WorldWideScience

Sample records for bayesian inference models

  1. Bayesian inference for OPC modeling

    Science.gov (United States)

    Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.

    2016-03-01

    The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.

  2. Bayesian inference for pulsar timing models

    CERN Document Server

    Vigeland, Sarah J

    2013-01-01

    The extremely regular, periodic radio emission from millisecond pulsars make them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse time of arrivals are fit to complicated timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsar's spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain these timing solutions. These include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of tempo2 with the nested-sampling integ...

  3. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  4. Nonparametric Bayesian inference of the microcanonical stochastic block model

    CERN Document Server

    Peixoto, Tiago P

    2016-01-01

    A principled approach to characterize the hidden modular structure of networks is to formulate generative models, and then infer their parameters from data. When the desired structure is composed of modules or "communities", a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: 1. Deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, that not only remove limitations that seriously degrade the inference on large networks, but also reveal s...

  5. Bayesian inference of chemical kinetic models from proposed reactions

    KAUST Repository

    Galagali, Nikhil

    2015-02-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.

  6. Nonparametric Bayesian inference of the microcanonical stochastic block model

    Science.gov (United States)

    Peixoto, Tiago P.

    2017-01-01

    A principled approach to characterize the hidden modular structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.

  7. Bayesian inference for generalized linear models for spiking neurons

    Directory of Open Access Journals (Sweden)

    Sebastian Gerwinn

    2010-05-01

    Full Text Available Generalized Linear Models (GLMs are commonly used statistical methods for modelling the relationship between neural population activity and presented stimuli. When the dimension of the parameter space is large, strong regularization has to be used in order to fit GLMs to datasets of realistic size without overfitting. By imposing properly chosen priors over parameters, Bayesian inference provides an effective and principled approach for achieving regularization. Here we show how the posterior distribution over model parameters of GLMs can be approximated by a Gaussian using the Expectation Propagation algorithm. In this way, we obtain an estimate of the posterior mean and posterior covariance, allowing us to calculate Bayesian confidence intervals that characterize the uncertainty about the optimal solution. From the posterior we also obtain a different point estimate, namely the posterior mean as opposed to the commonly used maximum a posteriori estimate. We systematically compare the different inference techniques on simulated as well as on multi-electrode recordings of retinal ganglion cells, and explore the effects of the chosen prior and the performance measure used. We find that good performance can be achieved by choosing an Laplace prior together with the posterior mean estimate.

  8. Bayesian inference for partially identified models exploring the limits of limited data

    CERN Document Server

    Gustafson, Paul

    2015-01-01

    Introduction Identification What Is against Us? What Is for Us? Some Simple Examples of Partially Identified ModelsThe Road Ahead The Structure of Inference in Partially Identified Models Bayesian Inference The Structure of Posterior Distributions in PIMs Computational Strategies Strength of Bayesian Updating, Revisited Posterior MomentsCredible Intervals Evaluating the Worth of Inference Partial Identification versus Model Misspecification The Siren Call of Identification Comp

  9. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  10. Bayesian Inference: with ecological applications

    Science.gov (United States)

    Link, William A.; Barker, Richard J.

    2010-01-01

    This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.

  11. Inferring Neuronal Dynamics from Calcium Imaging Data Using Biophysical Models and Bayesian Inference.

    Science.gov (United States)

    Rahmati, Vahid; Kirmse, Knut; Marković, Dimitrije; Holthoff, Knut; Kiebel, Stefan J

    2016-02-01

    Calcium imaging has been used as a promising technique to monitor the dynamic activity of neuronal populations. However, the calcium trace is temporally smeared which restricts the extraction of quantities of interest such as spike trains of individual neurons. To address this issue, spike reconstruction algorithms have been introduced. One limitation of such reconstructions is that the underlying models are not informed about the biophysics of spike and burst generations. Such existing prior knowledge might be useful for constraining the possible solutions of spikes. Here we describe, in a novel Bayesian approach, how principled knowledge about neuronal dynamics can be employed to infer biophysical variables and parameters from fluorescence traces. By using both synthetic and in vitro recorded fluorescence traces, we demonstrate that the new approach is able to reconstruct different repetitive spiking and/or bursting patterns with accurate single spike resolution. Furthermore, we show that the high inference precision of the new approach is preserved even if the fluorescence trace is rather noisy or if the fluorescence transients show slow rise kinetics lasting several hundred milliseconds, and inhomogeneous rise and decay times. In addition, we discuss the use of the new approach for inferring parameter changes, e.g. due to a pharmacological intervention, as well as for inferring complex characteristics of immature neuronal circuits.

  12. Declarative Modeling and Bayesian Inference of Dark Matter Halos

    CERN Document Server

    Kronberger, Gabriel

    2013-01-01

    Probabilistic programming allows specification of probabilistic models in a declarative manner. Recently, several new software systems and languages for probabilistic programming have been developed on the basis of newly developed and improved methods for approximate inference in probabilistic models. In this contribution a probabilistic model for an idealized dark matter localization problem is described. We first derive the probabilistic model for the inference of dark matter locations and masses, and then show how this model can be implemented using BUGS and Infer.NET, two software systems for probabilistic programming. Finally, the different capabilities of both systems are discussed. The presented dark matter model includes mainly non-conjugate factors, thus, it is difficult to implement this model with Infer.NET.

  13. Bayesian inference in geomagnetism

    Science.gov (United States)

    Backus, George E.

    1988-01-01

    The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.

  14. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuška, Ivo

    2016-02-23

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.

  15. Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.

    Science.gov (United States)

    Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W

    2007-07-01

    Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.

  16. Probabilistic Inferences in Bayesian Networks

    OpenAIRE

    Ding, Jianguo

    2010-01-01

    This chapter summarizes the popular inferences methods in Bayesian networks. The results demonstrates that the evidence can propagated across the Bayesian networks by any links, whatever it is forward or backward or intercausal style. The belief updating of Bayesian networks can be obtained by various available inference techniques. Theoretically, exact inferences in Bayesian networks is feasible and manageable. However, the computing and inference is NP-hard. That means, in applications, in ...

  17. Bayesian parameter inference and model selection by population annealing in systems biology.

    Science.gov (United States)

    Murakami, Yohei

    2014-01-01

    Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named "posterior parameter ensemble". We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor.

  18. Bayesian methods for hackers probabilistic programming and Bayesian inference

    CERN Document Server

    Davidson-Pilon, Cameron

    2016-01-01

    Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...

  19. Truth, models, model sets, AIC, and multimodel inference: a Bayesian perspective

    Science.gov (United States)

    Barker, Richard J.; Link, William A.

    2015-01-01

    Statistical inference begins with viewing data as realizations of stochastic processes. Mathematical models provide partial descriptions of these processes; inference is the process of using the data to obtain a more complete description of the stochastic processes. Wildlife and ecological scientists have become increasingly concerned with the conditional nature of model-based inference: what if the model is wrong? Over the last 2 decades, Akaike's Information Criterion (AIC) has been widely and increasingly used in wildlife statistics for 2 related purposes, first for model choice and second to quantify model uncertainty. We argue that for the second of these purposes, the Bayesian paradigm provides the natural framework for describing uncertainty associated with model choice and provides the most easily communicated basis for model weighting. Moreover, Bayesian arguments provide the sole justification for interpreting model weights (including AIC weights) as coherent (mathematically self consistent) model probabilities. This interpretation requires treating the model as an exact description of the data-generating mechanism. We discuss the implications of this assumption, and conclude that more emphasis is needed on model checking to provide confidence in the quality of inference.

  20. Bayesian inference for a wavefront model of the Neolithisation of Europe

    CERN Document Server

    Baggaley, Andrew W; Shukurov, Anvar; Boys, Richard J; Golightly, Andrew

    2012-01-01

    We consider a wavefront model for the spread of Neolithic culture across Europe, and use Bayesian inference techniques to provide estimates for the parameters within this model, as constrained by radiocarbon data from Southern and Western Europe. Our wavefront model allows for both an isotropic background spread (incorporating the effects of local geography), and a localized anisotropic spread associated with major waterways. We introduce an innovative numerical scheme to track the wavefront, allowing us to simulate the times of the first arrival at any site orders of magnitude more efficiently than traditional PDE approaches. We adopt a Bayesian approach to inference and use Gaussian process emulators to facilitate further increases in efficiency in the inference scheme, thereby making Markov chain Monte Carlo methods practical. We allow for uncertainty in the fit of our model, and also infer a parameter specifying the magnitude of this uncertainty. We obtain a magnitude for the background spread of order 1 ...

  1. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  2. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  3. A methodology for estimating the uncertainty in model parameters applying the robust Bayesian inferences

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Yeon; Lee, Seung Hyun; Park, Tai Jin [Korean Association for Radiation Application, Seoul (Korea, Republic of)

    2016-06-15

    Any real application of Bayesian inference must acknowledge that both prior distribution and likelihood function have only been specified as more or less convenient approximations to whatever the analyzer's true belief might be. If the inferences from the Bayesian analysis are to be trusted, it is important to determine that they are robust to such variations of prior and likelihood as might also be consistent with the analyzer's stated beliefs. The robust Bayesian inference was applied to atmospheric dispersion assessment using Gaussian plume model. The scopes of contaminations were specified as the uncertainties of distribution type and parametric variability. The probabilistic distribution of model parameters was assumed to be contaminated as the symmetric unimodal and unimodal distributions. The distribution of the sector-averaged relative concentrations was then calculated by applying the contaminated priors to the model parameters. The sector-averaged concentrations for stability class were compared by applying the symmetric unimodal and unimodal priors, respectively, as the contaminated one based on the class of ε-contamination. Though ε was assumed as 10%, the medians reflecting the symmetric unimodal priors were nearly approximated within 10% compared with ones reflecting the plausible ones. However, the medians reflecting the unimodal priors were approximated within 20% for a few downwind distances compared with ones reflecting the plausible ones. The robustness has been answered by estimating how the results of the Bayesian inferences are robust to reasonable variations of the plausible priors. From these robust inferences, it is reasonable to apply the symmetric unimodal priors for analyzing the robustness of the Bayesian inferences.

  4. Adaptive surrogate modeling for response surface approximations with application to bayesian inference

    KAUST Repository

    Prudhomme, Serge

    2015-09-17

    Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves.

  5. Bayesian Computation Methods for Inferring Regulatory Network Models Using Biomedical Data.

    Science.gov (United States)

    Tian, Tianhai

    2016-01-01

    The rapid advancement of high-throughput technologies provides huge amounts of information for gene expression and protein activity in the genome-wide scale. The availability of genomics, transcriptomics, proteomics, and metabolomics dataset gives an unprecedented opportunity to study detailed molecular regulations that is very important to precision medicine. However, it is still a significant challenge to design effective and efficient method to infer the network structure and dynamic property of regulatory networks. In recent years a number of computing methods have been designed to explore the regulatory mechanisms as well as estimate unknown model parameters. Among them, the Bayesian inference method can combine both prior knowledge and experimental data to generate updated information regarding the regulatory mechanisms. This chapter gives a brief review for Bayesian statistical methods that are used to infer the network structure and estimate model parameters based on experimental data.

  6. Bayesian Inference for Radio Observations

    CERN Document Server

    Lochner, Michelle; Zwart, Jonathan T L; Smirnov, Oleg; Bassett, Bruce A; Oozeer, Nadeem; Kunz, Martin

    2015-01-01

    (Abridged) New telescopes like the Square Kilometre Array (SKA) will push into a new sensitivity regime and expose systematics, such as direction-dependent effects, that could previously be ignored. Current methods for handling such systematics rely on alternating best estimates of instrumental calibration and models of the underlying sky, which can lead to inaccurate uncertainty estimates and biased results because such methods ignore any correlations between parameters. These deconvolution algorithms produce a single image that is assumed to be a true representation of the sky, when in fact it is just one realisation of an infinite ensemble of images compatible with the noise in the data. In contrast, here we report a Bayesian formalism that simultaneously infers both systematics and science. Our technique, Bayesian Inference for Radio Observations (BIRO), determines all parameters directly from the raw data, bypassing image-making entirely, by sampling from the joint posterior probability distribution. Thi...

  7. Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.

    Science.gov (United States)

    Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G

    2016-07-26

    The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel

  8. BAYESIAN INFERENCE OF HIDDEN GAMMA WEAR PROCESS MODEL FOR SURVIVAL DATA WITH TIES.

    Science.gov (United States)

    Sinha, Arijit; Chi, Zhiyi; Chen, Ming-Hui

    2015-10-01

    Survival data often contain tied event times. Inference without careful treatment of the ties can lead to biased estimates. This paper develops the Bayesian analysis of a stochastic wear process model to fit survival data that might have a large number of ties. Under a general wear process model, we derive the likelihood of parameters. When the wear process is a Gamma process, the likelihood has a semi-closed form that allows posterior sampling to be carried out for the parameters, hence achieving model selection using Bayesian deviance information criterion. An innovative simulation algorithm via direct forward sampling and Gibbs sampling is developed to sample event times that may have ties in the presence of arbitrary covariates; this provides a tool to assess the precision of inference. An extensive simulation study is reported and a data set is used to further illustrate the proposed methodology.

  9. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  10. Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR).

    Science.gov (United States)

    Huang, Xun; Zi, Zhike

    2014-08-01

    Bayesian network and linear regression methods have been widely applied to reconstruct cellular regulatory networks. In this work, we propose a Bayesian model averaging for linear regression (BMALR) method to infer molecular interactions in biological systems. This method uses a new closed form solution to compute the posterior probabilities of the edges from regulators to the target gene within a hybrid framework of Bayesian model averaging and linear regression methods. We have assessed the performance of BMALR by benchmarking on both in silico DREAM datasets and real experimental datasets. The results show that BMALR achieves both high prediction accuracy and high computational efficiency across different benchmarks. A pre-processing of the datasets with the log transformation can further improve the performance of BMALR, leading to a new top overall performance. In addition, BMALR can achieve robust high performance in community predictions when it is combined with other competing methods. The proposed method BMALR is competitive compared to the existing network inference methods. Therefore, BMALR will be useful to infer regulatory interactions in biological networks. A free open source software tool for the BMALR algorithm is available at https://sites.google.com/site/bmalr4netinfer/.

  11. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci.

    Science.gov (United States)

    Gill, Mandev S; Lemey, Philippe; Faria, Nuno R; Rambaut, Andrew; Shapiro, Beth; Suchard, Marc A

    2013-03-01

    Effective population size is fundamental in population genetics and characterizes genetic diversity. To infer past population dynamics from molecular sequence data, coalescent-based models have been developed for Bayesian nonparametric estimation of effective population size over time. Among the most successful is a Gaussian Markov random field (GMRF) model for a single gene locus. Here, we present a generalization of the GMRF model that allows for the analysis of multilocus sequence data. Using simulated data, we demonstrate the improved performance of our method to recover true population trajectories and the time to the most recent common ancestor (TMRCA). We analyze a multilocus alignment of HIV-1 CRF02_AG gene sequences sampled from Cameroon. Our results are consistent with HIV prevalence data and uncover some aspects of the population history that go undetected in Bayesian parametric estimation. Finally, we recover an older and more reconcilable TMRCA for a classic ancient DNA data set.

  12. Nonparametric Bayesian inference in biostatistics

    CERN Document Server

    Müller, Peter

    2015-01-01

    As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...

  13. Bayesian inference for kinetic models of biotransformation using a generalized rate equation.

    Science.gov (United States)

    Ying, Shanshan; Zhang, Jiangjiang; Zeng, Lingzao; Shi, Jiachun; Wu, Laosheng

    2017-03-06

    Selecting proper rate equations for the kinetic models is essential to quantify biotransformation processes in the environment. Bayesian model selection method can be used to evaluate the candidate models. However, comparisons of all plausible models can result in high computational cost, while limiting the number of candidate models may lead to biased results. In this work, we developed an integrated Bayesian method to simultaneously perform model selection and parameter estimation by using a generalized rate equation. In the approach, the model hypotheses were represented by discrete parameters and the rate constants were represented by continuous parameters. Then Bayesian inference of the kinetic models was solved by implementing Markov Chain Monte Carlo simulation for parameter estimation with the mixed (i.e., discrete and continuous) priors. The validity of this approach was illustrated through a synthetic case and a nitrogen transformation experimental study. It showed that our method can successfully identify the plausible models and parameters, as well as uncertainties therein. Thus this method can provide a powerful tool to reveal more insightful information for the complex biotransformation processes.

  14. NetDiff - Bayesian model selection for differential gene regulatory network inference.

    Science.gov (United States)

    Thorne, Thomas

    2016-12-16

    Differential networks allow us to better understand the changes in cellular processes that are exhibited in conditions of interest, identifying variations in gene regulation or protein interaction between, for example, cases and controls, or in response to external stimuli. Here we present a novel methodology for the inference of differential gene regulatory networks from gene expression microarray data. Specifically we apply a Bayesian model selection approach to compare models of conserved and varying network structure, and use Gaussian graphical models to represent the network structures. We apply a variational inference approach to the learning of Gaussian graphical models of gene regulatory networks, that enables us to perform Bayesian model selection that is significantly more computationally efficient than Markov Chain Monte Carlo approaches. Our method is demonstrated to be more robust than independent analysis of data from multiple conditions when applied to synthetic network data, generating fewer false positive predictions of differential edges. We demonstrate the utility of our approach on real world gene expression microarray data by applying it to existing data from amyotrophic lateral sclerosis cases with and without mutations in C9orf72, and controls, where we are able to identify differential network interactions for further investigation.

  15. Multi-model polynomial chaos surrogate dictionary for Bayesian inference in elasticity problems

    KAUST Repository

    Contreras, Andres A.

    2016-09-19

    A method is presented for inferring the presence of an inclusion inside a domain; the proposed approach is suitable to be used in a diagnostic device with low computational power. Specifically, we use the Bayesian framework for the inference of stiff inclusions embedded in a soft matrix, mimicking tumors in soft tissues. We rely on a polynomial chaos (PC) surrogate to accelerate the inference process. The PC surrogate predicts the dependence of the displacements field with the random elastic moduli of the materials, and are computed by means of the stochastic Galerkin (SG) projection method. Moreover, the inclusion\\'s geometry is assumed to be unknown, and this is addressed by using a dictionary consisting of several geometrical models with different configurations. A model selection approach based on the evidence provided by the data (Bayes factors) is used to discriminate among the different geometrical models and select the most suitable one. The idea of using a dictionary of pre-computed geometrical models helps to maintain the computational cost of the inference process very low, as most of the computational burden is carried out off-line for the resolution of the SG problems. Numerical tests are used to validate the methodology, assess its performance, and analyze the robustness to model errors. © 2016 Elsevier Ltd

  16. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference.

    Directory of Open Access Journals (Sweden)

    Dario Cuevas Rivera

    2015-10-01

    Full Text Available The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an 'intelligent coincidence detector', which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena.

  17. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference

    Science.gov (United States)

    Cuevas Rivera, Dario; Bitzer, Sebastian; Kiebel, Stefan J.

    2015-01-01

    The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena. PMID:26451888

  18. Bayesian Inference with Optimal Maps

    CERN Document Server

    Moselhy, Tarek A El

    2011-01-01

    We present a new approach to Bayesian inference that entirely avoids Markov chain simulation, by constructing a map that pushes forward the prior measure to the posterior measure. Existence and uniqueness of a suitable measure-preserving map is established by formulating the problem in the context of optimal transport theory. We discuss various means of explicitly parameterizing the map and computing it efficiently through solution of an optimization problem, exploiting gradient information from the forward model when possible. The resulting algorithm overcomes many of the computational bottlenecks associated with Markov chain Monte Carlo. Advantages of a map-based representation of the posterior include analytical expressions for posterior moments and the ability to generate arbitrary numbers of independent posterior samples without additional likelihood evaluations or forward solves. The optimization approach also provides clear convergence criteria for posterior approximation and facilitates model selectio...

  19. Perception, illusions and Bayesian inference.

    Science.gov (United States)

    Nour, Matthew M; Nour, Joseph M

    2015-01-01

    Descriptive psychopathology makes a distinction between veridical perception and illusory perception. In both cases a perception is tied to a sensory stimulus, but in illusions the perception is of a false object. This article re-examines this distinction in light of new work in theoretical and computational neurobiology, which views all perception as a form of Bayesian statistical inference that combines sensory signals with prior expectations. Bayesian perceptual inference can solve the 'inverse optics' problem of veridical perception and provides a biologically plausible account of a number of illusory phenomena, suggesting that veridical and illusory perceptions are generated by precisely the same inferential mechanisms.

  20. Computationally efficient Bayesian inference for inverse problems.

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.

    2007-10-01

    Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.

  1. Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation.

    Science.gov (United States)

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.

  2. Probability biases as Bayesian inference

    Directory of Open Access Journals (Sweden)

    Andre; C. R. Martins

    2006-11-01

    Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.

  3. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...

  4. Bayesian inference for a wave-front model of the neolithization of Europe.

    Science.gov (United States)

    Baggaley, Andrew W; Sarson, Graeme R; Shukurov, Anvar; Boys, Richard J; Golightly, Andrew

    2012-07-01

    We consider a wave-front model for the spread of neolithic culture across Europe, and use Bayesian inference techniques to provide estimates for the parameters within this model, as constrained by radiocarbon data from southern and western Europe. Our wave-front model allows for both an isotropic background spread (incorporating the effects of local geography) and a localized anisotropic spread associated with major waterways. We introduce an innovative numerical scheme to track the wave front, and use Gaussian process emulators to further increase the efficiency of our model, thereby making Markov chain Monte Carlo methods practical. We allow for uncertainty in the fit of our model, and discuss the inferred distribution of the parameter specifying this uncertainty, along with the distributions of the parameters of our wave-front model. We subsequently use predictive distributions, taking account of parameter uncertainty, to identify radiocarbon sites which do not agree well with our model. These sites may warrant further archaeological study or motivate refinements to the model.

  5. Variational Bayesian Inference of Line Spectra

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Hansen, Thomas Lundgaard; Fleury, Bernard Henri

    2016-01-01

    In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid; and the coeffici......In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid......; and the coefficients are governed by a Bernoulli-Gaussian prior model turning model order selection into binary sequence detection. Unlike earlier works which retain only point estimates of the frequencies, we undertake a more complete Bayesian treatment by estimating the posterior probability density functions (pdfs...

  6. Bayesian, Maximum Parsimony and UPGMA Models for Inferring the Phylogenies of Antelopes Using Mitochondrial Markers

    Directory of Open Access Journals (Sweden)

    Haseeb A. Khan

    2008-01-01

    Full Text Available This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA, maximum parsimony (MP and unweighted pair group method with arithmetic mean (UPGMA. The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella and an out-group (Addax nasomaculatus were aligned and subjected to BA, MP and UPGMA models for comparing the topologies of respective phylogenetic trees. The 16S rRNA region possessed the highest frequency of conserved sequences (97.65% followed by cyt-b (94.22% and d-loop (87.29%. There were few transitions (2.35% and none transversions in 16S rRNA as compared to cyt-b (5.61% transitions and 0.17% transversions and d-loop (11.57% transitions and 1.14% transversions while com- paring the four taxa. All the three mitochondrial segments clearly differentiated the genus Addax from Oryx using the BA or UPGMA models. The topologies of all the gamma-corrected Bayesian trees were identical irrespective of the marker type. The UPGMA trees resulting from 16S rRNA and d-loop sequences were also identical (Oryx dammah grouped with Oryx leucoryx to Bayesian trees except that the UPGMA tree based on cyt-b showed a slightly different phylogeny (Oryx dammah grouped with Oryx gazella with a low bootstrap support. However, the MP model failed to differentiate the genus Addax from Oryx. These findings demonstrate the efficiency and robustness of BA and UPGMA methods for phylogenetic analysis of antelopes using mitochondrial markers.

  7. Multisensory Bayesian Inference Depends on Synapse Maturation during Training: Theoretical Analysis and Neural Modeling Implementation.

    Science.gov (United States)

    Ursino, Mauro; Cuppini, Cristiano; Magosso, Elisa

    2017-03-01

    Recent theoretical and experimental studies suggest that in multisensory conditions, the brain performs a near-optimal Bayesian estimate of external events, giving more weight to the more reliable stimuli. However, the neural mechanisms responsible for this behavior, and its progressive maturation in a multisensory environment, are still insufficiently understood. The aim of this letter is to analyze this problem with a neural network model of audiovisual integration, based on probabilistic population coding-the idea that a population of neurons can encode probability functions to perform Bayesian inference. The model consists of two chains of unisensory neurons (auditory and visual) topologically organized. They receive the corresponding input through a plastic receptive field and reciprocally exchange plastic cross-modal synapses, which encode the spatial co-occurrence of visual-auditory inputs. A third chain of multisensory neurons performs a simple sum of auditory and visual excitations. The work includes a theoretical part and a computer simulation study. We show how a simple rule for synapse learning (consisting of Hebbian reinforcement and a decay term) can be used during training to shrink the receptive fields and encode the unisensory likelihood functions. Hence, after training, each unisensory area realizes a maximum likelihood estimate of stimulus position (auditory or visual). In cross-modal conditions, the same learning rule can encode information on prior probability into the cross-modal synapses. Computer simulations confirm the theoretical results and show that the proposed network can realize a maximum likelihood estimate of auditory (or visual) positions in unimodal conditions and a Bayesian estimate, with moderate deviations from optimality, in cross-modal conditions. Furthermore, the model explains the ventriloquism illusion and, looking at the activity in the multimodal neurons, explains the automatic reweighting of auditory and visual inputs

  8. Tactile length contraction as Bayesian inference.

    Science.gov (United States)

    Tong, Jonathan; Ngo, Vy; Goldreich, Daniel

    2016-08-01

    To perceive, the brain must interpret stimulus-evoked neural activity. This is challenging: The stochastic nature of the neural response renders its interpretation inherently uncertain. Perception would be optimized if the brain used Bayesian inference to interpret inputs in light of expectations derived from experience. Bayesian inference would improve perception on average but cause illusions when stimuli violate expectation. Intriguingly, tactile, auditory, and visual perception are all prone to length contraction illusions, characterized by the dramatic underestimation of the distance between punctate stimuli delivered in rapid succession; the origin of these illusions has been mysterious. We previously proposed that length contraction illusions occur because the brain interprets punctate stimulus sequences using Bayesian inference with a low-velocity expectation. A novel prediction of our Bayesian observer model is that length contraction should intensify if stimuli are made more difficult to localize. Here we report a tactile psychophysical study that tested this prediction. Twenty humans compared two distances on the forearm: a fixed reference distance defined by two taps with 1-s temporal separation and an adjustable comparison distance defined by two taps with temporal separation t ≤ 1 s. We observed significant length contraction: As t was decreased, participants perceived the two distances as equal only when the comparison distance was made progressively greater than the reference distance. Furthermore, the use of weaker taps significantly enhanced participants' length contraction. These findings confirm the model's predictions, supporting the view that the spatiotemporal percept is a best estimate resulting from a Bayesian inference process.

  9. Bayesian inference on proportional elections.

    Directory of Open Access Journals (Sweden)

    Gabriel Hideki Vatanabe Brunello

    Full Text Available Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software.

  10. Bayesian Cosmological inference beyond statistical isotropy

    Science.gov (United States)

    Souradeep, Tarun; Das, Santanu; Wandelt, Benjamin

    2016-10-01

    With advent of rich data sets, computationally challenge of inference in cosmology has relied on stochastic sampling method. First, I review the widely used MCMC approach used to infer cosmological parameters and present a adaptive improved implementation SCoPE developed by our group. Next, I present a general method for Bayesian inference of the underlying covariance structure of random fields on a sphere. We employ the Bipolar Spherical Harmonic (BipoSH) representation of general covariance structure on the sphere. We illustrate the efficacy of the method with a principled approach to assess violation of statistical isotropy (SI) in the sky maps of Cosmic Microwave Background (CMB) fluctuations. The general, principled, approach to a Bayesian inference of the covariance structure in a random field on a sphere presented here has huge potential for application to other many aspects of cosmology and astronomy, as well as, more distant areas of research like geosciences and climate modelling.

  11. Universal Darwinism as a process of Bayesian inference

    CERN Document Server

    Campbell, John O

    2016-01-01

    Many of the mathematical frameworks describing natural selection are equivalent to Bayes Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment". Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description clo...

  12. A strategy for Bayesian inference for computationally expensive models with application to the estimation of stem cell properties.

    Science.gov (United States)

    Overstall, Antony M; Woods, David C

    2013-06-01

    Bayesian inference is considered for statistical models that depend on the evaluation of a computationally expensive computer code or simulator. For such situations, the number of evaluations of the likelihood function, and hence of the unnormalized posterior probability density function, is determined by the available computational resource and may be extremely limited. We present a new example of such a simulator that describes the properties of human embryonic stem cells using data from optical trapping experiments. This application is used to motivate a novel strategy for Bayesian inference which exploits a Gaussian process approximation of the simulator and allows computationally efficient Markov chain Monte Carlo inference. The advantages of this strategy over previous methodology are that it is less reliant on the determination of tuning parameters and allows the application of model diagnostic procedures that require no additional evaluations of the simulator. We show the advantages of our method on synthetic examples and demonstrate its application on stem cell experiments.

  13. Multi-scale inference of interaction rules in animal groups using Bayesian model selection.

    Science.gov (United States)

    Mann, Richard P; Perna, Andrea; Strömbom, Daniel; Garnett, Roman; Herbert-Read, James E; Sumpter, David J T; Ward, Ashley J W

    2012-01-01

    Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

  14. Multi-scale inference of interaction rules in animal groups using Bayesian model selection.

    Directory of Open Access Journals (Sweden)

    Richard P Mann

    2012-01-01

    Full Text Available Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis. We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture fine scale rules of interaction, which are primarily mediated by physical contact. Conversely, the Markovian self-propelled particle model captures the fine scale rules of interaction but fails to reproduce global dynamics. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

  15. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    2013-01-01

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....

  16. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....

  17. A Fast Iterative Bayesian Inference Algorithm for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri

    2013-01-01

    representation of the Bessel K probability density function; a highly efficient, fast iterative Bayesian inference method is then applied to the proposed model. The resulting estimator outperforms other state-of-the-art Bayesian and non-Bayesian estimators, either by yielding lower mean squared estimation error...

  18. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...... and differentiating these circuits in time linear in their size. We report on experimental results showing the successful compilation, and efficient inference, on relational Bayesian networks whose {\\primula}--generated propositional instances have thousands of variables, and whose jointrees have clusters...

  19. SU-E-T-144: Bayesian Inference of Local Relapse Data Using a Poisson-Based Tumour Control Probability Model

    Energy Technology Data Exchange (ETDEWEB)

    La Russa, D [The Ottawa Hospital Cancer Centre, Ottawa, ON (Canada)

    2015-06-15

    Purpose: The purpose of this project is to develop a robust method of parameter estimation for a Poisson-based TCP model using Bayesian inference. Methods: Bayesian inference was performed using the PyMC3 probabilistic programming framework written in Python. A Poisson-based TCP regression model that accounts for clonogen proliferation was fit to observed rates of local relapse as a function of equivalent dose in 2 Gy fractions for a population of 623 stage-I non-small-cell lung cancer patients. The Slice Markov Chain Monte Carlo sampling algorithm was used to sample the posterior distributions, and was initiated using the maximum of the posterior distributions found by optimization. The calculation of TCP with each sample step required integration over the free parameter α, which was performed using an adaptive 24-point Gauss-Legendre quadrature. Convergence was verified via inspection of the trace plot and posterior distribution for each of the fit parameters, as well as with comparisons of the most probable parameter values with their respective maximum likelihood estimates. Results: Posterior distributions for α, the standard deviation of α (σ), the average tumour cell-doubling time (Td), and the repopulation delay time (Tk), were generated assuming α/β = 10 Gy, and a fixed clonogen density of 10{sup 7} cm−{sup 3}. Posterior predictive plots generated from samples from these posterior distributions are in excellent agreement with the observed rates of local relapse used in the Bayesian inference. The most probable values of the model parameters also agree well with maximum likelihood estimates. Conclusion: A robust method of performing Bayesian inference of TCP data using a complex TCP model has been established.

  20. Calibration of crash risk models on freeways with limited real-time traffic data using Bayesian meta-analysis and Bayesian inference approach.

    Science.gov (United States)

    Xu, Chengcheng; Wang, Wei; Liu, Pan; Li, Zhibin

    2015-12-01

    This study aimed to develop a real-time crash risk model with limited data in China by using Bayesian meta-analysis and Bayesian inference approach. A systematic review was first conducted by using three different Bayesian meta-analyses, including the fixed effect meta-analysis, the random effect meta-analysis, and the meta-regression. The meta-analyses provided a numerical summary of the effects of traffic variables on crash risks by quantitatively synthesizing results from previous studies. The random effect meta-analysis and the meta-regression produced a more conservative estimate for the effects of traffic variables compared with the fixed effect meta-analysis. Then, the meta-analyses results were used as informative priors for developing crash risk models with limited data. Three different meta-analyses significantly affect model fit and prediction accuracy. The model based on meta-regression can increase the prediction accuracy by about 15% as compared to the model that was directly developed with limited data. Finally, the Bayesian predictive densities analysis was used to identify the outliers in the limited data. It can further improve the prediction accuracy by 5.0%.

  1. Improved inference of gene regulatory networks through integrated Bayesian clustering and dynamic modeling of time-course expression data.

    Science.gov (United States)

    Godsey, Brian

    2013-01-01

    Inferring gene regulatory networks from expression data is difficult, but it is common and often useful. Most network problems are under-determined--there are more parameters than data points--and therefore data or parameter set reduction is often necessary. Correlation between variables in the model also contributes to confound network coefficient inference. In this paper, we present an algorithm that uses integrated, probabilistic clustering to ease the problems of under-determination and correlated variables within a fully Bayesian framework. Specifically, ours is a dynamic Bayesian network with integrated Gaussian mixture clustering, which we fit using variational Bayesian methods. We show, using public, simulated time-course data sets from the DREAM4 Challenge, that our algorithm outperforms non-clustering methods in many cases (7 out of 25) with fewer samples, rarely underperforming (1 out of 25), and often selects a non-clustering model if it better describes the data. Source code (GNU Octave) for BAyesian Clustering Over Networks (BACON) and sample data are available at: http://code.google.com/p/bacon-for-genetic-networks.

  2. Bayesianism and inference to the best explanation

    Directory of Open Access Journals (Sweden)

    Valeriano IRANZO

    2008-01-01

    Full Text Available Bayesianism and Inference to the best explanation (IBE are two different models of inference. Recently there has been some debate about the possibility of “bayesianizing” IBE. Firstly I explore several alternatives to include explanatory considerations in Bayes’s Theorem. Then I distinguish two different interpretations of prior probabilities: “IBE-Bayesianism” (IBE-Bay and “frequentist-Bayesianism” (Freq-Bay. After detailing the content of the latter, I propose a rule for assessing the priors. I also argue that Freq-Bay: (i endorses a role for explanatory value in the assessment of scientific hypotheses; (ii avoids a purely subjectivist reading of prior probabilities; and (iii fits better than IBE-Bayesianism with two basic facts about science, i.e., the prominent role played by empirical testing and the existence of many scientific theories in the past that failed to fulfil their promises and were subsequently abandoned.

  3. Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data.

    Science.gov (United States)

    Tang, An-Min; Tang, Nian-Sheng

    2015-02-28

    We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.

  4. Bayesian Estimation and Inference Using Stochastic Electronics.

    Science.gov (United States)

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.

  5. Bayesian vector autoregressive model for multi-subject effective connectivity inference using multi-modal neuroimaging data.

    Science.gov (United States)

    Chiang, Sharon; Guindani, Michele; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M; Vannucci, Marina

    2017-03-01

    In this article a multi-subject vector autoregressive (VAR) modeling approach was proposed for inference on effective connectivity based on resting-state functional MRI data. Their framework uses a Bayesian variable selection approach to allow for simultaneous inference on effective connectivity at both the subject- and group-level. Furthermore, it accounts for multi-modal data by integrating structural imaging information into the prior model, encouraging effective connectivity between structurally connected regions. They demonstrated through simulation studies that their approach resulted in improved inference on effective connectivity at both the subject- and group-level, compared with currently used methods. It was concluded by illustrating the method on temporal lobe epilepsy data, where resting-state functional MRI and structural MRI were used. Hum Brain Mapp 38:1311-1332, 2017. © 2016 Wiley Periodicals, Inc.

  6. Bayesian Inference for Growth Mixture Models with Latent Class Dependent Missing Data

    Science.gov (United States)

    Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta

    2011-01-01

    "Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…

  7. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...... by evaluating and differentiating these circuits in time linear in their size. We report on experimental results showing successful compilation and efficient inference on relational Bayesian networks, whose PRIMULA--generated propositional instances have thousands of variables, and whose jointrees have clusters...

  8. Universal Darwinism As a Process of Bayesian Inference.

    Science.gov (United States)

    Campbell, John O

    2016-01-01

    Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment." Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

  9. Universal Darwinism as a process of Bayesian inference

    Directory of Open Access Journals (Sweden)

    John Oberon Campbell

    2016-06-01

    Full Text Available Many of the mathematical frameworks describing natural selection are equivalent to Bayes’ Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians. As Bayesian inference can always be cast in terms of (variational free energy minimization, natural selection can be viewed as comprising two components: a generative model of an ‘experiment’ in the external world environment, and the results of that 'experiment' or the 'surprise' entailed by predicted and actual outcomes of the ‘experiment’. Minimization of free energy implies that the implicit measure of 'surprise' experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

  10. Bayesian approaches to spatial inference: Modelling and computational challenges and solutions

    Science.gov (United States)

    Moores, Matthew; Mengersen, Kerrie

    2014-12-01

    We discuss a range of Bayesian modelling approaches for spatial data and investigate some of the associated computational challenges. This paper commences with a brief review of Bayesian mixture models and Markov random fields, with enabling computational algorithms including Markov chain Monte Carlo (MCMC) and integrated nested Laplace approximation (INLA). Following this, we focus on the Potts model as a canonical approach, and discuss the challenge of estimating the inverse temperature parameter that controls the degree of spatial smoothing. We compare three approaches to addressing the doubly intractable nature of the likelihood, namely pseudo-likelihood, path sampling and the exchange algorithm. These techniques are applied to satellite data used to analyse water quality in the Great Barrier Reef.

  11. Quantum-Like Representation of Non-Bayesian Inference

    Science.gov (United States)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  12. Bayesian Inference in Queueing Networks

    CERN Document Server

    Sutton, Charles

    2010-01-01

    Modern Web services, such as those at Google, Yahoo!, and Amazon, handle billions of requests per day on clusters of thousands of computers. Because these services operate under strict performance requirements, a statistical understanding of their performance is of great practical interest. Such services are modeled by networks of queues, where one queue models each of the individual computers in the system. A key challenge is that the data is incomplete, because recording detailed information about every request to a heavily used system can require unacceptable overhead. In this paper we develop a Bayesian perspective on queueing models in which the arrival and departure times that are not observed are treated as latent variables. Underlying this viewpoint is the observation that a queueing model defines a deterministic transformation between the data and a set of independent variables called the service times. With this viewpoint in hand, we sample from the posterior distribution over missing data and model...

  13. From least squares to multilevel modeling: A graphical introduction to Bayesian inference

    Science.gov (United States)

    Loredo, Thomas J.

    2016-01-01

    This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.

  14. Inference of Environmental Factor-Microbe and Microbe-Microbe Associations from Metagenomic Data Using a Hierarchical Bayesian Statistical Model.

    Science.gov (United States)

    Yang, Yuqing; Chen, Ning; Chen, Ting

    2017-01-25

    The inference of associations between environmental factors and microbes and among microbes is critical to interpreting metagenomic data, but compositional bias, indirect associations resulting from common factors, and variance within metagenomic sequencing data limit the discovery of associations. To account for these problems, we propose metagenomic Lognormal-Dirichlet-Multinomial (mLDM), a hierarchical Bayesian model with sparsity constraints, to estimate absolute microbial abundance and simultaneously infer both conditionally dependent associations among microbes and direct associations between microbes and environmental factors. We empirically show the effectiveness of the mLDM model using synthetic data, data from the TARA Oceans project, and a colorectal cancer dataset. Finally, we apply mLDM to 16S sequencing data from the western English Channel and report several associations. Our model can be used on both natural environmental and human metagenomic datasets, promoting the understanding of associations in the microbial community.

  15. Bayesian multimodel inference for dose-response studies

    Science.gov (United States)

    Link, W.A.; Albers, P.H.

    2007-01-01

    Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.

  16. Variational Bayesian Inference of Line Spectra

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Hansen, Thomas Lundgaard; Fleury, Bernard Henri

    2017-01-01

    In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid; and the coeffici......In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid......) of the frequencies and computing expectations over them. Thus, we additionally capture and operate with the uncertainty of the frequency estimates. Aiming to maximize the model evidence, variational optimization provides analytic approximations of the posterior pdfs and also gives estimates of the additional...... just point estimates, significantly improves the performance. The performance of VALSE is superior to that of state-of-the-art methods and closely approaches the Cramér-Rao bound computed for the true model order....

  17. An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guannan [ORNL; Webster, Clayton G [ORNL; Gunzburger, Max D [ORNL

    2012-09-01

    Although Bayesian analysis has become vital to the quantification of prediction uncertainty in groundwater modeling, its application has been hindered due to the computational cost associated with numerous model executions needed for exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, we utilize a compactly supported higher-order hierar- chical basis to construct the surrogate system, resulting in a significant reduction in the number of computational simulations required. In addition, we use hierarchical surplus as an error indi- cator to determine adaptive sparse grids. This allows local refinement in the uncertain domain and/or anisotropic detection with respect to the random model parameters, which further improves computational efficiency. Finally, we incorporate a global optimization technique and propose an iterative algorithm for building the surrogate system for the PPDF with multiple significant modes. Once the surrogate system is determined, the PPDF can be evaluated by sampling the surrogate system directly with very little computational cost. The developed method is evaluated first using a simple analytical density function with multiple modes and then using two synthetic groundwater reactive transport models. The groundwater models represent different levels of complexity; the first example involves coupled linear reactions and the second example simulates nonlinear ura- nium surface complexation. The results show that the aSG-hSC is an effective and efficient tool for Bayesian inference in groundwater modeling in comparison with conventional

  18. Bayesian Inference Methods for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand

    2013-01-01

    This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...

  19. An Integrated Procedure for Bayesian Reliability Inference Using MCMC

    Directory of Open Access Journals (Sweden)

    Jing Lin

    2014-01-01

    Full Text Available The recent proliferation of Markov chain Monte Carlo (MCMC approaches has led to the use of the Bayesian inference in a wide variety of fields. To facilitate MCMC applications, this paper proposes an integrated procedure for Bayesian inference using MCMC methods, from a reliability perspective. The goal is to build a framework for related academic research and engineering applications to implement modern computational-based Bayesian approaches, especially for reliability inferences. The procedure developed here is a continuous improvement process with four stages (Plan, Do, Study, and Action and 11 steps, including: (1 data preparation; (2 prior inspection and integration; (3 prior selection; (4 model selection; (5 posterior sampling; (6 MCMC convergence diagnostic; (7 Monte Carlo error diagnostic; (8 model improvement; (9 model comparison; (10 inference making; (11 data updating and inference improvement. The paper illustrates the proposed procedure using a case study.

  20. Human collective intelligence as distributed Bayesian inference

    CERN Document Server

    Krafft, Peter M; Pan, Wei; Della Penna, Nicolás; Altshuler, Yaniv; Shmueli, Erez; Tenenbaum, Joshua B; Pentland, Alex

    2016-01-01

    Collective intelligence is believed to underly the remarkable success of human society. The formation of accurate shared beliefs is one of the key components of human collective intelligence. How are accurate shared beliefs formed in groups of fallible individuals? Answering this question requires a multiscale analysis. We must understand both the individual decision mechanisms people use, and the properties and dynamics of those mechanisms in the aggregate. As of yet, mathematical tools for such an approach have been lacking. To address this gap, we introduce a new analytical framework: We propose that groups arrive at accurate shared beliefs via distributed Bayesian inference. Distributed inference occurs through information processing at the individual level, and yields rational belief formation at the group level. We instantiate this framework in a new model of human social decision-making, which we validate using a dataset we collected of over 50,000 users of an online social trading platform where inves...

  1. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  2. Picturing classical and quantum Bayesian inference

    CERN Document Server

    Coecke, Bob

    2011-01-01

    We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer's calculus of `cond...

  3. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    An efficient Bayesian calibration method based on the nested sampling (NS) algorithm and non-intrusive polynomial chaos method is presented. Nested sampling is a Bayesian sampling algorithm that builds a discrete representation of the posterior distributions by iteratively re-focusing a set of samples to high likelihood regions. NS allows representing the posterior probability density function (PDF) with a smaller number of samples and reduces the curse of dimensionality effects. The main difficulty of the NS algorithm is in the constrained sampling step which is commonly performed using a random walk Markov Chain Monte-Carlo (MCMC) algorithm. In this work, we perform a two-stage sampling using a polynomial chaos response surface to filter out rejected samples in the Markov Chain Monte-Carlo method. The combined use of nested sampling and the two-stage MCMC based on approximate response surfaces provides significant computational gains in terms of the number of simulation runs. The proposed algorithm is applied for calibration and model selection of subsurface flow models. © 2013.

  4. Hierarchical Bayesian inference in the visual cortex

    Science.gov (United States)

    Lee, Tai Sing; Mumford, David

    2003-07-01

    Traditional views of visual processing suggest that early visual neurons in areas V1 and V2 are static spatiotemporal filters that extract local features from a visual scene. The extracted information is then channeled through a feedforward chain of modules in successively higher visual areas for further analysis. Recent electrophysiological recordings from early visual neurons in awake behaving monkeys reveal that there are many levels of complexity in the information processing of the early visual cortex, as seen in the long-latency responses of its neurons. These new findings suggest that activity in the early visual cortex is tightly coupled and highly interactive with the rest of the visual system. They lead us to propose a new theoretical setting based on the mathematical framework of hierarchical Bayesian inference for reasoning about the visual system. In this framework, the recurrent feedforward/feedback loops in the cortex serve to integrate top-down contextual priors and bottom-up observations so as to implement concurrent probabilistic inference along the visual hierarchy. We suggest that the algorithms of particle filtering and Bayesian-belief propagation might model these interactive cortical computations. We review some recent neurophysiological evidences that support the plausibility of these ideas. 2003 Optical Society of America

  5. Phylodynamic inference and model assessment with approximate bayesian computation: influenza as a case study.

    Directory of Open Access Journals (Sweden)

    Oliver Ratmann

    Full Text Available A key priority in infectious disease research is to understand the ecological and evolutionary drivers of viral diseases from data on disease incidence as well as viral genetic and antigenic variation. We propose using a simulation-based, Bayesian method known as Approximate Bayesian Computation (ABC to fit and assess phylodynamic models that simulate pathogen evolution and ecology against summaries of these data. We illustrate the versatility of the method by analyzing two spatial models describing the phylodynamics of interpandemic human influenza virus subtype A(H3N2. The first model captures antigenic drift phenomenologically with continuously waning immunity, and the second epochal evolution model describes the replacement of major, relatively long-lived antigenic clusters. Combining features of long-term surveillance data from The Netherlands with features of influenza A (H3N2 hemagglutinin gene sequences sampled in northern Europe, key phylodynamic parameters can be estimated with ABC. Goodness-of-fit analyses reveal that the irregularity in interannual incidence and H3N2's ladder-like hemagglutinin phylogeny are quantitatively only reproduced under the epochal evolution model within a spatial context. However, the concomitant incidence dynamics result in a very large reproductive number and are not consistent with empirical estimates of H3N2's population level attack rate. These results demonstrate that the interactions between the evolutionary and ecological processes impose multiple quantitative constraints on the phylodynamic trajectories of influenza A(H3N2, so that sequence and surveillance data can be used synergistically. ABC, one of several data synthesis approaches, can easily interface a broad class of phylodynamic models with various types of data but requires careful calibration of the summaries and tolerance parameters.

  6. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Kenji [NASA Glenn Research Center, OAI, 22800 Cedar Point Rd, Cleveland, OH 44142 (United States); Panesi, Marco, E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Lab, 104 S. Wright St., Urbana, IL 61801 (United States); Prudhomme, Serge [Département de mathématiques et de génie industriel, Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7 (Canada)

    2015-10-01

    The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  7. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  8. An Intuitive Dashboard for Bayesian Network Inference

    Science.gov (United States)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  9. Determining protein structures by combining semireliable data with atomistic physical models by Bayesian inference.

    Science.gov (United States)

    MacCallum, Justin L; Perez, Alberto; Dill, Ken A

    2015-06-02

    More than 100,000 protein structures are now known at atomic detail. However, far more are not yet known, particularly among large or complex proteins. Often, experimental information is only semireliable because it is uncertain, limited, or confusing in important ways. Some experiments give sparse information, some give ambiguous or nonspecific information, and others give uncertain information-where some is right, some is wrong, but we don't know which. We describe a method called Modeling Employing Limited Data (MELD) that can harness such problematic information in a physics-based, Bayesian framework for improved structure determination. We apply MELD to eight proteins of known structure for which such problematic structural data are available, including a sparse NMR dataset, two ambiguous EPR datasets, and four uncertain datasets taken from sequence evolution data. MELD gives excellent structures, indicating its promise for experimental biomolecule structure determination where only semireliable data are available.

  10. Polynomial Chaos-Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    Science.gov (United States)

    Sraj, Ihab; Zedler, Sarah E.; Knio, Omar M.; Jackson, Charles S.; Hoteit, Ibrahim

    2016-12-01

    The authors present a Polynomial Chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-Profile Parametrization (KPP) within the MIT General Circulation Model (MITgcm) of the tropical pacific. The inference of the uncertain parameters is based on a Markov Chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal timescales in addition to the data quality, and filters for the effects of parameter perturbations over those due to changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, we build a surrogate model for the test statistic using the PC method. To filter out the noise in the model predictions and avoid related convergence issues, we resort to a Basis-Pursuit-DeNoising (BPDN) compressed sensing approach to determine the PC coefficients of a representative surrogate model. The PC surrogate is then used to evaluate the test statistic in the MCMC step for sampling the posterior of the uncertain parameters. Results of the posteriors indicate good agreement with the default values for two parameters of the KPP model namely the critical bulk and gradient Richardson numbers; while the posteriors of the remaining parameters were barely informative.

  11. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab

    2016-08-26

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference of the uncertain parameters is based on a Markov chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal time scales in addition to the data quality, and filters for the effects of parameter perturbations over those as a result of changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, a surrogate model for the test statistic using the PC method is built. Because of the noise in the model predictions, a basis-pursuit-denoising (BPDN) compressed sensing approach is employed to determine the PC coefficients of a representative surrogate model. The PC surrogate is then used to evaluate the test statistic in the MCMC step for sampling the posterior of the uncertain parameters. Results of the posteriors indicate good agreement with the default values for two parameters of the KPP model, namely the critical bulk and gradient Richardson numbers; while the posteriors of the remaining parameters were barely informative. © 2016 American Meteorological Society.

  12. A Bayesian method for characterizing distributed micro-releases: II. inference under model uncertainty with short time-series data.

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef; Fast P. (Lawrence Livermore National Laboratory, Livermore, CA); Kraus, M. (Peterson AFB, CO); Ray, J. P.

    2006-01-01

    Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern after the anthrax attacks of 2001. The ability to characterize such attacks, i.e., to estimate the number of people infected, the time of infection, and the average dose received, is important when planning a medical response. We address this question of characterization by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that these data are usually sufficient, especially if the model of the outbreak used in the inverse problem is an accurate one. In some cases the scarcity of data may initially support outbreak characterizations at odds with the true one, but with sufficient data the correct inferences are recovered; in other words, the inverse problem posed and its solution methodology are consistent. We also explore the effect of model error-situations for which the model used in the inverse problem is only a partially accurate representation of the outbreak; here, the model predictions and the observations differ by more than a random noise. We find that while there is a consistent discrepancy between the inferred and the true characterizations, they are also close enough to be of relevance when planning a response.

  13. Analogical and Category-Based Inference: A Theoretical Integration with Bayesian Causal Models

    Science.gov (United States)

    Holyoak, Keith J.; Lee, Hee Seung; Lu, Hongjing

    2010-01-01

    A fundamental issue for theories of human induction is to specify constraints on potential inferences. For inferences based on shared category membership, an analogy, and/or a relational schema, it appears that the basic goal of induction is to make accurate and goal-relevant inferences that are sensitive to uncertainty. People can use source…

  14. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

    Science.gov (United States)

    Huang, Yanping; Rao, Rajesh P N

    2016-08-01

    Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

  15. A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference

    Directory of Open Access Journals (Sweden)

    Heringstad Bjørg

    2010-07-01

    Full Text Available Abstract Background In the genetic analysis of binary traits with one observation per animal, animal threshold models frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or sire-dam models. However, these models are not appropriate in cases where individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (covariance components within an animal threshold model framework. Methods In the proposed algorithm, individuals are classified as either "informative" or "non-informative" with respect to genetic (covariance components. The "non-informative" individuals are characterized by their Mendelian sampling deviations (deviance from the mid-parent mean being completely confounded with a single residual on the underlying liability scale. For threshold models, residual variance on the underlying scale is not identifiable. Hence, variance of fully confounded Mendelian sampling deviations cannot be identified either, but can be inferred from the between-family variation. In the new algorithm, breeding values are sampled as in a standard animal model using the full relationship matrix, but genetic (covariance components are inferred from the sampled breeding values and relationships between "informative" individuals (usually parents only. The latter is analogous to a sire-dam model (in cases with no individual records on the parents. Results When applied to simulated data sets, the standard animal threshold model failed to produce useful results since samples of genetic variance always drifted towards infinity, while the new algorithm produced proper parameter estimates essentially identical to the results from a sire-dam model (given the fact that no individual records exist for the parents. Furthermore, the new algorithm showed much faster Markov chain mixing properties for genetic parameters (similar to

  16. Decision generation tools and Bayesian inference

    Science.gov (United States)

    Jannson, Tomasz; Wang, Wenjian; Forrester, Thomas; Kostrzewski, Andrew; Veeris, Christian; Nielsen, Thomas

    2014-05-01

    Digital Decision Generation (DDG) tools are important software sub-systems of Command and Control (C2) systems and technologies. In this paper, we present a special type of DDGs based on Bayesian Inference, related to adverse (hostile) networks, including such important applications as terrorism-related networks and organized crime ones.

  17. Mechanistic Modelling and Bayesian Inference Elucidates the Variable Dynamics of Double-Strand Break Repair

    Science.gov (United States)

    2016-01-01

    DNA double-strand breaks are lesions that form during metabolism, DNA replication and exposure to mutagens. When a double-strand break occurs one of a number of repair mechanisms is recruited, all of which have differing propensities for mutational events. Despite DNA repair being of crucial importance, the relative contribution of these mechanisms and their regulatory interactions remain to be fully elucidated. Understanding these mutational processes will have a profound impact on our knowledge of genomic instability, with implications across health, disease and evolution. Here we present a new method to model the combined activation of non-homologous end joining, single strand annealing and alternative end joining, following exposure to ionising radiation. We use Bayesian statistics to integrate eight biological data sets of double-strand break repair curves under varying genetic knockouts and confirm that our model is predictive by re-simulating and comparing to additional data. Analysis of the model suggests that there are at least three disjoint modes of repair, which we assign as fast, slow and intermediate. Our results show that when multiple data sets are combined, the rate for intermediate repair is variable amongst genetic knockouts. Further analysis suggests that the ratio between slow and intermediate repair depends on the presence or absence of DNA-PKcs and Ku70, which implies that non-homologous end joining and alternative end joining are not independent. Finally, we consider the proportion of double-strand breaks within each mechanism as a time series and predict activity as a function of repair rate. We outline how our insights can be directly tested using imaging and sequencing techniques and conclude that there is evidence of variable dynamics in alternative repair pathways. Our approach is an important step towards providing a unifying theoretical framework for the dynamics of DNA repair processes. PMID:27741226

  18. Bayesian inference of baseline fertility and treatment effects via a crop yield-fertility model.

    Directory of Open Access Journals (Sweden)

    Hungyen Chen

    Full Text Available To effectively manage soil fertility, knowledge is needed of how a crop uses nutrients from fertilizer applied to the soil. Soil quality is a combination of biological, chemical and physical properties and is hard to assess directly because of collective and multiple functional effects. In this paper, we focus on the application of these concepts to agriculture. We define the baseline fertility of soil as the level of fertility that a crop can acquire for growth from the soil. With this strict definition, we propose a new crop yield-fertility model that enables quantification of the process of improving baseline fertility and the effects of treatments solely from the time series of crop yields. The model was modified from Michaelis-Menten kinetics and measured the additional effects of the treatments given the baseline fertility. Using more than 30 years of experimental data, we used the Bayesian framework to estimate the improvements in baseline fertility and the effects of fertilizer and farmyard manure (FYM on maize (Zea mays, barley (Hordeum vulgare, and soybean (Glycine max yields. Fertilizer contributed the most to the barley yield and FYM contributed the most to the soybean yield among the three crops. The baseline fertility of the subsurface soil was very low for maize and barley prior to fertilization. In contrast, the baseline fertility in this soil approximated half-saturated fertility for the soybean crop. The long-term soil fertility was increased by adding FYM, but the effect of FYM addition was reduced by the addition of fertilizer. Our results provide evidence that long-term soil fertility under continuous farming was maintained, or increased, by the application of natural nutrients compared with the application of synthetic fertilizer.

  19. Bayesian parameter inference for empirical stochastic models of paleoclimatic records with dating uncertainty

    Science.gov (United States)

    Boers, Niklas; Goswami, Bedartha; Chekroun, Mickael; Svensson, Anders; Rousseau, Denis-Didier; Ghil, Michael

    2016-04-01

    In the recent past, empirical stochastic models have been successfully applied to model a wide range of climatic phenomena [1,2]. In addition to enhancing our understanding of the geophysical systems under consideration, multilayer stochastic models (MSMs) have been shown to be solidly grounded in the Mori-Zwanzig formalism of statistical physics [3]. They are also well-suited for predictive purposes, e.g., for the El Niño Southern Oscillation [4] and the Madden-Julian Oscillation [5]. In general, these models are trained on a given time series under consideration, and then assumed to reproduce certain dynamical properties of the underlying natural system. Most existing approaches are based on least-squares fitting to determine optimal model parameters, which does not allow for an uncertainty estimation of these parameters. This approach significantly limits the degree to which dynamical characteristics of the time series can be safely inferred from the model. Here, we are specifically interested in fitting low-dimensional stochastic models to time series obtained from paleoclimatic proxy records, such as the oxygen isotope ratio and dust concentration of the NGRIP record [6]. The time series derived from these records exhibit substantial dating uncertainties, in addition to the proxy measurement errors. In particular, for time series of this kind, it is crucial to obtain uncertainty estimates for the final model parameters. Following [7], we first propose a statistical procedure to shift dating uncertainties from the time axis to the proxy axis of layer-counted paleoclimatic records. Thereafter, we show how Maximum Likelihood Estimation in combination with Markov Chain Monte Carlo parameter sampling can be employed to translate all uncertainties present in the original proxy time series to uncertainties of the parameter estimates of the stochastic model. We compare time series simulated by the empirical model to the original time series in terms of standard

  20. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

    Science.gov (United States)

    Gelman, Andrew; Lee, Daniel; Guo, Jiqiang

    2015-01-01

    Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…

  1. GPstuff: Bayesian Modeling with Gaussian Processes

    NARCIS (Netherlands)

    Vanhatalo, J.; Riihimaki, J.; Hartikainen, J.; Jylänki, P.P.; Tolvanen, V.; Vehtari, A.

    2013-01-01

    The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for Bayesian inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

  2. The NIFTY way of Bayesian signal inference

    Energy Technology Data Exchange (ETDEWEB)

    Selig, Marco, E-mail: mselig@mpa-Garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany, and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)

    2014-12-05

    We introduce NIFTY, 'Numerical Information Field Theory', a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTY can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTY as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D{sup 3}PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy.

  3. Using Alien Coins to Test Whether Simple Inference Is Bayesian

    Science.gov (United States)

    Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.

    2016-01-01

    Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…

  4. Bayesian inference of x-ray diffraction spectra from warm dense matter with the one-component-plasma model

    Science.gov (United States)

    Clérouin, Jean; Desbiens, Nicolas; Dubois, Vincent; Arnault, Philippe

    2016-12-01

    We show that the Bayesian inference of recently measured x-ray diffraction spectra from laser-shocked aluminum [L. B. Fletcher et al., Nat. Photon. 9, 274 (2015), 10.1038/nphoton.2015.41] with the one-component-plasma (OCP) model performs remarkably well at estimating the ionic density and temperature. This statistical approach requires many evaluations of the OCP static structure factor, which were done using a recently derived analytic fit. The atomic form factor is approximated by an exponential function in the diffraction window of the first peak. The electronic temperature is then estimated from a comparison of this approximated form factor with the electronic structure of an average atom model. Out-of-equilibrium states, with electrons hotter than ions, are diagnosed for the spectra obtained early after the pump, whereas at a late time delay the plasma is at thermal equilibrium. Apart from the present findings, this OCP-based modeling of warm dense matter has an important role to play in the interpretation of x-ray Thomson scattering measurements currently performed at large laser facilities.

  5. Fast Bayesian inference of optical trap stiffness and particle diffusion

    Science.gov (United States)

    Bera, Sudipta; Paul, Shuvojit; Singh, Rajesh; Ghosh, Dipanjan; Kundu, Avijit; Banerjee, Ayan; Adhikari, R.

    2017-01-01

    Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods.

  6. Fast Bayesian inference of optical trap stiffness and particle diffusion

    CERN Document Server

    Bera, Sudipta; Singh, Rajesh; Ghosh, Dipanjan; Kundu, Avijit; Banerjee, Ayan; Adhikari, R

    2016-01-01

    Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods.

  7. Bayesian modeling using WinBUGS

    CERN Document Server

    Ntzoufras, Ioannis

    2009-01-01

    A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...

  8. A sequential point process model and Bayesian inference for spatial point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model, i.e. each new point is generated given the previous points. Under this model...

  9. A sequential point process model and Bayesian inference for spatial point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2012-01-01

    We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model. Under this model, the points can be of one of three types: a ‘background...

  10. A Bayesian inference approach to the development of a multidirectional pedestrian stream model

    OpenAIRE

    2015-01-01

    In this paper, we develop a mathematical model to represent the conflicting effects of multidirectional pedestrian flows in a large crowd. The model is formulated based on Drake's model of traffic flow. Rather than relate the speed of a pedestrian stream solely to the pedestrian density, we introduce the flow ratio and intersecting angle between streams as variables. To calibrate the model, data collection was conducted through the video recording of pedestrian movements on a pedestrian stree...

  11. Bayesian Inference in the Modern Design of Experiments

    Science.gov (United States)

    DeLoach, Richard

    2008-01-01

    This paper provides an elementary tutorial overview of Bayesian inference and its potential for application in aerospace experimentation in general and wind tunnel testing in particular. Bayes Theorem is reviewed and examples are provided to illustrate how it can be applied to objectively revise prior knowledge by incorporating insights subsequently obtained from additional observations, resulting in new (posterior) knowledge that combines information from both sources. A logical merger of Bayesian methods and certain aspects of Response Surface Modeling is explored. Specific applications to wind tunnel testing, computational code validation, and instrumentation calibration are discussed.

  12. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge

    Directory of Open Access Journals (Sweden)

    Wang Shu-Qiang

    2012-07-01

    Full Text Available Abstract Background A key challenge in the post genome era is to identify genome-wide transcriptional regulatory networks, which specify the interactions between transcription factors and their target genes. Numerous methods have been developed for reconstructing gene regulatory networks from expression data. However, most of them are based on coarse grained qualitative models, and cannot provide a quantitative view of regulatory systems. Results A binding affinity based regulatory model is proposed to quantify the transcriptional regulatory network. Multiple quantities, including binding affinity and the activity level of transcription factor (TF are incorporated into a general learning model. The sequence features of the promoter and the possible occupancy of nucleosomes are exploited to estimate the binding probability of regulators. Comparing with the previous models that only employ microarray data, the proposed model can bridge the gap between the relative background frequency of the observed nucleotide and the gene's transcription rate. Conclusions We testify the proposed approach on two real-world microarray datasets. Experimental results show that the proposed model can effectively identify the parameters and the activity level of TF. Moreover, the kinetic parameters introduced in the proposed model can reveal more biological sense than previous models can do.

  13. Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der

    2014-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configuratio...

  14. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    Science.gov (United States)

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  15. PySSM: A Python Module for Bayesian Inference of Linear Gaussian State Space Models

    Directory of Open Access Journals (Sweden)

    Christopher Strickland

    2014-04-01

    Full Text Available PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models. PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries NumPy and SciPy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimized and parallelized Fortran routines. These Fortran routines heavily utilize basic linear algebra and linear algebra Package functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

  16. Bayesian Networks: Aspects of Approximate Inference

    NARCIS (Netherlands)

    Bolt, J.H.

    2008-01-01

    A Bayesian network can be used to model consisely the probabilistic knowledge with respect to a given problem domain. Such a network consists of an acyclic directed graph in which the nodes represent stochastic variables, supplemented with probabilities indicating the strength of the influences betw

  17. Thin film subsurface environments; Advanced X-ray spectroscopies and a novel Bayesian inference modeling algorithm

    Science.gov (United States)

    Church, Jonathan R.

    New condensed matter metrologies are being used to probe ever smaller length scales. In support of the diverse field of materials research synchrotron based spectroscopies provide sub-micron spatial resolutions and a breadth of photon wavelengths for scientific studies. For electronic materials the thinnest layers in a complementary metal-oxide-semiconductor (CMOS) device have been reduced to just a few nanometers. This raises concerns for layer uniformity, complete surface coverage, and interfacial quality. Deposition processes like chemical vapor deposition (CVD) and atomic layer deposition (ALD) have been shown to deposit the needed high-quality films for the requisite thicknesses. However, new materials beget new chemistries and, unfortunately, unwanted side-reactions and by-products. CVD/ALD tools and chemical precursors provided by our collaborators at Air Liquide utilized these new chemistries and films were deposited for which novel spectroscopic characterization methods were used. The second portion of the thesis focuses on fading and decomposing paint pigments in iconic artworks. Efforts have been directed towards understanding the micro-environments causing degradation. Hard X-ray photoelectron spectroscopy (HAXPES) and variable kinetic energy X-ray photoelectron spectroscopy (VKE-XPS) are advanced XPS techniques capable of elucidating both chemical environments and electronic band structures in sub-surface regions of electronic materials. HAXPES has been used to study the electronic band structure in a typical CMOS structure; it will be shown that unexpected band alignments are associated with the presence of electronic charges near a buried interface. Additionally, a computational modeling algorithm, Bayes-Sim, was developed to reconstruct compositional depth profiles (CDP) using VKE-XPS data sets; a subset algorithm also reconstructs CDP from angle-resolved XPS data. Reconstructed CDP produced by Bayes-Sim were most strongly correlated to the real

  18. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    Science.gov (United States)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  19. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.

    Science.gov (United States)

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  20. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  1. Inference of gene pathways using mixture Bayesian networks

    Directory of Open Access Journals (Sweden)

    Ko Younhee

    2009-05-01

    Full Text Available Abstract Background Inference of gene networks typically relies on measurements across a wide range of conditions or treatments. Although one network structure is predicted, the relationship between genes could vary across conditions. A comprehensive approach to infer general and condition-dependent gene networks was evaluated. This approach integrated Bayesian network and Gaussian mixture models to describe continuous microarray gene expression measurements, and three gene networks were predicted. Results The first reconstructions of a circadian rhythm pathway in honey bees and an adherens junction pathway in mouse embryos were obtained. In addition, general and condition-specific gene relationships, some unexpected, were detected in these two pathways and in a yeast cell-cycle pathway. The mixture Bayesian network approach identified all (honey bee circadian rhythm and mouse adherens junction pathways or the vast majority (yeast cell-cycle pathway of the gene relationships reported in empirical studies. Findings across the three pathways and data sets indicate that the mixture Bayesian network approach is well-suited to infer gene pathways based on microarray data. Furthermore, the interpretation of model estimates provided a broader understanding of the relationships between genes. The mixture models offered a comprehensive description of the relationships among genes in complex biological processes or across a wide range of conditions. The mixture parameter estimates and corresponding odds that the gene network inferred for a sample pertained to each mixture component allowed the uncovering of both general and condition-dependent gene relationships and patterns of expression. Conclusion This study demonstrated the two main benefits of learning gene pathways using mixture Bayesian networks. First, the identification of the optimal number of mixture components supported by the data offered a robust approach to infer gene relationships and

  2. Variations on Bayesian Prediction and Inference

    Science.gov (United States)

    2016-05-09

    Variations on Bayesian prediction and inference” Ryan Martin Department of Mathematics, Statistics , and Computer Science University of Illinois at Chicago...using statistical ideas/methods. We recently learned that this new project will be supported, in part, by the National Science Foundation. 2.2 Problem 2...41. Kalli, M., Griffin, J. E., Walker, S. G. (2011). Slice sampling mixture models. Statistics and Computing 21, 93–105. Koenker, R. (2005). Quantile

  3. Bayesian inference in the numerical solution of Laplace's equation

    Science.gov (United States)

    Mendes, Fábio Macêdo; da Costa Júnior, Edson Alves

    2012-05-01

    Inference is not unrelated to numerical analysis: given partial information about a mathematical problem, one has to estimate the unknown "true solution" and uncertainties. Many methods of interpolation (least squares, Kriging, Tikhonov regularization, etc) have also a probabilistic interpretation. O'Hagan showed that quadratures can also be constructed explicitly as a form of Bayesian inference (O'Hagan, A., BAYESIAN STATISTICS (1992) 4, pp. 345-363). In his framework, the integrand is modeled as a Gaussian process. It is then possible to build a reliable estimate for the value of the integral by conditioning the stochastic process to the known values of the integr nd in a finite set of points. The present work applies a similar method for the problem of solving Laplace's equation inside a closed boundary. First, one needs a Gaussian process that yields arbitrary harmonic functions. Secondly, the boundaries (Dirichilet or Neumann conditions) are used to update these probabilities and to estimate the solution in the whole domain. This procedure is similar to the widely used Boundary Element Method, but differs from it in the treatment of the boundaries. The language of Bayesian inference gives more flexibility on how the boundary conditions and conservation laws can be handled. This flexibility can be used to attain greater accuracy using a coarser discretization of the boundary and can open doors to more efficient implementations.

  4. How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?

    NARCIS (Netherlands)

    Borsboom, D.; Haig, B.D.

    2013-01-01

    Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science primar

  5. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...... for complex networks can be derived and point out relevant literature....

  6. Modeling Diagnostic Assessments with Bayesian Networks

    Science.gov (United States)

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  7. A Full Bayesian Approach for Boolean Genetic Network Inference

    Science.gov (United States)

    Han, Shengtong; Wong, Raymond K. W.; Lee, Thomas C. M.; Shen, Linghao; Li, Shuo-Yen R.; Fan, Xiaodan

    2014-01-01

    Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data. PMID:25551820

  8. A full bayesian approach for boolean genetic network inference.

    Directory of Open Access Journals (Sweden)

    Shengtong Han

    Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.

  9. Bayesian inference of synaptic quantal parameters from correlated vesicle release

    Directory of Open Access Journals (Sweden)

    Alexander D Bird

    2016-11-01

    Full Text Available Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches have been applied to make more efficient use of the data collected in paired intracellular recordings. Methods have been developed that either provide a complete model of the distribution of amplitudes for isolated responses or approximate the amplitude distributions of a train of post-synaptic potentials, with correct short-term synaptic dynamics but neglecting correlations. In both cases the methods provided significantly improved inference of model parameters as compared to existing mean-variance fitting approaches. However, for synapses with high release probability, low vesicle number or relatively low restock rate and for data in which only one or few repeats of the same pattern are available, correlations between serial events can allow for the extraction of significantly more information from experiment: a more complete Bayesian approach would take this into account also. This has not been possible previously because of the technical difficulty in calculating the likelihood of amplitudes seen in correlated post-synaptic potential trains; however, recent theoretical advances have now rendered the likelihood calculation tractable for a broad class of synaptic dynamics models. Here we present a compact mathematical form for the likelihood in terms of a matrix product and demonstrate how marginals of the posterior provide information on covariance of parameter distributions. The associated computer code for Bayesian parameter inference for a variety of models of synaptic dynamics is provided in the supplementary material allowing for quantal and dynamical parameters to be readily inferred from experimental data sets.

  10. Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release

    Science.gov (United States)

    Bird, Alex D.; Wall, Mark J.; Richardson, Magnus J. E.

    2016-01-01

    Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches have been applied to make more efficient use of the data collected in paired intracellular recordings. Methods have been developed that either provide a complete model of the distribution of amplitudes for isolated responses or approximate the amplitude distributions of a train of post-synaptic potentials, with correct short-term synaptic dynamics but neglecting correlations. In both cases the methods provided significantly improved inference of model parameters as compared to existing mean-variance fitting approaches. However, for synapses with high release probability, low vesicle number or relatively low restock rate and for data in which only one or few repeats of the same pattern are available, correlations between serial events can allow for the extraction of significantly more information from experiment: a more complete Bayesian approach would take this into account also. This has not been possible previously because of the technical difficulty in calculating the likelihood of amplitudes seen in correlated post-synaptic potential trains; however, recent theoretical advances have now rendered the likelihood calculation tractable for a broad class of synaptic dynamics models. Here we present a compact mathematical form for the likelihood in terms of a matrix product and demonstrate how marginals of the posterior provide information on covariance of parameter distributions. The associated computer code for Bayesian parameter inference for a variety of models of synaptic dynamics is provided in the Supplementary Material allowing for quantal and dynamical parameters to be readily inferred from experimental data sets. PMID:27932970

  11. Inference-less Density Estimation using Copula Bayesian Networks

    CERN Document Server

    Elidan, Gal

    2012-01-01

    We consider learning continuous probabilistic graphical models in the face of missing data. For non-Gaussian models, learning the parameters and structure of such models depends on our ability to perform efficient inference, and can be prohibitive even for relatively modest domains. Recently, we introduced the Copula Bayesian Network (CBN) density model - a flexible framework that captures complex high-dimensional dependency structures while offering direct control over the univariate marginals, leading to improved generalization. In this work we show that the CBN model also offers significant computational advantages when training data is partially observed. Concretely, we leverage on the specialized form of the model to derive a computationally amenable learning objective that is a lower bound on the log-likelihood function. Importantly, our energy-like bound circumvents the need for costly inference of an auxiliary distribution, thus facilitating practical learning of highdimensional densities. We demonstr...

  12. Bayesian Information Criterion as an Alternative way of Statistical Inference

    Directory of Open Access Journals (Sweden)

    Nadejda Yu. Gubanova

    2012-05-01

    Full Text Available The article treats Bayesian information criterion as an alternative to traditional methods of statistical inference, based on NHST. The comparison of ANOVA and BIC results for psychological experiment is discussed.

  13. Applying Bayesian Inference to Galileon Solutions of the Muon Problem

    CERN Document Server

    Lamm, Henry

    2016-01-01

    We derive corrections to atomic energy levels from disformal couplings in Galileon theories. Through Bayesian inference, we constrain the cut-off radii and Galileon scale via these corrections. To connect different atomic systems, we assume the various cut-off radii related by a 1-parameter family of solutions. This introduces a new parameter $\\alpha$ which is also constrained. In this model, we predict shifts to muonic helium of $\\delta E_{He^3}=1.97^{+9.28}_{-1.87}$ meV and $\\delta E_{He^4}=1.69^{+9.25}_{-1.61}$ meV.

  14. Bayesian inference for inverse problems occurring in uncertainty analysis

    OpenAIRE

    Fu, Shuai; Celeux, Gilles; Bousquet, Nicolas; Couplet, Mathieu

    2012-01-01

    The inverse problem considered here is to estimate the distribution of a non-observed random variable $X$ from some noisy observed data $Y$ linked to $X$ through a time-consuming physical model $H$. Bayesian inference is considered to take into account prior expert knowledge on $X$ in a small sample size setting. A Metropolis-Hastings within Gibbs algorithm is proposed to compute the posterior distribution of the parameters of $X$ through a data augmentation process. Since calls to $H$ are qu...

  15. Bayesian Inference for Structured Spike and Slab Priors

    DEFF Research Database (Denmark)

    Andersen, Michael Riis; Winther, Ole; Hansen, Lars Kai

    2014-01-01

    Sparse signal recovery addresses the problem of solving underdetermined linear inverse problems subject to a sparsity constraint. We propose a novel prior formulation, the structured spike and slab prior, which allows to incorporate a priori knowledge of the sparsity pattern by imposing a spatial...... Gaussian process on the spike and slab probabilities. Thus, prior information on the structure of the sparsity pattern can be encoded using generic covariance functions. Furthermore, we provide a Bayesian inference scheme for the proposed model based on the expectation propagation framework. Using...

  16. Bayesian inference of structural brain networks.

    Science.gov (United States)

    Hinne, Max; Heskes, Tom; Beckmann, Christian F; van Gerven, Marcel A J

    2013-02-01

    Structural brain networks are used to model white-matter connectivity between spatially segregated brain regions. The presence, location and orientation of these white matter tracts can be derived using diffusion-weighted magnetic resonance imaging in combination with probabilistic tractography. Unfortunately, as of yet, none of the existing approaches provide an undisputed way of inferring brain networks from the streamline distributions which tractography produces. State-of-the-art methods rely on an arbitrary threshold or, alternatively, yield weighted results that are difficult to interpret. In this paper, we provide a generative model that explicitly describes how structural brain networks lead to observed streamline distributions. This allows us to draw principled conclusions about brain networks, which we validate using simultaneously acquired resting-state functional MRI data. Inference may be further informed by means of a prior which combines connectivity estimates from multiple subjects. Based on this prior, we obtain networks that significantly improve on the conventional approach.

  17. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  18. Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Kevin McNally

    2012-01-01

    Full Text Available There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure.

  19. Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation.

    Science.gov (United States)

    McNally, Kevin; Cotton, Richard; Cocker, John; Jones, Kate; Bartels, Mike; Rick, David; Price, Paul; Loizou, George

    2012-01-01

    There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure.

  20. Sparse kernel learning with LASSO and Bayesian inference algorithm.

    Science.gov (United States)

    Gao, Junbin; Kwan, Paul W; Shi, Daming

    2010-03-01

    Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318-324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In International conference on artificial intelligence and statistics (pp. 580-587). San Juan, Puerto Rico: MIT Press]. This paper is concerned with learning kernels under the LASSO formulation via adopting a generative Bayesian learning and inference approach. A new robust learning algorithm is proposed which produces a sparse kernel model with the capability of learning regularized parameters and kernel hyperparameters. A comparison with state-of-the-art methods for constructing sparse regression models such as the relevance vector machine (RVM) and the local regularization assisted orthogonal least squares regression (LROLS) is given. The new algorithm is also demonstrated to possess considerable computational advantages.

  1. Bayesian Inference of Giant Exoplanet Physics

    Science.gov (United States)

    Thorngren, Daniel; Fortney, Jonathan J.

    2017-01-01

    The physical processes within a giant planet directly set its observed radius for a given mass, age, and insolation. The important aspects are the planet’s bulk composition and its interior thermal evolution. By studying many giant planets as an ensemble, we can gain insight into this physics. We demonstrate two novel examples here. We examine 50 cooler transiting giant planets, whose insolation is sufficiently low (T_eff < 1000 K) that they are not affected by the hot Jupiter radius inflation effect. For these planets, the thermal evolution is relatively well understood, and we show that the bulk planet metallicity increases with the total planet mass, which directly impacts plans for future atmospheric studies. We also examine the relation with stellar metallicity and discuss how these relations place new constraints on the core accretion model of planet formation. Our newest work seeks to quantify the flow of energy into hot Jupiters needed to explain their enlarged radii, in addition to their bulk composition. Because the former is related to stellar insolation and the latter is related to mass, we are able to create a hierarchical Bayesian model to disentangle the two effects in our sample of ~300 transiting giant planets. Our results show conclusively that the inflation power is not a simple fraction of stellar insolation: instead, the power increases with incident flux at a much higher rate. We use these results to test published models of giant planet inflation and to provide accurate empirical mass-radius relations for giant planets.

  2. Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents.

    Science.gov (United States)

    Lucka, Felix; Pursiainen, Sampsa; Burger, Martin; Wolters, Carsten H

    2012-07-16

    The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged as a unifying framework for current density reconstruction (CDR) approaches comprising most established methods as well as offering promising new methods. Our work examines the performance of fully-Bayesian inference methods for HBM for source configurations consisting of few, focal sources when used with realistic, high-resolution finite element (FE) head models. The main foci of interest are the correct depth localization, a well-known source of systematic error of many CDR methods, and the separation of single sources in multiple-source scenarios. Both aspects are very important in the analysis of neurophysiological data and in clinical applications. For these tasks, HBM provides a promising framework and is able to improve upon established CDR methods such as minimum norm estimation (MNE) or sLORETA in many aspects. For challenging multiple-source scenarios where the established methods show crucial errors, promising results are attained. Additionally, we introduce Wasserstein distances as performance measures for the validation of inverse methods in complex source scenarios.

  3. Bayesian inference for identifying interaction rules in moving animal groups.

    Directory of Open Access Journals (Sweden)

    Richard P Mann

    Full Text Available The emergence of similar collective patterns from different self-propelled particle models of animal groups points to a restricted set of "universal" classes for these patterns. While universality is interesting, it is often the fine details of animal interactions that are of biological importance. Universality thus presents a challenge to inferring such interactions from macroscopic group dynamics since these can be consistent with many underlying interaction models. We present a Bayesian framework for learning animal interaction rules from fine scale recordings of animal movements in swarms. We apply these techniques to the inverse problem of inferring interaction rules from simulation models, showing that parameters can often be inferred from a small number of observations. Our methodology allows us to quantify our confidence in parameter fitting. For example, we show that attraction and alignment terms can be reliably estimated when animals are milling in a torus shape, while interaction radius cannot be reliably measured in such a situation. We assess the importance of rate of data collection and show how to test different models, such as topological and metric neighbourhood models. Taken together our results both inform the design of experiments on animal interactions and suggest how these data should be best analysed.

  4. Bayesian inference for identifying interaction rules in moving animal groups.

    Science.gov (United States)

    Mann, Richard P

    2011-01-01

    The emergence of similar collective patterns from different self-propelled particle models of animal groups points to a restricted set of "universal" classes for these patterns. While universality is interesting, it is often the fine details of animal interactions that are of biological importance. Universality thus presents a challenge to inferring such interactions from macroscopic group dynamics since these can be consistent with many underlying interaction models. We present a Bayesian framework for learning animal interaction rules from fine scale recordings of animal movements in swarms. We apply these techniques to the inverse problem of inferring interaction rules from simulation models, showing that parameters can often be inferred from a small number of observations. Our methodology allows us to quantify our confidence in parameter fitting. For example, we show that attraction and alignment terms can be reliably estimated when animals are milling in a torus shape, while interaction radius cannot be reliably measured in such a situation. We assess the importance of rate of data collection and show how to test different models, such as topological and metric neighbourhood models. Taken together our results both inform the design of experiments on animal interactions and suggest how these data should be best analysed.

  5. Using a Simple Binomial Model to Assess Improvement in Predictive Capability: Sequential Bayesian Inference, Hypothesis Testing, and Power Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sigeti, David E. [Los Alamos National Laboratory; Pelak, Robert A. [Los Alamos National Laboratory

    2012-09-11

    We present a Bayesian statistical methodology for identifying improvement in predictive simulations, including an analysis of the number of (presumably expensive) simulations that will need to be made in order to establish with a given level of confidence that an improvement has been observed. Our analysis assumes the ability to predict (or postdict) the same experiments with legacy and new simulation codes and uses a simple binomial model for the probability, {theta}, that, in an experiment chosen at random, the new code will provide a better prediction than the old. This model makes it possible to do statistical analysis with an absolute minimum of assumptions about the statistics of the quantities involved, at the price of discarding some potentially important information in the data. In particular, the analysis depends only on whether or not the new code predicts better than the old in any given experiment, and not on the magnitude of the improvement. We show how the posterior distribution for {theta} may be used, in a kind of Bayesian hypothesis testing, both to decide if an improvement has been observed and to quantify our confidence in that decision. We quantify the predictive probability that should be assigned, prior to taking any data, to the possibility of achieving a given level of confidence, as a function of sample size. We show how this predictive probability depends on the true value of {theta} and, in particular, how there will always be a region around {theta} = 1/2 where it is highly improbable that we will be able to identify an improvement in predictive capability, although the width of this region will shrink to zero as the sample size goes to infinity. We show how the posterior standard deviation may be used, as a kind of 'plan B metric' in the case that the analysis shows that {theta} is close to 1/2 and argue that such a plan B should generally be part of hypothesis testing. All the analysis presented in the paper is done with a

  6. Unsupervised Transient Light Curve Analysis Via Hierarchical Bayesian Inference

    CERN Document Server

    Sanders, Nathan; Soderberg, Alicia

    2014-01-01

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometr...

  7. CLICK MODEL BASED ON BAYESIAN INFERENCE AND ITS IMPLEMENTATION%基于贝叶斯推理的点击模型及其实现

    Institute of Scientific and Technical Information of China (English)

    孙付伟; 李娟; 杨达

    2013-01-01

    为能更好地解释搜索引擎和商务搜索的点击日志中的用户行为,实现一种用于分析日志中包含的用户行为的贝叶斯点击模型.通过分析中国最大电子商务网站的约927万条用户搜索点击日志数据,发现一个的文档的点击是受其上下位置点击过的文档共同影响的,然后基于此发现提出并实现一种新的基于贝叶斯推理的点击模型,并给出并行版本的算法实现.最后通过利用来自用户搜索的一个月日志数据验证,结果表明该模型优于现有的点击模型.%In order to better explain user behaviour from click logs in search engine or sponsored search, we implement a Bayesian click model for analysing user behaviours included in logs. By analysing about 9.27 million click log data collected from a largest e-commerce site of China, there finds that the click probability of a document is affected by the clicked documents above and below it. Then we propose and implement a new click model based on Bayesian inference according to the phenomenon found, together with the implementation of an algorithm in parallel version. At last, we validate the model through a log data set collected about a mouth from user search, and the result shows that the proposed model outperforms existing click models.

  8. Bayesian large-scale structure inference and cosmic web analysis

    CERN Document Server

    Leclercq, Florent

    2015-01-01

    Surveys of the cosmic large-scale structure carry opportunities for building and testing cosmological theories about the origin and evolution of the Universe. This endeavor requires appropriate data assimilation tools, for establishing the contact between survey catalogs and models of structure formation. In this thesis, we present an innovative statistical approach for the ab initio simultaneous analysis of the formation history and morphology of the cosmic web: the BORG algorithm infers the primordial density fluctuations and produces physical reconstructions of the dark matter distribution that underlies observed galaxies, by assimilating the survey data into a cosmological structure formation model. The method, based on Bayesian probability theory, provides accurate means of uncertainty quantification. We demonstrate the application of BORG to the Sloan Digital Sky Survey data and describe the primordial and late-time large-scale structure in the observed volume. We show how the approach has led to the fi...

  9. Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis

    Science.gov (United States)

    Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.

    2016-01-01

    A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221

  10. Accelerating inference for diffusions observed with measurement error and large sample sizes using approximate Bayesian computation

    DEFF Research Database (Denmark)

    Picchini, Umberto; Forman, Julie Lyng

    2016-01-01

    In recent years, dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However, it is often computationally unfeasible to apply exact statistical methodologies in the context of large data sets and complex models. This paper considers...... a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An approximate Bayesian computation (ABC)-MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm...... applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered set-up. Finally, the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general...

  11. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data

    Science.gov (United States)

    Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods. PMID:28166542

  12. Applying Bayesian inference to Galileon solutions of the muon problem

    Science.gov (United States)

    Lamm, Henry

    2016-12-01

    We derive corrections to atomic energy levels from disformal couplings in Galileon theories. Through Bayesian inference, we constrain the cutoff radii and Galileon scale via these corrections. To connect different atomic systems, we assume the various cutoff radii related by a one-parameter family of solutions. This introduces a new parameter α which is also constrained. In this model, we predict shifts to muonic helium of δ EHe3=1.9 7-1.87+9.28 meV and δ EHe4=1.6 9-1.61+9.25 meV as well as for true muonium, δ ETM=0.0 6-0.05+0.46 meV .

  13. An application of Bayesian inference for solar-like pulsators

    Science.gov (United States)

    Benomar, O.

    2008-12-01

    As the amount of data collected by space-borne asteroseismic instruments (such as CoRoT and Kepler) increases drastically, it will be useful to have automated processes to extract a maximum of information from these data. The use of a Bayesian approach could be very help- ful for this goal. Only a few attempts have been made in this way (e.g. Brewer et al. 2007). We propose to use Markov Chain Monte Carlo simulations (MCMC) with Metropolis-Hasting (MH) based algorithms to infer the main stellar oscillation parameters from the power spec- trum, in the case of solar-like pulsators. Given a number of modes to be fitted, the algorithm is able to give the best set of parameters (frequency, linewidth, amplitude, rotational split- ting) corresponding to a chosen input model. We illustrate this algorithm with one of the first CoRoT targets: HD 49933.

  14. Bayesian inference on the sphere beyond statistical isotropy

    CERN Document Server

    Das, Santanu; Souradeep, Tarun

    2015-01-01

    We present a general method for Bayesian inference of the underlying covariance structure of random fields on a sphere. We employ the Bipolar Spherical Harmonic (BipoSH) representation of general covariance structure on the sphere. We illustrate the efficacy of the method as a principled approach to assess violation of statistical isotropy (SI) in the sky maps of Cosmic Microwave Background (CMB) fluctuations. SI violation in observed CMB maps arise due to known physical effects such as Doppler boost and weak lensing; yet unknown theoretical possibilities like cosmic topology and subtle violations of the cosmological principle, as well as, expected observational artefacts of scanning the sky with a non-circular beam, masking, foreground residuals, anisotropic noise, etc. We explicitly demonstrate the recovery of the input SI violation signals with their full statistics in simulated CMB maps. Our formalism easily adapts to exploring parametric physical models with non-SI covariance, as we illustrate for the in...

  15. 基于贝叶斯推理的HCM延误模型修正%Revision of HCM Delay Model Based on Bayesian Inference

    Institute of Scientific and Technical Information of China (English)

    张惠玲; 孙剑; 邵海鹏

    2011-01-01

    针对以1个周期时长为分析单位、使用HCM2000延误模型推导信号控制交叉口延误的问题,提出推导模型中参数修正的方法,用t检验验证参数提取的精度.对延误提取模型中的饱和度、启动损失时间及交叉口几何修正系数等参数进行分析,采用贝叶斯定理和马尔科夫链蒙特卡罗模拟方法对参数进行修正.结果证明该方法可以提高按照周期提取延误参数的精度.%This paper validates the HCM2000 delay model at the normal traffic condition using 1 cycle as the duration analysis period. The precision of the HCM 2000 delay model is tested using the t-test method. The saturation, geometry parameter and the start-up loss time parameter in the model are analyzed. Bayesian inference and Markov Chain Monte Carlo(MCMC) simulation are used to revise the models parameters. The method can improve the model's precision when using 1 cycle as the duration of analysis period.

  16. Model Diagnostics for Bayesian Networks

    Science.gov (United States)

    Sinharay, Sandip

    2006-01-01

    Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…

  17. Bayesian Inference in Monte-Carlo Tree Search

    CERN Document Server

    Tesauro, Gerald; Segal, Richard

    2012-01-01

    Monte-Carlo Tree Search (MCTS) methods are drawing great interest after yielding breakthrough results in computer Go. This paper proposes a Bayesian approach to MCTS that is inspired by distributionfree approaches such as UCT [13], yet significantly differs in important respects. The Bayesian framework allows potentially much more accurate (Bayes-optimal) estimation of node values and node uncertainties from a limited number of simulation trials. We further propose propagating inference in the tree via fast analytic Gaussian approximation methods: this can make the overhead of Bayesian inference manageable in domains such as Go, while preserving high accuracy of expected-value estimates. We find substantial empirical outperformance of UCT in an idealized bandit-tree test environment, where we can obtain valuable insights by comparing with known ground truth. Additionally we rigorously prove on-policy and off-policy convergence of the proposed methods.

  18. Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations

    CERN Document Server

    Perkins, Simon; Zwart, Jonathan; Natarajan, Iniyan; Smirnov, Oleg

    2015-01-01

    We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. Chi-squared values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and chi-squared calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple chi-squared values. Only modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is ea...

  19. Structure learning for Bayesian networks as models of biological networks.

    Science.gov (United States)

    Larjo, Antti; Shmulevich, Ilya; Lähdesmäki, Harri

    2013-01-01

    Bayesian networks are probabilistic graphical models suitable for modeling several kinds of biological systems. In many cases, the structure of a Bayesian network represents causal molecular mechanisms or statistical associations of the underlying system. Bayesian networks have been applied, for example, for inferring the structure of many biological networks from experimental data. We present some recent progress in learning the structure of static and dynamic Bayesian networks from data.

  20. Bayesian Inference and Prediction in an M/G/1 with Optional Second Service

    NARCIS (Netherlands)

    Mohammadi, A.; Salehi-Rad, M. R.

    2012-01-01

    In this article, we exploit the Bayesian inference and prediction for an M/G/1 queuing model with optional second re-service. In this model, a service unit attends customers arriving following a Poisson process and demanding service according to a general distribution and some of customers need to r

  1. Explaining Inference on a Population of Independent Agents Using Bayesian Networks

    Science.gov (United States)

    Sutovsky, Peter

    2013-01-01

    The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak…

  2. Self-associations influence task-performance through Bayesian inference

    Directory of Open Access Journals (Sweden)

    Sara L Bengtsson

    2013-08-01

    Full Text Available The way we think about ourselves impacts greatly on our behaviour. This paper describes a behavioural study and a computational model that sheds new light on this important area. Participants were primed 'clever' and 'stupid' using a scrambled sentence task, and we measured the effect on response time and error-rate on a rule-association task. First, we observed a confirmation bias effect in that associations to being 'stupid' led to a gradual decrease in performance, whereas associations to being 'clever' did not. Second, we observed that the activated self-concepts selectively modified attention towards one's performance. There was an early to late double dissociation in RTs in that primed 'clever' resulted in RT increase following error responses, whereas primed 'stupid' resulted in RT increase following correct responses. We propose a computational model of subjects' behaviour based on the logic of the experimental task that involves two processes; memory for rules and the integration of rules with subsequent visual cues. The model also incorporates an adaptive decision threshold based on Bayes rule, whereby decision thresholds are increased if integration was inferred to be faulty. Fitting the computational model to experimental data confirmed our hypothesis that priming affects the memory process. This model explains both the confirmation bias and double dissociation effects and demonstrates that Bayesian inferential principles can be used to study the effect of self-concepts on behaviour.

  3. Bayesian inference data evaluation and decisions

    CERN Document Server

    Harney, Hanns Ludwig

    2016-01-01

    This new edition offers a comprehensive introduction to the analysis of data using Bayes rule. It generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This is particularly useful when the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins, so that the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. New sections feature factorizing parameters, commuting parameters, observables in quantum mechanics, the art of fitting with coherent and with incoherent alternatives and fitting with multinomial distribution. Additional problems and examples help deepen the knowledge. Requiring no knowledge of quantum mechanics, the book is written on introductory level, with man...

  4. Bayesian inference from count data using discrete uniform priors.

    Science.gov (United States)

    Comoglio, Federico; Fracchia, Letizia; Rinaldi, Maurizio

    2013-01-01

    We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. We report a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. Our derivation yields a computationally feasible formula that can prove useful in a variety of statistical problems involving absolute quantification under uncertainty. We implemented our algorithm in the R package dupiR and compared it with a previously proposed Bayesian method based on a Gamma prior. As a showcase, we demonstrate that our inference framework can be used to estimate bacterial survival curves from measurements characterized by extremely low or zero counts and rather high sampling fractions. All in all, we provide a versatile, general purpose algorithm to infer population sizes from count data, which can find application in a broad spectrum of biological and physical problems.

  5. Granger causality vs. dynamic Bayesian network inference: a comparative study

    Directory of Open Access Journals (Sweden)

    Feng Jianfeng

    2009-04-01

    Full Text Available Abstract Background In computational biology, one often faces the problem of deriving the causal relationship among different elements such as genes, proteins, metabolites, neurons and so on, based upon multi-dimensional temporal data. Currently, there are two common approaches used to explore the network structure among elements. One is the Granger causality approach, and the other is the dynamic Bayesian network inference approach. Both have at least a few thousand publications reported in the literature. A key issue is to choose which approach is used to tackle the data, in particular when they give rise to contradictory results. Results In this paper, we provide an answer by focusing on a systematic and computationally intensive comparison between the two approaches on both synthesized and experimental data. For synthesized data, a critical point of the data length is found: the dynamic Bayesian network outperforms the Granger causality approach when the data length is short, and vice versa. We then test our results in experimental data of short length which is a common scenario in current biological experiments: it is again confirmed that the dynamic Bayesian network works better. Conclusion When the data size is short, the dynamic Bayesian network inference performs better than the Granger causality approach; otherwise the Granger causality approach is better.

  6. Gaussian-log-Gaussian wavelet trees, frequentist and Bayesian inference, and statistical signal processing applications

    DEFF Research Database (Denmark)

    Møller, Jesper; Jacobsen, Robert Dahl

    Gaussian, and the wavelet coefficients have log-variances equal to the hidden states. We argue why this provides a flexible model where frequentist and Bayesian inference procedures become tractable for estimation of parameters and hidden states. Our methodology is illustrated for denoising and edge...... detection problems in two-dimensional images....

  7. Halo detection via large-scale Bayesian inference

    Science.gov (United States)

    Merson, Alexander I.; Jasche, Jens; Abdalla, Filipe B.; Lahav, Ofer; Wandelt, Benjamin; Jones, D. Heath; Colless, Matthew

    2016-08-01

    We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect haloes of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (HADES), and a Bayesian chain rule (the Blackwell-Rao estimator), which we use to connect the inferred density field to the properties of dark matter haloes. To demonstrate the capability of our approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information, we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful detection of haloes in the mock catalogue increases as a function of the signal to noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.

  8. Multi-Fraction Bayesian Sediment Transport Model

    Directory of Open Access Journals (Sweden)

    Mark L. Schmelter

    2015-09-01

    Full Text Available A Bayesian approach to sediment transport modeling can provide a strong basis for evaluating and propagating model uncertainty, which can be useful in transport applications. Previous work in developing and applying Bayesian sediment transport models used a single grain size fraction or characterized the transport of mixed-size sediment with a single characteristic grain size. Although this approach is common in sediment transport modeling, it precludes the possibility of capturing processes that cause mixed-size sediments to sort and, thereby, alter the grain size available for transport and the transport rates themselves. This paper extends development of a Bayesian transport model from one to k fractional dimensions. The model uses an existing transport function as its deterministic core and is applied to the dataset used to originally develop the function. The Bayesian multi-fraction model is able to infer the posterior distributions for essential model parameters and replicates predictive distributions of both bulk and fractional transport. Further, the inferred posterior distributions are used to evaluate parametric and other sources of variability in relations representing mixed-size interactions in the original model. Successful OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1067 development of the model demonstrates that Bayesian methods can be used to provide a robust and rigorous basis for quantifying uncertainty in mixed-size sediment transport. Such a method has heretofore been unavailable and allows for the propagation of uncertainty in sediment transport applications.

  9. Lower Bound Bayesian Networks - An Efficient Inference of Lower Bounds on Probability Distributions in Bayesian Networks

    CERN Document Server

    Andrade, Daniel

    2012-01-01

    We present a new method to propagate lower bounds on conditional probability distributions in conventional Bayesian networks. Our method guarantees to provide outer approximations of the exact lower bounds. A key advantage is that we can use any available algorithms and tools for Bayesian networks in order to represent and infer lower bounds. This new method yields results that are provable exact for trees with binary variables, and results which are competitive to existing approximations in credal networks for all other network structures. Our method is not limited to a specific kind of network structure. Basically, it is also not restricted to a specific kind of inference, but we restrict our analysis to prognostic inference in this article. The computational complexity is superior to that of other existing approaches.

  10. Trans-Dimensional Bayesian Inference for Gravitational Lens Substructures

    CERN Document Server

    Brewer, Brendon J; Lewis, Geraint F

    2015-01-01

    We introduce a Bayesian solution to the problem of inferring the density profile of strong gravitational lenses when the lens galaxy may contain multiple dark or faint substructures. The source and lens models are based on a superposition of an unknown number of non-negative basis functions (or "blobs") whose form was chosen with speed as a primary criterion. The prior distribution for the blobs' properties is specified hierarchically, so the mass function of substructures is a natural output of the method. We use reversible jump Markov Chain Monte Carlo (MCMC) within Diffusive Nested Sampling (DNS) to sample the posterior distribution and evaluate the marginal likelihood of the model, including the summation over the unknown number of blobs in the source and the lens. We demonstrate the method on a simulated data set with a single substructure, which is recovered well with moderate uncertainties. We also apply the method to the g-band image of the "Cosmic Horseshoe" system, and find some hints of potential s...

  11. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: nsanders@cfa.harvard.edu [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.

  12. Improved inference in Bayesian segmentation using Monte Carlo sampling: Application to hippocampal subfield volumetry

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen

    2013-01-01

    Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However......, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate...... the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement...

  13. Improved inference in Bayesian segmentation using Monte Carlo sampling: application to hippocampal subfield volumetry.

    Science.gov (United States)

    Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen

    2013-10-01

    Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the technique also allows one to compute informative "error bars" on the volume estimates of individual structures.

  14. Simulation based bayesian econometric inference: principles and some recent computational advances.

    NARCIS (Netherlands)

    L.F. Hoogerheide (Lennart); H.K. van Dijk (Herman); R.D. van Oest (Rutger)

    2007-01-01

    textabstractIn this paper we discuss several aspects of simulation based Bayesian econometric inference. We start at an elementary level on basic concepts of Bayesian analysis; evaluating integrals by simulation methods is a crucial ingredient in Bayesian inference. Next, the most popular and well-

  15. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  16. Bayesian inference of structural brain networks

    NARCIS (Netherlands)

    Hinne, M.; Heskes, T.; Beckmann, C.F.; Gerven, van M.A.J.

    2013-01-01

    Structural brain networks are used to model white-matter connectivity between spatially segregated brain regions. The presence, location and orientation of these white matter tracts can be derived using diffusion-weighted magnetic resonance imaging in combination with probabilistic tractography. Unf

  17. Bayesian inference of the groundwater depth threshold in a vegetation dynamic model: a case study, lower reach, Tarim River

    Science.gov (United States)

    The responses of eco-hydrological systems to anthropogenic and natural disturbances have attracted much attention in recent years. The coupling and simulating feedback between hydrological and ecological components have been realized in several recently developed eco-hydrological models. However, li...

  18. Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations

    NARCIS (Netherlands)

    G.J.M. De Lannoy; R.H. Reichle; J.A. Vrugt

    2014-01-01

    Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation optica

  19. Bayesian inference for an illness-death model for stroke with cognition as a latent time-dependent risk factor

    NARCIS (Netherlands)

    Hout A. van den; Fox J.P.; Klein Entink R.H.

    2015-01-01

    Longitudinal data can be used to estimate the transition intensities between healthy and unhealthy states prior to death. An illness-death model for history of stroke is presented, where time-dependent transition intensities are regressed on a latent variable representing cognitive function. The cha

  20. Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations

    Science.gov (United States)

    DeLannoy, Gabrielle J. M.; Reichle, Rolf H.; Vrugt, Jasper A.

    2013-01-01

    Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO).

  1. Bayesian Inference for Radio Observations - Going beyond deconvolution

    CERN Document Server

    Lochner, Michelle; Kunz, Martin; Natarajan, Iniyan; Oozeer, Nadeem; Smirnov, Oleg; Zwart, Jon

    2015-01-01

    Radio interferometers suffer from the problem of missing information in their data, due to the gaps between the antennas. This results in artifacts, such as bright rings around sources, in the images obtained. Multiple deconvolution algorithms have been proposed to solve this problem and produce cleaner radio images. However, these algorithms are unable to correctly estimate uncertainties in derived scientific parameters or to always include the effects of instrumental errors. We propose an alternative technique called Bayesian Inference for Radio Observations (BIRO) which uses a Bayesian statistical framework to determine the scientific parameters and instrumental errors simultaneously directly from the raw data, without making an image. We use a simple simulation of Westerbork Synthesis Radio Telescope data including pointing errors and beam parameters as instrumental effects, to demonstrate the use of BIRO.

  2. Bayesian Spatial Modelling with R-INLA

    OpenAIRE

    Finn Lindgren; Håvard Rue

    2015-01-01

    The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA) approach proposed by Rue, Martino, and Chopin (2009) is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized) linear mixed to spatial and spatio-temporal models. Combined with the stochastic...

  3. Applied Bayesian modelling

    CERN Document Server

    Congdon, Peter

    2014-01-01

    This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU

  4. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    2010-01-01

    Chapter 9: This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods based on a maximum likelihood or Bayesian approach combined with markov chain Monte Carlo...

  5. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  6. MATRIX-VECTOR ALGORITHMS OF LOCAL POSTERIORI INFERENCE IN ALGEBRAIC BAYESIAN NETWORKS ON QUANTA PROPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. A. Zolotin

    2015-07-01

    Full Text Available Posteriori inference is one of the three kinds of probabilistic-logic inferences in the probabilistic graphical models theory and the base for processing of knowledge patterns with probabilistic uncertainty using Bayesian networks. The paper deals with a task of local posteriori inference description in algebraic Bayesian networks that represent a class of probabilistic graphical models by means of matrix-vector equations. The latter are essentially based on the use of tensor product of matrices, Kronecker degree and Hadamard product. Matrix equations for calculating posteriori probabilities vectors within posteriori inference in knowledge patterns with quanta propositions are obtained. Similar equations of the same type have already been discussed within the confines of the theory of algebraic Bayesian networks, but they were built only for the case of posteriori inference in the knowledge patterns on the ideals of conjuncts. During synthesis and development of matrix-vector equations on quanta propositions probability vectors, a number of earlier results concerning normalizing factors in posteriori inference and assignment of linear projective operator with a selector vector was adapted. We consider all three types of incoming evidences - deterministic, stochastic and inaccurate - combined with scalar and interval estimation of probability truth of propositional formulas in the knowledge patterns. Linear programming problems are formed. Their solution gives the desired interval values of posterior probabilities in the case of inaccurate evidence or interval estimates in a knowledge pattern. That sort of description of a posteriori inference gives the possibility to extend the set of knowledge pattern types that we can use in the local and global posteriori inference, as well as simplify complex software implementation by use of existing third-party libraries, effectively supporting submission and processing of matrices and vectors when

  7. Model uncertainty and Bayesian model averaging in vector autoregressive processes

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2006-01-01

    textabstractEconomic forecasts and policy decisions are often informed by empirical analysis based on econometric models. However, inference based upon a single model, when several viable models exist, limits its usefulness. Taking account of model uncertainty, a Bayesian model averaging procedure i

  8. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    CERN Document Server

    McEwen, J D; Peiris, H V; Wiaux, Y; Ringeval, C; Bouchet, F R

    2016-01-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high energy scales. We develop a new framework for cosmic string inference, constructing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension $G\\mu$ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations we demonstrate the application of our framework and evaluate it...

  9. Bayesian inference from count data using discrete uniform priors.

    Directory of Open Access Journals (Sweden)

    Federico Comoglio

    Full Text Available We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. We report a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. Our derivation yields a computationally feasible formula that can prove useful in a variety of statistical problems involving absolute quantification under uncertainty. We implemented our algorithm in the R package dupiR and compared it with a previously proposed Bayesian method based on a Gamma prior. As a showcase, we demonstrate that our inference framework can be used to estimate bacterial survival curves from measurements characterized by extremely low or zero counts and rather high sampling fractions. All in all, we provide a versatile, general purpose algorithm to infer population sizes from count data, which can find application in a broad spectrum of biological and physical problems.

  10. A generalized bayesian inference method for constraining the interiors of super Earths and sub-Neptunes

    CERN Document Server

    Dorn, C; Khan, A; Heng, K; Alibert, Y; Helled, R; Rivoldini, A; Benz, W

    2016-01-01

    We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces. Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star's photospheric composition. We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncertainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core, mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmosp...

  11. Fully Bayesian inference for structural MRI: application to segmentation and statistical analysis of T2-hypointensities.

    Science.gov (United States)

    Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark

    2013-01-01

    Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.

  12. Spatial attention, precision, and Bayesian inference: a study of saccadic response speed.

    Science.gov (United States)

    Vossel, Simone; Mathys, Christoph; Daunizeau, Jean; Bauer, Markus; Driver, Jon; Friston, Karl J; Stephan, Klaas E

    2014-06-01

    Inferring the environment's statistical structure and adapting behavior accordingly is a fundamental modus operandi of the brain. A simple form of this faculty based on spatial attentional orienting can be studied with Posner's location-cueing paradigm in which a cue indicates the target location with a known probability. The present study focuses on a more complex version of this task, where probabilistic context (percentage of cue validity) changes unpredictably over time, thereby creating a volatile environment. Saccadic response speed (RS) was recorded in 15 subjects and used to estimate subject-specific parameters of a Bayesian learning scheme modeling the subjects' trial-by-trial updates of beliefs. Different response models-specifying how computational states translate into observable behavior-were compared using Bayesian model selection. Saccadic RS was most plausibly explained as a function of the precision of the belief about the causes of sensory input. This finding is in accordance with current Bayesian theories of brain function, and specifically with the proposal that spatial attention is mediated by a precision-dependent gain modulation of sensory input. Our results provide empirical support for precision-dependent changes in beliefs about saccade target locations and motivate future neuroimaging and neuropharmacological studies of how Bayesian inference may determine spatial attention.

  13. Bayesian inference and decision theory - A framework for decision making in natural resource management

    Science.gov (United States)

    Dorazio, R.M.; Johnson, F.A.

    2003-01-01

    Bayesian inference and decision theory may be used in the solution of relatively complex problems of natural resource management, owing to recent advances in statistical theory and computing. In particular, Markov chain Monte Carlo algorithms provide a computational framework for fitting models of adequate complexity and for evaluating the expected consequences of alternative management actions. We illustrate these features using an example based on management of waterfowl habitat.

  14. An Enhancement of Bayesian Inference Network for Ligand-Based Virtual Screening using Features Selection

    Directory of Open Access Journals (Sweden)

    Ali Ahmed

    2011-01-01

    Full Text Available Problem statement: Similarity based Virtual Screening (VS deals with a large amount of data containing irrelevant and/or redundant fragments or features. Recent use of Bayesian network as an alternative for existing tools for similarity based VS has received noticeable attention of the researchers in the field of chemoinformatics. Approach: To this end, different models of Bayesian network have been developed. In this study, we enhance the Bayesian Inference Network (BIN using a subset of selected molecules features. Results: In this approach, a few features were filtered from the molecular fingerprint features based on a features selection approach. Conclusion: Simulated virtual screening experiments with MDL Drug Data Report (MDDR data sets showed that the proposed method provides simple ways of enhancing the cost effectiveness of ligand-based virtual screening searches, especially for higher diversity data set.

  15. A tutorial on time-evolving dynamical Bayesian inference

    Science.gov (United States)

    Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta

    2014-12-01

    In view of the current availability and variety of measured data, there is an increasing demand for powerful signal processing tools that can cope successfully with the associated problems that often arise when data are being analysed. In practice many of the data-generating systems are not only time-variable, but also influenced by neighbouring systems and subject to random fluctuations (noise) from their environments. To encompass problems of this kind, we present a tutorial about the dynamical Bayesian inference of time-evolving coupled systems in the presence of noise. It includes the necessary theoretical description and the algorithms for its implementation. For general programming purposes, a pseudocode description is also given. Examples based on coupled phase and limit-cycle oscillators illustrate the salient features of phase dynamics inference. State domain inference is illustrated with an example of coupled chaotic oscillators. The applicability of the latter example to secure communications based on the modulation of coupling functions is outlined. MatLab codes for implementation of the method, as well as for the explicit examples, accompany the tutorial.

  16. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information

    Science.gov (United States)

    2017-01-01

    Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result. PMID:28133490

  17. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information

    Directory of Open Access Journals (Sweden)

    Yue Fan

    2017-01-01

    Full Text Available Gene regulatory networks (GRNs play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result.

  18. Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference

    CERN Document Server

    Ball, William T; Egerton, Jack S; Haigh, Joanna D

    2014-01-01

    We investigate the relationship between spectral solar irradiance (SSI) and ozone in the tropical upper stratosphere. We find that solar cycle (SC) changes in ozone can be well approximated by considering the ozone response to SSI changes in a small number individual wavelength bands between 176 and 310 nm, operating independently of each other. Additionally, we find that the ozone varies approximately linearly with changes in the SSI. Using these facts, we present a Bayesian formalism for inferring SC SSI changes and uncertainties from measured SC ozone profiles. Bayesian inference is a powerful, mathematically self-consistent method of considering both the uncertainties of the data and additional external information to provide the best estimate of parameters being estimated. Using this method, we show that, given measurement uncertainties in both ozone and SSI datasets, it is not currently possible to distinguish between observed or modelled SSI datasets using available estimates of ozone change profiles, ...

  19. VIGoR: Variational Bayesian Inference for Genome-Wide Regression

    Directory of Open Access Journals (Sweden)

    Akio Onogi

    2016-04-01

    Full Text Available Genome-wide regression using a number of genome-wide markers as predictors is now widely used for genome-wide association mapping and genomic prediction. We developed novel software for genome-wide regression which we named VIGoR (variational Bayesian inference for genome-wide regression. Variational Bayesian inference is computationally much faster than widely used Markov chain Monte Carlo algorithms. VIGoR implements seven regression methods, and is provided as a command line program package for Linux/Mac, and as a cross-platform R package. In addition to model fitting, cross-validation and hyperparameter tuning using cross-validation can be automatically performed by modifying a single argument. VIGoR is available at https://github.com/Onogi/VIGoR. The R package is also available at https://cran.r-project.org/web/packages/VIGoR/index.html.

  20. Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network.

    Science.gov (United States)

    Abdo, Ammar; Salim, Naomie; Ahmed, Ali

    2011-10-01

    Recently, the use of the Bayesian network as an alternative to existing tools for similarity-based virtual screening has received noticeable attention from researchers in the chemoinformatics field. The main aim of the Bayesian network model is to improve the retrieval effectiveness of similarity-based virtual screening. To this end, different models of the Bayesian network have been developed. In our previous works, the retrieval performance of the Bayesian network was observed to improve significantly when multiple reference structures or fragment weightings were used. In this article, the authors enhance the Bayesian inference network (BIN) using the relevance feedback information. In this approach, a few high-ranking structures of unknown activity were filtered from the outputs of BIN, based on a single active reference structure, to form a set of active reference structures. This set of active reference structures was used in two distinct techniques for carrying out such BIN searching: reweighting the fragments in the reference structures and group fusion techniques. Simulated virtual screening experiments with three MDL Drug Data Report data sets showed that the proposed techniques provide simple ways of enhancing the cost-effectiveness of ligand-based virtual screening searches, especially for higher diversity data sets.

  1. Bayesian inference on EMRI signals using low frequency approximations

    CERN Document Server

    Ali, Asad; Meyer, Renate; Röver, Christian; 10.1088/0264-9381/29/14/145014

    2013-01-01

    Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation meth...

  2. The unusual 2013-2015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model

    Science.gov (United States)

    Kwon, Hyun-Han; Lall, Upmanu; Kim, Seong-Joon

    2016-08-01

    Recently, the Korean peninsula faced severe drought for more than 3 years (2013-2015). Drought in this region is characterized by multidecadal variability, as seen from one of the longest systematic records available in Asia from 1770 to 2015. This paper explores how the return period of the 2013-2015 drought varies over this historical period to provide a context for the changing climate and drought severity in the region. A nonstationary, multivariate, Bayesian copula model for drought severity and duration is developed and applied. Given the wetting trend over the last 50 years, the recent drought appears quite extreme, while such droughts were common in the eighteenth and nineteenth centuries.

  3. Bayesian inference underlies the contraction bias in delayed comparison tasks.

    Directory of Open Access Journals (Sweden)

    Paymon Ashourian

    Full Text Available Delayed comparison tasks are widely used in the study of working memory and perception in psychology and neuroscience. It has long been known, however, that decisions in these tasks are biased. When the two stimuli in a delayed comparison trial are small in magnitude, subjects tend to report that the first stimulus is larger than the second stimulus. In contrast, subjects tend to report that the second stimulus is larger than the first when the stimuli are relatively large. Here we study the computational principles underlying this bias, also known as the contraction bias. We propose that the contraction bias results from a Bayesian computation in which a noisy representation of a magnitude is combined with a-priori information about the distribution of magnitudes to optimize performance. We test our hypothesis on choice behavior in a visual delayed comparison experiment by studying the effect of (i changing the prior distribution and (ii changing the uncertainty in the memorized stimulus. We show that choice behavior in both manipulations is consistent with the performance of an observer who uses a Bayesian inference in order to improve performance. Moreover, our results suggest that the contraction bias arises during memory retrieval/decision making and not during memory encoding. These results support the notion that the contraction bias illusion can be understood as resulting from optimality considerations.

  4. Bayesian inference for generalized linear mixed models with predictors subject to detection limits: an approach that leverages information from auxiliary variables.

    Science.gov (United States)

    Yue, Yu Ryan; Wang, Xiao-Feng

    2016-05-10

    This paper is motivated from a retrospective study of the impact of vitamin D deficiency on the clinical outcomes for critically ill patients in multi-center critical care units. The primary predictors of interest, vitamin D2 and D3 levels, are censored at a known detection limit. Within the context of generalized linear mixed models, we investigate statistical methods to handle multiple censored predictors in the presence of auxiliary variables. A Bayesian joint modeling approach is proposed to fit the complex heterogeneous multi-center data, in which the data information is fully used to estimate parameters of interest. Efficient Monte Carlo Markov chain algorithms are specifically developed depending on the nature of the response. Simulation studies demonstrate the outperformance of the proposed Bayesian approach over other existing methods. An application to the data set from the vitamin D deficiency study is presented. Possible extensions of the method regarding the absence of auxiliary variables, semiparametric models, as well as the type of censoring are also discussed.

  5. Clustered nested sampling: efficient Bayesian inference for cosmology

    CERN Document Server

    Shaw, R; Hobson, M P

    2007-01-01

    Bayesian model selection provides the cosmologist with an exacting tool to distinguish between competing models based purely on the data, via the Bayesian evidence. Previous methods to calculate this quantity either lacked general applicability or were computationally demanding. However, nested sampling (Skilling 2004), which was recently applied successfully to cosmology by Muhkerjee et al. 2006, overcomes both of these impediments. Their implementation restricts the parameter space sampled, and thus improves the efficiency, using a decreasing ellipsoidal bound in the $n$-dimensional parameter space centred on the maximum likelihood point. However, if the likelihood function contains any multi-modality, then the ellipse is prevented from constraining the sampling region efficiently. In this paper we introduce a method of clustered ellipsoidal nested sampling which can form multiple ellipses around each individual peak in the likelihood. In addition we have implemented a method for determining the expectation...

  6. Bayesian Modelling of fMRI Time Series

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward

    2000-01-01

    We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...

  7. Unraveling multiple changes in complex climate time series using Bayesian inference

    Science.gov (United States)

    Berner, Nadine; Trauth, Martin H.; Holschneider, Matthias

    2016-04-01

    Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of observations. Unraveling such transitions yields essential information for the understanding of the observed system. The precise detection and basic characterization of underlying changes is therefore of particular importance in environmental sciences. We present a kernel-based Bayesian inference approach to investigate direct as well as indirect climate observations for multiple generic transition events. In order to develop a diagnostic approach designed to capture a variety of natural processes, the basic statistical features of central tendency and dispersion are used to locally approximate a complex time series by a generic transition model. A Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of such a transition. To systematically investigate time series for multiple changes occurring at different temporal scales, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. Thus, based on a generic transition model a probability expression is derived that is capable to indicate multiple changes within a complex time series. We discuss the method's performance by investigating direct and indirect climate observations. The approach is applied to environmental time series (about 100 a), from the weather station in Tuscaloosa, Alabama, and confirms documented instrumentation changes. Moreover, the approach is used to investigate a set of complex terrigenous dust records from the ODP sites 659, 721/722 and 967 interpreted as climate indicators of the African region of the Plio-Pleistocene period (about 5 Ma). The detailed inference unravels multiple transitions underlying the indirect climate observations coinciding with established

  8. A guide to Bayesian model selection for ecologists

    Science.gov (United States)

    Hooten, Mevin B.; Hobbs, N.T.

    2015-01-01

    The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.

  9. Bayesian Model comparison of Higgs couplings

    CERN Document Server

    Bergstrom, Johannes

    2014-01-01

    We investigate the possibility of contributions from physics beyond the Standard Model (SM) to the Higgs couplings, in the light of the LHC data. The work is performed within an interim framework where the magnitude of the Higgs production and decay rates are rescaled though Higgs coupling scale factors. We perform Bayesian parameter inference on these scale factors, concluding that there is good compatibility with the SM. Furthermore, we carry out Bayesian model comparison on all models where any combination of scale factors can differ from their SM values and find that typically models with fewer free couplings are strongly favoured. We consider the evidence that each coupling individually equals the SM value, making the minimal assumptions on the other couplings. Finally, we make a comparison of the SM against a single "not-SM" model, and find that there is moderate to strong evidence for the SM.

  10. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    Directory of Open Access Journals (Sweden)

    Michael J McGeachie

    2014-06-01

    Full Text Available Bayesian Networks (BN have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  11. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    Science.gov (United States)

    McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T

    2014-06-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  12. Inference of emission rates from multiple sources using Bayesian probability theory.

    Science.gov (United States)

    Yee, Eugene; Flesch, Thomas K

    2010-03-01

    The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.

  13. Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes

    CERN Document Server

    Kwak, Sehyun; Brix, M; Ghim, Y -c

    2016-01-01

    A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy system, measuring Li I line radiation using 26 channels with ~1 cm spatial resolution and 10~20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly devel...

  14. Coordinate transformation and Polynomial Chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function

    KAUST Repository

    Sraj, Ihab

    2015-10-22

    This paper addresses model dimensionality reduction for Bayesian inference based on prior Gaussian fields with uncertainty in the covariance function hyper-parameters. The dimensionality reduction is traditionally achieved using the Karhunen-Loève expansion of a prior Gaussian process assuming covariance function with fixed hyper-parameters, despite the fact that these are uncertain in nature. The posterior distribution of the Karhunen-Loève coordinates is then inferred using available observations. The resulting inferred field is therefore dependent on the assumed hyper-parameters. Here, we seek to efficiently estimate both the field and covariance hyper-parameters using Bayesian inference. To this end, a generalized Karhunen-Loève expansion is derived using a coordinate transformation to account for the dependence with respect to the covariance hyper-parameters. Polynomial Chaos expansions are employed for the acceleration of the Bayesian inference using similar coordinate transformations, enabling us to avoid expanding explicitly the solution dependence on the uncertain hyper-parameters. We demonstrate the feasibility of the proposed method on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data. The inferred profiles were found closer to the true profiles when including the hyper-parameters’ uncertainty in the inference formulation.

  15. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics

    CERN Document Server

    Feroz, F; Bridges, M

    2008-01-01

    We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focussing on the extension of the vanilla $\\Lambda$CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software, which is fully parallelized using MPI and includes an inte...

  16. BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images

    CERN Document Server

    Cossio, Pilar; Baruffa, Fabio; Rampp, Markus; Lindenstruth, Volker; Hummer, Gerhard

    2016-01-01

    In cryo-electron microscopy (EM), molecular structures are determined from large numbers of projection images of individual particles. To harness the full power of this single-molecule information, we use the Bayesian inference of EM (BioEM) formalism. By ranking structural models using posterior probabilities calculated for individual images, BioEM in principle addresses the challenge of working with highly dynamic or heterogeneous systems not easily handled in traditional EM reconstruction. However, the calculation of these posteriors for large numbers of particles and models is computationally demanding. Here we present highly parallelized, GPU-accelerated computer software that performs this task efficiently. Our flexible formulation employs CUDA, OpenMP, and MPI parallelization combined with both CPU and GPU computing. The resulting BioEM software scales nearly ideally both on pure CPU and on CPU+GPU architectures, thus enabling Bayesian analysis of tens of thousands of images in a reasonable time. The g...

  17. Bayesian Inference in Polling Technique: 1992 Presidential Polls.

    Science.gov (United States)

    Satake, Eiki

    1994-01-01

    Explores the potential utility of Bayesian statistical methods in determining the predictability of multiple polls. Compares Bayesian techniques to the classical statistical method employed by pollsters. Considers these questions in the context of the 1992 presidential elections. (HB)

  18. Progress on Bayesian Inference of the Fast Ion Distribution Function

    DEFF Research Database (Denmark)

    Stagner, L.; Heidbrink, W.W,; Chen, X.;

    2013-01-01

    The fast-ion distribution function (DF) has a complicated dependence on several phase-space variables. The standard analysis procedure in energetic particle research is to compute the DF theoretically, use that DF in forward modeling to predict diagnostic signals, then compare with measured data...... sensitivity of the measurements are incorporated into Bayesian likelihood probabilities. Prior probabilities describe physical constraints. This poster will show reconstructions of classically described, low-power, MHD-quiescent distribution functions from actual FIDA measurements. A description of the full...

  19. Bayesian Graphical Models

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    and edges. The nodes represent variables, which may be either discrete or continuous. An edge between two nodes A and B indicates a direct influence between the state of A and the state of B, which in some domains can also be interpreted as a causal relation. The wide-spread use of Bayesian networks...

  20. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis

    NARCIS (Netherlands)

    Stahl, Eli A.; Wegmann, Daniel; Trynka, Gosia; Gutierrez-Achury, Javier; Do, Ron; Voight, Benjamin F.; Kraft, Peter; Chen, Robert; Kallberg, Henrik J.; Kurreeman, Fina A. S.; Kathiresan, Sekar; Wijmenga, Cisca; Gregersen, Peter K.; Alfredsson, Lars; Siminovitch, Katherine A.; Worthington, Jane; de Bakker, Paul I. W.; Raychaudhuri, Soumya; Plenge, Robert M.

    2012-01-01

    The genetic architectures of common, complex diseases are largely uncharacterized. We modeled the genetic architecture underlying genome-wide association study (GWAS) data for rheumatoid arthritis and developed a new method using polygenic risk-score analyses to infer the total liability-scale varia

  1. Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    Science.gov (United States)

    Post, Mark A.; Li, Junquan; Quine, Brendan M.

    2016-03-01

    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments.

  2. Bayesian inference and life testing plans for generalized exponential distribution

    Institute of Scientific and Technical Information of China (English)

    KUNDU; Debasis; PRADHAN; Biswabrata

    2009-01-01

    Recently generalized exponential distribution has received considerable attentions.In this paper,we deal with the Bayesian inference of the unknown parameters of the progressively censored generalized exponential distribution.It is assumed that the scale and the shape parameters have independent gamma priors.The Bayes estimates of the unknown parameters cannot be obtained in the closed form.Lindley’s approximation and importance sampling technique have been suggested to compute the approximate Bayes estimates.Markov Chain Monte Carlo method has been used to compute the approximate Bayes estimates and also to construct the highest posterior density credible intervals.We also provide different criteria to compare two different sampling schemes and hence to ?nd the optimal sampling schemes.It is observed that ?nding the optimum censoring procedure is a computationally expensive process.And we have recommended to use the sub-optimal censoring procedure,which can be obtained very easily.Monte Carlo simulations are performed to compare the performances of the different methods and one data analysis has been performed for illustrative purposes.

  3. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    Science.gov (United States)

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls

  4. The probabilistic convolution tree: efficient exact Bayesian inference for faster LC-MS/MS protein inference.

    Directory of Open Access Journals (Sweden)

    Oliver Serang

    Full Text Available Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called "causal independence". For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to O(k log(k2 and the space to O(k log(k where k is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions.

  5. Moving in time: Bayesian causal inference explains movement coordination to auditory beats.

    Science.gov (United States)

    Elliott, Mark T; Wing, Alan M; Welchman, Andrew E

    2014-07-07

    Many everyday skilled actions depend on moving in time with signals that are embedded in complex auditory streams (e.g. musical performance, dancing or simply holding a conversation). Such behaviour is apparently effortless; however, it is not known how humans combine auditory signals to support movement production and coordination. Here, we test how participants synchronize their movements when there are potentially conflicting auditory targets to guide their actions. Participants tapped their fingers in time with two simultaneously presented metronomes of equal tempo, but differing in phase and temporal regularity. Synchronization therefore depended on integrating the two timing cues into a single-event estimate or treating the cues as independent and thereby selecting one signal over the other. We show that a Bayesian inference process explains the situations in which participants choose to integrate or separate signals, and predicts motor timing errors. Simulations of this causal inference process demonstrate that this model provides a better description of the data than other plausible models. Our findings suggest that humans exploit a Bayesian inference process to control movement timing in situations where the origin of auditory signals needs to be resolved.

  6. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.

    Science.gov (United States)

    Chen, Xi; Jung, Jin-Gyoung; Shajahan-Haq, Ayesha N; Clarke, Robert; Shih, Ie-Ming; Wang, Yue; Magnani, Luca; Wang, Tian-Li; Xuan, Jianhua

    2016-04-20

    Chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-seq) has greatly improved the reliability with which transcription factor binding sites (TFBSs) can be identified from genome-wide profiling studies. Many computational tools are developed to detect binding events or peaks, however the robust detection of weak binding events remains a challenge for current peak calling tools. We have developed a novel Bayesian approach (ChIP-BIT) to reliably detect TFBSs and their target genes by jointly modeling binding signal intensities and binding locations of TFBSs. Specifically, a Gaussian mixture model is used to capture both binding and background signals in sample data. As a unique feature of ChIP-BIT, background signals are modeled by a local Gaussian distribution that is accurately estimated from the input data. Extensive simulation studies showed a significantly improved performance of ChIP-BIT in target gene prediction, particularly for detecting weak binding signals at gene promoter regions. We applied ChIP-BIT to find target genes from NOTCH3 and PBX1 ChIP-seq data acquired from MCF-7 breast cancer cells. TF knockdown experiments have initially validated about 30% of co-regulated target genes identified by ChIP-BIT as being differentially expressed in MCF-7 cells. Functional analysis on these genes further revealed the existence of crosstalk between Notch and Wnt signaling pathways.

  7. Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F

    2013-04-01

    In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.

  8. Mocapy++ - a toolkit for inference and learning in dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Paluszewski, Martin; Hamelryck, Thomas Wim

    2010-01-01

    Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...

  9. A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference Genetics Selection Evolution 2010, 42:29

    DEFF Research Database (Denmark)

    Ødegård, Jørgen; Meuwissen, Theo HE; Heringstad, Bjørg

    2010-01-01

    " or "non-informative" with respect to genetic (co)variance components. The "non-informative" individuals are characterized by their Mendelian sampling deviations (deviance from the mid-parent mean) being completely confounded with a single residual on the underlying liability scale. For threshold models...... individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (co)variance components within an animal threshold model framework. Methods In the proposed algorithm, individuals are classified as either "informative...... relationship matrix, but genetic (co)variance components are inferred from the sampled breeding values and relationships between "informative" individuals (usually parents) only. The latter is analogous to a sire-dam model (in cases with no individual records on the parents). Results When applied to simulated...

  10. Using genotyping data to assign markers to their chromosome type and to infer the sex of individuals: a Bayesian model-based classifier.

    Science.gov (United States)

    Gautier, Mathieu

    2014-11-01

    The recent democratization of next-generation-sequencing-based approaches towards nonmodel species has made it cost-effective to produce large genotyping data sets for a wider range of species. However, when no detailed genome assembly is available, poor knowledge about the organization of the markers within the genome might hamper the optimal use of this abundant information. At the most basic level of genomic organization, the type of chromosome (autosomes, sex chromosomes, mitochondria or chloroplast in plants) may remain unknown for most markers which might be limiting or even misleading in some applications, particularly in population genetics. Conversely, the characterization of sex-linked markers allows molecular sexing of the individuals. In this study, we propose a Bayesian model-based classifier named detsex, to assign markers to their chromosome type and/or to perform sexing of individuals based on genotyping data. The performance of detsex is further evaluated by a comprehensive simulation study and by the analysis of real data sets from various origins (microsatellite and SNP data derived from genotyping assay designs and NGS experiments). Irrespective of the origin of the markers or the size of the data set, detsex was proved efficient (i) to identify the sex-linked markers, (ii) to perform molecular sexing of the individuals and (iii) to perform basic quality check of the genotyping data sets. The underlying structure of the model also allows to consider each of these potential applications either separately or jointly.

  11. Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard.

    Science.gov (United States)

    Jafarzadeh, S Reza; Johnson, Wesley O; Gardner, Ian A

    2016-03-15

    The area under the receiver operating characteristic (ROC) curve (AUC) is used as a performance metric for quantitative tests. Although multiple biomarkers may be available for diagnostic or screening purposes, diagnostic accuracy is often assessed individually rather than in combination. In this paper, we consider the interesting problem of combining multiple biomarkers for use in a single diagnostic criterion with the goal of improving the diagnostic accuracy above that of an individual biomarker. The diagnostic criterion created from multiple biomarkers is based on the predictive probability of disease, conditional on given multiple biomarker outcomes. If the computed predictive probability exceeds a specified cutoff, the corresponding subject is allocated as 'diseased'. This defines a standard diagnostic criterion that has its own ROC curve, namely, the combined ROC (cROC). The AUC metric for cROC, namely, the combined AUC (cAUC), is used to compare the predictive criterion based on multiple biomarkers to one based on fewer biomarkers. A multivariate random-effects model is proposed for modeling multiple normally distributed dependent scores. Bayesian methods for estimating ROC curves and corresponding (marginal) AUCs are developed when a perfect reference standard is not available. In addition, cAUCs are computed to compare the accuracy of different combinations of biomarkers for diagnosis. The methods are evaluated using simulations and are applied to data for Johne's disease (paratuberculosis) in cattle.

  12. Bayesian inference of local geomagnetic secular variation curves: application to archaeomagnetism

    Science.gov (United States)

    Lanos, Philippe

    2014-05-01

    The errors that occur at different stages of the archaeomagnetic calibration process are combined using a Bayesian hierarchical modelling. The archaeomagnetic data obtained from archaeological structures such as hearths, kilns or sets of bricks and tiles, exhibit considerable experimental errors and are generally more or less well dated by archaeological context, history or chronometric methods (14C, TL, dendrochronology, etc.). They can also be associated with stratigraphic observations which provide prior relative chronological information. The modelling we propose allows all these observations and errors to be linked together thanks to appropriate prior probability densities. The model also includes penalized cubic splines for estimating the univariate, spherical or three-dimensional curves for the secular variation of the geomagnetic field (inclination, declination, intensity) over time at a local place. The mean smooth curve we obtain, with its posterior Bayesian envelop provides an adaptation to the effects of variability in the density of reference points over time. Moreover, the hierarchical modelling also allows an efficient way to penalize outliers automatically. With this new posterior estimate of the curve, the Bayesian statistical framework then allows to estimate the calendar dates of undated archaeological features (such as kilns) based on one, two or three geomagnetic parameters (inclination, declination and/or intensity). Date estimates are presented in the same way as those that arise from radiocarbon dating. In order to illustrate the model and the inference method used, we will present results based on French, Bulgarian and Austrian datasets recently published.

  13. Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.

    Science.gov (United States)

    Bitzer, Sebastian; Kiebel, Stefan J

    2012-07-01

    Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, e.g. fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of RNNs may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics.

  14. Bayesian inference for multivariate point processes observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper; Aukema, B.H.;

    normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared to discrete time processes in the setting of the present paper as well as other spatial-temporal situations. Keywords: Bark beetle, conditional intensity, forest entomology, Markov chain Monte Carlo......We consider statistical and computational aspects of simulation-based Bayesian inference for a multivariate point process which is only observed at sparsely distributed times. For specicity we consider a particular data set which has earlier been analyzed by a discrete time model involving unknown...

  15. Geometric ergodicity of a hybrid sampler for Bayesian inference of phylogenetic branch lengths.

    Science.gov (United States)

    Spade, David A; Herbei, Radu; Kubatko, Laura S

    2015-10-01

    One of the fundamental goals in phylogenetics is to make inferences about the evolutionary pattern among a group of individuals, such as genes or species, using present-day genetic material. This pattern is represented by a phylogenetic tree, and as computational methods have caught up to the statistical theory, Bayesian methods of making inferences about phylogenetic trees have become increasingly popular. Bayesian inference of phylogenetic trees requires sampling from intractable probability distributions. Common methods of sampling from these distributions include Markov chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods, and one way that both of these methods can proceed is by first simulating a tree topology and then taking a sample from the posterior distribution of the branch lengths given the tree topology and the data set. In many MCMC methods, it is difficult to verify that the underlying Markov chain is geometrically ergodic, and thus, it is necessary to rely on output-based convergence diagnostics in order to assess convergence on an ad hoc basis. These diagnostics suffer from several important limitations, so in an effort to circumvent these limitations, this work establishes geometric convergence for a particular Markov chain that is used to sample branch lengths under a fairly general class of nucleotide substitution models and provides a numerical method for estimating the time this Markov chain takes to converge.

  16. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

    CERN Document Server

    Leistedt, Boris; Peiris, Hiranya V

    2016-01-01

    Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometri...

  17. Advances in Bayesian Modeling in Educational Research

    Science.gov (United States)

    Levy, Roy

    2016-01-01

    In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…

  18. Inherent Difficulties of Non-Bayesian Likelihood-based Inference, as Revealed by an Examination of a Recent Book by Aitkin

    OpenAIRE

    Gelman, Andrew; Robert, Christian P.; Rousseau, Judith

    2010-01-01

    For many decades, statisticians have made attempts to prepare the Bayesian omelette without breaking the Bayesian eggs; that is, to obtain probabilistic likelihood-based inferences without relying on informative prior distributions. A recent example is Murray Aitkin's recent book, {\\em Statistical Inference}, which presents an approach to statistical hypothesis testing based on comparisons of posterior distributions of likelihoods under competing models. Aitkin develops and illustrates his me...

  19. Bayesian model reduction and empirical Bayes for group (DCM) studies.

    Science.gov (United States)

    Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter

    2016-03-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction.

  20. Modeling Social Annotation: a Bayesian Approach

    CERN Document Server

    Plangprasopchok, Anon

    2008-01-01

    Collaborative tagging systems, such as del.icio.us, CiteULike, and others, allow users to annotate objects, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations, contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of socially-generated data, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated objects. Unfortunately, our proposed approach had a number of shortcomings, including overfitting, local maxima and the requirement to specify values for some parameters. In this paper we address these shortcomings in two ways. First, we extend the model to a fully Bayesian framework. Second, we describe an infinite ver...

  1. Monte Carlo Bayesian Inference on a Statistical Model of Sub-gridcolumn Moisture Variability Using High-resolution Cloud Observations . Part II; Sensitivity Tests and Results

    Science.gov (United States)

    da Silva, Arlindo M.; Norris, Peter M.

    2013-01-01

    Part I presented a Monte Carlo Bayesian method for constraining a complex statistical model of GCM sub-gridcolumn moisture variability using high-resolution MODIS cloud data, thereby permitting large-scale model parameter estimation and cloud data assimilation. This part performs some basic testing of this new approach, verifying that it does indeed significantly reduce mean and standard deviation biases with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud top pressure, and that it also improves the simulated rotational-Ramman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the OMI instrument. Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows finite jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. This paper also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in the cloud observables on cloud vertical structure, beyond cloud top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard (1998) provides some help in this respect, by better honoring inversion structures in the background state.

  2. Bayesian Model Averaging for Propensity Score Analysis

    Science.gov (United States)

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  3. Bayesian Inference Networks and Spreading Activation in Hypertext Systems.

    Science.gov (United States)

    Savoy, Jacques

    1992-01-01

    Describes a method based on Bayesian networks for searching hypertext systems. Discussion covers the use of Bayesian networks for structuring index terms and representing user information needs; use of link semantics based on constrained spreading activation to find starting points for browsing; and evaluation of a prototype system. (64…

  4. Bayesian parameter inference by Markov chain Monte Carlo with hybrid fitness measures: theory and test in apoptosis signal transduction network.

    Science.gov (United States)

    Murakami, Yohei; Takada, Shoji

    2013-01-01

    When model parameters in systems biology are not available from experiments, they need to be inferred so that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with Markov chain Monte Carlo (MCMC) is a useful method. Conventional MCMC needs likelihood to evaluate a posterior distribution of acceptable parameters, while the approximate Bayesian computation (ABC) MCMC evaluates posterior distribution with use of qualitative fitness measure. However, none of these algorithms can deal with mixture of quantitative, i.e., likelihood, and qualitative fitness measures simultaneously. Here, to deal with this mixture, we formulated Bayesian formula for hybrid fitness measures (HFM). Then we implemented it to MCMC (MCMC-HFM). We tested MCMC-HFM first for a kinetic toy model with a positive feedback. Inferring kinetic parameters mainly related to the positive feedback, we found that MCMC-HFM reliably infer them using both qualitative and quantitative fitness measures. Then, we applied the MCMC-HFM to an apoptosis signal transduction network previously proposed. For kinetic parameters related to implicit positive feedbacks, which are important for bistability and irreversibility of the output, the MCMC-HFM reliably inferred these kinetic parameters. In particular, some kinetic parameters that have experimental estimates were inferred without using these data and the results were consistent with experiments. Moreover, for some parameters, the mixed use of quantitative and qualitative fitness measures narrowed down the acceptable range of parameters.

  5. Comparisons of neurodegeneration over time between healthy ageing and Alzheimer's disease cohorts via Bayesian inference

    Science.gov (United States)

    Mengersen, Kerrie

    2017-01-01

    Objectives In recent years, large-scale longitudinal neuroimaging studies have improved our understanding of healthy ageing and pathologies including Alzheimer's disease (AD). A particular focus of these studies is group differences and identification of participants at risk of deteriorating to a worse diagnosis. For this, statistical analysis using linear mixed-effects (LME) models are used to account for correlated observations from individuals measured over time. A Bayesian framework for LME models in AD is introduced in this paper to provide additional insight often not found in current LME volumetric analyses. Setting and participants Longitudinal neuroimaging case study of ageing was analysed in this research on 260 participants diagnosed as either healthy controls (HC), mild cognitive impaired (MCI) or AD. Bayesian LME models for the ventricle and hippocampus regions were used to: (1) estimate how the volumes of these regions change over time by diagnosis, (2) identify high-risk non-AD individuals with AD like degeneration and (3) determine probabilistic trajectories of diagnosis groups over age. Results We observed (1) large differences in the average rate of change of volume for the ventricle and hippocampus regions between diagnosis groups, (2) high-risk individuals who had progressed from HC to MCI and displayed similar rates of deterioration as AD counterparts, and (3) critical time points which indicate where deterioration of regions begins to diverge between the diagnosis groups. Conclusions To the best of our knowledge, this is the first application of Bayesian LME models to neuroimaging data which provides inference on a population and individual level in the AD field. The application of a Bayesian LME framework allows for additional information to be extracted from longitudinal studies. This provides health professionals with valuable information of neurodegeneration stages, and a potential to provide a better understanding of disease pathology

  6. The confounding effect of population structure on bayesian skyline plot inferences of demographic history

    DEFF Research Database (Denmark)

    Heller, Rasmus; Chikhi, Lounes; Siegismund, Hans

    2013-01-01

    when it is violated. Among the most widely applied demographic inference methods are Bayesian skyline plots (BSPs), which are used across a range of biological fields. Violations of the panmixia assumption are to be expected in many biological systems, but the consequences for skyline plot inferences...

  7. Bayesian stable isotope mixing models

    Science.gov (United States)

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  8. Bayesian Evidence and Model Selection

    CERN Document Server

    Knuth, Kevin H; Malakar, Nabin K; Mubeen, Asim M; Placek, Ben

    2014-01-01

    In this paper we review the concept of the Bayesian evidence and its application to model selection. The theory is presented along with a discussion of analytic, approximate and numerical techniques. Application to several practical examples within the context of signal processing are discussed.

  9. A Hierarchical Bayesian Model for Crowd Emotions

    Science.gov (United States)

    Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias

    2016-01-01

    Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366

  10. Bayesian Spatial Modelling with R-INLA

    Directory of Open Access Journals (Sweden)

    Finn Lindgren

    2015-02-01

    Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.

  11. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  12. Bayesian approach to decompression sickness model parameter estimation.

    Science.gov (United States)

    Howle, L E; Weber, P W; Nichols, J M

    2017-03-01

    We examine both maximum likelihood and Bayesian approaches for estimating probabilistic decompression sickness model parameters. Maximum likelihood estimation treats parameters as fixed values and determines the best estimate through repeated trials, whereas the Bayesian approach treats parameters as random variables and determines the parameter probability distributions. We would ultimately like to know the probability that a parameter lies in a certain range rather than simply make statements about the repeatability of our estimator. Although both represent powerful methods of inference, for models with complex or multi-peaked likelihoods, maximum likelihood parameter estimates can prove more difficult to interpret than the estimates of the parameter distributions provided by the Bayesian approach. For models of decompression sickness, we show that while these two estimation methods are complementary, the credible intervals generated by the Bayesian approach are more naturally suited to quantifying uncertainty in the model parameters.

  13. Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET

    2017-03-01

    A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with  ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.

  14. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    Science.gov (United States)

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  15. Joining Forces of Bayesian and Frequentist Methodology: A Study for Inference in the Presence of Non-Identifiability

    CERN Document Server

    Raue, Andreas; Theis, Fabian Joachim; Timmer, Jens

    2012-01-01

    Increasingly complex applications involve large datasets in combination with non-linear and high dimensional mathematical models. In this context, statistical inference is a challenging issue that calls for pragmatic approaches that take advantage of both Bayesian and frequentist methods. The elegance of Bayesian methodology is founded in the propagation of information content provided by experimental data and prior assumptions to the posterior probability distribution of model predictions. However, for complex applications experimental data and prior assumptions potentially constrain the posterior probability distribution insufficiently. In these situations Bayesian Markov chain Monte Carlo sampling can be infeasible. From a frequentist point of view insufficient experimental data and prior assumptions can be interpreted as non-identifiability. The profile likelihood approach offers to detect and to resolve non-identifiability by experimental design iteratively. Therefore, it allows one to better constrain t...

  16. Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference

    CERN Document Server

    Alsing, Justin; Jaffe, Andrew H

    2016-01-01

    We apply two Bayesian hierarchical inference schemes to infer shear power spectra, shear maps and cosmological parameters from the CFHTLenS weak lensing survey - the first application of this method to data. In the first approach, we sample the joint posterior distribution of the shear maps and power spectra by Gibbs sampling, with minimal model assumptions. In the second approach, we sample the joint posterior of the shear maps and cosmological parameters, providing a new, accurate and principled approach to cosmological parameter inference from cosmic shear data. As a first demonstration on data we perform a 2-bin tomographic analysis to constrain cosmological parameters and investigate the possibility of photometric redshift bias in the CFHTLenS data. Under the baseline $\\Lambda$CDM model we constrain $S_8 = \\sigma_8(\\Omega_\\mathrm{m}/0.3)^{0.5} = 0.67 ^{\\scriptscriptstyle+ 0.03 }_{\\scriptscriptstyle- 0.03 }$ $(68\\%)$, consistent with previous CFHTLenS analysis but in tension with Planck. Adding neutrino m...

  17. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    Science.gov (United States)

    Warren, Harry P.; Byers, Jeff M.; Crump, Nicholas A.

    2017-02-01

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of the solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.

  18. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    CERN Document Server

    Warren, Harry P; Crump, Nicholas A

    2016-01-01

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are "inverted" to determine the distribution of plasma temperatures along the line of sight. This inversion is ill-posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of the solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.

  19. Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks

    Directory of Open Access Journals (Sweden)

    Hamelryck Thomas

    2010-03-01

    Full Text Available Abstract Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs. It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations. Results The program package is freely available under the GNU General Public Licence (GPL from SourceForge http://sourceforge.net/projects/mocapy. The package contains the source for building the Mocapy++ library, several usage examples and the user manual. Conclusions Mocapy++ is especially suitable for constructing probabilistic models of biomolecular structure, due to its support for directional statistics. In particular, it supports the Kent distribution on the sphere and the bivariate von Mises distribution on the torus. These distributions have proven useful to formulate probabilistic models of protein and RNA structure in atomic detail.

  20. Reconstruction of elongated bubbles fusing the information from multiple optical probes through a Bayesian inference technique.

    Science.gov (United States)

    Chakraborty, Shubhankar; Roy Chaudhuri, Partha; Das, Prasanta Kr

    2016-07-01

    In this communication, a novel optical technique has been proposed for the reconstruction of the shape of a Taylor bubble using measurements from multiple arrays of optical sensors. The deviation of an optical beam passing through the bubble depends on the contour of bubble surface. A theoretical model of the deviation of a beam during the traverse of a Taylor bubble through it has been developed. Using this model and the time history of the deviation captured by the sensor array, the bubble shape has been reconstructed. The reconstruction has been performed using an inverse algorithm based on Bayesian inference technique and Markov chain Monte Carlo sampling algorithm. The reconstructed nose shape has been compared with the true shape, extracted through image processing of high speed images. Finally, an error analysis has been performed to pinpoint the sources of the errors.

  1. Nonparametric Bayesian inference for multidimensional compound Poisson processes

    NARCIS (Netherlands)

    S. Gugushvili; F. van der Meulen; P. Spreij

    2015-01-01

    Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context, whic

  2. Study on inference model of pipelines corrosion leak fire based on Bayesian networks%管道腐蚀泄漏火灾的贝叶斯网络推理模型研究

    Institute of Scientific and Technical Information of China (English)

    左哲

    2015-01-01

    In order to research evolutionary laws of unconfined vapor cloud explosion ( UVCE) induced by combustible gas leak in long-distance oil and gas pipelines, Bayesian networks on buried pipelines corrosion leak fire were built by analyzing event nodes on inner and outer wall corrosion failure, combustible gas leak, the gas cloud diffusion and UVCE. The state ranges and discrete methods of node variables were studied. Priori probability and conditional probability distribution of the node variables were set by analyzing on accident statistics data and expert judgements. Bayesian network inference strategy was developed, the sensitivities of each network node variable on inference results were analyzed by researching on evolution mechanism of corrosion leak fire, and the rationality of the model was verified. The results show that there are greater uncer-tainty in the process of pipeline corrosion leaks and secondary disaster. The uncertainty presents in diverse intermediate event status value and probability of accident evolutionary path is influenced by the model input conditions. Bayesian network ap-proach has a greater advantage to describe the dependency relations of accident intermediate nodes, and it can be used to measure uncertainties of accidents risk quantitatively.%为了研究长输管道腐蚀泄漏及蒸气云爆炸事故的演化规律,通过对埋地管道内(外)壁腐蚀失效、燃气泄漏、气体云团扩散及蒸气云爆炸等4阶段事件进行分析,构建埋地管线腐蚀泄漏火灾的贝叶斯网络模型。研究网络结构中节点变量的取值范围及离散化方法,并基于对事故统计和专家分析判断,设定节点变量的先验概率,量化节点关联的条件概率分布。在对贝叶斯网络推理策略研究的基础上,考察节点变量对推理结果的敏感性,验证模型的合理性。结果表明,长输管道腐蚀泄漏及次生灾害事件过程具有较大的不确定性,主要体现在

  3. Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2012-12-01

    Full Text Available In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi Newton-Raphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC simulation method in OpenBUGS(established software for Bayesian analysis using Markov Chain Monte Carlo methods. The R functions are developed to study the statistical properties, model validation and comparison tools of the model and the output analysis of MCMC samples generated from OpenBUGS. Details of applying MCMC to parameter estimation for the Gumbel model are elaborated and a real software reliability data set is considered to illustrate the methods of inference discussed in this paper.

  4. Improving PWR core simulations by Monte Carlo uncertainty analysis and Bayesian inference

    CERN Document Server

    Castro, Emilio; Buss, Oliver; Garcia-Herranz, Nuria; Hoefer, Axel; Porsch, Dieter

    2016-01-01

    A Monte Carlo-based Bayesian inference model is applied to the prediction of reactor operation parameters of a PWR nuclear power plant. In this non-perturbative framework, high-dimensional covariance information describing the uncertainty of microscopic nuclear data is combined with measured reactor operation data in order to provide statistically sound, well founded uncertainty estimates of integral parameters, such as the boron letdown curve and the burnup-dependent reactor power distribution. The performance of this methodology is assessed in a blind test approach, where we use measurements of a given reactor cycle to improve the prediction of the subsequent cycle. As it turns out, the resulting improvement of the prediction quality is impressive. In particular, the prediction uncertainty of the boron letdown curve, which is of utmost importance for the planning of the reactor cycle length, can be reduced by one order of magnitude by including the boron concentration measurement information of the previous...

  5. MLE and Bayesian inference of age-dependent sensitivity and transition probability in periodic screening.

    Science.gov (United States)

    Wu, Dongfeng; Rosner, Gary L; Broemeling, Lyle

    2005-12-01

    This article extends previous probability models for periodic breast cancer screening examinations. The specific aim is to provide statistical inference for age dependence of sensitivity and the transition probability from the disease free to the preclinical state. The setting is a periodic screening program in which a cohort of initially asymptomatic women undergo a sequence of breast cancer screening exams. We use age as a covariate in the estimation of screening sensitivity and the transition probability simultaneously, both from a frequentist point of view and within a Bayesian framework. We apply our method to the Health Insurance Plan of Greater New York study of female breast cancer and give age-dependent sensitivity and transition probability density estimates. The inferential methodology we develop is also applicable when analyzing studies of modalities for early detection of other types of progressive chronic diseases.

  6. Bayesian approaches to infer the physical properties of star-forming galaxies at cosmic dawn

    Science.gov (United States)

    Salmon, Brett Weston Killebrew

    In this thesis, I seek to advance our understanding of galaxy formation and evolution in the early universe. Using the largest single project ever conducted by the Hubble Space Telescope (the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, CANDELS) I use deep and wide broadband photometric imaging to infer the physical properties of galaxies from z=8.5 to z=1.5. First, I will present a study that extends the relationship between the star-formation rates (SFRs) and stellar masses (M⋆) of galaxies to 3.5attenuated in galaxies. I calculate the Bayesian evidence for galaxies under different assumptions of their underlying dust-attenuation law. By modeling galaxy ultraviolet-to-near-IR broadband CANDELS data I produce Bayesian evidence towards the dust law in individual galaxies that is confirmed by their observed IR luminosities. Moreover, I find a tight correlation between the strength of attenuation in galaxies and their dust law, a relation reinforced by the results from radiative transfer simulations. Finally, I use the Bayesian methods developed in this thesis to study the number density of SFR in galaxies from z=8 to z=4, and resolve the current disconnect between its evolution and that of the stellar mass function. In doing so, I place the first constraints on the dust law of z>4 galaxies, finding it obeys a similar relation as found at z˜2. I find a clear excess in number density at high SFRs. This new SFR function is in better agreement with the observed stellar mass functions, the few to-date infrared detections at high redshifts, and the connection to the observed distribution of lower redshift infrared sources. Together, these studies greatly improve our understanding of the galaxy star-formation histories, the nature of their dust attenuation, and the distribution of SFR among some of the most distant galaxies in the universe.

  7. Trans-dimensional Bayesian inference for large sequential data sets

    Science.gov (United States)

    Mandolesi, E.; Dettmer, J.; Dosso, S. E.; Holland, C. W.

    2015-12-01

    This work develops a sequential Monte Carlo method to infer seismic parameters of layered seabeds from large sequential reflection-coefficient data sets. The approach provides parameter estimates and uncertainties along survey tracks with the goal to aid in the detection of unexploded ordnance in shallow water. The sequential data are acquired by a moving platform with source and receiver array towed close to the seabed. This geometry requires consideration of spherical reflection coefficients, computed efficiently by massively parallel implementation of the Sommerfeld integral via Levin integration on a graphics processing unit. The seabed is parametrized with a trans-dimensional model to account for changes in the environment (i.e. changes in layering) along the track. The method combines advanced Markov chain Monte Carlo methods (annealing) with particle filtering (resampling). Since data from closely-spaced source transmissions (pings) often sample similar environments, the solution from one ping can be utilized to efficiently estimate the posterior for data from subsequent pings. Since reflection-coefficient data are highly informative, the likelihood function can be extremely peaked, resulting in little overlap between posteriors of adjacent pings. This is addressed by adding bridging distributions (via annealed importance sampling) between pings for more efficient transitions. The approach assumes the environment to be changing slowly enough to justify the local 1D parametrization. However, bridging allows rapid changes between pings to be addressed and we demonstrate the method to be stable in such situations. Results are in terms of trans-D parameter estimates and uncertainties along the track. The algorithm is examined for realistic simulated data along a track and applied to a dataset collected by an autonomous underwater vehicle on the Malta Plateau, Mediterranean Sea. [Work supported by the SERDP, DoD.

  8. Bayesian Inference of Empirical Coefficient for Foundation Settlement

    Institute of Scientific and Technical Information of China (English)

    LI Zhen-yu; WANG Yong-he; YANG Guo-lin

    2009-01-01

    A new approach based on Bayesian theory is proposed to determine the empirical coefficient in soil settlement calculation. Prior distribution is assumed to be uniform in [0.2,1.4]. Posterior density function is developed in the condition of prior distribution combined with the information of observed samples at four locations on a passenger dedicated line. The results show that the posterior distribution of the empirical coefficient obeys Gaussian distribution. The mean value of the empirical coefficient decreases gradually with the increasing of the load on ground, and variance variation shows no regularity.

  9. Bayesian Inference of the Composition and Inflation Power of Hot Jupiters

    Science.gov (United States)

    Thorngren, Daniel Peter; Fortney, Jonathan J.

    2016-10-01

    The radius of a planet for a given mass is the result of its composition and thermal evolutionary history. For cooler giants, where thermal evolution is relatively well-understood, we can infer a planet's bulk composition from its mass, radius, stellar insolation and age, since all being equal, more metal-rich planets are smaller and denser. For inflated hot giants, there is a degeneracy between inferred composition and inflation power. Within a Bayesian framework we examine both groups, beginning with the cool giant planets. Among these, we observe that the internal heavy-element mass correlates well with the total planet mass, and the metal enrichment relative to the parent star is correlated negatively with planet mass. However, it appears that there is not a simple relation between the planet heavy-element mass and stellar metallicity. These fundamental "mass-metallicity" results are consistent with the core accretion model of planet formation. For the hotter inflated gas giants, we estimate the functional dependence of inflation power on stellar insolation by demanding that the same metal to mass relation applies to both cold and hot gas giants. We consider various forms for this relation and the resulting outliers. This inflation power result is robust to assumptions about metal placement within the planet and equation of state because it relies only on matching the two groups of planets. These results serve as a new way to connect models of planet inflation to existing observations of giant planets.

  10. Bayesian inference analysis of the uncertainty linked to the evaluation of potential flood damage in urban areas.

    Science.gov (United States)

    Fontanazza, C M; Freni, G; Notaro, V

    2012-01-01

    Flood damage in urbanized watersheds may be assessed by combining the flood depth-damage curves and the outputs of urban flood models. The complexity of the physical processes that must be simulated and the limited amount of data available for model calibration may lead to high uncertainty in the model results and consequently in damage estimation. Moreover depth-damage functions are usually affected by significant uncertainty related to the collected data and to the simplified structure of the regression law that is used. The present paper carries out the analysis of the uncertainty connected to the flood damage estimate obtained combining the use of hydraulic models and depth-damage curves. A Bayesian inference analysis was proposed along with a probabilistic approach for the parameters estimating. The analysis demonstrated that the Bayesian approach is very effective considering that the available databases are usually short.

  11. Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference

    CERN Document Server

    Regier, Jeffrey; Giordano, Ryan; Thomas, Rollin; Schlegel, David; McAuliffe, Jon; Prabhat,

    2016-01-01

    Celeste is a procedure for inferring astronomical catalogs that attains state-of-the-art scientific results. To date, Celeste has been scaled to at most hundreds of megabytes of astronomical images: Bayesian posterior inference is notoriously demanding computationally. In this paper, we report on a scalable, parallel version of Celeste, suitable for learning catalogs from modern large-scale astronomical datasets. Our algorithmic innovations include a fast numerical optimization routine for Bayesian posterior inference and a statistically efficient scheme for decomposing astronomical optimization problems into subproblems. Our scalable implementation is written entirely in Julia, a new high-level dynamic programming language designed for scientific and numerical computing. We use Julia's high-level constructs for shared and distributed memory parallelism, and demonstrate effective load balancing and efficient scaling on up to 8192 Xeon cores on the NERSC Cori supercomputer.

  12. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes

    Science.gov (United States)

    Dorn, Caroline; Venturini, Julia; Khan, Amir; Heng, Kevin; Alibert, Yann; Helled, Ravit; Rivoldini, Attilio; Benz, Willy

    2017-01-01

    Aims: We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces. Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star's photospheric composition. Methods: We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncertainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core, mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmospheric models that are tailored for modeling thick and thin atmospheres, respectively. Results: First, we validate our method against Neptune. Second, we apply it to synthetic exoplanets of fixed mass and determine the effect on interior structure and composition when (1) radius; (2) atmospheric model; (3) data uncertainties; (4) semi-major axes; (5) atmospheric composition (i.e., a priori assumption of enriched envelopes versus pure H/He envelopes); and (6) prior distributions are varied. Conclusions: Our main conclusions are: (1) given available data, the range of possible interior structures is large; quantification of the degeneracy of possible interiors is therefore indispensable for meaningful planet characterization. (2) Our method predicts models that agree with independent estimates of Neptune's interior. (3) Increasing the precision in mass and radius leads to much improved constraints on ice mass fraction, size of rocky interior, but

  13. MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Directory of Open Access Journals (Sweden)

    H. Sadeq

    2016-06-01

    Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  14. Merging Digital Surface Models Implementing Bayesian Approaches

    Science.gov (United States)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  15. Structural mapping in statistical word problems: A relational reasoning approach to Bayesian inference.

    Science.gov (United States)

    Johnson, Eric D; Tubau, Elisabet

    2016-09-27

    Presenting natural frequencies facilitates Bayesian inferences relative to using percentages. Nevertheless, many people, including highly educated and skilled reasoners, still fail to provide Bayesian responses to these computationally simple problems. We show that the complexity of relational reasoning (e.g., the structural mapping between the presented and requested relations) can help explain the remaining difficulties. With a non-Bayesian inference that required identical arithmetic but afforded a more direct structural mapping, performance was universally high. Furthermore, reducing the relational demands of the task through questions that directed reasoners to use the presented statistics, as compared with questions that prompted the representation of a second, similar sample, also significantly improved reasoning. Distinct error patterns were also observed between these presented- and similar-sample scenarios, which suggested differences in relational-reasoning strategies. On the other hand, while higher numeracy was associated with better Bayesian reasoning, higher-numerate reasoners were not immune to the relational complexity of the task. Together, these findings validate the relational-reasoning view of Bayesian problem solving and highlight the importance of considering not only the presented task structure, but also the complexity of the structural alignment between the presented and requested relations.

  16. Bayesian data analysis

    CERN Document Server

    Gelman, Andrew; Stern, Hal S; Dunson, David B; Vehtari, Aki; Rubin, Donald B

    2013-01-01

    FUNDAMENTALS OF BAYESIAN INFERENCEProbability and InferenceSingle-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian ApproachesHierarchical ModelsFUNDAMENTALS OF BAYESIAN DATA ANALYSISModel Checking Evaluating, Comparing, and Expanding ModelsModeling Accounting for Data Collection Decision AnalysisADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional ApproximationsREGRESSION MODELS Introduction to Regression Models Hierarchical Linear

  17. Genetic parameters for buffalo milk yield and milk quality traits using Bayesian inference.

    Science.gov (United States)

    Aspilcueta-Borquis, R R; Araujo Neto, F R; Baldi, F; Bignardi, A B; Albuquerque, L G; Tonhati, H

    2010-05-01

    The availability of accurate genetic parameters for important economic traits in milking buffaloes is critical for implementation of a genetic evaluation program. In the present study, heritabilities and genetic correlations for fat (FY305), protein (PY305), and milk (MY305) yields, milk fat (%F) and protein (%P) percentages, and SCS were estimated using Bayesian methodology. A total of 4,907 lactations from 1,985 cows were used. The (co)variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year and calving season), number of milking (2 levels), and age of cow at calving as (co)variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The posterior means of heritability distributions for MY305, FY305, PY305, %F, P%, and SCS were 0.22, 0.21, 0.23, 0.33, 0.39, and 0.26, respectively. The genetic correlation estimates ranged from -0.13 (between %P and SCS) to 0.94 (between MY305 and PY305). The permanent environmental correlation estimates ranged from -0.38 (between MY305 and %P) to 0.97 (between MY305 and PY305). Residual and phenotypic correlation estimates ranged from -0.26 (between PY305 and SCS) to 0.97 (between MY305 and PY305) and from -0.26 (between MY305 and SCS) to 0.97 (between MY305 and PY305), respectively. Milk yield, milk components, and milk somatic cells counts have enough genetic variation for selection purposes. The genetic correlation estimates suggest that milk components and milk somatic cell counts would be only slightly affected if increasing milk yield were the selection goal. Selecting to increase FY305 or PY305 will also increase MY305, %P, and %F.

  18. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  19. Natural frequencies improve Bayesian reasoning in simple and complex inference tasks.

    Science.gov (United States)

    Hoffrage, Ulrich; Krauss, Stefan; Martignon, Laura; Gigerenzer, Gerd

    2015-01-01

    Representing statistical information in terms of natural frequencies rather than probabilities improves performance in Bayesian inference tasks. This beneficial effect of natural frequencies has been demonstrated in a variety of applied domains such as medicine, law, and education. Yet all the research and applications so far have been limited to situations where one dichotomous cue is used to infer which of two hypotheses is true. Real-life applications, however, often involve situations where cues (e.g., medical tests) have more than one value, where more than two hypotheses (e.g., diseases) are considered, or where more than one cue is available. In Study 1, we show that natural frequencies, compared to information stated in terms of probabilities, consistently increase the proportion of Bayesian inferences made by medical students in four conditions-three cue values, three hypotheses, two cues, or three cues-by an average of 37 percentage points. In Study 2, we show that teaching natural frequencies for simple tasks with one dichotomous cue and two hypotheses leads to a transfer of learning to complex tasks with three cue values and two cues, with a proportion of 40 and 81% correct inferences, respectively. Thus, natural frequencies facilitate Bayesian reasoning in a much broader class of situations than previously thought.

  20. Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.

    Science.gov (United States)

    Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa

    2017-01-01

    TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.

  1. Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression.

    Science.gov (United States)

    Morrissey, Edward R; Juárez, Miguel A; Denby, Katherine J; Burroughs, Nigel J

    2011-10-01

    We propose a semiparametric Bayesian model, based on penalized splines, for the recovery of the time-invariant topology of a causal interaction network from longitudinal data. Our motivation is inference of gene regulatory networks from low-resolution microarray time series, where existence of nonlinear interactions is well known. Parenthood relations are mapped by augmenting the model with kinship indicators and providing these with either an overall or gene-wise hierarchical structure. Appropriate specification of the prior is crucial to control the flexibility of the splines, especially under circumstances of scarce data; thus, we provide an informative, proper prior. Substantive improvement in network inference over a linear model is demonstrated using synthetic data drawn from ordinary differential equation models and gene expression from an experimental data set of the Arabidopsis thaliana circadian rhythm.

  2. Bayesian Calibration of Microsimulation Models.

    Science.gov (United States)

    Rutter, Carolyn M; Miglioretti, Diana L; Savarino, James E

    2009-12-01

    Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models.

  3. Theory-based Bayesian models of inductive learning and reasoning.

    Science.gov (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  4. Bayesian inference reveals ancient origin of simian foamy virus in orangutans.

    Science.gov (United States)

    Reid, Michael J C; Switzer, William M; Schillaci, Michael A; Klegarth, Amy R; Campbell, Ellsworth; Ragonnet, Manon; Joanisse, Isabelle; Caminiti, Kyna; Lowenberger, Carl A; Galdikas, Birute Mary F; Hollocher, Hope; Sandstrom, Paul A; Brooks, James I

    2017-03-05

    Simian foamy viruses (SFVs) infect most nonhuman primate species and appears to co-evolve with its hosts. This co-evolutionary signal is particularly strong among great apes, including orangutans (genus Pongo). Previous studies have identified three distinct orangutan SFV clades. The first of these three clades is composed of SFV from P. abelii from Sumatra, the second consists of SFV from P. pygmaeus from Borneo, while the third clade is mixed, comprising an SFV strain found in both species of orangutan. The existence of the mixed clade has been attributed to an expansion of P. pygmaeus into Sumatra following the Mount Toba super-volcanic eruption about 73,000years ago. Divergence dating, however, has yet to be performed to establish a temporal association with the Toba eruption. Here, we use a Bayesian framework and a relaxed molecular clock model with fossil calibrations to test the Toba hypothesis and to gain a more complete understanding of the evolutionary history of orangutan SFV. As with previous studies, our results show a similar three-clade orangutan SFV phylogeny, along with strong statistical support for SFV-host co-evolution in orangutans. Using Bayesian inference, we date the origin of orangutan SFV to >4.7 million years ago (mya), while the mixed species clade dates to approximately 1.7mya, >1.6 million years older than the Toba super-eruption. These results, combined with fossil and paleogeographic evidence, suggest that the origin of SFV in Sumatran and Bornean orangutans, including the mixed species clade, likely occurred on the mainland of Indo-China during the Late Pliocene and Calabrian stage of the Pleistocene, respectively.

  5. Uncertainty Reduction using Bayesian Inference and Sensitivity Analysis: A Sequential Approach to the NASA Langley Uncertainty Quantification Challenge

    Science.gov (United States)

    Sankararaman, Shankar

    2016-01-01

    This paper presents a computational framework for uncertainty characterization and propagation, and sensitivity analysis under the presence of aleatory and epistemic un- certainty, and develops a rigorous methodology for efficient refinement of epistemic un- certainty by identifying important epistemic variables that significantly affect the overall performance of an engineering system. The proposed methodology is illustrated using the NASA Langley Uncertainty Quantification Challenge (NASA-LUQC) problem that deals with uncertainty analysis of a generic transport model (GTM). First, Bayesian inference is used to infer subsystem-level epistemic quantities using the subsystem-level model and corresponding data. Second, tools of variance-based global sensitivity analysis are used to identify four important epistemic variables (this limitation specified in the NASA-LUQC is reflective of practical engineering situations where not all epistemic variables can be refined due to time/budget constraints) that significantly affect system-level performance. The most significant contribution of this paper is the development of the sequential refine- ment methodology, where epistemic variables for refinement are not identified all-at-once. Instead, only one variable is first identified, and then, Bayesian inference and global sensi- tivity calculations are repeated to identify the next important variable. This procedure is continued until all 4 variables are identified and the refinement in the system-level perfor- mance is computed. The advantages of the proposed sequential refinement methodology over the all-at-once uncertainty refinement approach are explained, and then applied to the NASA Langley Uncertainty Quantification Challenge problem.

  6. Experiments for Evaluating Application of Bayesian Inference to Situation Awareness of Human Operators in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong Keun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    Bayesian methodology has been used widely used in various research fields. It is method of inference using Bayes' rule to update the estimation of probability for the certain hypothesis when additional evidences are acquired. According to the current researches, malfunction of nuclear power plant can be detected by using this Bayesian inference which consistently piles up the newly incoming data and updates its estimation. However, those researches are based on the assumption that people are doing like computer perfectly, which can be criticized and may cause a problem in real world application. Studies in cognitive psychology indicates that when the amount of information becomes larger, people can't save the whole data because people have limited memory capacity which is well known as working memory, and also they have attention problem. The purpose of this paper is to consider the psychological factors and confirm how much this working memory and attention will affect the resulted estimation based on the Bayesian inference. To confirm this, experiment on human is needed, and the tool of experiment is Compact Nuclear Simulator (CNS)

  7. Estimating uncertainty and reliability of social network data using Bayesian inference.

    Science.gov (United States)

    Farine, Damien R; Strandburg-Peshkin, Ariana

    2015-09-01

    Social network analysis provides a useful lens through which to view the structure of animal societies, and as a result its use is increasingly widespread. One challenge that many studies of animal social networks face is dealing with limited sample sizes, which introduces the potential for a high level of uncertainty in estimating the rates of association or interaction between individuals. We present a method based on Bayesian inference to incorporate uncertainty into network analyses. We test the reliability of this method at capturing both local and global properties of simulated networks, and compare it to a recently suggested method based on bootstrapping. Our results suggest that Bayesian inference can provide useful information about the underlying certainty in an observed network. When networks are well sampled, observed networks approach the real underlying social structure. However, when sampling is sparse, Bayesian inferred networks can provide realistic uncertainty estimates around edge weights. We also suggest a potential method for estimating the reliability of an observed network given the amount of sampling performed. This paper highlights how relatively simple procedures can be used to estimate uncertainty and reliability in studies using animal social network analysis.

  8. Statistical detection of EEG synchrony using empirical bayesian inference.

    Directory of Open Access Journals (Sweden)

    Archana K Singh

    Full Text Available There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001 for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  9. Statistical detection of EEG synchrony using empirical bayesian inference.

    Science.gov (United States)

    Singh, Archana K; Asoh, Hideki; Takeda, Yuji; Phillips, Steven

    2015-01-01

    There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  10. Bayesian analysis of time-series data under case-crossover designs: posterior equivalence and inference.

    Science.gov (United States)

    Li, Shi; Mukherjee, Bhramar; Batterman, Stuart; Ghosh, Malay

    2013-12-01

    Case-crossover designs are widely used to study short-term exposure effects on the risk of acute adverse health events. While the frequentist literature on this topic is vast, there is no Bayesian work in this general area. The contribution of this paper is twofold. First, the paper establishes Bayesian equivalence results that require characterization of the set of priors under which the posterior distributions of the risk ratio parameters based on a case-crossover and time-series analysis are identical. Second, the paper studies inferential issues under case-crossover designs in a Bayesian framework. Traditionally, a conditional logistic regression is used for inference on risk-ratio parameters in case-crossover studies. We consider instead a more general full likelihood-based approach which makes less restrictive assumptions on the risk functions. Formulation of a full likelihood leads to growth in the number of parameters proportional to the sample size. We propose a semi-parametric Bayesian approach using a Dirichlet process prior to handle the random nuisance parameters that appear in a full likelihood formulation. We carry out a simulation study to compare the Bayesian methods based on full and conditional likelihood with the standard frequentist approaches for case-crossover and time-series analysis. The proposed methods are illustrated through the Detroit Asthma Morbidity, Air Quality and Traffic study, which examines the association between acute asthma risk and ambient air pollutant concentrations.

  11. Bayesian Correlated Component Analysis for inference of joint EEG activation

    DEFF Research Database (Denmark)

    Poulsen, Andreas Trier; Kamronn, Simon Due; Parra, Lucas

    2014-01-01

    We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset.......We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset....

  12. Bayesian inference on earthquake size distribution: a case study in Italy

    Science.gov (United States)

    Licia, Faenza; Carlo, Meletti; Laura, Sandri

    2010-05-01

    This paper is focused on the study of earthquake size statistical distribution by using Bayesian inference. The strategy consists in the definition of an a priori distribution based on instrumental seismicity, and modeled as a power law distribution. By using the observed historical data, the power law is then modified in order to obtain the posterior distribution. The aim of this paper is to define the earthquake size distribution using all the seismic database available (i.e., instrumental and historical catalogs) and a robust statistical technique. We apply this methodology to the Italian seismicity, dividing the territory in source zones as done for the seismic hazard assessment, taken here as a reference model. The results suggest that each area has its own peculiar trend: while the power law is able to capture the mean aspect of the earthquake size distribution, the posterior emphasizes different slopes in different areas. Our results are in general agreement with the ones used in the seismic hazard assessment in Italy. However, there are areas in which a flattening in the curve is shown, meaning a significant departure from the power law behavior and implying that there are some local aspects that a power law distribution is not able to capture.

  13. Bayesian inference – a way to combine statistical data and semantic analysis meaningfully

    Directory of Open Access Journals (Sweden)

    Eila Lindfors

    2011-11-01

    Full Text Available This article focuses on presenting the possibilities of Bayesian modelling (Finite Mixture Modelling in the semantic analysis of statistically modelled data. The probability of a hypothesis in relation to the data available is an important question in inductive reasoning. Bayesian modelling allows the researcher to use many models at a time and provides tools to evaluate the goodness of different models. The researcher should always be aware that there is no such thing as the exact probability of an exact event. This is the reason for using probabilistic models. Each model presents a different perspective on the phenomenon in focus, and the researcher has to choose the most probable model with a view to previous research and the knowledge available.The idea of Bayesian modelling is illustrated here by presenting two different sets of data, one from craft science research (n=167 and the other (n=63 from educational research (Lindfors, 2007, 2002. The principles of how to build models and how to combine different profiles are described in the light of the research mentioned.Bayesian modelling is an analysis based on calculating probabilities in relation to a specific set of quantitative data. It is a tool for handling data and interpreting it semantically. The reliability of the analysis arises from an argumentation of which model can be selected from the model space as the basis for an interpretation, and on which arguments.Keywords: method, sloyd, Bayesian modelling, student teachersURN:NBN:no-29959

  14. Back to BaySICS: a user-friendly program for Bayesian Statistical Inference from Coalescent Simulations.

    Science.gov (United States)

    Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love

    2014-01-01

    Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.

  15. Bayesian Uncertainty Analyses Via Deterministic Model

    Science.gov (United States)

    Krzysztofowicz, R.

    2001-05-01

    Rational decision-making requires that the total uncertainty about a variate of interest (a predictand) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Suppose the state-of-knowledge is embodied in a deterministic model, which is imperfect and outputs only an estimate of the predictand. Fundamentals are presented of three Bayesian approaches to producing a probability distribution of the predictand via any deterministic model. The Bayesian Processor of Output (BPO) quantifies the total uncertainty in terms of a posterior distribution, conditional on model output. The Bayesian Processor of Ensemble (BPE) quantifies the total uncertainty in terms of a posterior distribution, conditional on an ensemble of model output. The Bayesian Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model uncertainty, which are characterized independently and then integrated into a predictive distribution.

  16. Bayesian models a statistical primer for ecologists

    CERN Document Server

    Hobbs, N Thompson

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili

  17. A Bayesian Framework that integrates heterogeneous data for inferring gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Tapesh eSantra

    2014-05-01

    Full Text Available Reconstruction of gene regulatory networks (GRNs from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein protein interactions with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS and physical protein interactions (PPI among transcription factors (TFs in a Bayesian Variable Selection (BVS algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of LASSO regression based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression based method in some circumstances.

  18. A bayesian framework that integrates heterogeneous data for inferring gene regulatory networks.

    Science.gov (United States)

    Santra, Tapesh

    2014-01-01

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein-protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  19. Introduction to Hierarchical Bayesian Modeling for Ecological Data

    CERN Document Server

    Parent, Eric

    2012-01-01

    Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a

  20. Modelling of JET diagnostics using Bayesian Graphical Models

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.

    2011-07-01

    The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This

  1. Comparing rates of springtail predation by web-building spiders using Bayesian inference.

    Science.gov (United States)

    Welch, Kelton D; Schofield, Matthew R; Chapman, Eric G; Harwood, James D

    2014-08-01

    A major goal of gut-content analysis is to quantify predation rates by predators in the field, which could provide insights into the mechanisms behind ecosystem structure and function, as well as quantification of ecosystem services provided. However, percentage-positive results from molecular assays are strongly influenced by factors other than predation rate, and thus can only be reliably used to quantify predation rates under very restrictive conditions. Here, we develop two statistical approaches, one using a parametric bootstrap and the other in terms of Bayesian inference, to build upon previous techniques that use DNA decay rates to rank predators by their rate of prey consumption, by allowing a statistical assessment of confidence in the inferred ranking. To demonstrate the utility of this technique in evaluating ecological data, we test web-building spiders for predation on a primary prey item, springtails. Using these approaches we found that an orb-weaving spider consumes springtail prey at a higher rate than a syntopic sheet-weaving spider, despite occupying microhabitats where springtails are less frequently encountered. We suggest that spider-web architecture (orb web vs. sheet web) is a primary determinant of prey-consumption rates within this assemblage of predators, which demonstrates the potential influence of predator foraging behaviour on trophic web structure. We also discuss how additional assumptions can be incorporated into the same analysis to allow broader application of the technique beyond the specific example presented. We believe that such modelling techniques can greatly advance the field of molecular gut-content analysis.

  2. Bayesian Network Inference Enables Unbiased Phenotypic Anchoring of Transcriptomic Responses to Cigarette Smoke in Humans.

    Science.gov (United States)

    Jennen, Danyel G J; van Leeuwen, Danitsja M; Hendrickx, Diana M; Gottschalk, Ralph W H; van Delft, Joost H M; Kleinjans, Jos C S

    2015-10-19

    Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.

  3. Genetic parameters for five traits in Africanized honeybees using Bayesian inference

    Science.gov (United States)

    Padilha, Alessandro Haiduck; Sattler, Aroni; Cobuci, Jaime Araújo; McManus, Concepta Margaret

    2013-01-01

    Heritability and genetic correlations for honey (HP) and propolis production (PP), hygienic behavior (HB), syrup-collection rate (SCR) and percentage of mites on adult bees (PMAB) of a population of Africanized honeybees were estimated. Data from 110 queen bees over three generations were evaluated. Single and multi-trait models were analyzed by Bayesian Inference using MTGSAM. The localization of the hive was significant for SCR and HB and highly significant for PP. Season-year was highly significant only for SCR. The number of frames with bees was significant for HP and PP, including SCR. The heritability estimates were 0.16 for HP, 0.23 for SCR, 0.52 for HB, 0.66 for PP, and 0.13 for PMAB. The genetic correlations were positive among productive traits (PP, HP and SCR) and negative between productive traits and HB, except between PP and HB. Genetic correlations between PMAB and other traits, in general, were negative, except with PP. The study permitted to identify honeybees for improved propolis and honey production. Hygienic behavior may be improved as a consequence of selecting for improved propolis production. The rate of syrup consumption and propolis production may be included in a selection index to enhance honeybee traits. PMID:23885203

  4. The Application of Bayesian Inference to Gravitational Waves from Core-Collapse Supernovae

    Science.gov (United States)

    Gossan, Sarah; Ott, Christian; Kalmus, Peter; Logue, Joshua; Heng, Siong

    2013-04-01

    The gravitational wave (GW) signature of core-collapse supernovae (CCSNe) encodes important information on the supernova explosion mechanism, the workings of which cannot be explored via observations in the electromagnetic spectrum. Recent research has shown that the CCSNe explosion mechanism can be inferred through the application of Bayesian model selection to gravitational wave signals from supernova explosions powered by the neutrino, magnetorotational and acoustic mechanisms. Extending this work, we apply Principal Component Analysis to the GW spectrograms from CCSNe to take into account also the time-frequency evolution of the emitted signals. We do so in the context of Advanced LIGO, to establish if any improvement on distinguishing between various explosion mechanisms can be obtained. Further to this, we consider a five-detector network of interferometers (comprised of the two Advanced LIGO detectors, Advanced Virgo, LIGO India and KAGRA) and generalize the aforementioned analysis for a source of known position but unknown distance, using realistic, re-colored detector data (as opposed to Gaussian noise), in order to make more reliable statements regarding our ability to distinguish between various explosion mechanisms on the basis of their GW signatures.

  5. Bayesian Inference for Neural Electromagnetic Source Localization: Analysis of MEG Visual Evoked Activity

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Schmidt, D.M.; Wood, C.C.

    1999-02-01

    We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented.

  6. Non-parametric Bayesian inference for inhomogeneous Markov point processes

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper

    is a shot noise process, and the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior using a Metropolis-Hastings algorithm in the "conventional" way...

  7. Bayesian Modeling of a Human MMORPG Player

    CERN Document Server

    Synnaeve, Gabriel

    2010-01-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  8. Bayesian Modeling of a Human MMORPG Player

    Science.gov (United States)

    Synnaeve, Gabriel; Bessière, Pierre

    2011-03-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  9. Spatial Bayesian hierarchical modelling of extreme sea states

    Science.gov (United States)

    Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.

    2016-11-01

    A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.

  10. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim;

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...... Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term......, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction....

  11. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim;

    2015-01-01

    Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term...... content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain......Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...

  12. Protein NMR Structure Refinement based on Bayesian Inference

    Science.gov (United States)

    Ikeya, Teppei; Ikeda, Shiro; Kigawa, Takanori; Ito, Yutaka; Güntert, Peter

    2016-03-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a tool to investigate threedimensional (3D) structures and dynamics of biomacromolecules at atomic resolution in solution or more natural environments such as living cells. Since NMR data are principally only spectra with peak signals, it is required to properly deduce structural information from the sparse experimental data with their imperfections and uncertainty, and to visualize 3D conformations by NMR structure calculation. In order to efficiently analyse the data, Rieping et al. proposed a new structure calculation method based on Bayes’ theorem. We implemented a similar approach into the program CYANA with some modifications. It allows us to handle automatic NOE cross peak assignments in unambiguous and ambiguous usages, and to create a prior distribution based on a physical force field with the generalized Born implicit water model. The sampling scheme for obtaining the posterior is performed by a hybrid Monte Carlo algorithm combined with Markov chain Monte Carlo (MCMC) by the Gibbs sampler, and molecular dynamics simulation (MD) for obtaining a canonical ensemble of conformations. Since it is not trivial to search the entire function space particularly for exploring the conformational prior due to the extraordinarily large conformation space of proteins, the replica exchange method is performed, in which several MCMC calculations with different temperatures run in parallel as replicas. It is shown with simulated data or randomly deleted experimental peaks that the new structure calculation method can provide accurate structures even with less peaks, especially compared with the conventional method. In particular, it dramatically improves in-cell structures of the proteins GB1 and TTHA1718 using exclusively information obtained in living Escherichia coli (E. coli) cells.

  13. Bayesian Inference of Two-Dimensional Contrast Sensitivity Function from Data Obtained with Classical One-Dimensional Algorithms Is Efficient

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Huan; Huang, Jinfeng; Zhou, Yifeng; Tzvetanov, Tzvetomir

    2017-01-01

    The contrast sensitivity function that spans the two dimensions of contrast and spatial frequency is crucial in predicting functional vision both in research and clinical applications. In this study, the use of Bayesian inference was proposed to determine the parameters of the two-dimensional contrast sensitivity function. Two-dimensional Bayesian inference was extensively simulated in comparison to classical one-dimensional measures. Its performance on two-dimensional data gathered with different sampling algorithms was also investigated. The results showed that the two-dimensional Bayesian inference method significantly improved the accuracy and precision of the contrast sensitivity function, as compared to the more common one-dimensional estimates. In addition, applying two-dimensional Bayesian estimation to the final data set showed similar levels of reliability and efficiency across widely disparate and established sampling methods (from classical one-dimensional sampling, such as Ψ or staircase, to more novel multi-dimensional sampling methods, such as quick contrast sensitivity function and Fisher information gain). Furthermore, the improvements observed following the application of Bayesian inference were maintained even when the prior poorly matched the subject's contrast sensitivity function. Simulation results were confirmed in a psychophysical experiment. The results indicated that two-dimensional Bayesian inference of contrast sensitivity function data provides similar estimates across a wide range of sampling methods. The present study likely has implications for the measurement of contrast sensitivity function in various settings (including research and clinical settings) and would facilitate the comparison of existing data from previous studies. PMID:28119563

  14. Bayesian inference of genetic parameters for ultrasound scanning traits of Kivircik lambs.

    Science.gov (United States)

    Cemal, I; Karaman, E; Firat, M Z; Yilmaz, O; Ata, N; Karaca, O

    2017-03-01

    Ultrasound scanning traits have been adapted in selection programs in many countries to improve carcass traits for lean meat production. As the genetic parameters of the traits interested are important for breeding programs, the estimation of these parameters was aimed at the present investigation. The estimated parameters were direct and maternal heritability as well as genetic correlations between the studied traits. The traits were backfat thickness (BFT), skin+backfat thickness (SBFT), eye muscle depth (MD) and live weights at the day of scanning (LW). The breed investigated was Kivircik, which has a high quality of meat. Six different multi-trait animal models were fitted to determine the most suitable model for the data using Bayesian approach. Based on deviance information criterion, a model that includes direct additive genetic effects, maternal additive genetic effects, direct maternal genetic covariance and maternal permanent environmental effects revealed to be the most appropriate for the data, and therefore, inferences were built on the results of that model. The direct heritability estimates for BFT, SBFT, MD and LW were 0.26, 0.26, 0.23 and 0.09, whereas the maternal heritability estimates were 0.27, 0.27, 0.24 and 0.20, respectively. Negative genetic correlations were obtained between direct and maternal effects for BFT, SBFT and MD. Both direct and maternal genetic correlations between traits were favorable, whereas BFT-MD and SBFT-MD had negligible direct genetic correlation. The highest direct and maternal genetic correlations were between BFT and SBFT (0.39) and between MD and LW (0.48), respectively. Our results, in general, indicated that maternal effects should be accounted for in estimation of genetic parameters of ultrasound scanning traits in Kivircik lambs, and SBFT can be used as a selection criterion to improve BFT.

  15. IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillermo A. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Kewley, Lisa; Vogt, Frédéric P. A.; Dopita, Michael A. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2015-01-10

    We present a new method for inferring the metallicity (Z) and ionization parameter (q) of H II regions and star-forming galaxies using strong nebular emission lines (SELs). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photoionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics, the method is flexible and not tied to a particular photoionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extragalactic H II regions, we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local H II regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photoionization models in the literature can be in good (∼30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically ∼0.2 dex lower than both RL and photoionization-model-based abundances.

  16. Scalable Bayesian modeling, monitoring and analysis of dynamic network flow data

    OpenAIRE

    2016-01-01

    Traffic flow count data in networks arise in many applications, such as automobile or aviation transportation, certain directed social network contexts, and Internet studies. Using an example of Internet browser traffic flow through site-segments of an international news website, we present Bayesian analyses of two linked classes of models which, in tandem, allow fast, scalable and interpretable Bayesian inference. We first develop flexible state-space models for streaming count data, able to...

  17. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    Science.gov (United States)

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  18. Bayesian hierarchical modelling of weak lensing - the golden goal

    CERN Document Server

    Heavens, Alan; Jaffe, Andrew; Hoffmann, Till; Kiessling, Alina; Wandelt, Benjamin

    2016-01-01

    To accomplish correct Bayesian inference from weak lensing shear data requires a complete statistical description of the data. The natural framework to do this is a Bayesian Hierarchical Model, which divides the chain of reasoning into component steps. Starting with a catalogue of shear estimates in tomographic bins, we build a model that allows us to sample simultaneously from the the underlying tomographic shear fields and the relevant power spectra (E-mode, B-mode, and E-B, for auto- and cross-power spectra). The procedure deals easily with masked data and intrinsic alignments. Using Gibbs sampling and messenger fields, we show with simulated data that the large (over 67000-)dimensional parameter space can be efficiently sampled and the full joint posterior probability density function for the parameters can feasibly be obtained. The method correctly recovers the underlying shear fields and all of the power spectra, including at levels well below the shot noise.

  19. A Bayesian Alternative for Multi-objective Ecohydrological Model Specification

    Science.gov (United States)

    Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.

    2015-12-01

    Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.

  20. Communication: A multiscale Bayesian inference approach to analyzing subdiffusion in particle trajectories.

    Science.gov (United States)

    Hinsen, Konrad; Kneller, Gerald R

    2016-10-21

    Anomalous diffusion is characterized by its asymptotic behavior for t → ∞. This makes it difficult to detect and describe in particle trajectories from experiments or computer simulations, which are necessarily of finite length. We propose a new approach using Bayesian inference applied directly to the observed trajectories sampled at different time scales. We illustrate the performance of this approach using random trajectories with known statistical properties and then use it for analyzing the motion of lipid molecules in the plane of a lipid bilayer.

  1. DIP -- Diagnostics for Insufficiencies of Posterior calculations in Bayesian signal inference

    CERN Document Server

    Dorn, Sebastian; lin, Torsten A Enß

    2013-01-01

    We present an error-diagnostic validation method for posterior distributions in Bayesian signal inference. It transfers deviations from the correct posterior into characteristic deviations from a uniform distribution of a quantity constructed for this purpose. We show that this method is able to reveal and discriminate several kinds of numerical and approximation errors. For this we present a number of analytical examples of posteriors with incorrect variance, skewness, position of the maximum, or normalization. We show further how this test can be applied to multidimensional signals.

  2. Bayesian inference of the initial conditions from large-scale structure surveys

    Science.gov (United States)

    Leclercq, Florent

    2016-10-01

    Analysis of three-dimensional cosmological surveys has the potential to answer outstanding questions on the initial conditions from which structure appeared, and therefore on the very high energy physics at play in the early Universe. We report on recently proposed statistical data analysis methods designed to study the primordial large-scale structure via physical inference of the initial conditions in a fully Bayesian framework, and applications to the Sloan Digital Sky Survey data release 7. We illustrate how this approach led to a detailed characterization of the dynamic cosmic web underlying the observed galaxy distribution, based on the tidal environment.

  3. Bayesian modeling of unknown diseases for biosurveillance.

    Science.gov (United States)

    Shen, Yanna; Cooper, Gregory F

    2009-11-14

    This paper investigates Bayesian modeling of unknown causes of events in the context of disease-outbreak detection. We introduce a Bayesian approach that models and detects both (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A key contribution of this paper is that it introduces a Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has broad applicability in medical informatics, where the space of known causes of outcomes of interest is seldom complete.

  4. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang

    2006-01-01

    by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...... efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....

  5. A Bayesian Analysis of Spectral ARMA Model

    Directory of Open Access Journals (Sweden)

    Manoel I. Silvestre Bezerra

    2012-01-01

    Full Text Available Bezerra et al. (2008 proposed a new method, based on Yule-Walker equations, to estimate the ARMA spectral model. In this paper, a Bayesian approach is developed for this model by using the noninformative prior proposed by Jeffreys (1967. The Bayesian computations, simulation via Markov Monte Carlo (MCMC is carried out and characteristics of marginal posterior distributions such as Bayes estimator and confidence interval for the parameters of the ARMA model are derived. Both methods are also compared with the traditional least squares and maximum likelihood approaches and a numerical illustration with two examples of the ARMA model is presented to evaluate the performance of the procedures.

  6. Bayesian semiparametric dynamic Nelson-Siegel model

    NARCIS (Netherlands)

    C. Cakmakli

    2011-01-01

    This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model where the density of the yield curve factors and thereby the density of the yields are estimated along with other model parameters. This is accomplished by modeling the error distributions of the factors according to a Diric

  7. Posterior Predictive Model Checking in Bayesian Networks

    Science.gov (United States)

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  8. Bayesian calibration of car-following models

    NARCIS (Netherlands)

    Van Hinsbergen, C.P.IJ.; Van Lint, H.W.C.; Hoogendoorn, S.P.; Van Zuylen, H.J.

    2010-01-01

    Recent research has revealed that there exist large inter-driver differences in car-following behavior such that different car-following models may apply to different drivers. This study applies Bayesian techniques to the calibration of car-following models, where prior distributions on each model p

  9. Bayesian modeling of flexible cognitive control.

    Science.gov (United States)

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-10-01

    "Cognitive control" describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation.

  10. Bayesian modeling of flexible cognitive control

    Science.gov (United States)

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-01-01

    “Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218

  11. Technical Note: How to use Winbugs to infer animal models

    DEFF Research Database (Denmark)

    Damgaard, Lars Holm

    2007-01-01

    This paper deals with Bayesian inferences of animal models using Gibbs sampling. First, we suggest a general and efficient method for updating additive genetic effects, in which the computational cost is independent of the pedigree depth and increases linearly only with the size of the pedigree....... Second, we show how this approach can be used to draw inferences from a wide range of animal models using the computer package Winbugs. Finally, we illustrate the approach in a simulation study, in which the data are generated and analyzed using Winbugs according to a linear model with i.i.d errors...... having Student's t distributions. In conclusion, Winbugs can be used to make inferences in small-sized, quantitative, genetic data sets applying a wide range of animal models that are not yet standard in the animal breeding literature...

  12. Effective Parameter Dimension via Bayesian Model Selection in the Inverse Acoustic Scattering Problem

    Directory of Open Access Journals (Sweden)

    Abel Palafox

    2014-01-01

    Full Text Available We address a prototype inverse scattering problem in the interface of applied mathematics, statistics, and scientific computing. We pose the acoustic inverse scattering problem in a Bayesian inference perspective and simulate from the posterior distribution using MCMC. The PDE forward map is implemented using high performance computing methods. We implement a standard Bayesian model selection method to estimate an effective number of Fourier coefficients that may be retrieved from noisy data within a standard formulation.

  13. Macroscopic Models of Clique Tree Growth for Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...

  14. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  15. Bayesian Approach to Neuro-Rough Models for Modelling HIV

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes a new neuro-rough model for modelling the risk of HIV from demographic data. The model is formulated using Bayesian framework and trained using Markov Chain Monte Carlo method and Metropolis criterion. When the model was tested to estimate the risk of HIV infection given the demographic data it was found to give the accuracy of 62% as opposed to 58% obtained from a Bayesian formulated rough set model trained using Markov chain Monte Carlo method and 62% obtained from a Bayesian formulated multi-layered perceptron (MLP) model trained using hybrid Monte. The proposed model is able to combine the accuracy of the Bayesian MLP model and the transparency of Bayesian rough set model.

  16. Controlling the degree of caution in statistical inference with the Bayesian and frequentist approaches as opposite extremes

    CERN Document Server

    Bickel, David R

    2011-01-01

    In statistical practice, whether a Bayesian or frequentist approach is used in inference depends not only on the availability of prior information but also on the attitude taken toward partial prior information, with frequentists tending to be more cautious than Bayesians. The proposed framework defines that attitude in terms of a specified amount of caution, thereby enabling data analysis at the level of caution desired and on the basis of any prior information. The caution parameter represents the attitude toward partial prior information in much the same way as a loss function represents the attitude toward risk. When there is very little prior information and nonzero caution, the resulting inferences correspond to those of the candidate confidence intervals and p-values that are most similar to the credible intervals and hypothesis probabilities of the specified Bayesian posterior. On the other hand, in the presence of a known physical distribution of the parameter, inferences are based only on the corres...

  17. Bayesian Thurstonian models for ranking data using JAGS.

    Science.gov (United States)

    Johnson, Timothy R; Kuhn, Kristine M

    2013-09-01

    A Thurstonian model for ranking data assumes that observed rankings are consistent with those of a set of underlying continuous variables. This model is appealing since it renders ranking data amenable to familiar models for continuous response variables-namely, linear regression models. To date, however, the use of Thurstonian models for ranking data has been very rare in practice. One reason for this may be that inferences based on these models require specialized technical methods. These methods have been developed to address computational challenges involved in these models but are not easy to implement without considerable technical expertise and are not widely available in software packages. To address this limitation, we show that Bayesian Thurstonian models for ranking data can be very easily implemented with the JAGS software package. We provide JAGS model files for Thurstonian ranking models for general use, discuss their implementation, and illustrate their use in analyses.

  18. Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves

    Science.gov (United States)

    Mengshoel, Ole J.

    2010-01-01

    One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.

  19. Survey of Bayesian Models for Modelling of Stochastic Temporal Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ng, B

    2006-10-12

    This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.

  20. Quantum-Like Bayesian Networks for Modeling Decision Making.

    Science.gov (United States)

    Moreira, Catarina; Wichert, Andreas

    2016-01-01

    In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.

  1. Quantum-Like Bayesian Networks for Modeling Decision Making

    Directory of Open Access Journals (Sweden)

    Catarina eMoreira

    2016-01-01

    Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.

  2. Generalized linear models with coarsened covariates: a practical Bayesian approach.

    Science.gov (United States)

    Johnson, Timothy R; Wiest, Michelle M

    2014-06-01

    Coarsened covariates are a common and sometimes unavoidable phenomenon encountered in statistical modeling. Covariates are coarsened when their values or categories have been grouped. This may be done to protect privacy or to simplify data collection or analysis when researchers are not aware of their drawbacks. Analyses with coarsened covariates based on ad hoc methods can compromise the validity of inferences. One valid method for accounting for a coarsened covariate is to use a marginal likelihood derived by summing or integrating over the unknown realizations of the covariate. However, algorithms for estimation based on this approach can be tedious to program and can be computationally expensive. These are significant obstacles to their use in practice. To overcome these limitations, we show that when expressed as a Bayesian probability model, a generalized linear model with a coarsened covariate can be posed as a tractable missing data problem where the missing data are due to censoring. We also show that this model is amenable to widely available general-purpose software for simulation-based inference for Bayesian probability models, providing researchers a very practical approach for dealing with coarsened covariates.

  3. Bayesian Inference for Time Trends in Parameter Values: Case Study for the Ageing PSA Network of the European Commission

    Energy Technology Data Exchange (ETDEWEB)

    Dana L. Kelly; Albert Malkhasyan

    2010-06-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performed for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.

  4. Parametric 3D Atmospheric Reconstruction in Highly Variable Terrain with Recycled Monte Carlo Paths and an Adapted Bayesian Inference Engine

    Science.gov (United States)

    Langmore, Ian; Davis, Anthony B.; Bal, Guillaume; Marzouk, Youssef M.

    2012-01-01

    We describe a method for accelerating a 3D Monte Carlo forward radiative transfer model to the point where it can be used in a new kind of Bayesian retrieval framework. The remote sensing challenge is to detect and quantify a chemical effluent of a known absorbing gas produced by an industrial facility in a deep valley. The available data is a single low resolution noisy image of the scene in the near IR at an absorbing wavelength for the gas of interest. The detected sunlight has been multiply reflected by the variable terrain and/or scattered by an aerosol that is assumed partially known and partially unknown. We thus introduce a new class of remote sensing algorithms best described as "multi-pixel" techniques that call necessarily for a 3D radaitive transfer model (but demonstrated here in 2D); they can be added to conventional ones that exploit typically multi- or hyper-spectral data, sometimes with multi-angle capability, with or without information about polarization. The novel Bayesian inference methodology uses adaptively, with efficiency in mind, the fact that a Monte Carlo forward model has a known and controllable uncertainty depending on the number of sun-to-detector paths used.

  5. Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers

    Science.gov (United States)

    Alikhani, Jamal; Deinhart, Amanda L.; Visser, Ate; Bibby, Richard K.; Purtschert, Roland; Moran, Jean E.; Massoudieh, Arash; Esser, Bradley K.

    2016-12-01

    Nitrate is a major source of contamination of groundwater in the United States and around the world. We tested the applicability of multiple groundwater age tracers (3H, 3He, 4He, 14C, 13C, and 85Kr) in projecting future trends of nitrate concentration in 9 long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit. Very low 85Kr concentrations and apparent 3H/3He ages point to a relatively old modern fraction (40-50 years), diluted with pre-modern groundwater, corroborated by the onset and slope of increasing nitrate concentrations. An inverse Gaussian-Dirac model was chosen to represent the age distribution of the sampled groundwater at each well. Model parameters were estimated using a Bayesian inference, resulting in the posterior probability distribution - including the associated uncertainty - of the parameters and projected nitrate concentrations. Three scenarios were considered, including combined historic nitrate and age tracer data, the sole use of nitrate and the sole use of age tracer data. Each scenario was evaluated based on the ability of the model to reproduce the data and the level of reliability of the nitrate projections. The tracer-only scenario closely reproduced tracer concentrations, but not observed trends in the nitrate concentration. Both cases that included nitrate data resulted in good agreement with historical nitrate trends. Use of combined tracers and nitrate data resulted in a narrower range of projections of future nitrate levels. However, use of combined tracer and nitrate resulted in a larger discrepancy between modeled and measured tracers for some of the tracers. Despite nitrate trend slopes between 0.56 and 1.73 mg/L/year in 7 of the 9 wells, the probability that concentrations will increase to levels above the MCL by 2040 are over 95% for only two of the wells, and below 15% in the other wells, due to a leveling off of reconstructed historical

  6. Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network.

    Science.gov (United States)

    Li, Peng; Gong, Ping; Li, Haoni; Perkins, Edward J; Wang, Nan; Zhang, Chaoyang

    2014-12-01

    The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project was initiated in 2006 as a community-wide effort for the development of network inference challenges for rigorous assessment of reverse engineering methods for biological networks. We participated in the in silico network inference challenge of DREAM3 in 2008. Here we report the details of our approach and its performance on the synthetic challenge datasets. In our methodology, we first developed a model called relative change ratio (RCR), which took advantage of the heterozygous knockdown data and null-mutant knockout data provided by the challenge, in order to identify the potential regulators for the genes. With this information, a time-delayed dynamic Bayesian network (TDBN) approach was then used to infer gene regulatory networks from time series trajectory datasets. Our approach considerably reduced the searching space of TDBN; hence, it gained a much higher efficiency and accuracy. The networks predicted using our approach were evaluated comparatively along with 29 other submissions by two metrics (area under the ROC curve and area under the precision-recall curve). The overall performance of our approach ranked the second among all participating teams.

  7. A Bayesian Model Committee Approach to Forecasting Global Solar Radiation

    CERN Document Server

    Lauret, Philippe; Muselli, Marc; David, Mathieu; Diagne, Hadja; Voyant, Cyril

    2012-01-01

    This paper proposes to use a rather new modelling approach in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving Average (ARMA) and Neural Network (NN) models are combined to form a model committee. The Bayesian inference is used to affect a probability to each model in the committee. Hence, each model's predictions are weighted by their respective probability. The models are fitted to one year of hourly Global Horizontal Irradiance (GHI) measurements. Another year (the test set) is used for making genuine one hour ahead (h+1) out-of-sample forecast comparisons. The proposed approach is benchmarked against the persistence model. The very first results show an improvement brought by this approach.

  8. A Bayesian MCMC method for point process models with intractable normalising constants

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper

    2004-01-01

    to simulate from the "unknown distribution", perfect simulation algorithms become useful. We illustrate the method in cases whre the likelihood is given by a Markov point process model. Particularly, we consider semi-parametric Bayesian inference in connection to both inhomogeneous Markov point process models...

  9. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    Science.gov (United States)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the

  10. Inferring genetic architecture of complex traits using Bayesian integrative analysis of genome and transcriptiome data

    DEFF Research Database (Denmark)

    Ehsani, Alireza; Sørensen, Peter; Pomp, Daniel;

    2012-01-01

    Background To understand the genetic architecture of complex traits and bridge the genotype-phenotype gap, it is useful to study intermediate -omics data, e.g. the transcriptome. The present study introduces a method for simultaneous quantification of the contributions from single nucleotide...... polymorphisms (SNPs) and transcript abundances in explaining phenotypic variance, using Bayesian whole-omics models. Bayesian mixed models and variable selection models were used and, based on parameter samples from the model posterior distributions, explained variances were further partitioned at the level......-modal distribution of genomic values collapses, when gene expressions are added to the model Conclusions With increased availability of various -omics data, integrative approaches are promising tools for understanding the genetic architecture of complex traits. Partitioning of explained variances at the chromosome...

  11. Modelling crime linkage with Bayesian networks

    NARCIS (Netherlands)

    J. de Zoete; M. Sjerps; D. Lagnado; N. Fenton

    2015-01-01

    When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model

  12. Bayesian modelling of geostatistical malaria risk data

    Directory of Open Access Journals (Sweden)

    L. Gosoniu

    2006-11-01

    Full Text Available Bayesian geostatistical models applied to malaria risk data quantify the environment-disease relations, identify significant environmental predictors of malaria transmission and provide model-based predictions of malaria risk together with their precision. These models are often based on the stationarity assumption which implies that spatial correlation is a function of distance between locations and independent of location. We relax this assumption and analyse malaria survey data in Mali using a Bayesian non-stationary model. Model fit and predictions are based on Markov chain Monte Carlo simulation methods. Model validation compares the predictive ability of the non-stationary model with the stationary analogue. Results indicate that the stationarity assumption is important because it influences the significance of environmental factors and the corresponding malaria risk maps.

  13. Bayesian modelling of geostatistical malaria risk data.

    Science.gov (United States)

    Gosoniu, L; Vounatsou, P; Sogoba, N; Smith, T

    2006-11-01

    Bayesian geostatistical models applied to malaria risk data quantify the environment-disease relations, identify significant environmental predictors of malaria transmission and provide model-based predictions of malaria risk together with their precision. These models are often based on the stationarity assumption which implies that spatial correlation is a function of distance between locations and independent of location. We relax this assumption and analyse malaria survey data in Mali using a Bayesian non-stationary model. Model fit and predictions are based on Markov chain Monte Carlo simulation methods. Model validation compares the predictive ability of the non-stationary model with the stationary analogue. Results indicate that the stationarity assumption is important because it influences the significance of environmental factors and the corresponding malaria risk maps.

  14. A Bayesian nonparametric meta-analysis model.

    Science.gov (United States)

    Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G

    2015-03-01

    In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall effect size, such models may be adequate, but for prediction, they surely are not if the effect-size distribution exhibits non-normal behavior. To address this issue, we propose a Bayesian nonparametric meta-analysis model, which can describe a wider range of effect-size distributions, including unimodal symmetric distributions, as well as skewed and more multimodal distributions. We demonstrate our model through the analysis of real meta-analytic data arising from behavioral-genetic research. We compare the predictive performance of the Bayesian nonparametric model against various conventional and more modern normal fixed-effects and random-effects models.

  15. Bayesian geostatistical modeling of leishmaniasis incidence in Brazil.

    Directory of Open Access Journals (Sweden)

    Dimitrios-Alexios Karagiannis-Voules

    Full Text Available BACKGROUND: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. METHODOLOGY: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001-2010. Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. PRINCIPAL FINDINGS: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676 for cutaneous leishmaniasis and 4,889 (SD: 288 for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. CONCLUSIONS/SIGNIFICANCE: Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence.

  16. Bayesian modelling of the emission spectrum of the JET Li-BES system

    CERN Document Server

    Kwak, Sehyun; Brix, M; Ghim, Y -c; Contributors, JET

    2015-01-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy (Li-BES) system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The p...

  17. Bayesian inference of the resonance content of p(γ, K+Λ

    Directory of Open Access Journals (Sweden)

    Ryckebusch J.

    2012-12-01

    Full Text Available A Bayesian analysis of the world’s (γ, K+Λ data is presented. We adopt a Regge-plus-resonance framework featuring consistent couplings for nucleon resonances up to spin J = 5/2, and evaluate 2048 model variants considering all possible combinations of 11 candidate resonances. The best model, labeled RPR-2011, is discussed with special emphasis on nucleon resonances in the 1900-MeV mass region.

  18. Bayesian inference of the resonance content of p(gamma,K+)Lambda

    CERN Document Server

    Vancraeyveld, Pieter; Ryckebusch, Jan; Vrancx, Tom

    2012-01-01

    A Bayesian analysis of the world's p(gamma,K+)Lambda data is presented. We adopt a Regge-plus-resonance framework featuring consistent couplings for nucleon resonances up to spin J=5/2, and evaluate 2048 model variants considering all possible combinations of 11 candidate resonances. The best model, labeled RPR-2011, is discussed with special emphasis on nucleon resonances in the 1900-MeV mass region.

  19. On an adaptive preconditioned Crank-Nicolson MCMC algorithm for infinite dimensional Bayesian inference

    Science.gov (United States)

    Hu, Zixi; Yao, Zhewei; Li, Jinglai

    2017-03-01

    Many scientific and engineering problems require to perform Bayesian inference for unknowns of infinite dimension. In such problems, many standard Markov Chain Monte Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement, which is referred to as being dimension dependent. To this end, a family of dimensional independent MCMC algorithms, known as the preconditioned Crank-Nicolson (pCN) methods, were proposed to sample the infinite dimensional parameters. In this work we develop an adaptive version of the pCN algorithm, where the covariance operator of the proposal distribution is adjusted based on sampling history to improve the simulation efficiency. We show that the proposed algorithm satisfies an important ergodicity condition under some mild assumptions. Finally we provide numerical examples to demonstrate the performance of the proposed method.

  20. cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation

    CERN Document Server

    Ishida, E E O; Penna-Lima, M; Cisewski, J; de Souza, R S; Trindade, A M M; Cameron, E

    2015-01-01

    Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogues. Here we present cosmoabc, a Python ABC sampler featuring a Population Monte Carlo (PMC) variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code is very flexible and can be easily coupled to an external simulator, while allowing to incorporate arbitrary distance and prior functions. As an example of practical application, we coupled cosmoabc with the numcosmo library and demonstrate how it can be used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function. cosmoabc is published under the GPLv3 license on PyPI and GitHub and documentation is availabl...

  1. Bayesian inference of the resonance content of p(gamma,K^+)Lambda

    CERN Document Server

    De Cruz, Lesley; Vancraeyveld, Pieter; Ryckebusch, Jan

    2011-01-01

    A Bayesian analysis of the world's p(gamma,K^+)Lambda data is presented. We find that the following nucleon resonances have the highest probability of contributing to the reaction: S11(1535), S11(1650), F15(1680), P13(1720), D13(1900), P13(1900), P11(1900), and F15(2000). We adopt a Regge-plus-resonance framework featuring consistent couplings for nucleon resonances up to spin J=5/2. We evaluate all possible combinations of 11 candidate resonances. The best model is selected from the 2048 model variants by calculating the Bayesian evidence values against the world's p(gamma,K^+)Lambda data.

  2. Bayesian network modelling of upper gastrointestinal bleeding

    Science.gov (United States)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  3. IZI: Inferring the Gas Phase Metallicity (Z) and Ionization Parameter (q) of Ionized Nebulae using Bayesian Statistics

    CERN Document Server

    Blanc, Guillermo A; Vogt, Frédéric P A; Dopita, Michael A

    2014-01-01

    We present a new method for inferring the metallicity (Z) and ionization parameter (q) of HII regions and star-forming galaxies using strong nebular emission lines (SEL). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photo-ionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics the method is flexible and not tied to a particular photo-ionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extra-galactic HII regions we assess the performance of commonly used SEL abundance diagnostics. W...

  4. Nonstationary patterns of isolation-by-distance: inferring measures of local genetic differentiation with Bayesian kriging.

    Science.gov (United States)

    Duforet-Frebourg, Nicolas; Blum, Michael G B

    2014-04-01

    Patterns of isolation-by-distance (IBD) arise when population differentiation increases with increasing geographic distances. Patterns of IBD are usually caused by local spatial dispersal, which explains why differences of allele frequencies between populations accumulate with distance. However, spatial variations of demographic parameters such as migration rate or population density can generate nonstationary patterns of IBD where the rate at which genetic differentiation accumulates varies across space. To characterize nonstationary patterns of IBD, we infer local genetic differentiation based on Bayesian kriging. Local genetic differentiation for a sampled population is defined as the average genetic differentiation between the sampled population and fictive neighboring populations. To avoid defining populations in advance, the method can also be applied at the scale of individuals making it relevant for landscape genetics. Inference of local genetic differentiation relies on a matrix of pairwise similarity or dissimilarity between populations or individuals such as matrices of FST between pairs of populations. Simulation studies show that maps of local genetic differentiation can reveal barriers to gene flow but also other patterns such as continuous variations of gene flow across habitat. The potential of the method is illustrated with two datasets: single nucleotide polymorphisms from human Swedish populations and dominant markers for alpine plant species.

  5. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  6. Bayesian Network Based XP Process Modelling

    Directory of Open Access Journals (Sweden)

    Mohamed Abouelela

    2010-07-01

    Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.

  7. 基于贝叶斯网络的不确定环境装备故障推理模型%Applying BN (Bayesian Network) to Establishing a New and Effective Failure Inference Model of Equipment under Uncertainties

    Institute of Scientific and Technical Information of China (English)

    蔡志强; 司书宾; 孙树栋; 王宁

    2011-01-01

    针对不确定环境下装备故障传播及推理问题,提出了一种基于贝叶斯网络的故障推理模型,利用网络结构与概率分布有效表达装备中各部件故障状态、关联关系及传播方式.首先将模型中变量按照其对应部件在装备中所处地位及层次的差别进一步分为故障检测变量、故障原因变量与故障模式变量三个子集.其次,依据维修人员在故障推理过程中的思维方式,提出了一套符合故障推理任务的模型网络结构有向边取向规则.然后,分析故障推理模型中变量条件概率分布特点,明确其在不确定性表达及参数简化中的优势.最后,建立平视显示器的故障推理模型实例,结合贝叶斯网络推理能力进行故障预测及诊断分析,验证模型的有效性.%Aim. The introduction of the full paper reviews some papers in the open literature and points out what we believe to be their shortcomings; then, it reviews some other papers on successful BN applications; finally, it proposes what we believe to be a new and effective application mentioned in the title. Section 1 explains how we established our failure inference model based on the BN; its core consists of; (1) our failure inference model uses the network topology and the probability distributions to represent the components, relationships and propagations in the equipment; (2 ) we divide the variables into failure detection subset, failure cause subset and failure mode subset according to their levels and causalities in the equipment; ( 3) we put forward the network edge orientation rule based on the maintenance engineers' actual failure reasoning processes; (4) we analyze the conditional probability distributions of the variables in the failure inference model to indicate their advantages for uncertainty representations and parameter reductions. Section 2 does the case study of a head-up display failure inference model; the results , given in Tables 4, 5 and 6

  8. Bayesian selection of nucleotide substitution models and their site assignments.

    Science.gov (United States)

    Wu, Chieh-Hsi; Suchard, Marc A; Drummond, Alexei J

    2013-03-01

    Probabilistic inference of a phylogenetic tree from molecular sequence data is predicated on a substitution model describing the relative rates of change between character states along the tree for each site in the multiple sequence alignment. Commonly, one assumes that the substitution model is homogeneous across sites within large partitions of the alignment, assigns these partitions a priori, and then fixes their underlying substitution model to the best-fitting model from a hierarchy of named models. Here, we introduce an automatic model selection and model averaging approach within a Bayesian framework that simultaneously estimates the number of partitions, the assignment of sites to partitions, the substitution model for each partition, and the uncertainty in these selections. This new approach is implemented as an add-on to the BEAST 2 software platform. We find that this approach dramatically improves the fit of the nucleotide substitution model compared with existing approaches, and we show, using a number of example data sets, that as many as nine partitions are required to explain the heterogeneity in nucleotide substitution process across sites in a single gene analysis. In some instances, this improved modeling of the substitution process can have a measurable effect on downstream inference, including the estimated phylogeny, relative divergence times, and effective population size histories.

  9. Bayesian nonparametric duration model with censorship

    Directory of Open Access Journals (Sweden)

    Joseph Hakizamungu

    2007-10-01

    Full Text Available This paper is concerned with nonparametric i.i.d. durations models censored observations and we establish by a simple and unified approach the general structure of a bayesian nonparametric estimator for a survival function S. For Dirichlet prior distributions, we describe completely the structure of the posterior distribution of the survival function. These results are essentially supported by prior and posterior independence properties.

  10. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  11. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    .1 with the title ‘Inference'.) This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods using Markov chain Monte Carlo (MCMC) simulations. Due to space limitations the focus...

  12. Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model

    Science.gov (United States)

    Stow, Craig A.; Scavia, Donald

    2009-02-01

    Quantifying parameter and prediction uncertainty in a rigorous framework can be an important component of model skill assessment. Generally, models with lower uncertainty will be more useful for prediction and inference than models with higher uncertainty. Ensemble estimation, an idea with deep roots in the Bayesian literature, can be useful to reduce model uncertainty. It is based on the idea that simultaneously estimating common or similar parameters among models can result in more precise estimates. We demonstrate this approach using the Streeter-Phelps dissolved oxygen sag model fit to 29 years of data from Chesapeake Bay. Chesapeake Bay has a long history of bottom water hypoxia and several models are being used to assist management decision-making in this system. The Bayesian framework is particularly useful in a decision context because it can combine both expert-judgment and rigorous parameter estimation to yield model forecasts and a probabilistic estimate of the forecast uncertainty.

  13. Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess

    Science.gov (United States)

    Haworth, Guy; Regan, Ken; di Fatta, Giuseppe

    Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.

  14. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics

    Science.gov (United States)

    Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.

  15. Bayesian structural equation modeling in sport and exercise psychology.

    Science.gov (United States)

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  16. Time-series gas prediction model using LS-SVR within a Bayesian framework

    Institute of Scientific and Technical Information of China (English)

    Qiao Meiying; Ma Xiaoping; Lan Jianyi; Wang Ying

    2011-01-01

    The traditional least squares support vector regression (LS-SVR) model, using cross validation to determine the regularization parameter and kernel parameter, is time-consuming. We propose a Bayesian evidence framework to infer the LS-SVR model parameters. Three levels Bayesian inferences are used to determine the model parameters, regularization hyper-parameters and tune the nuclear parameters by model comparison. On this basis, we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm. The gas outburst data of a Hebi 10th mine working face is used to validate the model. The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method. Finally, within a MATLAB7.1 environment, we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation. The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast

  17. Hierarchical animal movement models for population-level inference

    Science.gov (United States)

    Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.

    2016-01-01

    New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.

  18. A Tutorial Introduction to Bayesian Models of Cognitive Development

    Science.gov (United States)

    2011-01-01

    Bayesian reasoner in the long run (de Finetti , 1937). Even if the Bayesian framework captures optimal inductive inference, does that mean it is an...Johns Hopkins University Press. de Finetti , B. (1937). Prevision, its logical laws, its subjective sources. In H. Kyburg & H. Smokler (Eds.), In...studies in subjective probability (2nd ed.). New York: J. Wiley and Sons. de Finetti , B. (1974). Theory of probability (2nd ed.). New York: J. Wiley and

  19. Bayesian Gaussian Copula Factor Models for Mixed Data.

    Science.gov (United States)

    Murray, Jared S; Dunson, David B; Carin, Lawrence; Lucas, Joseph E

    2013-06-01

    Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.

  20. Bayesian statistic methods and theri application in probabilistic simulation models

    Directory of Open Access Journals (Sweden)

    Sergio Iannazzo

    2007-03-01

    Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.

  1. Statistical Inference in Graphical Models

    Science.gov (United States)

    2008-06-17

    Probabilistic Network Library ( PNL ). While not fully mature, PNL does provide the most commonly-used algorithms for inference and learning with the efficiency...of C++, and also offers interfaces for calling the library from MATLAB and R 1361. Notably, both BNT and PNL provide learning and inference algorithms...mature and has been used for research purposes for several years, it is written in MATLAB and thus is not suitable to be used in real-time settings. PNL

  2. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  3. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    Science.gov (United States)

    Sandhu, Rimple; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid-structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib-Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  4. On the criticality of inferred models

    CERN Document Server

    Mastromatteo, Iacopo

    2011-01-01

    Advanced inference techniques allow one to reconstruct the pattern of interaction from high dimensional data sets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to a phase transition. On one side, we show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher Information) is directly related to the model's susceptibility. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. On the other, this region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time-scales naturally yield models which are close to criticality.

  5. Unsupervised learning applied in MER and ECG signals through Gaussians mixtures with the Expectation-Maximization algorithm and Variational Bayesian Inference.

    Science.gov (United States)

    Vargas Cardona, Hernán Darío; Orozco, Álvaro Ángel; Álvarez, Mauricio A

    2013-01-01

    Automatic identification of biosignals is one of the more studied fields in biomedical engineering. In this paper, we present an approach for the unsupervised recognition of biomedical signals: Microelectrode Recordings (MER) and Electrocardiography signals (ECG). The unsupervised learning is based in classic and bayesian estimation theory. We employ gaussian mixtures models with two estimation methods. The first is derived from the frequentist estimation theory, known as Expectation-Maximization (EM) algorithm. The second is obtained from bayesian probabilistic estimation and it is called variational inference. In this framework, both methods are used for parameters estimation of Gaussian mixtures. The mixtures models are used for unsupervised pattern classification, through the responsibility matrix. The algorithms are applied in two real databases acquired in Parkinson's disease surgeries and electrocardiograms. The results show an accuracy over 85% in MER and 90% in ECG for identification of two classes. These results are statistically equal or even better than parametric (Naive Bayes) and nonparametric classifiers (K-nearest neighbor).

  6. EXONEST: Bayesian model selection applied to the detection and characterization of exoplanets via photometric variations

    Energy Technology Data Exchange (ETDEWEB)

    Placek, Ben; Knuth, Kevin H. [Physics Department, University at Albany (SUNY), Albany, NY 12222 (United States); Angerhausen, Daniel, E-mail: bplacek@albany.edu, E-mail: kknuth@albany.edu, E-mail: daniel.angerhausen@gmail.com [Department of Physics, Applied Physics, and Astronomy, Rensselear Polytechnic Institute, Troy, NY 12180 (United States)

    2014-11-10

    EXONEST is an algorithm dedicated to detecting and characterizing the photometric signatures of exoplanets, which include reflection and thermal emission, Doppler boosting, and ellipsoidal variations. Using Bayesian inference, we can test between competing models that describe the data as well as estimate model parameters. We demonstrate this approach by testing circular versus eccentric planetary orbital models, as well as testing for the presence or absence of four photometric effects. In addition to using Bayesian model selection, a unique aspect of EXONEST is the potential capability to distinguish between reflective and thermal contributions to the light curve. A case study is presented using Kepler data recorded from the transiting planet KOI-13b. By considering only the nontransiting portions of the light curve, we demonstrate that it is possible to estimate the photometrically relevant model parameters of KOI-13b. Furthermore, Bayesian model testing confirms that the orbit of KOI-13b has a detectable eccentricity.

  7. EXONEST: Bayesian Model Selection Applied to the Detection and Characterization of Exoplanets Via Photometric Variations

    CERN Document Server

    Placek, Ben; Angerhausen, Daniel

    2013-01-01

    EXONEST is an algorithm dedicated to detecting and characterizing the photometric signatures of exoplanets, which include reflection and thermal emission, Doppler boosting, and ellipsoidal variations. Using Bayesian Inference, we can test between competing models that describe the data as well as estimate model parameters. We demonstrate this approach by testing circular versus eccentric planetary orbital models, as well as testing for the presence or absence of four photometric effects. In addition to using Bayesian Model Selection, a unique aspect of EXONEST is the capability to distinguish between reflective and thermal contributions to the light curve. A case-study is presented using Kepler data recorded from the transiting planet KOI-13b. By considering only the non-transiting portions of the light curve, we demonstrate that it is possible to estimate the photometrically-relevant model parameters of KOI-13b. Furthermore, Bayesian model testing confirms that the orbit of KOI-13b has a detectable eccentric...

  8. EXONEST: Bayesian Model Selection Applied to the Detection and Characterization of Exoplanets via Photometric Variations

    Science.gov (United States)

    Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel

    2014-11-01

    EXONEST is an algorithm dedicated to detecting and characterizing the photometric signatures of exoplanets, which include reflection and thermal emission, Doppler boosting, and ellipsoidal variations. Using Bayesian inference, we can test between competing models that describe the data as well as estimate model parameters. We demonstrate this approach by testing circular versus eccentric planetary orbital models, as well as testing for the presence or absence of four photometric effects. In addition to using Bayesian model selection, a unique aspect of EXONEST is the potential capability to distinguish between reflective and thermal contributions to the light curve. A case study is presented using Kepler data recorded from the transiting planet KOI-13b. By considering only the nontransiting portions of the light curve, we demonstrate that it is possible to estimate the photometrically relevant model parameters of KOI-13b. Furthermore, Bayesian model testing confirms that the orbit of KOI-13b has a detectable eccentricity.

  9. Bayesian variable selection for latent class models.

    Science.gov (United States)

    Ghosh, Joyee; Herring, Amy H; Siega-Riz, Anna Maria

    2011-09-01

    In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.

  10. Bayesian model selection in Gaussian regression

    CERN Document Server

    Abramovich, Felix

    2009-01-01

    We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting estimator. We establish the oracle inequality and specify conditions on the prior that imply its asymptotic minimaxity within a wide range of sparse and dense settings for "nearly-orthogonal" and "multicollinear" designs.

  11. Bayesian mixture models for partially verified data

    DEFF Research Database (Denmark)

    Kostoulas, Polychronis; Browne, William J.; Nielsen, Søren Saxmose;

    2013-01-01

    for some individuals, in order to minimize this loss in the discriminatory power. The distribution of the continuous antibody response against MAP has been obtained for healthy, MAP-infected and MAP-infectious cows of different age groups. The overall power of the milk-ELISA to discriminate between healthy......Bayesian mixture models can be used to discriminate between the distributions of continuous test responses for different infection stages. These models are particularly useful in case of chronic infections with a long latent period, like Mycobacterium avium subsp. paratuberculosis (MAP) infection...

  12. Bayesian inference of galaxy formation from the K-band luminosity function of galaxies: tensions between theory and observation

    CERN Document Server

    Lu, Yu; Katz, Neal; Weinberg, Martin D

    2011-01-01

    We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al (2011). The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass halos, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalising over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in halos of different masses, the HI mass function, the redshift evolution of the stellar mass function of galaxies, and the global star formation history. Using posterior predictive checking with the available observatio...

  13. A Bayesian Shrinkage Approach for AMMI Models.

    Science.gov (United States)

    da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  14. A Bayesian Shrinkage Approach for AMMI Models.

    Directory of Open Access Journals (Sweden)

    Carlos Pereira da Silva

    Full Text Available Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI model, are widely applicable to genotype-by-environment interaction (GEI studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05 in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct

  15. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function

  16. Bayesian modelling of compositional heterogeneity in molecular phylogenetics.

    Science.gov (United States)

    Heaps, Sarah E; Nye, Tom M W; Boys, Richard J; Williams, Tom A; Embley, T Martin

    2014-10-01

    In molecular phylogenetics, standard models of sequence evolution generally assume that sequence composition remains constant over evolutionary time. However, this assumption is violated in many datasets which show substantial heterogeneity in sequence composition across taxa. We propose a model which allows compositional heterogeneity across branches, and formulate the model in a Bayesian framework. Specifically, the root and each branch of the tree is associated with its own composition vector whilst a global matrix of exchangeability parameters applies everywhere on the tree. We encourage borrowing of strength between branches by developing two possible priors for the composition vectors: one in which information can be exchanged equally amongst all branches of the tree and another in which more information is exchanged between neighbouring branches than between distant branches. We also propose a Markov chain Monte Carlo (MCMC) algorithm for posterior inference which uses data augmentation of substitutional histories to yield a simple complete data likelihood function that factorises over branches and allows Gibbs updates for most parameters. Standard phylogenetic models are not informative about the root position. Therefore a significant advantage of the proposed model is that it allows inference about rooted trees. The position of the root is fundamental to the biological interpretation of trees, both for polarising trait evolution and for establishing the order of divergence among lineages. Furthermore, unlike some other related models from the literature, inference in the model we propose can be carried out through a simple MCMC scheme which does not require problematic dimension-changing moves. We investigate the performance of the model and priors in analyses of two alignments for which there is strong biological opinion about the tree topology and root position.

  17. Characteristics of SiC neutron sensor spectrum unfolding process based on Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Cetnar, Jerzy; Krolikowski, Igor [Faculty of Energy and Fuels AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Ottaviani, L. [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231 -13397 Marseille Cedex 20 (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    This paper deals with SiC detector signal interpretation in neutron radiation measurements in mixed neutron gamma radiation fields, which is called the detector inverse problem or the spectrum unfolding, and it aims in finding a representation of the primary radiation, based on the measured detector signals. In our novel methodology we resort to Bayesian inference approach. In the developed procedure the resultant spectra is unfolded form detector channels reading, where the estimated neutron fluence in a group structure is obtained with its statistical characteristic comprising of standard deviation and correlation matrix. In the paper we present results of unfolding process for case of D-T neutron source in neutron moderating environment. Discussions of statistical properties of obtained results are presented as well as of the physical meaning of obtained correlation matrix of estimated group fluence. The presented works has been carried out within the I-SMART project, which is part of the KIC InnoEnergy R and D program. (authors)

  18. Gaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies.

    Science.gov (United States)

    Palacios, Julia A; Minin, Vladimir N

    2013-03-01

    Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method.

  19. Use of Bayesian Inference to Correlate In Vitro Embryo Production and In Vivo Fertility in Zebu Bulls

    Directory of Open Access Journals (Sweden)

    Mateus José Sudano

    2011-01-01

    Full Text Available The objective of this experiment was to test in vitro embryo production (IVP as a tool to estimate fertility performance in zebu bulls using Bayesian inference statistics. Oocytes were matured and fertilized in vitro using sperm cells from three different Zebu bulls (V, T, and G. The three bulls presented similar results with regard to pronuclear formation and blastocyst formation rates. However, the cleavage rates were different between bulls. The estimated conception rates based on combined data of cleavage and blastocyst formation were very similar to the true conception rates observed for the same bulls after a fixed-time artificial insemination program. Moreover, even when we used cleavage rate data only or blastocyst formation data only, the estimated conception rates were still close to the true conception rates. We conclude that Bayesian inference is an effective statistical procedure to estimate in vivo bull fertility using data from IVP.

  20. Identifying causal networks linking cancer processes and anti-tumor immunity using Bayesian network inference and metagene constructs.

    Science.gov (United States)

    Kaiser, Jacob L; Bland, Cassidy L; Klinke, David J

    2016-03-01

    Cancer arises from a deregulation of both intracellular and intercellular networks that maintain system homeostasis. Identifying the architecture of these networks and how they are changed in cancer is a pre-requisite for designing drugs to restore homeostasis. Since intercellular networks only appear in intact systems, it is difficult to identify how these networks become altered in human cancer using many of the common experimental models. To overcome this, we used the diversity in normal and malignant human tissue samples from the Cancer Genome Atlas (TCGA) database of human breast cancer to identify the topology associated with intercellular networks in vivo. To improve the underlying biological signals, we constructed Bayesian networks using metagene constructs, which represented groups of genes that are concomitantly associated with different immune and cancer states. We also used bootstrap resampling to establish the significance associated with the inferred networks. In short, we found opposing relationships between cell proliferation and epithelial-to-mesenchymal transformation (EMT) with regards to macrophage polarization. These results were consistent across multiple carcinomas in that proliferation was associated with a type 1 cell-mediated anti-tumor immune response and EMT was associated with a pro-tumor anti-inflammatory response. To address the identifiability of these networks from other datasets, we could identify the relationship between EMT and macrophage polarization with fewer samples when the Bayesian network was generated from malignant samples alone. However, the relationship between proliferation and macrophage polarization was identified with fewer samples when the samples were taken from a combination of the normal and malignant samples. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:470-479, 2016.

  1. Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo.

    Science.gov (United States)

    Wu, Chieh-Hsi; Drummond, Alexei J

    2011-05-01

    We provide a framework for Bayesian coalescent inference from microsatellite data that enables inference of population history parameters averaged over microsatellite mutation models. To achieve this we first implemented a rich family of microsatellite mutation models and related components in the software package BEAST. BEAST is a powerful tool that performs Bayesian MCMC analysis on molecular data to make coalescent and evolutionary inferences. Our implementation permits the application of existing nonparametric methods to microsatellite data. The implemented microsatellite models are based on the replication slippage mechanism and focus on three properties of microsatellite mutation: length dependency of mutation rate, mutational bias toward expansion or contraction, and number of repeat units changed in a single mutation event. We develop a new model that facilitates microsatellite model averaging and Bayesian model selection by transdimensional MCMC. With Bayesian model averaging, the posterior distributions of population history parameters are integrated across a set of microsatellite models and thus account for model uncertainty. Simulated data are used to evaluate our method in terms of accuracy and precision of estimation and also identification of the true mutation model. Finally we apply our method to a red colobus monkey data set as an example.

  2. Bayesian Discovery of Linear Acyclic Causal Models

    CERN Document Server

    Hoyer, Patrik O

    2012-01-01

    Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-based methods (Geiger and Heckerman, 1994) (which assign relative scores to the equivalence classes) are available. On the contrary, all current methods able to utilize non-Gaussianity in the data (Shimizu et al., 2006; Hoyer et al., 2008) always return only a single graph or a single equivalence class, and so are fundamentally unable to express the degree of certainty attached to that output. In this paper we develop a Bayesian score-based approach able to take advantage of non-Gaussianity when estimating linear acyclic causal models, and we empirically demonstrate that, at least on very modest size networks, its accur...

  3. Graphical models and Bayesian domains in risk modelling: application in microbiological risk assessment.

    Science.gov (United States)

    Greiner, Matthias; Smid, Joost; Havelaar, Arie H; Müller-Graf, Christine

    2013-05-15

    Quantitative microbiological risk assessment (QMRA) models are used to reflect knowledge about complex real-world scenarios for the propagation of microbiological hazards along the feed and food chain. The aim is to provide insight into interdependencies among model parameters, typically with an interest to characterise the effect of risk mitigation measures. A particular requirement is to achieve clarity about the reliability of conclusions from the model in the presence of uncertainty. To this end, Monte Carlo (MC) simulation modelling has become a standard in so-called probabilistic risk assessment. In this paper, we elaborate on the application of Bayesian computational statistics in the context of QMRA. It is useful to explore the analogy between MC modelling and Bayesian inference (BI). This pertains in particular to the procedures for deriving prior distributions for model parameters. We illustrate using a simple example that the inability to cope with feedback among model parameters is a major limitation of MC modelling. However, BI models can be easily integrated into MC modelling to overcome this limitation. We refer a BI submodel integrated into a MC model to as a "Bayes domain". We also demonstrate that an entire QMRA model can be formulated as Bayesian graphical model (BGM) and discuss the advantages of this approach. Finally, we show example graphs of MC, BI and BGM models, highlighting the similarities among the three approaches.

  4. Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

    Science.gov (United States)

    Iskandar, Ismed; Satria Gondokaryono, Yudi

    2016-02-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  5. Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    Mario A Pardo

    Full Text Available We inferred the population densities of blue whales (Balaenoptera musculus and short-beaked common dolphins (Delphinus delphis in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT. Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge. Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more

  6. Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework.

    Science.gov (United States)

    Pardo, Mario A; Gerrodette, Tim; Beier, Emilio; Gendron, Diane; Forney, Karin A; Chivers, Susan J; Barlow, Jay; Palacios, Daniel M

    2015-01-01

    We inferred the population densities of blue whales (Balaenoptera musculus) and short-beaked common dolphins (Delphinus delphis) in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT). Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge). Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more southern portion of the

  7. Enhancing debris flow modeling parameters integrating Bayesian networks

    Science.gov (United States)

    Graf, C.; Stoffel, M.; Grêt-Regamey, A.

    2009-04-01

    Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk

  8. Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants

    KAUST Repository

    Jin, Ick Hoon

    2014-03-01

    Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis. © 2012 Elsevier B.V. All rights reserved.

  9. Compressed Inference for Probabilistic Sequential Models

    CERN Document Server

    Polatkan, Gungor

    2012-01-01

    Hidden Markov models (HMMs) and conditional random fields (CRFs) are two popular techniques for modeling sequential data. Inference algorithms designed over CRFs and HMMs allow estimation of the state sequence given the observations. In several applications, estimation of the state sequence is not the end goal; instead the goal is to compute some function of it. In such scenarios, estimating the state sequence by conventional inference techniques, followed by computing the functional mapping from the estimate is not necessarily optimal. A more formal approach is to directly infer the final outcome from the observations. In particular, we consider the specific instantiation of the problem where the goal is to find the state trajectories without exact transition points and derive a novel polynomial time inference algorithm that outperforms vanilla inference techniques. We show that this particular problem arises commonly in many disparate applications and present experiments on three of them: (1) Toy robot trac...

  10. Hopes and Cautions in Implementing Bayesian Structural Equation Modeling

    Science.gov (United States)

    MacCallum, Robert C.; Edwards, Michael C.; Cai, Li

    2012-01-01

    Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…

  11. Inferring Mechanistic Parameters from Amyloid Formation Kinetics by Approximate Bayesian Computation.

    Science.gov (United States)

    Nakatani-Webster, Eri; Nath, Abhinav

    2017-03-14

    Amyloid formation is implicated in a number of human diseases, and is thought to proceed via a nucleation-dependent polymerization mechanism. Experimenters often wish to relate changes in amyloid formation kinetics, for example, in response to small molecules to specific mechanistic steps along this pathway. However, fitting kinetic fibril formation data to a complex model including explicit rate constants results in an ill-posed problem with a vast number of potential solutions. The levels of uncertainty remaining in parameters calculated from these models, arising both from experimental noise and high levels of degeneracy or codependency in parameters, is often unclear. Here, we demonstrate that a combination of explicit mathematical models with an approximate Bayesian computation approach can be used to assign the mechanistic effects of modulators on amyloid fibril formation. We show that even when exact rate constants cannot be extracted, parameters derived from these rate constants can be recovered and used to assign mechanistic effects and their relative magnitudes with a great deal of confidence. Furthermore, approximate Bayesian computation provides a robust method for visualizing uncertainty remaining in the model parameters, regardless of its origin. We apply these methods to the problem of heparin-mediated tau polymerization, which displays complex kinetic behavior not amenable to analysis by more traditional methods. Our analysis indicates that the role of heparin cannot be explained by enhancement of nucleation alone, as has been previously proposed. The methods described here are applicable to a wide range of systems, as models can be easily adapted to account for new reactions and reversibility.

  12. Modeling Land-Use Decision Behavior with Bayesian Belief Networks

    Directory of Open Access Journals (Sweden)

    Inge Aalders

    2008-06-01

    Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.

  13. Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling

    CERN Document Server

    Knowles, David

    2010-01-01

    A nonparametric Bayesian extension of Factor Analysis (FA) is proposed where observed data Y is modeled as a linear superposition, G, of a potentially infinite number of hidden factors, X. The Indian Buffet Process (IBP) is used as a prior on G to incorporate sparsity and to allow the number of latent features to be inferred. The model's utility for modeling gene expression data is investigated using randomly generated datasets based on a known sparse connectivity matrix for E. Coli, and on three biological datasets of increasing complexity.

  14. Nonparametric Bayesian Inference for Mean Residual Life Functions in Survival Analysis

    OpenAIRE

    Poynor, Valerie; Kottas, Athanasios

    2014-01-01

    Modeling and inference for survival analysis problems typically revolves around different functions related to the survival distribution. Here, we focus on the mean residual life function which provides the expected remaining lifetime given that a subject has survived (i.e., is event-free) up to a particular time. This function is of direct interest in reliability, medical, and actuarial fields. In addition to its practical interpretation, the mean residual life function characterizes the sur...

  15. Entropic Priors and Bayesian Model Selection

    CERN Document Server

    Brewer, Brendon J

    2009-01-01

    We demonstrate that the principle of maximum relative entropy (ME), used judiciously, can ease the specification of priors in model selection problems. The resulting effect is that models that make sharp predictions are disfavoured, weakening the usual Bayesian "Occam's Razor". This is illustrated with a simple example involving what Jaynes called a "sure thing" hypothesis. Jaynes' resolution of the situation involved introducing a large number of alternative "sure thing" hypotheses that were possible before we observed the data. However, in more complex situations, it may not be possible to explicitly enumerate large numbers of alternatives. The entropic priors formalism produces the desired result without modifying the hypothesis space or requiring explicit enumeration of alternatives; all that is required is a good model for the prior predictive distribution for the data. This idea is illustrated with a simple rigged-lottery example, and we outline how this idea may help to resolve a recent debate amongst ...

  16. Bayesian Estimation of a Mixture Model

    Directory of Open Access Journals (Sweden)

    Ilhem Merah

    2015-05-01

    Full Text Available We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010. This one is a mixture of a Gamma distribution G(2, (1/θ and a new distribution L(θ. We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980 and Tierney and Kadane (1986. Using a statistical sample of 60 failure data relative to a technical device, we illustrate the results derived. Based on a simulation study, comparisons are made between these two methods and the maximum likelihood method of this two parameters model.

  17. A defense of Columbo (and of the use of Bayesian inference in forensics): A multilevel introduction to probabilistic reasoning

    CERN Document Server

    D'Agostini, G

    2010-01-01

    Triggered by a recent interesting New Scientist article on the too frequent incorrect use of probabilistic evidence in courts, I introduce the basic concepts of probabilistic inference with a toy model, and discuss several important issues that need to be understood in order to extend the basic reasoning to real life cases. In particular, I emphasize the often neglected point that degrees of beliefs are updated not by `bare facts' alone, but by all available information pertaining to them, including how they have been acquired. In this light I show that, contrary to what claimed in that article, there was no "probabilistic pitfall" in the Columbo's episode pointed as example of "bad mathematics" yielding "rough justice". Instead, such a criticism could have a `negative reaction' to the article itself and to the use of Bayesian reasoning in courts, as well as in all other places in which probabilities need to be assessed and decisions need to be made. Anyway, besides introductory/recreational aspects, the pape...

  18. Condition monitoring of distributed systems using two-stage Bayesian inference data fusion

    Science.gov (United States)

    Jaramillo, Víctor H.; Ottewill, James R.; Dudek, Rafał; Lepiarczyk, Dariusz; Pawlik, Paweł

    2017-03-01

    In industrial practice, condition monitoring is typically applied to critical machinery. A particular piece of machinery may have its own condition monitoring system that allows the health condition of said piece of equipment to be assessed independently of any connected assets. However, industrial machines are typically complex sets of components that continuously interact with one another. In some cases, dynamics resulting from the inception and development of a fault can propagate between individual components. For example, a fault in one component may lead to an increased vibration level in both the faulty component, as well as in connected healthy components. In such cases, a condition monitoring system focusing on a specific element in a connected set of components may either incorrectly indicate a fault, or conversely, a fault might be missed or masked due to the interaction of a piece of equipment with neighboring machines. In such cases, a more holistic condition monitoring approach that can not only account for such interactions, but utilize them to provide a more complete and definitive diagnostic picture of the health of the machinery is highly desirable. In this paper, a Two-Stage Bayesian Inference approach allowing data from separate condition monitoring systems to be combined is presented. Data from distributed condition monitoring systems are combined in two stages, the first data fusion occurring at a local, or component, level, and the second fusion combining data at a global level. Data obtained from an experimental rig consisting of an electric motor, two gearboxes, and a load, operating under a range of different fault conditions is used to illustrate the efficacy of the method at pinpointing the root cause of a problem. The obtained results suggest that the approach is adept at refining the diagnostic information obtained from each of the different machine components monitored, therefore improving the reliability of the health assessment of

  19. Experiments for Evaluating Application of Bayesian Inference to Situation Awareness of Human Operators in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seongkeun; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is to confirm if Bayesian inference can properly reflect the situation awareness of real human operators, and find the difference between the situation of ideal and practical operators, and investigate the factors which contributes to those difference. As a results, human can not think like computer. If human can memorize all the information, and their thinking process is same to the CPU of computer, the results of these two experiments come out more than 99%. However the probability of finding right malfunction by humans are only 64.52% in simple experiment, and 51.61% in complex experiment. Cognition is the mental processing that includes the attention of working memory, comprehending and producing language, calculating, reasoning, problem solving, and decision making. There are many reasons why human thinking process is different with computer, but in this experiment, we suggest that the working memory is the most important factor. Humans have limited working memory which has only seven chunks capacity. These seven chunks are called magic number. If there are more than seven sequential information, people start to forget the previous information because their working memory capacity is running over. We can check how much working memory affects to the result through the simple experiment. Then what if we neglect the effect of working memory? The total number of subjects who have incorrect memory is 7 (subject 3, 5, 6, 7, 8, 15, 25). They could find the right malfunction if the memory hadn't changed because of lack of working memory. Then the probability of find correct malfunction will be increased to 87.10% from 64.52%. Complex experiment has similar result. In this case, eight subjects(1, 5, 8, 9, 15, 17, 18, 30) had changed the memory, and it affects to find the right malfunction. Considering it, then the probability would be (16+8)/31 = 77.42%.

  20. Bayesian inference of non-positive spectral functions in quantum field theory

    CERN Document Server

    Rothkopf, Alexander

    2016-01-01

    We present the generalization to non positive definite spectral functions of a recently proposed Bayesian deconvolution approach (BR method). The novel prior used here retains many of the beneficial analytic properties of the original method, in particular it allows us to integrate out the hyperparameter $\\alpha$ directly. To preserve the underlying axiom of scale invariance, we introduce a second default-model related function, whose role is discussed. Our reconstruction prescription is contrasted with existing direct methods, as well as with an approach where shift functions are introduced to compensate for negative spectral features. A mock spectrum analysis inspired by the study of gluon spectral functions in QCD illustrates the capabilities of this new approach.

  1. On the criticality of inferred models

    Science.gov (United States)

    Mastromatteo, Iacopo; Marsili, Matteo

    2011-10-01

    Advanced inference techniques allow one to reconstruct a pattern of interaction from high dimensional data sets, from probing simultaneously thousands of units of extended systems—such as cells, neural tissues and financial markets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to singular values of parameters, akin to critical points in physics where phase transitions occur. These are points where the response of physical systems to external perturbations, as measured by the susceptibility, is very large and diverges in the limit of infinite size. We show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher information) are directly related to the susceptibility of the inferred model. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. This region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time scales naturally yield models which are close to criticality.

  2. Improving randomness characterization through Bayesian model selection

    CERN Document Server

    R., Rafael Díaz-H; Martínez, Alí M Angulo; U'Ren, Alfred B; Hirsch, Jorge G; Marsili, Matteo; Castillo, Isaac Pérez

    2016-01-01

    Nowadays random number generation plays an essential role in technology with important applications in areas ranging from cryptography, which lies at the core of current communication protocols, to Monte Carlo methods, and other probabilistic algorithms. In this context, a crucial scientific endeavour is to develop effective methods that allow the characterization of random number generators. However, commonly employed methods either lack formality (e.g. the NIST test suite), or are inapplicable in principle (e.g. the characterization derived from the Algorithmic Theory of Information (ATI)). In this letter we present a novel method based on Bayesian model selection, which is both rigorous and effective, for characterizing randomness in a bit sequence. We derive analytic expressions for a model's likelihood which is then used to compute its posterior probability distribution. Our method proves to be more rigorous than NIST's suite and the Borel-Normality criterion and its implementation is straightforward. We...

  3. Model Data Fusion: developing Bayesian inversion to constrain equilibrium and mode structure

    CERN Document Server

    Hole, M J; Bertram, J; Svensson, J; Appel, L C; Blackwell, B D; Dewar, R L; Howard, J

    2010-01-01

    Recently, a new probabilistic "data fusion" framework based on Bayesian principles has been developed on JET and W7-AS. The Bayesian analysis framework folds in uncertainties and inter-dependencies in the diagnostic data and signal forward-models, together with prior knowledge of the state of the plasma, to yield predictions of internal magnetic structure. A feature of the framework, known as MINERVA (J. Svensson, A. Werner, Plasma Physics and Controlled Fusion 50, 085022, 2008), is the inference of magnetic flux surfaces without the use of a force balance model. We discuss results from a new project to develop Bayesian inversion tools that aim to (1) distinguish between competing equilibrium theories, which capture different physics, using the MAST spherical tokamak; and (2) test the predictions of MHD theory, particularly mode structure, using the H-1 Heliac.

  4. 3-Layered Bayesian Model Using in Text Classification

    Directory of Open Access Journals (Sweden)

    Chang Jiayu

    2013-01-01

    Full Text Available Naive Bayesian is one of quite effective classification methods in all of the text disaggregated models. Usually, the computed result will be large deviation from normal, with the reason of attribute relevance and so on. This study embarked from the degree of correlation, defined the node’s degree as well as the relations between nodes, proposed a 3-layered Bayesian Model. According to the conditional probability recurrence formula, the theory support of the 3-layered Bayesian Model is obtained. According to the theory analysis and the empirical datum contrast to the Naive Bayesian, the model has better attribute collection and classify. It can be also promoted to the Multi-layer Bayesian Model using in text classification.

  5. Exploring the Connection Between Sampling Problems in Bayesian Inference and Statistical Mechanics

    Science.gov (United States)

    Pohorille, Andrew

    2006-01-01

    The Bayesian and statistical mechanical communities often share the same objective in their work - estimating and integrating probability distribution functions (pdfs) describing stochastic systems, models or processes. Frequently, these pdfs are complex functions of random variables exhibiting multiple, well separated local minima. Conventional strategies for sampling such pdfs are inefficient, sometimes leading to an apparent non-ergodic behavior. Several recently developed techniques for handling this problem have been successfully applied in statistical mechanics. In the multicanonical and Wang-Landau Monte Carlo (MC) methods, the correct pdfs are recovered from uniform sampling of the parameter space by iteratively establishing proper weighting factors connecting these distributions. Trivial generalizations allow for sampling from any chosen pdf. The closely related transition matrix method relies on estimating transition probabilities between different states. All these methods proved to generate estimates of pdfs with high statistical accuracy. In another MC technique, parallel tempering, several random walks, each corresponding to a different value of a parameter (e.g. "temperature"), are generated and occasionally exchanged using the Metropolis criterion. This method can be considered as a statistically correct version of simulated annealing. An alternative approach is to represent the set of independent variables as a Hamiltonian system. Considerab!e progress has been made in understanding how to ensure that the system obeys the equipartition theorem or, equivalently, that coupling between the variables is correctly described. Then a host of techniques developed for dynamical systems can be used. Among them, probably the most powerful is the Adaptive Biasing Force method, in which thermodynamic integration and biased sampling are combined to yield very efficient estimates of pdfs. The third class of methods deals with transitions between states described

  6. Evaluating In-Clique and Topological Parallelism Strategies for Junction Tree-Based Bayesian Inference Algorithm on the Cray XMT

    Energy Technology Data Exchange (ETDEWEB)

    Chin, George; Choudhury, Sutanay; Kangas, Lars J.; McFarlane, Sally A.; Marquez, Andres

    2011-09-01

    Long viewed as a strong statistical inference technique, Bayesian networks have emerged to be an important class of applications for high-performance computing. We have applied an architecture-conscious approach to parallelizing the Lauritzen-Spiegelhalter Junction Tree algorithm for exact inferencing in Bayesian networks. In optimizing the Junction Tree algorithm, we have implemented both in-clique and topological parallelism strategies to best leverage the fine-grained synchronization and massive-scale multithreading of the Cray XMT architecture. Two topological techniques were developed to parallelize the evidence propagation process through the Bayesian network. One technique involves performing intelligent scheduling of junction tree nodes based on its topology and relative size. The second technique involves decomposing the junction tree into a much finer tree-like representation to offer much more opportunities for parallelism. We evaluate these optimizations on five different Bayesian networks and report our findings and observations. Another important contribution of this paper is to demonstrate the application of massive-scale multithreading for load balancing and use of implicit parallelism-based compiler optimizations in designing scalable inferencing algorithms.

  7. Modelling crime linkage with Bayesian networks.

    Science.gov (United States)

    de Zoete, Jacob; Sjerps, Marjan; Lagnado, David; Fenton, Norman

    2015-05-01

    When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model different evidential structures that can occur when linking crimes, and how they assist in understanding the complex underlying dependencies. That is, how evidence that is obtained in one case can be used in another and vice versa. The flip side of this is that the intuitive decision to "unlink" a case in which exculpatory evidence is obtained leads to serious overestimation of the strength of the remaining cases.

  8. A Bayesian analysis of kaon photoproduction with the Regge-plus-resonance model

    CERN Document Server

    De Cruz, Lesley; Vrancx, Tom; Vancraeyveld, Pieter

    2012-01-01

    We address the issue of unbiased model selection and propose a methodology based on Bayesian inference to extract physical information from kaon photoproduction $p(\\gamma,K^+)\\Lambda$ data. We use the single-channel Regge-plus-resonance (RPR) framework for $p(\\gamma,K^+)\\Lambda$ to illustrate the proposed strategy. The Bayesian evidence Z is a quantitative measure for the model's fitness given the world's data. We present a numerical method for performing the multidimensional integrals in the expression for the Bayesian evidence. We use the $p(\\gamma,K^+)\\Lambda$ data with an invariant energy W > 2.6 GeV in order to constrain the background contributions in the RPR framework with Bayesian inference. Next, the resonance information is extracted from the analysis of differential cross sections, single and double polarization observables. This background and resonance content constitutes the basis of a model which is coined RPR-2011. It is shown that RPR-2011 yields a comprehensive account of the kaon photoprodu...

  9. On the shape of the mass-function of dense clumps in the Hi-GAL fields. II. Using Bayesian inference to study the clump mass function

    CERN Document Server

    Olmi, L; Elia, D; Molinari, S; Pestalozzi, M; Pezzuto, S; Schisano, E; Testi, L; Thompson, M

    2013-01-01

    Context. Stars form in dense, dusty clumps of molecular clouds, but little is known about their origin, their evolution and their detailed physical properties. In particular, the relationship between the mass distribution of these clumps (also known as the "clump mass function", or CMF) and the stellar initial mass function (IMF), is still poorly understood. Aims. In order to better understand how the CMF evolve toward the IMF, and to discern the "true" shape of the CMF, large samples of bona-fide pre- and proto-stellar clumps are required. Two such datasets obtained from the Herschel infrared GALactic Plane Survey (Hi-GAL) have been described in paper I. Robust statistical methods are needed in order to infer the parameters describing the models used to fit the CMF, and to compare the competing models themselves. Methods. In this paper we apply Bayesian inference to the analysis of the CMF of the two regions discussed in Paper I. First, we determine the Bayesian posterior probability distribution for each of...

  10. Bayesian Student Modeling and the Problem of Parameter Specification.

    Science.gov (United States)

    Millan, Eva; Agosta, John Mark; Perez de la Cruz, Jose Luis

    2001-01-01

    Discusses intelligent tutoring systems and the application of Bayesian networks to student modeling. Considers reasons for not using Bayesian networks, including the computational complexity of the algorithms and the difficulty of knowledge acquisition, and proposes an approach to simplify knowledge acquisition that applies causal independence to…

  11. Implementing Relevance Feedback in the Bayesian Network Retrieval Model.

    Science.gov (United States)

    de Campos, Luis M.; Fernandez-Luna, Juan M.; Huete, Juan F.

    2003-01-01

    Discussion of relevance feedback in information retrieval focuses on a proposal for the Bayesian Network Retrieval Model. Bases the proposal on the propagation of partial evidences in the Bayesian network, representing new information obtained from the user's relevance judgments to compute the posterior relevance probabilities of the documents…

  12. Bayesian State-Space Modelling on High-Performance Hardware Using LibBi

    Directory of Open Access Journals (Sweden)

    Lawrence M. Murray

    2015-10-01

    Full Text Available LibBi is a software package for state space modelling and Bayesian inference on modern computer hardware, including multi-core central processing units, many-core graphics processing units, and distributed-memory clusters of such devices. The software parses a domain-specific language for model specification, then optimizes, generates, compiles and runs code for the given model, inference method and hardware platform. In presenting the software, this work serves as an introduction to state space models and the specialized methods developed for Bayesian inference with them. The focus is on sequential Monte Carlo (SMC methods such as the particle filter for state estimation, and the particle Markov chain Monte Carlo and SMC2 methods for parameter estimation. All are well-suited to current computer hardware. Two examples are given and developed throughout, one a linear three-element windkessel model of the human arterial system, the other a nonlinear Lorenz '96 model. These are specified in the prescribed modelling language, and LibBi demonstrated by performing inference with them. Empirical results are presented, including a performance comparison of the software with different hardware configurations.

  13. A Bayesian approach to the semi-analytic model of galaxy formation: methodology

    Science.gov (United States)

    Lu, Yu; Mo, H. J.; Weinberg, Martin D.; Katz, Neal

    2011-09-01

    We believe that a wide range of physical processes conspire to shape the observed galaxy population, but we remain unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multidimensional parametrizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality, the parametric problem of galaxy formation may be profitably tackled with a Bayesian-inference-based approach, which allows one to constrain theory with data in a statistically rigorous way. In this paper, we develop a SAM in the framework of Bayesian inference. We show that, with a parallel implementation of an advanced Markov chain Monte Carlo algorithm, it is now possible to rigorously sample the posterior distribution of the high-dimensional parameter space of typical SAMs. As an example, we characterize galaxy formation in the current Λ cold dark matter cosmology using the stellar mass function of galaxies as an observational constraint. We find that the posterior probability distribution is both topologically complex and degenerate in some important model parameters, suggesting that thorough explorations of the parameter space are needed to understand the models. We also demonstrate that because of the model degeneracy, adopting a narrow prior strongly restricts the model. Therefore, the inferences based on SAMs are conditional to the model adopted. Using synthetic data to mimic systematic errors in the stellar mass function, we demonstrate that an accurate observational error model is essential to meaningful inference.

  14. Lifted Inference for Relational Continuous Models

    CERN Document Server

    Choi, Jaesik; Hill, David J

    2012-01-01

    Relational Continuous Models (RCMs) represent joint probability densities over attributes of objects, when the attributes have continuous domains. With relational representations, they can model joint probability distributions over large numbers of variables compactly in a natural way. This paper presents a new exact lifted inference algorithm for RCMs, thus it scales up to large models of real world applications. The algorithm applies to Relational Pairwise Models which are (relational) products of potentials of arity 2. Our algorithm is unique in two ways. First, it substantially improves the efficiency of lifted inference with variables of continuous domains. When a relational model has Gaussian potentials, it takes only linear-time compared to cubic time of previous methods. Second, it is the first exact inference algorithm which handles RCMs in a lifted way. The algorithm is illustrated over an example from econometrics. Experimental results show that our algorithm outperforms both a groundlevel inferenc...

  15. A new approach for Bayesian model averaging

    Institute of Scientific and Technical Information of China (English)

    TIAN XiangJun; XIE ZhengHui; WANG AiHui; YANG XiaoChun

    2012-01-01

    Bayesian model averaging (BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the additional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA (referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algorithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is almost equivalent to that for EM.

  16. BayesLine: Bayesian Inference for Spectral Estimation of Gravitational Wave Detector Noise

    CERN Document Server

    Littenberg, Tyson B

    2014-01-01

    Gravitational wave data from ground-based detectors is dominated by instrument noise. Signals will be comparatively weak, and our understanding of the noise will influence detection confidence and signal characterization. Mis-modeled noise can produce large systematic biases in both model selection and parameter estimation. Here we introduce a multi-component, variable dimension, parameterized model to describe the Gaussian-noise power spectrum for data from ground-based gravitational wave interferometers. Called BayesLine, the algorithm models the noise power spectral density using cubic splines for smoothly varying broad-band noise and Lorentzians for narrow-band line features in the spectrum. We describe the algorithm and demonstrate its performance on data from the fifth and sixth LIGO science runs. Once fully integrated into LIGO/Virgo data analysis software, BayesLine will produce accurate spectral estimation and provide a means for marginalizing inferences drawn from the data over all plausible noise s...

  17. Inferring the Andromeda Galaxy's mass from its giant southern stream with Bayesian simulation sampling

    CERN Document Server

    Fardal, Mark A; Babul, Arif; Irwin, Mike J; Guhathakurta, Puragra; Gilbert, Karoline M; Ferguson, Annette M N; Ibata, Rodrigo A; Lewis, Geraint F; Tanvir, Nial R; Huxor, Avon P

    2013-01-01

    M31 has a giant stream of stars extending far to the south and a great deal of other tidal debris in its halo, much of which is thought to be directly associated with the southern stream. We model this structure by means of Bayesian sampling of parameter space, where each sample uses an N-body simulation of a satellite disrupting in M31's potential. We combine constraints on stellar surface densities from the Isaac Newton Telescope survey of M31 with kinematic data and photometric distances. This combination of data tightly constrains the model, indicating a stellar mass at last pericentric passage of log(M_s / Msun) = 9.5+-0.1, comparable to the LMC. Any existing remnant of the satellite is expected to lie in the NE Shelf region beside M31's disk, at velocities more negative than M31's disk in this region. This rules out the prominent satellites M32 or NGC 205 as the progenitor, but an overdensity recently discovered in M31's NE disk sits at the edge of the progenitor locations found in the model. M31's viri...

  18. Bayesian Model Selection for LISA Pathfinder

    CERN Document Server

    Karnesis, Nikolaos; Sopuerta, Carlos F; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; Plagnol, Eric; Vitale, and Stefano

    2013-01-01

    The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the LISA/eLISA concept. The Data Analysis (DA) team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment on-board LPF. These models are used for simulations, but more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the DA team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching to this problem is to recover the essential parameters of the LTP which describe the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes Factor between two competing models. In our analysis, we use three main different methods to estimate...

  19. Dissecting magnetar variability with Bayesian hierarchical models

    CERN Document Server

    Huppenkothen, D; Hogg, D W; Murray, I; Frean, M; Elenbaas, C; Watts, A L; Levin, Y; van der Horst, A J; Kouveliotou, C

    2015-01-01

    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture afte...

  20. A Bayesian approach to the semi-analytic model of galaxy formation: methodology

    CERN Document Server

    Lu, Yu; Weinberg, Martin D; Katz, Neal S

    2010-01-01

    We believe that a wide range of physical processes conspire to shape the observed galaxy population but we remain unsure of their detailed interactions. The semi-analytic model (SAM) of galaxy formation uses multi-dimensional parameterizations of the physical processes of galaxy formation and provides a tool to constrain these underlying physical interactions. Because of the high dimensionality, the parametric problem of galaxy formation may be profitably tackled with a Bayesian-inference based approach, which allows one to constrain theory with data in a statistically rigorous way. In this paper, we develop a generalized SAM using the framework of Bayesian inference. We show that, with a parallel implementation of an advanced Markov-Chain Monte-Carlo algorithm, it is now possible to rigorously sample the posterior distribution of the high-dimensional parameter space of typical SAMs. As an example, we characterize galaxy formation in the current $\\Lambda$CDM cosmology using stellar mass function of galaxies a...

  1. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghattas, Omar [The University of Texas at Austin

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  2. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-31

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesian inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.

  3. Bayesian latent variable models for the analysis of experimental psychology data.

    Science.gov (United States)

    Merkle, Edgar C; Wang, Ting

    2016-03-18

    In this paper, we address the use of Bayesian factor analysis and structural equation models to draw inferences from experimental psychology data. While such application is non-standard, the models are generally useful for the unified analysis of multivariate data that stem from, e.g., subjects' responses to multiple experimental stimuli. We first review the models and the parameter identification issues inherent in the models. We then provide details on model estimation via JAGS and on Bayes factor estimation. Finally, we use the models to re-analyze experimental data on risky choice, comparing the approach to simpler, alternative methods.

  4. Pollen and seed dispersal inferred from seedling genotypes: the Bayesian revolution has passed here too.

    Science.gov (United States)

    Klein, E K; Oddou-Muratorio, S

    2011-03-01

    Understanding precisely how plants disperse their seeds and pollen in their neighbourhood is a central question for both ecologists and evolutionary biologists because seed and pollen dispersal governs both the rate of spread of an expanding population and gene flow within and among populations. The concept of a 'dispersal kernel' has become extremely popular in dispersal ecology as a tool that summarizes how dispersal distributes individuals and genes in space and at a given scale. In this issue of Molecular Ecology, the study by Moran & Clark (2011) (M&C in the following) shows how genotypic and spatial data of established seedlings can be analysed in a Bayesian framework to estimate jointly the pollen and seed dispersal kernels and finally derive a parentage analysis from a full-probability approach. This approach applied to red oak shows important dispersal of seeds (138 m on average) and pollen (178 m on average). For seeds, this estimate contrasts with previous results from inverse modelling on seed trap data (9.3 m). This research gathers several methodological advances made in recent years in two research communities and could become a cornerstone for dispersal ecology.

  5. Bayesian inference of T Tauri star properties using multi-wavelength survey photometry

    CERN Document Server

    Barentsen, Geert; Drew, Janet E; Sale, Stuart E

    2012-01-01

    There are many pertinent open issues in the area of star and planet formation. Large statistical samples of young stars across star-forming regions are needed to trigger a breakthrough in our understanding, but most optical studies are based on a wide variety of spectrographs and analysis methods, which introduces large biases. Here we show how graphical Bayesian networks can be employed to construct a hierarchical probabilistic model which allows pre-main sequence ages, masses, accretion rates, and extinctions to be estimated using two widely available photometric survey databases (IPHAS r/i/Halpha and 2MASS J-band magnitudes.) Because our approach does not rely on spectroscopy, it can easily be applied to homogeneously study the large number of clusters for which Gaia will yield membership lists. We explain how the analysis is carried out using the Markov Chain Monte Carlo (MCMC) method and provide Python source code. We then demonstrate its use on 587 known low-mass members of the star-forming region NGC 2...

  6. Bayesian Inference on the Effect of Density Dependence and Weather on a Guanaco Population from Chile

    Science.gov (United States)

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E.; Colchero, Fernando

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation. PMID:25514510

  7. Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon [Nuclear Materials Laboratory, Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties.

  8. Nonparametric Bayesian Modeling for Automated Database Schema Matching

    Energy Technology Data Exchange (ETDEWEB)

    Ferragut, Erik M [ORNL; Laska, Jason A [ORNL

    2015-01-01

    The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.

  9. Mapping disability-adjusted life years: a Bayesian hierarchical model framework for burden of disease and injury assessment.

    Science.gov (United States)

    MacNab, Ying C

    2007-11-20

    This paper presents a Bayesian disability-adjusted life year (DALY) methodology for spatial and spatiotemporal analyses of disease and/or injury burden. A Bayesian disease mapping model framework, which blends together spatial modelling, shared-component modelling (SCM), temporal modelling, ecological modelling, and non-linear modelling, is developed for small-area DALY estimation and inference. In particular, we develop a model framework that enables SCM as well as multivariate CAR modelling of non-fatal and fatal disease or injury rates and facilitates spline smoothing for non-linear modelling of temporal rate and risk trends. Using British Columbia (Canada) hospital admission-separation data and vital statistics mortality data on non-fatal and fatal road traffic injuries to male population age 20-39 for year 1991-2000 and for 84 local health areas and 16 health service delivery areas, spatial and spatiotemporal estimation and inference on years of life lost due to premature death, years lived with disability, and DALYs are presented. Fully Bayesian estimation and inference, with Markov chain Monte Carlo implementation, are illustrated. We present a methodological framework within which the DALY and the Bayesian disease mapping methodologies interface and intersect. Its development brings the relative importance of premature mortality and disability into the assessment of community health and health needs in order to provide reliable information and evidence for community-based public health surveillance and evaluation, disease and injury prevention, and resource provision.

  10. Modeling uncertainties in estimation of canopy LAI from hyperspectral remote sensing data - A Bayesian approach

    Science.gov (United States)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2017-04-01

    Hyperspectral remote sensing data carry information on the leaf area index (LAI) of forests, and thus in principle, LAI can be estimated based on the data by inverting a forest reflectance model. However, LAI is usually not the only unknown in a reflectance model; especially, the leaf spectral albedo and understory reflectance are also not known. If the uncertainties of these parameters are not accounted for, the inversion of a forest reflectance model can lead to biased estimates for LAI. In this paper, we study the effects of reflectance model uncertainties on LAI estimates, and further, investigate whether the LAI estimates could recover from these uncertainties with the aid of Bayesian inference. In the proposed approach, the unknown leaf albedo and understory reflectance are estimated simultaneously with LAI from hyperspectral remote sensing data. The feasibility of the approach is tested with numerical simulation studies. The results show that in the presence of unknown parameters, the Bayesian LAI estimates which account for the model uncertainties outperform the conventional estimates that are based on biased model parameters. Moreover, the results demonstrate that the Bayesian inference can also provide feasible measures for the uncertainty of the estimated LAI.

  11. A Gaussian Mixed Model for Learning Discrete Bayesian Networks.

    Science.gov (United States)

    Balov, Nikolay

    2011-02-01

    In this paper we address the problem of learning discrete Bayesian networks from noisy data. Considered is a graphical model based on mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network. The network learning is formulated as a Maximum Likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable - from simple regression analysis to learning gene/protein regulatory networks from microarray data.

  12. Bayesian methods for measures of agreement

    CERN Document Server

    Broemeling, Lyle D

    2009-01-01

    Using WinBUGS to implement Bayesian inferences of estimation and testing hypotheses, Bayesian Methods for Measures of Agreement presents useful methods for the design and analysis of agreement studies. It focuses on agreement among the various players in the diagnostic process.The author employs a Bayesian approach to provide statistical inferences based on various models of intra- and interrater agreement. He presents many examples that illustrate the Bayesian mode of reasoning and explains elements of a Bayesian application, including prior information, experimental information, the likelihood function, posterior distribution, and predictive distribution. The appendices provide the necessary theoretical foundation to understand Bayesian methods as well as introduce the fundamentals of programming and executing the WinBUGS software.Taking a Bayesian approach to inference, this hands-on book explores numerous measures of agreement, including the Kappa coefficient, the G coefficient, and intraclass correlation...

  13. Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model

    Science.gov (United States)

    Matthews-Bird, Frazer; Brooks, Stephen J.; Holden, Philip B.; Montoya, Encarni; Gosling, William D.

    2016-06-01

    Presented here is the first chironomid calibration data set for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes), and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0-17° S and 64-78° W. The study sites cover a mean annual temperature (MAT) gradient of 25 °C. In total, 55 chironomid taxa were identified in the 59 calibration data set lakes. When used as a single explanatory variable, MAT explains 12.9 % of the variance (λ1/λ2 = 1.431). Two inference models were developed using weighted averaging (WA) and Bayesian methods. The best-performing model using conventional statistical methods was a WA (inverse) model (R2jack = 0.890; RMSEPjack = 2.404 °C, RMSEP - root mean squared error of prediction; mean biasjack = -0.017 °C; max biasjack = 4.665 °C). The Bayesian method produced a model with R2jack = 0.909, RMSEPjack = 2.373 °C, mean biasjack = 0.598 °C, and max biasjack = 3.158 °C. Both models were used to infer past temperatures from a ca. 3000-year record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern-day conditions but showed significant departures at certain intervals (ca. 1600 cal yr BP; ca. 3000-2500 cal yr BP). Both methods (WA and Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable and often underestimated Holocene temperatures (by ca. -7 ± 2.5 °C relative to the modern period). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (ca. -3 ± 3.4 °C). The error associated with both reconstructions is consistent with a constant temperature of 20 °C for the past 3000 years. We would caution, however, against an over-interpretation at this stage. The reconstruction can only

  14. Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.

    2014-12-01

    As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.

  15. A method of spherical harmonic analysis in the geosciences via hierarchical Bayesian inference

    Science.gov (United States)

    Muir, J. B.; Tkalčić, H.

    2015-11-01

    The problem of decomposing irregular data on the sphere into a set of spherical harmonics is common in many fields of geosciences where it is necessary to build a quantitative understanding of a globally varying field. For example, in global seismology, a compressional or shear wave speed that emerges from tomographic images is used to interpret current state and composition of the mantle, and in geomagnetism, secular variation of magnetic field intensity measured at the surface is studied to better understand the changes in the Earth's core. Optimization methods are widely used for spherical harmonic analysis of irregular data, but they typically do not treat the dependence of the uncertainty estimates on the imposed regularization. This can cause significant difficulties in interpretation, especially when the best-fit model requires more variables as a result of underestimating data noise. Here, with the above limitations in mind, the problem of spherical harmonic expansion of irregular data is treated within the hierarchical Bayesian framework. The hierarchical approach significantly simplifies the problem by removing the need for regularization terms and user-supplied noise estimates. The use of the corrected Akaike Information Criterion for picking the optimal maximum degree of spherical harmonic expansion and the resulting spherical harmonic analyses are first illustrated on a noisy synthetic data set. Subsequently, the method is applied to two global data sets sensitive to the Earth's inner core and lowermost mantle, consisting of PKPab-df and PcP-P differential traveltime residuals relative to a spherically symmetric Earth model. The posterior probability distributions for each spherical harmonic coefficient are calculated via Markov Chain Monte Carlo sampling; the uncertainty obtained for the coefficients thus reflects the noise present in the real data and the imperfections in the spherical harmonic expansion.

  16. Bayesian inference of selection in a heterogeneous environment from genetic time-series data.

    Science.gov (United States)

    Gompert, Zachariah

    2016-01-01

    Evolutionary geneticists have sought to characterize the causes and molecular targets of selection in natural populations for many years. Although this research programme has been somewhat successful, most statistical methods employed were designed to detect consistent, weak to moderate selection. In contrast, phenotypic studies in nature show that selection varies in time and that individual bouts of selection can be strong. Measurements of the genomic consequences of such fluctuating selection could help test and refine hypotheses concerning the causes of ecological specialization and the maintenance of genetic variation in populations. Herein, I proposed a Bayesian nonhomogeneous hidden Markov model to estimate effective population sizes and quantify variable selection in heterogeneous environments from genetic time-series data. The model is described and then evaluated using a series of simulated data, including cases where selection occurs on a trait with a simple or polygenic molecular basis. The proposed method accurately distinguished neutral loci from non-neutral loci under strong selection, but not from those under weak selection. Selection coefficients were accurately estimated when selection was constant or when the fitness values of genotypes varied linearly with the environment, but these estimates were less accurate when fitness was polygenic or the relationship between the environment and the fitness of genotypes was nonlinear. Past studies of temporal evolutionary dynamics in laboratory populations have been remarkably successful. The proposed method makes similar analyses of genetic time-series data from natural populations more feasible and thereby could help answer fundamental questions about the causes and consequences of evolution in the wild.

  17. Bayesian MCMC inference for the Gompertz distribution based on progressive first-failure censoring data

    Science.gov (United States)

    Soliman, Ahmed A.; Al Sobhi, Mashail M.

    2015-02-01

    This article deals with the problem of estimating parameters of the Gompertz distribution (GD) based on progressive first-failure censored data using Bayesian and non-Bayesian approaches. The two-sample prediction problem is considered to derive Bayesian prediction bounds for both future order statistics and future record values based on progressive first failure censored informative samples from GD. The sampling schemes such as, first-failure censoring, progressive type II censoring, type II censoring and complete sample can be obtained as special cases of the progressive first-failure censored scheme. Markov chain Monte Carlo (MCMC) method with Gibbs sampling procedure is used to compute the Bayes estimates and also to construct the corresponding credible intervals of the parameters. A simulation study has been conducted in order to compare the proposed Bayes estimators with the maximum likelihood estimators MLE. Finally, some numerical computations with real data set are presented for illustrating all the proposed inferential procedures.

  18. Bayesian Inference with Missing Data%数据缺失条件下的贝叶斯推断方法

    Institute of Scientific and Technical Information of China (English)

    虞健飞; 张恒喜; 朱家元

    2002-01-01

    Recently Bayesian network(BN) becomus a noticeable research direction in Data Mining.In this paper we introduce missing data mechanisms firstly,and then some methods to do Baysesian inference with missing data based on these missing data mechanisms.All of these must be useful in practice especially when data is scare and expensive.It can foresee that Bayesian networks will become a powerful tool in Data Mining with all of these methods above offered.

  19. Reliability assessment using degradation models: bayesian and classical approaches

    Directory of Open Access Journals (Sweden)

    Marta Afonso Freitas

    2010-04-01

    Full Text Available Traditionally, reliability assessment of devices has been based on (accelerated life tests. However, for highly reliable products, little information about reliability is provided by life tests in which few or no failures are typically observed. Since most failures arise from a degradation mechanism at work for which there are characteristics that degrade over time, one alternative is monitor the device for a period of time and assess its reliability from the changes in performance (degradation observed during that period. The goal of this article is to illustrate how degradation data can be modeled and analyzed by using "classical" and Bayesian approaches. Four methods of data analysis based on classical inference are presented. Next we show how Bayesian methods can also be used to provide a natural approach to analyzing degradation data. The approaches are applied to a real data set regarding train wheels degradation.Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados. Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser modelados e analisados utilizando-se abordagens "clássicas" e Bayesiana. Quatro métodos de análise de dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens.

  20. proportion: A comprehensive R package for inference on single Binomial proportion and Bayesian computations

    Science.gov (United States)

    Subbiah, M.; Rajeswaran, V.

    Extensive statistical practice has shown the importance and relevance of the inferential problem of estimating probability parameters in a binomial experiment; especially on the issues of competing intervals from frequentist, Bayesian, and Bootstrap approaches. The package written in the free R environment and presented in this paper tries to take care of the issues just highlighted, by pooling a number of widely available and well-performing methods and apporting on them essential variations. A wide range of functions helps users with differing skills to estimate, evaluate, summarize, numerically and graphically, various measures adopting either the frequentist or the Bayesian paradigm.

  1. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  2. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2014-12-01

    Full Text Available Reconstructions of late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurement on tree rings, ice cores, and varved lake sediments. Considerable advances may be achievable if time uncertain proxies could be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches to accounting for time uncertainty are generally limited to repeating the reconstruction using each of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here we demonstrate how Bayesian Hierarchical climate reconstruction models can be augmented to account for time uncertain proxies. Critically, while a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age-model probabilities decreases uncertainty in the climate reconstruction, as compared with the current de-facto standard of sampling over all age models, provided there is sufficient information from other data sources in the region of the time-uncertain proxy. This approach can readily be generalized to non-layer counted proxies, such as those derived from marine sediments.

  3. Predictive Distribution of the Dirichlet Mixture Model by the Local Variational Inference Method

    DEFF Research Database (Denmark)

    Ma, Zhanyu; Leijon, Arne; Tan, Zheng-Hua;

    2014-01-01

    In Bayesian analysis of a statistical model, the predictive distribution is obtained by marginalizing over the parameters with their posterior distributions. Compared to the frequently used point estimate plug-in method, the predictive distribution leads to a more reliable result in calculating...... the predictive likelihood of the new upcoming data, especially when the amount of training data is small. The Bayesian estimation of a Dirichlet mixture model (DMM) is, in general, not analytically tractable. In our previous work, we have proposed a global variational inference-based method for approximately...... calculating the posterior distributions of the parameters in the DMM analytically. In this paper, we extend our previous study for the DMM and propose an algorithm to calculate the predictive distribution of the DMM with the local variational inference (LVI) method. The true predictive distribution of the DMM...

  4. A Bayesian network approach for causal inferences in pesticide risk assessment and management

    Science.gov (United States)

    Pesticide risk assessment and management must balance societal benefits and ecosystem protection, based on quantified risks and the strength of the causal linkages between uses of the pesticide and socioeconomic and ecological endpoints of concern. A Bayesian network (BN) is a gr...

  5. Robust Bayesian Regularized Estimation Based on t Regression Model

    Directory of Open Access Journals (Sweden)

    Zean Li

    2015-01-01

    Full Text Available The t distribution is a useful extension of the normal distribution, which can be used for statistical modeling of data sets with heavy tails, and provides robust estimation. In this paper, in view of the advantages of Bayesian analysis, we propose a new robust coefficient estimation and variable selection method based on Bayesian adaptive Lasso t regression. A Gibbs sampler is developed based on the Bayesian hierarchical model framework, where we treat the t distribution as a mixture of normal and gamma distributions and put different penalization parameters for different regression coefficients. We also consider the Bayesian t regression with adaptive group Lasso and obtain the Gibbs sampler from the posterior distributions. Both simulation studies and real data example show that our method performs well compared with other existing methods when the error distribution has heavy tails and/or outliers.

  6. Bayesian model discrimination for glucose-insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene

    the reformulation of existing deterministic models as stochastic state space models which properly accounts for both measurement and process variability. The analysis is further enhanced by Bayesian model discrimination techniques and model averaged parameter estimation which fully accounts for model as well...

  7. Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Ter Braak, Cajo J F [NON LANL; Gupta, Hoshin V [NON LANL

    2008-01-01

    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.

  8. Bayesian Inference on Structure Change in GARCH Models Based on MCMC%基于MCMC的贝叶斯变结构金融时序GARCH模型研究

    Institute of Scientific and Technical Information of China (English)

    朱慧明; 曾惠芳; 郝立亚

    2011-01-01

    针对变结构GARCH模型没有解析形式的条件后验分布的问题。借助辅助变量把没有具体解析形式的后验分布转化为一系列完全条件分布,实现了变结构GARCH模型参数的贝叶斯估计。中国外汇市场波动性的实证研究,表明了辅助变量-Gibbs抽样有效的解决了贝叶斯变结构GARCH模型中的高维数值计算问题,并发现其波动持续性是由时间序列的状态转移引起的。%In the GARCH model with structural changes, simple Gibbs sampler is not feasible to simulate its posterior densities directly, because the analytical knowledge of conditional posterior densities is not available. After the introduction of auxiliary variables, the full conditionals can substitute for the awkward forms of conditional posterior densities to implement Gibbs iteration, which carried out the estimation of the GARCH model. The empirical analysis of the Chinese foreign exchange market illustrates that auxiliary sampler resolved the difficulties of the high dimension numerical integral in structure changing GARCH model effectively and the serious pseudo-persistence is caused by regime switching of the time series.

  9. Technical note: Bayesian calibration of dynamic ruminant nutrition models.

    Science.gov (United States)

    Reed, K F; Arhonditsis, G B; France, J; Kebreab, E

    2016-08-01

    Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling.

  10. Bayesian inference-based environmental decision support systems for oil spill response strategy selection.

    Science.gov (United States)

    Davies, Andrew J; Hope, Max J

    2015-07-15

    Contingency plans are essential in guiding the response to marine oil spills. However, they are written before the pollution event occurs so must contain some degree of assumption and prediction and hence may be unsuitable for a real incident when it occurs. The use of Bayesian networks in ecology, environmental management, oil spill contingency planning and post-incident analysis is reviewed and analysed to establish their suitability for use as real-time environmental decision support systems during an oil spill response. It is demonstrated that Bayesian networks are appropriate for facilitating the re-assessment and re-validation of contingency plans following pollutant release, thus helping ensure that the optimum response strategy is adopted. This can minimise the possibility of sub-optimal response strategies causing additional environmental and socioeconomic damage beyond the original pollution event.

  11. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  12. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Science.gov (United States)

    Hu, Liangdong; Wang, Limin

    2013-01-01

    Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  13. Improved testing inference in mixed linear models

    CERN Document Server

    Melo, Tatiane F N; Cribari-Neto, Francisco; 10.1016/j.csda.2008.12.007

    2011-01-01

    Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Oftentimes, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test and also to a test obtained from a modified profile likelihood function. Our results generalize those in Zucker et al. (Journal of the Royal Statistical Society B, 2000, 62, 827-838) by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report numerical evidence which shows that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presente...

  14. Bayesian structural equation modeling method for hierarchical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xiaomo [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: xiaomo.jiang@vanderbilt.edu; Mahadevan, Sankaran [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: sankaran.mahadevan@vanderbilt.edu

    2009-04-15

    A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system, comparing model predictions with experimental observations at each level. Usually, experimental data becomes scarce as one proceeds from lower to higher levels. This paper presents a structural equation modeling approach to make use of the lower-level data for higher-level model validation under uncertainty, integrating several components: lower-level data, higher-level data, computational model, and latent variables. The method proposed in this paper uses latent variables to model two sets of relationships, namely, the computational model to system-level data, and lower-level data to system-level data. A Bayesian network with Markov chain Monte Carlo simulation is applied to represent the two relationships and to estimate the influencing factors between them. Bayesian hypothesis testing is employed to quantify the confidence in the predictive model at the system level, and the role of lower-level data in the model validation assessment at the system level. The proposed methodology is implemented for hierarchical assessment of three validation problems, using discrete observations and time-series data.

  15. Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome

    DEFF Research Database (Denmark)

    Boonstra, Philip S; Mukherjee, Bhramar; Taylor, Jeremy M G

    2011-01-01

    . In this article, we posit a Bayesian approach to infer genetic anticipation under flexible random effects models for censored data that capture the effect of successive generations on AOO. Primary interest lies in the random effects. Misspecifying the distribution of random effects may result in incorrect...... inferential conclusions. We compare the fit of four-candidate random effects distributions via Bayesian model fit diagnostics. A related statistical issue here is isolating the confounding effect of changes in secular trends, screening, and medical practices that may affect time to disease detection across...... birth cohorts. Using historic cancer registry data, we borrow from relative survival analysis methods to adjust for changes in age-specific incidence across birth cohorts. Our motivating case study comes from a Danish cancer register of 124 families with mutations in mismatch repair (MMR) genes known...

  16. A Framework for Parameter Estimation and Model Selection from Experimental Data in Systems Biology Using Approximate Bayesian Computation

    Science.gov (United States)

    Liepe, Juliane; Kirk, Paul; Filippi, Sarah; Toni, Tina; Barnes, Chris P.; Stumpf, Michael P.H.

    2016-01-01

    As modeling becomes a more widespread practice in the life- and biomedical sciences, we require reliable tools to calibrate models against ever more complex and detailed data. Here we present an approximate Bayesian computation framework and software environment, ABC-SysBio, which enables parameter estimation and model selection in the Bayesian formalism using Sequential Monte-Carlo approaches. We outline the underlying rationale, discuss the computational and practical issues, and provide detailed guidance as to how the important tasks of parameter inference and model selection can be carried out in practice. Unlike other available packages, ABC-SysBio is highly suited for investigating in particular the challenging problem of fitting stochastic models to data. Although computationally expensive, the additional insights gained in the Bayesian formalism more than make up for this cost, especially in complex problems. PMID:24457334

  17. Inferring cultural models from corpus data

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    2015-01-01

    developed methods of inferring cultural models from observed behavior – in particular observed verbal behavior (including both spoken and written language). While there are plenty of studies of the reflection of cultural models in artificially generated verbal behavior, not much research has been made...... of constructional discursive behavior, the present paper offers a covarying collexeme analysis of the [too ADJ to V]-construction in the Corpus of Contemporary American English. The purpose is to discover the extent to which its force-dynamic constructional semantics interacts with cultural models. We focus...

  18. Bayesian Inference of a Finite Mixture of Inverse Weibull Distributions with an Application to Doubly Censoring Data

    Directory of Open Access Journals (Sweden)

    Navid Feroze

    2016-03-01

    Full Text Available The families of mixture distributions have a wider range of applications in different fields such as fisheries, agriculture, botany, economics, medicine, psychology, electrophoresis, finance, communication theory, geology and zoology. They provide the necessary flexibility to model failure distributions of components with multiple failure modes. Mostly, the Bayesian procedure for the estimation of parameters of mixture model is described under the scheme of Type-I censoring. In particular, the Bayesian analysis for the mixture models under doubly censored samples has not been considered in the literature yet. The main objective of this paper is to develop the Bayes estimation of the inverse Weibull mixture distributions under doubly censoring. The posterior estimation has been conducted under the assumption of gamma and inverse levy using precautionary loss function and weighted squared error loss function. The comparisons among the different estimators have been made based on analysis of simulated and real life data sets.

  19. Estimating Tree Height-Diameter Models with the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Xiongqing Zhang

    2014-01-01

    Full Text Available Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS and the maximum likelihood method (ML. The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.

  20. Mid-Holocene decline in African buffalos inferred from Bayesian coalescence-based analyses of microsatellites and mitochondrial DNA

    DEFF Research Database (Denmark)

    Heller, Rasmus; Lorenzen, Eline D.; Okello, J.B.A;

    2008-01-01

    Genetic studies concerned with the demographic history of wildlife species can help elucidate the role of climate change and other forces such as human activity in shaping patterns of divergence and distribution. The African buffalo (Syncerus caffer) declined dramatically during the rinderpest...... pandemic in the late 1800s, but little is known about the earlier demographic history of the species. We analysed genetic variation at 17 microsatellite loci and a 302-bp fragment of the mitochondrial DNA control region to infer past demographic changes in buffalo populations from East Africa. Two Bayesian...... of African buffalo population declines in the order of 75-98%, starting in the mid-Holocene (approximately 3-7000 years ago). The signature of decline was remarkably consistent using two different coalescent-based methods and two types of molecular markers. Exploratory analyses involving various prior...

  1. A BAYESIAN HIERARCHICAL SPATIAL POINT PROCESS MODEL FOR MULTI-TYPE NEUROIMAGING META-ANALYSIS.

    Science.gov (United States)

    Kang, Jian; Nichols, Thomas E; Wager, Tor D; Johnson, Timothy D

    2014-09-01

    Neuroimaging meta-analysis is an important tool for finding consistent effects over studies that each usually have 20 or fewer subjects. Interest in meta-analysis in brain mapping is also driven by a recent focus on so-called "reverse inference": where as traditional "forward inference" identifies the regions of the brain involved in a task, a reverse inference identifies the cognitive processes that a task engages. Such reverse inferences, however, requires a set of meta-analysis, one for each possible cognitive domain. However, existing methods for neuroimaging meta-analysis have significant limitations. Commonly used methods for neuroimaging meta-analysis are not model based, do not provide interpretable parameter estimates, and only produce null hypothesis inferences; further, they are generally designed for a single group of studies and cannot produce reverse inferences. In this work we address these limitations by adopting a non-parametric Bayesian approach for meta analysis data from multiple classes or types of studies. In particular, foci from each type of study are modeled as a cluster process driven by a random intensity function that is modeled as a kernel convolution of a gamma random field. The type-specific gamma random fields are linked and modeled as a realization of a common gamma random field, shared by all types, that induces correlation between study types and mimics the behavior of a univariate mixed effects model. We illustrate our model on simulation studies and a meta analysis of five emotions from 219 studies and check model fit by a posterior predictive assessment. In addition, we implement reverse inference by using the model to predict study type from a newly presented study. We evaluate this predictive performance via leave-one-out cross validation that is efficiently implemented using importance sampling techniques.

  2. Joint Bayesian variable and graph selection for regression models with network-structured predictors.

    Science.gov (United States)

    Peterson, Christine B; Stingo, Francesco C; Vannucci, Marina

    2016-03-30

    In this work, we develop a Bayesian approach to perform selection of predictors that are linked within a network. We achieve this by combining a sparse regression model relating the predictors to a response variable with a graphical model describing conditional dependencies among the predictors. The proposed method is well-suited for genomic applications because it allows the identification of pathways of functionally related genes or proteins that impact an outcome of interest. In contrast to previous approaches for network-guided variable selection, we infer the network among predictors using a Gaussian graphical model and do not assume that network information is available a priori. We demonstrate that our method outperforms existing methods in identifying network-structured predictors in simulation settings and illustrate our proposed model with an application to inference of proteins relevant to glioblastoma survival.

  3. Inferring brain-computational mechanisms with models of activity measurements.

    Science.gov (United States)

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-10-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  4. Inferring brain-computational mechanisms with models of activity measurements

    Science.gov (United States)

    Diedrichsen, Jörn

    2016-01-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574316

  5. Bayesian inference of genetic parameters for test-day milk yield, milk quality traits, and somatic cell score in Burlina cows.

    Science.gov (United States)

    Penasa, M; Cecchinato, A; Battagin, M; De Marchi, M; Pretto, D; Cassandro, M

    2010-01-01

    The aim of the study was to infer (co)variance components for daily milk yield, fat and protein contents, and somatic cell score (SCS) in Burlina cattle (a local breed in northeast Italy). Data consisted of 13,576 monthly test-day records of 666 cows (parities 1 to 8) collected in 10 herds between 1999 and 2009. Repeatability animal models were implemented using Bayesian methods. Flat priors were assumed for systematic effects of herd test date, days in milk, and parity, as well as for permanent environmental, genetic, and residual effects. On average, Burlina cows produced 17.0 kg of milk per day, with 3.66 and 3.33 percent of fat and protein, respectively, and 358,000 cells per mL of milk. Marginal posterior medians (highest posterior density of 95%) of heritability were 0.18 (0.09-0.28), 0.28 (0.21-0.36), 0.35 (0.25-0.49), and 0.05 (0.01-0.11) for milk yield, fat content, protein content, and SCS, respectively. Marginal posterior medians of genetic correlations between the traits were low and a 95 percent Bayesian confidence region included zero, with the exception of the genetic correlation between fat and protein contents. Despite the low number of animals in the population, results suggest that genetic variance for production and quality traits exists in Burlina cattle.

  6. Probabilistic Generative Models for the Statistical Inference of Unobserved Paleoceanographic Events: Application to Stratigraphic Alignment for Inference of Ages

    Science.gov (United States)

    Lawrence, C.; Lin, L.; Lisiecki, L. E.; Khider, D.

    2014-12-01

    The broad goal of this presentation is to demonstrate the utility of probabilistic generative models to capture investigators' knowledge of geological processes and proxy data to draw statistical inferences about unobserved paleoclimatological events. We illustrate how this approach forces investigators to be explicit about their assumptions, and about how probability theory yields results that are a mathematical consequence of these assumptions and the data. We illustrate these ideas with the HMM-Match model that infers common times of sediment deposition in two records and the uncertainty in these inferences in the form of confidence bands. HMM-Match models the sedimentation processes that led to proxy data measured in marine sediment cores. This Bayesian model has three components: 1) a generative probabilistic model that proceeds from the underlying geophysical and geochemical events, specifically the sedimentation events to the generation the proxy data Sedimentation ---> Proxy Data ; 2) a recursive algorithm that reverses the logic of the model to yield inference about the unobserved sedimentation events and the associated alignment of the records based on proxy data Proxy Data ---> Sedimentation (Alignment) ; 3) an expectation maximization algorithm for estimating two unknown parameters. We applied HMM-Match to align 35 Late Pleistocene records to a global benthic d18Ostack and found that the mean width of 95% confidence intervals varies between 3-23 kyr depending on the resolution and noisiness of the core's d18O signal. Confidence bands within individual cores also vary greatly, ranging from ~0 to >40 kyr. Results from this algorithm will allow researchers to examine the robustness of their conclusions with respect to alignment uncertainty. Figure 1 shows the confidence bands for one low resolution record.

  7. Bayesian Probability Theory

    Science.gov (United States)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  8. Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling

    NARCIS (Netherlands)

    Vrugt, J.A.; Diks, C.G.H.; Clark, M.

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In t

  9. Bayesian Network Models for Local Dependence among Observable Outcome Variables

    Science.gov (United States)

    Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli

    2009-01-01

    Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…

  10. Calibration of complex models through Bayesian evidence synthesis: a demonstration and tutorial.

    Science.gov (United States)

    Jackson, Christopher H; Jit, Mark; Sharples, Linda D; De Angelis, Daniela

    2015-02-01

    Decision-analytic models must often be informed using data that are only indirectly related to the main model parameters. The authors outline how to implement a Bayesian synthesis of diverse sources of evidence to calibrate the parameters of a complex model. A graphical model is built to represent how observed data are generated from statistical models with unknown parameters and how those parameters are related to quantities of interest for decision making. This forms the basis of an algorithm to estimate a posterior probability distribution, which represents the updated state of evidence for all unknowns given all data and prior beliefs. This process calibrates the quantities of interest against data and, at the same time, propagates all parameter uncertainties to the results used for decision making. To illustrate these methods, the authors demonstrate how a previously developed Markov model for the progression of human papillomavirus (HPV-16) infection was rebuilt in a Bayesian framework. Transition probabilities between states of disease severity are inferred indirectly from cross-sectional observations of prevalence of HPV-16 and HPV-16-related disease by age, cervical cancer incidence, and other published information. Previously, a discrete collection of plausible scenarios was identified but with no further indication of which of these are more plausible. Instead, the authors derive a Bayesian posterior distribution, in which scenarios are implicitly weighted according to how well they are supported by the data. In particular, we emphasize the appropriate choice of prior distributions and checking and comparison of fitted models.

  11. A Genomic Bayesian Multi-trait and Multi-environment Model.

    Science.gov (United States)

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Toledo, Fernando H; Pérez-Hernández, Oscar; Eskridge, Kent M; Rutkoski, Jessica

    2016-09-08

    When information on multiple genotypes evaluated in multiple environments is recorded, a multi-environment single trait model for assessing genotype × environment interaction (G × E) is usually employed. Comprehensive models that simultaneously take into account the correlated traits and trait × genotype × environment interaction (T × G × E) are lacking. In this research, we propose a Bayesian model for analyzing multiple traits and multiple environments for whole-genome prediction (WGP) model. For this model, we used Half-[Formula: see text] priors on each standard deviation term and uniform priors on each correlation of the covariance matrix. These priors were not informative and led to posterior inferences that were insensitive to the choice of hyper-parameters. We also developed a computationally efficient Markov Chain Monte Carlo (MCMC) under the above priors, which allowed us to obtain all required full conditional distributions of the parameters leading to an exact Gibbs sampling for the posterior distribution. We used two real data sets to implement and evaluate the proposed Bayesian method and found that when the correlation between traits was high (>0.5), the proposed model (with unstructured variance-covariance) improved prediction accuracy compared to the model with diagonal and standard variance-covariance structures. The R-software package Bayesian Multi-Trait and Multi-Environment (BMTME) offers optimized C++ routines to efficiently perform the analyses.

  12. A selective view of stochastic inference and modeling problems in nanoscale biophysics

    Institute of Scientific and Technical Information of China (English)

    KOU S. C.

    2009-01-01

    Advances in nanotechnology enable scientists for the first time to study biological processes on a nanoscale molecule-by-molecule basis. They also raise challenges and opportunities for statisticians and applied probabilists. To exemplify the stochastic inference and modeling problems in the field, this paper discusses a few selected cases, ranging from likelihood inference, Bayesian data augmentation, and semi- and non-parametric inference of nanometric biochemical systems to the utilization of stochastic integro-differential equations and stochastic networks to model single-molecule biophysical processes. We discuss the statistical and probabilistic issues as well as the biophysical motivation and physical meaning behind the problems, emphasizing the analysis and modeling of real experimental data.

  13. A selective view of stochastic inference and mod-eling problems in nanoscale biophysics

    Institute of Scientific and Technical Information of China (English)

    KOU; S.C.

    2009-01-01

    Advances in nanotechnology enable scientists for the first time to study biological pro-cesses on a nanoscale molecule-by-molecule basis.They also raise challenges and opportunities for statisticians and applied probabilists.To exemplify the stochastic inference and modeling problems in the field,this paper discusses a few selected cases,ranging from likelihood inference,Bayesian data augmentation,and semi-and non-parametric inference of nanometric biochemical systems to the uti-lization of stochastic integro-differential equations and stochastic networks to model single-molecule biophysical processes.We discuss the statistical and probabilistic issues as well as the biophysical motivation and physical meaning behind the problems,emphasizing the analysis and modeling of real experimental data.

  14. Bayesian calibration of a post-LGM model of Laurentide ice-sheet evolution

    Science.gov (United States)

    Tarasov, L.; Peltier, W. R.

    2003-04-01

    Though numerous inferences have been made with regard to the deglaciation history of the Wisconsin North American ice sheet complex, no attempt has been made to place objective confidence ranges on these inferences. Furthermore, past efforts to reconstruct the Wisconsin deglaciation history have relied on restricted discipline-specific constraints. Approaches based on dynamical glacial models have ignored geophysical constraints such as Relative Sea Level histories. Geophysical based reconstructions, on the other hand, have ignored glaciological self-consistency and Marine Limit data. To remedy this situation, we present a Bayesian calibration of a 3D thermo-mechanically coupled ice-sheet systems model using: 1) a large set of Relative Sea Level observations (from 415 sites), 2) Marine Limit observations, 3) a North-South transect of gravity measurements, 4) direct observations of the present day rate of basal uplift at Yellowknife, 5) and a new high-resolution ice margin chronology derived from geological and geomorphological observations. Given the large parameter space (O(20) parameters), Bayesian neural networks, trained from a thousand runs of the ice-sheet systems model, are employed to simulate the glacial model within the statistical analyses. The end result is a posterior distribution for model parameters (and thereby modelled glacial histories) given the observational data sets that thereby also takes into account data uncertainty. Strong support is provided for a multi-domed Laurentide ice-sheet. We also identify key dynamical processes (ie most relevant model parameters) along with critical geographic regions in need of further data.

  15. A bayesian approach to inferring the genetic population structure of sugarcane accessions from INTA (Argentina

    Directory of Open Access Journals (Sweden)

    Mariana Inés Pocovi

    2015-06-01

    Full Text Available Understanding the population structure and genetic diversity in sugarcane (Saccharum officinarum L. accessions from INTA germplasm bank (Argentina will be of great importance for germplasm collection and breeding improvement as it will identify diverse parental combinations to create segregating progenies with maximum genetic variability for further selection. A Bayesian approach, ordination methods (PCoA, Principal Coordinate Analysis and clustering analysis (UPGMA, Unweighted Pair Group Method with Arithmetic Mean were applied to this purpose. Sixty three INTA sugarcane hybrids were genotyped for 107 Simple Sequence Repeat (SSR and 136 Amplified Fragment Length Polymorphism (AFLP loci. Given the low probability values found with AFLP for individual assignment (4.7%, microsatellites seemed to perform better (54% for STRUCTURE analysis that revealed the germplasm to exist in five optimum groups with partly corresponding to their origin. However clusters shown high degree of admixture, F ST values confirmed the existence of differences among groups. Dissimilarity coefficients ranged from 0.079 to 0.651. PCoA separated sugarcane in groups that did not agree with those identified by STRUCTURE. The clustering including all genotypes neither showed resemblance to populations find by STRUCTURE, but clustering performed considering only individuals displaying a proportional membership > 0.6 in their primary population obtained with STRUCTURE showed close similarities. The Bayesian method indubitably brought more information on cultivar origins than classical PCoA and hierarchical clustering method.

  16. A COMPOUND POISSON MODEL FOR LEARNING DISCRETE BAYESIAN NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Abdelaziz GHRIBI; Afif MASMOUDI

    2013-01-01

    We introduce here the concept of Bayesian networks, in compound Poisson model, which provides a graphical modeling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We suggest an approach proposal which offers a new mixed implicit estimator. We show that the implicit approach applied in compound Poisson model is very attractive for its ability to understand data and does not require any prior information. A comparative study between learned estimates given by implicit and by standard Bayesian approaches is established. Under some conditions and based on minimal squared error calculations, we show that the mixed implicit estimator is better than the standard Bayesian and the maximum likelihood estimators. We illustrate our approach by considering a simulation study in the context of mobile communication networks.

  17. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

    KAUST Repository

    Liang, Faming

    2013-06-01

    This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  18. Automated Bayesian model development for frequency detection in biological time series

    Directory of Open Access Journals (Sweden)

    Oldroyd Giles ED

    2011-06-01

    Full Text Available Abstract Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and

  19. Inferring Biologically Relevant Models: Nested Canalyzing Functions

    CERN Document Server

    Hinkelmann, Franziska

    2010-01-01

    Inferring dynamic biochemical networks is one of the main challenges in systems biology. Given experimental data, the objective is to identify the rules of interaction among the different entities of the network. However, the number of possible models fitting the available data is huge and identifying a biologically relevant model is of great interest. Nested canalyzing functions, where variables in a given order dominate the function, have recently been proposed as a framework for modeling gene regulatory networks. Previously we described this class of functions as an algebraic toric variety. In this paper, we present an algorithm that identifies all nested canalyzing models that fit the given data. We demonstrate our methods using a well-known Boolean model of the cell cycle in budding yeast.

  20. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.