslide at micro-scale. To this aim, a global navigation satellite system (GNSS-based monitoring network is analysed using a statistical approach to discriminate between measurement noise and possible actual displacements. This task is accomplished using both “classical” statistical testing and a Bayesian approach. The second method has been employed to verify some apparent vertical displacements detected by the classical test. As regards the first topic of the paper, achieved results show that long-range TLS instruments can be profitably used in mountain areas to provide high-resolution digital terrain models (DTMs with superior quality and detail with respect to aerial light detection and ranging data only, even in areas with very low accessibility. Moreover, ALS- and TLS-derived DTMs can be combined each other in order to fill gaps in ALS data, mainly due to the complexity of terrain morphology, and to perform quite accurate calculations of volume changes due to landslide phenomenon. Finally, the outcomes of the application of Bayesian inference demonstrate the effectiveness of this method to better detect statistically significant displacements of a GNSS

  12. Bias in diet determination: incorporating traditional methods in Bayesian mixing models.

    Science.gov (United States)

    Franco-Trecu, Valentina; Drago, Massimiliano; Riet-Sapriza, Federico G; Parnell, Andrew; Frau, Rosina; Inchausti, Pablo

    2013-01-01

    There are not "universal methods" to determine diet composition of predators. Most traditional methods are biased because of their reliance on differential digestibility and the recovery of hard items. By relying on assimilated food, stable isotope and Bayesian mixing models (SIMMs) resolve many biases of traditional methods. SIMMs can incorporate prior information (i.e. proportional diet composition) that may improve the precision in the estimated dietary composition. However few studies have assessed the performance of traditional methods and SIMMs with and without informative priors to study the predators' diets. Here we compare the diet compositions of the South American fur seal and sea lions obtained by scats analysis and by SIMMs-UP (uninformative priors) and assess whether informative priors (SIMMs-IP) from the scat analysis improved the estimated diet composition compared to SIMMs-UP. According to the SIMM-UP, while pelagic species dominated the fur seal's diet the sea lion's did not have a clear dominance of any prey. In contrast, SIMM-IP's diets compositions were dominated by the same preys as in scat analyses. When prior information influenced SIMMs' estimates, incorporating informative priors improved the precision in the estimated diet composition at the risk of inducing biases in the estimates. If preys isotopic data allow discriminating preys' contributions to diets, informative priors should lead to more precise but unbiased estimated diet composition. Just as estimates of diet composition obtained from traditional methods are critically interpreted because of their biases, care must be exercised when interpreting diet composition obtained by SIMMs-IP. The best approach to obtain a near-complete view of predators' diet composition should involve the simultaneous consideration of different sources of partial evidence (traditional methods, SIMM-UP and SIMM-IP) in the light of natural history of the predator species so as to reliably ascertain and

  13. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding to their genera......This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  14. The Method of Oilfield Development Risk Forecasting and Early Warning Using Revised Bayesian Network

    Directory of Open Access Journals (Sweden)

    Yihua Zhong

    2016-01-01

    Full Text Available Oilfield development aiming at crude oil production is an extremely complex process, which involves many uncertain risk factors affecting oil output. Thus, risk prediction and early warning about oilfield development may insure operating and managing oilfields efficiently to meet the oil production plan of the country and sustainable development of oilfields. However, scholars and practitioners in the all world are seldom concerned with the risk problem of oilfield block development. The early warning index system of blocks development which includes the monitoring index and planning index was refined and formulated on the basis of researching and analyzing the theory of risk forecasting and early warning as well as the oilfield development. Based on the indexes of warning situation predicted by neural network, the method dividing the interval of warning degrees was presented by “3σ” rule; and a new method about forecasting and early warning of risk was proposed by introducing neural network to Bayesian networks. Case study shows that the results obtained in this paper are right and helpful to the management of oilfield development risk.

  15. A Bayesian Chance-Constrained Method for Hydraulic Barrier Design Under Model Structure Uncertainty

    Science.gov (United States)

    Chitsazan, N.; Pham, H. V.; Tsai, F. T. C.

    2014-12-01

    The groundwater community has widely recognized the model structure uncertainty as the major source of model uncertainty in groundwater modeling. Previous studies in the aquifer remediation design, however, rarely discuss the impact of the model structure uncertainty. This study combines the chance-constrained (CC) programming with the Bayesian model averaging (BMA) as a BMA-CC framework to assess the effect of model structure uncertainty in the remediation design. To investigate the impact of the model structure uncertainty on the remediation design, we compare the BMA-CC method with the traditional CC programming that only considers the model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from saltwater intrusion in the "1,500-foot" sand and the "1-700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address the model structure uncertainty, we develop three conceptual groundwater models based on three different hydrostratigraphy structures. The results show that using the traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from connector wells is higher than the total pumpage of the protected public supply wells. While reducing injection rate can be achieved by reducing reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station is not economically attractive.

  16. Introduction to the Restoration of Astrophysical Images by Multiscale Transforms and Bayesian Methods

    Science.gov (United States)

    Bijaoui, A.

    2013-03-01

    The image restoration is today an important part of the astrophysical data analysis. The denoising and the deblurring can be efficiently performed using multiscale transforms. The multiresolution analysis constitutes the fundamental pillar for these transforms. The discrete wavelet transform is introduced from the theory of the approximation by translated functions. The continuous wavelet transform carries out a generalization of multiscale representations from translated and dilated wavelets. The à trous algorithm furnishes its discrete redundant transform. The image denoising is first considered without any hypothesis on the signal distribution, on the basis of the a contrario detection. Different softening functions are introduced. The introduction of a regularization constraint may improve the results. The application of Bayesian methods leads to an automated adaptation of the softening function to the signal distribution. The MAP principle leads to the basis pursuit, a sparse decomposition on redundant dictionaries. Nevertheless the posterior expectation minimizes, scale per scale, the quadratic error. The proposed deconvolution algorithm is based on a coupling of the wavelet denoising with an iterative inversion algorithm. The different methods are illustrated by numerical experiments on a simulated image similar to images of the deep sky. A white Gaussian stationary noise was added with three levels. In the conclusion different important connected problems are tackled.

  17. Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters. I. Statistical and Computational Methods

    Science.gov (United States)

    Stenning, D. C.; Wagner-Kaiser, R.; Robinson, E.; van Dyk, D. A.; von Hippel, T.; Sarajedini, A.; Stein, N.

    2016-07-01

    We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations. Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties—age, metallicity, helium abundance, distance, absorption, and initial mass—are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and also show how model misspecification can potentially be identified. As a proof of concept, we analyze the two stellar populations of globular cluster NGC 5272 using our model and methods. (BASE-9 is available from GitHub: https://github.com/argiopetech/base/releases).

  18. Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.

    Science.gov (United States)

    Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias

    2015-04-01

    Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis-Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.

  19. A Bayesian model of biases in artificial language learning: the case of a word-order universal.

    Science.gov (United States)

    Culbertson, Jennifer; Smolensky, Paul

    2012-01-01

    In this article, we develop a hierarchical Bayesian model of learning in a general type of artificial language-learning experiment in which learners are exposed to a mixture of grammars representing the variation present in real learners' input, particularly at times of language change. The modeling goal is to formalize and quantify hypothesized learning biases. The test case is an experiment (Culbertson, Smolensky, & Legendre, 2012) targeting the learning of word-order patterns in the nominal domain. The model identifies internal biases of the experimental participants, providing evidence that learners impose (possibly arbitrary) properties on the grammars they learn, potentially resulting in the cross-linguistic regularities known as typological universals. Learners exposed to mixtures of artificial grammars tended to shift those mixtures in certain ways rather than others; the model reveals how learners' inferences are systematically affected by specific prior biases. These biases are in line with a typological generalization-Greenberg's Universal 18-which bans a particular word-order pattern relating nouns, adjectives, and numerals. Copyright © 2012 Cognitive Science Society, Inc.

  20. A novel Bayesian DNA motif comparison method for clustering and retrieval.

    Directory of Open Access Journals (Sweden)

    Naomi Habib

    2008-02-01

    Full Text Available Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors.

  1. Bayesian multi-task learning for decoding multi-subject neuroimaging data

    Science.gov (United States)

    Marquand, Andre F.; Brammer, Michael; Williams, Steven C.R.; Doyle, Orla M.

    2014-01-01

    Decoding models based on pattern recognition (PR) are becoming increasingly important tools for neuroimaging data analysis. In contrast to alternative (mass-univariate) encoding approaches that use hierarchical models to capture inter-subject variability, inter-subject differences are not typically handled efficiently in PR. In this work, we propose to overcome this problem by recasting the decoding problem in a multi-task learning (MTL) framework. In MTL, a single PR model is used to learn different but related “tasks” simultaneously. The primary advantage of MTL is that it makes more efficient use of the data available and leads to more accurate models by making use of the relationships between tasks. In this work, we construct MTL models where each subject is modelled by a separate task. We use a flexible covariance structure to model the relationships between tasks and induce coupling between them using Gaussian process priors. We present an MTL method for classification problems and demonstrate a novel mapping method suitable for PR models. We apply these MTL approaches to classifying many different contrasts in a publicly available fMRI dataset and show that the proposed MTL methods produce higher decoding accuracy and more consistent discriminative activity patterns than currently used techniques. Our results demonstrate that MTL provides a promising method for multi-subject decoding studies by focusing on the commonalities between a group of subjects rather than the idiosyncratic properties of different subjects. PMID:24531053

  2. Multi-source Fuzzy Information Fusion Method Based on Bayesian Optimal Classifier%基于贝叶斯最优分类器的多源模糊信息融合方法

    Institute of Scientific and Technical Information of China (English)

    苏宏升

    2008-01-01

    To make conventional Bayesian optimal classifier possess the abilities of disposing fuzzy information and realizing the automation of reasoning process, a new Bayesian optimal classifier is proposed with fuzzy information embedded. It can not only dispose fuzzy information effectively, but also retain learning properties of Bayesian optimal classifier. In addition, according to the evolution of fuzzy set theory, vague set is also imbedded into it to generate vague Bayesian optimal classifier. It can simultaneously simulate the twofold characteristics of fuzzy information from the positive and reverse directions. Further, a set pair Bayesian optimal classifier is also proposed considering the threefold characteristics of fuzzy information from the positive, reverse, and indeterminate sides. In the end, a knowledge-based artificial neural network (KBANN) is presented to realize automatic reasoning of Bayesian optimal classifier. It not only reduces the computational cost of Bayesian optimal classifier but also improves its classification learning quality.

  3. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data.

    Science.gov (United States)

    Ferragina, A; de los Campos, G; Vazquez, A I; Cecchinato, A; Bittante, G

    2015-11-01

    The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from

  4. Alternative method of highway traffic safety analysis for developing countries using delphi technique and Bayesian network.

    Science.gov (United States)

    Mbakwe, Anthony C; Saka, Anthony A; Choi, Keechoo; Lee, Young-Jae

    2016-08-01

    Highway traffic accidents all over the world result in more than 1.3 million fatalities annually. An alarming number of these fatalities occurs in developing countries. There are many risk factors that are associated with frequent accidents, heavy loss of lives, and property damage in developing countries. Unfortunately, poor record keeping practices are very difficult obstacle to overcome in striving to obtain a near accurate casualty and safety data. In light of the fact that there are numerous accident causes, any attempts to curb the escalating death and injury rates in developing countries must include the identification of the primary accident causes. This paper, therefore, seeks to show that the Delphi Technique is a suitable alternative method that can be exploited in generating highway traffic accident data through which the major accident causes can be identified. In order to authenticate the technique used, Korea, a country that underwent similar problems when it was in its early stages of development in addition to the availability of excellent highway safety records in its database, is chosen and utilized for this purpose. Validation of the methodology confirms the technique is suitable for application in developing countries. Furthermore, the Delphi Technique, in combination with the Bayesian Network Model, is utilized in modeling highway traffic accidents and forecasting accident rates in the countries of research.

  5. Uncertainty analysis of strain modal parameters by Bayesian method using frequency response function

    Institute of Scientific and Technical Information of China (English)

    Xu Li; Yi Weijian; Zhihua Yi

    2007-01-01

    Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete frame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.

  6. Real-time realizations of the Bayesian Infrasonic Source Localization Method

    Science.gov (United States)

    Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.

    2015-12-01

    The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.

  7. Bayesian statistics an introduction

    CERN Document Server

    Lee, Peter M

    2012-01-01

    Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as wel

  8. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition

    Science.gov (United States)

    Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert

    2015-01-01

    During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input. PMID:26284370

  9. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.

    Science.gov (United States)

    Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert

    2015-01-01

    During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input.

  10. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.

    Directory of Open Access Journals (Sweden)

    Johannes Bill

    Full Text Available During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input.

  11. Are Student Evaluations of Teaching Effectiveness Valid for Measuring Student Learning Outcomes in Business Related Classes? A Neural Network and Bayesian Analyses

    Science.gov (United States)

    Galbraith, Craig S.; Merrill, Gregory B.; Kline, Doug M.

    2012-01-01

    In this study we investigate the underlying relational structure between student evaluations of teaching effectiveness (SETEs) and achievement of student learning outcomes in 116 business related courses. Utilizing traditional statistical techniques, a neural network analysis and a Bayesian data reduction and classification algorithm, we find…

  12. Are Student Evaluations of Teaching Effectiveness Valid for Measuring Student Learning Outcomes in Business Related Classes? A Neural Network and Bayesian Analyses

    Science.gov (United States)

    Galbraith, Craig S.; Merrill, Gregory B.; Kline, Doug M.

    2012-01-01

    In this study we investigate the underlying relational structure between student evaluations of teaching effectiveness (SETEs) and achievement of student learning outcomes in 116 business related courses. Utilizing traditional statistical techniques, a neural network analysis and a Bayesian data reduction and classification algorithm, we find…

  13. A Laplace method for under-determined Bayesian optimal experimental designs

    KAUST Repository

    Long, Quan

    2014-12-17

    In Long et al. (2013), a new method based on the Laplace approximation was developed to accelerate the estimation of the post-experimental expected information gains (Kullback–Leibler divergence) in model parameters and predictive quantities of interest in the Bayesian framework. A closed-form asymptotic approximation of the inner integral and the order of the corresponding dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend that method to the general case where the model parameters cannot be determined completely by the data from the proposed experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the Jacobian matrix of the data model with respect to the parameters, so that the information gain can be reduced to an integration against the marginal density of the transformed parameters that are not determined by the experiments. Furthermore, the expected information gain can be approximated by an integration over the prior, where the integrand is a function of the posterior covariance matrix projected over the aforementioned orthogonal directions. To deal with the issue of dimensionality in a complex problem, we use either Monte Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear under-determined test cases. They include the designs of the scalar parameter in a one dimensional cubic polynomial function with two unidentifiable parameters forming a linear manifold, and the boundary source locations for impedance tomography in a square domain, where the unknown parameter is the conductivity, which is represented as a random field.

  14. Prediction of Student Dropout in E-Learning Program Through the Use of Machine Learning Method

    Directory of Open Access Journals (Sweden)

    Mingjie Tan

    2015-02-01

    Full Text Available The high rate of dropout is a serious problem in E-learning program. Thus it has received extensive concern from the education administrators and researchers. Predicting the potential dropout students is a workable solution to prevent dropout. Based on the analysis of related literature, this study selected student’s personal characteristic and academic performance as input attributions. Prediction models were developed using Artificial Neural Network (ANN, Decision Tree (DT and Bayesian Networks (BNs. A large sample of 62375 students was utilized in the procedures of model training and testing. The results of each model were presented in confusion matrix, and analyzed by calculating the rates of accuracy, precision, recall, and F-measure. The results suggested all of the three machine learning methods were effective in student dropout prediction, and DT presented a better performance. Finally, some suggestions were made for considerable future research.

  15. Modeling attainment of steady state of drug concentration in plasma by means of a Bayesian approach using MCMC methods.

    Science.gov (United States)

    Jordan, Paul; Brunschwig, Hadassa; Luedin, Eric

    2008-01-01

    The approach of Bayesian mixed effects modeling is an appropriate method for estimating both population-specific as well as subject-specific times to steady state. In addition to pure estimation, the approach allows to determine the time until a certain fraction of individuals of a population has reached steady state with a pre-specified certainty. In this paper a mixed effects model for the parameters of a nonlinear pharmacokinetic model is used within a Bayesian framework. Model fitting by means of Markov Chain Monte Carlo methods as implemented in the Gibbs sampler as well as the extraction of estimates and probability statements of interest are described. Finally, the proposed approach is illustrated by application to trough data from a multiple dose clinical trial.

  16. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A

    2012-03-15

    To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A method of spherical harmonic analysis in the geosciences via hierarchical Bayesian inference

    Science.gov (United States)

    Muir, J. B.; Tkalčić, H.

    2015-11-01

    The problem of decomposing irregular data on the sphere into a set of spherical harmonics is common in many fields of geosciences where it is necessary to build a quantitative understanding of a globally varying field. For example, in global seismology, a compressional or shear wave speed that emerges from tomographic images is used to interpret current state and composition of the mantle, and in geomagnetism, secular variation of magnetic field intensity measured at the surface is studied to better understand the changes in the Earth's core. Optimization methods are widely used for spherical harmonic analysis of irregular data, but they typically do not treat the dependence of the uncertainty estimates on the imposed regularization. This can cause significant difficulties in interpretation, especially when the best-fit model requires more variables as a result of underestimating data noise. Here, with the above limitations in mind, the problem of spherical harmonic expansion of irregular data is treated within the hierarchical Bayesian framework. The hierarchical approach significantly simplifies the problem by removing the need for regularization terms and user-supplied noise estimates. The use of the corrected Akaike Information Criterion for picking the optimal maximum degree of spherical harmonic expansion and the resulting spherical harmonic analyses are first illustrated on a noisy synthetic data set. Subsequently, the method is applied to two global data sets sensitive to the Earth's inner core and lowermost mantle, consisting of PKPab-df and PcP-P differential traveltime residuals relative to a spherically symmetric Earth model. The posterior probability distributions for each spherical harmonic coefficient are calculated via Markov Chain Monte Carlo sampling; the uncertainty obtained for the coefficients thus reflects the noise present in the real data and the imperfections in the spherical harmonic expansion.

  18. Application of Fragment Ion Information as Further Evidence in Probabilistic Compound Screening Using Bayesian Statistics and Machine Learning: A Leap Toward Automation.

    Science.gov (United States)

    Woldegebriel, Michael; Zomer, Paul; Mol, Hans G J; Vivó-Truyols, Gabriel

    2016-08-02

    In this work, we introduce an automated, efficient, and elegant model to combine all pieces of evidence (e.g., expected retention times, peak shapes, isotope distributions, fragment-to-parent ratio) obtained from liquid chromatography-tandem mass spectrometry (LC-MS/MS/MS) data for screening purposes. Combining all these pieces of evidence requires a careful assessment of the uncertainties in the analytical system as well as all possible outcomes. To-date, the majority of the existing algorithms are highly dependent on user input parameters. Additionally, the screening process is tackled as a deterministic problem. In this work we present a Bayesian framework to deal with the combination of all these pieces of evidence. Contrary to conventional algorithms, the information is treated in a probabilistic way, and a final probability assessment of the presence/absence of a compound feature is computed. Additionally, all the necessary parameters except the chromatographic band broadening for the method are learned from the data in training and learning phase of the algorithm, avoiding the introduction of a large number of user-defined parameters. The proposed method was validated with a large data set and has shown improved sensitivity and specificity in comparison to a threshold-based commercial software package.

  19. Bayesian programming

    CERN Document Server

    Bessiere, Pierre; Ahuactzin, Juan Manuel; Mekhnacha, Kamel

    2013-01-01

    Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain DataEmphasizing probability as an alternative to Boolean

  20. Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images

    Science.gov (United States)

    2010-04-01

    OF EACH CELL ARE RESULTS OF KSVD AND BPFA, RESPECTIVELY. σ C.man House Peppers Lena Barbara Boats F.print Couple Hill 5 37.87 39.37 37.78 38.60 38.08...INTERPOLATION PSNR RESULTS, USING PATCH SIZE 8× 8. BOTTOM: BPFA RGB IMAGE INTERPOLATION PSNR RESULTS, USING PATCH SIZE 7× 7. data ratio C.man House Peppers Lena...of subspaces. IEEE Trans. Inform. Theory, 2009. [16] T. Ferguson . A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1:209–230

  1. Evidence of major genes affecting stress response in rainbow trout using Bayesian methods of complex segregation analysis

    DEFF Research Database (Denmark)

    Vallejo, R L; Rexroad III, C E; Silverstein, J T

    2009-01-01

    As a first step toward the genetic mapping of QTL affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol by using Bayesian methods in large full-sib families of rainbow trout. To date, no studies have...... been conducted to determine the mode of inheritance of stress response as measured by plasma cortisol response when using a crowding stress paradigm and CSA in rainbow trout. The main objective of this study was to determine the mode of inheritance of plasma cortisol after a crowding stress....... The results from fitting mixed inheritance models with Bayesian CSA suggest that 1 or more major genes with dominant cortisol-decreasing alleles and small additive genetic effects of a large number of independent genes likely underlie the genetic variation of plasma cortisol in the rainbow trout families...

  2. Estimates of European emissions of methyl chloroform using a Bayesian inversion method

    Directory of Open Access Journals (Sweden)

    M. Maione

    2014-03-01

    Full Text Available Methyl chloroform (MCF is a man-made chlorinated solvent contributing to the destruction of stratospheric ozone and is controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer. Long-term, high-frequency observations of MCF carried out at three European sites show a constant decline of the background mixing ratios of MCF. However, we observe persistent non-negligible mixing ratio enhancements of MCF in pollution episodes suggesting unexpectedly high ongoing emissions in Europe. In order to identify the source regions and to give an estimate of the magnitude of such emissions, we have used a Bayesian inversion method and a point source analysis, based on high-frequency long-term observations at the three European sites. The inversion identified south-eastern France (SEF as a region with enhanced MCF emissions. This estimate was confirmed by the point source analysis. We performed this analysis using an eleven-year data set, from January 2002 to December 2012. Overall emissions estimated for the European study domain decreased nearly exponentially from 1.1 Gg yr−1 in 2002 to 0.32 Gg yr−1 in 2012, of which the estimated emissions from the SEF region accounted for 0.49 Gg yr−1 in 2002 and 0.20 Gg yr−1 in 2012. The European estimates are a significant fraction of the total semi-hemisphere (30–90° N emissions, contributing a minimum of 9.8% in 2004 and a maximum of 33.7% in 2011, of which on average 50% are from the SEF region. On the global scale, the SEF region is thus responsible from a minimum of 2.6% (in 2003 to a maximum of 10.3% (in 2009 of the global MCF emissions.

  3. A novel Bayesian geospatial method for estimating tuberculosis incidence reveals many missed TB cases in Ethiopia.

    Science.gov (United States)

    Shaweno, Debebe; Trauer, James M; Denholm, Justin T; McBryde, Emma S

    2017-10-02

    Reported tuberculosis (TB) incidence globally continues to be heavily influenced by expert opinion of case detection rates and ecological estimates of disease duration. Both approaches are recognised as having substantial variability and inaccuracy, leading to uncertainty in true TB incidence and other such derived statistics. We developed Bayesian binomial mixture geospatial models to estimate TB incidence and case detection rate (CDR) in Ethiopia. In these models the underlying true incidence was formulated as a partially observed Markovian process following a mixed Poisson distribution and the detected (observed) TB cases as a binomial distribution, conditional on CDR and true incidence. The models use notification data from multiple areas over several years and account for the existence of undetected TB cases and variability in true underlying incidence and CDR. Deviance information criteria (DIC) were used to select the best performing model. A geospatial model was the best fitting approach. This model estimated that TB incidence in Sheka Zone increased from 198 (95% Credible Interval (CrI) 187, 233) per 100,000 population in 2010 to 232 (95% CrI 212, 253) per 100,000 population in 2014. The model revealed a wide discrepancy between the estimated incidence rate and notification rate, with the estimated incidence ranging from 1.4 (in 2014) to 1.7 (in 2010) times the notification rate (CDR of 71% and 60% respectively). Population density and TB incidence in neighbouring locations (spatial lag) predicted the underlying TB incidence, while health facility availability predicted higher CDR. Our model estimated trends in underlying TB incidence while accounting for undetected cases and revealed significant discrepancies between incidence and notification rates in rural Ethiopia. This approach provides an alternative approach to estimating incidence, entirely independent of the methods involved in current estimates and is feasible to perform from routinely collected

  4. Quantifying habitat requirements of tree-living species in fragmented boreal forests with Bayesian methods.

    Science.gov (United States)

    Berglund, Håkan; O'Hara, Robert B; Jonsson, Bengt Gunnar

    2009-10-01

    Quantitative conservation objectives require detailed consideration of the habitat requirements of target species. Tree-living bryophytes, lichens, and fungi are a critical and declining biodiversity component of boreal forests. To understand their requirements, Bayesian methods were used to analyze the relationships between the occurrence of individual species and habitat factors at the tree and the stand scale in a naturally fragmented boreal forest landscape. The importance of unexplained between-stand variation in occurrence of species was estimated, and the ability of derived models to predict species' occurrence was tested. The occurrence of species was affected by quality of individual trees. Furthermore, the relationships between occurrence of species at the tree level and size and shape of stands indicated edge effects, implying that some species were restricted to interior habitats of large, regular stands. Yet for the habitat factors studied, requirements of many species appeared similar. Species occurrence also varied between stands; most of the seemingly suitable trees in some stands were unoccupied. The models captured most variation in species occurrence at tree level. They also successfully accounted for between-stand variation in species occurrence, thus providing realistic simulations of stand-level occupancy of species. Important unexplained between-stand variation in species occurrence warns against a simplified view that only local habitat factors influence species' occurrence. Apparently, similar stands will host populations of different sizes due to historical, spatial, and stochastic factors. Thus, habitat suitability cannot be assessed simply by population sizes, and stands lacking a species may still provide suitable habitat and merit protection.

  5. Model-Based Factored Bayesian Online Reinforcement Learning%一种基于模型的可分解贝叶斯在线强化学习

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Due to the enormous number of parameters and slow convergence which are the major obstacles for online learn -ing in model-based Bayesian reinforcement learning ,the paper presents a model-based factored Bayesian reinforcement learning ap-proach .Firstly ,factored representations are made to represent the dynamics with fewer parameters .Then ,according to prior knowl-edge and observable data ,this paper exploits model-based reinforcement learning to provide an elegant solution to the optimal explo-ration-exploitation tradeoff .Finally ,a pointed-based Bayesian reinforcement learning approach is proposed to speed up the conver -gence to achieve online learning .The experimental results show that the proposed approach can approximate the underlying Bayesian reinforcement learning task well with guaranteed real-time performance .%针对贝叶斯强化学习中参数个数巨大,收敛速度慢,无法实现在线学习的问题,提出一种基于模型的可分解贝叶斯强化学习方法。首先,将学习参数进行可分解表示,降低学习参数的个数;然后,根据先验知识和观察数据采用贝叶斯方法来学习,最优化探索和利用二者之间的平衡关系;最后,采用基于点的贝叶斯强化学习方法实现学习过程的快速收敛,从而达到在线学习的目的。仿真结果表明该算法能够满足实时系统性能的要求。

  6. Probabilistic Inferences in Bayesian Networks

    OpenAIRE

    Ding, Jianguo

    2010-01-01

    This chapter summarizes the popular inferences methods in Bayesian networks. The results demonstrates that the evidence can propagated across the Bayesian networks by any links, whatever it is forward or backward or intercausal style. The belief updating of Bayesian networks can be obtained by various available inference techniques. Theoretically, exact inferences in Bayesian networks is feasible and manageable. However, the computing and inference is NP-hard. That means, in applications, in ...

  7. Optimum Inductive Methods. A study in Inductive Probability, Bayesian Statistics, and Verisimilitude.

    NARCIS (Netherlands)

    Festa, Roberto

    1992-01-01

    According to the Bayesian view, scientific hypotheses must be appraised in terms of their posterior probabilities relative to the available experimental data. Such posterior probabilities are derived from the prior probabilities of the hypotheses by applying Bayes'theorem. One of the most important

  8. The estimation of lower refractivity uncertainty from radar sea clutter using the Bayesian-MCMC method

    Institute of Scientific and Technical Information of China (English)

    Sheng Zheng

    2013-01-01

    The estimation of lower atmospheric refractivity from radar sea clutter (RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo (MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed (i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data; (ii) the one-dimensional (1D) and two-dimensional (2D) posterior probability distribution of solutions.

  9. A method for real-time condition monitoring of haul roads based on Bayesian parameter estimation

    CSIR Research Space (South Africa)

    Heyns, T

    2012-04-01

    Full Text Available and to the vehicles. A recent idea is that vehicle on-board data collection systems could be used to monitor haul roads on a real-time basis by means of vibration signature analysis. This paper proposes a methodology based on Bayesian regression to isolate the effect...

  10. Optimum Inductive Methods. A study in Inductive Probability, Bayesian Statistics, and Verisimilitude.

    NARCIS (Netherlands)

    Festa, Roberto

    1992-01-01

    According to the Bayesian view, scientific hypotheses must be appraised in terms of their posterior probabilities relative to the available experimental data. Such posterior probabilities are derived from the prior probabilities of the hypotheses by applying Bayes'theorem. One of the most important

  11. A Bayesian Method for Evaluating Passing Scores: The PPoP Curve

    Science.gov (United States)

    Wainer, Howard; Wang, X. A.; Skorupski, William P.; Bradlow, Eric T.

    2005-01-01

    In this note, we demonstrate an interesting use of the posterior distributions (and corresponding posterior samples of proficiency) that are yielded by fitting a fully Bayesian test scoring model to a complex assessment. Specifically, we examine the efficacy of the test in combination with the specific passing score that was chosen through expert…

  12. A Hierarchical Bayesian M/EEG Imaging Method Correcting for Incomplete Spatio-Temporal Priors

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai T.; Sekihara, Kensuke;

    2013-01-01

    In this paper we present a hierarchical Bayesian model, to tackle the highly ill-posed problem that follows with MEG and EEG source imaging. Our model promotes spatiotemporal patterns through the use of both spatial and temporal basis functions. While in contrast to most previous spatio-temporal ...

  13. A Bayesian analysis of rare B decays with advanced Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Beaujean, Frederik

    2012-11-12

    Searching for new physics in rare B meson decays governed by b {yields} s transitions, we perform a model-independent global fit of the short-distance couplings C{sub 7}, C{sub 9}, and C{sub 10} of the {Delta}B=1 effective field theory. We assume the standard-model set of b {yields} s{gamma} and b {yields} sl{sup +}l{sup -} operators with real-valued C{sub i}. A total of 59 measurements by the experiments BaBar, Belle, CDF, CLEO, and LHCb of observables in B{yields}K{sup *}{gamma}, B{yields}K{sup (*)}l{sup +}l{sup -}, and B{sub s}{yields}{mu}{sup +}{mu}{sup -} decays are used in the fit. Our analysis is the first of its kind to harness the full power of the Bayesian approach to probability theory. All main sources of theory uncertainty explicitly enter the fit in the form of nuisance parameters. We make optimal use of the experimental information to simultaneously constrain theWilson coefficients as well as hadronic form factors - the dominant theory uncertainty. Generating samples from the posterior probability distribution to compute marginal distributions and predict observables by uncertainty propagation is a formidable numerical challenge for two reasons. First, the posterior has multiple well separated maxima and degeneracies. Second, the computation of the theory predictions is very time consuming. A single posterior evaluation requires O(1s), and a few million evaluations are needed. Population Monte Carlo (PMC) provides a solution to both issues; a mixture density is iteratively adapted to the posterior, and samples are drawn in a massively parallel way using importance sampling. The major shortcoming of PMC is the need for cogent knowledge of the posterior at the initial stage. In an effort towards a general black-box Monte Carlo sampling algorithm, we present a new method to extract the necessary information in a reliable and automatic manner from Markov chains with the help of hierarchical clustering. Exploiting the latest 2012 measurements, the fit

  14. Genetic Properties of Some Economic Traits in Isfahan Native Fowl Using Bayesian and REML Methods

    Directory of Open Access Journals (Sweden)

    Salehinasab M

    2015-12-01

    Full Text Available The objective of the present study was to estimate heritability values for some performance and egg quality traits of native fowl in Isfahan breeding center using REML and Bayesian approaches. The records were about 51521 and 975 for performance and egg quality traits, respectively. At the first step, variance components were estimated for body weight at hatch (BW0, body weight at 8 weeks of age (BW8, weight at sexual maturity (WSM, egg yolk weight (YW, egg Haugh unit and eggshell thickness, via REML approach using ASREML software. At the second step, the same traits were analyzed via Bayesian approach using Gibbs3f90 software. In both approaches six different animal models were applied and the best model was determined using likelihood ratio test (LRT and deviance information criterion (DIC for REML and Bayesian approaches, respectively. Heritability estimates for BW0, WSM and ST were the same in both approaches. For BW0, LRT and DIC indexes confirmed that the model consisting maternal genetic, permanent environmental and direct genetic effects was significantly better than other models. For WSM, a model consisting of maternal permanent environmental effect in addition to direct genetic effect was the best. For shell thickness, the basic model consisting direct genetic effect was the best. The results for BW8, YW and Haugh unit, were different between the two approaches. The reason behind this tiny differences was that the convergence could not be achieved for some models in REML approach and thus for these traits the Bayesian approach estimated the variance components more accurately. The results indicated that ignoring maternal effects, overestimates the direct genetic variance and heritability for most of the traits. Also, the Bayesian-based software could take more variance components into account.

  15. What can we gain by using Bayesian methods to combine information from a multi-model ensemble?

    Science.gov (United States)

    Jonko, A. K.; Urban, N. M.

    2016-12-01

    Multi-model ensembles are used extensively to study both future climate projections and properties of the climate system such as climate sensitivity and feedbacks. Individual climate model projections generally disagree with one another, can be biased and are not independent. How to combine results from various models to assess their projections and the uncertainties associated with them is a difficult, but important question. Many different approaches, ranging from giving each model one vote, to model weighting and Bayesian methods, have been used to date. Here we evaluate the utility of a Bayesian reduced model framework relative to a simple pooling of global climate model (GCM) projections. Rather than focusing on the discrete projections made by individual GCMs, this approach allows us to generate probabilistic projections that smoothly interpolate between the dynamics of the multi-model ensemble. The simple model is an idealized ocean atmosphere energy balance model (EBM), fit to surface temperatures of GCMs participating in the Coupled Model Intercomparison Project version 5 (CMIP5) by tuning several parameters, including equilibrium climate sensitivity, forcing and feedback. We derive probability distributions of the reduced model parameters for each GCM individually as well as jointly for all GCMs in a Bayesian hierarchical modeling framework, using CMIP5 abrupt CO2 quadrupling simulations. We then compare climate sensitivity and feedback estimates as well as temperature projections for historical and RCP8.5 scenarios generated using these two approaches to results obtained from the multi-model ensemble alone.

  16. Evolving Classifiers: Methods for Incremental Learning

    CERN Document Server

    Hulley, Greg

    2007-01-01

    The ability of a classifier to take on new information and classes by evolving the classifier without it having to be fully retrained is known as incremental learning. Incremental learning has been successfully applied to many classification problems, where the data is changing and is not all available at once. In this paper there is a comparison between Learn++, which is one of the most recent incremental learning algorithms, and the new proposed method of Incremental Learning Using Genetic Algorithm (ILUGA). Learn++ has shown good incremental learning capabilities on benchmark datasets on which the new ILUGA method has been tested. ILUGA has also shown good incremental learning ability using only a few classifiers and does not suffer from catastrophic forgetting. The results obtained for ILUGA on the Optical Character Recognition (OCR) and Wine datasets are good, with an overall accuracy of 93% and 94% respectively showing a 4% improvement over Learn++.MT for the difficult multi-class OCR dataset.

  17. Bayesian Probability Theory

    Science.gov (United States)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  18. Towards a Quality Assessment Method for Learning Preference Profiles in Negotiation

    Science.gov (United States)

    Hindriks, Koen V.; Tykhonov, Dmytro

    In automated negotiation, information gained about an opponent's preference profile by means of learning techniques may significantly improve an agent's negotiation performance. It therefore is useful to gain a better understanding of how various negotiation factors influence the quality of learning. The quality of learning techniques in negotiation are typically assessed indirectly by means of comparing the utility levels of agreed outcomes and other more global negotiation parameters. An evaluation of learning based on such general criteria, however, does not provide any insight into the influence of various aspects of negotiation on the quality of the learned model itself. The quality may depend on such aspects as the domain of negotiation, the structure of the preference profiles, the negotiation strategies used by the parties, and others. To gain a better understanding of the performance of proposed learning techniques in the context of negotiation and to be able to assess the potential to improve the performance of such techniques a more systematic assessment method is needed. In this paper we propose such a systematic method to analyse the quality of the information gained about opponent preferences by learning in single-instance negotiations. The method includes measures to assess the quality of a learned preference profile and proposes an experimental setup to analyse the influence of various negotiation aspects on the quality of learning. We apply the method to a Bayesian learning approach for learning an opponent's preference profile and discuss our findings.

  19. Combining Metabolite-Based Pharmacophores with Bayesian Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    Full Text Available Integrated computational approaches for Mycobacterium tuberculosis (Mtb are useful to identify new molecules that could lead to future tuberculosis (TB drugs. Our approach uses information derived from the TBCyc pathway and genome database, the Collaborative Drug Discovery TB database combined with 3D pharmacophores and dual event Bayesian models of whole-cell activity and lack of cytotoxicity. We have prioritized a large number of molecules that may act as mimics of substrates and metabolites in the TB metabolome. We computationally searched over 200,000 commercial molecules using 66 pharmacophores based on substrates and metabolites from Mtb and further filtering with Bayesian models. We ultimately tested 110 compounds in vitro that resulted in two compounds of interest, BAS 04912643 and BAS 00623753 (MIC of 2.5 and 5 μg/mL, respectively. These molecules were used as a starting point for hit-to-lead optimization. The most promising class proved to be the quinoxaline di-N-oxides, evidenced by transcriptional profiling to induce mRNA level perturbations most closely resembling known protonophores. One of these, SRI58 exhibited an MIC = 1.25 μg/mL versus Mtb and a CC50 in Vero cells of >40 μg/mL, while featuring fair Caco-2 A-B permeability (2.3 x 10-6 cm/s, kinetic solubility (125 μM at pH 7.4 in PBS and mouse metabolic stability (63.6% remaining after 1 h incubation with mouse liver microsomes. Despite demonstration of how a combined bioinformatics/cheminformatics approach afforded a small molecule with promising in vitro profiles, we found that SRI58 did not exhibit quantifiable blood levels in mice.

  20. Mixture Density Mercer Kernels: A Method to Learn Kernels

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a method of generating Mercer Kernels from an ensemble of probabilistic mixture models, where each mixture model is generated from a Bayesian...

  1. Bayesian methods for estimating the reliability in complex hierarchical networks (interim report).

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Zurn, Rena M.; Boggs, Paul T.; Diegert, Kathleen V. (Sandia National Laboratories, Albuquerque, NM); Red-Horse, John Robert (Sandia National Laboratories, Albuquerque, NM); Pebay, Philippe Pierre

    2007-05-01

    Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of Sandia's commitment to maintaining the integrity of the nuclear weapons stockpile. In this report, we undertake a key element in that process: development of an analytical framework for determining the reliability of the stockpile in a realistic environment of time-variance, inherent uncertainty, and sparse available information. This framework is probabilistic in nature and is founded on a novel combination of classical and computational Bayesian analysis, Bayesian networks, and polynomial chaos expansions. We note that, while the focus of the effort is stockpile-related, it is applicable to any reasonably-structured hierarchical system, including systems with feedback.

  2. The Power of Principled Bayesian Methods in the Study of Stellar Evolution

    CERN Document Server

    von Hippel, Ted; Stenning, David C; Robinson, Elliot; Jeffery, Elizabeth; Stein, Nathan; Jefferys, William H; O'Malley, Erin

    2016-01-01

    It takes years of effort employing the best telescopes and instruments to obtain high-quality stellar photometry, astrometry, and spectroscopy. Stellar evolution models contain the experience of lifetimes of theoretical calculations and testing. Yet most astronomers fit these valuable models to these precious datasets by eye. We show that a principled Bayesian approach to fitting models to stellar data yields substantially more information over a range of stellar astrophysics. We highlight advances in determining the ages of star clusters, mass ratios of binary stars, limitations in the accuracy of stellar models, post-main-sequence mass loss, and the ages of individual white dwarfs. We also outline a number of unsolved problems that would benefit from principled Bayesian analyses.

  3. Evaluating a Bayesian approach to improve accuracy of individual photographic identification methods using ecological distribution data

    Directory of Open Access Journals (Sweden)

    Richard Stafford

    2011-04-01

    Full Text Available Photographic identification of individual organisms can be possible from natural body markings. Data from photo-ID can be used to estimate important ecological and conservation metrics such as population sizes, home ranges or territories. However, poor quality photographs or less well-studied individuals can result in a non-unique ID, potentially confounding several similar looking individuals. Here we present a Bayesian approach that uses known data about previous sightings of individuals at specific sites as priors to help assess the problems of obtaining a non-unique ID. Using a simulation of individuals with different confidence of correct ID we evaluate the accuracy of Bayesian modified (posterior probabilities. However, in most cases, the accuracy of identification decreases. Although this technique is unsuccessful, it does demonstrate the importance of computer simulations in testing such hypotheses in ecology.

  4. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    OpenAIRE

    2013-01-01

    Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...

  5. The evolutionary relationships and age of Homo naledi: An assessment using dated Bayesian phylogenetic methods.

    Science.gov (United States)

    Dembo, Mana; Radovčić, Davorka; Garvin, Heather M; Laird, Myra F; Schroeder, Lauren; Scott, Jill E; Brophy, Juliet; Ackermann, Rebecca R; Musiba, Chares M; de Ruiter, Darryl J; Mooers, Arne Ø; Collard, Mark

    2016-08-01

    Homo naledi is a recently discovered species of fossil hominin from South Africa. A considerable amount is already known about H. naledi but some important questions remain unanswered. Here we report a study that addressed two of them: "Where does H. naledi fit in the hominin evolutionary tree?" and "How old is it?" We used a large supermatrix of craniodental characters for both early and late hominin species and Bayesian phylogenetic techniques to carry out three analyses. First, we performed a dated Bayesian analysis to generate estimates of the evolutionary relationships of fossil hominins including H. naledi. Then we employed Bayes factor tests to compare the strength of support for hypotheses about the relationships of H. naledi suggested by the best-estimate trees. Lastly, we carried out a resampling analysis to assess the accuracy of the age estimate for H. naledi yielded by the dated Bayesian analysis. The analyses strongly supported the hypothesis that H. naledi forms a clade with the other Homo species and Australopithecus sediba. The analyses were more ambiguous regarding the position of H. naledi within the (Homo, Au. sediba) clade. A number of hypotheses were rejected, but several others were not. Based on the available craniodental data, Homo antecessor, Asian Homo erectus, Homo habilis, Homo floresiensis, Homo sapiens, and Au. sediba could all be the sister taxon of H. naledi. According to the dated Bayesian analysis, the most likely age for H. naledi is 912 ka. This age estimate was supported by the resampling analysis. Our findings have a number of implications. Most notably, they support the assignment of the new specimens to Homo, cast doubt on the claim that H. naledi is simply a variant of H. erectus, and suggest H. naledi is younger than has been previously proposed.

  6. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds.

    Science.gov (United States)

    Colombani, C; Legarra, A; Fritz, S; Guillaume, F; Croiseau, P; Ducrocq, V; Robert-Granié, C

    2013-01-01

    Recently, the amount of available single nucleotide polymorphism (SNP) marker data has considerably increased in dairy cattle breeds, both for research purposes and for application in commercial breeding and selection programs. Bayesian methods are currently used in the genomic evaluation of dairy cattle to handle very large sets of explanatory variables with a limited number of observations. In this study, we applied 2 bayesian methods, BayesCπ and bayesian least absolute shrinkage and selection operator (LASSO), to 2 genotyped and phenotyped reference populations consisting of 3,940 Holstein bulls and 1,172 Montbéliarde bulls with approximately 40,000 polymorphic SNP. We compared the accuracy of the bayesian methods for the prediction of 3 traits (milk yield, fat content, and conception rate) with pedigree-based BLUP, genomic BLUP, partial least squares (PLS) regression, and sparse PLS regression, a variable selection PLS variant. The results showed that the correlations between observed and predicted phenotypes were similar in BayesCπ (including or not pedigree information) and bayesian LASSO for most of the traits and whatever the breed. In the Holstein breed, bayesian methods led to higher correlations than other approaches for fat content and were similar to genomic BLUP for milk yield and to genomic BLUP and PLS regression for the conception rate. In the Montbéliarde breed, no method dominated the others, except BayesCπ for fat content. The better performances of the bayesian methods for fat content in Holstein and Montbéliarde breeds are probably due to the effect of the DGAT1 gene. The SNP identified by the BayesCπ, bayesian LASSO, and sparse PLS regression methods, based on their effect on the different traits of interest, were located at almost the same position on the genome. As the bayesian methods resulted in regressions of direct genomic values on daughter trait deviations closer to 1 than for the other methods tested in this study, bayesian

  7. New Perspectives to Study of Student Motivation and Self-Regulated Learning with Bayesian Network Modeling.

    Science.gov (United States)

    Ruohotie, Pekka; Nokelainen, Petri; Tirri, Henry; Silander, Tomi

    This study examined the data selection process preceding multivariate analysis for a data set measuring student motivation and self-regulated learning. Data were 138 responses to a questionnaire on motivation and self-regulated learning, adapted for Finnish students. The first goal was to compare the results gained with "gentle" and…

  8. Selection of Polynomial Chaos Bases via Bayesian Model Uncertainty Methods with Applications to Sparse Approximation of PDEs with Stochastic Inputs

    Energy Technology Data Exchange (ETDEWEB)

    Karagiannis, Georgios; Lin, Guang

    2014-02-15

    Generalized polynomial chaos (gPC) expansions allow the representation of the solution of a stochastic system as a series of polynomial terms. The number of gPC terms increases dramatically with the dimension of the random input variables. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs if the evaluations of the system are expensive, the evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solution, both in spacial and random domains, by coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spacial points via (1) Bayesian model average or (2) medial probability model, and their construction as functions on the spacial domain via spline interpolation. The former accounts the model uncertainty and provides Bayes-optimal predictions; while the latter, additionally, provides a sparse representation of the solution by evaluating the expansion on a subset of dominating gPC bases when represented as a gPC expansion. Moreover, the method quantifies the importance of the gPC bases through inclusion probabilities. We design an MCMC sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed method is suitable for, but not restricted to, problems whose stochastic solution is sparse at the stochastic level with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the good performance of the proposed method and make comparisons with others on 1D, 14D and 40D in random space elliptic stochastic partial differential equations.

  9. SELFI: an object-based, Bayesian method for faint emission line source detection in MUSE deep field data cubes

    Science.gov (United States)

    Meillier, Céline; Chatelain, Florent; Michel, Olivier; Bacon, Roland; Piqueras, Laure; Bacher, Raphael; Ayasso, Hacheme

    2016-04-01

    We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope (VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile. The software and its documentation are available on the MUSE science web service (muse-vlt.eu/science).

  10. New e-learning method using databases

    Directory of Open Access Journals (Sweden)

    Andreea IONESCU

    2012-10-01

    Full Text Available The objective of this paper is to present a new e-learning method that use databases. The solution could pe implemented for any typeof e-learning system in any domain. The article will purpose a solution to improve the learning process for virtual classes.

  11. Novel Method for Calculating a Nonsubjective Informative Prior for a Bayesian Model in Toxicology Screening: A Theoretical Framework.

    Science.gov (United States)

    Woldegebriel, Michael

    2015-11-17

    In toxicology screening (forensic, food-safety), due to several analytical errors (e.g., retention time shift, lack of repeatability in m/z scans, etc.), the ability to confidently identify/confirm a compound remains a challenge. Due to these uncertainties, a probabilistic approach is currently preferred. However, if a probabilistic approach is followed, the only statistical method that is capable of estimating the probability of whether the compound of interest (COI) is present/absent in a given sample is Bayesian statistics. Bayes' theorem can combine prior information (prior probability) with data (likelihood) to give an optimal probability (posterior probability) reflecting the presence/absence of the COI. In this work, a novel method for calculating an informative prior probability for a Bayesian model in targeted toxicology screening is introduced. In contrast to earlier proposals making use of literature citation rates and the prior knowledge of the analyst, this method presents a thorough and nonsubjective approach. The formulation approaches the probability calculation as a clustering and random draw problem that incorporates few analytical method parameters meticulously estimated to reflect sensitivity and specificity of the system. The practicality of the method has been demonstrated and validated using real data and simulated analytical techniques.

  12. Bayesian psychometric scaling

    NARCIS (Netherlands)

    Fox, G.J.A.; Berg, van den S.M.; Veldkamp, B.P.; Irwing, P.; Booth, T.; Hughes, D.

    2015-01-01

    In educational and psychological studies, psychometric methods are involved in the measurement of constructs, and in constructing and validating measurement instruments. Assessment results are typically used to measure student proficiency levels and test characteristics. Recently, Bayesian item resp

  13. Bayesian psychometric scaling

    NARCIS (Netherlands)

    Fox, Gerardus J.A.; van den Berg, Stéphanie Martine; Veldkamp, Bernard P.; Irwing, P.; Booth, T.; Hughes, D.

    2015-01-01

    In educational and psychological studies, psychometric methods are involved in the measurement of constructs, and in constructing and validating measurement instruments. Assessment results are typically used to measure student proficiency levels and test characteristics. Recently, Bayesian item

  14. Practical Bayesian Tomography

    CERN Document Server

    Granade, Christopher; Cory, D G

    2015-01-01

    In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of- the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we solve all three problems. First, we use modern statistical methods, as pioneered by Husz\\'ar and Houlsby and by Ferrie, to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first informative priors on quantum states and channels. Finally, we develop a method that allows online tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.

  15. A Bayesian method for the synthesis of evidence from qualitative and quantitative reports: the example of antiretroviral medication adherence.

    Science.gov (United States)

    Voils, Corrine; Hassselblad, Vic; Crandell, Jamie; Chang, Yunkyung; Lee, Eunjeong; Sandelowski, Margarete

    2009-10-01

    Bayesian meta-analysis is a frequently cited but very little-used method for synthesizing qualitative and quantitative research findings. The only example published to date used qualitative data to generate an informative prior probability and quantitative data to generate the likelihood. We developed a method to incorporate both qualitative and quantitative evidence in the likelihood in a Bayesian synthesis of evidence about the relationship between regimen complexity and medication adherence. Data were from 11 qualitative and six quantitative studies. We updated two different non-informative prior distributions with qualitative and quantitative findings to find the posterior distribution for the probabilities that a more complex regimen was associated with lower adherence and that a less complex regimen was associated with greater adherence. The posterior mode for the qualitative findings regarding more complex regimen and lesser adherence (using the uniform prior with Jeffreys' prior yielding highly similar estimates) was 0.588 (95% credible set limits 0.519, 0.663) and for the quantitative findings was 0.224 (0.203, 0.245); due to non-overlapping credible sets, we did not combine them. The posterior mode for the qualitative findings regarding less complex regimen and greater adherence was 0.288 (0.214, 0.441) and for the quantitative findings was 0.272 (0.118, 0.437); the combined estimate was 0.299 (0.267, 0.334). The utility of Bayesian methods for synthesizing qualitative and quantitative research findings at the participant level may depend on the nature of the relationship being synthesized and on how well the findings are represented in the individual reports.

  16. Medical diagnosis aboard submarines. Use of a computer-based Bayesian method of analysis in an abdominal pain diagnostic program.

    Science.gov (United States)

    Osborne, S F

    1984-02-01

    The medical issues that arise in the isolated environment of a submarine can occasionally be grave. While crewmembers are carefully screened for health problems, they are still susceptible to serious acute illness. Currently, the submarine medical department representative, the hospital corpsman, utilizes a history and physical examination, clinical acumen, and limited laboratory testing in diagnosis. The application of a Bayesian method of analysis to an abdominal pain diagnostic system utilizing an onboard microcomputer is described herein. Early results from sea trials show an appropriate diagnosis in eight of 10 cases of abdominal pain, but the program should still be viewed as an extended "laboratory test" until proved effective at sea.

  17. A hybrid Bayesian-SVD based method to detect false alarms in PERSIANN precipitation estimation product using related physical parameters

    Science.gov (United States)

    Ghajarnia, Navid; Arasteh, Peyman D.; Araghinejad, Shahab; Liaghat, Majid A.

    2016-07-01

    Incorrect estimation of rainfall occurrence, so called False Alarm (FA) is one of the major sources of bias error of satellite based precipitation estimation products and may even cause lots of problems during the bias reduction and calibration processes. In this paper, a hybrid statistical method is introduced to detect FA events of PERSIANN dataset over Urmia Lake basin in northwest of Iran. The main FA detection model is based on Bayesian theorem at which four predictor parameters including PERSIANN rainfall estimations, brightness temperature (Tb), precipitable water (PW) and near surface air temperature (Tair) is considered as its input dataset. In order to decrease the dimensions of input dataset by summarizing their most important modes of variability and correlations to the reference dataset, a technique named singular value decomposition (SVD) is used. The application of Bayesian-SVD method in FA detection of Urmia Lake basin resulted in a trade-off between FA detection and Hit events loss. The results show success of proposed method in detecting about 30% of FA events in return for loss of about 12% of Hit events while better capability of this method in cold seasons is observed.

  18. Bayesian online learning of the hazard rate in change-point problems.

    Science.gov (United States)

    Wilson, Robert C; Nassar, Matthew R; Gold, Joshua I

    2010-09-01

    Change-point models are generative models of time-varying data in which the underlying generative parameters undergo discontinuous changes at different points in time known as change points. Change-points often represent important events in the underlying processes, like a change in brain state reflected in EEG data or a change in the value of a company reflected in its stock price. However, change-points can be difficult to identify in noisy data streams. Previous attempts to identify change-points online using Bayesian inference relied on specifying in advance the rate at which they occur, called the hazard rate (h). This approach leads to predictions that can depend strongly on the choice of h and is unable to deal optimally with systems in which h is not constant in time. In this letter, we overcome these limitations by developing a hierarchical extension to earlier models. This approach allows h itself to be inferred from the data, which in turn helps to identify when change-points occur. We show that our approach can effectively identify change-points in both toy and real data sets with complex hazard rates and how it can be used as an ideal-observer model for human and animal behavior when faced with rapidly changing inputs.

  19. An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guannan [ORNL; Webster, Clayton G [ORNL; Gunzburger, Max D [ORNL

    2012-09-01

    Although Bayesian analysis has become vital to the quantification of prediction uncertainty in groundwater modeling, its application has been hindered due to the computational cost associated with numerous model executions needed for exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, we utilize a compactly supported higher-order hierar- chical basis to construct the surrogate system, resulting in a significant reduction in the number of computational simulations required. In addition, we use hierarchical surplus as an error indi- cator to determine adaptive sparse grids. This allows local refinement in the uncertain domain and/or anisotropic detection with respect to the random model parameters, which further improves computational efficiency. Finally, we incorporate a global optimization technique and propose an iterative algorithm for building the surrogate system for the PPDF with multiple significant modes. Once the surrogate system is determined, the PPDF can be evaluated by sampling the surrogate system directly with very little computational cost. The developed method is evaluated first using a simple analytical density function with multiple modes and then using two synthetic groundwater reactive transport models. The groundwater models represent different levels of complexity; the first example involves coupled linear reactions and the second example simulates nonlinear ura- nium surface complexation. The results show that the aSG-hSC is an effective and efficient tool for Bayesian inference in groundwater modeling in comparison with conventional

  20. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    Science.gov (United States)

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  1. DeepGait: A Learning Deep Convolutional Representation for View-Invariant Gait Recognition Using Joint Bayesian

    Directory of Open Access Journals (Sweden)

    Chao Li

    2017-02-01

    Full Text Available Human gait, as a soft biometric, helps to recognize people through their walking. To further improve the recognition performance, we propose a novel video sensor-based gait representation, DeepGait, using deep convolutional features and introduce Joint Bayesian to model view variance. DeepGait is generated by using a pre-trained “very deep” network “D-Net” (VGG-D without any fine-tuning. For non-view setting, DeepGait outperforms hand-crafted representations (e.g., Gait Energy Image, Frequency-Domain Feature and Gait Flow Image, etc.. Furthermore, for cross-view setting, 256-dimensional DeepGait after PCA significantly outperforms the state-of-the-art methods on the OU-ISR large population (OULP dataset. The OULP dataset, which includes 4007 subjects, makes our result reliable in a statistically reliable way.

  2. How about a Bayesian M/EEG imaging method correcting for incomplete spatio-temporal priors

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai T.; Sekihara, Kensuke;

    2013-01-01

    In this contribution we present a hierarchical Bayesian model, sAquavit, to tackle the highly ill-posed problem that follows with MEG and EEG source imaging. Our model facilitates spatio-temporal patterns through the use of both spatial and temporal basis functions. While in contrast to most...... previous spatio-temporal inverse M/EEG models, the proposed model benefits of consisting of two source terms, namely, a spatio-temporal pattern term limiting the source configuration to a spatio-temporal subspace and a source correcting term to pick up source activity not covered by the spatio...

  3. Dose-Response Modeling Under Simple Order Restrictions Using Bayesian Variable Selection Methods

    OpenAIRE

    Otava, Martin; Shkedy, Ziv; Lin, Dan; Goehlmann, Hinrich W. H.; Bijnens, Luc; Talloen, Willem; Kasim, Adetayo

    2014-01-01

    Bayesian modeling of dose–response data offers the possibility to establish the relationship between a clinical or a genomic response and increasing doses of a therapeutic compound and to determine the nature of the relationship wherever it exists. In this article, we focus on an order-restricted one-way ANOVA model which can be used to test the null hypothesis of no dose effect against an ordered alternative. Within the framework of the dose–response modeling, a model uncertainty can be addr...

  4. Current trends in Bayesian methodology with applications

    CERN Document Server

    Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia

    2015-01-01

    Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on

  5. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain;

    2010-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed....

  6. The Guided Autobiography Method: A Learning Experience

    Science.gov (United States)

    Thornton, James E.

    2008-01-01

    This article discusses the proposition that learning is an unexplored feature of the guided autobiography method and its developmental exchange. Learning, conceptualized and explored as the embedded and embodied processes, is essential in narrative activities of the guided autobiography method leading to psychosocial development and growth in…

  7. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain

    2010-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed....

  8. An Automatic Unpacking Method for Computer Virus Effective in the Virus Filter Based on Paul Graham's Bayesian Theorem

    Science.gov (United States)

    Zhang, Dengfeng; Nakaya, Naoshi; Koui, Yuuji; Yoshida, Hitoaki

    Recently, the appearance frequency of computer virus variants has increased. Updates to virus information using the normal pattern matching method are increasingly unable to keep up with the speed at which viruses occur, since it takes time to extract the characteristic patterns for each virus. Therefore, a rapid, automatic virus detection algorithm using static code analysis is necessary. However, recent computer viruses are almost always compressed and obfuscated. It is difficult to determine the characteristics of the binary code from the obfuscated computer viruses. Therefore, this paper proposes a method that unpacks compressed computer viruses automatically independent of the compression format. The proposed method unpacks the common compression formats accurately 80% of the time, while unknown compression formats can also be unpacked. The proposed method is effective against unknown viruses by combining it with the existing known virus detection system like Paul Graham's Bayesian Virus Filter etc.

  9. Empirical evaluation of scoring functions for Bayesian network model selection.

    Science.gov (United States)

    Liu, Zhifa; Malone, Brandon; Yuan, Changhe

    2012-01-01

    In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also

  10. Bayesian methods for the design and interpretation of clinical trials in very rare diseases

    Science.gov (United States)

    Hampson, Lisa V; Whitehead, John; Eleftheriou, Despina; Brogan, Paul

    2014-01-01

    This paper considers the design and interpretation of clinical trials comparing treatments for conditions so rare that worldwide recruitment efforts are likely to yield total sample sizes of 50 or fewer, even when patients are recruited over several years. For such studies, the sample size needed to meet a conventional frequentist power requirement is clearly infeasible. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose a Bayesian approach for the conduct of rare-disease trials comparing an experimental treatment with a control where patient responses are classified as a success or failure. A systematic elicitation from clinicians of their beliefs concerning treatment efficacy is used to establish Bayesian priors for unknown model parameters. The process of determining the prior is described, including the possibility of formally considering results from related trials. As sample sizes are small, it is possible to compute all possible posterior distributions of the two success rates. A number of allocation ratios between the two treatment groups can be considered with a view to maximising the prior probability that the trial concludes recommending the new treatment when in fact it is non-inferior to control. Consideration of the extent to which opinion can be changed, even by data from the best feasible design, can help to determine whether such a trial is worthwhile. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24957522

  11. Bayesian methods for the design and interpretation of clinical trials in very rare diseases.

    Science.gov (United States)

    Hampson, Lisa V; Whitehead, John; Eleftheriou, Despina; Brogan, Paul

    2014-10-30

    This paper considers the design and interpretation of clinical trials comparing treatments for conditions so rare that worldwide recruitment efforts are likely to yield total sample sizes of 50 or fewer, even when patients are recruited over several years. For such studies, the sample size needed to meet a conventional frequentist power requirement is clearly infeasible. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose a Bayesian approach for the conduct of rare-disease trials comparing an experimental treatment with a control where patient responses are classified as a success or failure. A systematic elicitation from clinicians of their beliefs concerning treatment efficacy is used to establish Bayesian priors for unknown model parameters. The process of determining the prior is described, including the possibility of formally considering results from related trials. As sample sizes are small, it is possible to compute all possible posterior distributions of the two success rates. A number of allocation ratios between the two treatment groups can be considered with a view to maximising the prior probability that the trial concludes recommending the new treatment when in fact it is non-inferior to control. Consideration of the extent to which opinion can be changed, even by data from the best feasible design, can help to determine whether such a trial is worthwhile.

  12. Inherently irrational? A computational model of escalation of commitment as Bayesian Updating.

    Science.gov (United States)

    Gilroy, Shawn P; Hantula, Donald A

    2016-06-01

    Monte Carlo simulations were performed to analyze the degree to which two-, three- and four-step learning histories of losses and gains correlated with escalation and persistence in extended extinction (continuous loss) conditions. Simulated learning histories were randomly generated at varying lengths and compositions and warranted probabilities were determined using Bayesian Updating methods. Bayesian Updating predicted instances where particular learning sequences were more likely to engender escalation and persistence under extinction conditions. All simulations revealed greater rates of escalation and persistence in the presence of heterogeneous (e.g., both Wins and Losses) lag sequences, with substantially increased rates of escalation when lags comprised predominantly of losses were followed by wins. These methods were then applied to human investment choices in earlier experiments. The Bayesian Updating models corresponded with data obtained from these experiments. These findings suggest that Bayesian Updating can be utilized as a model for understanding how and when individual commitment may escalate and persist despite continued failures.

  13. Integrated Bayesian models of learning and decision making for saccadic eye movements.

    Science.gov (United States)

    Brodersen, Kay H; Penny, Will D; Harrison, Lee M; Daunizeau, Jean; Ruff, Christian C; Duzel, Emrah; Friston, Karl J; Stephan, Klaas E

    2008-11-01

    The neurophysiology of eye movements has been studied extensively, and several computational models have been proposed for decision-making processes that underlie the generation of eye movements towards a visual stimulus in a situation of uncertainty. One class of models, known as linear rise-to-threshold models, provides an economical, yet broadly applicable, explanation for the observed variability in the latency between the onset of a peripheral visual target and the saccade towards it. So far, however, these models do not account for the dynamics of learning across a sequence of stimuli, and they do not apply to situations in which subjects are exposed to events with conditional probabilities. In this methodological paper, we extend the class of linear rise-to-threshold models to address these limitations. Specifically, we reformulate previous models in terms of a generative, hierarchical model, by combining two separate sub-models that account for the interplay between learning of target locations across trials and the decision-making process within trials. We derive a maximum-likelihood scheme for parameter estimation as well as model comparison on the basis of log likelihood ratios. The utility of the integrated model is demonstrated by applying it to empirical saccade data acquired from three healthy subjects. Model comparison is used (i) to show that eye movements do not only reflect marginal but also conditional probabilities of target locations, and (ii) to reveal subject-specific learning profiles over trials. These individual learning profiles are sufficiently distinct that test samples can be successfully mapped onto the correct subject by a naïve Bayes classifier. Altogether, our approach extends the class of linear rise-to-threshold models of saccadic decision making, overcomes some of their previous limitations, and enables statistical inference both about learning of target locations across trials and the decision-making process within trials.

  14. Variations on Bayesian Prediction and Inference

    Science.gov (United States)

    2016-05-09

    Variations on Bayesian prediction and inference” Ryan Martin Department of Mathematics, Statistics , and Computer Science University of Illinois at Chicago...using statistical ideas/methods. We recently learned that this new project will be supported, in part, by the National Science Foundation. 2.2 Problem 2...41. Kalli, M., Griffin, J. E., Walker, S. G. (2011). Slice sampling mixture models. Statistics and Computing 21, 93–105. Koenker, R. (2005). Quantile

  15. Assessing Vermont's stream health and biological integrity using artificial neural networks and Bayesian methods

    Science.gov (United States)

    Rizzo, D. M.; Fytilis, N.; Stevens, L.

    2012-12-01

    Environmental managers are increasingly required to monitor and forecast long-term effects and vulnerability of biophysical systems to human-generated stresses. Ideally, a study involving both physical and biological assessments conducted concurrently (in space and time) could provide a better understanding of the mechanisms and complex relationships. However, costs and resources associated with monitoring the complex linkages between the physical, geomorphic and habitat conditions and the biological integrity of stream reaches are prohibitive. Researchers have used classification techniques to place individual streams and rivers into a broader spatial context (hydrologic or health condition). Such efforts require environmental managers to gather multiple forms of information - quantitative, qualitative and subjective. We research and develop a novel classification tool that combines self-organizing maps with a Naïve Bayesian classifier to direct resources to stream reaches most in need. The Vermont Agency of Natural Resources has developed and adopted protocols for physical stream geomorphic and habitat assessments throughout the state of Vermont. Separate from these assessments, the Vermont Department of Environmental Conservation monitors the biological communities and the water quality in streams. Our initial hypothesis is that the geomorphic reach assessments and water quality data may be leveraged to reduce error and uncertainty associated with predictions of biological integrity and stream health. We test our hypothesis using over 2500 Vermont stream reaches (~1371 stream miles) assessed by the two agencies. In the development of this work, we combine a Naïve Bayesian classifier with a modified Kohonen Self-Organizing Map (SOM). The SOM is an unsupervised artificial neural network that autonomously analyzes inherent dataset properties using input data only. It is typically used to cluster data into similar categories when a priori classes do not exist. The

  16. A heuristic Bayesian method for segmenting DNA sequence alignments and detecting evidence for recombination and gene conversion.

    Science.gov (United States)

    Kedzierska, Anna; Husmeier, Dirk

    2006-01-01

    We propose a heuristic approach to the detection of evidence for recombination and gene conversion in multiple DNA sequence alignments. The proposed method consists of two stages. In the first stage, a sliding window is moved along the DNA sequence alignment, and phylogenetic trees are sampled from the conditional posterior distribution with MCMC. To reduce the noise intrinsic to inference from the limited amount of data available in the typically short sliding window, a clustering algorithm based on the Robinson-Foulds distance is applied to the trees thus sampled, and the posterior distribution over tree clusters is obtained for each window position. While changes in this posterior distribution are indicative of recombination or gene conversion events, it is difficult to decide when such a change is statistically significant. This problem is addressed in the second stage of the proposed algorithm, where the distributions obtained in the first stage are post-processed with a Bayesian hidden Markov model (HMM). The emission states of the HMM are associated with posterior distributions over phylogenetic tree topology clusters. The hidden states of the HMM indicate putative recombinant segments. Inference is done in a Bayesian sense, sampling parameters from the posterior distribution with MCMC. Of particular interest is the determination of the number of hidden states as an indication of the number of putative recombinant regions. To this end, we apply reversible jump MCMC, and sample the number of hidden states from the respective posterior distribution.

  17. Peak Bagging of red giant stars observed by Kepler: first results with a new method based on Bayesian nested sampling

    Directory of Open Access Journals (Sweden)

    Corsaro Enrico

    2015-01-01

    Full Text Available The peak bagging analysis, namely the fitting and identification of single oscillation modes in stars’ power spectra, coupled to the very high-quality light curves of red giant stars observed by Kepler, can play a crucial role for studying stellar oscillations of different flavor with an unprecedented level of detail. A thorough study of stellar oscillations would thus allow for deeper testing of stellar structure models and new insights in stellar evolution theory. However, peak bagging inferences are in general very challenging problems due to the large number of observed oscillation modes, hence of free parameters that can be involved in the fitting models. Efficiency and robustness in performing the analysis is what may be needed to proceed further. For this purpose, we developed a new code implementing the Nested Sampling Monte Carlo (NSMC algorithm, a powerful statistical method well suited for Bayesian analyses of complex problems. In this talk we show the peak bagging of a sample of high signal-to-noise red giant stars by exploiting recent Kepler datasets and a new criterion for the detection of an oscillation mode based on the computation of the Bayesian evidence. Preliminary results for frequencies and lifetimes for single oscillation modes, together with acoustic glitches, are therefore presented.

  18. Bayesian Decision-theoretic Methods for Parameter Ensembles with Application to Epidemiology

    CERN Document Server

    Ginestet, Cedric E

    2011-01-01

    Parameter ensembles or sets of random effects constitute one of the cornerstones of modern statistical practice. This is especially the case in Bayesian hierarchical models, where several decision theoretic frameworks can be deployed. The estimation of these parameter ensembles may substantially vary depending on which inferential goals are prioritised by the modeller. Since one may wish to satisfy a range of desiderata, it is therefore of interest to investigate whether some sets of point estimates can simultaneously meet several inferential objectives. In this thesis, we will be especially concerned with identifying ensembles of point estimates that produce good approximations of (i) the true empirical quantiles and empirical quartile ratio (QR) and (ii) provide an accurate classification of the ensemble's elements above and below a given threshold. For this purpose, we review various decision-theoretic frameworks, which have been proposed in the literature in relation to the optimisation of different aspec...

  19. Evaluation of the antibacterial residue surveillance programme in Danish pigs using Bayesian methods

    DEFF Research Database (Denmark)

    Freitas de Matos Baptista, Filipa; Alban, L.; Olsen, A. M.;

    2012-01-01

    Residues of pharmacological active substances or their metabolites might be found in food products from food-producing animals. Maximum Residue Limits for pharmacological active substances in foodstuffs of animal origin are established to assure high food safety standards. Each year, more than 20......,000 samples are analysed for the presence of antibacterial residues in Danish pigs. This corresponds to 0.1% of the size of the slaughter pig population and more than 1% of the sows slaughtered. In this study, a Bayesian model was used to evaluate the Danish surveillance system accuracy and to investigate...... increasing or maintaining the probability of detection. Hence, the antibacterial residue surveillance programme in Danish pigs would be more cost-effective than today....

  20. A Bayesian method for inferring transmission chains in a partially observed epidemic.

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Ray, Jaideep

    2008-10-01

    We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historical data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.

  1. 43 genes support the lungfish-coelacanth grouping related to the closest living relative of tetrapods with the Bayesian method under the coalescence model

    Science.gov (United States)

    2011-01-01

    Background Since the discovery of the "living fossil" in 1938, the coelacanth (Latimeria chalumnae) has generally been considered to be the closest living relative of the land vertebrates, and this is still the prevailing opinion in most general biology textbooks. However, the origin of tetrapods has not been resolved for decades. Three principal hypotheses (lungfish-tetrapod, coelacanth-tetrapod, or lungfish-coelacanth sister group) have been proposed. Findings We used the Bayesian method under the coalescence model with the latest published program (Bayesian Estimation of Species Trees, or BEST) to perform a phylogenetic analysis for seven relevant taxa and 43 nuclear protein-coding genes with the jackknife method for taxon sub-sampling. The lungfish-coelacanth sister group was consistently reconstructed with the Bayesian method under the coalescence model in 17 out of 21 taxon sets with a Bayesian posterior probability as high as 99%. Lungfish-tetrapod was only inferred from BCLS and BACLS. Neither coelacanth-tetrapod nor lungfish-coelacanth-tetrapod was recovered out of all 21 taxon sets. Conclusions Our results provide strong evidence in favor of accepting the hypothesis that lungfishes and coelacanths form a monophyletic sister-group that is the closest living relative of tetrapods. This clade was supported by high Bayesian posterior probabilities of the branch (a lungfish-coelacanth clade) and high taxon jackknife supports. PMID:21385375

  2. 43 genes support the lungfish-coelacanth grouping related to the closest living relative of tetrapods with the Bayesian method under the coalescence model

    Directory of Open Access Journals (Sweden)

    Gras Robin

    2011-03-01

    Full Text Available Abstract Background Since the discovery of the "living fossil" in 1938, the coelacanth (Latimeria chalumnae has generally been considered to be the closest living relative of the land vertebrates, and this is still the prevailing opinion in most general biology textbooks. However, the origin of tetrapods has not been resolved for decades. Three principal hypotheses (lungfish-tetrapod, coelacanth-tetrapod, or lungfish-coelacanth sister group have been proposed. Findings We used the Bayesian method under the coalescence model with the latest published program (Bayesian Estimation of Species Trees, or BEST to perform a phylogenetic analysis for seven relevant taxa and 43 nuclear protein-coding genes with the jackknife method for taxon sub-sampling. The lungfish-coelacanth sister group was consistently reconstructed with the Bayesian method under the coalescence model in 17 out of 21 taxon sets with a Bayesian posterior probability as high as 99%. Lungfish-tetrapod was only inferred from BCLS and BACLS. Neither coelacanth-tetrapod nor lungfish-coelacanth-tetrapod was recovered out of all 21 taxon sets. Conclusions Our results provide strong evidence in favor of accepting the hypothesis that lungfishes and coelacanths form a monophyletic sister-group that is the closest living relative of tetrapods. This clade was supported by high Bayesian posterior probabilities of the branch (a lungfish-coelacanth clade and high taxon jackknife supports.

  3. Bayesian Machine Learning Techniques for revealing complex interactions among genetic and clinical factors in association with extra-intestinal Manifestations in IBD patients

    Science.gov (United States)

    Menti, E; Lanera, C; Lorenzoni, G; Giachino, Daniela F.; Marchi, Mario De; Gregori, Dario; Berchialla, Paola

    2016-01-01

    The objective of the study is to assess the predictive performance of three different techniques as classifiers for extra-intestinal manifestations in 152 patients with Crohn’s disease. Naïve Bayes, Bayesian Additive Regression Trees and Bayesian Networks implemented using a Greedy Thick Thinning algorithm for learning dependencies among variables and EM algorithm for learning conditional probabilities associated to each variable are taken into account. Three sets of variables were considered: (i) disease characteristics: presentation, behavior and location (ii) risk factors: age, gender, smoke and familiarity and (iii) genetic polymorphisms of the NOD2, CD14, TNFA, IL12B, and IL1RN genes, whose involvement in Crohn’s disease is known or suspected. Extra-intestinal manifestations occurred in 75 patients. Bayesian Networks achieved accuracy of 82% when considering only clinical factors and 89% when considering also genetic information, outperforming the other techniques. CD14 has a small predicting capability. Adding TNFA, IL12B to the 3020insC NOD2 variant improved the accuracy.

  4. ISAR Imaging Method Based on the Bayesian Group-sparse Modeling%基于块稀疏贝叶斯模型的ISAR成像方法

    Institute of Scientific and Technical Information of China (English)

    吴称光; 邓彬; 苏伍各; 王宏强; 秦玉亮

    2015-01-01

    传统ISAR稀疏成像主要针对独立散射点散射系数的重构问题,然而实际情况下目标散射点之间并不是独立存在的,而是以区域或块的形式存在,在该情形下利用常用的稀疏重构算法并不能完全地刻画块状目标的真实结构,因此该文考虑采用块稀疏重构算法进行目标散射系数重建.基于块稀疏贝叶斯模型和变分推理的重构方法(VBGS),包含了稀疏贝叶斯学习(SBL)方法中参数学习的优点,其利用分层的先验分布来表征未知信号的稀疏块状信息,因而相对于现有的恢复算法能够更好地重建块稀疏信号.该方法基于变分贝叶斯推理原理,根据观测量能自动地估计信号未知参数,而无需人工参数设置.针对稀疏块状目标,该文结合压缩感知(CS)理论将VBGS方法用于ISAR成像,仿真实验成像结果表明该方法优于传统的成像结果,适合于具有块状结构的ISAR目标成像.%The traditional sparse ISAR imaging method mainly considers the recovery of coefficients on individual scatters. However, in the practice situation, the target scatters presented by blocks or groups do not emerge on individual. In this case, the usual sparse recover algorithm can not depict the shape of real target, thus, the group-sparse recover approaches are adopted to reconstruct the coefficients of target scatters. The recovery method based on the Bayesian Group-Sparse modeling and Variational inference (VBGS) uses a hierarchical construction of a general signal prior to model the group sparse signals and contain the merit of Sparse Bayesian Learning (SBL) on parameters learning, as a result, it can reconstruct the group sparse signal better than the usual recover algorithm. The VBGS method uses the variational Bayesian inference approach to estimate the parameters of the unknown signal automatically and does not require the parameter-tuning procedures. Considering the sparse group target, this paper combines the

  5. A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control

    Directory of Open Access Journals (Sweden)

    Gabriella Ferruzzi

    2013-02-01

    Full Text Available A new short-term probabilistic forecasting method is proposed to predict the probability density function of the hourly active power generated by a photovoltaic system. Firstly, the probability density function of the hourly clearness index is forecasted making use of a Bayesian auto regressive time series model; the model takes into account the dependence of the solar radiation on some meteorological variables, such as the cloud cover and humidity. Then, a Monte Carlo simulation procedure is used to evaluate the predictive probability density function of the hourly active power by applying the photovoltaic system model to the random sampling of the clearness index distribution. A numerical application demonstrates the effectiveness and advantages of the proposed forecasting method.

  6. Benchmarking Learning and Teaching: Developing a Method

    Science.gov (United States)

    Henderson-Smart, Cheryl; Winning, Tracey; Gerzina, Tania; King, Shalinie; Hyde, Sarah

    2006-01-01

    Purpose: To develop a method for benchmarking teaching and learning in response to an institutional need to validate a new program in Dentistry at the University of Sydney, Australia. Design/methodology/approach: After a collaborative partner, University of Adelaide, was identified, the areas of teaching and learning to be benchmarked, PBL…

  7. Bayesian and neural networks for preliminary ship design

    DEFF Research Database (Denmark)

    Clausen, H. B.; Lützen, Marie; Friis-Hansen, Andreas

    2001-01-01

    000 ships is acquired and various methods for derivation of empirical relations are employed. A regression analysis is carried out to fit functions to the data. Further, the data are used to learn Bayesian and neural networks to encode the relations between the characteristics. On the basis...

  8. Bayesian and neural networks for preliminary ship design

    DEFF Research Database (Denmark)

    Clausen, H. B.; Lützen, Marie; Friis-Hansen, Andreas

    2001-01-01

    000 ships is acquired and various methods for derivation of empirical relations are employed. A regression analysis is carried out to fit functions to the data. Further, the data are used to learn Bayesian and neural networks to encode the relations between the characteristics. On the basis...

  9. Adaptive Hessian-based Non-stationary Gaussian Process Response Surface Method for Probability Density Approximation with Application to Bayesian Solution of Large-scale Inverse Problems

    Science.gov (United States)

    2011-10-01

    applications, Spinger -Verlag, 1989. Fig. 7.11. Two dimensional marginal chains for parameters m5,m6,m7,m8. The Gaussian process predictor is obtained after ten...43 (2005), pp. 1306–1315. [48] Radford M. Neal, Bayesian learning for neural networks, Spinger -Verlag, 1996. [49] Ngoc Cuong Nguyen, An uncertainty...J. Santner, Brian J. Williams, and William I. Notz, The Design and Analysis of Computer Experiments, Spinger -Verlag, 2003. [60] Alexandra M. Schmidt

  10. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Science.gov (United States)

    Hu, Liangdong; Wang, Limin

    2013-01-01

    Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  11. Bayesian Face Sketch Synthesis.

    Science.gov (United States)

    Wang, Nannan; Gao, Xinbo; Sun, Leiyu; Li, Jie

    2017-03-01

    Exemplar-based face sketch synthesis has been widely applied to both digital entertainment and law enforcement. In this paper, we propose a Bayesian framework for face sketch synthesis, which provides a systematic interpretation for understanding the common properties and intrinsic difference in different methods from the perspective of probabilistic graphical models. The proposed Bayesian framework consists of two parts: the neighbor selection model and the weight computation model. Within the proposed framework, we further propose a Bayesian face sketch synthesis method. The essential rationale behind the proposed Bayesian method is that we take the spatial neighboring constraint between adjacent image patches into consideration for both aforementioned models, while the state-of-the-art methods neglect the constraint either in the neighbor selection model or in the weight computation model. Extensive experiments on the Chinese University of Hong Kong face sketch database demonstrate that the proposed Bayesian method could achieve superior performance compared with the state-of-the-art methods in terms of both subjective perceptions and objective evaluations.

  12. The evolution of autodigestion in the mushroom family Psathyrellaceae (Agaricales) inferred from Maximum Likelihood and Bayesian methods.

    Science.gov (United States)

    Nagy, László G; Urban, Alexander; Orstadius, Leif; Papp, Tamás; Larsson, Ellen; Vágvölgyi, Csaba

    2010-12-01

    Recently developed comparative phylogenetic methods offer a wide spectrum of applications in evolutionary biology, although it is generally accepted that their statistical properties are incompletely known. Here, we examine and compare the statistical power of the ML and Bayesian methods with regard to selection of best-fit models of fruiting-body evolution and hypothesis testing of ancestral states on a real-life data set of a physiological trait (autodigestion) in the family Psathyrellaceae. Our phylogenies are based on the first multigene data set generated for the family. Two different coding regimes (binary and multistate) and two data sets differing in taxon sampling density are examined. The Bayesian method outperformed Maximum Likelihood with regard to statistical power in all analyses. This is particularly evident if the signal in the data is weak, i.e. in cases when the ML approach does not provide support to choose among competing hypotheses. Results based on binary and multistate coding differed only modestly, although it was evident that multistate analyses were less conclusive in all cases. It seems that increased taxon sampling density has favourable effects on inference of ancestral states, while model parameters are influenced to a smaller extent. The model best fitting our data implies that the rate of losses of deliquescence equals zero, although model selection in ML does not provide proper support to reject three of the four candidate models. The results also support the hypothesis that non-deliquescence (lack of autodigestion) has been ancestral in Psathyrellaceae, and that deliquescent fruiting bodies represent the preferred state, having evolved independently several times during evolution. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Applications of Bayesian Phylodynamic Methods in a Recent U.S. Porcine Reproductive and Respiratory Syndrome Virus Outbreak.

    Science.gov (United States)

    Alkhamis, Mohammad A; Perez, Andres M; Murtaugh, Michael P; Wang, Xiong; Morrison, Robert B

    2016-01-01

    Classical phylogenetic methods such as neighbor-joining or maximum likelihood trees, provide limited inferences about the evolution of important pathogens and ignore important evolutionary parameters and uncertainties, which in turn limits decision making related to surveillance, control, and prevention resources. Bayesian phylodynamic models have recently been used to test research hypotheses related to evolution of infectious agents. However, few studies have attempted to model the evolutionary dynamics of porcine reproductive and respiratory syndrome virus (PRRSV) and, to the authors' knowledge, no attempt has been made to use large volumes of routinely collected data, sometimes referred to as big data, in the context of animal disease surveillance. The objective of this study was to explore and discuss the applications of Bayesian phylodynamic methods for modeling the evolution and spread of a notable 1-7-4 RFLP-type PRRSV between 2014 and 2015. A convenience sample of 288 ORF5 sequences was collected from 5 swine production systems in the United States between September 2003 and March 2015. Using coalescence and discrete trait phylodynamic models, we were able to infer population growth and demographic history of the virus, identified the most likely ancestral system (root state posterior probability = 0.95) and revealed significant dispersal routes (Bayes factor > 6) of viral exchange among systems. Results indicate that currently circulating viruses are evolving rapidly, and show a higher level of relative genetic diversity over time, when compared to earlier relatives. Biological soundness of model results is supported by the finding that sow farms were responsible for PRRSV spread within the systems. Such results cannot be obtained by traditional phylogenetic methods, and therefore, our results provide a methodological framework for molecular epidemiological modeling of new PRRSV outbreaks and demonstrate the prospects of phylodynamic models to inform

  14. Applications of Bayesian Phylodynamic Methods in a Recent U.S. Porcine Reproductive and Respiratory Syndrome Virus Outbreak

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alkhamis

    2016-02-01

    Full Text Available Classical phylogenetic methods such as neighbor-joining or maximum likelihood trees, provide limited inferences about the evolution of important pathogens and ignore important evolutionary parameters and uncertainties, which in turn limits decision making related to surveillance, control and prevention resources. Bayesian phylodynamic models have recently been used to test research hypothesis related to evolution of infectious agents. However, few studies have attempted to model the evolutionary dynamics of porcine reproductive and respiratory syndrome virus (PRRSV and, to the authors’ knowledge, no attempt has been made to use large volumes of routinely collected data, sometimes referred to as big data, in the context of animal disease surveillance. The objective of this study was to explore and discuss the applications of Bayesian phylodynamic methods for modeling the evolution and spread of a notable 1-7-4 RFLP-type PRRSV between 2014 and 2015. A convenience sample of 288 ORF5 sequences was collected from 5 swine production systems in the United States between September 2003 and March 2015. Using coalescence and discrete trait phylodynamic models, we were able to infer population growth and demographic history of the virus, identified the most likely ancestral system (root state posterior probability = 0.95 and revealed significant dispersal routes (Bayes factor > 6 of viral exchange among systems. Results indicate that currently circulating viruses are evolving rapidly, and show a higher level of relative genetic diversity over time, when compared to earlier relatives. Biological soundness of model results is supported by the finding that sow farms were responsible for PRRSV spread within the systems. Such results can’t be obtained by traditional phylogenetic methods, and therefore, our results provide a methodological framework for molecular epidemiological modeling of new PRRSV outbreaks and demonstrate the prospects of phylodynamic

  15. Activating teaching methods, studying responses and learning

    OpenAIRE

    Christensen, Hans Peter; Vigild, Martin E.; Thomsen, Erik; Szabo, Peter; Horsewell, Andy

    2009-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed. Peer Reviewed

  16. Bayesian statistics

    OpenAIRE

    新家, 健精

    2013-01-01

    © 2012 Springer Science+Business Media, LLC. All rights reserved. Article Outline: Glossary Definition of the Subject and Introduction The Bayesian Statistical Paradigm Three Examples Comparison with the Frequentist Statistical Paradigm Future Directions Bibliography

  17. The Bayesian Revolution Approaches Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2007-01-01

    This commentary reviews five articles that apply Bayesian ideas to psychological development, some with psychology experiments, some with computational modeling, and some with both experiments and modeling. The reviewed work extends the current Bayesian revolution into tasks often studied in children, such as causal learning and word learning, and…

  18. Using Bayesian neural networks to classify forest scenes

    Science.gov (United States)

    Vehtari, Aki; Heikkonen, Jukka; Lampinen, Jouko; Juujarvi, Jouni

    1998-10-01

    We present results that compare the performance of Bayesian learning methods for neural networks on the task of classifying forest scenes into trees and background. Classification task is demanding due to the texture richness of the trees, occlusions of the forest scene objects and diverse lighting conditions under operation. This makes it difficult to determine which are optimal image features for the classification. A natural way to proceed is to extract many different types of potentially suitable features, and to evaluate their usefulness in later processing stages. One approach to cope with large number of features is to use Bayesian methods to control the model complexity. Bayesian learning uses a prior on model parameters, combines this with evidence from a training data, and the integrates over the resulting posterior to make predictions. With this method, we can use large networks and many features without fear of overfitting. For this classification task we compare two Bayesian learning methods for multi-layer perceptron (MLP) neural networks: (1) The evidence framework of MacKay uses a Gaussian approximation to the posterior weight distribution and maximizes with respect to hyperparameters. (2) In a Markov Chain Monte Carlo (MCMC) method due to Neal, the posterior distribution of the network parameters is numerically integrated using the MCMC method. As baseline classifiers for comparison we use (3) MLP early stop committee, (4) K-nearest-neighbor and (5) Classification And Regression Tree.

  19. Classification using Bayesian neural nets

    NARCIS (Netherlands)

    J.C. Bioch (Cor); O. van der Meer; R. Potharst (Rob)

    1995-01-01

    textabstractRecently, Bayesian methods have been proposed for neural networks to solve regression and classification problems. These methods claim to overcome some difficulties encountered in the standard approach such as overfitting. However, an implementation of the full Bayesian approach to neura

  20. A Bayesian Calibration-Prediction Method for Reducing Model-Form Uncertainties with Application in RANS Simulations

    CERN Document Server

    Wu, J -L; Xiao, H

    2015-01-01

    Model-form uncertainties in complex mechanics systems are a major obstacle for predictive simulations. Reducing these uncertainties is critical for stake-holders to make risk-informed decisions based on numerical simulations. For example, Reynolds-Averaged Navier-Stokes (RANS) simulations are increasingly used in mission-critical systems involving turbulent flows. However, for many practical flows the RANS predictions have large model-form uncertainties originating from the uncertainty in the modeled Reynolds stresses. Recently, a physics-informed Bayesian framework has been proposed to quantify and reduce model-form uncertainties in RANS simulations by utilizing sparse observation data. However, in the design stage of engineering systems, measurement data are usually not available. In the present work we extend the original framework to scenarios where there are no available data on the flow to be predicted. In the proposed method, we first calibrate the model discrepancy on a related flow with available dat...

  1. A Bayesian cluster analysis method for single-molecule localization microscopy data.

    Science.gov (United States)

    Griffié, Juliette; Shannon, Michael; Bromley, Claire L; Boelen, Lies; Burn, Garth L; Williamson, David J; Heard, Nicholas A; Cope, Andrew P; Owen, Dylan M; Rubin-Delanchy, Patrick

    2016-12-01

    Cell function is regulated by the spatiotemporal organization of the signaling machinery, and a key facet of this is molecular clustering. Here, we present a protocol for the analysis of clustering in data generated by 2D single-molecule localization microscopy (SMLM)-for example, photoactivated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). Three features of such data can cause standard cluster analysis approaches to be ineffective: (i) the data take the form of a list of points rather than a pixel array; (ii) there is a non-negligible unclustered background density of points that must be accounted for; and (iii) each localization has an associated uncertainty in regard to its position. These issues are overcome using a Bayesian, model-based approach. Many possible cluster configurations are proposed and scored against a generative model, which assumes Gaussian clusters overlaid on a completely spatially random (CSR) background, before every point is scrambled by its localization precision. We present the process of generating simulated and experimental data that are suitable to our algorithm, the analysis itself, and the extraction and interpretation of key cluster descriptors such as the number of clusters, cluster radii and the number of localizations per cluster. Variations in these descriptors can be interpreted as arising from changes in the organization of the cellular nanoarchitecture. The protocol requires no specific programming ability, and the processing time for one data set, typically containing 30 regions of interest, is ∼18 h; user input takes ∼1 h.

  2. Using Bayesian network and AHP method as a marketing approach tools in defining tourists’ preferences

    Directory of Open Access Journals (Sweden)

    Nataša Papić-Blagojević

    2012-04-01

    Full Text Available Marketing approach is associated to market conditions and achieving long term profitability of a company by satisfying consumers’ needs. This approach in tourism does not have to be related only to promoting one touristic destination, but is associated to relation between travel agency and its clients too. It considers that travel agencies adjust their offers to their clients’ needs. In that sense, it is important to analyze the behavior of tourists in the earlier periods with consideration of their preferences. Using Bayesian network, it could be graphically displayed the connection between tourists who have similar taste and relationships between them. On the other hand, the analytic hierarchy process (AHP is used to rank tourist attractions, with also relying on past experience. In this paper we examine possible applications of these two models in tourism in Serbia. The example is hypothetical, but it will serve as a base for future research. Three types of tourism are chosen as a representative in Vojvodina: Cultural, Rural and Business tourism, because they are the bright spot of touristic development in this area. Applied on these forms, analytic hierarchy process has shown its strength in predicting tourists’ preferences.

  3. A Bayesian Target Predictor Method based on Molecular Pairing Energies estimation.

    Science.gov (United States)

    Oliver, Antoni; Canals, Vincent; Rosselló, Josep L

    2017-03-06

    Virtual screening (VS) is applied in the early drug discovery phases for the quick inspection of huge molecular databases to identify those compounds that most likely bind to a given drug target. In this context, there is the necessity of the use of compact molecular models for database screening and precise target prediction in reasonable times. In this work we present a new compact energy-based model that is tested for its application to Virtual Screening and target prediction. The model can be used to quickly identify active compounds in huge databases based on the estimation of the molecule's pairing energies. The greatest molecular polar regions along with its geometrical distribution are considered by using a short set of smart energy vectors. The model is tested using similarity searches within the Directory of Useful Decoys (DUD) database. The results obtained are considerably better than previously published models. As a Target prediction methodology we propose the use of a Bayesian Classifier that uses a combination of different active compounds to build an energy-dependent probability distribution function for each target.

  4. Bayesian Methods for Reconstructing Sunspot Numbers Before and During the Maunder Minimum

    Science.gov (United States)

    Travaglini, Guido

    2017-01-01

    The Maunder Minimum (MM) was an extended period of reduced solar activity in terms of yearly sunspot numbers (SSN) during 1610 - 1715. The reality of this "grand minimum" is generally accepted in the scientific community, but the statistics of the SSN record suggest a need for data reconstruction. The MM data show a nonstandard distribution compared with the entire SSN signal (1610 - 2014). The pattern does not satisfy the weakly stationary solar dynamo approximation, which characterizes many natural events spanning centuries or even millennia, including the Sun and the stars. Over the entire observation period (1610 - 2014), the reported SSN exhibits statistically significant regime switches, departures from autoregressive stationarity, and growing trends. Reconstruction of the SSN during the pre-MM and MM periods is performed using five novel statistical procedures in support of signal analysis. A Bayesian-Monte Carlo backcast technique is found to be most reliable and produces an SSN signal that meets the weak-stationarity requirement. The computed MM signal for this reconstruction does not show a "grand" minimum or even a "semi-grand" minimum.

  5. Uncertainty in Ecohydrological Modeling in an Arid Region Determined with Bayesian Methods.

    Directory of Open Access Journals (Sweden)

    Junjun Yang

    Full Text Available In arid regions, water resources are a key forcing factor in ecosystem circulation, and soil moisture is the critical link that constrains plant and animal life on the soil surface and underground. Simulation of soil moisture in arid ecosystems is inherently difficult due to high variability. We assessed the applicability of the process-oriented CoupModel for forecasting of soil water relations in arid regions. We used vertical soil moisture profiling for model calibration. We determined that model-structural uncertainty constituted the largest error; the model did not capture the extremes of low soil moisture in the desert-oasis ecotone (DOE, particularly below 40 cm soil depth. Our results showed that total uncertainty in soil moisture prediction was improved when input and output data, parameter value array, and structure errors were characterized explicitly. Bayesian analysis was applied with prior information to reduce uncertainty. The need to provide independent descriptions of uncertainty analysis (UA in the input and output data was demonstrated. Application of soil moisture simulation in arid regions will be useful for dune-stabilization and revegetation efforts in the DOE.

  6. A Bayesian Target Predictor Method based on Molecular Pairing Energies estimation

    Science.gov (United States)

    Oliver, Antoni; Canals, Vincent; Rosselló, Josep L.

    2017-03-01

    Virtual screening (VS) is applied in the early drug discovery phases for the quick inspection of huge molecular databases to identify those compounds that most likely bind to a given drug target. In this context, there is the necessity of the use of compact molecular models for database screening and precise target prediction in reasonable times. In this work we present a new compact energy-based model that is tested for its application to Virtual Screening and target prediction. The model can be used to quickly identify active compounds in huge databases based on the estimation of the molecule’s pairing energies. The greatest molecular polar regions along with its geometrical distribution are considered by using a short set of smart energy vectors. The model is tested using similarity searches within the Directory of Useful Decoys (DUD) database. The results obtained are considerably better than previously published models. As a Target prediction methodology we propose the use of a Bayesian Classifier that uses a combination of different active compounds to build an energy-dependent probability distribution function for each target.

  7. Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study

    Science.gov (United States)

    Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang

    2016-01-01

    Objective To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. Design A time-series study using regional death registry between 2009 and 2010. Setting 8 districts in a large metropolitan area in Northern China. Participants 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Main outcome measures Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. Results The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (−1.09 to 4.28 vs −1.08 to 3.93) and the PCs-based model (−2.23 to 4.07 vs −2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, −1.12 to 4.85 versus −1.11 versus 4.83. Conclusions The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. PMID:27531727

  8. Effect of Methods of Learning and Self Regulated Learning toward Outcomes of Learning Social Studies

    Science.gov (United States)

    Tjalla, Awaluddin; Sofiah, Evi

    2015-01-01

    This research aims to reveal the influence of learning methods and self-regulated learning on students learning scores for Social Studies object. The research was done in Islamic Junior High School (MTs Manba'ul Ulum), Batuceper City Tangerang using quasi-experimental method. The research employed simple random technique to 28 students. Data were…

  9. The guided autobiography method: a learning experience.

    Science.gov (United States)

    Thornton, James E

    2008-01-01

    This article discusses the proposition that learning is an unexplored feature of the guided autobiography method and its developmental exchange. Learning, conceptualized and explored as the embedded and embodied processes, is essential in narrative activities of the guided autobiography method leading to psychosocial development and growth in dynamic, temporary social groups. The article is organized in four sections and summary. The first section provides a brief overview of the guided autobiography method describing the interplay of learning and experiencing in temporary social groups. The second section offers a limited review on learning and experiencing as processes that are essential for development, growth, and change. The third section reviews the small group activities and the emergence of the "developmental exchange" in the guided autobiography method. Two theoretical constructs provide a conceptual foundation for the developmental exchange: a counterpart theory of aging as development and collaborative-situated group learning theory. The summary recaps the main ideas and issues that shape the guided autobiography method as learning and social experience using the theme, "Where to go from here."

  10. Bayesian reconstruction of P(r) directly from two-dimensional detector images via a Markov chain Monte Carlo method.

    Science.gov (United States)

    Paul, Sudeshna; Friedman, Alan M; Bailey-Kellogg, Chris; Craig, Bruce A

    2013-04-01

    The interatomic distance distribution, P(r), is a valuable tool for evaluating the structure of a molecule in solution and represents the maximum structural information that can be derived from solution scattering data without further assumptions. Most current instrumentation for scattering experiments (typically CCD detectors) generates a finely pixelated two-dimensional image. In contin-uation of the standard practice with earlier one-dimensional detectors, these images are typically reduced to a one-dimensional profile of scattering inten-sities, I(q), by circular averaging of the two-dimensional image. Indirect Fourier transformation methods are then used to reconstruct P(r) from I(q). Substantial advantages in data analysis, however, could be achieved by directly estimating the P(r) curve from the two-dimensional images. This article describes a Bayesian framework, using a Markov chain Monte Carlo method, for estimating the parameters of the indirect transform, and thus P(r), directly from the two-dimensional images. Using simulated detector images, it is demonstrated that this method yields P(r) curves nearly identical to the reference P(r). Furthermore, an approach for evaluating spatially correlated errors (such as those that arise from a detector point spread function) is evaluated. Accounting for these errors further improves the precision of the P(r) estimation. Experimental scattering data, where no ground truth reference P(r) is available, are used to demonstrate that this method yields a scattering and detector model that more closely reflects the two-dimensional data, as judged by smaller residuals in cross-validation, than P(r) obtained by indirect transformation of a one-dimensional profile. Finally, the method allows concurrent estimation of the beam center and Dmax, the longest interatomic distance in P(r), as part of the Bayesian Markov chain Monte Carlo method, reducing experimental effort and providing a well defined protocol for these

  11. Evaluation of the antibacterial residue surveillance programme in Danish pigs using Bayesian methods.

    Science.gov (United States)

    Baptista, F M; Alban, L; Olsen, A M; Petersen, J V; Toft, N

    2012-10-01

    Residues of pharmacological active substances or their metabolites might be found in food products from food-producing animals. Maximum Residue Limits for pharmacological active substances in foodstuffs of animal origin are established to assure high food safety standards. Each year, more than 20,000 samples are analysed for the presence of antibacterial residues in Danish pigs. This corresponds to 0.1% of the size of the slaughter pig population and more than 1% of the sows slaughtered. In this study, a Bayesian model was used to evaluate the Danish surveillance system accuracy and to investigate the impact of a potential risk-based sampling approach to the residue surveillance programme in Danish slaughter pigs. Danish surveillance data from 2005 to 2009 and limited knowledge about true prevalence and test sensitivity and specificity were included in the model. According to the model, the true antibacterial residue prevalence in Danish pigs is very low in both sows (∼0.20%) and slaughter pigs (∼0.01%). Despite data constraints, the results suggest that the current screening test used in Denmark presents high sensitivity (85-99%) and very high specificity (>99%) for the most relevant antibacterial classes used in Danish pigs. If high-risk slaughter pigs could be identified by taking into account antibacterial use or meat inspection risk factors, a potential risk-based sampling approach to antibacterial residue surveillance in slaughter pigs would allow reducing the sample size substantially, while increasing or maintaining the probability of detection. Hence, the antibacterial residue surveillance programme in Danish pigs would be more cost-effective than today.

  12. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  13. An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data.

    Science.gov (United States)

    Liu, Yuzhe; Gopalakrishnan, Vanathi

    2017-03-01

    Many clinical research datasets have a large percentage of missing values that directly impacts their usefulness in yielding high accuracy classifiers when used for training in supervised machine learning. While missing value imputation methods have been shown to work well with smaller percentages of missing values, their ability to impute sparse clinical research data can be problem specific. We previously attempted to learn quantitative guidelines for ordering cardiac magnetic resonance imaging during the evaluation for pediatric cardiomyopathy, but missing data significantly reduced our usable sample size. In this work, we sought to determine if increasing the usable sample size through imputation would allow us to learn better guidelines. We first review several machine learning methods for estimating missing data. Then, we apply four popular methods (mean imputation, decision tree, k-nearest neighbors, and self-organizing maps) to a clinical research dataset of pediatric patients undergoing evaluation for cardiomyopathy. Using Bayesian Rule Learning (BRL) to learn ruleset models, we compared the performance of imputation-augmented models versus unaugmented models. We found that all four imputation-augmented models performed similarly to unaugmented models. While imputation did not improve performance, it did provide evidence for the robustness of our learned models.

  14. Reproducibility of parameter learning with missing observations in naive Wnt Bayesian network trained on colorectal cancer samples and doxycycline-treated cell lines.

    Science.gov (United States)

    Sinha, Shriprakash

    2015-07-01

    In this manuscript the reproducibility of parameter learning with missing observations in a naive Bayesian network and its effect on the prediction results for Wnt signaling activation in colorectal cancer is tested. The training of the network is carried out separately on doxycycline-treated LS174T cell lines (GSE18560) as well as normal and adenoma samples (GSE8671). A computational framework to test the reproducibility of the parameters is designed in order check the veracity of the prediction results. Detailed experimental analysis suggests that the prediction results are accurate and reproducible with negligible deviations. Anomalies in estimated parameters are accounted for due to the representation issues of the Bayesian network model. High prediction accuracies are reported for normal (N) and colon-related adenomas (AD), colorectal cancer (CRC), carcinomas (C), adenocarcinomas (ADC) and replication error colorectal cancer (RER CRC) test samples. Test samples from inflammatory bowel diseases (IBD) do not fare well in the prediction test. Also, an interesting case regarding hypothesis testing came up while proving the statistical significance of the different design setups of the Bayesian network model. It was found that hypothesis testing may not be the correct way to check the significance between design setups, especially when the structure of the model is the same, given that the model is trained on a single piece of test data. The significance test does have value when the datasets are independent. Finally, in comparison to the biologically inspired models, the naive Bayesian model may give accurate results, but this accuracy comes at the cost of a loss of crucial biological knowledge which might help reveal hidden relations among intra/extracellular factors affecting the Wnt pathway.

  15. Application of a Bayesian method to data-poor stock assessment by using Indian Ocean albacore (Thunnus alalunga) stock assessment as an example

    Institute of Scientific and Technical Information of China (English)

    GUAN Wenjiang; TANG Lin; ZHU Jiangfeng; TIAN Siquan; XU Liuxiong

    2016-01-01

    It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in data-poor situations through borrowing strength from prior information deduced from species with good-quality data or other known information. Because there is considerable uncertainty remaining in the stock assessment of albacore tuna (Thunnus alalunga) in the Indian Ocean due to the limited and low-quality data, we investigate the advantages of a Bayesian method in data-poor stock assessment by using Indian Ocean albacore stock assessment as an example. Eight Bayesian biomass dynamics models with different prior assumptions and catch data series were developed to assess the stock. The results show (1) the rationality of choice of catch data series and assumption of parameters could be enhanced by analyzing the posterior distribution of the parameters; (2) the reliability of the stock assessment could be improved by using demographic methods to construct a prior for the intrinsic rate of increase (r). Because we can make use of more information to improve the rationality of parameter estimation and the reliability of the stock assessment compared with traditional statistical methods by incorporating any available knowledge into the informative priors and analyzing the posterior distribution based on Bayesian framework in data-poor situations, we suggest that the Bayesian method should be an alternative method to be applied in data-poor species stock assessment, such as Indian Ocean albacore.

  16. Learning styles: The learning methods of air traffic control students

    Science.gov (United States)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  17. Environmental education and methods for successful learning

    OpenAIRE

    Stavreva Veselinovska, Snezana; Kirova, Snezana

    2016-01-01

    This paper deals with the problems of effective learning in environmental education, as well as with educational objectives, approaches to teaching, organizing basic ideas in an innovative model of environmental education. It lists the basic strategies of learning and characterizes the dominant methods. Students’ activities are organized along a five-component structured model integrating knowledge, values, ethics, skills and evaluation. The educational results evaluation criteria are pres...

  18. Methods of successful learning in environmental education

    OpenAIRE

    Stavreva Veselinovska, Snezana; Petrova Gjorgjeva, Emilija; Kirova, Snezana

    2010-01-01

    The article discusses the problems connected with effective learning in environmental education. Educational goals, approaches to teaching, basic organizing ideas and the main constructs of an innovative model of EE are dealt with in the paper. Basic strategies of learning are outlined and dominant methods briefly characterized. Students' activities are organized along a five-component structured model integrating knowledge, values, ethics, skills and evaluation. Criteria for ...

  19. Bayesian of inductive cognition algorithm for adaptive classification

    Science.gov (United States)

    Jin, Longcun; Wan, Wanggen; Cui, Bin; Wu, Yongliang

    2009-07-01

    In this paper, we proposed a Bayesian of inductive cognition algorithm using in virtual reality multimedia classification. We present a Bayesian of inductive cognition algorithm framework model for adaptively classifying scenes in virtual reality multimedia data. The Multimedia can switch between different shots, the unknown objects can leave or enter the scene at multiple times, and the scenes can be adaptively classified. The proposed algorithm consists of Bayesian inductive cognition part and Dirichlet process part. This algorithm has several advantages over traditional distance-based agglomerative adaptively classifying algorithms. Bayesian of inductive cognition algorithm based on Dirichlet process hypothesis testing is used to decide which merges are advantageous and to output the recommended depth of the scenes. The algorithm can be interpreted as a novel fast bottom-up approximate inference method for a Dirichlet process mixture model. We describe procedures for learning the model hyperparameters, computing the predictive distribution, and extensions to the Bayesian of inductive cognition algorithm. Experimental results on virtual reality multimedia data sets demonstrate useful properties of the Bayesian of inductive cognition algorithm.

  20. e-Learning Business Research Methods

    Science.gov (United States)

    Cowie, Jonathan

    2004-01-01

    This paper outlines the development of a generic Business Research Methods course from a simple name in a box to a full e-Learning web based module. It highlights particular issues surrounding the nature of the discipline and the integration of a large number of cross faculty subject specific research methods courses into a single generic module.…