WorldWideScience

Sample records for bayesian inference models

  1. Constrained bayesian inference of project performance models

    OpenAIRE

    Sunmola, Funlade

    2013-01-01

    Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in ...

  2. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    Science.gov (United States)

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  3. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  4. Bayesian inference of chemical kinetic models from proposed reactions

    KAUST Repository

    Galagali, Nikhil; Marzouk, Youssef M.

    2015-01-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model

  5. Empirical Bayesian inference and model uncertainty

    International Nuclear Information System (INIS)

    Poern, K.

    1994-01-01

    This paper presents a hierarchical or multistage empirical Bayesian approach for the estimation of uncertainty concerning the intensity of a homogeneous Poisson process. A class of contaminated gamma distributions is considered to describe the uncertainty concerning the intensity. These distributions in turn are defined through a set of secondary parameters, the knowledge of which is also described and updated via Bayes formula. This two-stage Bayesian approach is an example where the modeling uncertainty is treated in a comprehensive way. Each contaminated gamma distributions, represented by a point in the 3D space of secondary parameters, can be considered as a specific model of the uncertainty about the Poisson intensity. Then, by the empirical Bayesian method each individual model is assigned a posterior probability

  6. Bayesian inference model for fatigue life of laminated composites

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian

    2016-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference. The ...

  7. Bayesian inference with information content model check for Langevin equations

    DEFF Research Database (Denmark)

    Krog, Jens F. C.; Lomholt, Michael Andersen

    2017-01-01

    The Bayesian data analysis framework has been proven to be a systematic and effective method of parameter inference and model selection for stochastic processes. In this work we introduce an information content model check which may serve as a goodness-of-fit, like the chi-square procedure...

  8. Fast model updating coupling Bayesian inference and PGD model reduction

    Science.gov (United States)

    Rubio, Paul-Baptiste; Louf, François; Chamoin, Ludovic

    2018-04-01

    The paper focuses on a coupled Bayesian-Proper Generalized Decomposition (PGD) approach for the real-time identification and updating of numerical models. The purpose is to use the most general case of Bayesian inference theory in order to address inverse problems and to deal with different sources of uncertainties (measurement and model errors, stochastic parameters). In order to do so with a reasonable CPU cost, the idea is to replace the direct model called for Monte-Carlo sampling by a PGD reduced model, and in some cases directly compute the probability density functions from the obtained analytical formulation. This procedure is first applied to a welding control example with the updating of a deterministic parameter. In the second application, the identification of a stochastic parameter is studied through a glued assembly example.

  9. Bayesian inference of chemical kinetic models from proposed reactions

    KAUST Repository

    Galagali, Nikhil

    2015-02-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.

  10. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    Science.gov (United States)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  11. Bayesian inference method for stochastic damage accumulation modeling

    International Nuclear Information System (INIS)

    Jiang, Xiaomo; Yuan, Yong; Liu, Xian

    2013-01-01

    Damage accumulation based reliability model plays an increasingly important role in successful realization of condition based maintenance for complicated engineering systems. This paper developed a Bayesian framework to establish stochastic damage accumulation model from historical inspection data, considering data uncertainty. Proportional hazards modeling technique is developed to model the nonlinear effect of multiple influencing factors on system reliability. Different from other hazard modeling techniques such as normal linear regression model, the approach does not require any distribution assumption for the hazard model, and can be applied for a wide variety of distribution models. A Bayesian network is created to represent the nonlinear proportional hazards models and to estimate model parameters by Bayesian inference with Markov Chain Monte Carlo simulation. Both qualitative and quantitative approaches are developed to assess the validity of the established damage accumulation model. Anderson–Darling goodness-of-fit test is employed to perform the normality test, and Box–Cox transformation approach is utilized to convert the non-normality data into normal distribution for hypothesis testing in quantitative model validation. The methodology is illustrated with the seepage data collected from real-world subway tunnels.

  12. Sparse linear models: Variational approximate inference and Bayesian experimental design

    International Nuclear Information System (INIS)

    Seeger, Matthias W

    2009-01-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  13. Sparse linear models: Variational approximate inference and Bayesian experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)

    2009-12-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  14. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran

  15. Bayesian inference for hybrid discrete-continuous stochastic kinetic models

    International Nuclear Information System (INIS)

    Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S

    2014-01-01

    We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)

  16. Fast Bayesian Inference in Dirichlet Process Mixture Models.

    Science.gov (United States)

    Wang, Lianming; Dunson, David B

    2011-01-01

    There has been increasing interest in applying Bayesian nonparametric methods in large samples and high dimensions. As Markov chain Monte Carlo (MCMC) algorithms are often infeasible, there is a pressing need for much faster algorithms. This article proposes a fast approach for inference in Dirichlet process mixture (DPM) models. Viewing the partitioning of subjects into clusters as a model selection problem, we propose a sequential greedy search algorithm for selecting the partition. Then, when conjugate priors are chosen, the resulting posterior conditionally on the selected partition is available in closed form. This approach allows testing of parametric models versus nonparametric alternatives based on Bayes factors. We evaluate the approach using simulation studies and compare it with four other fast nonparametric methods in the literature. We apply the proposed approach to three datasets including one from a large epidemiologic study. Matlab codes for the simulation and data analyses using the proposed approach are available online in the supplemental materials.

  17. BayesCLUMPY: BAYESIAN INFERENCE WITH CLUMPY DUSTY TORUS MODELS

    International Nuclear Information System (INIS)

    Asensio Ramos, A.; Ramos Almeida, C.

    2009-01-01

    Our aim is to present a fast and general Bayesian inference framework based on the synergy between machine learning techniques and standard sampling methods and apply it to infer the physical properties of clumpy dusty torus using infrared photometric high spatial resolution observations of active galactic nuclei. We make use of the Metropolis-Hastings Markov Chain Monte Carlo algorithm for sampling the posterior distribution function. Such distribution results from combining all a priori knowledge about the parameters of the model and the information introduced by the observations. The main difficulty resides in the fact that the model used to explain the observations is computationally demanding and the sampling is very time consuming. For this reason, we apply a set of artificial neural networks that are used to approximate and interpolate a database of models. As a consequence, models not present in the original database can be computed ensuring continuity. We focus on the application of this solution scheme to the recently developed public database of clumpy dusty torus models. The machine learning scheme used in this paper allows us to generate any model from the database using only a factor of 10 -4 of the original size of the database and a factor of 10 -3 in computing time. The posterior distribution obtained for each model parameter allows us to investigate how the observations constrain the parameters and which ones remain partially or completely undetermined, providing statistically relevant confidence intervals. As an example, the application to the nuclear region of Centaurus A shows that the optical depth of the clouds, the total number of clouds, and the radial extent of the cloud distribution zone are well constrained using only six filters. The code is freely available from the authors.

  18. Bayesian inference for partially identified models exploring the limits of limited data

    CERN Document Server

    Gustafson, Paul

    2015-01-01

    Introduction Identification What Is against Us? What Is for Us? Some Simple Examples of Partially Identified ModelsThe Road Ahead The Structure of Inference in Partially Identified Models Bayesian Inference The Structure of Posterior Distributions in PIMs Computational Strategies Strength of Bayesian Updating, Revisited Posterior MomentsCredible Intervals Evaluating the Worth of Inference Partial Identification versus Model Misspecification The Siren Call of Identification Comp

  19. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  20. Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It

    NARCIS (Netherlands)

    Grünwald, P.; van Ommen, T.

    2017-01-01

    We empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data are

  1. Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it

    NARCIS (Netherlands)

    P.D. Grünwald (Peter); T. van Ommen (Thijs)

    2017-01-01

    textabstractWe empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data

  2. Bayesian statistical inference

    Directory of Open Access Journals (Sweden)

    Bruno De Finetti

    2017-04-01

    Full Text Available This work was translated into English and published in the volume: Bruno De Finetti, Induction and Probability, Biblioteca di Statistica, eds. P. Monari, D. Cocchi, Clueb, Bologna, 1993.Bayesian statistical Inference is one of the last fundamental philosophical papers in which we can find the essential De Finetti's approach to the statistical inference.

  3. Bayesian inference with ecological applications

    CERN Document Server

    Link, William A

    2009-01-01

    This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analyt...

  4. Operational modal analysis modeling, Bayesian inference, uncertainty laws

    CERN Document Server

    Au, Siu-Kui

    2017-01-01

    This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2–7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3), which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic pro...

  5. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuška, Ivo

    2016-02-23

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.

  6. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuška, Ivo; Sawlan, Zaid A; Scavino, Marco; Szabó , Barna; Tempone, Raul

    2016-01-01

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.

  7. Bayesian methods for hackers probabilistic programming and Bayesian inference

    CERN Document Server

    Davidson-Pilon, Cameron

    2016-01-01

    Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...

  8. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuska, Ivo

    2016-01-06

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions.

  9. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab; Zedler, Sarah E.; Knio, Omar; Jackson, Charles S.; Hoteit, Ibrahim

    2016-01-01

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference

  10. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  11. Inference in hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio

    2009-01-01

    Since the 1980s, Bayesian networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability techniques (like fault trees and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (the so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability.

  12. Variations on Bayesian Prediction and Inference

    Science.gov (United States)

    2016-05-09

    inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle

  13. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  14. Practical Bayesian Inference

    Science.gov (United States)

    Bailer-Jones, Coryn A. L.

    2017-04-01

    Preface; 1. Probability basics; 2. Estimation and uncertainty; 3. Statistical models and inference; 4. Linear models, least squares, and maximum likelihood; 5. Parameter estimation: single parameter; 6. Parameter estimation: multiple parameters; 7. Approximating distributions; 8. Monte Carlo methods for inference; 9. Parameter estimation: Markov chain Monte Carlo; 10. Frequentist hypothesis testing; 11. Model comparison; 12. Dealing with more complicated problems; References; Index.

  15. Adaptive surrogate modeling for response surface approximations with application to bayesian inference

    KAUST Repository

    Prudhomme, Serge; Bryant, Corey M.

    2015-01-01

    Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves.

  16. Adaptive surrogate modeling for response surface approximations with application to bayesian inference

    KAUST Repository

    Prudhomme, Serge

    2015-09-17

    Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves.

  17. An empirical Bayesian approach for model-based inference of cellular signaling networks

    Directory of Open Access Journals (Sweden)

    Klinke David J

    2009-11-01

    Full Text Available Abstract Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.

  18. Bayesian Hierarchical Scale Mixtures of Log-Normal Models for Inference in Reliability with Stochastic Constraint

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2017-06-01

    Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.

  19. Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models

    Directory of Open Access Journals (Sweden)

    Plinio Andrade

    2015-09-01

    Full Text Available In this work, we propose a Bayesian methodology to make inferences for the memory parameter and other characteristics under non-standard assumptions for a class of stochastic processes. This class generalizes the Gamma-modulated process, with trajectories that exhibit long memory behavior, as well as decreasing variability as time increases. Different values of the memory parameter influence the speed of this decrease, making this heteroscedastic model very flexible. Its properties are used to implement an approximate Bayesian computation and MCMC scheme to obtain posterior estimates. We test and validate our method through simulations and real data from the big earthquake that occurred in 2010 in Chile.

  20. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  1. Bayesian, Maximum Parsimony and UPGMA Models for Inferring the Phylogenies of Antelopes Using Mitochondrial Markers

    OpenAIRE

    Khan, Haseeb A.; Arif, Ibrahim A.; Bahkali, Ali H.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.

    2008-01-01

    This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b) and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA), maximum parsimony (MP) and unweighted pair group method with arithmetic mean (UPGMA). The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) and an out-group (Addax nasomaculatus) were aligned and subjected to B...

  2. Bayesian Nonparametric Statistical Inference for Shock Models and Wear Processes.

    Science.gov (United States)

    1979-12-01

    also note that the results in Section 2 do not depend on the support of F .) This shock model have been studied by Esary, Marshall and Proschan (1973...Barlow and Proschan (1975), among others. The analogy of the shock model in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2... Mathematical Statistics, Vol. 4, pp. 894-906. Billingsley, P. (1968), CONVERGENCE OF PROBABILITY MEASURES, John Wiley, New York. BUhlmann, H. (1970

  3. Nonparametric Bayesian inference in biostatistics

    CERN Document Server

    Müller, Peter

    2015-01-01

    As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...

  4. Multi-model polynomial chaos surrogate dictionary for Bayesian inference in elasticity problems

    KAUST Repository

    Contreras, Andres A.

    2016-09-19

    A method is presented for inferring the presence of an inclusion inside a domain; the proposed approach is suitable to be used in a diagnostic device with low computational power. Specifically, we use the Bayesian framework for the inference of stiff inclusions embedded in a soft matrix, mimicking tumors in soft tissues. We rely on a polynomial chaos (PC) surrogate to accelerate the inference process. The PC surrogate predicts the dependence of the displacements field with the random elastic moduli of the materials, and are computed by means of the stochastic Galerkin (SG) projection method. Moreover, the inclusion\\'s geometry is assumed to be unknown, and this is addressed by using a dictionary consisting of several geometrical models with different configurations. A model selection approach based on the evidence provided by the data (Bayes factors) is used to discriminate among the different geometrical models and select the most suitable one. The idea of using a dictionary of pre-computed geometrical models helps to maintain the computational cost of the inference process very low, as most of the computational burden is carried out off-line for the resolution of the SG problems. Numerical tests are used to validate the methodology, assess its performance, and analyze the robustness to model errors. © 2016 Elsevier Ltd

  5. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference.

    Directory of Open Access Journals (Sweden)

    Dario Cuevas Rivera

    2015-10-01

    Full Text Available The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an 'intelligent coincidence detector', which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena.

  6. Interactive Instruction in Bayesian Inference

    DEFF Research Database (Denmark)

    Khan, Azam; Breslav, Simon; Hornbæk, Kasper

    2018-01-01

    An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction. These pri......An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction....... These principles concern coherence, personalization, signaling, segmenting, multimedia, spatial contiguity, and pretraining. Principles of self-explanation and interactivity are also applied. Four experiments on the Mammography Problem showed that these principles help participants answer the questions...... that an instructional approach to improving human performance in Bayesian inference is a promising direction....

  7. Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation.

    Science.gov (United States)

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.

  8. Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method.

    Science.gov (United States)

    Zonta, Zivko J; Flotats, Xavier; Magrí, Albert

    2014-08-01

    The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.

  9. Inference of reactive transport model parameters using a Bayesian multivariate approach

    Science.gov (United States)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick

    2014-08-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.

  10. Probability biases as Bayesian inference

    Directory of Open Access Journals (Sweden)

    Andre; C. R. Martins

    2006-11-01

    Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.

  11. Bayesian nonparametric generative models for causal inference with missing at random covariates.

    Science.gov (United States)

    Roy, Jason; Lum, Kirsten J; Zeldow, Bret; Dworkin, Jordan D; Re, Vincent Lo; Daniels, Michael J

    2018-03-26

    We propose a general Bayesian nonparametric (BNP) approach to causal inference in the point treatment setting. The joint distribution of the observed data (outcome, treatment, and confounders) is modeled using an enriched Dirichlet process. The combination of the observed data model and causal assumptions allows us to identify any type of causal effect-differences, ratios, or quantile effects, either marginally or for subpopulations of interest. The proposed BNP model is well-suited for causal inference problems, as it does not require parametric assumptions about the distribution of confounders and naturally leads to a computationally efficient Gibbs sampling algorithm. By flexibly modeling the joint distribution, we are also able to impute (via data augmentation) values for missing covariates within the algorithm under an assumption of ignorable missingness, obviating the need to create separate imputed data sets. This approach for imputing the missing covariates has the additional advantage of guaranteeing congeniality between the imputation model and the analysis model, and because we use a BNP approach, parametric models are avoided for imputation. The performance of the method is assessed using simulation studies. The method is applied to data from a cohort study of human immunodeficiency virus/hepatitis C virus co-infected patients. © 2018, The International Biometric Society.

  12. Bayesian, maximum parsimony and UPGMA models for inferring the phylogenies of antelopes using mitochondrial markers.

    Science.gov (United States)

    Khan, Haseeb A; Arif, Ibrahim A; Bahkali, Ali H; Al Farhan, Ahmad H; Al Homaidan, Ali A

    2008-10-06

    This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b) and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA), maximum parsimony (MP) and unweighted pair group method with arithmetic mean (UPGMA). The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) and an out-group (Addax nasomaculatus) were aligned and subjected to BA, MP and UPGMA models for comparing the topologies of respective phylogenetic trees. The 16S rRNA region possessed the highest frequency of conserved sequences (97.65%) followed by cyt-b (94.22%) and d-loop (87.29%). There were few transitions (2.35%) and none transversions in 16S rRNA as compared to cyt-b (5.61% transitions and 0.17% transversions) and d-loop (11.57% transitions and 1.14% transversions) while comparing the four taxa. All the three mitochondrial segments clearly differentiated the genus Addax from Oryx using the BA or UPGMA models. The topologies of all the gamma-corrected Bayesian trees were identical irrespective of the marker type. The UPGMA trees resulting from 16S rRNA and d-loop sequences were also identical (Oryx dammah grouped with Oryx leucoryx) to Bayesian trees except that the UPGMA tree based on cyt-b showed a slightly different phylogeny (Oryx dammah grouped with Oryx gazella) with a low bootstrap support. However, the MP model failed to differentiate the genus Addax from Oryx. These findings demonstrate the efficiency and robustness of BA and UPGMA methods for phylogenetic analysis of antelopes using mitochondrial markers.

  13. Modeling coverage gaps in haplotype frequencies via Bayesian inference to improve stem cell donor selection.

    Science.gov (United States)

    Louzoun, Yoram; Alter, Idan; Gragert, Loren; Albrecht, Mark; Maiers, Martin

    2018-05-01

    Regardless of sampling depth, accurate genotype imputation is limited in regions of high polymorphism which often have a heavy-tailed haplotype frequency distribution. Many rare haplotypes are thus unobserved. Statistical methods to improve imputation by extending reference haplotype distributions using linkage disequilibrium patterns that relate allele and haplotype frequencies have not yet been explored. In the field of unrelated stem cell transplantation, imputation of highly polymorphic human leukocyte antigen (HLA) genes has an important application in identifying the best-matched stem cell donor when searching large registries totaling over 28,000,000 donors worldwide. Despite these large registry sizes, a significant proportion of searched patients present novel HLA haplotypes. Supporting this observation, HLA population genetic models have indicated that many extant HLA haplotypes remain unobserved. The absent haplotypes are a significant cause of error in haplotype matching. We have applied a Bayesian inference methodology for extending haplotype frequency distributions, using a model where new haplotypes are created by recombination of observed alleles. Applications of this joint probability model offer significant improvement in frequency distribution estimates over the best existing alternative methods, as we illustrate using five-locus HLA frequency data from the National Marrow Donor Program registry. Transplant matching algorithms and disease association studies involving phasing and imputation of rare variants may benefit from this statistical inference framework.

  14. Bayesian inference on proportional elections.

    Directory of Open Access Journals (Sweden)

    Gabriel Hideki Vatanabe Brunello

    Full Text Available Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software.

  15. Bayesian Predictive Inference of a Proportion Under a Twofold Small-Area Model

    Directory of Open Access Journals (Sweden)

    Nandram Balgobin

    2016-03-01

    Full Text Available We extend the twofold small-area model of Stukel and Rao (1997; 1999 to accommodate binary data. An example is the Third International Mathematics and Science Study (TIMSS, in which pass-fail data for mathematics of students from US schools (clusters are available at the third grade by regions and communities (small areas. We compare the finite population proportions of these small areas. We present a hierarchical Bayesian model in which the firststage binary responses have independent Bernoulli distributions, and each subsequent stage is modeled using a beta distribution, which is parameterized by its mean and a correlation coefficient. This twofold small-area model has an intracluster correlation at the first stage and an intercluster correlation at the second stage. The final-stage mean and all correlations are assumed to be noninformative independent random variables. We show how to infer the finite population proportion of each area. We have applied our models to synthetic TIMSS data to show that the twofold model is preferred over a onefold small-area model that ignores the clustering within areas. We further compare these models using a simulation study, which shows that the intracluster correlation is particularly important.

  16. A Bayesian random effects discrete-choice model for resource selection: Population-level selection inference

    Science.gov (United States)

    Thomas, D.L.; Johnson, D.; Griffith, B.

    2006-01-01

    Bayesian hierarchical discrete-choice model for resource selection can provide managers with 2 components of population-level inference: average population selection and variability of selection. Both components are necessary to make sound management decisions based on animal selection.

  17. How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach.

    Science.gov (United States)

    Horn, Sebastian S; Pachur, Thorsten; Mata, Rui

    2015-01-01

    The recognition heuristic (RH) is a simple strategy for probabilistic inference according to which recognized objects are judged to score higher on a criterion than unrecognized objects. In this article, a hierarchical Bayesian extension of the multinomial r-model is applied to measure use of the RH on the individual participant level and to re-evaluate differences between younger and older adults' strategy reliance across environments. Further, it is explored how individual r-model parameters relate to alternative measures of the use of recognition and other knowledge, such as adherence rates and indices from signal-detection theory (SDT). Both younger and older adults used the RH substantially more often in an environment with high than low recognition validity, reflecting adaptivity in strategy use across environments. In extension of previous analyses (based on adherence rates), hierarchical modeling revealed that in an environment with low recognition validity, (a) older adults had a stronger tendency than younger adults to rely on the RH and (b) variability in RH use between individuals was larger than in an environment with high recognition validity; variability did not differ between age groups. Further, the r-model parameters correlated moderately with an SDT measure expressing how well people can discriminate cases where the RH leads to a correct vs. incorrect inference; this suggests that the r-model and the SDT measures may offer complementary insights into the use of recognition in decision making. In conclusion, younger and older adults are largely adaptive in their application of the RH, but cognitive aging may be associated with an increased tendency to rely on this strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Multi-scale inference of interaction rules in animal groups using Bayesian model selection.

    Directory of Open Access Journals (Sweden)

    Richard P Mann

    Full Text Available Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis. We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture the observed locality of interactions. Traditional self-propelled particle models fail to capture the fine scale dynamics of the system. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics, while maintaining a biologically plausible perceptual range. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

  19. Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment

    Science.gov (United States)

    Koskela, J. J.; Croke, B. W. F.; Koivusalo, H.; Jakeman, A. J.; Kokkonen, T.

    2012-11-01

    Bayesian inference is used to study the effect of precipitation and model structural uncertainty on estimates of model parameters and confidence limits of predictive variables in a conceptual rainfall-runoff model in the snow-fed Rudbäck catchment (142 ha) in southern Finland. The IHACRES model is coupled with a simple degree day model to account for snow accumulation and melt. The posterior probability distribution of the model parameters is sampled by using the Differential Evolution Adaptive Metropolis (DREAM(ZS)) algorithm and the generalized likelihood function. Precipitation uncertainty is taken into account by introducing additional latent variables that were used as multipliers for individual storm events. Results suggest that occasional snow water equivalent (SWE) observations together with daily streamflow observations do not contain enough information to simultaneously identify model parameters, precipitation uncertainty and model structural uncertainty in the Rudbäck catchment. The addition of an autoregressive component to account for model structure error and latent variables having uniform priors to account for input uncertainty lead to dubious posterior distributions of model parameters. Thus our hypothesis that informative priors for latent variables could be replaced by additional SWE data could not be confirmed. The model was found to work adequately in 1-day-ahead simulation mode, but the results were poor in the simulation batch mode. This was caused by the interaction of parameters that were used to describe different sources of uncertainty. The findings may have lessons for other cases where parameterizations are similarly high in relation to available prior information.

  20. Multi-scale inference of interaction rules in animal groups using Bayesian model selection.

    Directory of Open Access Journals (Sweden)

    Richard P Mann

    2012-01-01

    Full Text Available Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis. We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

  1. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....

  2. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    2013-01-01

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....

  3. Polynomial Chaos Surrogates for Bayesian Inference

    KAUST Repository

    Le Maitre, Olivier

    2016-01-06

    The Bayesian inference is a popular probabilistic method to solve inverse problems, such as the identification of field parameter in a PDE model. The inference rely on the Bayes rule to update the prior density of the sought field, from observations, and derive its posterior distribution. In most cases the posterior distribution has no explicit form and has to be sampled, for instance using a Markov-Chain Monte Carlo method. In practice the prior field parameter is decomposed and truncated (e.g. by means of Karhunen- Lo´eve decomposition) to recast the inference problem into the inference of a finite number of coordinates. Although proved effective in many situations, the Bayesian inference as sketched above faces several difficulties requiring improvements. First, sampling the posterior can be a extremely costly task as it requires multiple resolutions of the PDE model for different values of the field parameter. Second, when the observations are not very much informative, the inferred parameter field can highly depends on its prior which can be somehow arbitrary. These issues have motivated the introduction of reduced modeling or surrogates for the (approximate) determination of the parametrized PDE solution and hyperparameters in the description of the prior field. Our contribution focuses on recent developments in these two directions: the acceleration of the posterior sampling by means of Polynomial Chaos expansions and the efficient treatment of parametrized covariance functions for the prior field. We also discuss the possibility of making such approach adaptive to further improve its efficiency.

  4. A Fast Iterative Bayesian Inference Algorithm for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri

    2013-01-01

    representation of the Bessel K probability density function; a highly efficient, fast iterative Bayesian inference method is then applied to the proposed model. The resulting estimator outperforms other state-of-the-art Bayesian and non-Bayesian estimators, either by yielding lower mean squared estimation error...

  5. Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation

    DEFF Research Database (Denmark)

    Brouwer, Thomas; Frellsen, Jes; Liò, Pietro

    2017-01-01

    In this paper, we study the trade-offs of different inference approaches for Bayesian matrix factorisation methods, which are commonly used for predicting missing values, and for finding patterns in the data. In particular, we consider Bayesian nonnegative variants of matrix factorisation and tri......-factorisation, and compare non-probabilistic inference, Gibbs sampling, variational Bayesian inference, and a maximum-a-posteriori approach. The variational approach is new for the Bayesian nonnegative models. We compare their convergence, and robustness to noise and sparsity of the data, on both synthetic and real...

  6. SU-E-T-144: Bayesian Inference of Local Relapse Data Using a Poisson-Based Tumour Control Probability Model

    Energy Technology Data Exchange (ETDEWEB)

    La Russa, D [The Ottawa Hospital Cancer Centre, Ottawa, ON (Canada)

    2015-06-15

    Purpose: The purpose of this project is to develop a robust method of parameter estimation for a Poisson-based TCP model using Bayesian inference. Methods: Bayesian inference was performed using the PyMC3 probabilistic programming framework written in Python. A Poisson-based TCP regression model that accounts for clonogen proliferation was fit to observed rates of local relapse as a function of equivalent dose in 2 Gy fractions for a population of 623 stage-I non-small-cell lung cancer patients. The Slice Markov Chain Monte Carlo sampling algorithm was used to sample the posterior distributions, and was initiated using the maximum of the posterior distributions found by optimization. The calculation of TCP with each sample step required integration over the free parameter α, which was performed using an adaptive 24-point Gauss-Legendre quadrature. Convergence was verified via inspection of the trace plot and posterior distribution for each of the fit parameters, as well as with comparisons of the most probable parameter values with their respective maximum likelihood estimates. Results: Posterior distributions for α, the standard deviation of α (σ), the average tumour cell-doubling time (Td), and the repopulation delay time (Tk), were generated assuming α/β = 10 Gy, and a fixed clonogen density of 10{sup 7} cm−{sup 3}. Posterior predictive plots generated from samples from these posterior distributions are in excellent agreement with the observed rates of local relapse used in the Bayesian inference. The most probable values of the model parameters also agree well with maximum likelihood estimates. Conclusion: A robust method of performing Bayesian inference of TCP data using a complex TCP model has been established.

  7. Bayesianism and inference to the best explanation

    Directory of Open Access Journals (Sweden)

    Valeriano IRANZO

    2008-01-01

    Full Text Available Bayesianism and Inference to the best explanation (IBE are two different models of inference. Recently there has been some debate about the possibility of “bayesianizing” IBE. Firstly I explore several alternatives to include explanatory considerations in Bayes’s Theorem. Then I distinguish two different interpretations of prior probabilities: “IBE-Bayesianism” (IBE-Bay and “frequentist-Bayesianism” (Freq-Bay. After detailing the content of the latter, I propose a rule for assessing the priors. I also argue that Freq-Bay: (i endorses a role for explanatory value in the assessment of scientific hypotheses; (ii avoids a purely subjectivist reading of prior probabilities; and (iii fits better than IBE-Bayesianism with two basic facts about science, i.e., the prominent role played by empirical testing and the existence of many scientific theories in the past that failed to fulfil their promises and were subsequently abandoned.

  8. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  9. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  10. Bayesian structural inference for hidden processes

    Science.gov (United States)

    Strelioff, Christopher C.; Crutchfield, James P.

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  11. Bayesian Estimation and Inference using Stochastic Hardware

    Directory of Open Access Journals (Sweden)

    Chetan Singh Thakur

    2016-03-01

    Full Text Available In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker, demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND, we show how inference can be performed in a Directed Acyclic Graph (DAG using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.

  12. Bayesian Estimation and Inference Using Stochastic Electronics.

    Science.gov (United States)

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.

  13. Heuristics as Bayesian inference under extreme priors.

    Science.gov (United States)

    Parpart, Paula; Jones, Matt; Love, Bradley C

    2018-05-01

    Simple heuristics are often regarded as tractable decision strategies because they ignore a great deal of information in the input data. One puzzle is why heuristics can outperform full-information models, such as linear regression, which make full use of the available information. These "less-is-more" effects, in which a relatively simpler model outperforms a more complex model, are prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent advantage of simplifying computation or ignoring information. In contrast, we show at the computational level (where algorithmic restrictions are set aside) that it is never optimal to discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models with the heuristics at one end and ordinary regression at the other. Critically, intermediate models perform better across all our simulations, suggesting that down-weighting information with the appropriate prior is preferable to entirely ignoring it. Rather than because of their simplicity, our analyses suggest heuristics perform well because they implement strong priors that approximate the actual structure of the environment. We end by considering how new heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These formal results have implications for work in psychology, machine learning and economics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Universal Darwinism As a Process of Bayesian Inference.

    Science.gov (United States)

    Campbell, John O

    2016-01-01

    Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment." Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

  15. Universal Darwinism as a process of Bayesian inference

    Directory of Open Access Journals (Sweden)

    John Oberon Campbell

    2016-06-01

    Full Text Available Many of the mathematical frameworks describing natural selection are equivalent to Bayes’ Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians. As Bayesian inference can always be cast in terms of (variational free energy minimization, natural selection can be viewed as comprising two components: a generative model of an ‘experiment’ in the external world environment, and the results of that 'experiment' or the 'surprise' entailed by predicted and actual outcomes of the ‘experiment’. Minimization of free energy implies that the implicit measure of 'surprise' experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

  16. Quantum-Like Representation of Non-Bayesian Inference

    Science.gov (United States)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  17. Efficient design and inference in distributed Bayesian networks: an overview

    NARCIS (Netherlands)

    de Oude, P.; Groen, F.C.A.; Pavlin, G.; Bezhanishvili, N.; Löbner, S.; Schwabe, K.; Spada, L.

    2011-01-01

    This paper discusses an approach to distributed Bayesian modeling and inference, which is relevant for an important class of contemporary real world situation assessment applications. By explicitly considering the locality of causal relations, the presented approach (i) supports coherent distributed

  18. From least squares to multilevel modeling: A graphical introduction to Bayesian inference

    Science.gov (United States)

    Loredo, Thomas J.

    2016-01-01

    This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.

  19. Inferring the most probable maps of underground utilities using Bayesian mapping model

    Science.gov (United States)

    Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony

    2018-03-01

    Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.

  20. On Bayesian Inference under Sampling from Scale Mixtures of Normals

    NARCIS (Netherlands)

    Fernández, C.; Steel, M.F.J.

    1996-01-01

    This paper considers a Bayesian analysis of the linear regression model under independent sampling from general scale mixtures of Normals.Using a common reference prior, we investigate the validity of Bayesian inference and the existence of posterior moments of the regression and precision

  1. Bayesian Inference Methods for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand

    2013-01-01

    This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...

  2. Bayesian inference in a discrete shock model using confounded common cause data

    International Nuclear Information System (INIS)

    Kvam, Paul H.; Martz, Harry F.

    1995-01-01

    We consider redundant systems of identical components for which reliability is assessed statistically using only demand-based failures and successes. Direct assessment of system reliability can lead to gross errors in estimation if there exist external events in the working environment that cause two or more components in the system to fail in the same demand period which have not been included in the reliability model. We develop a simple Bayesian model for estimating component reliability and the corresponding probability of common cause failure in operating systems for which the data is confounded; that is, the common cause failures cannot be distinguished from multiple independent component failures in the narrative event descriptions

  3. Bayesian inference in an item response theory model with a generalized student t link function

    Science.gov (United States)

    Azevedo, Caio L. N.; Migon, Helio S.

    2012-10-01

    In this paper we introduce a new item response theory (IRT) model with a generalized Student t-link function with unknown degrees of freedom (df), named generalized t-link (GtL) IRT model. In this model we consider only the difficulty parameter in the item response function. GtL is an alternative to the two parameter logit and probit models, since the degrees of freedom (df) play a similar role to the discrimination parameter. However, the behavior of the curves of the GtL is different from those of the two parameter models and the usual Student t link, since in GtL the curve obtained from different df's can cross the probit curves in more than one latent trait level. The GtL model has similar proprieties to the generalized linear mixed models, such as the existence of sufficient statistics and easy parameter interpretation. Also, many techniques of parameter estimation, model fit assessment and residual analysis developed for that models can be used for the GtL model. We develop fully Bayesian estimation and model fit assessment tools through a Metropolis-Hastings step within Gibbs sampling algorithm. We consider a prior sensitivity choice concerning the degrees of freedom. The simulation study indicates that the algorithm recovers all parameters properly. In addition, some Bayesian model fit assessment tools are considered. Finally, a real data set is analyzed using our approach and other usual models. The results indicate that our model fits the data better than the two parameter models.

  4. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  5. Adaptive Surrogate Modeling for Response Surface Approximations with Application to Bayesian Inference

    KAUST Repository

    Prudhomme, Serge

    2015-01-07

    The need for surrogate models and adaptive methods can be best appreciated if one is interested in parameter estimation using a Bayesian calibration procedure for validation purposes. We extend here our latest work on error decomposition and adaptive refinement for response surfaces to the development of surrogate models that can be substituted for the full models to estimate the parameters of Reynolds-averaged Navier-Stokes models. The error estimates and adaptive schemes are driven here by a quantity of interest and are thus based on the approximation of an adjoint problem. We will focus in particular to the accurate estimation of evidences to facilitate model selection. The methodology will be illustrated on the Spalart-Allmaras RANS model for turbulence simulation.

  6. Adaptive Surrogate Modeling for Response Surface Approximations with Application to Bayesian Inference

    KAUST Repository

    Prudhomme, Serge

    2015-01-01

    The need for surrogate models and adaptive methods can be best appreciated if one is interested in parameter estimation using a Bayesian calibration procedure for validation purposes. We extend here our latest work on error decomposition and adaptive refinement for response surfaces to the development of surrogate models that can be substituted for the full models to estimate the parameters of Reynolds-averaged Navier-Stokes models. The error estimates and adaptive schemes are driven here by a quantity of interest and are thus based on the approximation of an adjoint problem. We will focus in particular to the accurate estimation of evidences to facilitate model selection. The methodology will be illustrated on the Spalart-Allmaras RANS model for turbulence simulation.

  7. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates

    KAUST Repository

    Elsheikh, Ahmed H.; Hoteit, Ibrahim; Wheeler, Mary Fanett

    2014-01-01

    An efficient Bayesian calibration method based on the nested sampling (NS) algorithm and non-intrusive polynomial chaos method is presented. Nested sampling is a Bayesian sampling algorithm that builds a discrete representation of the posterior

  8. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species.

    Science.gov (United States)

    Bach, Dominik R

    2015-04-07

    In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and instructed attention, and do not explain why startle reflex modulation evolved. Here, we fill this lacuna by developing a normative cost minimisation model based on Bayesian optimality principles. This model predicts the observed pattern of startle modification by rewards, punishments, instructed attention, and several other states. Moreover, the mathematical formalism furnishes predictions that can be tested experimentally. Comparing the model with existing data suggests a specific neural implementation of the underlying computations which yields close approximations to the optimal solution under most circumstances. This analysis puts startle modification into the framework of Bayesian decision theory and predictive coding, and illustrates the importance of an adaptive perspective to interpret defensive behaviour across species. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  9. A dust spectral energy distribution model with hierarchical Bayesian inference - I. Formalism and benchmarking

    Science.gov (United States)

    Galliano, Frédéric

    2018-05-01

    This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.

  10. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    An efficient Bayesian calibration method based on the nested sampling (NS) algorithm and non-intrusive polynomial chaos method is presented. Nested sampling is a Bayesian sampling algorithm that builds a discrete representation of the posterior distributions by iteratively re-focusing a set of samples to high likelihood regions. NS allows representing the posterior probability density function (PDF) with a smaller number of samples and reduces the curse of dimensionality effects. The main difficulty of the NS algorithm is in the constrained sampling step which is commonly performed using a random walk Markov Chain Monte-Carlo (MCMC) algorithm. In this work, we perform a two-stage sampling using a polynomial chaos response surface to filter out rejected samples in the Markov Chain Monte-Carlo method. The combined use of nested sampling and the two-stage MCMC based on approximate response surfaces provides significant computational gains in terms of the number of simulation runs. The proposed algorithm is applied for calibration and model selection of subsurface flow models. © 2013.

  11. Efficient Bayesian inference for ARFIMA processes

    Science.gov (United States)

    Graves, T.; Gramacy, R. B.; Franzke, C. L. E.; Watkins, N. W.

    2015-03-01

    Many geophysical quantities, like atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long-range dependence (LRD). LRD means that these quantities experience non-trivial temporal memory, which potentially enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LRD. In this paper we present a modern and systematic approach to the inference of LRD. Rather than Mandelbrot's fractional Gaussian noise, we use the more flexible Autoregressive Fractional Integrated Moving Average (ARFIMA) model which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LRD, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g. short memory effects) can be integrated over in order to focus on long memory parameters, and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data, with favorable comparison to the standard estimators.

  12. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  13. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    Science.gov (United States)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress

  14. An Intuitive Dashboard for Bayesian Network Inference

    International Nuclear Information System (INIS)

    Reddy, Vikas; Farr, Anna Charisse; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K D V

    2014-01-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++

  15. An Intuitive Dashboard for Bayesian Network Inference

    Science.gov (United States)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  16. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab

    2016-08-26

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference of the uncertain parameters is based on a Markov chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal time scales in addition to the data quality, and filters for the effects of parameter perturbations over those as a result of changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, a surrogate model for the test statistic using the PC method is built. Because of the noise in the model predictions, a basis-pursuit-denoising (BPDN) compressed sensing approach is employed to determine the PC coefficients of a representative surrogate model. The PC surrogate is then used to evaluate the test statistic in the MCMC step for sampling the posterior of the uncertain parameters. Results of the posteriors indicate good agreement with the default values for two parameters of the KPP model, namely the critical bulk and gradient Richardson numbers; while the posteriors of the remaining parameters were barely informative. © 2016 American Meteorological Society.

  17. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji; Panesi, Marco; Prudhomme, Serge

    2015-01-01

    and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following

  18. A Bayesian method for characterizing distributed micro-releases: II. inference under model uncertainty with short time-series data.

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef; Fast P. (Lawrence Livermore National Laboratory, Livermore, CA); Kraus, M. (Peterson AFB, CO); Ray, J. P.

    2006-01-01

    Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern after the anthrax attacks of 2001. The ability to characterize such attacks, i.e., to estimate the number of people infected, the time of infection, and the average dose received, is important when planning a medical response. We address this question of characterization by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that these data are usually sufficient, especially if the model of the outbreak used in the inverse problem is an accurate one. In some cases the scarcity of data may initially support outbreak characterizations at odds with the true one, but with sufficient data the correct inferences are recovered; in other words, the inverse problem posed and its solution methodology are consistent. We also explore the effect of model error-situations for which the model used in the inverse problem is only a partially accurate representation of the outbreak; here, the model predictions and the observations differ by more than a random noise. We find that while there is a consistent discrepancy between the inferred and the true characterizations, they are also close enough to be of relevance when planning a response.

  19. A Bayesian nonparametric approach to causal inference on quantiles.

    Science.gov (United States)

    Xu, Dandan; Daniels, Michael J; Winterstein, Almut G

    2018-02-25

    We propose a Bayesian nonparametric approach (BNP) for causal inference on quantiles in the presence of many confounders. In particular, we define relevant causal quantities and specify BNP models to avoid bias from restrictive parametric assumptions. We first use Bayesian additive regression trees (BART) to model the propensity score and then construct the distribution of potential outcomes given the propensity score using a Dirichlet process mixture (DPM) of normals model. We thoroughly evaluate the operating characteristics of our approach and compare it to Bayesian and frequentist competitors. We use our approach to answer an important clinical question involving acute kidney injury using electronic health records. © 2018, The International Biometric Society.

  20. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

    Science.gov (United States)

    Huang, Yanping; Rao, Rajesh P N

    2016-08-01

    Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

  1. A Bayesian Network Schema for Lessening Database Inference

    National Research Council Canada - National Science Library

    Chang, LiWu; Moskowitz, Ira S

    2001-01-01

    .... The authors introduce a formal schema for database inference analysis, based upon a Bayesian network structure, which identifies critical parameters involved in the inference problem and represents...

  2. Cortical hierarchies perform Bayesian causal inference in multisensory perception.

    Directory of Open Access Journals (Sweden)

    Tim Rohe

    2015-02-01

    Full Text Available To form a veridical percept of the environment, the brain needs to integrate sensory signals from a common source but segregate those from independent sources. Thus, perception inherently relies on solving the "causal inference problem." Behaviorally, humans solve this problem optimally as predicted by Bayesian Causal Inference; yet, the underlying neural mechanisms are unexplored. Combining psychophysics, Bayesian modeling, functional magnetic resonance imaging (fMRI, and multivariate decoding in an audiovisual spatial localization task, we demonstrate that Bayesian Causal Inference is performed by a hierarchy of multisensory processes in the human brain. At the bottom of the hierarchy, in auditory and visual areas, location is represented on the basis that the two signals are generated by independent sources (= segregation. At the next stage, in posterior intraparietal sulcus, location is estimated under the assumption that the two signals are from a common source (= forced fusion. Only at the top of the hierarchy, in anterior intraparietal sulcus, the uncertainty about the causal structure of the world is taken into account and sensory signals are combined as predicted by Bayesian Causal Inference. Characterizing the computational operations of signal interactions reveals the hierarchical nature of multisensory perception in human neocortex. It unravels how the brain accomplishes Bayesian Causal Inference, a statistical computation fundamental for perception and cognition. Our results demonstrate how the brain combines information in the face of uncertainty about the underlying causal structure of the world.

  3. Multi-model polynomial chaos surrogate dictionary for Bayesian inference in elasticity problems

    KAUST Repository

    Contreras, Andres A.; Le Maî tre, Olivier P.; Aquino, Wilkins; Knio, Omar

    2016-01-01

    of stiff inclusions embedded in a soft matrix, mimicking tumors in soft tissues. We rely on a polynomial chaos (PC) surrogate to accelerate the inference process. The PC surrogate predicts the dependence of the displacements field with the random elastic

  4. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

    Science.gov (United States)

    Gelman, Andrew; Lee, Daniel; Guo, Jiqiang

    2015-01-01

    Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…

  5. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    Science.gov (United States)

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  6. The NIFTY way of Bayesian signal inference

    International Nuclear Information System (INIS)

    Selig, Marco

    2014-01-01

    We introduce NIFTY, 'Numerical Information Field Theory', a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTY can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTY as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D 3 PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy

  7. The NIFTy way of Bayesian signal inference

    Science.gov (United States)

    Selig, Marco

    2014-12-01

    We introduce NIFTy, "Numerical Information Field Theory", a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTy can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTy as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D3PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy.

  8. Using Alien Coins to Test Whether Simple Inference Is Bayesian

    Science.gov (United States)

    Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.

    2016-01-01

    Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…

  9. BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Anderes, Ethan [Department of Statistics, University of California, Davis, CA 95616 (United States); Wandelt, Benjamin D.; Lavaux, Guilhem [Sorbonne Universités, UPMC Univ Paris 06 and CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014, Paris (France)

    2015-08-01

    The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.

  10. Bayesian inference of substrate properties from film behavior

    International Nuclear Information System (INIS)

    Aggarwal, R; Demkowicz, M J; Marzouk, Y M

    2015-01-01

    We demonstrate that by observing the behavior of a film deposited on a substrate, certain features of the substrate may be inferred with quantified uncertainty using Bayesian methods. We carry out this demonstration on an illustrative film/substrate model where the substrate is a Gaussian random field and the film is a two-component mixture that obeys the Cahn–Hilliard equation. We construct a stochastic reduced order model to describe the film/substrate interaction and use it to infer substrate properties from film behavior. This quantitative inference strategy may be adapted to other film/substrate systems. (paper)

  11. Bayesian inference of radiation belt loss timescales.

    Science.gov (United States)

    Camporeale, E.; Chandorkar, M.

    2017-12-01

    Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.

  12. Bayesian Graphical Models

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...

  13. Bayesian modeling using WinBUGS

    CERN Document Server

    Ntzoufras, Ioannis

    2009-01-01

    A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...

  14. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge

    Directory of Open Access Journals (Sweden)

    Wang Shu-Qiang

    2012-07-01

    Full Text Available Abstract Background A key challenge in the post genome era is to identify genome-wide transcriptional regulatory networks, which specify the interactions between transcription factors and their target genes. Numerous methods have been developed for reconstructing gene regulatory networks from expression data. However, most of them are based on coarse grained qualitative models, and cannot provide a quantitative view of regulatory systems. Results A binding affinity based regulatory model is proposed to quantify the transcriptional regulatory network. Multiple quantities, including binding affinity and the activity level of transcription factor (TF are incorporated into a general learning model. The sequence features of the promoter and the possible occupancy of nucleosomes are exploited to estimate the binding probability of regulators. Comparing with the previous models that only employ microarray data, the proposed model can bridge the gap between the relative background frequency of the observed nucleotide and the gene's transcription rate. Conclusions We testify the proposed approach on two real-world microarray datasets. Experimental results show that the proposed model can effectively identify the parameters and the activity level of TF. Moreover, the kinetic parameters introduced in the proposed model can reveal more biological sense than previous models can do.

  15. Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der

    2014-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configuratio...

  16. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    Science.gov (United States)

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  17. Inference of reactive transport model parameters using a Bayesian multivariate approach

    NARCIS (Netherlands)

    Carniato, L.; Schoups, G.H.W.; Van de Giesen, N.C.

    2014-01-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least

  18. PySSM: A Python Module for Bayesian Inference of Linear Gaussian State Space Models

    Directory of Open Access Journals (Sweden)

    Christopher Strickland

    2014-04-01

    Full Text Available PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models. PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries NumPy and SciPy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimized and parallelized Fortran routines. These Fortran routines heavily utilize basic linear algebra and linear algebra Package functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

  19. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species

    OpenAIRE

    Bach, Dominik R

    2015-01-01

    In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and ins...

  20. Integrating distributed Bayesian inference and reinforcement learning for sensor management

    NARCIS (Netherlands)

    Grappiolo, C.; Whiteson, S.; Pavlin, G.; Bakker, B.

    2009-01-01

    This paper introduces a sensor management approach that integrates distributed Bayesian inference (DBI) and reinforcement learning (RL). DBI is implemented using distributed perception networks (DPNs), a multiagent approach to performing efficient inference, while RL is used to automatically

  1. Robust bayesian inference of generalized Pareto distribution ...

    African Journals Online (AJOL)

    En utilisant une etude exhaustive de Monte Carlo, nous prouvons que, moyennant une fonction perte generalisee adequate, on peut construire un estimateur Bayesien robuste du modele. Key words: Bayesian estimation; Extreme value; Generalized Fisher information; Gener- alized Pareto distribution; Monte Carlo; ...

  2. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  3. Efficient fuzzy Bayesian inference algorithms for incorporating expert knowledge in parameter estimation

    Science.gov (United States)

    Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad

    2016-05-01

    Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert

  4. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  5. Towards Bayesian Inference of the Fast-Ion Distribution Function

    DEFF Research Database (Denmark)

    Stagner, L.; Heidbrink, W.W.; Salewski, Mirko

    2012-01-01

    sensitivity of the measurements are incorporated into Bayesian likelihood probabilities, while prior probabilities enforce physical constraints. As an initial step, this poster uses Bayesian statistics to infer the DIII-D electron density profile from multiple diagnostic measurements. Likelihood functions....... However, when theory and experiment disagree (for one or more diagnostics), it is unclear how to proceed. Bayesian statistics provides a framework to infer the DF, quantify errors, and reconcile discrepant diagnostic measurements. Diagnostic errors and ``weight functions" that describe the phase space...

  6. How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?

    NARCIS (Netherlands)

    Borsboom, D.; Haig, B.D.

    2013-01-01

    Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science

  7. An evaluation of behavior inferences from Bayesian state-space models: A case study with the Pacific walrus

    Science.gov (United States)

    Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.

    2016-01-01

    State-space models offer researchers an objective approach to modeling complex animal location data sets, and state-space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state-space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two-state discrete-time continuous-space Bayesian state-space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state-space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two-state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state-space models, and reconcile these parameters with the study species and its expected behaviors.

  8. Bayesian inference in processing experimental data: principles and basic applications

    International Nuclear Information System (INIS)

    D'Agostini, G

    2003-01-01

    This paper introduces general ideas and some basic methods of the Bayesian probability theory applied to physics measurements. Our aim is to make the reader familiar, through examples rather than rigorous formalism, with concepts such as the following: model comparison (including the automatic Ockham's Razor filter provided by the Bayesian approach); parametric inference; quantification of the uncertainty about the value of physical quantities, also taking into account systematic effects; role of marginalization; posterior characterization; predictive distributions; hierarchical modelling and hyperparameters; Gaussian approximation of the posterior and recovery of conventional methods, especially maximum likelihood and chi-square fits under well-defined conditions; conjugate priors, transformation invariance and maximum entropy motivated priors; and Monte Carlo (MC) estimates of expectation, including a short introduction to Markov Chain MC methods

  9. Bayesian inference in probabilistic risk assessment-The current state of the art

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Smith, Curtis L.

    2009-01-01

    Markov chain Monte Carlo (MCMC) approaches to sampling directly from the joint posterior distribution of aleatory model parameters have led to tremendous advances in Bayesian inference capability in a wide variety of fields, including probabilistic risk analysis. The advent of freely available software coupled with inexpensive computing power has catalyzed this advance. This paper examines where the risk assessment community is with respect to implementing modern computational-based Bayesian approaches to inference. Through a series of examples in different topical areas, it introduces salient concepts and illustrates the practical application of Bayesian inference via MCMC sampling to a variety of important problems

  10. Variational Bayesian Inference of Line Spectra

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Hansen, Thomas Lundgaard; Fleury, Bernard Henri

    2017-01-01

    parameters. We propose an accurate representation of the pdfs of the frequencies by mixtures of von Mises pdfs, which yields closed-form expectations. We define the algorithm VALSE in which the estimates of the pdfs and parameters are iteratively updated. VALSE is a gridless, convergent method, does......; and the coefficients are governed by a Bernoulli-Gaussian prior model turning model order selection into binary sequence detection. Unlike earlier works which retain only point estimates of the frequencies, we undertake a more complete Bayesian treatment by estimating the posterior probability density functions (pdfs......) of the frequencies and computing expectations over them. Thus, we additionally capture and operate with the uncertainty of the frequency estimates. Aiming to maximize the model evidence, variational optimization provides analytic approximations of the posterior pdfs and also gives estimates of the additional...

  11. Bayesian Information Criterion as an Alternative way of Statistical Inference

    Directory of Open Access Journals (Sweden)

    Nadejda Yu. Gubanova

    2012-05-01

    Full Text Available The article treats Bayesian information criterion as an alternative to traditional methods of statistical inference, based on NHST. The comparison of ANOVA and BIC results for psychological experiment is discussed.

  12. ANUBIS: artificial neuromodulation using a Bayesian inference system.

    Science.gov (United States)

    Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie

    2013-01-01

    Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework.

  13. Bayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol data.

    Science.gov (United States)

    Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie

    2017-08-01

    Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.

  14. Inferring on the Intentions of Others by Hierarchical Bayesian Learning

    Science.gov (United States)

    Diaconescu, Andreea O.; Mathys, Christoph; Weber, Lilian A. E.; Daunizeau, Jean; Kasper, Lars; Lomakina, Ekaterina I.; Fehr, Ernst; Stephan, Klaas E.

    2014-01-01

    Inferring on others' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to “player” or “adviser” roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition. PMID:25187943

  15. Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation

    Science.gov (United States)

    McNally, Kevin; Cotton, Richard; Cocker, John; Jones, Kate; Bartels, Mike; Rick, David; Price, Paul; Loizou, George

    2012-01-01

    There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure. PMID:22719759

  16. Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Kevin McNally

    2012-01-01

    Full Text Available There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure.

  17. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  18. Bayesian inference on genetic merit under uncertain paternity

    Directory of Open Access Journals (Sweden)

    Tempelman Robert J

    2003-09-01

    Full Text Available Abstract A hierarchical animal model was developed for inference on genetic merit of livestock with uncertain paternity. Fully conditional posterior distributions for fixed and genetic effects, variance components, sire assignments and their probabilities are derived to facilitate a Bayesian inference strategy using MCMC methods. We compared this model to a model based on the Henderson average numerator relationship (ANRM in a simulation study with 10 replicated datasets generated for each of two traits. Trait 1 had a medium heritability (h2 for each of direct and maternal genetic effects whereas Trait 2 had a high h2 attributable only to direct effects. The average posterior probabilities inferred on the true sire were between 1 and 10% larger than the corresponding priors (the inverse of the number of candidate sires in a mating pasture for Trait 1 and between 4 and 13% larger than the corresponding priors for Trait 2. The predicted additive and maternal genetic effects were very similar using both models; however, model choice criteria (Pseudo Bayes Factor and Deviance Information Criterion decisively favored the proposed hierarchical model over the ANRM model.

  19. Bayesian inference for Markov jump processes with informative observations.

    Science.gov (United States)

    Golightly, Andrew; Wilkinson, Darren J

    2015-04-01

    In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.

  20. Bayesian inference for identifying interaction rules in moving animal groups.

    Directory of Open Access Journals (Sweden)

    Richard P Mann

    Full Text Available The emergence of similar collective patterns from different self-propelled particle models of animal groups points to a restricted set of "universal" classes for these patterns. While universality is interesting, it is often the fine details of animal interactions that are of biological importance. Universality thus presents a challenge to inferring such interactions from macroscopic group dynamics since these can be consistent with many underlying interaction models. We present a Bayesian framework for learning animal interaction rules from fine scale recordings of animal movements in swarms. We apply these techniques to the inverse problem of inferring interaction rules from simulation models, showing that parameters can often be inferred from a small number of observations. Our methodology allows us to quantify our confidence in parameter fitting. For example, we show that attraction and alignment terms can be reliably estimated when animals are milling in a torus shape, while interaction radius cannot be reliably measured in such a situation. We assess the importance of rate of data collection and show how to test different models, such as topological and metric neighbourhood models. Taken together our results both inform the design of experiments on animal interactions and suggest how these data should be best analysed.

  1. Using a Simple Binomial Model to Assess Improvement in Predictive Capability: Sequential Bayesian Inference, Hypothesis Testing, and Power Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sigeti, David E. [Los Alamos National Laboratory; Pelak, Robert A. [Los Alamos National Laboratory

    2012-09-11

    We present a Bayesian statistical methodology for identifying improvement in predictive simulations, including an analysis of the number of (presumably expensive) simulations that will need to be made in order to establish with a given level of confidence that an improvement has been observed. Our analysis assumes the ability to predict (or postdict) the same experiments with legacy and new simulation codes and uses a simple binomial model for the probability, {theta}, that, in an experiment chosen at random, the new code will provide a better prediction than the old. This model makes it possible to do statistical analysis with an absolute minimum of assumptions about the statistics of the quantities involved, at the price of discarding some potentially important information in the data. In particular, the analysis depends only on whether or not the new code predicts better than the old in any given experiment, and not on the magnitude of the improvement. We show how the posterior distribution for {theta} may be used, in a kind of Bayesian hypothesis testing, both to decide if an improvement has been observed and to quantify our confidence in that decision. We quantify the predictive probability that should be assigned, prior to taking any data, to the possibility of achieving a given level of confidence, as a function of sample size. We show how this predictive probability depends on the true value of {theta} and, in particular, how there will always be a region around {theta} = 1/2 where it is highly improbable that we will be able to identify an improvement in predictive capability, although the width of this region will shrink to zero as the sample size goes to infinity. We show how the posterior standard deviation may be used, as a kind of 'plan B metric' in the case that the analysis shows that {theta} is close to 1/2 and argue that such a plan B should generally be part of hypothesis testing. All the analysis presented in the paper is done with a

  2. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  3. Modeling photosynthesis of Spartina alterniflora (smooth cordgrass) impacted by the Deepwater Horizon oil spill using Bayesian inference

    International Nuclear Information System (INIS)

    Wu Wei; Biber, Patrick D; Peterson, Mark S; Gong Chongfeng

    2012-01-01

    To study the impact of the Deepwater Horizon oil spill on photosynthesis of coastal salt marsh plants in Mississippi, we developed a hierarchical Bayesian (HB) model based on field measurements collected from July 2010 to November 2011. We sampled three locations in Davis Bayou, Mississippi (30.375°N, 88.790°W) representative of a range of oil spill impacts. Measured photosynthesis was negative (respiration only) at the heavily oiled location in July 2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiling location was lower than at the control location in July 2010 and it continued to decrease in September 2010. During winter 2010–2011, the contrast between the control and the two impacted locations was not as obvious as in the growing season of 2010. Photosynthesis increased through spring 2011 at the three locations and decreased starting with October at the control location and a month earlier (September) at the impacted locations. Using the field data, we developed an HB model. The model simulations agreed well with the measured photosynthesis, capturing most of the variability of the measured data. On the basis of the posteriors of the parameters, we found that air temperature and photosynthetic active radiation positively influenced photosynthesis whereas the leaf stress level negatively affected photosynthesis. The photosynthesis rates at the heavily impacted location had recovered to the status of the control location about 140 days after the initial impact, while the impact at the medium impact location was never severe enough to make photosynthesis significantly lower than that at the control location over the study period. The uncertainty in modeling photosynthesis rates mainly came from the individual and micro-site scales, and to a lesser extent from the leaf scale. (letter)

  4. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    Science.gov (United States)

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bayesian inference and updating of reliability data

    International Nuclear Information System (INIS)

    Sabri, Z.A.; Cullingford, M.C.; David, H.T.; Husseiny, A.A.

    1980-01-01

    A Bayes methodology for inference of reliability values using available but scarce current data is discussed. The method can be used to update failure rates as more information becomes available from field experience, assuming that the performance of a given component (or system) exhibits a nonhomogeneous Poisson process. Bayes' theorem is used to summarize the historical evidence and current component data in the form of a posterior distribution suitable for prediction and for smoothing or interpolation. An example is given. It may be appropriate to apply the methodology developed here to human error data, in which case the exponential model might be used to describe the learning behavior of the operator or maintenance crew personnel

  6. Progress on Bayesian Inference of the Fast Ion Distribution Function

    DEFF Research Database (Denmark)

    Stagner, L.; Heidbrink, W.W,; Chen, X.

    2013-01-01

    . However, when theory and experiment disagree (for one or more diagnostics), it is unclear how to proceed. Bayesian statistics provides a framework to infer the DF, quantify errors, and reconcile discrepant diagnostic measurements. Diagnostic errors and weight functions that describe the phase space...... sensitivity of the measurements are incorporated into Bayesian likelihood probabilities. Prior probabilities describe physical constraints. This poster will show reconstructions of classically described, low-power, MHD-quiescent distribution functions from actual FIDA measurements. A description of the full...

  7. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.

    Science.gov (United States)

    Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.

  8. Accelerating inference for diffusions observed with measurement error and large sample sizes using approximate Bayesian computation

    DEFF Research Database (Denmark)

    Picchini, Umberto; Forman, Julie Lyng

    2016-01-01

    a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An approximate Bayesian computation (ABC)-MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm......In recent years, dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However, it is often computationally unfeasible to apply exact statistical methodologies in the context of large data sets and complex models. This paper considers...... applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered set-up. Finally, the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general...

  9. Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference.

    Science.gov (United States)

    Siegelmann, Hava T; Holzman, Lars E

    2010-09-01

    One of the brain's most basic functions is integrating sensory data from diverse sources. This ability causes us to question whether the neural system is computationally capable of intelligently integrating data, not only when sources have known, fixed relative dependencies but also when it must determine such relative weightings based on dynamic conditions, and then use these learned weightings to accurately infer information about the world. We suggest that the brain is, in fact, fully capable of computing this parallel task in a single network and describe a neural inspired circuit with this property. Our implementation suggests the possibility that evidence learning requires a more complex organization of the network than was previously assumed, where neurons have different specialties, whose emergence brings the desired adaptivity seen in human online inference.

  10. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method

    Science.gov (United States)

    Norris, Peter M.; da Silva, Arlindo M.

    2018-01-01

    A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC. PMID:29618847

  11. Monte Carlo Bayesian Inference on a Statistical Model of Sub-Gridcolumn Moisture Variability Using High-Resolution Cloud Observations. Part 1: Method

    Science.gov (United States)

    Norris, Peter M.; Da Silva, Arlindo M.

    2016-01-01

    A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.

  12. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul

    2016-01-01

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  13. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio

    2015-01-07

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  14. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio

    2016-01-06

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  15. Bayesian models: A statistical primer for ecologists

    Science.gov (United States)

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  16. Metainference: A Bayesian inference method for heterogeneous systems.

    Science.gov (United States)

    Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele

    2016-01-01

    Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.

  17. Self-Associations Influence Task-Performance through Bayesian Inference.

    Science.gov (United States)

    Bengtsson, Sara L; Penny, Will D

    2013-01-01

    The way we think about ourselves impacts greatly on our behavior. This paper describes a behavioral study and a computational model that shed new light on this important area. Participants were primed "clever" and "stupid" using a scrambled sentence task, and we measured the effect on response time and error-rate on a rule-association task. First, we observed a confirmation bias effect in that associations to being "stupid" led to a gradual decrease in performance, whereas associations to being "clever" did not. Second, we observed that the activated self-concepts selectively modified attention toward one's performance. There was an early to late double dissociation in RTs in that primed "clever" resulted in RT increase following error responses, whereas primed "stupid" resulted in RT increase following correct responses. We propose a computational model of subjects' behavior based on the logic of the experimental task that involves two processes; memory for rules and the integration of rules with subsequent visual cues. The model incorporates an adaptive decision threshold based on Bayes rule, whereby decision thresholds are increased if integration was inferred to be faulty. Fitting the computational model to experimental data confirmed our hypothesis that priming affects the memory process. This model explains both the confirmation bias and double dissociation effects and demonstrates that Bayesian inferential principles can be used to study the effect of self-concepts on behavior.

  18. Self-associations influence task-performance through Bayesian inference

    Directory of Open Access Journals (Sweden)

    Sara L Bengtsson

    2013-08-01

    Full Text Available The way we think about ourselves impacts greatly on our behaviour. This paper describes a behavioural study and a computational model that sheds new light on this important area. Participants were primed 'clever' and 'stupid' using a scrambled sentence task, and we measured the effect on response time and error-rate on a rule-association task. First, we observed a confirmation bias effect in that associations to being 'stupid' led to a gradual decrease in performance, whereas associations to being 'clever' did not. Second, we observed that the activated self-concepts selectively modified attention towards one's performance. There was an early to late double dissociation in RTs in that primed 'clever' resulted in RT increase following error responses, whereas primed 'stupid' resulted in RT increase following correct responses. We propose a computational model of subjects' behaviour based on the logic of the experimental task that involves two processes; memory for rules and the integration of rules with subsequent visual cues. The model also incorporates an adaptive decision threshold based on Bayes rule, whereby decision thresholds are increased if integration was inferred to be faulty. Fitting the computational model to experimental data confirmed our hypothesis that priming affects the memory process. This model explains both the confirmation bias and double dissociation effects and demonstrates that Bayesian inferential principles can be used to study the effect of self-concepts on behaviour.

  19. Bayesian inference data evaluation and decisions

    CERN Document Server

    Harney, Hanns Ludwig

    2016-01-01

    This new edition offers a comprehensive introduction to the analysis of data using Bayes rule. It generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This is particularly useful when the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins, so that the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. New sections feature factorizing parameters, commuting parameters, observables in quantum mechanics, the art of fitting with coherent and with incoherent alternatives and fitting with multinomial distribution. Additional problems and examples help deepen the knowledge. Requiring no knowledge of quantum mechanics, the book is written on introductory level, with man...

  20. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    Science.gov (United States)

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Application of Bayesian inference to stochastic analytic continuation

    International Nuclear Information System (INIS)

    Fuchs, S; Pruschke, T; Jarrell, M

    2010-01-01

    We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data. The algorithm is strictly based on principles of Bayesian statistical inference. It utilizes Monte Carlo simulations to calculate a weighted average of possible energy spectra. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum entropy calculation.

  2. Practical Statistics for LHC Physicists: Bayesian Inference (3/3)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    These lectures cover those principles and practices of statistics that are most relevant for work at the LHC. The first lecture discusses the basic ideas of descriptive statistics, probability and likelihood. The second lecture covers the key ideas in the frequentist approach, including confidence limits, profile likelihoods, p-values, and hypothesis testing. The third lecture covers inference in the Bayesian approach. Throughout, real-world examples will be used to illustrate the practical application of the ideas. No previous knowledge is assumed.

  3. Frequentist and Bayesian inference for Gaussian-log-Gaussian wavelet trees and statistical signal processing applications

    DEFF Research Database (Denmark)

    Jacobsen, Christian Robert Dahl; Møller, Jesper

    2017-01-01

    We introduce new estimation methods for a subclass of the Gaussian scale mixture models for wavelet trees by Wainwright, Simoncelli and Willsky that rely on modern results for composite likelihoods and approximate Bayesian inference. Our methodology is illustrated for denoising and edge detection...

  4. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: nsanders@cfa.harvard.edu [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.

  5. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    International Nuclear Information System (INIS)

    Sanders, N. E.; Soderberg, A. M.; Betancourt, M.

    2015-01-01

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST

  6. Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations

    NARCIS (Netherlands)

    De Lannoy, G.J.M.; Reichle, R.H.; Vrugt, J.A.

    2014-01-01

    Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation

  7. Bayesian inference for an illness-death model for stroke with cognition as a latent time-dependent risk factor

    NARCIS (Netherlands)

    Hout A. van den; Fox J.P.; Klein Entink R.H.

    2015-01-01

    Longitudinal data can be used to estimate the transition intensities between healthy and unhealthy states prior to death. An illness-death model for history of stroke is presented, where time-dependent transition intensities are regressed on a latent variable representing cognitive function. The

  8. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  9. Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations

    Science.gov (United States)

    DeLannoy, Gabrielle J. M.; Reichle, Rolf H.; Vrugt, Jasper A.

    2013-01-01

    Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO).

  10. Model averaging, optimal inference and habit formation

    Directory of Open Access Journals (Sweden)

    Thomas H B FitzGerald

    2014-06-01

    Full Text Available Postulating that the brain performs approximate Bayesian inference generates principled and empirically testable models of neuronal function – the subject of much current interest in neuroscience and related disciplines. Current formulations address inference and learning under some assumed and particular model. In reality, organisms are often faced with an additional challenge – that of determining which model or models of their environment are the best for guiding behaviour. Bayesian model averaging – which says that an agent should weight the predictions of different models according to their evidence – provides a principled way to solve this problem. Importantly, because model evidence is determined by both the accuracy and complexity of the model, optimal inference requires that these be traded off against one another. This means an agent’s behaviour should show an equivalent balance. We hypothesise that Bayesian model averaging plays an important role in cognition, given that it is both optimal and realisable within a plausible neuronal architecture. We outline model averaging and how it might be implemented, and then explore a number of implications for brain and behaviour. In particular, we propose that model averaging can explain a number of apparently suboptimal phenomena within the framework of approximate (bounded Bayesian inference, focussing particularly upon the relationship between goal-directed and habitual behaviour.

  11. Inference algorithms and learning theory for Bayesian sparse factor analysis

    International Nuclear Information System (INIS)

    Rattray, Magnus; Sharp, Kevin; Stegle, Oliver; Winn, John

    2009-01-01

    Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.

  12. Inference algorithms and learning theory for Bayesian sparse factor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rattray, Magnus; Sharp, Kevin [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Stegle, Oliver [Max-Planck-Institute for Biological Cybernetics, Tuebingen (Germany); Winn, John, E-mail: magnus.rattray@manchester.ac.u [Microsoft Research Cambridge, Roger Needham Building, Cambridge, CB3 0FB (United Kingdom)

    2009-12-01

    Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.

  13. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    2010-01-01

    Chapter 9: This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods based on a maximum likelihood or Bayesian approach combined with markov chain Monte Carlo...... (MCMC) techniques. Due to space limitations the focus is on spatial point processes....

  14. Applied Bayesian modelling

    CERN Document Server

    Congdon, Peter

    2014-01-01

    This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU

  15. MATRIX-VECTOR ALGORITHMS OF LOCAL POSTERIORI INFERENCE IN ALGEBRAIC BAYESIAN NETWORKS ON QUANTA PROPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. A. Zolotin

    2015-07-01

    Full Text Available Posteriori inference is one of the three kinds of probabilistic-logic inferences in the probabilistic graphical models theory and the base for processing of knowledge patterns with probabilistic uncertainty using Bayesian networks. The paper deals with a task of local posteriori inference description in algebraic Bayesian networks that represent a class of probabilistic graphical models by means of matrix-vector equations. The latter are essentially based on the use of tensor product of matrices, Kronecker degree and Hadamard product. Matrix equations for calculating posteriori probabilities vectors within posteriori inference in knowledge patterns with quanta propositions are obtained. Similar equations of the same type have already been discussed within the confines of the theory of algebraic Bayesian networks, but they were built only for the case of posteriori inference in the knowledge patterns on the ideals of conjuncts. During synthesis and development of matrix-vector equations on quanta propositions probability vectors, a number of earlier results concerning normalizing factors in posteriori inference and assignment of linear projective operator with a selector vector was adapted. We consider all three types of incoming evidences - deterministic, stochastic and inaccurate - combined with scalar and interval estimation of probability truth of propositional formulas in the knowledge patterns. Linear programming problems are formed. Their solution gives the desired interval values of posterior probabilities in the case of inaccurate evidence or interval estimates in a knowledge pattern. That sort of description of a posteriori inference gives the possibility to extend the set of knowledge pattern types that we can use in the local and global posteriori inference, as well as simplify complex software implementation by use of existing third-party libraries, effectively supporting submission and processing of matrices and vectors when

  16. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  17. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    International Nuclear Information System (INIS)

    Von Nessi, G T; Hole, M J

    2014-01-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript. (paper)

  18. Numerical methods for Bayesian inference in the face of aging

    International Nuclear Information System (INIS)

    Clarotti, C.A.; Villain, B.; Procaccia, H.

    1996-01-01

    In recent years, much attention has been paid to Bayesian methods for Risk Assessment. Until now, these methods have been studied from a theoretical point of view. Researchers have been mainly interested in: studying the effectiveness of Bayesian methods in handling rare events; debating about the problem of priors and other philosophical issues. An aspect central to the Bayesian approach is numerical computation because any safety/reliability problem, in a Bayesian frame, ends with a problem of numerical integration. This aspect has been neglected until now because most Risk studies assumed the Exponential model as the basic probabilistic model. The existence of conjugate priors makes numerical integration unnecessary in this case. If aging is to be taken into account, no conjugate family is available and the use of numerical integration becomes compulsory. EDF (National Board of Electricity, of France) and ENEA (National Committee for Energy, New Technologies and Environment, of Italy) jointly carried out a research program aimed at developing quadrature methods suitable for Bayesian Interference with underlying Weibull or gamma distributions. The paper will illustrate the main results achieved during the above research program and will discuss, via some sample cases, the performances of the numerical algorithms which on the appearance of stress corrosion cracking in the tubes of Steam Generators of PWR French power plants. (authors)

  19. Bayesian inference from count data using discrete uniform priors.

    Directory of Open Access Journals (Sweden)

    Federico Comoglio

    Full Text Available We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. We report a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. Our derivation yields a computationally feasible formula that can prove useful in a variety of statistical problems involving absolute quantification under uncertainty. We implemented our algorithm in the R package dupiR and compared it with a previously proposed Bayesian method based on a Gamma prior. As a showcase, we demonstrate that our inference framework can be used to estimate bacterial survival curves from measurements characterized by extremely low or zero counts and rather high sampling fractions. All in all, we provide a versatile, general purpose algorithm to infer population sizes from count data, which can find application in a broad spectrum of biological and physical problems.

  20. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  1. Inverse Bayesian inference as a key of consciousness featuring a macroscopic quantum logical structure.

    Science.gov (United States)

    Gunji, Yukio-Pegio; Shinohara, Shuji; Haruna, Taichi; Basios, Vasileios

    2017-02-01

    To overcome the dualism between mind and matter and to implement consciousness in science, a physical entity has to be embedded with a measurement process. Although quantum mechanics have been regarded as a candidate for implementing consciousness, nature at its macroscopic level is inconsistent with quantum mechanics. We propose a measurement-oriented inference system comprising Bayesian and inverse Bayesian inferences. While Bayesian inference contracts probability space, the newly defined inverse one relaxes the space. These two inferences allow an agent to make a decision corresponding to an immediate change in their environment. They generate a particular pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum logic. We also show that an orthomodular lattice can reveal information generated by inverse syllogism as well as the solutions to the frame and symbol-grounding problems. Our model is the first to connect macroscopic cognitive processes with the mathematical structure of quantum mechanics with no additional assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Inference method using bayesian network for diagnosis of pulmonary nodules

    International Nuclear Information System (INIS)

    Kawagishi, Masami; Iizuka, Yoshio; Yamamoto, Hiroyuki; Yakami, Masahiro; Kubo, Takeshi; Fujimoto, Koji; Togashi, Kaori

    2010-01-01

    This report describes the improvements of a naive Bayes model that infers the diagnosis of pulmonary nodules in chest CT images based on the findings obtained when a radiologist interprets the CT images. We have previously introduced an inference model using a naive Bayes classifier and have reported its clinical value based on evaluation using clinical data. In the present report, we introduce the following improvements to the original inference model: the selection of findings based on correlations and the generation of a model using only these findings, and the introduction of classifiers that integrate several simple classifiers each of which is specialized for specific diagnosis. These improvements were found to increase the inference accuracy by 10.4% (p<.01) as compared to the original model in 100 cases (222 nodules) based on leave-one-out evaluation. (author)

  3. Bayesian Inference of Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design

    Science.gov (United States)

    2016-03-01

    each IDF curve and subsequently used to force a calibrated and validated precipitation - runoff model. Probability-based, risk-informed hydrologic...ERDC/CHL CHETN-X-2 March 2016 Approved for public release; distribution is unlimited. Bayesian Inference of Nonstationary Precipitation Intensity...based means by which to develop local precipitation Intensity-Duration-Frequency (IDF) curves using historical rainfall time series data collected for

  4. Bayesian inference and decision theory - A framework for decision making in natural resource management

    Science.gov (United States)

    Dorazio, R.M.; Johnson, F.A.

    2003-01-01

    Bayesian inference and decision theory may be used in the solution of relatively complex problems of natural resource management, owing to recent advances in statistical theory and computing. In particular, Markov chain Monte Carlo algorithms provide a computational framework for fitting models of adequate complexity and for evaluating the expected consequences of alternative management actions. We illustrate these features using an example based on management of waterfowl habitat.

  5. Bayesian inference for psychology. Part I : Theoretical advantages and practical ramifications

    NARCIS (Netherlands)

    Wagenmakers, E.-J.; Marsman, M.; Jamil, T.; Ly, A.; Verhagen, J.; Love, J.; Selker, R.; Gronau, Q.F.; Šmíra, M.; Epskamp, S.; Matzke, D.; Rouder, J.N.; Morey, R.D.

    2018-01-01

    Bayesian parameter estimation and Bayesian hypothesis testing present attractive alternatives to classical inference using confidence intervals and p values. In part I of this series we outline ten prominent advantages of the Bayesian approach. Many of these advantages translate to concrete

  6. The confounding effect of population structure on bayesian skyline plot inferences of demographic history

    DEFF Research Database (Denmark)

    Heller, Rasmus; Chikhi, Lounes; Siegismund, Hans

    2013-01-01

    Many coalescent-based methods aiming to infer the demographic history of populations assume a single, isolated and panmictic population (i.e. a Wright-Fisher model). While this assumption may be reasonable under many conditions, several recent studies have shown that the results can be misleading...... when it is violated. Among the most widely applied demographic inference methods are Bayesian skyline plots (BSPs), which are used across a range of biological fields. Violations of the panmixia assumption are to be expected in many biological systems, but the consequences for skyline plot inferences...... the best scheme for inferring demographic change over a typical time scale. Analyses of data from a structured African buffalo population demonstrate how BSP results can be strengthened by simulations. We recommend that sample selection should be carefully considered in relation to population structure...

  7. A method for crack sizing using Bayesian inference arising in eddy current testing

    International Nuclear Information System (INIS)

    Kojima, Fumio; Kikuchi, Mitsuhiro

    2008-01-01

    This paper is concerned with a sizing methodology of crack using Bayesian inference arising in eddy current testing. There is often uncertainty about data through quantitative measurements of nondestructive testing and this can yield misleading inference of crack sizing at on-site monitoring. In this paper, we propose optimal strategies of measurements in eddy current testing using Bayesian prior-to-posteriori analysis. First our likelihood functional is given by Gaussian distribution with the measurement model based on the hybrid use of finite and boundary element methods. Secondly, given a priori distributions of crack sizing, we propose a method for estimating the region of interest for sizing cracks. Finally an optimal sensing method is demonstrated using our idea. (author)

  8. Clinical Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage Using Bayesian Neural Networks with Fuzzy Logic Inferences

    Directory of Open Access Journals (Sweden)

    Benjamin W. Y. Lo

    2013-01-01

    Full Text Available Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH. Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients. Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs. Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.

  9. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    Science.gov (United States)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  10. Bayesian techniques for fatigue life prediction and for inference in linear time dependent PDEs

    KAUST Repository

    Scavino, Marco

    2016-01-08

    In this talk we introduce first the main characteristics of a systematic statistical approach to model calibration, model selection and model ranking when stress-life data are drawn from a collection of records of fatigue experiments. Focusing on Bayesian prediction assessment, we consider fatigue-limit models and random fatigue-limit models under different a priori assumptions. In the second part of the talk, we present a hierarchical Bayesian technique for the inference of the coefficients of time dependent linear PDEs, under the assumption that noisy measurements are available in both the interior of a domain of interest and from boundary conditions. We present a computational technique based on the marginalization of the contribution of the boundary parameters and apply it to inverse heat conduction problems.

  11. A formal model of interpersonal inference

    Directory of Open Access Journals (Sweden)

    Michael eMoutoussis

    2014-03-01

    Full Text Available Introduction: We propose that active Bayesian inference – a general framework for decision-making – can equally be applied to interpersonal exchanges. Social cognition, however, entails special challenges. We address these challenges through a novel formulation of a formal model and demonstrate its psychological significance. Method: We review relevant literature, especially with regards to interpersonal representations, formulate a mathematical model and present a simulation study. The model accommodates normative models from utility theory and places them within the broader setting of Bayesian inference. Crucially, we endow people's prior beliefs, into which utilities are absorbed, with preferences of self and others. The simulation illustrates the model's dynamics and furnishes elementary predictions of the theory. Results: 1. Because beliefs about self and others inform both the desirability and plausibility of outcomes, in this framework interpersonal representations become beliefs that have to be actively inferred. This inference, akin to 'mentalising' in the psychological literature, is based upon the outcomes of interpersonal exchanges. 2. We show how some well-known social-psychological phenomena (e.g. self-serving biases can be explained in terms of active interpersonal inference. 3. Mentalising naturally entails Bayesian updating of how people value social outcomes. Crucially this includes inference about one’s own qualities and preferences. Conclusion: We inaugurate a Bayes optimal framework for modelling intersubject variability in mentalising during interpersonal exchanges. Here, interpersonal representations are endowed with explicit functional and affective properties. We suggest the active inference framework lends itself to the study of psychiatric conditions where mentalising is distorted.

  12. On a full Bayesian inference for force reconstruction problems

    Science.gov (United States)

    Aucejo, M.; De Smet, O.

    2018-05-01

    In a previous paper, the authors introduced a flexible methodology for reconstructing mechanical sources in the frequency domain from prior local information on both their nature and location over a linear and time invariant structure. The proposed approach was derived from Bayesian statistics, because of its ability in mathematically accounting for experimenter's prior knowledge. However, since only the Maximum a Posteriori estimate was computed, the posterior uncertainty about the regularized solution given the measured vibration field, the mechanical model and the regularization parameter was not assessed. To answer this legitimate question, this paper fully exploits the Bayesian framework to provide, from a Markov Chain Monte Carlo algorithm, credible intervals and other statistical measures (mean, median, mode) for all the parameters of the force reconstruction problem.

  13. Bayesian Modelling of Functional Whole Brain Connectivity

    DEFF Research Database (Denmark)

    Røge, Rasmus

    the prevalent strategy of standardizing of fMRI time series and model data using directional statistics or we model the variability in the signal across the brain and across multiple subjects. In either case, we use Bayesian nonparametric modeling to automatically learn from the fMRI data the number......This thesis deals with parcellation of whole-brain functional magnetic resonance imaging (fMRI) using Bayesian inference with mixture models tailored to the fMRI data. In the three included papers and manuscripts, we analyze two different approaches to modeling fMRI signal; either we accept...... of funcional units, i.e. parcels. We benchmark the proposed mixture models against state of the art methods of brain parcellation, both probabilistic and non-probabilistic. The time series of each voxel are most often standardized using z-scoring which projects the time series data onto a hypersphere...

  14. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method

    International Nuclear Information System (INIS)

    Ma Xiang; Zabaras, Nicholas

    2009-01-01

    A new approach to modeling inverse problems using a Bayesian inference method is introduced. The Bayesian approach considers the unknown parameters as random variables and seeks the probabilistic distribution of the unknowns. By introducing the concept of the stochastic prior state space to the Bayesian formulation, we reformulate the deterministic forward problem as a stochastic one. The adaptive hierarchical sparse grid collocation (ASGC) method is used for constructing an interpolant to the solution of the forward model in this prior space which is large enough to capture all the variability/uncertainty in the posterior distribution of the unknown parameters. This solution can be considered as a function of the random unknowns and serves as a stochastic surrogate model for the likelihood calculation. Hierarchical Bayesian formulation is used to derive the posterior probability density function (PPDF). The spatial model is represented as a convolution of a smooth kernel and a Markov random field. The state space of the PPDF is explored using Markov chain Monte Carlo algorithms to obtain statistics of the unknowns. The likelihood calculation is performed by directly sampling the approximate stochastic solution obtained through the ASGC method. The technique is assessed on two nonlinear inverse problems: source inversion and permeability estimation in flow through porous media

  15. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    Science.gov (United States)

    McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T

    2014-06-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  16. Coordinate transformation and Polynomial Chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function

    KAUST Repository

    Sraj, Ihab

    2015-10-22

    This paper addresses model dimensionality reduction for Bayesian inference based on prior Gaussian fields with uncertainty in the covariance function hyper-parameters. The dimensionality reduction is traditionally achieved using the Karhunen-Loève expansion of a prior Gaussian process assuming covariance function with fixed hyper-parameters, despite the fact that these are uncertain in nature. The posterior distribution of the Karhunen-Loève coordinates is then inferred using available observations. The resulting inferred field is therefore dependent on the assumed hyper-parameters. Here, we seek to efficiently estimate both the field and covariance hyper-parameters using Bayesian inference. To this end, a generalized Karhunen-Loève expansion is derived using a coordinate transformation to account for the dependence with respect to the covariance hyper-parameters. Polynomial Chaos expansions are employed for the acceleration of the Bayesian inference using similar coordinate transformations, enabling us to avoid expanding explicitly the solution dependence on the uncertain hyper-parameters. We demonstrate the feasibility of the proposed method on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data. The inferred profiles were found closer to the true profiles when including the hyper-parameters’ uncertainty in the inference formulation.

  17. Polynomial Chaos Acceleration for the Bayesian Inference of Random Fields with Gaussian Priors and Uncertain Covariance Hyper-Parameters

    KAUST Repository

    Le Maitre, Olivier

    2015-01-07

    We address model dimensionality reduction in the Bayesian inference of Gaussian fields, considering prior covariance function with unknown hyper-parameters. The Karhunen-Loeve (KL) expansion of a prior Gaussian process is traditionally derived assuming fixed covariance function with pre-assigned hyperparameter values. Thus, the modes strengths of the Karhunen-Loeve expansion inferred using available observations, as well as the resulting inferred process, dependent on the pre-assigned values for the covariance hyper-parameters. Here, we seek to infer the process and its the covariance hyper-parameters in a single Bayesian inference. To this end, the uncertainty in the hyper-parameters is treated by means of a coordinate transformation, leading to a KL-type expansion on a fixed reference basis of spatial modes, but with random coordinates conditioned on the hyper-parameters. A Polynomial Chaos (PC) expansion of the model prediction is also introduced to accelerate the Bayesian inference and the sampling of the posterior distribution with MCMC method. The PC expansion of the model prediction also rely on a coordinates transformation, enabling us to avoid expanding the dependence of the prediction with respect to the covariance hyper-parameters. We demonstrate the efficiency of the proposed method on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data.

  18. Modelling dependable systems using hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter

    2008-01-01

    A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems

  19. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul

    2015-01-01

    have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal

  20. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  1. Bayesian Modelling of fMRI Time Series

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward

    2000-01-01

    We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...... Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments....

  2. Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: an application to the Ebola epidemic in Sierra Leone.

    Science.gov (United States)

    Frasso, Gianluca; Lambert, Philippe

    2016-10-01

    SummaryThe 2014 Ebola outbreak in Sierra Leone is analyzed using a susceptible-exposed-infectious-removed (SEIR) epidemic compartmental model. The discrete time-stochastic model for the epidemic evolution is coupled to a set of ordinary differential equations describing the dynamics of the expected proportions of subjects in each epidemic state. The unknown parameters are estimated in a Bayesian framework by combining data on the number of new (laboratory confirmed) Ebola cases reported by the Ministry of Health and prior distributions for the transition rates elicited using information collected by the WHO during the follow-up of specific Ebola cases. The time-varying disease transmission rate is modeled in a flexible way using penalized B-splines. Our framework represents a valuable stochastic tool for the study of an epidemic dynamic even when only irregularly observed and possibly aggregated data are available. Simulations and the analysis of the 2014 Sierra Leone Ebola data highlight the merits of the proposed methodology. In particular, the flexible modeling of the disease transmission rate makes the estimation of the effective reproduction number robust to the misspecification of the initial epidemic states and to underreporting of the infectious cases. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate

    KAUST Repository

    Giraldi, Loic

    2017-04-07

    This work addresses the estimation of the parameters of an earthquake model by the consequent tsunami, with an application to the Chile 2010 event. We are particularly interested in the Bayesian inference of the location, the orientation, and the slip of an Okada-based model of the earthquake ocean floor displacement. The tsunami numerical model is based on the GeoClaw software while the observational data is provided by a single DARTⓇ buoy. We propose in this paper a methodology based on polynomial chaos expansion to construct a surrogate model of the wave height at the buoy location. A correlated noise model is first proposed in order to represent the discrepancy between the computational model and the data. This step is necessary, as a classical independent Gaussian noise is shown to be unsuitable for modeling the error, and to prevent convergence of the Markov Chain Monte Carlo sampler. Second, the polynomial chaos model is subsequently improved to handle the variability of the arrival time of the wave, using a preconditioned non-intrusive spectral method. Finally, the construction of a reduced model dedicated to Bayesian inference is proposed. Numerical results are presented and discussed.

  4. Bayesian Inference of Ecological Interactions from Spatial Data

    Directory of Open Access Journals (Sweden)

    Christopher R. Stephens

    2017-11-01

    Full Text Available The characterization and quantification of ecological interactions and the construction of species’ distributions and their associated ecological niches are of fundamental theoretical and practical importance. In this paper, we discuss a Bayesian inference framework, which, using spatial data, offers a general formalism within which ecological interactions may be characterized and quantified. Interactions are identified through deviations of the spatial distribution of co-occurrences of spatial variables relative to a benchmark for the non-interacting system and based on a statistical ensemble of spatial cells. The formalism allows for the integration of both biotic and abiotic factors of arbitrary resolution. We concentrate on the conceptual and mathematical underpinnings of the formalism, showing how, using the naive Bayes approximation, it can be used to not only compare and contrast the relative contribution from each variable, but also to construct species’ distributions and ecological niches based on an arbitrary variable type. We also show how non-linear interactions between distinct niche variables can be identified and the degree of confounding between variables accounted for.

  5. Bayesian inference on EMRI signals using low frequency approximations

    International Nuclear Information System (INIS)

    Ali, Asad; Meyer, Renate; Christensen, Nelson; Röver, Christian

    2012-01-01

    Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions. (paper)

  6. A Bayesian inference approach to unveil supply curves in electricity markets

    DEFF Research Database (Denmark)

    Mitridati, Lesia Marie-Jeanne Mariane; Pinson, Pierre

    2017-01-01

    in the literature on modeling this uncertainty. In this study we introduce a Bayesian inference approach to reveal the aggregate supply curve in a day-ahead electricity market. The proposed algorithm relies on Markov Chain Monte Carlo and Sequential Monte Carlo methods. The major appeal of this approach......With increased competition in wholesale electricity markets, the need for new decision-making tools for strategic producers has arisen. Optimal bidding strategies have traditionally been modeled as stochastic profit maximization problems. However, for producers with non-negligible market power...

  7. The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference

    Science.gov (United States)

    Serang, Oliver

    2014-01-01

    Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234

  8. Bayesian Predictive Models for Rayleigh Wind Speed

    DEFF Research Database (Denmark)

    Shahirinia, Amir; Hajizadeh, Amin; Yu, David C

    2017-01-01

    predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....

  9. Hierarchical Bayesian inference for ion channel screening dose-response data [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ross H Johnstone

    2017-03-01

    Full Text Available Dose-response (or ‘concentration-effect’ relationships commonly occur in biological and pharmacological systems and are well characterised by Hill curves. These curves are described by an equation with two parameters: the inhibitory concentration 50% (IC50; and the Hill coefficient. Typically just the ‘best fit’ parameter values are reported in the literature. Here we introduce a Python-based software tool, PyHillFit , and describe the underlying Bayesian inference methods that it uses, to infer probability distributions for these parameters as well as the level of experimental observation noise. The tool also allows for hierarchical fitting, characterising the effect of inter-experiment variability. We demonstrate the use of the tool on a recently published dataset on multiple ion channel inhibition by multiple drug compounds. We compare the maximum likelihood, Bayesian and hierarchical Bayesian approaches. We then show how uncertainty in dose-response inputs can be characterised and propagated into a cardiac action potential simulation to give a probability distribution on model outputs.

  10. Bayesian network modeling of operator's state recognition process

    International Nuclear Information System (INIS)

    Hatakeyama, Naoki; Furuta, Kazuo

    2000-01-01

    Nowadays we are facing a difficult problem of establishing a good relation between humans and machines. To solve this problem, we suppose that machine system need to have a model of human behavior. In this study we model the state cognition process of a PWR plant operator as an example. We use a Bayesian network as an inference engine. We incorporate the knowledge hierarchy in the Bayesian network and confirm its validity using the example of PWR plant operator. (author)

  11. Generalized Bayesian inference with sets of conjugate priors for dealing with prior-data conflict : course at Lund University

    NARCIS (Netherlands)

    Walter, G.

    2015-01-01

    In the Bayesian approach to statistical inference, possibly subjective knowledge on model parameters can be expressed by so-called prior distributions. A prior distribution is updated, via Bayes’ Rule, to the so-called posterior distribution, which combines prior information and information from

  12. Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard.

    Science.gov (United States)

    Jafarzadeh, S Reza; Johnson, Wesley O; Gardner, Ian A

    2016-03-15

    The area under the receiver operating characteristic (ROC) curve (AUC) is used as a performance metric for quantitative tests. Although multiple biomarkers may be available for diagnostic or screening purposes, diagnostic accuracy is often assessed individually rather than in combination. In this paper, we consider the interesting problem of combining multiple biomarkers for use in a single diagnostic criterion with the goal of improving the diagnostic accuracy above that of an individual biomarker. The diagnostic criterion created from multiple biomarkers is based on the predictive probability of disease, conditional on given multiple biomarker outcomes. If the computed predictive probability exceeds a specified cutoff, the corresponding subject is allocated as 'diseased'. This defines a standard diagnostic criterion that has its own ROC curve, namely, the combined ROC (cROC). The AUC metric for cROC, namely, the combined AUC (cAUC), is used to compare the predictive criterion based on multiple biomarkers to one based on fewer biomarkers. A multivariate random-effects model is proposed for modeling multiple normally distributed dependent scores. Bayesian methods for estimating ROC curves and corresponding (marginal) AUCs are developed when a perfect reference standard is not available. In addition, cAUCs are computed to compare the accuracy of different combinations of biomarkers for diagnosis. The methods are evaluated using simulations and are applied to data for Johne's disease (paratuberculosis) in cattle. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    Science.gov (United States)

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls

  14. Mocapy++ - a toolkit for inference and learning in dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Paluszewski, Martin; Hamelryck, Thomas Wim

    2010-01-01

    Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...

  15. Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F

    2013-04-01

    In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.

  16. Bayesian analysis of CCDM models

    Science.gov (United States)

    Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.

    2017-09-01

    Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.

  17. Bayesian analysis of CCDM models

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, J.F. [Universidade Estadual Paulista (Unesp), Câmpus Experimental de Itapeva, Rua Geraldo Alckmin 519, Vila N. Sra. de Fátima, Itapeva, SP, 18409-010 Brazil (Brazil); Valentim, R. [Departamento de Física, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Rua São Nicolau No. 210, Diadema, SP, 09913-030 Brazil (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: valentim.rodolfo@unifesp.br, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation—University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX United Kingdom (United Kingdom)

    2017-09-01

    Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3α H {sub 0} model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.

  18. Bayesian Estimation of the Logistic Positive Exponent IRT Model

    Science.gov (United States)

    Bolfarine, Heleno; Bazan, Jorge Luis

    2010-01-01

    A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…

  19. Bayesian inference for multivariate point processes observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper; Aukema, B.H.

    We consider statistical and computational aspects of simulation-based Bayesian inference for a multivariate point process which is only observed at sparsely distributed times. For specicity we consider a particular data set which has earlier been analyzed by a discrete time model involving unknown...... normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared to discrete time processes in the setting of the present paper as well as other spatial-temporal situations. Keywords: Bark beetle, conditional intensity, forest entomology, Markov chain Monte Carlo...

  20. Practical Bayesian inference a primer for physical scientists

    CERN Document Server

    Bailer-Jones, Coryn A L

    2017-01-01

    Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work.

  1. A tutorial introduction to Bayesian models of cognitive development.

    Science.gov (United States)

    Perfors, Amy; Tenenbaum, Joshua B; Griffiths, Thomas L; Xu, Fei

    2011-09-01

    We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the what, the how, and the why of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for developmentalists. We emphasize a qualitative understanding of Bayesian inference, but also include information about additional resources for those interested in the cognitive science applications, mathematical foundations, or machine learning details in more depth. In addition, we discuss some important interpretation issues that often arise when evaluating Bayesian models in cognitive science. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 2: Sensitivity tests and results

    Science.gov (United States)

    Norris, Peter M.; da Silva, Arlindo M.

    2018-01-01

    Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational–Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by

  3. Monte Carlo Bayesian Inference on a Statistical Model of Sub-Gridcolumn Moisture Variability Using High-Resolution Cloud Observations. Part 2: Sensitivity Tests and Results

    Science.gov (United States)

    Norris, Peter M.; da Silva, Arlindo M.

    2016-01-01

    Part 1 of this series presented a Monte Carlo Bayesian method for constraining a complex statistical model of global circulation model (GCM) sub-gridcolumn moisture variability using high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data, thereby permitting parameter estimation and cloud data assimilation for large-scale models. This article performs some basic testing of this new approach, verifying that it does indeed reduce mean and standard deviation biases significantly with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud-top pressure and that it also improves the simulated rotational-Raman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the Ozone Monitoring Instrument (OMI). Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows non-gradient-based jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast, where the background state has a clear swath. This article also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in passive-radiometer-retrieved cloud observables on cloud vertical structure, beyond cloud-top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification from Riishojgaard provides some help in this respect, by

  4. Monte Carlo Bayesian Inference on a Statistical Model of Sub-gridcolumn Moisture Variability Using High-resolution Cloud Observations . Part II; Sensitivity Tests and Results

    Science.gov (United States)

    da Silva, Arlindo M.; Norris, Peter M.

    2013-01-01

    Part I presented a Monte Carlo Bayesian method for constraining a complex statistical model of GCM sub-gridcolumn moisture variability using high-resolution MODIS cloud data, thereby permitting large-scale model parameter estimation and cloud data assimilation. This part performs some basic testing of this new approach, verifying that it does indeed significantly reduce mean and standard deviation biases with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud top pressure, and that it also improves the simulated rotational-Ramman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the OMI instrument. Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows finite jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. This paper also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in the cloud observables on cloud vertical structure, beyond cloud top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard (1998) provides some help in this respect, by better honoring inversion structures in the background state.

  5. Advances in Bayesian Modeling in Educational Research

    Science.gov (United States)

    Levy, Roy

    2016-01-01

    In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…

  6. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    Science.gov (United States)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  7. Bayesian inference for psychology. Part II: Example applications with JASP.

    Science.gov (United States)

    Wagenmakers, Eric-Jan; Love, Jonathon; Marsman, Maarten; Jamil, Tahira; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Gronau, Quentin F; Dropmann, Damian; Boutin, Bruno; Meerhoff, Frans; Knight, Patrick; Raj, Akash; van Kesteren, Erik-Jan; van Doorn, Johnny; Šmíra, Martin; Epskamp, Sacha; Etz, Alexander; Matzke, Dora; de Jong, Tim; van den Bergh, Don; Sarafoglou, Alexandra; Steingroever, Helen; Derks, Koen; Rouder, Jeffrey N; Morey, Richard D

    2018-02-01

    Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.

  8. Hierarchical Bayesian inference of the initial mass function in composite stellar populations

    Science.gov (United States)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.; Popping, G.; Somerville, R. S.

    2018-03-01

    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework, we use a parametrized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ˜75.

  9. Nonparametric Bayesian inference for mean residual life functions in survival analysis.

    Science.gov (United States)

    Poynor, Valerie; Kottas, Athanasios

    2018-01-19

    Modeling and inference for survival analysis problems typically revolves around different functions related to the survival distribution. Here, we focus on the mean residual life (MRL) function, which provides the expected remaining lifetime given that a subject has survived (i.e. is event-free) up to a particular time. This function is of direct interest in reliability, medical, and actuarial fields. In addition to its practical interpretation, the MRL function characterizes the survival distribution. We develop general Bayesian nonparametric inference for MRL functions built from a Dirichlet process mixture model for the associated survival distribution. The resulting model for the MRL function admits a representation as a mixture of the kernel MRL functions with time-dependent mixture weights. This model structure allows for a wide range of shapes for the MRL function. Particular emphasis is placed on the selection of the mixture kernel, taken to be a gamma distribution, to obtain desirable properties for the MRL function arising from the mixture model. The inference method is illustrated with a data set of two experimental groups and a data set involving right censoring. The supplementary material available at Biostatistics online provides further results on empirical performance of the model, using simulated data examples. © The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  11. TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Friedman, Andrew S.; Kirshner, Robert P.; Wood-Vasey, W. Michael

    2009-01-01

    We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHK s SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are σ(M J ) = 0.17 ± 0.03, σ(M H ) = 0.11 ± 0.03, and σ(M Ks ) = 0.19 ± 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms -1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.

  12. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  13. Evidence cross-validation and Bayesian inference of MAST plasma equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nessi, G. T. von; Hole, M. J. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Svensson, J. [Max-Planck-Institut fuer Plasmaphysik, D-17491 Greifswald (Germany); Appel, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2012-01-15

    In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlled Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.

  14. Evidence cross-validation and Bayesian inference of MAST plasma equilibria

    International Nuclear Information System (INIS)

    Nessi, G. T. von; Hole, M. J.; Svensson, J.; Appel, L.

    2012-01-01

    In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlled Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.

  15. Bayesian Spatial Modelling with R-INLA

    Directory of Open Access Journals (Sweden)

    Finn Lindgren

    2015-02-01

    Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.

  16. BayesTwin: An R Package for Bayesian Inference of Item-Level Twin Data

    Directory of Open Access Journals (Sweden)

    Inga Schwabe

    2017-11-01

    Full Text Available BayesTwin is an open-source R package that serves as a pipeline to the MCMC program JAGS to perform Bayesian inference on genetically-informative hierarchical twin data. Simultaneously to the biometric model, an item response theory (IRT measurement model is estimated, allowing analysis of the raw phenotypic (item-level data. The integration of such a measurement model is important since earlier research has shown that an analysis based on an aggregated measure (e.g., a sum-score based analysis can lead to an underestimation of heritability and the spurious finding of genotype-environment interactions. The package includes all common biometric and IRT models as well as functions that help plot relevant information or determine whether the analysis was performed well. Funding statement: Partly funded by the PROO grant 411-12-623 from the Netherlands Organisation for Scientific Research (NWO.

  17. Extreme-Scale Bayesian Inference for Uncertainty Quantification of Complex Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Biros, George [Univ. of Texas, Austin, TX (United States)

    2018-01-12

    Uncertainty quantification (UQ)—that is, quantifying uncertainties in complex mathematical models and their large-scale computational implementations—is widely viewed as one of the outstanding challenges facing the field of CS&E over the coming decade. The EUREKA project set to address the most difficult class of UQ problems: those for which both the underlying PDE model as well as the uncertain parameters are of extreme scale. In the project we worked on these extreme-scale challenges in the following four areas: 1. Scalable parallel algorithms for sampling and characterizing the posterior distribution that exploit the structure of the underlying PDEs and parameter-to-observable map. These include structure-exploiting versions of the randomized maximum likelihood method, which aims to overcome the intractability of employing conventional MCMC methods for solving extreme-scale Bayesian inversion problems by appealing to and adapting ideas from large-scale PDE-constrained optimization, which have been very successful at exploring high-dimensional spaces. 2. Scalable parallel algorithms for construction of prior and likelihood functions based on learning methods and non-parametric density estimation. Constructing problem-specific priors remains a critical challenge in Bayesian inference, and more so in high dimensions. Another challenge is construction of likelihood functions that capture unmodeled couplings between observations and parameters. We will create parallel algorithms for non-parametric density estimation using high dimensional N-body methods and combine them with supervised learning techniques for the construction of priors and likelihood functions. 3. Bayesian inadequacy models, which augment physics models with stochastic models that represent their imperfections. The success of the Bayesian inference framework depends on the ability to represent the uncertainty due to imperfections of the mathematical model of the phenomena of interest. This is a

  18. Aplicação das inferências clássica e bayesiana na estimação dos parâmetros do modelo de densidade populacional de plantas daninhas Application of classic and bayesian inferences on the estimation of weed population density model parameters

    Directory of Open Access Journals (Sweden)

    L.S. Vismara

    2007-12-01

    Full Text Available A dinâmica da população de plantas daninhas pode ser representada por um sistema de equações que relaciona as densidades de sementes produzidas e de plântulas em áreas de cultivo. Os valores dos parâmetros dos modelos podem ser inferidos diretamente de experimentação e análise estatística ou extraídos da literatura. O presente trabalho teve por objetivo estimar os parâmetros do modelo de densidade populacional de plantas daninhas, a partir de um experimento conduzido na área experimental da Embrapa Milho e Sorgo, Sete Lagoas, MG, via os procedimentos de inferências clássica e Bayesiana.Dynamics of weed populations can be described as a system of equations relating the produced seed and seedling densities in crop areas. The model parameter values can be either directly inferred from experimentation and statistical analysis or obtained from the literature. The objective of this work was to estimate the weed population density model parameters based on experimental field data at Embrapa Milho e Sorgo, Sete Lagoas, MG, using classic and Bayesian inferences.

  19. Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET

    2017-03-01

    A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with  ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.

  20. Bayesian interpolation in a dynamic sinusoidal model with application to packet-loss concealment

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Cemgil, Ali Taylan

    2010-01-01

    a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment...

  1. Bayesian inference for disease prevalence using negative binomial group testing

    Science.gov (United States)

    Pritchard, Nicholas A.; Tebbs, Joshua M.

    2011-01-01

    Group testing, also known as pooled testing, and inverse sampling are both widely used methods of data collection when the goal is to estimate a small proportion. Taking a Bayesian approach, we consider the new problem of estimating disease prevalence from group testing when inverse (negative binomial) sampling is used. Using different distributions to incorporate prior knowledge of disease incidence and different loss functions, we derive closed form expressions for posterior distributions and resulting point and credible interval estimators. We then evaluate our new estimators, on Bayesian and classical grounds, and apply our methods to a West Nile Virus data set. PMID:21259308

  2. Bayesian methods for data analysis

    CERN Document Server

    Carlin, Bradley P.

    2009-01-01

    Approaches for statistical inference Introduction Motivating Vignettes Defining the Approaches The Bayes-Frequentist Controversy Some Basic Bayesian Models The Bayes approach Introduction Prior Distributions Bayesian Inference Hierarchical Modeling Model Assessment Nonparametric Methods Bayesian computation Introduction Asymptotic Methods Noniterative Monte Carlo Methods Markov Chain Monte Carlo Methods Model criticism and selection Bayesian Modeling Bayesian Robustness Model Assessment Bayes Factors via Marginal Density Estimation Bayes Factors

  3. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Byers, Jeff M. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States); Crump, Nicholas A. [Naval Center for Space Technology, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-02-20

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of the solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.

  4. Bayesian Model Selection under Time Constraints

    Science.gov (United States)

    Hoege, M.; Nowak, W.; Illman, W. A.

    2017-12-01

    Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.

  5. Nonparametric Bayesian inference for multidimensional compound Poisson processes

    NARCIS (Netherlands)

    Gugushvili, S.; van der Meulen, F.; Spreij, P.

    2015-01-01

    Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context,

  6. Bayesian inference using WBDev: a tutorial for social scientists

    NARCIS (Netherlands)

    Wetzels, R.; Lee, M.D.; Wagenmakers, E.-J.

    2010-01-01

    Over the last decade, the popularity of Bayesian data analysis in the empirical sciences has greatly increased. This is partly due to the availability of WinBUGS, a free and flexible statistical software package that comes with an array of predefined functions and distributions, allowing users to

  7. A Bayesian method for inferring transmission chains in a partially observed epidemic.

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Ray, Jaideep

    2008-10-01

    We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historical data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.

  8. Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks

    Directory of Open Access Journals (Sweden)

    Hamelryck Thomas

    2010-03-01

    Full Text Available Abstract Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs. It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations. Results The program package is freely available under the GNU General Public Licence (GPL from SourceForge http://sourceforge.net/projects/mocapy. The package contains the source for building the Mocapy++ library, several usage examples and the user manual. Conclusions Mocapy++ is especially suitable for constructing probabilistic models of biomolecular structure, due to its support for directional statistics. In particular, it supports the Kent distribution on the sphere and the bivariate von Mises distribution on the torus. These distributions have proven useful to formulate probabilistic models of protein and RNA structure in atomic detail.

  9. Reconstruction of elongated bubbles fusing the information from multiple optical probes through a Bayesian inference technique

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Shubhankar; Das, Prasanta Kr., E-mail: pkd@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Roy Chaudhuri, Partha [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-07-15

    In this communication, a novel optical technique has been proposed for the reconstruction of the shape of a Taylor bubble using measurements from multiple arrays of optical sensors. The deviation of an optical beam passing through the bubble depends on the contour of bubble surface. A theoretical model of the deviation of a beam during the traverse of a Taylor bubble through it has been developed. Using this model and the time history of the deviation captured by the sensor array, the bubble shape has been reconstructed. The reconstruction has been performed using an inverse algorithm based on Bayesian inference technique and Markov chain Monte Carlo sampling algorithm. The reconstructed nose shape has been compared with the true shape, extracted through image processing of high speed images. Finally, an error analysis has been performed to pinpoint the sources of the errors.

  10. Multi-Objective data analysis using Bayesian Inference for MagLIF experiments

    Science.gov (United States)

    Knapp, Patrick; Glinksy, Michael; Evans, Matthew; Gom, Matth; Han, Stephanie; Harding, Eric; Slutz, Steve; Hahn, Kelly; Harvey-Thompson, Adam; Geissel, Matthias; Ampleford, David; Jennings, Christopher; Schmit, Paul; Smith, Ian; Schwarz, Jens; Peterson, Kyle; Jones, Brent; Rochau, Gregory; Sinars, Daniel

    2017-10-01

    The MagLIF concept has recently demonstrated Gbar pressures and confinement of charged fusion products at stagnation. We present a new analysis methodology that allows for integration of multiple diagnostics including nuclear, x-ray imaging, and x-ray power to determine the temperature, pressure, liner areal density, and mix fraction. A simplified hot-spot model is used with a Bayesian inference network to determine the most probable model parameters that describe the observations while simultaneously revealing the principal uncertainties in the analysis. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  11. Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-09

    The use of Bayesian inference in data analysis has become the standard for large scienti c experiments [1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms currently implemented in C++ and Python to easily perform at-prior Markov Chain Monte Carlo Bayesian inference with pure Metropolis sampling. These implementations are designed to be user friendly and extensible for customization based on speci c application requirements. This document describes the algorithmic choices made and presents two use cases.

  12. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  13. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies

    Directory of Open Access Journals (Sweden)

    Hero Alfred

    2010-11-01

    Full Text Available Abstract Background Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP, the Indian Buffet Process (IBP, and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB analysis. Results Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV, Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD, closely related non-Bayesian approaches. Conclusions Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  14. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies.

    Science.gov (United States)

    Chen, Bo; Chen, Minhua; Paisley, John; Zaas, Aimee; Woods, Christopher; Ginsburg, Geoffrey S; Hero, Alfred; Lucas, Joseph; Dunson, David; Carin, Lawrence

    2010-11-09

    Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  15. Bayesian or Laplacien inference, entropy and information theory and information geometry in data and signal processing

    Science.gov (United States)

    Mohammad-Djafari, Ali

    2015-01-01

    The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.

  16. Bayesian Option Pricing using Mixed Normal Heteroskedasticity Models

    DEFF Research Database (Denmark)

    Rombouts, Jeroen; Stentoft, Lars

    2014-01-01

    Option pricing using mixed normal heteroscedasticity models is considered. It is explained how to perform inference and price options in a Bayesian framework. The approach allows to easily compute risk neutral predictive price densities which take into account parameter uncertainty....... In an application to the S&P 500 index, classical and Bayesian inference is performed on the mixture model using the available return data. Comparing the ML estimates and posterior moments small differences are found. When pricing a rich sample of options on the index, both methods yield similar pricing errors...... measured in dollar and implied standard deviation losses, and it turns out that the impact of parameter uncertainty is minor. Therefore, when it comes to option pricing where large amounts of data are available, the choice of the inference method is unimportant. The results are robust to different...

  17. Combination of Bayesian Network and Overlay Model in User Modeling

    Directory of Open Access Journals (Sweden)

    Loc Nguyen

    2009-12-01

    Full Text Available The core of adaptive system is user model containing personal information such as knowledge, learning styles, goals… which is requisite for learning personalized process. There are many modeling approaches, for example: stereotype, overlay, plan recognition… but they don’t bring out the solid method for reasoning from user model. This paper introduces the statistical method that combines Bayesian network and overlay modeling so that it is able to infer user’s knowledge from evidences collected during user’s learning process.

  18. Constraining East Antarctic mass trends using a Bayesian inference approach

    Science.gov (United States)

    Martin-Español, Alba; Bamber, Jonathan L.

    2016-04-01

    East Antarctica is an order of magnitude larger than its western neighbour and the Greenland ice sheet. It has the greatest potential to contribute to sea level rise of any source, including non-glacial contributors. It is, however, the most challenging ice mass to constrain because of a range of factors including the relative paucity of in-situ observations and the poor signal to noise ratio of Earth Observation data such as satellite altimetry and gravimetry. A recent study using satellite radar and laser altimetry (Zwally et al. 2015) concluded that the East Antarctic Ice Sheet (EAIS) had been accumulating mass at a rate of 136±28 Gt/yr for the period 2003-08. Here, we use a Bayesian hierarchical model, which has been tested on, and applied to, the whole of Antarctica, to investigate the impact of different assumptions regarding the origin of elevation changes of the EAIS. We combined GRACE, satellite laser and radar altimeter data and GPS measurements to solve simultaneously for surface processes (primarily surface mass balance, SMB), ice dynamics and glacio-isostatic adjustment over the period 2003-13. The hierarchical model partitions mass trends between SMB and ice dynamics based on physical principles and measures of statistical likelihood. Without imposing the division between these processes, the model apportions about a third of the mass trend to ice dynamics, +18 Gt/yr, and two thirds, +39 Gt/yr, to SMB. The total mass trend for that period for the EAIS was 57±20 Gt/yr. Over the period 2003-08, we obtain an ice dynamic trend of 12 Gt/yr and a SMB trend of 15 Gt/yr, with a total mass trend of 27 Gt/yr. We then imposed the condition that the surface mass balance is tightly constrained by the regional climate model RACMO2.3 and allowed height changes due to ice dynamics to occur in areas of low surface velocities (solution that satisfies all the input data, given these constraints. By imposing these conditions, over the period 2003-13 we obtained a mass

  19. Testing adaptive toolbox models: a Bayesian hierarchical approach.

    Science.gov (United States)

    Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan

    2013-01-01

    Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.

  20. Bayesian inference for the distribution of grams of marijuana in a joint.

    Science.gov (United States)

    Ridgeway, Greg; Kilmer, Beau

    2016-08-01

    The average amount of marijuana in a joint is unknown, yet this figure is a critical quantity for creating credible measures of marijuana consumption. It is essential for projecting tax revenues post-legalization, estimating the size of illicit marijuana markets, and learning about how much marijuana users are consuming in order to understand health and behavioral consequences. Arrestee Drug Abuse Monitoring data collected between 2000 and 2010 contain relevant information on 10,628 marijuana transactions, joints and loose marijuana purchases, including the city in which the purchase occurred and the price paid for the marijuana. Using the Brown-Silverman drug pricing model to link marijuana price and weight, we are able to infer the distribution of grams of marijuana in a joint and provide a Bayesian posterior distribution for the mean weight of marijuana in a joint. We estimate that the mean weight of marijuana in a joint is 0.32g (95% Bayesian posterior interval: 0.30-0.35). Our estimate of the mean weight of marijuana in a joint is lower than figures commonly used to make estimates of marijuana consumption. These estimates can be incorporated into drug policy discussions to produce better understanding about illicit marijuana markets, the size of potential legalized marijuana markets, and health and behavior outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Model parameter updating using Bayesian networks

    International Nuclear Information System (INIS)

    Treml, C.A.; Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  2. Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data

    International Nuclear Information System (INIS)

    Gubernatis, J.E.; Bonca, J.; Jarrell, M.

    1995-01-01

    We present brief description of how methods of Bayesian inference are used to obtain real frequency information by the analytic continuation of imaginary-time quantum Monte Carlo data. We present the procedure we used, which is due to R. K. Bryan, and summarize several bottleneck issues

  3. Estimation of insurance premiums for coverage against natural disaster risk: an application of Bayesian Inference

    NARCIS (Netherlands)

    Paudel, Y.; Botzen, W.J.W.; Aerts, J.C.J.H.

    2013-01-01

    This study applies Bayesian Inference to estimate flood risk for 53 dyke ring areas in the Netherlands, and focuses particularly on the data scarcity and extreme behaviour of catastrophe risk. The probability density curves of flood damage are estimated through Monte Carlo simulations. Based on

  4. Entropy, Information Theory, Information Geometry and Bayesian Inference in Data, Signal and Image Processing and Inverse Problems

    Directory of Open Access Journals (Sweden)

    Ali Mohammad-Djafari

    2015-06-01

    Full Text Available The main content of this review article is first to review the main inference tools using Bayes rule, the maximum entropy principle (MEP, information theory, relative entropy and the Kullback–Leibler (KL divergence, Fisher information and its corresponding geometries. For each of these tools, the precise context of their use is described. The second part of the paper is focused on the ways these tools have been used in data, signal and image processing and in the inverse problems, which arise in different physical sciences and engineering applications. A few examples of the applications are described: entropy in independent components analysis (ICA and in blind source separation, Fisher information in data model selection, different maximum entropy-based methods in time series spectral estimation and in linear inverse problems and, finally, the Bayesian inference for general inverse problems. Some original materials concerning the approximate Bayesian computation (ABC and, in particular, the variational Bayesian approximation (VBA methods are also presented. VBA is used for proposing an alternative Bayesian computational tool to the classical Markov chain Monte Carlo (MCMC methods. We will also see that VBA englobes joint maximum a posteriori (MAP, as well as the different expectation-maximization (EM algorithms as particular cases.

  5. Constraining mass anomalies in the interior of spherical bodies using Trans-dimensional Bayesian Hierarchical inference.

    Science.gov (United States)

    Izquierdo, K.; Lekic, V.; Montesi, L.

    2017-12-01

    Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (information about the overall density distribution of celestial bodies even when there is no other geophysical data available.

  6. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs.

    Science.gov (United States)

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin

    2013-10-15

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol lowering drugs

    Science.gov (United States)

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin

    2013-01-01

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436

  8. A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference Genetics Selection Evolution 2010, 42:29

    DEFF Research Database (Denmark)

    Ødegård, Jørgen; Meuwissen, Theo HE; Heringstad, Bjørg

    2010-01-01

    Background In the genetic analysis of binary traits with one observation per animal, animal threshold models frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or sire-dam models. However, these models are not appropriate in cases where...... records exist for the parents). Furthermore, the new algorithm showed much faster Markov chain mixing properties for genetic parameters (similar to the sire-dam model). Conclusions The new algorithm to estimate genetic parameters via Gibbs sampling solves the bias problems typically occurring in animal...... individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (co)variance components within an animal threshold model framework. Methods In the proposed algorithm, individuals are classified as either "informative...

  9. The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference

    Directory of Open Access Journals (Sweden)

    Nalan Baştürk

    2017-07-01

    Full Text Available This paper presents the R package MitISEM (mixture of t by importance sampling weighted expectation maximization which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel - typically a posterior density kernel - using an adaptive mixture of Student t densities as approximating density. In the first stage a mixture of Student t densities is fitted to the target using an expectation maximization algorithm where each step of the optimization procedure is weighted using importance sampling. In the second stage this mixture density is a candidate density for efficient and robust application of importance sampling or the Metropolis-Hastings (MH method to estimate properties of the target distribution. The package enables Bayesian inference and prediction on model parameters and probabilities, in particular, for models where densities have multi-modal or other non-elliptical shapes like curved ridges. These shapes occur in research topics in several scientific fields. For instance, analysis of DNA data in bio-informatics, obtaining loans in the banking sector by heterogeneous groups in financial economics and analysis of education's effect on earned income in labor economics. The package MitISEM provides also an extended algorithm, 'sequential MitISEM', which substantially decreases computation time when the target density has to be approximated for increasing data samples. This occurs when the posterior or predictive density is updated with new observations and/or when one computes model probabilities using predictive likelihoods. We illustrate the MitISEM algorithm using three canonical statistical and econometric models that are characterized by several types of non-elliptical posterior shapes and that describe well-known data patterns in econometrics and finance. We show that MH using the candidate density obtained by MitISEM outperforms, in terms of numerical efficiency, MH using a simpler

  10. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  11. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-01

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  12. Merging Digital Surface Models Implementing Bayesian Approaches

    Science.gov (United States)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  13. MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Directory of Open Access Journals (Sweden)

    H. Sadeq

    2016-06-01

    Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  14. Accounting for sampling error when inferring population synchrony from time-series data: a Bayesian state-space modelling approach with applications.

    Directory of Open Access Journals (Sweden)

    Hugues Santin-Janin

    Full Text Available BACKGROUND: Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal with respect to extrinsic factors (the Moran effect in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i has been previously estimated, and (ii has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. CONCLUSION/SIGNIFICANCE: The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for

  15. A Bayesian model for binary Markov chains

    Directory of Open Access Journals (Sweden)

    Belkheir Essebbar

    2004-02-01

    Full Text Available This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.

  16. Radial anisotropy of Northeast Asia inferred from Bayesian inversions of ambient noise data

    Science.gov (United States)

    Lee, S. J.; Kim, S.; Rhie, J.

    2017-12-01

    The eastern margin of the Eurasia plate exhibits complex tectonic settings due to interactions with the subducting Pacific and Philippine Sea plates and the colliding India plate. Distributed extensional basins and intraplate volcanoes, and their heterogeneous features in the region are not easily explained with a simple mechanism. Observations of radial anisotropy in the entire lithosphere and the part of the asthenosphere provide the most effective evidence for the deformation of the lithosphere and the associated variation of the lithosphere-asthenosphere boundary (LAB). To infer anisotropic structures of crustal and upper-mantle in this region, radial anisotropy is measured using ambient noise data. In a continuation of previous Rayleigh wave tomography study in Northeast Asia, we conduct Love wave tomography to determine radial anisotropy using the Bayesian inversion techniques. Continuous seismic noise recordings of 237 broad-band seismic stations are used and more than 55,000 group and phase velocities of fundamental mode are measured for periods of 5-60 s. Total 8 different types of dispersion maps of Love wave from this study (period 10-60 s), Rayleigh wave from previous tomographic study (Kim et al., 2016; period 8-70 s) and longer period data (period 70-200 s) from a global model (Ekstrom, 2011) are jointly inverted using a hierarchical and transdimensional Bayesian technique. For each grid-node, boundary depths, velocities and anisotropy parameters of layers are sampled simultaneously on the assumption of the layered half-space model. The constructed 3-D radial anisotropy model provides much more details about the crust and upper mantle anisotropic structures, and about the complex undulation of the LAB.

  17. Bayesian inference of shared recombination hotspots between humans and chimpanzees.

    Science.gov (United States)

    Wang, Ying; Rannala, Bruce

    2014-12-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies. Copyright © 2014 by the Genetics Society of America.

  18. A Bayesian approach to model uncertainty

    International Nuclear Information System (INIS)

    Buslik, A.

    1994-01-01

    A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given

  19. A Bayesian alternative for multi-objective ecohydrological model specification

    Science.gov (United States)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior

  20. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  1. Detection of multiple damages employing best achievable eigenvectors under Bayesian inference

    Science.gov (United States)

    Prajapat, Kanta; Ray-Chaudhuri, Samit

    2018-05-01

    A novel approach is presented in this work to localize simultaneously multiple damaged elements in a structure along with the estimation of damage severity for each of the damaged elements. For detection of damaged elements, a best achievable eigenvector based formulation has been derived. To deal with noisy data, Bayesian inference is employed in the formulation wherein the likelihood of the Bayesian algorithm is formed on the basis of errors between the best achievable eigenvectors and the measured modes. In this approach, the most probable damage locations are evaluated under Bayesian inference by generating combinations of various possible damaged elements. Once damage locations are identified, damage severities are estimated using a Bayesian inference Markov chain Monte Carlo simulation. The efficiency of the proposed approach has been demonstrated by carrying out a numerical study involving a 12-story shear building. It has been found from this study that damage scenarios involving as low as 10% loss of stiffness in multiple elements are accurately determined (localized and severities quantified) even when 2% noise contaminated modal data are utilized. Further, this study introduces a term parameter impact (evaluated based on sensitivity of modal parameters towards structural parameters) to decide the suitability of selecting a particular mode, if some idea about the damaged elements are available. It has been demonstrated here that the accuracy and efficiency of the Bayesian quantification algorithm increases if damage localization is carried out a-priori. An experimental study involving a laboratory scale shear building and different stiffness modification scenarios shows that the proposed approach is efficient enough to localize the stories with stiffness modification.

  2. Bayesian Plackett-Luce Mixture Models for Partially Ranked Data.

    Science.gov (United States)

    Mollica, Cristina; Tardella, Luca

    2017-06-01

    The elicitation of an ordinal judgment on multiple alternatives is often required in many psychological and behavioral experiments to investigate preference/choice orientation of a specific population. The Plackett-Luce model is one of the most popular and frequently applied parametric distributions to analyze rankings of a finite set of items. The present work introduces a Bayesian finite mixture of Plackett-Luce models to account for unobserved sample heterogeneity of partially ranked data. We describe an efficient way to incorporate the latent group structure in the data augmentation approach and the derivation of existing maximum likelihood procedures as special instances of the proposed Bayesian method. Inference can be conducted with the combination of the Expectation-Maximization algorithm for maximum a posteriori estimation and the Gibbs sampling iterative procedure. We additionally investigate several Bayesian criteria for selecting the optimal mixture configuration and describe diagnostic tools for assessing the fitness of ranking distributions conditionally and unconditionally on the number of ranked items. The utility of the novel Bayesian parametric Plackett-Luce mixture for characterizing sample heterogeneity is illustrated with several applications to simulated and real preference ranked data. We compare our method with the frequentist approach and a Bayesian nonparametric mixture model both assuming the Plackett-Luce model as a mixture component. Our analysis on real datasets reveals the importance of an accurate diagnostic check for an appropriate in-depth understanding of the heterogenous nature of the partial ranking data.

  3. Approximate Bayesian computation for modular inference problems with many parameters: the example of migration rates.

    Science.gov (United States)

    Aeschbacher, S; Futschik, A; Beaumont, M A

    2013-02-01

    We propose a two-step procedure for estimating multiple migration rates in an approximate Bayesian computation (ABC) framework, accounting for global nuisance parameters. The approach is not limited to migration, but generally of interest for inference problems with multiple parameters and a modular structure (e.g. independent sets of demes or loci). We condition on a known, but complex demographic model of a spatially subdivided population, motivated by the reintroduction of Alpine ibex (Capra ibex) into Switzerland. In the first step, the global parameters ancestral mutation rate and male mating skew have been estimated for the whole population in Aeschbacher et al. (Genetics 2012; 192: 1027). In the second step, we estimate in this study the migration rates independently for clusters of demes putatively connected by migration. For large clusters (many migration rates), ABC faces the problem of too many summary statistics. We therefore assess by simulation if estimation per pair of demes is a valid alternative. We find that the trade-off between reduced dimensionality for the pairwise estimation on the one hand and lower accuracy due to the assumption of pairwise independence on the other depends on the number of migration rates to be inferred: the accuracy of the pairwise approach increases with the number of parameters, relative to the joint estimation approach. To distinguish between low and zero migration, we perform ABC-type model comparison between a model with migration and one without. Applying the approach to microsatellite data from Alpine ibex, we find no evidence for substantial gene flow via migration, except for one pair of demes in one direction. © 2013 Blackwell Publishing Ltd.

  4. Theory-based Bayesian models of inductive learning and reasoning.

    Science.gov (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  5. Emulation of reionization simulations for Bayesian inference of astrophysics parameters using neural networks

    Science.gov (United States)

    Schmit, C. J.; Pritchard, J. R.

    2018-03-01

    Next generation radio experiments such as LOFAR, HERA, and SKA are expected to probe the Epoch of Reionization (EoR) and claim a first direct detection of the cosmic 21cm signal within the next decade. Data volumes will be enormous and can thus potentially revolutionize our understanding of the early Universe and galaxy formation. However, numerical modelling of the EoR can be prohibitively expensive for Bayesian parameter inference and how to optimally extract information from incoming data is currently unclear. Emulation techniques for fast model evaluations have recently been proposed as a way to bypass costly simulations. We consider the use of artificial neural networks as a blind emulation technique. We study the impact of training duration and training set size on the quality of the network prediction and the resulting best-fitting values of a parameter search. A direct comparison is drawn between our emulation technique and an equivalent analysis using 21CMMC. We find good predictive capabilities of our network using training sets of as low as 100 model evaluations, which is within the capabilities of fully numerical radiative transfer codes.

  6. Graphical models for inferring single molecule dynamics

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruben L

    2010-10-01

    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  7. Statistical detection of EEG synchrony using empirical bayesian inference.

    Directory of Open Access Journals (Sweden)

    Archana K Singh

    Full Text Available There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001 for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  8. Statistical detection of EEG synchrony using empirical bayesian inference.

    Science.gov (United States)

    Singh, Archana K; Asoh, Hideki; Takeda, Yuji; Phillips, Steven

    2015-01-01

    There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  9. Bayesian Correlated Component Analysis for inference of joint EEG activation

    DEFF Research Database (Denmark)

    Poulsen, Andreas Trier; Kamronn, Simon Due; Parra, Lucas

    2014-01-01

    We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset.......We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset....

  10. Imprecision and prior-data conflict in generalized Bayesian inference

    NARCIS (Netherlands)

    Walter, Gero; Augustin, T. (Thomas)

    2009-01-01

    A great advantage of imprecise probability models over models based on precise, traditional probabilities is the potential to reflect the amount of knowledge they stand for. Consequently, imprecise probability models promise to offer a vivid tool for handling situations of prior-data conflict in

  11. Experiments for Evaluating Application of Bayesian Inference to Situation Awareness of Human Operators in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong Keun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    Bayesian methodology has been used widely used in various research fields. It is method of inference using Bayes' rule to update the estimation of probability for the certain hypothesis when additional evidences are acquired. According to the current researches, malfunction of nuclear power plant can be detected by using this Bayesian inference which consistently piles up the newly incoming data and updates its estimation. However, those researches are based on the assumption that people are doing like computer perfectly, which can be criticized and may cause a problem in real world application. Studies in cognitive psychology indicates that when the amount of information becomes larger, people can't save the whole data because people have limited memory capacity which is well known as working memory, and also they have attention problem. The purpose of this paper is to consider the psychological factors and confirm how much this working memory and attention will affect the resulted estimation based on the Bayesian inference. To confirm this, experiment on human is needed, and the tool of experiment is Compact Nuclear Simulator (CNS)

  12. Experiments for Evaluating Application of Bayesian Inference to Situation Awareness of Human Operators in NPPs

    International Nuclear Information System (INIS)

    Kang, Seong Keun; Seong, Poong Hyun

    2014-01-01

    Bayesian methodology has been used widely used in various research fields. It is method of inference using Bayes' rule to update the estimation of probability for the certain hypothesis when additional evidences are acquired. According to the current researches, malfunction of nuclear power plant can be detected by using this Bayesian inference which consistently piles up the newly incoming data and updates its estimation. However, those researches are based on the assumption that people are doing like computer perfectly, which can be criticized and may cause a problem in real world application. Studies in cognitive psychology indicates that when the amount of information becomes larger, people can't save the whole data because people have limited memory capacity which is well known as working memory, and also they have attention problem. The purpose of this paper is to consider the psychological factors and confirm how much this working memory and attention will affect the resulted estimation based on the Bayesian inference. To confirm this, experiment on human is needed, and the tool of experiment is Compact Nuclear Simulator (CNS)

  13. Adaptability and phenotypic stability of common bean genotypes through Bayesian inference.

    Science.gov (United States)

    Corrêa, A M; Teodoro, P E; Gonçalves, M C; Barroso, L M A; Nascimento, M; Santos, A; Torres, F E

    2016-04-27

    This study used Bayesian inference to investigate the genotype x environment interaction in common bean grown in Mato Grosso do Sul State, and it also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 13 common bean genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian inference was effective for the selection of upright common bean genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions. According to Bayesian inference, the EMGOPA-201, BAMBUÍ, CNF 4999, CNF 4129 A 54, and CNFv 8025 genotypes had specific adaptability to favorable environments, while the IAPAR 14 and IAC CARIOCA ETE genotypes had specific adaptability to unfavorable environments.

  14. Coordinate transformation and Polynomial Chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function

    KAUST Repository

    Sraj, Ihab; Le Maî tre, Olivier P.; Knio, Omar; Hoteit, Ibrahim

    2015-01-01

    using a coordinate transformation to account for the dependence with respect to the covariance hyper-parameters. Polynomial Chaos expansions are employed for the acceleration of the Bayesian inference using similar coordinate transformations, enabling us

  15. A dynamic discretization method for reliability inference in Dynamic Bayesian Networks

    International Nuclear Information System (INIS)

    Zhu, Jiandao; Collette, Matthew

    2015-01-01

    The material and modeling parameters that drive structural reliability analysis for marine structures are subject to a significant uncertainty. This is especially true when time-dependent degradation mechanisms such as structural fatigue cracking are considered. Through inspection and monitoring, information such as crack location and size can be obtained to improve these parameters and the corresponding reliability estimates. Dynamic Bayesian Networks (DBNs) are a powerful and flexible tool to model dynamic system behavior and update reliability and uncertainty analysis with life cycle data for problems such as fatigue cracking. However, a central challenge in using DBNs is the need to discretize certain types of continuous random variables to perform network inference while still accurately tracking low-probability failure events. Most existing discretization methods focus on getting the overall shape of the distribution correct, with less emphasis on the tail region. Therefore, a novel scheme is presented specifically to estimate the likelihood of low-probability failure events. The scheme is an iterative algorithm which dynamically partitions the discretization intervals at each iteration. Through applications to two stochastic crack-growth example problems, the algorithm is shown to be robust and accurate. Comparisons are presented between the proposed approach and existing methods for the discretization problem. - Highlights: • A dynamic discretization method is developed for low-probability events in DBNs. • The method is compared to existing approaches on two crack growth problems. • The method is shown to improve on existing methods for low-probability events

  16. msBP: An R Package to Perform Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials Mixtures

    Directory of Open Access Journals (Sweden)

    Antonio Canale

    2017-06-01

    Full Text Available msBP is an R package that implements a new method to perform Bayesian multiscale nonparametric inference introduced by Canale and Dunson (2016. The method, based on mixtures of multiscale beta dictionary densities, overcomes the drawbacks of Pólya trees and inherits many of the advantages of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned to each node of the tree. Using a multiscale stick-breaking characterization, stochastically decreasing weights are assigned to each node. The result is an infinite mixture model. The package msBP implements a series of basic functions to deal with this family of priors such as random densities and numbers generation, creation and manipulation of binary tree objects, and generic functions to plot and print the results. In addition, it implements the Gibbs samplers for posterior computation to perform multiscale density estimation and multiscale testing of group differences described in Canale and Dunson (2016.

  17. Bayesian inference of the heat transfer properties of a wall using experimental data

    KAUST Repository

    Iglesias, Marco

    2016-01-06

    A hierarchical Bayesian inference method is developed to estimate the thermal resistance and volumetric heat capacity of a wall. We apply our methodology to a real case study where measurements are recorded each minute from two temperature probes and two heat flux sensors placed on both sides of a solid brick wall along a period of almost five days. We model the heat transfer through the wall by means of the one-dimensional heat equation with Dirichlet boundary conditions. The initial/boundary conditions for the temperature are approximated by piecewise linear functions. We assume that temperature and heat flux measurements have independent Gaussian noise and derive the joint likelihood of the wall parameters and the initial/boundary conditions. Under the model assumptions, the boundary conditions are marginalized analytically from the joint likelihood. ApproximatedGaussian posterior distributions for the wall parameters and the initial condition parameter are obtained using the Laplace method, after incorporating the available prior information. The information gain is estimated under different experimental setups, to determine the best allocation of resources.

  18. A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Santra, Tapesh, E-mail: tapesh.santra@ucd.ie [Systems Biology Ireland, University College Dublin, Dublin (Ireland)

    2014-05-20

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  19. A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks

    International Nuclear Information System (INIS)

    Santra, Tapesh

    2014-01-01

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  20. Toward Bayesian inference of the spatial distribution of proteins from three-cube Förster resonance energy transfer data

    DEFF Research Database (Denmark)

    Hooghoudt, Jan Otto; Barroso, Margarida; Waagepetersen, Rasmus Plenge

    2017-01-01

    Főrster resonance energy transfer (FRET) is a quantum-physical phenomenon where energy may be transferred from one molecule to a neighbour molecule if the molecules are close enough. Using fluorophore molecule marking of proteins in a cell it is possible to measure in microscopic images to what....... In this paper we propose a new likelihood-based approach to statistical inference for FRET microscopic data. The likelihood function is obtained from a detailed modeling of the FRET data generating mechanism conditional on a protein configuration. We next follow a Bayesian approach and introduce a spatial point...

  1. Bayesian inference – a way to combine statistical data and semantic analysis meaningfully

    Directory of Open Access Journals (Sweden)

    Eila Lindfors

    2011-11-01

    Full Text Available This article focuses on presenting the possibilities of Bayesian modelling (Finite Mixture Modelling in the semantic analysis of statistically modelled data. The probability of a hypothesis in relation to the data available is an important question in inductive reasoning. Bayesian modelling allows the researcher to use many models at a time and provides tools to evaluate the goodness of different models. The researcher should always be aware that there is no such thing as the exact probability of an exact event. This is the reason for using probabilistic models. Each model presents a different perspective on the phenomenon in focus, and the researcher has to choose the most probable model with a view to previous research and the knowledge available.The idea of Bayesian modelling is illustrated here by presenting two different sets of data, one from craft science research (n=167 and the other (n=63 from educational research (Lindfors, 2007, 2002. The principles of how to build models and how to combine different profiles are described in the light of the research mentioned.Bayesian modelling is an analysis based on calculating probabilities in relation to a specific set of quantitative data. It is a tool for handling data and interpreting it semantically. The reliability of the analysis arises from an argumentation of which model can be selected from the model space as the basis for an interpretation, and on which arguments.Keywords: method, sloyd, Bayesian modelling, student teachersURN:NBN:no-29959

  2. Human Inferences about Sequences: A Minimal Transition Probability Model.

    Directory of Open Access Journals (Sweden)

    Florent Meyniel

    2016-12-01

    Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.

  3. Non-parametric Bayesian inference for inhomogeneous Markov point processes

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper; Johansen, Per Michael

    is a shot noise process, and the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior using a Metropolis-Hastings algorithm in the "conventional" way...

  4. FuncPatch: a web server for the fast Bayesian inference of conserved functional patches in protein 3D structures.

    Science.gov (United States)

    Huang, Yi-Fei; Golding, G Brian

    2015-02-15

    A number of statistical phylogenetic methods have been developed to infer conserved functional sites or regions in proteins. Many methods, e.g. Rate4Site, apply the standard phylogenetic models to infer site-specific substitution rates and totally ignore the spatial correlation of substitution rates in protein tertiary structures, which may reduce their power to identify conserved functional patches in protein tertiary structures when the sequences used in the analysis are highly similar. The 3D sliding window method has been proposed to infer conserved functional patches in protein tertiary structures, but the window size, which reflects the strength of the spatial correlation, must be predefined and is not inferred from data. We recently developed GP4Rate to solve these problems under the Bayesian framework. Unfortunately, GP4Rate is computationally slow. Here, we present an intuitive web server, FuncPatch, to perform a fast approximate Bayesian inference of conserved functional patches in protein tertiary structures. Both simulations and four case studies based on empirical data suggest that FuncPatch is a good approximation to GP4Rate. However, FuncPatch is orders of magnitudes faster than GP4Rate. In addition, simulations suggest that FuncPatch is potentially a useful tool complementary to Rate4Site, but the 3D sliding window method is less powerful than FuncPatch and Rate4Site. The functional patches predicted by FuncPatch in the four case studies are supported by experimental evidence, which corroborates the usefulness of FuncPatch. The software FuncPatch is freely available at the web site, http://info.mcmaster.ca/yifei/FuncPatch golding@mcmaster.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Bayesian inference reveals positive but subtle effects of experimental fishery closures on marine predator demographics

    Science.gov (United States)

    Barham, Barbara J.; Barham, Peter J.; Campbell, Kate J.; Crawford, Robert J. M.; Grigg, Jennifer; Horswill, Cat; Morris, Taryn L.; Pichegru, Lorien; Steinfurth, Antje; Weller, Florian; Winker, Henning

    2018-01-01

    Global forage-fish landings are increasing, with potentially grave consequences for marine ecosystems. Predators of forage fish may be influenced by this harvest, but the nature of these effects is contentious. Experimental fishery manipulations offer the best solution to quantify population-level impacts, but are rare. We used Bayesian inference to examine changes in chick survival, body condition and population growth rate of endangered African penguins Spheniscus demersus in response to 8 years of alternating time–area closures around two pairs of colonies. Our results demonstrate that fishing closures improved chick survival and condition, after controlling for changing prey availability. However, this effect was inconsistent across sites and years, highlighting the difficultly of assessing management interventions in marine ecosystems. Nevertheless, modelled increases in population growth rates exceeded 1% at one colony; i.e. the threshold considered biologically meaningful by fisheries management in South Africa. Fishing closures evidently can improve the population trend of a forage-fish-dependent predator—we therefore recommend they continue in South Africa and support their application elsewhere. However, detecting demographic gains for mobile marine predators from small no-take zones requires experimental time frames and scales that will often exceed those desired by decision makers. PMID:29343602

  6. Bayesian Inference for Neural Electromagnetic Source Localization: Analysis of MEG Visual Evoked Activity

    International Nuclear Information System (INIS)

    George, J.S.; Schmidt, D.M.; Wood, C.C.

    1999-01-01

    We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented

  7. Bayesian models a statistical primer for ecologists

    CERN Document Server

    Hobbs, N Thompson

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili

  8. Introduction to Hierarchical Bayesian Modeling for Ecological Data

    CERN Document Server

    Parent, Eric

    2012-01-01

    Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a

  9. Modelling of JET diagnostics using Bayesian Graphical Models

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.

    2011-07-01

    The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This

  10. Machine health prognostics using the Bayesian-inference-based probabilistic indication and high-order particle filtering framework

    Science.gov (United States)

    Yu, Jianbo

    2015-12-01

    Prognostics is much efficient to achieve zero-downtime performance, maximum productivity and proactive maintenance of machines. Prognostics intends to assess and predict the time evolution of machine health degradation so that machine failures can be predicted and prevented. A novel prognostics system is developed based on the data-model-fusion scheme using the Bayesian inference-based self-organizing map (SOM) and an integration of logistic regression (LR) and high-order particle filtering (HOPF). In this prognostics system, a baseline SOM is constructed to model the data distribution space of healthy machine under an assumption that predictable fault patterns are not available. Bayesian inference-based probability (BIP) derived from the baseline SOM is developed as a quantification indication of machine health degradation. BIP is capable of offering failure probability for the monitored machine, which has intuitionist explanation related to health degradation state. Based on those historic BIPs, the constructed LR and its modeling noise constitute a high-order Markov process (HOMP) to describe machine health propagation. HOPF is used to solve the HOMP estimation to predict the evolution of the machine health in the form of a probability density function (PDF). An on-line model update scheme is developed to adapt the Markov process changes to machine health dynamics quickly. The experimental results on a bearing test-bed illustrate the potential applications of the proposed system as an effective and simple tool for machine health prognostics.

  11. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    Science.gov (United States)

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. Published by Elsevier Inc.

  12. Bayesian Modeling of a Human MMORPG Player

    Science.gov (United States)

    Synnaeve, Gabriel; Bessière, Pierre

    2011-03-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  13. Empirical verification for application of Bayesian inference in situation awareness evaluations

    International Nuclear Information System (INIS)

    Kang, Seongkeun; Kim, Ar Ryum; Seong, Poong Hyun

    2017-01-01

    Highlights: • Situation awareness (SA) of human operators is significantly important for safe operation in nuclear power plants (NPPs). • SA of human operators was empirically estimated using Bayesian inference. • In this empirical study, the effect of attention and working memory to SA was considered. • Complexcity of the given task and design of human machine interface (HMI) considerably affect SA of human operators. - Abstract: Bayesian methodology has been widely used in various research fields. According to current research, malfunctions of nuclear power plants can be detected using this Bayesian inference, which consistently piles up newly incoming data and updates the estimation. However, these studies have been based on the assumption that people work like computers—perfectly—a supposition that may cause a problem in real world applications. Studies in cognitive psychology indicate that when the amount of information to be processed becomes larger, people cannot save the whole set of data in their heads due to limited attention and limited memory capacity, also known as working memory. The purpose of the current research is to consider how actual human aware the situation contrasts with our expectations, and how such disparity affects the results of conventional Bayesian inference, if at all. We compared situation awareness (SA) of ideal operators with SA of human operators, and for the human operator we used both text-based human machine interface (HMI) and infographic-based HMI to further compare two existing human operators. In addition, two different scenarios were selected how scenario complexity affects SA of human operators. As a results, when a malfunction occurred, the ideal operator found the malfunction nearly 100% probability of the time using Bayesian inference. In contrast, out of forty-six human operators, only 69.57% found the correct malfunction with simple scenario and 58.70% with complex scenario in the text-based HMI. In

  14. Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium

    Directory of Open Access Journals (Sweden)

    E. Laloy

    2017-07-01

    Full Text Available The rate at which low-lying sandy areas in temperate regions, such as the Campine Plateau (NE Belgium, have been eroding during the Quaternary is a matter of debate. Current knowledge on the average pace of landscape evolution in the Campine area is largely based on geological inferences and modern analogies. We performed a Bayesian inversion of an in situ-produced 10Be concentration depth profile to infer the average long-term erosion rate together with two other parameters: the surface exposure age and the inherited 10Be concentration. Compared to the latest advances in probabilistic inversion of cosmogenic radionuclide (CRN data, our approach has the following two innovative components: it (1 uses Markov chain Monte Carlo (MCMC sampling and (2 accounts (under certain assumptions for the contribution of model errors to posterior uncertainty. To investigate to what extent our approach differs from the state of the art in practice, a comparison against the Bayesian inversion method implemented in the CRONUScalc program is made. Both approaches identify similar maximum a posteriori (MAP parameter values, but posterior parameter and predictive uncertainty derived using the method taken in CRONUScalc is moderately underestimated. A simple way for producing more consistent uncertainty estimates with the CRONUScalc-like method in the presence of model errors is therefore suggested. Our inferred erosion rate of 39 ± 8. 9 mm kyr−1 (1σ is relatively large in comparison with landforms that erode under comparable (paleo-climates elsewhere in the world. We evaluate this value in the light of the erodibility of the substrate and sudden base level lowering during the Middle Pleistocene. A denser sampling scheme of a two-nuclide concentration depth profile would allow for better inferred erosion rate resolution, and including more uncertain parameters in the MCMC inversion.

  15. Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium)

    Science.gov (United States)

    Laloy, Eric; Beerten, Koen; Vanacker, Veerle; Christl, Marcus; Rogiers, Bart; Wouters, Laurent

    2017-07-01

    The rate at which low-lying sandy areas in temperate regions, such as the Campine Plateau (NE Belgium), have been eroding during the Quaternary is a matter of debate. Current knowledge on the average pace of landscape evolution in the Campine area is largely based on geological inferences and modern analogies. We performed a Bayesian inversion of an in situ-produced 10Be concentration depth profile to infer the average long-term erosion rate together with two other parameters: the surface exposure age and the inherited 10Be concentration. Compared to the latest advances in probabilistic inversion of cosmogenic radionuclide (CRN) data, our approach has the following two innovative components: it (1) uses Markov chain Monte Carlo (MCMC) sampling and (2) accounts (under certain assumptions) for the contribution of model errors to posterior uncertainty. To investigate to what extent our approach differs from the state of the art in practice, a comparison against the Bayesian inversion method implemented in the CRONUScalc program is made. Both approaches identify similar maximum a posteriori (MAP) parameter values, but posterior parameter and predictive uncertainty derived using the method taken in CRONUScalc is moderately underestimated. A simple way for producing more consistent uncertainty estimates with the CRONUScalc-like method in the presence of model errors is therefore suggested. Our inferred erosion rate of 39 ± 8. 9 mm kyr-1 (1σ) is relatively large in comparison with landforms that erode under comparable (paleo-)climates elsewhere in the world. We evaluate this value in the light of the erodibility of the substrate and sudden base level lowering during the Middle Pleistocene. A denser sampling scheme of a two-nuclide concentration depth profile would allow for better inferred erosion rate resolution, and including more uncertain parameters in the MCMC inversion.

  16. Bayesian inferences suggest that Amazon Yunga Natives diverged from Andeans less than 5000 ybp: implications for South American prehistory.

    Science.gov (United States)

    Scliar, Marilia O; Gouveia, Mateus H; Benazzo, Andrea; Ghirotto, Silvia; Fagundes, Nelson J R; Leal, Thiago P; Magalhães, Wagner C S; Pereira, Latife; Rodrigues, Maira R; Soares-Souza, Giordano B; Cabrera, Lilia; Berg, Douglas E; Gilman, Robert H; Bertorelle, Giorgio; Tarazona-Santos, Eduardo

    2014-09-30

    Archaeology reports millenary cultural contacts between Peruvian Coast-Andes and the Amazon Yunga, a rainforest transitional region between Andes and Lower Amazonia. To clarify the relationships between cultural and biological evolution of these populations, in particular between Amazon Yungas and Andeans, we used DNA-sequence data, a model-based Bayesian approach and several statistical validations to infer a set of demographic parameters. We found that the genetic diversity of the Shimaa (an Amazon Yunga population) is a subset of that of Quechuas from Central-Andes. Using the Isolation-with-Migration population genetics model, we inferred that the Shimaa ancestors were a small subgroup that split less than 5300 years ago (after the development of complex societies) from an ancestral Andean population. After the split, the most plausible scenario compatible with our results is that the ancestors of Shimaas moved toward the Peruvian Amazon Yunga and incorporated the culture and language of some of their neighbors, but not a substantial amount of their genes. We validated our results using Approximate Bayesian Computations, posterior predictive tests and the analysis of pseudo-observed datasets. We presented a case study in which model-based Bayesian approaches, combined with necessary statistical validations, shed light into the prehistoric demographic relationship between Andeans and a population from the Amazon Yunga. Our results offer a testable model for the peopling of this large transitional environmental region between the Andes and the Lower Amazonia. However, studies on larger samples and involving more populations of these regions are necessary to confirm if the predominant Andean biological origin of the Shimaas is the rule, and not the exception.

  17. Modeling error distributions of growth curve models through Bayesian methods.

    Science.gov (United States)

    Zhang, Zhiyong

    2016-06-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.

  18. IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS

    International Nuclear Information System (INIS)

    Blanc, Guillermo A.; Kewley, Lisa; Vogt, Frédéric P. A.; Dopita, Michael A.

    2015-01-01

    We present a new method for inferring the metallicity (Z) and ionization parameter (q) of H II regions and star-forming galaxies using strong nebular emission lines (SELs). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photoionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics, the method is flexible and not tied to a particular photoionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extragalactic H II regions, we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local H II regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photoionization models in the literature can be in good (∼30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically ∼0.2 dex lower than both RL and photoionization-model-based abundances

  19. IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillermo A. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Kewley, Lisa; Vogt, Frédéric P. A.; Dopita, Michael A. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2015-01-10

    We present a new method for inferring the metallicity (Z) and ionization parameter (q) of H II regions and star-forming galaxies using strong nebular emission lines (SELs). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photoionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics, the method is flexible and not tied to a particular photoionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extragalactic H II regions, we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local H II regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photoionization models in the literature can be in good (∼30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically ∼0.2 dex lower than both RL and photoionization-model-based abundances.

  20. Fully probabilistic design of hierarchical Bayesian models

    Czech Academy of Sciences Publication Activity Database

    Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine

    2016-01-01

    Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf

  1. Bayesian model discrimination for glucose-insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene

    In this paper we analyse a set of experimental data on a number of healthy and diabetic patients and discuss a variety of models for describing the physiological processes involved in glucose absorption and insulin secretion within the human body. We adopt a Bayesian approach which facilitates...... as parameter uncertainty. Markov chain Monte Carlo methods are used, combining Metropolis Hastings, reversible jump and simulated tempering updates to provide rapidly mixing chains so as to provide robust inference. We demonstrate the methodology for both healthy and type II diabetic populations concluding...... that whilst both populations are well modelled by a common insulin model, their glucose dynamics differ considerably....

  2. Estimation of insurance premiums for coverage against natural disaster risk: an application of Bayesian Inference

    Directory of Open Access Journals (Sweden)

    Y. Paudel

    2013-03-01

    Full Text Available This study applies Bayesian Inference to estimate flood risk for 53 dyke ring areas in the Netherlands, and focuses particularly on the data scarcity and extreme behaviour of catastrophe risk. The probability density curves of flood damage are estimated through Monte Carlo simulations. Based on these results, flood insurance premiums are estimated using two different practical methods that each account in different ways for an insurer's risk aversion and the dispersion rate of loss data. This study is of practical relevance because insurers have been considering the introduction of flood insurance in the Netherlands, which is currently not generally available.

  3. A bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Xiang, Yang

    2017-01-01

    and experience for both patients and healthcare workers, and the underlying network architecture to support such devices is also referred to as medical smartphone networks (MSNs). MSNs, similar to other networks, are subject to a wide range of attacks (e.g. leakage of sensitive patient information by a malicious...... insider). In this work, we focus on MSNs and present a compact but efficient trust-based approach using Bayesian inference to identify malicious nodes in such an environment. We then demonstrate the effectiveness of our approach in detecting malicious nodes by evaluating the deployment of our proposed...

  4. Estimation of insurance premiums for coverage against natural disaster risk: an application of Bayesian Inference

    Science.gov (United States)

    Paudel, Y.; Botzen, W. J. W.; Aerts, J. C. J. H.

    2013-03-01

    This study applies Bayesian Inference to estimate flood risk for 53 dyke ring areas in the Netherlands, and focuses particularly on the data scarcity and extreme behaviour of catastrophe risk. The probability density curves of flood damage are estimated through Monte Carlo simulations. Based on these results, flood insurance premiums are estimated using two different practical methods that each account in different ways for an insurer's risk aversion and the dispersion rate of loss data. This study is of practical relevance because insurers have been considering the introduction of flood insurance in the Netherlands, which is currently not generally available.

  5. Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan

    Science.gov (United States)

    Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František

    2017-09-01

    On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.

  6. Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference

    Science.gov (United States)

    Hardy, T.; Wu, W.

    2017-12-01

    The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland

  7. A Bayesian analysis of sensible heat flux estimation: Quantifying uncertainty in meteorological forcing to improve model prediction

    KAUST Repository

    Ershadi, Ali; McCabe, Matthew; Evans, Jason P.; Mariethoz, Gregoire; Kavetski, Dmitri

    2013-01-01

    The influence of uncertainty in land surface temperature, air temperature, and wind speed on the estimation of sensible heat flux is analyzed using a Bayesian inference technique applied to the Surface Energy Balance System (SEBS) model

  8. Development and comparison in uncertainty assessment based Bayesian modularization method in hydrological modeling

    Science.gov (United States)

    Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn

    2013-04-01

    SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.

  9. Technical Note: How to use Winbugs to infer animal models

    DEFF Research Database (Denmark)

    Damgaard, Lars Holm

    2007-01-01

    This paper deals with Bayesian inferences of animal models using Gibbs sampling. First, we suggest a general and efficient method for updating additive genetic effects, in which the computational cost is independent of the pedigree depth and increases linearly only with the size of the pedigree....... Second, we show how this approach can be used to draw inferences from a wide range of animal models using the computer package Winbugs. Finally, we illustrate the approach in a simulation study, in which the data are generated and analyzed using Winbugs according to a linear model with i.i.d errors...... having Student's t distributions. In conclusion, Winbugs can be used to make inferences in small-sized, quantitative, genetic data sets applying a wide range of animal models that are not yet standard in the animal breeding literature...

  10. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.

    Science.gov (United States)

    Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.

  11. Models and Inference for Multivariate Spatial Extremes

    KAUST Repository

    Vettori, Sabrina

    2017-12-07

    The development of flexible and interpretable statistical methods is necessary in order to provide appropriate risk assessment measures for extreme events and natural disasters. In this thesis, we address this challenge by contributing to the developing research field of Extreme-Value Theory. We initially study the performance of existing parametric and non-parametric estimators of extremal dependence for multivariate maxima. As the dimensionality increases, non-parametric estimators are more flexible than parametric methods but present some loss in efficiency that we quantify under various scenarios. We introduce a statistical tool which imposes the required shape constraints on non-parametric estimators in high dimensions, significantly improving their performance. Furthermore, by embedding the tree-based max-stable nested logistic distribution in the Bayesian framework, we develop a statistical algorithm that identifies the most likely tree structures representing the data\\'s extremal dependence using the reversible jump Monte Carlo Markov Chain method. A mixture of these trees is then used for uncertainty assessment in prediction through Bayesian model averaging. The computational complexity of full likelihood inference is significantly decreased by deriving a recursive formula for the nested logistic model likelihood. The algorithm performance is verified through simulation experiments which also compare different likelihood procedures. Finally, we extend the nested logistic representation to the spatial framework in order to jointly model multivariate variables collected across a spatial region. This situation emerges often in environmental applications but is not often considered in the current literature. Simulation experiments show that the new class of multivariate max-stable processes is able to detect both the cross and inner spatial dependence of a number of extreme variables at a relatively low computational cost, thanks to its Bayesian hierarchical

  12. Incorporating organ movements in inverse planning: assessing dose uncertainties by Bayesian inference

    International Nuclear Information System (INIS)

    Unkelbach, J; Oelfke, U

    2005-01-01

    We present a method to calculate dose uncertainties due to inter-fraction organ movements in fractionated radiotherapy, i.e. in addition to the expectation value of the dose distribution a variance distribution is calculated. To calculate the expectation value of the dose distribution in the presence of organ movements, one estimates a probability distribution of possible patient geometries. The respective variance of the expected dose distribution arises for two reasons: first, the patient is irradiated with a finite number of fractions only and second, the probability distribution of patient geometries has to be estimated from a small number of images and is therefore not exactly known. To quantify the total dose variance, we propose a method that is based on the principle of Bayesian inference. The method is of particular interest when organ motion is incorporated in inverse IMRT planning by means of inverse planning performed on a probability distribution of patient geometries. In order to make this a robust approach, it turns out that the dose variance should be considered (and minimized) in the optimization process. As an application of the presented concept of Bayesian inference, we compare three approaches to inverse planning based on probability distributions that account for an increasing degree of uncertainty. The Bayes theorem further provides a concept to interpolate between patient specific data and population-based knowledge on organ motion which is relevant since the number of CT images of a patient is typically small

  13. Robust bayesian analysis of an autoregressive model with ...

    African Journals Online (AJOL)

    In this work, robust Bayesian analysis of the Bayesian estimation of an autoregressive model with exponential innovations is performed. Using a Bayesian robustness methodology, we show that, using a suitable generalized quadratic loss, we obtain optimal Bayesian estimators of the parameters corresponding to the ...

  14. Macroscopic Models of Clique Tree Growth for Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...

  15. Bayesian model ensembling using meta-trained recurrent neural networks

    NARCIS (Netherlands)

    Ambrogioni, L.; Berezutskaya, Y.; Gü ç lü , U.; Borne, E.W.P. van den; Gü ç lü tü rk, Y.; Gerven, M.A.J. van; Maris, E.G.G.

    2017-01-01

    In this paper we demonstrate that a recurrent neural network meta-trained on an ensemble of arbitrary classification tasks can be used as an approximation of the Bayes optimal classifier. This result is obtained by relying on the framework of e-free approximate Bayesian inference, where the Bayesian

  16. Development of the Bayesian method for unavailability inference. The new inferential theory and the examples of inference using BWR outage data in Japan

    International Nuclear Information System (INIS)

    Nakamura, Makoto

    2009-01-01

    It is important for Level 1 PSA to quantify input reliability parameters and their uncertainty. Bayesian methods for inference of system/component unavailability, however, are not well studied. At present practitioners allocate the uncertainty (i.e. error factor) of the unavailability based on engineering judgment. Systematic methods based on Bayesian statistics are needed for quantification of such uncertainty. In this study we have developed a new method for Bayesian inference of unavailability, where the posterior of system/component unavailability is described by the inverted gamma distribution. We show that the average of the posterior comes close to the point estimate of the unavailability as the number of outages goes to infinity. That indicates validity of the new method. Using plant data recorded in NUCIA, we have applied the new method to inference of system unavailability under unplanned outages due to violations of LCO at BWRs in Japan. According to the inference results, the unavailability is populated in the order of 10 -5 -10 -4 and the error factor is within 1-2. Thus, the new Bayesian method allows one to quantify magnitudes and widths (i.e. error factor) of uncertainty distributions of unavailability. (author)

  17. New Bayesian inference method using two steps of Markov chain Monte Carlo and its application to shock tube experiment data of Furan oxidation

    KAUST Repository

    Kim, Daesang; El Gharamti, Iman; Bisetti, Fabrizio; Farooq, Aamir; Knio, Omar

    2016-01-01

    A new Bayesian inference method has been developed and applied to Furan shock tube experimental data for efficient statistical inferences of the Arrhenius parameters of two OH radical consumption reactions. The collected experimental data, which

  18. Reconstruction of prehistoric pottery use from fatty acid carbon isotope signatures using Bayesian inference

    Czech Academy of Sciences Publication Activity Database

    Fernandes, R.; Eley, Y.; Brabec, Marek; Lucquin, A.; Millard, A.; Craig, O.E.

    2018-01-01

    Roč. 117, March (2018), s. 31-42 ISSN 0146-6380 Institutional support: RVO:67985807 Keywords : Fatty acids * carbon isotopes * pottery use * Bayesian mixing models * FRUITS Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.081, year: 2016

  19. Estimating Population Parameters using the Structured Serial Coalescent with Bayesian MCMC Inference when some Demes are Hidden

    Directory of Open Access Journals (Sweden)

    Allen Rodrigo

    2006-01-01

    Full Text Available Using the structured serial coalescent with Bayesian MCMC and serial samples, we estimate population size when some demes are not sampled or are hidden, ie ghost demes. It is found that even with the presence of a ghost deme, accurate inference was possible if the parameters are estimated with the true model. However with an incorrect model, estimates were biased and can be positively misleading. We extend these results to the case where there are sequences from the ghost at the last time sample. This case can arise in HIV patients, when some tissue samples and viral sequences only become available after death. When some sequences from the ghost deme are available at the last sampling time, estimation bias is reduced and accurate estimation of parameters associated with the ghost deme is possible despite sampling bias. Migration rates for this case are also shown to be good estimates when migration values are low.

  20. Calibrated birth-death phylogenetic time-tree priors for bayesian inference.

    Science.gov (United States)

    Heled, Joseph; Drummond, Alexei J

    2015-05-01

    Here we introduce a general class of multiple calibration birth-death tree priors for use in Bayesian phylogenetic inference. All tree priors in this class separate ancestral node heights into a set of "calibrated nodes" and "uncalibrated nodes" such that the marginal distribution of the calibrated nodes is user-specified whereas the density ratio of the birth-death prior is retained for trees with equal values for the calibrated nodes. We describe two formulations, one in which the calibration information informs the prior on ranked tree topologies, through the (conditional) prior, and the other which factorizes the prior on divergence times and ranked topologies, thus allowing uniform, or any arbitrary prior distribution on ranked topologies. Although the first of these formulations has some attractive properties, the algorithm we present for computing its prior density is computationally intensive. However, the second formulation is always faster and computationally efficient for up to six calibrations. We demonstrate the utility of the new class of multiple-calibration tree priors using both small simulations and a real-world analysis and compare the results to existing schemes. The two new calibrated tree priors described in this article offer greater flexibility and control of prior specification in calibrated time-tree inference and divergence time dating, and will remove the need for indirect approaches to the assessment of the combined effect of calibration densities and tree priors in Bayesian phylogenetic inference. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  1. Quantum-Like Bayesian Networks for Modeling Decision Making

    Directory of Open Access Journals (Sweden)

    Catarina eMoreira

    2016-01-01

    Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.

  2. A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.

    Science.gov (United States)

    Ponciano, José Miguel

    2017-11-22

    Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  3. Adaptive Inference on General Graphical Models

    OpenAIRE

    Acar, Umut A.; Ihler, Alexander T.; Mettu, Ramgopal; Sumer, Ozgur

    2012-01-01

    Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional ...

  4. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  5. A review and comparison of Bayesian and likelihood-based inferences in beta regression and zero-or-one-inflated beta regression.

    Science.gov (United States)

    Liu, Fang; Eugenio, Evercita C

    2018-04-01

    Beta regression is an increasingly popular statistical technique in medical research for modeling of outcomes that assume values in (0, 1), such as proportions and patient reported outcomes. When outcomes take values in the intervals [0,1), (0,1], or [0,1], zero-or-one-inflated beta (zoib) regression can be used. We provide a thorough review on beta regression and zoib regression in the modeling, inferential, and computational aspects via the likelihood-based and Bayesian approaches. We demonstrate the statistical and practical importance of correctly modeling the inflation at zero/one rather than ad hoc replacing them with values close to zero/one via simulation studies; the latter approach can lead to biased estimates and invalid inferences. We show via simulation studies that the likelihood-based approach is computationally faster in general than MCMC algorithms used in the Bayesian inferences, but runs the risk of non-convergence, large biases, and sensitivity to starting values in the optimization algorithm especially with clustered/correlated data, data with sparse inflation at zero and one, and data that warrant regularization of the likelihood. The disadvantages of the regular likelihood-based approach make the Bayesian approach an attractive alternative in these cases. Software packages and tools for fitting beta and zoib regressions in both the likelihood-based and Bayesian frameworks are also reviewed.

  6. Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps

    Science.gov (United States)

    Underwood, Kristen L.; Rizzo, Donna M.; Schroth, Andrew W.; Dewoolkar, Mandar M.

    2017-12-01

    Given the variable biogeochemical, physical, and hydrological processes driving fluvial sediment and nutrient export, the water science and management communities need data-driven methods to identify regions prone to production and transport under variable hydrometeorological conditions. We use Bayesian analysis to segment concentration-discharge linear regression models for total suspended solids (TSS) and particulate and dissolved phosphorus (PP, DP) using 22 years of monitoring data from 18 Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented regression model parameters and identify threshold position. The identified threshold positions demonstrated a considerable range below and above the median discharge—which has been used previously as the default breakpoint in segmented regression models to discern differences between pre and post-threshold export regimes. We then applied a Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP, and DP export regimes using watershed characteristics, as well as Bayesian regression intercepts and slopes. A SOM defined two clusters of high-flux basins, one where PP flux was predominantly episodic and hydrologically driven; and another in which the sediment and nutrient sourcing and mobilization were more bimodal, resulting from both hydrologic processes at post-threshold discharges and reactive processes (e.g., nutrient cycling or lateral/vertical exchanges of fine sediment) at prethreshold discharges. A separate DP SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge response, but driven by differing land use. Our novel framework shows promise as a tool with broad management application that provides insights into landscape drivers of riverine solute and sediment export.

  7. Bayesian uncertainty analyses of probabilistic risk models

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1989-01-01

    Applications of Bayesian principles to the uncertainty analyses are discussed in the paper. A short review of the most important uncertainties and their causes is provided. An application of the principle of maximum entropy to the determination of Bayesian prior distributions is described. An approach based on so called probabilistic structures is presented in order to develop a method of quantitative evaluation of modelling uncertainties. The method is applied to a small example case. Ideas for application areas for the proposed method are discussed

  8. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    Science.gov (United States)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the

  9. Modeling Women's Menstrual Cycles using PICI Gates in Bayesian Network.

    Science.gov (United States)

    Zagorecki, Adam; Łupińska-Dubicka, Anna; Voortman, Mark; Druzdzel, Marek J

    2016-03-01

    A major difficulty in building Bayesian network (BN) models is the size of conditional probability tables, which grow exponentially in the number of parents. One way of dealing with this problem is through parametric conditional probability distributions that usually require only a number of parameters that is linear in the number of parents. In this paper, we introduce a new class of parametric models, the Probabilistic Independence of Causal Influences (PICI) models, that aim at lowering the number of parameters required to specify local probability distributions, but are still capable of efficiently modeling a variety of interactions. A subset of PICI models is decomposable and this leads to significantly faster inference as compared to models that cannot be decomposed. We present an application of the proposed method to learning dynamic BNs for modeling a woman's menstrual cycle. We show that PICI models are especially useful for parameter learning from small data sets and lead to higher parameter accuracy than when learning CPTs.

  10. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  11. A Bayesian MCMC method for point process models with intractable normalising constants

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper

    2004-01-01

    to simulate from the "unknown distribution", perfect simulation algorithms become useful. We illustrate the method in cases whre the likelihood is given by a Markov point process model. Particularly, we consider semi-parametric Bayesian inference in connection to both inhomogeneous Markov point process models...... and pairwise interaction point processes....

  12. Selectivity curves of the capture of mangrove crab (Ucides cordatus) on the northern coast of Brazil using bayesian inference.

    Science.gov (United States)

    Furtado-Junior, I; Abrunhosa, F A; Holanda, F C A F; Tavares, M C S

    2016-06-01

    Fishing selectivity of the mangrove crab Ucides cordatus in the north coast of Brazil can be defined as the fisherman's ability to capture and select individuals from a certain size or sex (or a combination of these factors) which suggests an empirical selectivity. Considering this hypothesis, we calculated the selectivity curves for males and females crabs using the logit function of the logistic model in the formulation. The Bayesian inference consisted of obtaining the posterior distribution by applying the Markov chain Monte Carlo (MCMC) method to software R using the OpenBUGS, BRugs, and R2WinBUGS libraries. The estimated results of width average carapace selection for males and females compared with previous studies reporting the average width of the carapace of sexual maturity allow us to confirm the hypothesis that most mature individuals do not suffer from fishing pressure; thus, ensuring their sustainability.

  13. Bayesian analysis for uncertainty estimation of a canopy transpiration model

    Science.gov (United States)

    Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.

    2007-04-01

    A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.

  14. A new Bayesian Inference-based Phase Associator for Earthquake Early Warning

    Science.gov (United States)

    Meier, Men-Andrin; Heaton, Thomas; Clinton, John; Wiemer, Stefan

    2013-04-01

    State of the art network-based Earthquake Early Warning (EEW) systems can provide warnings for large magnitude 7+ earthquakes. Although regions in the direct vicinity of the epicenter will not receive warnings prior to damaging shaking, real-time event characterization is available before the destructive S-wave arrival across much of the strongly affected region. In contrast, in the case of the more frequent medium size events, such as the devastating 1994 Mw6.7 Northridge, California, earthquake, providing timely warning to the smaller damage zone is more difficult. For such events the "blind zone" of current systems (e.g. the CISN ShakeAlert system in California) is similar in size to the area over which severe damage occurs. We propose a faster and more robust Bayesian inference-based event associator, that in contrast to the current standard associators (e.g. Earthworm Binder), is tailored to EEW and exploits information other than only phase arrival times. In particular, the associator potentially allows for reliable automated event association with as little as two observations, which, compared to the ShakeAlert system, would speed up the real-time characterizations by about ten seconds and thus reduce the blind zone area by up to 80%. We compile an extensive data set of regional and teleseismic earthquake and noise waveforms spanning a wide range of earthquake magnitudes and tectonic regimes. We pass these waveforms through a causal real-time filterbank with passband filters between 0.1 and 50Hz, and, updating every second from the event detection, extract the maximum amplitudes in each frequency band. Using this dataset, we define distributions of amplitude maxima in each passband as a function of epicentral distance and magnitude. For the real-time data, we pass incoming broadband and strong motion waveforms through the same filterbank and extract an evolving set of maximum amplitudes in each passband. We use the maximum amplitude distributions to check

  15. A combined evidence Bayesian method for human ancestry inference applied to Afro-Colombians.

    Science.gov (United States)

    Rishishwar, Lavanya; Conley, Andrew B; Vidakovic, Brani; Jordan, I King

    2015-12-15

    Uniparental genetic markers, mitochondrial DNA (mtDNA) and Y chromosomal DNA, are widely used for the inference of human ancestry. However, the resolution of ancestral origins based on mtDNA haplotypes is limited by the fact that such haplotypes are often found to be distributed across wide geographical regions. We have addressed this issue here by combining two sources of ancestry information that have typically been considered separately: historical records regarding population origins and genetic information on mtDNA haplotypes. To combine these distinct data sources, we applied a Bayesian approach that considers historical records, in the form of prior probabilities, together with data on the geographical distribution of mtDNA haplotypes, formulated as likelihoods, to yield ancestry assignments from posterior probabilities. This combined evidence Bayesian approach to ancestry assignment was evaluated for its ability to accurately assign sub-continental African ancestral origins to Afro-Colombians based on their mtDNA haplotypes. We demonstrate that the incorporation of historical prior probabilities via this analytical framework can provide for substantially increased resolution in sub-continental African ancestry assignment for members of this population. In addition, a personalized approach to ancestry assignment that involves the tuning of priors to individual mtDNA haplotypes yields even greater resolution for individual ancestry assignment. Despite the fact that Colombia has a large population of Afro-descendants, the ancestry of this community has been understudied relative to populations with primarily European and Native American ancestry. Thus, the application of the kind of combined evidence approach developed here to the study of ancestry in the Afro-Colombian population has the potential to be impactful. The formal Bayesian analytical framework we propose for combining historical and genetic information also has the potential to be widely applied

  16. Bayesian geostatistical modeling of leishmaniasis incidence in Brazil.

    Directory of Open Access Journals (Sweden)

    Dimitrios-Alexios Karagiannis-Voules

    Full Text Available BACKGROUND: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. METHODOLOGY: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001-2010. Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. PRINCIPAL FINDINGS: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676 for cutaneous leishmaniasis and 4,889 (SD: 288 for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. CONCLUSIONS/SIGNIFICANCE: Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence.

  17. Using Approximate Bayesian Computation to infer sex ratios from acoustic data.

    Science.gov (United States)

    Lehnen, Lisa; Schorcht, Wigbert; Karst, Inken; Biedermann, Martin; Kerth, Gerald; Puechmaille, Sebastien J

    2018-01-01

    Population sex ratios are of high ecological relevance, but are challenging to determine in species lacking conspicuous external cues indicating their sex. Acoustic sexing is an option if vocalizations differ between sexes, but is precluded by overlapping distributions of the values of male and female vocalizations in many species. A method allowing the inference of sex ratios despite such an overlap will therefore greatly increase the information extractable from acoustic data. To meet this demand, we developed a novel approach using Approximate Bayesian Computation (ABC) to infer the sex ratio of populations from acoustic data. Additionally, parameters characterizing the male and female distribution of acoustic values (mean and standard deviation) are inferred. This information is then used to probabilistically assign a sex to a single acoustic signal. We furthermore develop a simpler means of sex ratio estimation based on the exclusion of calls from the overlap zone. Applying our methods to simulated data demonstrates that sex ratio and acoustic parameter characteristics of males and females are reliably inferred by the ABC approach. Applying both the ABC and the exclusion method to empirical datasets (echolocation calls recorded in colonies of lesser horseshoe bats, Rhinolophus hipposideros) provides similar sex ratios as molecular sexing. Our methods aim to facilitate evidence-based conservation, and to benefit scientists investigating ecological or conservation questions related to sex- or group specific behaviour across a wide range of organisms emitting acoustic signals. The developed methodology is non-invasive, low-cost and time-efficient, thus allowing the study of many sites and individuals. We provide an R-script for the easy application of the method and discuss potential future extensions and fields of applications. The script can be easily adapted to account for numerous biological systems by adjusting the type and number of groups to be

  18. Bayesian disease mapping: hierarchical modeling in spatial epidemiology

    National Research Council Canada - National Science Library

    Lawson, Andrew

    2013-01-01

    .... Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications...

  19. Impact of censoring on learning Bayesian networks in survival modelling.

    Science.gov (United States)

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from

  20. Improved inference in Bayesian segmentation using Monte Carlo sampling: Application to hippocampal subfield volumetry

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen

    2013-01-01

    Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However...... in an Alzheimer’s disease classification task. As an additional benefit, the technique also allows one to compute informative “error bars” on the volume estimates of individual structures....

  1. An Active Lattice Model in a Bayesian Framework

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    1996-01-01

    A Markov Random Field is used as a structural model of a deformable rectangular lattice. When used as a template prior in a Bayesian framework this model is powerful for making inferences about lattice structures in images. The model assigns maximum probability to the perfect regular lattice...... by penalizing deviations in alignment and lattice node distance. The Markov random field represents prior knowledge about the lattice structure, and through an observation model that incorporates the visual appearance of the nodes, we can simulate realizations from the posterior distribution. A maximum...... a posteriori (MAP) estimate, found by simulated annealing, is used as the reconstructed lattice. The model was developed as a central part of an algorithm for automatic analylsis of genetic experiments, positioned in a lattice structure by a robot. The algorithm has been successfully applied to many images...

  2. Bayesian approach to errors-in-variables in regression models

    Science.gov (United States)

    Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad

    2017-05-01

    In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.

  3. Probabilistic safety assessment model in consideration of human factors based on object-oriented bayesian networks

    International Nuclear Information System (INIS)

    Zhou Zhongbao; Zhou Jinglun; Sun Quan

    2007-01-01

    Effect of Human factors on system safety is increasingly serious, which is often ignored in traditional probabilistic safety assessment methods however. A new probabilistic safety assessment model based on object-oriented Bayesian networks is proposed in this paper. Human factors are integrated into the existed event sequence diagrams. Then the classes of the object-oriented Bayesian networks are constructed which are converted to latent Bayesian networks for inference. Finally, the inference results are integrated into event sequence diagrams for probabilistic safety assessment. The new method is applied to the accident of loss of coolant in a nuclear power plant. the results show that the model is not only applicable to real-time situation assessment, but also applicable to situation assessment based certain amount of information. The modeling complexity is kept down and the new method is appropriate to large complex systems due to the thoughts of object-oriented. (authors)

  4. Bayesian methodology for reliability model acceptance

    International Nuclear Information System (INIS)

    Zhang Ruoxue; Mahadevan, Sankaran

    2003-01-01

    This paper develops a methodology to assess the reliability computation model validity using the concept of Bayesian hypothesis testing, by comparing the model prediction and experimental observation, when there is only one computational model available to evaluate system behavior. Time-independent and time-dependent problems are investigated, with consideration of both cases: with and without statistical uncertainty in the model. The case of time-independent failure probability prediction with no statistical uncertainty is a straightforward application of Bayesian hypothesis testing. However, for the life prediction (time-dependent reliability) problem, a new methodology is developed in this paper to make the same Bayesian hypothesis testing concept applicable. With the existence of statistical uncertainty in the model, in addition to the application of a predictor estimator of the Bayes factor, the uncertainty in the Bayes factor is explicitly quantified through treating it as a random variable and calculating the probability that it exceeds a specified value. The developed method provides a rational criterion to decision-makers for the acceptance or rejection of the computational model

  5. Bayesian inference for heterogeneous caprock permeability based on above zone pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Namhata, Argha; Small, Mitchell J.; Dilmore, Robert M.; Nakles, David V.; King, Seth

    2017-02-01

    The presence of faults/ fractures or highly permeable zones in the primary sealing caprock of a CO2 storage reservoir can result in leakage of CO2. Monitoring of leakage requires the capability to detect and resolve the onset, location, and volume of leakage in a systematic and timely manner. Pressure-based monitoring possesses such capabilities. This study demonstrates a basis for monitoring network design based on the characterization of CO2 leakage scenarios through an assessment of the integrity and permeability of the caprock inferred from above zone pressure measurements. Four representative heterogeneous fractured seal types are characterized to demonstrate seal permeability ranging from highly permeable to impermeable. Based on Bayesian classification theory, the probability of each fractured caprock scenario given above zone pressure measurements with measurement error is inferred. The sensitivity to injection rate and caprock thickness is also evaluated and the probability of proper classification is calculated. The time required to distinguish between above zone pressure outcomes and the associated leakage scenarios is also computed.

  6. Bayesian network modelling of upper gastrointestinal bleeding

    Science.gov (United States)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  7. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  8. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  9. New Bayesian inference method using two steps of Markov chain Monte Carlo and its application to shock tube experiment data of Furan oxidation

    KAUST Repository

    Kim, Daesang

    2016-01-06

    A new Bayesian inference method has been developed and applied to Furan shock tube experimental data for efficient statistical inferences of the Arrhenius parameters of two OH radical consumption reactions. The collected experimental data, which consist of time series signals of OH radical concentrations of 14 shock tube experiments, may require several days for MCMC computations even with the support of a fast surrogate of the combustion simulation model, while the new method reduces it to several hours by splitting the process into two steps of MCMC: the first inference of rate constants and the second inference of the Arrhenius parameters. Each step has low dimensional parameter spaces and the second step does not need the executions of the combustion simulation. Furthermore, the new approach has more flexibility in choosing the ranges of the inference parameters, and the higher speed and flexibility enable the more accurate inferences and the analyses of the propagation of errors in the measured temperatures and the alignment of the experimental time to the inference results.

  10. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  11. Centralized Bayesian reliability modelling with sensor networks

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 19, č. 5 (2013), s. 471-482 ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant - others:GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf

  12. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics

    Science.gov (United States)

    Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.

  13. qPR: An adaptive partial-report procedure based on Bayesian inference.

    Science.gov (United States)

    Baek, Jongsoo; Lesmes, Luis Andres; Lu, Zhong-Lin

    2016-08-01

    Iconic memory is best assessed with the partial report procedure in which an array of letters appears briefly on the screen and a poststimulus cue directs the observer to report the identity of the cued letter(s). Typically, 6-8 cue delays or 600-800 trials are tested to measure the iconic memory decay function. Here we develop a quick partial report, or qPR, procedure based on a Bayesian adaptive framework to estimate the iconic memory decay function with much reduced testing time. The iconic memory decay function is characterized by an exponential function and a joint probability distribution of its three parameters. Starting with a prior of the parameters, the method selects the stimulus to maximize the expected information gain in the next test trial. It then updates the posterior probability distribution of the parameters based on the observer's response using Bayesian inference. The procedure is reiterated until either the total number of trials or the precision of the parameter estimates reaches a certain criterion. Simulation studies showed that only 100 trials were necessary to reach an average absolute bias of 0.026 and a precision of 0.070 (both in terms of probability correct). A psychophysical validation experiment showed that estimates of the iconic memory decay function obtained with 100 qPR trials exhibited good precision (the half width of the 68.2% credible interval = 0.055) and excellent agreement with those obtained with 1,600 trials of the conventional method of constant stimuli procedure (RMSE = 0.063). Quick partial-report relieves the data collection burden in characterizing iconic memory and makes it possible to assess iconic memory in clinical populations.

  14. New PDE-based methods for image enhancement using SOM and Bayesian inference in various discretization schemes

    International Nuclear Information System (INIS)

    Karras, D A; Mertzios, G B

    2009-01-01

    A novel approach is presented in this paper for improving anisotropic diffusion PDE models, based on the Perona–Malik equation. A solution is proposed from an engineering perspective to adaptively estimate the parameters of the regularizing function in this equation. The goal of such a new adaptive diffusion scheme is to better preserve edges when the anisotropic diffusion PDE models are applied to image enhancement tasks. The proposed adaptive parameter estimation in the anisotropic diffusion PDE model involves self-organizing maps and Bayesian inference to define edge probabilities accurately. The proposed modifications attempt to capture not only simple edges but also difficult textural edges and incorporate their probability in the anisotropic diffusion model. In the context of the application of PDE models to image processing such adaptive schemes are closely related to the discrete image representation problem and the investigation of more suitable discretization algorithms using constraints derived from image processing theory. The proposed adaptive anisotropic diffusion model illustrates these concepts when it is numerically approximated by various discretization schemes in a database of magnetic resonance images (MRI), where it is shown to be efficient in image filtering and restoration applications

  15. Bayesian models of cognition revisited: Setting optimality aside and letting data drive psychological theory.

    Science.gov (United States)

    Tauber, Sean; Navarro, Daniel J; Perfors, Amy; Steyvers, Mark

    2017-07-01

    Recent debates in the psychological literature have raised questions about the assumptions that underpin Bayesian models of cognition and what inferences they license about human cognition. In this paper we revisit this topic, arguing that there are 2 qualitatively different ways in which a Bayesian model could be constructed. The most common approach uses a Bayesian model as a normative standard upon which to license a claim about optimality. In the alternative approach, a descriptive Bayesian model need not correspond to any claim that the underlying cognition is optimal or rational, and is used solely as a tool for instantiating a substantive psychological theory. We present 3 case studies in which these 2 perspectives lead to different computational models and license different conclusions about human cognition. We demonstrate how the descriptive Bayesian approach can be used to answer different sorts of questions than the optimal approach, especially when combined with principled tools for model evaluation and model selection. More generally we argue for the importance of making a clear distinction between the 2 perspectives. Considerable confusion results when descriptive models and optimal models are conflated, and if Bayesians are to avoid contributing to this confusion it is important to avoid making normative claims when none are intended. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  17. Approximate Bayesian computation for forward modeling in cosmology

    International Nuclear Information System (INIS)

    Akeret, Joël; Refregier, Alexandre; Amara, Adam; Seehars, Sebastian; Hasner, Caspar

    2015-01-01

    Bayesian inference is often used in cosmology and astrophysics to derive constraints on model parameters from observations. This approach relies on the ability to compute the likelihood of the data given a choice of model parameters. In many practical situations, the likelihood function may however be unavailable or intractable due to non-gaussian errors, non-linear measurements processes, or complex data formats such as catalogs and maps. In these cases, the simulation of mock data sets can often be made through forward modeling. We discuss how Approximate Bayesian Computation (ABC) can be used in these cases to derive an approximation to the posterior constraints using simulated data sets. This technique relies on the sampling of the parameter set, a distance metric to quantify the difference between the observation and the simulations and summary statistics to compress the information in the data. We first review the principles of ABC and discuss its implementation using a Population Monte-Carlo (PMC) algorithm and the Mahalanobis distance metric. We test the performance of the implementation using a Gaussian toy model. We then apply the ABC technique to the practical case of the calibration of image simulations for wide field cosmological surveys. We find that the ABC analysis is able to provide reliable parameter constraints for this problem and is therefore a promising technique for other applications in cosmology and astrophysics. Our implementation of the ABC PMC method is made available via a public code release

  18. Bayesian statistic methods and theri application in probabilistic simulation models

    Directory of Open Access Journals (Sweden)

    Sergio Iannazzo

    2007-03-01

    Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.

  19. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates.

    Science.gov (United States)

    Höhna, Sebastian; May, Michael R; Moore, Brian R

    2016-03-01

    Many fundamental questions in evolutionary biology entail estimating rates of lineage diversification (speciation-extinction) that are modeled using birth-death branching processes. We leverage recent advances in branching-process theory to develop a flexible Bayesian framework for specifying diversification models-where rates are constant, vary continuously, or change episodically through time-and implement numerical methods to estimate parameters of these models from molecular phylogenies, even when species sampling is incomplete. We enable both statistical inference and efficient simulation under these models. We also provide robust methods for comparing the relative and absolute fit of competing branching-process models to a given tree, thereby providing rigorous tests of biological hypotheses regarding patterns and processes of lineage diversification. The source code for TESS is freely available at http://cran.r-project.org/web/packages/TESS/ CONTACT: Sebastian.Hoehna@gmail.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Bayesian inference in mass flow simulations - from back calculation to prediction

    Science.gov (United States)

    Kofler, Andreas; Fischer, Jan-Thomas; Hellweger, Valentin; Huber, Andreas; Mergili, Martin; Pudasaini, Shiva; Fellin, Wolfgang; Oberguggenberger, Michael

    2017-04-01

    Mass flow simulations are an integral part of hazard assessment. Determining the hazard potential requires a multidisciplinary approach, including different scientific fields such as geomorphology, meteorology, physics, civil engineering and mathematics. An important task in snow avalanche simulation is to predict process intensities (runout, flow velocity and depth, ...). The application of probabilistic methods allows one to develop a comprehensive simulation concept, ranging from back to forward calculation and finally to prediction of mass flow events. In this context optimized parameter sets for the used simulation model or intensities of the modeled mass flow process (e.g. runout distances) are represented by probability distributions. Existing deterministic flow models, in particular with respect to snow avalanche dynamics, contain several parameters (e.g. friction). Some of these parameters are more conceptual than physical and their direct measurement in the field is hardly possible. Hence, parameters have to be optimized by matching simulation results to field observations. This inverse problem can be solved by a Bayesian approach (Markov chain Monte Carlo). The optimization process yields parameter distributions, that can be utilized for probabilistic reconstruction and prediction of avalanche events. Arising challenges include the limited amount of observations, correlations appearing in model parameters or observed avalanche characteristics (e.g. velocity and runout) and the accurate handling of ensemble simulations, always taking into account the related uncertainties. Here we present an operational Bayesian simulation framework with r.avaflow, the open source GIS simulation model for granular avalanches and debris flows.

  1. Bayesian inference for spatio-temporal spike-and-slab priors

    DEFF Research Database (Denmark)

    Andersen, Michael Riis; Vehtari, Aki; Winther, Ole

    2017-01-01

    a transformed Gaussian process on the spike-and-slab probabilities. An expectation propagation (EP) algorithm for posterior inference under the proposed model is derived. For large scale problems, the standard EP algorithm can be prohibitively slow. We therefore introduce three different approximation schemes...

  2. Evaluating Flight Crew Performance by a Bayesian Network Model

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2018-03-01

    Full Text Available Flight crew performance is of great significance in keeping flights safe and sound. When evaluating the crew performance, quantitative detailed behavior information may not be available. The present paper introduces the Bayesian Network to perform flight crew performance evaluation, which permits the utilization of multidisciplinary sources of objective and subjective information, despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of 484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance Model is constructed. The Delphi technique helps to gather subjective data as a supplement to objective data from accident reports. The conditional probabilities are elicited by the leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis are used and some interesting conclusions are drawn, which could provide data support to make interventions for human error management in aviation safety.

  3. Inference in models with adaptive learning

    NARCIS (Netherlands)

    Chevillon, G.; Massmann, M.; Mavroeidis, S.

    2010-01-01

    Identification of structural parameters in models with adaptive learning can be weak, causing standard inference procedures to become unreliable. Learning also induces persistent dynamics, and this makes the distribution of estimators and test statistics non-standard. Valid inference can be

  4. Bayesian inference for data assimilation using Least-Squares Finite Element methods

    International Nuclear Information System (INIS)

    Dwight, Richard P

    2010-01-01

    It has recently been observed that Least-Squares Finite Element methods (LS-FEMs) can be used to assimilate experimental data into approximations of PDEs in a natural way, as shown by Heyes et al. in the case of incompressible Navier-Stokes flow. The approach was shown to be effective without regularization terms, and can handle substantial noise in the experimental data without filtering. Of great practical importance is that - unlike other data assimilation techniques - it is not significantly more expensive than a single physical simulation. However the method as presented so far in the literature is not set in the context of an inverse problem framework, so that for example the meaning of the final result is unclear. In this paper it is shown that the method can be interpreted as finding a maximum a posteriori (MAP) estimator in a Bayesian approach to data assimilation, with normally distributed observational noise, and a Bayesian prior based on an appropriate norm of the governing equations. In this setting the method may be seen to have several desirable properties: most importantly discretization and modelling error in the simulation code does not affect the solution in limit of complete experimental information, so these errors do not have to be modelled statistically. Also the Bayesian interpretation better justifies the choice of the method, and some useful generalizations become apparent. The technique is applied to incompressible Navier-Stokes flow in a pipe with added velocity data, where its effectiveness, robustness to noise, and application to inverse problems is demonstrated.

  5. Characteristics of SiC neutron sensor spectrum unfolding process based on Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Cetnar, Jerzy; Krolikowski, Igor [Faculty of Energy and Fuels AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Ottaviani, L. [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231 -13397 Marseille Cedex 20 (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    This paper deals with SiC detector signal interpretation in neutron radiation measurements in mixed neutron gamma radiation fields, which is called the detector inverse problem or the spectrum unfolding, and it aims in finding a representation of the primary radiation, based on the measured detector signals. In our novel methodology we resort to Bayesian inference approach. In the developed procedure the resultant spectra is unfolded form detector channels reading, where the estimated neutron fluence in a group structure is obtained with its statistical characteristic comprising of standard deviation and correlation matrix. In the paper we present results of unfolding process for case of D-T neutron source in neutron moderating environment. Discussions of statistical properties of obtained results are presented as well as of the physical meaning of obtained correlation matrix of estimated group fluence. The presented works has been carried out within the I-SMART project, which is part of the KIC InnoEnergy R and D program. (authors)

  6. Bayesian inference in genetic parameter estimation of visual scores in Nellore beef-cattle

    Science.gov (United States)

    2009-01-01

    The aim of this study was to estimate the components of variance and genetic parameters for the visual scores which constitute the Morphological Evaluation System (MES), such as body structure (S), precocity (P) and musculature (M) in Nellore beef-cattle at the weaning and yearling stages, by using threshold Bayesian models. The information used for this was gleaned from visual scores of 5,407 animals evaluated at the weaning and 2,649 at the yearling stages. The genetic parameters for visual score traits were estimated through two-trait analysis, using the threshold animal model, with Bayesian statistics methodology and MTGSAM (Multiple Trait Gibbs Sampler for Animal Models) threshold software. Heritability estimates for S, P and M were 0.68, 0.65 and 0.62 (at weaning) and 0.44, 0.38 and 0.32 (at the yearling stage), respectively. Heritability estimates for S, P and M were found to be high, and so it is expected that these traits should respond favorably to direct selection. The visual scores evaluated at the weaning and yearling stages might be used in the composition of new selection indexes, as they presented sufficient genetic variability to promote genetic progress in such morphological traits. PMID:21637450

  7. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such ada......The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...

  8. A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model

    Science.gov (United States)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor

    2018-02-01

    Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.

  9. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators

    Science.gov (United States)

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  10. LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

    Energy Technology Data Exchange (ETDEWEB)

    Weyant, Anja; Wood-Vasey, W. Michael [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), Physics and Astronomy Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Schafer, Chad, E-mail: anw19@pitt.edu [Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2013-02-20

    Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.

  11. LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

    International Nuclear Information System (INIS)

    Weyant, Anja; Wood-Vasey, W. Michael; Schafer, Chad

    2013-01-01

    Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.

  12. Bayesian conditional-independence modeling of the AIDS epidemic in England and Wales

    Science.gov (United States)

    Gilks, Walter R.; De Angelis, Daniela; Day, Nicholas E.

    We describe the use of conditional-independence modeling, Bayesian inference and Markov chain Monte Carlo, to model and project the HIV-AIDS epidemic in homosexual/bisexual males in England and Wales. Complexity in this analysis arises through selectively missing data, indirectly observed underlying processes, and measurement error. Our emphasis is on presentation and discussion of the concepts, not on the technicalities of this analysis, which can be found elsewhere [D. De Angelis, W.R. Gilks, N.E. Day, Bayesian projection of the the acquired immune deficiency syndrome epidemic (with discussion), Applied Statistics, in press].

  13. iSEDfit: Bayesian spectral energy distribution modeling of galaxies

    Science.gov (United States)

    Moustakas, John

    2017-08-01

    iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone. After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

  14. A Bayesian modelling framework for tornado occurrences in North America.

    Science.gov (United States)

    Cheng, Vincent Y S; Arhonditsis, George B; Sills, David M L; Gough, William A; Auld, Heather

    2015-03-25

    Tornadoes represent one of nature's most hazardous phenomena that have been responsible for significant destruction and devastating fatalities. Here we present a Bayesian modelling approach for elucidating the spatiotemporal patterns of tornado activity in North America. Our analysis shows a significant increase in the Canadian Prairies and the Northern Great Plains during the summer, indicating a clear transition of tornado activity from the United States to Canada. The linkage between monthly-averaged atmospheric variables and likelihood of tornado events is characterized by distinct seasonality; the convective available potential energy is the predominant factor in the summer; vertical wind shear appears to have a strong signature primarily in the winter and secondarily in the summer; and storm relative environmental helicity is most influential in the spring. The present probabilistic mapping can be used to draw inference on the likelihood of tornado occurrence in any location in North America within a selected time period of the year.

  15. Model Selection in Historical Research Using Approximate Bayesian Computation

    Science.gov (United States)

    Rubio-Campillo, Xavier

    2016-01-01

    Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953

  16. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function

  17. Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    Mario A Pardo

    Full Text Available We inferred the population densities of blue whales (Balaenoptera musculus and short-beaked common dolphins (Delphinus delphis in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT. Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge. Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more

  18. A hierarchical method for Bayesian inference of rate parameters from shock tube data: Application to the study of the reaction of hydroxyl with 2-methylfuran

    KAUST Repository

    Kim, Daesang; El Gharamti, Iman; Hantouche, Mireille; Elwardani, Ahmed Elsaid; Farooq, Aamir; Bisetti, Fabrizio; Knio, Omar

    2017-01-01

    We developed a novel two-step hierarchical method for the Bayesian inference of the rate parameters of a target reaction from time-resolved concentration measurements in shock tubes. The method was applied to the calibration of the parameters

  19. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin; Zhang, Zhihua; Wong, Ka-Chun; Zhang, Xiangliang; Keyes, David E.

    2017-01-01

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference

  20. Adversarial life testing: A Bayesian negotiation model

    International Nuclear Information System (INIS)

    Rufo, M.J.; Martín, J.; Pérez, C.J.

    2014-01-01

    Life testing is a procedure intended for facilitating the process of making decisions in the context of industrial reliability. On the other hand, negotiation is a process of making joint decisions that has one of its main foundations in decision theory. A Bayesian sequential model of negotiation in the context of adversarial life testing is proposed. This model considers a general setting for which a manufacturer offers a product batch to a consumer. It is assumed that the reliability of the product is measured in terms of its lifetime. Furthermore, both the manufacturer and the consumer have to use their own information with respect to the quality of the product. Under these assumptions, two situations can be analyzed. For both of them, the main aim is to accept or reject the product batch based on the product reliability. This topic is related to a reliability demonstration problem. The procedure is applied to a class of distributions that belong to the exponential family. Thus, a unified framework addressing the main topics in the considered Bayesian model is presented. An illustrative example shows that the proposed technique can be easily applied in practice

  1. Context-dependent decision-making: a simple Bayesian model.

    Science.gov (United States)

    Lloyd, Kevin; Leslie, David S

    2013-05-06

    Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or 'contexts' allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects.

  2. Competing risk models in reliability systems, a Weibull distribution model with Bayesian analysis approach

    International Nuclear Information System (INIS)

    Iskandar, Ismed; Gondokaryono, Yudi Satria

    2016-01-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  3. On the criticality of inferred models

    Science.gov (United States)

    Mastromatteo, Iacopo; Marsili, Matteo

    2011-10-01

    Advanced inference techniques allow one to reconstruct a pattern of interaction from high dimensional data sets, from probing simultaneously thousands of units of extended systems—such as cells, neural tissues and financial markets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to singular values of parameters, akin to critical points in physics where phase transitions occur. These are points where the response of physical systems to external perturbations, as measured by the susceptibility, is very large and diverges in the limit of infinite size. We show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher information) are directly related to the susceptibility of the inferred model. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. This region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time scales naturally yield models which are close to criticality.

  4. On the criticality of inferred models

    International Nuclear Information System (INIS)

    Mastromatteo, Iacopo; Marsili, Matteo

    2011-01-01

    Advanced inference techniques allow one to reconstruct a pattern of interaction from high dimensional data sets, from probing simultaneously thousands of units of extended systems—such as cells, neural tissues and financial markets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to singular values of parameters, akin to critical points in physics where phase transitions occur. These are points where the response of physical systems to external perturbations, as measured by the susceptibility, is very large and diverges in the limit of infinite size. We show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher information) are directly related to the susceptibility of the inferred model. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. This region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time scales naturally yield models which are close to criticality

  5. Modeling Land-Use Decision Behavior with Bayesian Belief Networks

    Directory of Open Access Journals (Sweden)

    Inge Aalders

    2008-06-01

    Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.

  6. Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants

    KAUST Repository

    Jin, Ick Hoon

    2014-03-01

    Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis. © 2012 Elsevier B.V. All rights reserved.

  7. Experiments for Evaluating Application of Bayesian Inference to Situation Awareness of Human Operators in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seongkeun; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is to confirm if Bayesian inference can properly reflect the situation awareness of real human operators, and find the difference between the situation of ideal and practical operators, and investigate the factors which contributes to those difference. As a results, human can not think like computer. If human can memorize all the information, and their thinking process is same to the CPU of computer, the results of these two experiments come out more than 99%. However the probability of finding right malfunction by humans are only 64.52% in simple experiment, and 51.61% in complex experiment. Cognition is the mental processing that includes the attention of working memory, comprehending and producing language, calculating, reasoning, problem solving, and decision making. There are many reasons why human thinking process is different with computer, but in this experiment, we suggest that the working memory is the most important factor. Humans have limited working memory which has only seven chunks capacity. These seven chunks are called magic number. If there are more than seven sequential information, people start to forget the previous information because their working memory capacity is running over. We can check how much working memory affects to the result through the simple experiment. Then what if we neglect the effect of working memory? The total number of subjects who have incorrect memory is 7 (subject 3, 5, 6, 7, 8, 15, 25). They could find the right malfunction if the memory hadn't changed because of lack of working memory. Then the probability of find correct malfunction will be increased to 87.10% from 64.52%. Complex experiment has similar result. In this case, eight subjects(1, 5, 8, 9, 15, 17, 18, 30) had changed the memory, and it affects to find the right malfunction. Considering it, then the probability would be (16+8)/31 = 77.42%.

  8. Gaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies.

    Science.gov (United States)

    Palacios, Julia A; Minin, Vladimir N

    2013-03-01

    Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method. Copyright © 2013, The International Biometric Society.

  9. Experiments for Evaluating Application of Bayesian Inference to Situation Awareness of Human Operators in NPPs

    International Nuclear Information System (INIS)

    Kang, Seongkeun; Seong, Poong Hyun

    2014-01-01

    The purpose of this paper is to confirm if Bayesian inference can properly reflect the situation awareness of real human operators, and find the difference between the situation of ideal and practical operators, and investigate the factors which contributes to those difference. As a results, human can not think like computer. If human can memorize all the information, and their thinking process is same to the CPU of computer, the results of these two experiments come out more than 99%. However the probability of finding right malfunction by humans are only 64.52% in simple experiment, and 51.61% in complex experiment. Cognition is the mental processing that includes the attention of working memory, comprehending and producing language, calculating, reasoning, problem solving, and decision making. There are many reasons why human thinking process is different with computer, but in this experiment, we suggest that the working memory is the most important factor. Humans have limited working memory which has only seven chunks capacity. These seven chunks are called magic number. If there are more than seven sequential information, people start to forget the previous information because their working memory capacity is running over. We can check how much working memory affects to the result through the simple experiment. Then what if we neglect the effect of working memory? The total number of subjects who have incorrect memory is 7 (subject 3, 5, 6, 7, 8, 15, 25). They could find the right malfunction if the memory hadn't changed because of lack of working memory. Then the probability of find correct malfunction will be increased to 87.10% from 64.52%. Complex experiment has similar result. In this case, eight subjects(1, 5, 8, 9, 15, 17, 18, 30) had changed the memory, and it affects to find the right malfunction. Considering it, then the probability would be (16+8)/31 = 77.42%

  10. Bayesian modelling of the emission spectrum of the JET Li-BES system

    OpenAIRE

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y. -c.; Contributors, JET

    2015-01-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy (Li-BES) system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are mode...

  11. Learning Bayesian Dependence Model for Student Modelling

    Directory of Open Access Journals (Sweden)

    Adina COCU

    2008-12-01

    Full Text Available Learning a Bayesian network from a numeric set of data is a challenging task because of dual nature of learning process: initial need to learn network structure, and then to find out the distribution probability tables. In this paper, we propose a machine-learning algorithm based on hill climbing search combined with Tabu list. The aim of learning process is to discover the best network that represents dependences between nodes. Another issue in machine learning procedure is handling numeric attributes. In order to do that, we must perform an attribute discretization pre-processes. This discretization operation can influence the results of learning network structure. Therefore, we make a comparative study to find out the most suitable combination between discretization method and learning algorithm, for a specific data set.

  12. Bayesian analysis in plant pathology.

    Science.gov (United States)

    Mila, A L; Carriquiry, A L

    2004-09-01

    ABSTRACT Bayesian methods are currently much discussed and applied in several disciplines from molecular biology to engineering. Bayesian inference is the process of fitting a probability model to a set of data and summarizing the results via probability distributions on the parameters of the model and unobserved quantities such as predictions for new observations. In this paper, after a short introduction of Bayesian inference, we present the basic features of Bayesian methodology using examples from sequencing genomic fragments and analyzing microarray gene-expressing levels, reconstructing disease maps, and designing experiments.

  13. Efficient Bayesian network modeling of systems

    International Nuclear Information System (INIS)

    Bensi, Michelle; Kiureghian, Armen Der; Straub, Daniel

    2013-01-01

    The Bayesian network (BN) is a convenient tool for probabilistic modeling of system performance, particularly when it is of interest to update the reliability of the system or its components in light of observed information. In this paper, BN structures for modeling the performance of systems that are defined in terms of their minimum link or cut sets are investigated. Standard BN structures that define the system node as a child of its constituent components or its minimum link/cut sets lead to converging structures, which are computationally disadvantageous and could severely hamper application of the BN to real systems. A systematic approach to defining an alternative formulation is developed that creates chain-like BN structures that are orders of magnitude more efficient, particularly in terms of computational memory demand. The formulation uses an integer optimization algorithm to identify the most efficient BN structure. Example applications demonstrate the proposed methodology and quantify the gained computational advantage

  14. From birdsong to human speech recognition: bayesian inference on a hierarchy of nonlinear dynamical systems.

    Science.gov (United States)

    Yildiz, Izzet B; von Kriegstein, Katharina; Kiebel, Stefan J

    2013-01-01

    Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents-an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments.

  15. From birdsong to human speech recognition: bayesian inference on a hierarchy of nonlinear dynamical systems.

    Directory of Open Access Journals (Sweden)

    Izzet B Yildiz

    Full Text Available Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents-an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments.

  16. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    Science.gov (United States)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  17. Temporal and spatial variabilities of Antarctic ice mass changes inferred by GRACE in a Bayesian framework

    Science.gov (United States)

    Wang, L.; Davis, J. L.; Tamisiea, M. E.

    2017-12-01

    The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.

  18. Exploring the Connection Between Sampling Problems in Bayesian Inference and Statistical Mechanics

    Science.gov (United States)

    Pohorille, Andrew

    2006-01-01

    The Bayesian and statistical mechanical communities often share the same objective in their work - estimating and integrating probability distribution functions (pdfs) describing stochastic systems, models or processes. Frequently, these pdfs are complex functions of random variables exhibiting multiple, well separated local minima. Conventional strategies for sampling such pdfs are inefficient, sometimes leading to an apparent non-ergodic behavior. Several recently developed techniques for handling this problem have been successfully applied in statistical mechanics. In the multicanonical and Wang-Landau Monte Carlo (MC) methods, the correct pdfs are recovered from uniform sampling of the parameter space by iteratively establishing proper weighting factors connecting these distributions. Trivial generalizations allow for sampling from any chosen pdf. The closely related transition matrix method relies on estimating transition probabilities between different states. All these methods proved to generate estimates of pdfs with high statistical accuracy. In another MC technique, parallel tempering, several random walks, each corresponding to a different value of a parameter (e.g. "temperature"), are generated and occasionally exchanged using the Metropolis criterion. This method can be considered as a statistically correct version of simulated annealing. An alternative approach is to represent the set of independent variables as a Hamiltonian system. Considerab!e progress has been made in understanding how to ensure that the system obeys the equipartition theorem or, equivalently, that coupling between the variables is correctly described. Then a host of techniques developed for dynamical systems can be used. Among them, probably the most powerful is the Adaptive Biasing Force method, in which thermodynamic integration and biased sampling are combined to yield very efficient estimates of pdfs. The third class of methods deals with transitions between states described

  19. Bayesian nonparametric meta-analysis using Polya tree mixture models.

    Science.gov (United States)

    Branscum, Adam J; Hanson, Timothy E

    2008-09-01

    Summary. A common goal in meta-analysis is estimation of a single effect measure using data from several studies that are each designed to address the same scientific inquiry. Because studies are typically conducted in geographically disperse locations, recent developments in the statistical analysis of meta-analytic data involve the use of random effects models that account for study-to-study variability attributable to differences in environments, demographics, genetics, and other sources that lead to heterogeneity in populations. Stemming from asymptotic theory, study-specific summary statistics are modeled according to normal distributions with means representing latent true effect measures. A parametric approach subsequently models these latent measures using a normal distribution, which is strictly a convenient modeling assumption absent of theoretical justification. To eliminate the influence of overly restrictive parametric models on inferences, we consider a broader class of random effects distributions. We develop a novel hierarchical Bayesian nonparametric Polya tree mixture (PTM) model. We present methodology for testing the PTM versus a normal random effects model. These methods provide researchers a straightforward approach for conducting a sensitivity analysis of the normality assumption for random effects. An application involving meta-analysis of epidemiologic studies designed to characterize the association between alcohol consumption and breast cancer is presented, which together with results from simulated data highlight the performance of PTMs in the presence of nonnormality of effect measures in the source population.

  20. Variational inference & deep learning : A new synthesis

    NARCIS (Netherlands)

    Kingma, D.P.

    2017-01-01

    In this thesis, Variational Inference and Deep Learning: A New Synthesis, we propose novel solutions to the problems of variational (Bayesian) inference, generative modeling, representation learning, semi-supervised learning, and stochastic optimization.

  1. Variational inference & deep learning: A new synthesis

    OpenAIRE

    Kingma, D.P.

    2017-01-01

    In this thesis, Variational Inference and Deep Learning: A New Synthesis, we propose novel solutions to the problems of variational (Bayesian) inference, generative modeling, representation learning, semi-supervised learning, and stochastic optimization.

  2. A hierarchical method for Bayesian inference of rate parameters from shock tube data: Application to the study of the reaction of hydroxyl with 2-methylfuran

    KAUST Repository

    Kim, Daesang

    2017-06-22

    We developed a novel two-step hierarchical method for the Bayesian inference of the rate parameters of a target reaction from time-resolved concentration measurements in shock tubes. The method was applied to the calibration of the parameters of the reaction of hydroxyl with 2-methylfuran, which is studied experimentally via absorption measurements of the OH radical\\'s concentration following shock-heating. In the first step of the approach, each shock tube experiment is treated independently to infer the posterior distribution of the rate constant and error hyper-parameter that best explains the OH signal. In the second step, these posterior distributions are sampled to calibrate the parameters appearing in the Arrhenius reaction model for the rate constant. Furthermore, the second step is modified and repeated in order to explore alternative rate constant models and to assess the effect of uncertainties in the reflected shock\\'s temperature. Comparisons of the estimates obtained via the proposed methodology against the common least squares approach are presented. The relative merits of the novel Bayesian framework are highlighted, especially with respect to the opportunity to utilize the posterior distributions of the parameters in future uncertainty quantification studies.

  3. Item selection via Bayesian IRT models.

    Science.gov (United States)

    Arima, Serena

    2015-02-10

    With reference to a questionnaire that aimed to assess the quality of life for dysarthric speakers, we investigate the usefulness of a model-based procedure for reducing the number of items. We propose a mixed cumulative logit model, which is known in the psychometrics literature as the graded response model: responses to different items are modelled as a function of individual latent traits and as a function of item characteristics, such as their difficulty and their discrimination power. We jointly model the discrimination and the difficulty parameters by using a k-component mixture of normal distributions. Mixture components correspond to disjoint groups of items. Items that belong to the same groups can be considered equivalent in terms of both difficulty and discrimination power. According to decision criteria, we select a subset of items such that the reduced questionnaire is able to provide the same information that the complete questionnaire provides. The model is estimated by using a Bayesian approach, and the choice of the number of mixture components is justified according to information criteria. We illustrate the proposed approach on the basis of data that are collected for 104 dysarthric patients by local health authorities in Lecce and in Milan. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Forecasting economy with Bayesian autoregressive distributed lag model: choosing optimal prior in economic downturn

    OpenAIRE

    Bušs, Ginters

    2009-01-01

    Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag (ADL) model is chosen. The results show that a sharp economic slowdown changes the optimal prior in two directions. First, it changes the structure of the optimal weight prior, setting smaller weight on the lagged dependent variable compared to varia...

  5. From Neutron Star Observables to the Equation of State. II. Bayesian Inference of Equation of State Pressures

    Science.gov (United States)

    Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios

    2017-08-01

    One of the key goals of observing neutron stars is to infer the equation of state (EoS) of the cold, ultradense matter in their interiors. Here, we present a Bayesian statistical method of inferring the pressures at five fixed densities, from a sample of mock neutron star masses and radii. We show that while five polytropic segments are needed for maximum flexibility in the absence of any prior knowledge of the EoS, regularizers are also necessary to ensure that simple underlying EoS are not over-parameterized. For ideal data with small measurement uncertainties, we show that the pressure at roughly twice the nuclear saturation density, {ρ }{sat}, can be inferred to within 0.3 dex for many realizations of potential sources of uncertainties. The pressures of more complicated EoS with significant phase transitions can also be inferred to within ˜30%. We also find that marginalizing the multi-dimensional parameter space of pressure to infer a mass-radius relation can lead to biases of nearly 1 km in radius, toward larger radii. Using the full, five-dimensional posterior likelihoods avoids this bias.

  6. Bayesian model calibration of computational models in velocimetry diagnosed dynamic compression experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hund, Lauren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesian model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.

  7. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghattas, Omar [The University of Texas at Austin

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  8. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data.

    Science.gov (United States)

    Gogoshin, Grigoriy; Boerwinkle, Eric; Rodin, Andrei S

    2017-04-01

    Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology-type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types-single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite

  9. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites

    Science.gov (United States)

    Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.

    2009-05-01

    Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.

  10. Metapopulation models for historical inference.

    Science.gov (United States)

    Wakeley, John

    2004-04-01

    The genealogical process for a sample from a metapopulation, in which local populations are connected by migration and can undergo extinction and subsequent recolonization, is shown to have a relatively simple structure in the limit as the number of populations in the metapopulation approaches infinity. The result, which is an approximation to the ancestral behaviour of samples from a metapopulation with a large number of populations, is the same as that previously described for other metapopulation models, namely that the genealogical process is closely related to Kingman's unstructured coalescent. The present work considers a more general class of models that includes two kinds of extinction and recolonization, and the possibility that gamete production precedes extinction. In addition, following other recent work, this result for a metapopulation divided into many populations is shown to hold both for finite population sizes and in the usual diffusion limit, which assumes that population sizes are large. Examples illustrate when the usual diffusion limit is appropriate and when it is not. Some shortcomings and extensions of the model are considered, and the relevance of such models to understanding human history is discussed.

  11. Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study.

    Science.gov (United States)

    Heron, Elizabeth A; Finkenstädt, Bärbel; Rand, David A

    2007-10-01

    In this study, we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study, we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using MCMC techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error.

  12. Social Dynamics Modeling and Inference

    Science.gov (United States)

    2018-03-29

    the experiment(s)/ theory and equipment or analyses. Development of innovative theoretical model and methodologies with experimental verifications...information. The methodology based on communication and information theory (thanks to leave at MIT supported by this research) is described in [J1], [C2...a dynamic system [C1] and as a social learning mechanism in details [J4]. Furthermore, by incentive seeding and rewiring connections, information

  13. Bayesian model calibration of ramp compression experiments on Z

    Science.gov (United States)

    Brown, Justin; Hund, Lauren

    2017-06-01

    Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-31

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesian inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.

  15. An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations

    International Nuclear Information System (INIS)

    Coolen, F.P.A.

    1997-01-01

    This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables

  16. Optimal Experimental Design of Borehole Locations for Bayesian Inference of Past Ice Sheet Surface Temperatures

    Science.gov (United States)

    Davis, A. D.; Huan, X.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    Borehole data are essential for calibrating ice sheet models. However, field expeditions for acquiring borehole data are often time-consuming, expensive, and dangerous. It is thus essential to plan the best sampling locations that maximize the value of data while minimizing costs and risks. We present an uncertainty quantification (UQ) workflow based on rigorous probability framework to achieve these objectives. First, we employ an optimal experimental design (OED) procedure to compute borehole locations that yield the highest expected information gain. We take into account practical considerations of location accessibility (e.g., proximity to research sites, terrain, and ice velocity may affect feasibility of drilling) and robustness (e.g., real-time constraints such as weather may force researchers to drill at sub-optimal locations near those originally planned), by incorporating a penalty reflecting accessibility as well as sensitivity to deviations from the optimal locations. Next, we extract vertical temperature profiles from these boreholes and formulate a Bayesian inverse problem to reconstruct past surface temperatures. Using a model of temperature advection/diffusion, the top boundary condition (corresponding to surface temperatures) is calibrated via efficient Markov chain Monte Carlo (MCMC). The overall procedure can then be iterated to choose new optimal borehole locations for the next expeditions.Through this work, we demonstrate powerful UQ methods for designing experiments, calibrating models, making predictions, and assessing sensitivity--all performed under an uncertain environment. We develop a theoretical framework as well as practical software within an intuitive workflow, and illustrate their usefulness for combining data and models for environmental and climate research.

  17. Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method

    Science.gov (United States)

    Tsai, F. T. C.; Elshall, A. S.

    2014-12-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.

  18. Bayesian nonparametric inference on quantile residual life function: Application to breast cancer data.

    Science.gov (United States)

    Park, Taeyoung; Jeong, Jong-Hyeon; Lee, Jae Won

    2012-08-15

    There is often an interest in estimating a residual life function as a summary measure of survival data. For ease in presentation of the potential therapeutic effect of a new drug, investigators may summarize survival data in terms of the remaining life years of patients. Under heavy right censoring, however, some reasonably high quantiles (e.g., median) of a residual lifetime distribution cannot be always estimated via a popular nonparametric approach on the basis of the Kaplan-Meier estimator. To overcome the difficulties in dealing with heavily censored survival data, this paper develops a Bayesian nonparametric approach that takes advantage of a fully model-based but highly flexible probabilistic framework. We use a Dirichlet process mixture of Weibull distributions to avoid strong parametric assumptions on the unknown failure time distribution, making it possible to estimate any quantile residual life function under heavy censoring. Posterior computation through Markov chain Monte Carlo is straightforward and efficient because of conjugacy properties and partial collapse. We illustrate the proposed methods by using both simulated data and heavily censored survival data from a recent breast cancer clinical trial conducted by the National Surgical Adjuvant Breast and Bowel Project. Copyright © 2012 John Wiley & Sons, Ltd.

  19. A framework for Bayesian nonparametric inference for causal effects of mediation.

    Science.gov (United States)

    Kim, Chanmin; Daniels, Michael J; Marcus, Bess H; Roy, Jason A

    2017-06-01

    We propose a Bayesian non-parametric (BNP) framework for estimating causal effects of mediation, the natural direct, and indirect, effects. The strategy is to do this in two parts. Part 1 is a flexible model (using BNP) for the observed data distribution. Part 2 is a set of uncheckable assumptions with sensitivity parameters that in conjunction with Part 1 allows identification and estimation of the causal parameters and allows for uncertainty about these assumptions via priors on the sensitivity parameters. For Part 1, we specify a Dirichlet process mixture of multivariate normals as a prior on the joint distribution of the outcome, mediator, and covariates. This approach allows us to obtain a (simple) closed form of each marginal distribution. For Part 2, we consider two sets of assumptions: (a) the standard sequential ignorability (Imai et al., 2010) and (b) weakened set of the conditional independence type assumptions introduced in Daniels et al. (2012) and propose sensitivity analyses for both. We use this approach to assess mediation in a physical activity promotion trial. © 2016, The International Biometric Society.

  20. Bootstrap prediction and Bayesian prediction under misspecified models

    OpenAIRE

    Fushiki, Tadayoshi

    2005-01-01

    We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...

  1. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    (This text written by Jesper Møller, Aalborg University, is submitted for the collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives', edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by ClarendonPress, Oxford, and planned to appear as Section 4.1 with the ......(This text written by Jesper Møller, Aalborg University, is submitted for the collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives', edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by ClarendonPress, Oxford, and planned to appear as Section 4.......1 with the title ‘Inference'.) This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods using Markov chain Monte Carlo (MCMC) simulations. Due to space limitations the focus...

  2. Improved Inference of Heteroscedastic Fixed Effects Models

    Directory of Open Access Journals (Sweden)

    Afshan Saeed

    2016-12-01

    Full Text Available Heteroscedasticity is a stern problem that distorts estimation and testing of panel data model (PDM. Arellano (1987 proposed the White (1980 estimator for PDM with heteroscedastic errors but it provides erroneous inference for the data sets including high leverage points. In this paper, our attempt is to improve heteroscedastic consistent covariance matrix estimator (HCCME for panel dataset with high leverage points. To draw robust inference for the PDM, our focus is to improve kernel bootstrap estimators, proposed by Racine and MacKinnon (2007. The Monte Carlo scheme is used for assertion of the results.

  3. Glutamatergic model psychoses: prediction error, learning, and inference.

    Science.gov (United States)

    Corlett, Philip R; Honey, Garry D; Krystal, John H; Fletcher, Paul C

    2011-01-01

    Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects' previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry.

  4. Statistical Models for Inferring Vegetation Composition from Fossil Pollen

    Science.gov (United States)

    Paciorek, C.; McLachlan, J. S.; Shang, Z.

    2011-12-01

    Fossil pollen provide information about vegetation composition that can be used to help understand how vegetation has changed over the past. However, these data have not traditionally been analyzed in a way that allows for statistical inference about spatio-temporal patterns and trends. We build a Bayesian hierarchical model called STEPPS (Spatio-Temporal Empirical Prediction from Pollen in Sediments) that predicts forest composition in southern New England, USA, over the last two millenia based on fossil pollen. The critical relationships between abundances of tree taxa in the pollen record and abundances in actual vegetation are estimated using modern (Forest Inventory Analysis) data and (witness tree) data from colonial records. This gives us two time points at which both pollen and direct vegetation data are available. Based on these relationships, and incorporating our uncertainty about them, we predict forest composition using fossil pollen. We estimate the spatial distribution and relative abundances of tree species and draw inference about how these patterns have changed over time. Finally, we describe ongoing work to extend the modeling to the upper Midwest of the U.S., including an approach to infer tree density and thereby estimate the prairie-forest boundary in Minnesota and Wisconsin. This work is part of the PalEON project, which brings together a team of ecosystem modelers, paleoecologists, and statisticians with the goal of reconstructing vegetation responses to climate during the last two millenia in the northeastern and midwestern United States. The estimates from the statistical modeling will be used to assess and calibrate ecosystem models that are used to project ecological changes in response to global change.

  5. Bayesian Networks for Modeling Dredging Decisions

    Science.gov (United States)

    2011-10-01

    years, that algorithms have been developed to solve these problems efficiently. Most modern Bayesian network software uses junction tree (a.k.a. join... software was used to develop the network . This is by no means an exhaustive list of Bayesian network applications, but it is representative of recent...characteristic node (SCN), state- defining node ( SDN ), effect node (EFN), or value node. The five types of nodes can be described as follows: ERDC/EL TR-11

  6. Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon [Nuclear Materials Laboratory, Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties.

  7. Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel

    International Nuclear Information System (INIS)

    Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon

    2015-01-01

    The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties

  8. Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model

    Science.gov (United States)

    Matthews-Bird, Frazer; Brooks, Stephen J.; Holden, Philip B.; Montoya, Encarni; Gosling, William D.

    2016-06-01

    Presented here is the first chironomid calibration data set for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes), and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0-17° S and 64-78° W. The study sites cover a mean annual temperature (MAT) gradient of 25 °C. In total, 55 chironomid taxa were identified in the 59 calibration data set lakes. When used as a single explanatory variable, MAT explains 12.9 % of the variance (λ1/λ2 = 1.431). Two inference models were developed using weighted averaging (WA) and Bayesian methods. The best-performing model using conventional statistical methods was a WA (inverse) model (R2jack = 0.890; RMSEPjack = 2.404 °C, RMSEP - root mean squared error of prediction; mean biasjack = -0.017 °C; max biasjack = 4.665 °C). The Bayesian method produced a model with R2jack = 0.909, RMSEPjack = 2.373 °C, mean biasjack = 0.598 °C, and max biasjack = 3.158 °C. Both models were used to infer past temperatures from a ca. 3000-year record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern-day conditions but showed significant departures at certain intervals (ca. 1600 cal yr BP; ca. 3000-2500 cal yr BP). Both methods (WA and Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable and often underestimated Holocene temperatures (by ca. -7 ± 2.5 °C relative to the modern period). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (ca. -3 ± 3.4 °C). The error associated with both reconstructions is consistent with a constant temperature of 20 °C for the past 3000 years. We would caution, however, against an over-interpretation at this stage. The reconstruction can only

  9. Mobile sensing of point-source fugitive methane emissions using Bayesian inference: the determination of the likelihood function

    Science.gov (United States)

    Zhou, X.; Albertson, J. D.

    2016-12-01

    Natural gas is considered as a bridge fuel towards clean energy due to its potential lower greenhouse gas emission comparing with other fossil fuels. Despite numerous efforts, an efficient and cost-effective approach to monitor fugitive methane emissions along the natural gas production-supply chain has not been developed yet. Recently, mobile methane measurement has been introduced which applies a Bayesian approach to probabilistically infer methane emission rates and update estimates recursively when new measurements become available. However, the likelihood function, especially the error term which determines the shape of the estimate uncertainty, is not rigorously defined and evaluated with field data. To address this issue, we performed a series of near-source (using a specialized vehicle mounted with fast response methane analyzers and a GPS unit. Methane concentrations were measured at two different heights along mobile traversals downwind of the sources, and concurrent wind and temperature data are recorded by nearby 3-D sonic anemometers. With known methane release rates, the measurements were used to determine the functional form and the parameterization of the likelihood function in the Bayesian inference scheme under different meteorological conditions.

  10. Bayesian Action–Perception Computational Model: Interaction of Production and Recognition of Cursive Letters

    Science.gov (United States)

    Gilet, Estelle; Diard, Julien; Bessière, Pierre

    2011-01-01

    In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043

  11. Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.

    2014-12-01

    As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.

  12. proportion: A comprehensive R package for inference on single Binomial proportion and Bayesian computations

    Directory of Open Access Journals (Sweden)

    M. Subbiah

    2017-01-01

    Full Text Available Extensive statistical practice has shown the importance and relevance of the inferential problem of estimating probability parameters in a binomial experiment; especially on the issues of competing intervals from frequentist, Bayesian, and Bootstrap approaches. The package written in the free R environment and presented in this paper tries to take care of the issues just highlighted, by pooling a number of widely available and well-performing methods and apporting on them essential variations. A wide range of functions helps users with differing skills to estimate, evaluate, summarize, numerically and graphically, various measures adopting either the frequentist or the Bayesian paradigm.

  13. Bayesian hierarchical modelling of North Atlantic windiness

    Science.gov (United States)

    Vanem, E.; Breivik, O. N.

    2013-03-01

    Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  14. Bayesian hierarchical modelling of North Atlantic windiness

    Directory of Open Access Journals (Sweden)

    E. Vanem

    2013-03-01

    Full Text Available Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  15. Bayesian inferences of generation and growth of corrosion defects on energy pipelines based on imperfect inspection data

    International Nuclear Information System (INIS)

    Qin, H.; Zhou, W.; Zhang, S.

    2015-01-01

    Stochastic process-based models are developed to characterize the generation and growth of metal-loss corrosion defects on oil and gas steel pipelines. The generation of corrosion defects over time is characterized by the non-homogenous Poisson process, and the growth of depths of individual defects is modeled by the non-homogenous gamma process (NHGP). The defect generation and growth models are formulated in a hierarchical Bayesian framework, whereby the parameters of the models are evaluated from the in-line inspection (ILI) data through the Bayesian updating by accounting for the probability of detection (POD) and measurement errors associated with the ILI data. The Markov Chain Monte Carlo (MCMC) simulation in conjunction with the data augmentation (DA) technique is employed to carry out the Bayesian updating. Numerical examples that involve simulated ILI data are used to illustrate and validate the proposed methodology. - Highlights: • Bayesian updating of growth and generation models of defects on energy pipelines. • Non-homogeneous Poisson process for defect generation. • Non-homogeneous gamma process for defect growth. • Updating based on inspection data with detecting and sizing uncertainties. • MCMC in conjunction with data augmentation technique employed for the updating.

  16. BUMPER: the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction

    Science.gov (United States)

    Holden, Phil; Birks, John; Brooks, Steve; Bush, Mark; Hwang, Grace; Matthews-Bird, Frazer; Valencia, Bryan; van Woesik, Robert

    2017-04-01

    We describe the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. The principal motivation for a Bayesian approach is that the palaeoenvironment is treated probabilistically, and can be updated as additional data become available. Bayesian approaches therefore provide a reconstruction-specific quantification of the uncertainty in the data and in the model parameters. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring 2 seconds to build a 100-taxon model from a 100-site training-set on a standard personal computer. We apply the model's probabilistic framework to generate thousands of artificial training-sets under ideal assumptions. We then use these to demonstrate both the general applicability of the model and the sensitivity of reconstructions to the characteristics of the training-set, considering assemblage richness, taxon tolerances, and the number of training sites. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. In all of these applications an identically configured model is used, the only change being the input files that provide the training-set environment and taxon-count data.

  17. Reliability assessment using degradation models: bayesian and classical approaches

    Directory of Open Access Journals (Sweden)

    Marta Afonso Freitas

    2010-04-01

    Full Text Available Traditionally, reliability assessment of devices has been based on (accelerated life tests. However, for highly reliable products, little information about reliability is provided by life tests in which few or no failures are typically observed. Since most failures arise from a degradation mechanism at work for which there are characteristics that degrade over time, one alternative is monitor the device for a period of time and assess its reliability from the changes in performance (degradation observed during that period. The goal of this article is to illustrate how degradation data can be modeled and analyzed by using "classical" and Bayesian approaches. Four methods of data analysis based on classical inference are presented. Next we show how Bayesian methods can also be used to provide a natural approach to analyzing degradation data. The approaches are applied to a real data set regarding train wheels degradation.Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados. Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser modelados e analisados utilizando-se abordagens "clássicas" e Bayesiana. Quatro métodos de análise de dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens.

  18. Rapid molecular evolution of human bocavirus revealed by Bayesian coalescent inference.

    Science.gov (United States)

    Zehender, Gianguglielmo; De Maddalena, Chiara; Canuti, Marta; Zappa, Alessandra; Amendola, Antonella; Lai, Alessia; Galli, Massimo; Tanzi, Elisabetta

    2010-03-01

    Human bocavirus (HBoV) is a linear single-stranded DNA virus belonging to the Parvoviridae family that has recently been isolated from the upper respiratory tract of children with acute respiratory infection. All of the strains observed so far segregate into two genotypes (1 and 2) with a low level of polymorphism. Given the recent description of the infection and the lack of epidemiological and molecular data, we estimated the virus's rates of molecular evolution and population dynamics. A dataset of forty-nine dated VP2 sequences, including also eight new isolates obtained from pharyngeal swabs of Italian patients with acute respiratory tract infections, was submitted to phylogenetic analysis. The model parameters, evolutionary rates and population dynamics were co-estimated using a Bayesian Markov Chain Monte Carlo approach, and site-specific positive and negative selection was also investigated. Recombination was investigated by seven different methods and one suspected recombinant strain was excluded from further analysis. The estimated mean evolutionary rate of HBoV was 8.6x10(-4)subs/site/year, and that of the 1st+2nd codon positions was more than 15 times less than that of the 3rd codon position. Viral population dynamics analysis revealed that the two known genotypes diverged recently (mean tMRCA: 24 years), and that the epidemic due to HBoV genotype 2 grew exponentially at a rate of 1.01year(-1). Selection analysis of the partial VP2 showed that 8.5% of sites were under significant negative pressure and the absence of positive selection. Our results show that, like other parvoviruses, HBoV is characterised by a rapid evolution. The low level of polymorphism is probably due to a relatively recent divergence between the circulating genotypes and strong purifying selection acting on viral antigens.

  19. The phylogeographic history of the new world screwworm fly, inferred by approximate bayesian computation analysis.

    Directory of Open Access Journals (Sweden)

    Pablo Fresia

    Full Text Available Insect pest phylogeography might be shaped both by biogeographic events and by human influence. Here, we conducted an approximate Bayesian computation (ABC analysis to investigate the phylogeography of the New World screwworm fly, Cochliomyia hominivorax, with the aim of understanding its population history and its order and time of divergence. Our ABC analysis supports that populations spread from North to South in the Americas, in at least two different moments. The first split occurred between the North/Central American and South American populations in the end of the Last Glacial Maximum (15,300-19,000 YBP. The second split occurred between the North and South Amazonian populations in the transition between the Pleistocene and the Holocene eras (9,100-11,000 YBP. The species also experienced population expansion. Phylogenetic analysis likewise suggests this north to south colonization and Maxent models suggest an increase in the number of suitable areas in South America from the past to present. We found that the phylogeographic patterns observed in C. hominivorax cannot be explained only by climatic oscillations and can be connected to host population histories. Interestingly we found these patterns are very coincident with general patterns of ancient human movements in the Americas, suggesting that humans might have played a crucial role in shaping the distribution and population structure of this insect pest. This work presents the first hypothesis test regarding the processes that shaped the current phylogeographic structure of C. hominivorax and represents an alternate perspective on investigating the problem of insect pests.

  20. Bayesian disease mapping: hierarchical modeling in spatial epidemiology

    National Research Council Canada - National Science Library

    Lawson, Andrew

    2013-01-01

    Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas...

  1. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak

    2017-01-01

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix

  2. Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution

    NARCIS (Netherlands)

    Belitser, E.; Ghosal, S.

    2003-01-01

    We consider the problem of estimating the mean of an infinite-break dimensional normal distribution from the Bayesian perspective. Under the assumption that the unknown true mean satisfies a "smoothness condition," we first derive the convergence rate of the posterior distribution for a prior that

  3. Statistical inference an integrated Bayesianlikelihood approach

    CERN Document Server

    Aitkin, Murray

    2010-01-01

    Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing.After an overview of the competing theories of statistical inference, the book introduces the Bayes/likelihood approach used throughout. It pre

  4. Bayesian methods for proteomic biomarker development

    Directory of Open Access Journals (Sweden)

    Belinda Hernández

    2015-12-01

    In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.

  5. Experiences in applying Bayesian integrative models in interdisciplinary modeling: the computational and human challenges

    DEFF Research Database (Denmark)

    Kuikka, Sakari; Haapasaari, Päivi Elisabet; Helle, Inari

    2011-01-01

    We review the experience obtained in using integrative Bayesian models in interdisciplinary analysis focusing on sustainable use of marine resources and environmental management tasks. We have applied Bayesian models to both fisheries and environmental risk analysis problems. Bayesian belief...... be time consuming and research projects can be difficult to manage due to unpredictable technical problems related to parameter estimation. Biology, sociology and environmental economics have their own scientific traditions. Bayesian models are becoming traditional tools in fisheries biology, where...

  6. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  7. Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data.

    Directory of Open Access Journals (Sweden)

    David W Redding

    Full Text Available Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT, to a spatial Bayesian SDM method (fitted using R-INLA, when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account

  8. Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data.

    Science.gov (United States)

    Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E

    2017-01-01

    Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial

  9. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  10. Approximate Inference and Deep Generative Models

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Advances in deep generative models are at the forefront of deep learning research because of the promise they offer for allowing data-efficient learning, and for model-based reinforcement learning. In this talk I'll review a few standard methods for approximate inference and introduce modern approximations which allow for efficient large-scale training of a wide variety of generative models. Finally, I'll demonstrate several important application of these models to density estimation, missing data imputation, data compression and planning.

  11. Bayesian Regression of Thermodynamic Models of Redox Active Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from the model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).

  12. Reconciling deep calibration and demographic history: bayesian inference of post glacial colonization patterns in Carcinus aestuarii (Nardo, 1847 and C. maenas (Linnaeus, 1758.

    Directory of Open Access Journals (Sweden)

    Ilaria A M Marino

    Full Text Available A precise inference of past demographic histories including dating of demographic events using bayesian methods can only be achieved with the use of appropriate molecular rates and evolutionary models. Using a set of 596 mitochondrial cytochrome c oxidase I (COI sequences of two sister species of European green crabs of the genus Carcinus (C. maenas and C. aestuarii, our study shows how chronologies of past evolutionary events change significantly with the application of revised molecular rates that incorporate biogeographic events for calibration and appropriate demographic priors. A clear signal of demographic expansion was found for both species, dated between 10,000 and 20,000 years ago, which places the expansions events in a time frame following the Last Glacial Maximum (LGM. In the case of C. aestuarii, a population expansion was only inferred for the Adriatic-Ionian, suggestive of a colonization event following the flooding of the Adriatic Sea (18,000 years ago. For C. maenas, the demographic expansion inferred for the continental populations of West and North Europe might result from a northward recolonization from a southern refugium when the ice sheet retreated after the LGM. Collectively, our results highlight the importance of using adequate calibrations and demographic priors in order to avoid considerable overestimates of evolutionary time scales.

  13. Bayesian joint modelling of benefit and risk in drug development.

    Science.gov (United States)

    Costa, Maria J; Drury, Thomas

    2018-05-01

    To gain regulatory approval, a new medicine must demonstrate that its benefits outweigh any potential risks, ie, that the benefit-risk balance is favourable towards the new medicine. For transparency and clarity of the decision, a structured and consistent approach to benefit-risk assessment that quantifies uncertainties and accounts for underlying dependencies is desirable. This paper proposes two approaches to benefit-risk evaluation, both based on the idea of joint modelling of mixed outcomes that are potentially dependent at the subject level. Using Bayesian inference, the two approaches offer interpretability and efficiency to enhance qualitative frameworks. Simulation studies show that accounting for correlation leads to a more accurate assessment of the strength of evidence to support benefit-risk profiles of interest. Several graphical approaches are proposed that can be used to communicate the benefit-risk balance to project teams. Finally, the two approaches are illustrated in a case study using real clinical trial data. Copyright © 2018 John Wiley & Sons, Ltd.

  14. tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models

    Directory of Open Access Journals (Sweden)

    Robert B. Gramacy

    2007-06-01

    Full Text Available The tgp package for R is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring maptree and combinat packages, are also provided for visualization of tgp objects.

  15. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    Science.gov (United States)

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  16. Bayesian graphical models for genomewide association studies.

    Science.gov (United States)

    Verzilli, Claudio J; Stallard, Nigel; Whittaker, John C

    2006-07-01

    As the extent of human genetic variation becomes more fully characterized, the research community is faced with the challenging task of using this information to dissect the heritable components of complex traits. Genomewide association studies offer great promise in this respect, but their analysis poses formidable difficulties. In this article, we describe a computationally efficient approach to mining genotype-phenotype associations that scales to the size of the data sets currently being collected in such studies. We use discrete graphical models as a data-mining tool, searching for single- or multilocus patterns of association around a causative site. The approach is fully Bayesian, allowing us to incorporate prior knowledge on the spatial dependencies around each marker due to linkage disequilibrium, which reduces considerably the number of possible graphical structures. A Markov chain-Monte Carlo scheme is developed that yields samples from the posterior distribution of graphs conditional on the data from which probabilistic statements about the strength of any genotype-phenotype association can be made. Using data simulated under scenarios that vary in marker density, genotype relative risk of a causative allele, and mode of inheritance, we show that the proposed approach has better localization properties and leads to lower false-positive rates than do single-locus analyses. Finally, we present an application of our method to a quasi-synthetic data set in which data from the CYP2D6 region are embedded within simulated data on 100K single-nucleotide polymorphisms. Analysis is quick (<5 min), and we are able to localize the causative site to a very short interval.

  17. Auto- and cross-power spectral analysis of dual trap optical tweezer experiments using Bayesian inference.

    Science.gov (United States)

    von Hansen, Yann; Mehlich, Alexander; Pelz, Benjamin; Rief, Matthias; Netz, Roland R

    2012-09-01

    The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and-if present-macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads.

  18. Scalable Bayesian nonparametric regression via a Plackett-Luce model for conditional ranks

    Science.gov (United States)

    Gray-Davies, Tristan; Holmes, Chris C.; Caron, François

    2018-01-01

    We present a novel Bayesian nonparametric regression model for covariates X and continuous response variable Y ∈ ℝ. The model is parametrized in terms of marginal distributions for Y and X and a regression function which tunes the stochastic ordering of the conditional distributions F (y|x). By adopting an approximate composite likelihood approach, we show that the resulting posterior inference can be decoupled for the separate components of the model. This procedure can scale to very large datasets and allows for the use of standard, existing, software from Bayesian nonparametric density estimation and Plackett-Luce ranking estimation to be applied. As an illustration, we show an application of our approach to a US Census dataset, with over 1,300,000 data points and more than 100 covariates. PMID:29623150

  19. Inventory model using bayesian dynamic linear model for demand forecasting

    Directory of Open Access Journals (Sweden)

    Marisol Valencia-Cárdenas

    2014-12-01

    Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti

  20. BAM: Bayesian AMHG-Manning Inference of Discharge Using Remotely Sensed Stream Width, Slope, and Height

    Science.gov (United States)

    Hagemann, M. W.; Gleason, C. J.; Durand, M. T.

    2017-11-01

    The forthcoming Surface Water and Ocean Topography (SWOT) NASA satellite mission will measure water surface width, height, and slope of major rivers worldwide. The resulting data could provide an unprecedented account of river discharge at continental scales, but reliable methods need to be identified prior to launch. Here we present a novel algorithm for discharge estimation from only remotely sensed stream width, slope, and height at multiple locations along a mass-conserved river segment. The algorithm, termed the Bayesian AMHG-Manning (BAM) algorithm, implements a Bayesian formulation of streamflow uncertainty using a combination of Manning's equation and at-many-stations hydraulic geometry (AMHG). Bayesian methods provide a statistically defensible approach to generating discharge estimates in a physically underconstrained system but rely on prior distributions that quantify the a priori uncertainty of unknown quantities including discharge and hydraulic equation parameters. These were obtained from literature-reported values and from a USGS data set of acoustic Doppler current profiler (ADCP) measurements at USGS stream gauges. A data set of simulated widths, slopes, and heights from 19 rivers was used to evaluate the algorithms using a set of performance metrics. Results across the 19 rivers indicate an improvement in performance of BAM over previously tested methods and highlight a path forward in solving discharge estimation using solely satellite remote sensing.

  1. Inference of missing data and chemical model parameters using experimental statistics

    Science.gov (United States)

    Casey, Tiernan; Najm, Habib

    2017-11-01

    A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.

  2. A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Højbjerre, Malene

    2005-01-01

    -posed estimation problem, where the reconstruction most often has been done by non-linear least squares techniques separately for each entity. The minmal model was originally specified for a single individual and does not combine several individuals with the advantage of estimating the metabolic portrait...... to a population-based model. The estimation of the parameters are efficiently implemented in a Bayesian approach where posterior inference is made through the use of Markov chain Monte Carlo techniques. Hereby we obtain a powerful and flexible modelling framework for regularizing the ill-posed estimation problem...

  3. A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models.

    Science.gov (United States)

    Fronczyk, Kassandra; Kottas, Athanasios

    2014-03-01

    We develop a Bayesian nonparametric mixture modeling framework for quantal bioassay settings. The approach is built upon modeling dose-dependent response distributions. We adopt a structured nonparametric prior mixture model, which induces a monotonicity restriction for the dose-response curve. Particular emphasis is placed on the key risk assessment goal of calibration for the dose level that corresponds to a specified response. The proposed methodology yields flexible inference for the dose-response relationship as well as for other inferential objectives, as illustrated with two data sets from the literature. © 2013, The International Biometric Society.

  4. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems

    International Nuclear Information System (INIS)

    Tien, Iris; Der Kiureghian, Armen

    2016-01-01

    Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems. - Highlights: • Novel algorithms developed for Bayesian network modeling of infrastructure systems. • Algorithm presented to compress information in conditional probability tables. • Updating algorithm presented to perform inference on compressed matrices. • Algorithms applied to example systems to investigate their performance. • Orders of magnitude savings in memory storage requirement demonstrated.

  5. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    Science.gov (United States)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-06-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  6. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  7. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  8. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuska, Ivo; Sawlan, Zaid A; Scavino, Marco; Szabó , Barma; Tempone, Raul

    2016-01-01

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials

  9. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    International Nuclear Information System (INIS)

    Higdon, Dave; McDonnell, Jordan D; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M

    2015-01-01

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model η(θ), where θ denotes the uncertain, best input setting. Hence the statistical model is of the form y=η(θ)+ϵ, where ϵ accounts for measurement, and possibly other, error sources. When nonlinearity is present in η(⋅), the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model η(⋅). This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory. (paper)

  10. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  11. Using polarimetric radar observations and probabilistic inference to develop the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), a novel microphysical parameterization framework

    Science.gov (United States)

    van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.

    2016-12-01

    Microphysical parameterization schemes have reached an impressive level of sophistication: numerous prognostic hydrometeor categories, and either size-resolved (bin) particle size distributions, or multiple prognostic moments of the size distribution. Yet, uncertainty in model representation of microphysical processes and the effects of microphysics on numerical simulation of weather has not shown a improvement commensurate with the advanced sophistication of these schemes. We posit that this may be caused by unconstrained assumptions of these schemes, such as ad-hoc parameter value choices and structural uncertainties (e.g. choice of a particular form for the size distribution). We present work on development and observational constraint of a novel microphysical parameterization approach, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), which seeks to address these sources of uncertainty. Our framework avoids unnecessary a priori assumptions, and instead relies on observations to provide probabilistic constraint of the scheme structure and sensitivities to environmental and microphysical conditions. We harness the rich microphysical information content of polarimetric radar observations to develop and constrain BOSS within a Bayesian inference framework using a Markov Chain Monte Carlo sampler (see Kumjian et al., this meeting for details on development of an associated polarimetric forward operator). Our work shows how knowledge of microphysical processes is provided by polarimetric radar observations of diverse weather conditions, and which processes remain highly uncertain, even after considering observations.

  12. Joint Bayesian variable and graph selection for regression models with network-structured predictors

    Science.gov (United States)

    Peterson, C. B.; Stingo, F. C.; Vannucci, M.

    2015-01-01

    In this work, we develop a Bayesian approach to perform selection of predictors that are linked within a network. We achieve this by combining a sparse regression model relating the predictors to a response variable with a graphical model describing conditional dependencies among the predictors. The proposed method is well-suited for genomic applications since it allows the identification of pathways of functionally related genes or proteins which impact an outcome of interest. In contrast to previous approaches for network-guided variable selection, we infer the network among predictors using a Gaussian graphical model and do not assume that network information is available a priori. We demonstrate that our method outperforms existing methods in identifying network-structured predictors in simulation settings, and illustrate our proposed model with an application to inference of proteins relevant to glioblastoma survival. PMID:26514925

  13. Automated adaptive inference of phenomenological dynamical models

    Science.gov (United States)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  14. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.

    1998-12-01

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  15. An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release

    Science.gov (United States)

    Rajaona, Harizo; Septier, François; Armand, Patrick; Delignon, Yves; Olry, Christophe; Albergel, Armand; Moussafir, Jacques

    2015-12-01

    In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source term using measurements from a set of sensors is an important and challenging inverse problem. A rapid and accurate estimation of the source allows faster and more efficient action for first-response teams, in addition to providing better damage assessment. This paper presents a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian assumption on its prior distribution, and is enhanced with a positivity constraint to improve the estimation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to accelerate its convergence. The proposed methodology is tested using synthetic and real concentration data in the framework of the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling efficiency by reusing all the generated samples.

  16. A bayesian approach to inferring the genetic population structure of sugarcane accessions from INTA (Argentina

    Directory of Open Access Journals (Sweden)

    Mariana Inés Pocovi

    2015-06-01

    Full Text Available Understanding the population structure and genetic diversity in sugarcane (Saccharum officinarum L. accessions from INTA germplasm bank (Argentina will be of great importance for germplasm collection and breeding improvement as it will identify diverse parental combinations to create segregating progenies with maximum genetic variability for further selection. A Bayesian approach, ordination methods (PCoA, Principal Coordinate Analysis and clustering analysis (UPGMA, Unweighted Pair Group Method with Arithmetic Mean were applied to this purpose. Sixty three INTA sugarcane hybrids were genotyped for 107 Simple Sequence Repeat (SSR and 136 Amplified Fragment Length Polymorphism (AFLP loci. Given the low probability values found with AFLP for individual assignment (4.7%, microsatellites seemed to perform better (54% for STRUCTURE analysis that revealed the germplasm to exist in five optimum groups with partly corresponding to their origin. However clusters shown high degree of admixture, F ST values confirmed the existence of differences among groups. Dissimilarity coefficients ranged from 0.079 to 0.651. PCoA separated sugarcane in groups that did not agree with those identified by STRUCTURE. The clustering including all genotypes neither showed resemblance to populations find by STRUCTURE, but clustering performed considering only individuals displaying a proportional membership > 0.6 in their primary population obtained with STRUCTURE showed close similarities. The Bayesian method indubitably brought more information on cultivar origins than classical PCoA and hierarchical clustering method.

  17. Maritime piracy situation modelling with dynamic Bayesian networks

    CSIR Research Space (South Africa)

    Dabrowski, James M

    2015-05-01

    Full Text Available A generative model for modelling maritime vessel behaviour is proposed. The model is a novel variant of the dynamic Bayesi