A Bayesian Markov geostatistical model for estimation of hydrogeological properties
International Nuclear Information System (INIS)
Rosen, L.; Gustafson, G.
1996-01-01
A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden
Bayesian geostatistical modeling of leishmaniasis incidence in Brazil.
Directory of Open Access Journals (Sweden)
Dimitrios-Alexios Karagiannis-Voules
Full Text Available BACKGROUND: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. METHODOLOGY: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001-2010. Particular emphasis was placed on spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic, environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis. PRINCIPAL FINDINGS: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676 for cutaneous leishmaniasis and 4,889 (SD: 288 for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively. CONCLUSIONS/SIGNIFICANCE: Our spatially explicit, high-resolution incidence maps identified priority areas where leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence.
Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.
2013-01-01
The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the speciﬁc data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overﬁtting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of ﬁt or estimate a balance between ﬁt and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.
Bayesian Geostatistical Modeling of Malaria Indicator Survey Data in Angola
Gosoniu, Laura; Veta, Andre Mia; Vounatsou, Penelope
2010-01-01
The 2006–2007 Angola Malaria Indicator Survey (AMIS) is the first nationally representative household survey in the country assessing coverage of the key malaria control interventions and measuring malaria-related burden among children under 5 years of age. In this paper, the Angolan MIS data were analyzed to produce the first smooth map of parasitaemia prevalence based on contemporary nationwide empirical data in the country. Bayesian geostatistical models were fitted to assess the effect of interventions after adjusting for environmental, climatic and socio-economic factors. Non-linear relationships between parasitaemia risk and environmental predictors were modeled by categorizing the covariates and by employing two non-parametric approaches, the B-splines and the P-splines. The results of the model validation showed that the categorical model was able to better capture the relationship between parasitaemia prevalence and the environmental factors. Model fit and prediction were handled within a Bayesian framework using Markov chain Monte Carlo (MCMC) simulations. Combining estimates of parasitaemia prevalence with the number of children under we obtained estimates of the number of infected children in the country. The population-adjusted prevalence ranges from in Namibe province to in Malanje province. The odds of parasitaemia in children living in a household with at least ITNs per person was by 41% lower (CI: 14%, 60%) than in those with fewer ITNs. The estimates of the number of parasitaemic children produced in this paper are important for planning and implementing malaria control interventions and for monitoring the impact of prevention and control activities. PMID:20351775
A Bayesian spatio-temporal geostatistical model with an auxiliary lattice for large datasets
Xu, Ganggang
2015-01-01
When spatio-temporal datasets are large, the computational burden can lead to failures in the implementation of traditional geostatistical tools. In this paper, we propose a computationally efficient Bayesian hierarchical spatio-temporal model in which the spatial dependence is approximated by a Gaussian Markov random field (GMRF) while the temporal correlation is described using a vector autoregressive model. By introducing an auxiliary lattice on the spatial region of interest, the proposed method is not only able to handle irregularly spaced observations in the spatial domain, but it is also able to bypass the missing data problem in a spatio-temporal process. Because the computational complexity of the proposed Markov chain Monte Carlo algorithm is of the order O(n) with n the total number of observations in space and time, our method can be used to handle very large spatio-temporal datasets with reasonable CPU times. The performance of the proposed model is illustrated using simulation studies and a dataset of precipitation data from the coterminous United States.
Troldborg, Mads; Nowak, Wolfgang; Lange, Ida V.; Santos, Marta C.; Binning, Philip J.; Bjerg, Poul L.
2012-09-01
Mass discharge estimates are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Such estimates are, however, rather uncertain as they integrate uncertain spatial distributions of both concentration and groundwater flow. Here a geostatistical simulation method for quantifying the uncertainty of the mass discharge across a multilevel control plane is presented. The method accounts for (1) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics, (2) measurement uncertainty, and (3) uncertain source zone and transport parameters. The method generates conditional realizations of the spatial flow and concentration distribution. An analytical macrodispersive transport solution is employed to simulate the mean concentration distribution, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. The method has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is demonstrated on a field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the cosimulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.
Directory of Open Access Journals (Sweden)
Federica Giardina
Full Text Available The Research Center for Human Development in Dakar (CRDH with the technical assistance of ICF Macro and the National Malaria Control Programme (NMCP conducted in 2008/2009 the Senegal Malaria Indicator Survey (SMIS, the first nationally representative household survey collecting parasitological data and malaria-related indicators. In this paper, we present spatially explicit parasitaemia risk estimates and number of infected children below 5 years. Geostatistical Zero-Inflated Binomial models (ZIB were developed to take into account the large number of zero-prevalence survey locations (70% in the data. Bayesian variable selection methods were incorporated within a geostatistical framework in order to choose the best set of environmental and climatic covariates associated with the parasitaemia risk. Model validation confirmed that the ZIB model had a better predictive ability than the standard Binomial analogue. Markov chain Monte Carlo (MCMC methods were used for inference. Several insecticide treated nets (ITN coverage indicators were calculated to assess the effectiveness of interventions. After adjusting for climatic and socio-economic factors, the presence of at least one ITN per every two household members and living in urban areas reduced the odds of parasitaemia by 86% and 81% respectively. Posterior estimates of the ORs related to the wealth index show a decreasing trend with the quintiles. Infection odds appear to be increasing with age. The population-adjusted prevalence ranges from 0.12% in Thillé-Boubacar to 13.1% in Dabo. Tambacounda has the highest population-adjusted predicted prevalence (8.08% whereas the region with the highest estimated number of infected children under the age of 5 years is Kolda (13940. The contemporary map and estimates of malaria burden identify the priority areas for future control interventions and provide baseline information for monitoring and evaluation. Zero-Inflated formulations are more appropriate
Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.
2012-12-01
Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed
Bayesian Spatial Modelling with R-INLA
Directory of Open Access Journals (Sweden)
Finn Lindgren
2015-02-01
Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.
Bayesian Geostatistical Design
DEFF Research Database (Denmark)
Diggle, Peter; Lophaven, Søren Nymand
2006-01-01
locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model...
Geostatistical models for air pollution
International Nuclear Information System (INIS)
Pereira, M.J.; Soares, A.; Almeida, J.; Branquinho, C.
2000-01-01
The objective of this paper is to present geostatistical models applied to the spatial characterisation of air pollution phenomena. A concise presentation of the geostatistical methodologies is illustrated with practical examples. The case study was conducted in an underground copper-mine located on the southern of Portugal, where a biomonitoring program using lichens has been implemented. Given the characteristics of lichens as indicators of air pollution it was possible to gather a great amount of data in space, which enabled the development and application of geostatistical methodologies. The advantages of using geostatistical models compared with deterministic models, as environmental control tools, are highlighted. (author)
Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice
Park, Jincheol
2012-04-01
The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation: it requires users to invert a large covariance matrix. This is infeasible when the number of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model completely avoids the requirement of matrix inversion. It is remarkable that the computational complexity of our method is only O(n), where n is the number of observations. Hence, our method can be applied to very large datasets with reasonable computational (CPU) times. The numerical results indicate that our model can approximate Gaussian random fields very well in terms of predictions, even for those with long correlation lengths. For real data examples, our model can generally outperform conventional Gaussian random field models in both prediction errors and CPU times. Supplemental materials for the article are available online. © 2012 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
Scholte, Ronaldo G C; Schur, Nadine; Bavia, Maria E; Carvalho, Edgar M; Chammartin, Frédérique; Utzinger, Jürg; Vounatsou, Penelope
2013-11-01
Soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm) negatively impact the health and wellbeing of hundreds of millions of people, particularly in tropical and subtropical countries, including Brazil. Reliable maps of the spatial distribution and estimates of the number of infected people are required for the control and eventual elimination of soil-transmitted helminthiasis. We used advanced Bayesian geostatistical modelling, coupled with geographical information systems and remote sensing to visualize the distribution of the three soil-transmitted helminth species in Brazil. Remotely sensed climatic and environmental data, along with socioeconomic variables from readily available databases were employed as predictors. Our models provided mean prevalence estimates for A. lumbricoides, T. trichiura and hookworm of 15.6%, 10.1% and 2.5%, respectively. By considering infection risk and population numbers at the unit of the municipality, we estimate that 29.7 million Brazilians are infected with A. lumbricoides, 19.2 million with T. trichiura and 4.7 million with hookworm. Our model-based maps identified important risk factors related to the transmission of soiltransmitted helminths and confirm that environmental variables are closely associated with indices of poverty. Our smoothed risk maps, including uncertainty, highlight areas where soil-transmitted helminthiasis control interventions are most urgently required, namely in the North and along most of the coastal areas of Brazil. We believe that our predictive risk maps are useful for disease control managers for prioritising control interventions and for providing a tool for more efficient surveillance-response mechanisms.
Quantifying natural delta variability using a multiple-point geostatistics prior uncertainty model
Scheidt, Céline; Fernandes, Anjali M.; Paola, Chris; Caers, Jef
2016-10-01
We address the question of quantifying uncertainty associated with autogenic pattern variability in a channelized transport system by means of a modern geostatistical method. This question has considerable relevance for practical subsurface applications as well, particularly those related to uncertainty quantification relying on Bayesian approaches. Specifically, we show how the autogenic variability in a laboratory experiment can be represented and reproduced by a multiple-point geostatistical prior uncertainty model. The latter geostatistical method requires selection of a limited set of training images from which a possibly infinite set of geostatistical model realizations, mimicking the training image patterns, can be generated. To that end, we investigate two methods to determine how many training images and what training images should be provided to reproduce natural autogenic variability. The first method relies on distance-based clustering of overhead snapshots of the experiment; the second method relies on a rate of change quantification by means of a computer vision algorithm termed the demon algorithm. We show quantitatively that with either training image selection method, we can statistically reproduce the natural variability of the delta formed in the experiment. In addition, we study the nature of the patterns represented in the set of training images as a representation of the "eigenpatterns" of the natural system. The eigenpattern in the training image sets display patterns consistent with previous physical interpretations of the fundamental modes of this type of delta system: a highly channelized, incisional mode; a poorly channelized, depositional mode; and an intermediate mode between the two.
Directory of Open Access Journals (Sweden)
Laura Grisotto
2016-04-01
Full Text Available In this paper the focus is on environmental statistics, with the aim of estimating the concentration surface and related uncertainty of an air pollutant. We used air quality data recorded by a network of monitoring stations within a Bayesian framework to overcome difficulties in accounting for prediction uncertainty and to integrate information provided by deterministic models based on emissions meteorology and chemico-physical characteristics of the atmosphere. Several authors have proposed such integration, but all the proposed approaches rely on representativeness and completeness of existing air pollution monitoring networks. We considered the situation in which the spatial process of interest and the sampling locations are not independent. This is known in the literature as the preferential sampling problem, which if ignored in the analysis, can bias geostatistical inferences. We developed a Bayesian geostatistical model to account for preferential sampling with the main interest in statistical integration and uncertainty. We used PM10 data arising from the air quality network of the Environmental Protection Agency of Lombardy Region (Italy and numerical outputs from the deterministic model. We specified an inhomogeneous Poisson process for the sampling locations intensities and a shared spatial random component model for the dependence between the spatial location of monitors and the pollution surface. We found greater predicted standard deviation differences in areas not properly covered by the air quality network. In conclusion, in this context inferences on prediction uncertainty may be misleading when geostatistical modelling does not take into account preferential sampling.
Gstat: a program for geostatistical modelling, prediction and simulation
Pebesma, Edzer J.; Wesseling, Cees G.
1998-01-01
Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.
Bayesian geostatistical analysis and prediction of Rhodesian human African trypanosomiasis.
Directory of Open Access Journals (Sweden)
Nicola A Wardrop
2010-12-01
Full Text Available The persistent spread of Rhodesian human African trypanosomiasis (HAT in Uganda in recent years has increased concerns of a potential overlap with the Gambian form of the disease. Recent research has aimed to increase the evidence base for targeting control measures by focusing on the environmental and climatic factors that control the spatial distribution of the disease.One recent study used simple logistic regression methods to explore the relationship between prevalence of Rhodesian HAT and several social, environmental and climatic variables in two of the most recently affected districts of Uganda, and suggested the disease had spread into the study area due to the movement of infected, untreated livestock. Here we extend this study to account for spatial autocorrelation, incorporate uncertainty in input data and model parameters and undertake predictive mapping for risk of high HAT prevalence in future.Using a spatial analysis in which a generalised linear geostatistical model is used in a Bayesian framework to account explicitly for spatial autocorrelation and incorporate uncertainty in input data and model parameters we are able to demonstrate a more rigorous analytical approach, potentially resulting in more accurate parameter and significance estimates and increased predictive accuracy, thereby allowing an assessment of the validity of the livestock movement hypothesis given more robust parameter estimation and appropriate assessment of covariate effects.Analysis strongly supports the theory that Rhodesian HAT was imported to the study area via the movement of untreated, infected livestock from endemic areas. The confounding effect of health care accessibility on the spatial distribution of Rhodesian HAT and the linkages between the disease's distribution and minimum land surface temperature have also been confirmed via the application of these methods.Predictive mapping indicates an increased risk of high HAT prevalence in the future
Geostatistical methods applied to field model residuals
DEFF Research Database (Denmark)
Maule, Fox; Mosegaard, K.; Olsen, Nils
consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...
3D vadose zone modeling using geostatistical inferences
International Nuclear Information System (INIS)
Knutson, C.F.; Lee, C.B.
1991-01-01
In developing a 3D model of the 600 ft thick interbedded basalt and sediment complex that constitutes the vadose zone at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) geostatistical data were captured for 12--15 parameters (e.g. permeability, porosity, saturation, etc. and flow height, flow width, flow internal zonation, etc.). This two scale data set was generated from studies of subsurface core and geophysical log suites at RWMC and from surface outcrop exposures located at the Box Canyon of the Big Lost River and from Hell's Half Acre lava field all located in the general RWMC area. Based on these currently available data, it is possible to build a 3D stochastic model that utilizes: cumulative distribution functions obtained from the geostatistical data; backstripping and rebuilding of stratigraphic units; an ''expert'' system that incorporates rules based on expert geologic analysis and experimentally derived geostatistics for providing: (a) a structural and isopach map of each layer, (b) a realization of the flow geometry of each basalt flow unit, and (c) a realization of the internal flow parameters (eg permeability, porosity, and saturation) for each flow. 10 refs., 4 figs., 1 tab
DEFF Research Database (Denmark)
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...
Application of geostatistics in Beach Placer
International Nuclear Information System (INIS)
Sundar, G.
2016-01-01
The goal of Geostatistics is in the prediction of possible spatial distribution of a property. Application of Geostatistics has gained significance in the field of exploration, evaluation and mining. In the case of beach and inland placer sands exploration, geostatistics can be used in optimising the drill hole spacing, estimate resources of the total heavy minerals (THM), estimation on different grid pattern and grade - tonnage curves. Steps involved in a geostatistical study are exploratory data analysis, creation of experimental variogram, variogram model fitting, kriging and cross validation. Basic tools in geostatistics are variogram and kriging. Characteristics of a variogram are sill, range and nugget. There is a necessity for variogram model fitting prior to kriging. Commonly used variogram models are spherical, exponential and gaussian
Energy Technology Data Exchange (ETDEWEB)
Gauthier, Y.
1997-10-20
Geostatistical tools are increasingly used to model permeability fields in subsurface reservoirs, which are considered as a particular random variable development depending of several geostatistical parameters such as variance and correlation length. The first part of the thesis is devoted to the study of relations existing between the transient well pressure (the well test) and the stochastic permeability field, using the apparent permeability concept.The well test performs a moving permeability average over larger and larger volume with increasing time. In the second part, the geostatistical parameters are evaluated using well test data; a Bayesian framework is used and parameters are estimated using the maximum likelihood principle by maximizing the well test data probability density function with respect to these parameters. This method, involving a well test fast evaluation, provides an estimation of the correlation length and the variance over different realizations of a two-dimensional permeability field
Model-Based Geostatistical Mapping of the Prevalence of Onchocerca volvulus in West Africa.
Directory of Open Access Journals (Sweden)
Simon J O'Hanlon
2016-01-01
Full Text Available The initial endemicity (pre-control prevalence of onchocerciasis has been shown to be an important determinant of the feasibility of elimination by mass ivermectin distribution. We present the first geostatistical map of microfilarial prevalence in the former Onchocerciasis Control Programme in West Africa (OCP before commencement of antivectorial and antiparasitic interventions.Pre-control microfilarial prevalence data from 737 villages across the 11 constituent countries in the OCP epidemiological database were used as ground-truth data. These 737 data points, plus a set of statistically selected environmental covariates, were used in a Bayesian model-based geostatistical (B-MBG approach to generate a continuous surface (at pixel resolution of 5 km x 5km of microfilarial prevalence in West Africa prior to the commencement of the OCP. Uncertainty in model predictions was measured using a suite of validation statistics, performed on bootstrap samples of held-out validation data. The mean Pearson's correlation between observed and estimated prevalence at validation locations was 0.693; the mean prediction error (average difference between observed and estimated values was 0.77%, and the mean absolute prediction error (average magnitude of difference between observed and estimated values was 12.2%. Within OCP boundaries, 17.8 million people were deemed to have been at risk, 7.55 million to have been infected, and mean microfilarial prevalence to have been 45% (range: 2-90% in 1975.This is the first map of initial onchocerciasis prevalence in West Africa using B-MBG. Important environmental predictors of infection prevalence were identified and used in a model out-performing those without spatial random effects or environmental covariates. Results may be compared with recent epidemiological mapping efforts to find areas of persisting transmission. These methods may be extended to areas where data are sparse, and may be used to help inform the
Directory of Open Access Journals (Sweden)
Moslem Moradi
2015-06-01
Full Text Available Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior information in Bayesian statistics. Data integration leads to a probability density function (named as a posteriori probability that can yield a model of subsurface. The Markov Chain Monte Carlo (MCMC method is used to sample the posterior probability distribution, and the subsurface model characteristics can be extracted by analyzing a set of the samples. In this study, the theory of stochastic seismic inversion in a Bayesian framework was described and applied to infer P-impedance and porosity models. The comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more detailed information of subsurface character. Since multiple realizations are extracted by this method, an estimation of pore volume and uncertainty in the estimation were analyzed.
DEFF Research Database (Denmark)
Troldborg, Mads; Nowak, Wolfgang; Lange, Ida Vedel
2012-01-01
, and (3) uncertain source zone and transport parameters. The method generates conditional realizations of the spatial flow and concentration distribution. An analytical macrodispersive transport solution is employed to simulate the mean concentration distribution, and a geostatistical model of the Box-Cox...... transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. The method has the advantage of avoiding the heavy computational burden of three-dimensional numerical...
4th International Geostatistics Congress
1993-01-01
The contributions in this book were presented at the Fourth International Geostatistics Congress held in Tróia, Portugal, in September 1992. They provide a comprehensive account of the current state of the art of geostatistics, including recent theoretical developments and new applications. In particular, readers will find descriptions and applications of the more recent methods of stochastic simulation together with data integration techniques applied to the modelling of hydrocabon reservoirs. In other fields there are stationary and non-stationary geostatistical applications to geology, climatology, pollution control, soil science, hydrology and human sciences. The papers also provide an insight into new trends in geostatistics particularly the increasing interaction with many other scientific disciplines. This book is a significant reference work for practitioners of geostatistics both in academia and industry.
Assessing fit in Bayesian models for spatial processes
Jun, M.; Katzfuss, M.; Hu, J.; Johnson, V. E.
2014-01-01
© 2014 John Wiley & Sons, Ltd. Gaussian random fields are frequently used to model spatial and spatial-temporal data, particularly in geostatistical settings. As much of the attention of the statistics community has been focused on defining and estimating the mean and covariance functions of these processes, little effort has been devoted to developing goodness-of-fit tests to allow users to assess the models' adequacy. We describe a general goodness-of-fit test and related graphical diagnostics for assessing the fit of Bayesian Gaussian process models using pivotal discrepancy measures. Our method is applicable for both regularly and irregularly spaced observation locations on planar and spherical domains. The essential idea behind our method is to evaluate pivotal quantities defined for a realization of a Gaussian random field at parameter values drawn from the posterior distribution. Because the nominal distribution of the resulting pivotal discrepancy measures is known, it is possible to quantitatively assess model fit directly from the output of Markov chain Monte Carlo algorithms used to sample from the posterior distribution on the parameter space. We illustrate our method in a simulation study and in two applications.
Assessing fit in Bayesian models for spatial processes
Jun, M.
2014-09-16
© 2014 John Wiley & Sons, Ltd. Gaussian random fields are frequently used to model spatial and spatial-temporal data, particularly in geostatistical settings. As much of the attention of the statistics community has been focused on defining and estimating the mean and covariance functions of these processes, little effort has been devoted to developing goodness-of-fit tests to allow users to assess the models\\' adequacy. We describe a general goodness-of-fit test and related graphical diagnostics for assessing the fit of Bayesian Gaussian process models using pivotal discrepancy measures. Our method is applicable for both regularly and irregularly spaced observation locations on planar and spherical domains. The essential idea behind our method is to evaluate pivotal quantities defined for a realization of a Gaussian random field at parameter values drawn from the posterior distribution. Because the nominal distribution of the resulting pivotal discrepancy measures is known, it is possible to quantitatively assess model fit directly from the output of Markov chain Monte Carlo algorithms used to sample from the posterior distribution on the parameter space. We illustrate our method in a simulation study and in two applications.
7th International Geostatistics Congress
Deutsch, Clayton
2005-01-01
The conference proceedings consist of approximately 120 technical papers presented at the Seventh International Geostatistics Congress held in Banff, Alberta, Canada in 2004. All the papers were reviewed by an international panel of leading geostatisticians. The five major sections are: theory, mining, petroleum, environmental and other applications. The first section showcases new and innovative ideas in the theoretical development of geostatistics as a whole; these ideas will have large impact on (1) the directions of future geostatistical research, and (2) the conventional approaches to heterogeneity modelling in a wide range of natural resource industries. The next four sections are focused on applications and innovations relating to the use of geostatistics in specific industries. Historically, mining, petroleum and environmental industries have embraced the use of geostatistics for uncertainty characterization, so these three industries are identified as major application areas. The last section is open...
Directory of Open Access Journals (Sweden)
Ying-Si Lai
2017-03-01
Full Text Available Clonorchiasis, one of the most important food-borne trematodiases, affects more than 12 million people in the People's Republic of China (P.R. China. Spatially explicit risk estimates of Clonorchis sinensis infection are needed in order to target control interventions.Georeferenced survey data pertaining to infection prevalence of C. sinensis in P.R. China from 2000 onwards were obtained via a systematic review in PubMed, ISI Web of Science, Chinese National Knowledge Internet, and Wanfang Data from January 1, 2000 until January 10, 2016, with no restriction of language or study design. Additional disease data were provided by the National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention in Shanghai. Environmental and socioeconomic proxies were extracted from remote-sensing and other data sources. Bayesian variable selection was carried out to identify the most important predictors of C. sinensis risk. Geostatistical models were applied to quantify the association between infection risk and the predictors of the disease, and to predict the risk of infection across P.R. China at high spatial resolution (over a grid with grid cell size of 5×5 km.We obtained clonorchiasis survey data at 633 unique locations in P.R. China. We observed that the risk of C. sinensis infection increased over time, particularly from 2005 onwards. We estimate that around 14.8 million (95% Bayesian credible interval 13.8-15.8 million people in P.R. China were infected with C. sinensis in 2010. Highly endemic areas (≥ 20% were concentrated in southern and northeastern parts of the country. The provinces with the highest risk of infection and the largest number of infected people were Guangdong, Guangxi, and Heilongjiang.Our results provide spatially relevant information for guiding clonorchiasis control interventions in P.R. China. The trend toward higher risk of C. sinensis infection in the recent past urges the Chinese government to
Monte Carlo Analysis of Reservoir Models Using Seismic Data and Geostatistical Models
Zunino, A.; Mosegaard, K.; Lange, K.; Melnikova, Y.; Hansen, T. M.
2013-12-01
We present a study on the analysis of petroleum reservoir models consistent with seismic data and geostatistical constraints performed on a synthetic reservoir model. Our aim is to invert directly for structure and rock bulk properties of the target reservoir zone. To infer the rock facies, porosity and oil saturation seismology alone is not sufficient but a rock physics model must be taken into account, which links the unknown properties to the elastic parameters. We then combine a rock physics model with a simple convolutional approach for seismic waves to invert the "measured" seismograms. To solve this inverse problem, we employ a Markov chain Monte Carlo (MCMC) method, because it offers the possibility to handle non-linearity, complex and multi-step forward models and provides realistic estimates of uncertainties. However, for large data sets the MCMC method may be impractical because of a very high computational demand. To face this challenge one strategy is to feed the algorithm with realistic models, hence relying on proper prior information. To address this problem, we utilize an algorithm drawn from geostatistics to generate geologically plausible models which represent samples of the prior distribution. The geostatistical algorithm learns the multiple-point statistics from prototype models (in the form of training images), then generates thousands of different models which are accepted or rejected by a Metropolis sampler. To further reduce the computation time we parallelize the software and run it on multi-core machines. The solution of the inverse problem is then represented by a collection of reservoir models in terms of facies, porosity and oil saturation, which constitute samples of the posterior distribution. We are finally able to produce probability maps of the properties we are interested in by performing statistical analysis on the collection of solutions.
Geostatistical investigations of rock masses
International Nuclear Information System (INIS)
Matar, J.A.; Sarquis, M.A.; Girardi, J.P.; Tabbia, G.H.
1987-01-01
The geostatistical tehniques applied for the selection of a minimun fracturation volume in Sierra del Medio allow to quantify and qualify the variability of mechanic characteristics and density of fracture and also the level of reliability in estimations. The role of geostatistics is discussed in this work so as to select minimun fracturation blocks as a very important site selection step. The only variable used is the 'jointing density' so as to detect the principal fracture systems affecting the rocky massif. It was used on the semivariograms corresponding to the previously mentioned regionalized variables. The different results of fracturation are compared with the deep and shallow geological survey to obtain two and three dimensional models. The range of the geostatistical techniques to detect local geological phenomena such as faults is discussed. The variability model obtained from the borehole data computations is investigated taking as basis the vertical Columnar Model of Discontinuity (fractures) hypothesis derived from geological studies about spatial behaviour of the joint systems and from geostatistical interpretation. (Author) [es
A geostatistical methodology to assess the accuracy of unsaturated flow models
Energy Technology Data Exchange (ETDEWEB)
Smoot, J.L.; Williams, R.E.
1996-04-01
The Pacific Northwest National Laboratory spatiotemporal movement of water injected into (PNNL) has developed a Hydrologic unsaturated sediments at the Hanford Site in Evaluation Methodology (HEM) to assist the Washington State was used to develop a new U.S. Nuclear Regulatory Commission in method for evaluating mathematical model evaluating the potential that infiltrating meteoric predictions. Measured water content data were water will produce leachate at commercial low- interpolated geostatistically to a 16 x 16 x 36 level radioactive waste disposal sites. Two key grid at several time intervals. Then a issues are raised in the HEM: (1) evaluation of mathematical model was used to predict water mathematical models that predict facility content at the same grid locations at the selected performance, and (2) estimation of the times. Node-by-node comparison of the uncertainty associated with these mathematical mathematical model predictions with the model predictions. The technical objective of geostatistically interpolated values was this research is to adapt geostatistical tools conducted. The method facilitates a complete commonly used for model parameter estimation accounting and categorization of model error at to the problem of estimating the spatial every node. The comparison suggests that distribution of the dependent variable to be model results generally are within measurement calculated by the model. To fulfill this error. The worst model error occurs in silt objective, a database describing the lenses and is in excess of measurement error.
A geostatistical methodology to assess the accuracy of unsaturated flow models
International Nuclear Information System (INIS)
Smoot, J.L.; Williams, R.E.
1996-04-01
The Pacific Northwest National Laboratory spatiotemporal movement of water injected into (PNNL) has developed a Hydrologic unsaturated sediments at the Hanford Site in Evaluation Methodology (HEM) to assist the Washington State was used to develop a new U.S. Nuclear Regulatory Commission in method for evaluating mathematical model evaluating the potential that infiltrating meteoric predictions. Measured water content data were water will produce leachate at commercial low- interpolated geostatistically to a 16 x 16 x 36 level radioactive waste disposal sites. Two key grid at several time intervals. Then a issues are raised in the HEM: (1) evaluation of mathematical model was used to predict water mathematical models that predict facility content at the same grid locations at the selected performance, and (2) estimation of the times. Node-by-node comparison of the uncertainty associated with these mathematical mathematical model predictions with the model predictions. The technical objective of geostatistically interpolated values was this research is to adapt geostatistical tools conducted. The method facilitates a complete commonly used for model parameter estimation accounting and categorization of model error at to the problem of estimating the spatial every node. The comparison suggests that distribution of the dependent variable to be model results generally are within measurement calculated by the model. To fulfill this error. The worst model error occurs in silt objective, a database describing the lenses and is in excess of measurement error
DEFF Research Database (Denmark)
Cordua, Knud Skou; Hansen, Thomas Mejer; Mosegaard, Klaus
2012-01-01
We present a general Monte Carlo full-waveform inversion strategy that integrates a priori information described by geostatistical algorithms with Bayesian inverse problem theory. The extended Metropolis algorithm can be used to sample the a posteriori probability density of highly nonlinear...... inverse problems, such as full-waveform inversion. Sequential Gibbs sampling is a method that allows efficient sampling of a priori probability densities described by geostatistical algorithms based on either two-point (e.g., Gaussian) or multiple-point statistics. We outline the theoretical framework......) Based on a posteriori realizations, complicated statistical questions can be answered, such as the probability of connectivity across a layer. (3) Complex a priori information can be included through geostatistical algorithms. These benefits, however, require more computing resources than traditional...
A practical primer on geostatistics
Olea, Ricardo A.
2009-01-01
The Challenge—Most geological phenomena are extraordinarily complex in their interrelationships and vast in their geographical extension. Ordinarily, engineers and geoscientists are faced with corporate or scientific requirements to properly prepare geological models with measurements involving a small fraction of the entire area or volume of interest. Exact description of a system such as an oil reservoir is neither feasible nor economically possible. The results are necessarily uncertain. Note that the uncertainty is not an intrinsic property of the systems; it is the result of incomplete knowledge by the observer.The Aim of Geostatistics—The main objective of geostatistics is the characterization of spatial systems that are incompletely known, systems that are common in geology. A key difference from classical statistics is that geostatistics uses the sampling location of every measurement. Unless the measurements show spatial correlation, the application of geostatistics is pointless. Ordinarily the need for additional knowledge goes beyond a few points, which explains the display of results graphically as fishnet plots, block diagrams, and maps.Geostatistical Methods—Geostatistics is a collection of numerical techniques for the characterization of spatial attributes using primarily two tools: probabilistic models, which are used for spatial data in a manner similar to the way in which time-series analysis characterizes temporal data, or pattern recognition techniques. The probabilistic models are used as a way to handle uncertainty in results away from sampling locations, making a radical departure from alternative approaches like inverse distance estimation methods.Differences with Time Series—On dealing with time-series analysis, users frequently concentrate their attention on extrapolations for making forecasts. Although users of geostatistics may be interested in extrapolation, the methods work at their best interpolating. This simple difference
Bayesian modeling using WinBUGS
Ntzoufras, Ioannis
2009-01-01
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...
A conceptual sedimentological-geostatistical model of aquifer heterogeneity based on outcrop studies
International Nuclear Information System (INIS)
Davis, J.M.
1994-01-01
Three outcrop studies were conducted in deposits of different depositional environments. At each site, permeability measurements were obtained with an air-minipermeameter developed as part of this study. In addition, the geological units were mapped with either surveying, photographs, or both. Geostatistical analysis of the permeability data was performed to estimate the characteristics of the probability distribution function and the spatial correlation structure. The information obtained from the geological mapping was then compared with the results of the geostatistical analysis for any relationships that may exist. The main field site was located in the Albuquerque Basin of central New Mexico at an outcrop of the Pliocene-Pleistocene Sierra Ladrones Formation. The second study was conducted on the walls of waste pits in alluvial fan deposits at the Nevada Test Site. The third study was conducted on an outcrop of an eolian deposit (miocene) south of Socorro, New Mexico. The results of the three studies were then used to construct a conceptual model relating depositional environment to geostatistical models of heterogeneity. The model presented is largely qualitative but provides a basis for further hypothesis formulation and testing
A conceptual sedimentological-geostatistical model of aquifer heterogeneity based on outcrop studies
Energy Technology Data Exchange (ETDEWEB)
Davis, J.M.
1994-01-01
Three outcrop studies were conducted in deposits of different depositional environments. At each site, permeability measurements were obtained with an air-minipermeameter developed as part of this study. In addition, the geological units were mapped with either surveying, photographs, or both. Geostatistical analysis of the permeability data was performed to estimate the characteristics of the probability distribution function and the spatial correlation structure. The information obtained from the geological mapping was then compared with the results of the geostatistical analysis for any relationships that may exist. The main field site was located in the Albuquerque Basin of central New Mexico at an outcrop of the Pliocene-Pleistocene Sierra Ladrones Formation. The second study was conducted on the walls of waste pits in alluvial fan deposits at the Nevada Test Site. The third study was conducted on an outcrop of an eolian deposit (miocene) south of Socorro, New Mexico. The results of the three studies were then used to construct a conceptual model relating depositional environment to geostatistical models of heterogeneity. The model presented is largely qualitative but provides a basis for further hypothesis formulation and testing.
DEFF Research Database (Denmark)
Troldborg, Mads; Nowak, Wolfgang; Binning, Philip John
and the hydraulic gradient across the control plane and are consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox...... transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. Tests show that the decoupled approach is both efficient and able to provide accurate uncertainty...
Assessment of effectiveness of geologic isolation systems: geostatistical modeling of pore velocity
International Nuclear Information System (INIS)
Devary, J.L.; Doctor, P.G.
1981-06-01
A significant part of evaluating a geologic formation as a nuclear waste repository involves the modeling of contaminant transport in the surrounding media in the event the repository is breached. The commonly used contaminant transport models are deterministic. However, the spatial variability of hydrologic field parameters introduces uncertainties into contaminant transport predictions. This paper discusses the application of geostatistical techniques to the modeling of spatially varying hydrologic field parameters required as input to contaminant transport analyses. Kriging estimation techniques were applied to Hanford Reservation field data to calculate hydraulic conductivity and the ground-water potential gradients. These quantities were statistically combined to estimate the groundwater pore velocity and to characterize the pore velocity estimation error. Combining geostatistical modeling techniques with product error propagation techniques results in an effective stochastic characterization of groundwater pore velocity, a hydrologic parameter required for contaminant transport analyses
Energy Technology Data Exchange (ETDEWEB)
Costa Reis, L.
2001-01-01
We have developed in this thesis a methodology of integrated characterization of heterogeneous reservoirs, from geologic modeling to history matching. This methodology is applied to the reservoir PBR, situated in Campos Basin, offshore Brazil, which has been producing since June 1979. This work is an extension of two other thesis concerning geologic and geostatistical modeling of the reservoir PBR from well data and seismic information. We extended the geostatistical litho-type model to the whole reservoir by using a particular approach of the non-stationary truncated Gaussian simulation method. This approach facilitated the application of the gradual deformation method to history matching. The main stages of the methodology for dynamic data integration in a geostatistical reservoir model are presented. We constructed a reservoir model and the initial difficulties in the history matching led us to modify some choices in the geological, geostatistical and flow models. These difficulties show the importance of dynamic data integration in reservoir modeling. The petrophysical property assignment within the litho-types was done by using well test data. We used an inversion procedure to evaluate the petrophysical parameters of the litho-types. The up-scaling is a necessary stage to reduce the flow simulation time. We compared several up-scaling methods and we show that the passage from the fine geostatistical model to the coarse flow model should be done very carefully. The choice of the fitting parameter depends on the objective of the study. In the case of the reservoir PBR, where water is injected in order to improve the oil recovery, the water rate of the producing wells is directly related to the reservoir heterogeneity. Thus, the water rate was chosen as the fitting parameter. We obtained significant improvements in the history matching of the reservoir PBR. First, by using a method we have proposed, called patchwork. This method allows us to built a coherent
Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald
2017-12-01
An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.
Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.
2013-06-01
Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that
Karami, Shawgar; Madani, Hassan; Katibeh, Homayoon; Fatehi Marj, Ahmad
2018-03-01
Geostatistical methods are one of the advanced techniques used for interpolation of groundwater quality data. The results obtained from geostatistics will be useful for decision makers to adopt suitable remedial measures to protect the quality of groundwater sources. Data used in this study were collected from 78 wells in Varamin plain aquifer located in southeast of Tehran, Iran, in 2013. Ordinary kriging method was used in this study to evaluate groundwater quality parameters. According to what has been mentioned in this paper, seven main quality parameters (i.e. total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical conductivity (EC), sodium (Na+), total hardness (TH), chloride (Cl-) and sulfate (SO4 2-)), have been analyzed and interpreted by statistical and geostatistical methods. After data normalization by Nscore method in WinGslib software, variography as a geostatistical tool to define spatial regression was compiled and experimental variograms were plotted by GS+ software. Then, the best theoretical model was fitted to each variogram based on the minimum RSS. Cross validation method was used to determine the accuracy of the estimated data. Eventually, estimation maps of groundwater quality were prepared in WinGslib software and estimation variance map and estimation error map were presented to evaluate the quality of estimation in each estimated point. Results showed that kriging method is more accurate than the traditional interpolation methods.
Kitanidis, P. K.
1997-05-01
Introduction to Geostatistics presents practical techniques for engineers and earth scientists who routinely encounter interpolation and estimation problems when analyzing data from field observations. Requiring no background in statistics, and with a unique approach that synthesizes classic and geostatistical methods, this book offers linear estimation methods for practitioners and advanced students. Well illustrated with exercises and worked examples, Introduction to Geostatistics is designed for graduate-level courses in earth sciences and environmental engineering.
Murakami, Haruko
Probabilistic risk assessment of groundwater contamination requires us to incorporate large and diverse datasets at the site into the stochastic modeling of flow and transport for prediction. In quantifying the uncertainty in our predictions, we must not only combine the best estimates of the parameters based on each dataset, but also integrate the uncertainty associated with each dataset caused by measurement errors and limited number of measurements. This dissertation presents a Bayesian geostatistical data assimilation method that integrates various types of field data for characterizing heterogeneous hydrological properties. It quantifies the parameter uncertainty as a posterior distribution conditioned on all the datasets, which can be directly used in stochastic simulations to compute possible outcomes of flow and transport processes. The goal of this framework is to remove the discontinuity between data analysis and prediction. Such a direct connection between data and prediction also makes it possible to evaluate the worth of each dataset or combined worth of multiple datasets. The synthetic studies described here confirm that the data assimilation method introduced in this dissertation successfully captures the true parameter values and predicted values within the posterior distribution. The shape of the inferred posterior distributions from the method indicates the importance of estimating the entire distribution in fully accounting for parameter uncertainty. The method is then applied to integrate multiple types of datasets at the Hanford 300 Area for characterizing a three-dimensional heterogeneous hydraulic conductivity field. Comparing the results based on the different numbers or combinations of datasets shows that increasing data do not always contribute in a straightforward way to improving the posterior distribution: increasing numbers of the same data type would not necessarily be beneficial above a certain number, and also the combined effect of
Computational system for geostatistical analysis
Directory of Open Access Journals (Sweden)
Vendrusculo Laurimar Gonçalves
2004-01-01
Full Text Available Geostatistics identifies the spatial structure of variables representing several phenomena and its use is becoming more intense in agricultural activities. This paper describes a computer program, based on Windows Interfaces (Borland Delphi, which performs spatial analyses of datasets through geostatistic tools: Classical statistical calculations, average, cross- and directional semivariograms, simple kriging estimates and jackknifing calculations. A published dataset of soil Carbon and Nitrogen was used to validate the system. The system was useful for the geostatistical analysis process, for the manipulation of the computational routines in a MS-DOS environment. The Windows development approach allowed the user to model the semivariogram graphically with a major degree of interaction, functionality rarely available in similar programs. Given its characteristic of quick prototypation and simplicity when incorporating correlated routines, the Delphi environment presents the main advantage of permitting the evolution of this system.
Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation
Minasny, B.; Vrugt, J.A.; McBratney, A.B.
2011-01-01
This paper demonstrates for the first time the use of Markov Chain Monte Carlo (MCMC) simulation for parameter inference in model-based soil geostatistics. We implemented the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm to jointly summarize the posterior
Can Geostatistical Models Represent Nature's Variability? An Analysis Using Flume Experiments
Scheidt, C.; Fernandes, A. M.; Paola, C.; Caers, J.
2015-12-01
The lack of understanding in the Earth's geological and physical processes governing sediment deposition render subsurface modeling subject to large uncertainty. Geostatistics is often used to model uncertainty because of its capability to stochastically generate spatially varying realizations of the subsurface. These methods can generate a range of realizations of a given pattern - but how representative are these of the full natural variability? And how can we identify the minimum set of images that represent this natural variability? Here we use this minimum set to define the geostatistical prior model: a set of training images that represent the range of patterns generated by autogenic variability in the sedimentary environment under study. The proper definition of the prior model is essential in capturing the variability of the depositional patterns. This work starts with a set of overhead images from an experimental basin that showed ongoing autogenic variability. We use the images to analyze the essential characteristics of this suite of patterns. In particular, our goal is to define a prior model (a minimal set of selected training images) such that geostatistical algorithms, when applied to this set, can reproduce the full measured variability. A necessary prerequisite is to define a measure of variability. In this study, we measure variability using a dissimilarity distance between the images. The distance indicates whether two snapshots contain similar depositional patterns. To reproduce the variability in the images, we apply an MPS algorithm to the set of selected snapshots of the sedimentary basin that serve as training images. The training images are chosen from among the initial set by using the distance measure to ensure that only dissimilar images are chosen. Preliminary investigations show that MPS can reproduce fairly accurately the natural variability of the experimental depositional system. Furthermore, the selected training images provide
Bayesian models: A statistical primer for ecologists
Hobbs, N. Thompson; Hooten, Mevin B.
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models
Directory of Open Access Journals (Sweden)
Mohammad Doustmohammadi
2014-12-01
Full Text Available Uniaxial compressive strength (UCS is one of the most significant factors on the stability of underground excavation projects. Most of the time, this factor can be obtained by exploratory boreholes evaluation. Due to the large distance between exploratory boreholes in the majority of geotechnical projects, the application of geostatistical methods has increased as an estimator of rock mass properties. The present paper ties the estimation of UCS values of intact rock to the distance between boreholes of the Behesht-Abad tunnel in central Iran, using SGEMS geostatistical program. Variography showed that UCS estimation of intact rock using geostatistical methods is reasonable. The model establishment and validation was done after assessment that the model was trustworthy. Cross validation proved the high accuracy (98% and reliability of the model to estimate uniaxial compressive strength. The UCS values were then estimated along the tunnel axis. Moreover, using geostatistical estimation led to better identification of the pros and cons of geotechnical explorations in each location of tunnel route.
International Nuclear Information System (INIS)
Fouquet, Ch. de; Deraisme, J.; Bobbia, M.
2007-01-01
Geo-statistics is increasingly applied to the study of environmental risks in a variety of sectors, especially in the fields of soil decontamination and the evaluation of the risks due to air pollution. Geo-statistics offers a rigorous stochastic modeling approach that makes it possible to answer questions expressed in terms of uncertainty and risk. This article focusses on nonlinear geo-statistical methods, based on the Gaussian random function model, whose essential properties are summarised. We use two examples to characterize situations where direct and thus rapid methods provide appropriate solutions and cases that inevitably require more laborious simulation techniques. Exposure of the population of the Rouen metropolitan area to the risk of NO 2 pollution is assessed by simulations, but the surface area where the pollution exceeds the threshold limit can be easily estimated with nonlinear conditional expectation techniques. A second example is used to discuss the bias introduced by direct simulation, here of a percentile of daily SO 2 concentration for one year in the city of Le Havre; an operational solution is proposed. (authors)
Borsboom, D.; Haig, B.D.
2013-01-01
Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science
Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu
2005-01-01
Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...
A geostatistical analysis of geostatistics
Hengl, T.; Minasny, B.; Gould, M.
2009-01-01
The bibliometric indices of the scientific field of geostatistics were analyzed using statistical and spatial data analysis. The publications and their citation statistics were obtained from the Web of Science (4000 most relevant), Scopus (2000 most relevant) and Google Scholar (5389). The focus was
10th International Geostatistics Congress
Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María; Cassiraga, Eduardo; Vargas-Guzmán, José
2017-01-01
This book contains selected contributions presented at the 10th International Geostatistics Congress held in Valencia from 5 to 9 September, 2016. This is a quadrennial congress that serves as the meeting point for any engineer, professional, practitioner or scientist working in geostatistics. The book contains carefully reviewed papers on geostatistical theory and applications in fields such as mining engineering, petroleum engineering, environmental science, hydrology, ecology, and other fields.
Bayesian analysis of CCDM models
Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.
2017-09-01
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
Bayesian analysis of CCDM models
Energy Technology Data Exchange (ETDEWEB)
Jesus, J.F. [Universidade Estadual Paulista (Unesp), Câmpus Experimental de Itapeva, Rua Geraldo Alckmin 519, Vila N. Sra. de Fátima, Itapeva, SP, 18409-010 Brazil (Brazil); Valentim, R. [Departamento de Física, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Rua São Nicolau No. 210, Diadema, SP, 09913-030 Brazil (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: valentim.rodolfo@unifesp.br, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation—University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX United Kingdom (United Kingdom)
2017-09-01
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3α H {sub 0} model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
Geostatistical modeling of groundwater properties and assessment of their uncertainties
International Nuclear Information System (INIS)
Honda, Makoto; Yamamoto, Shinya; Sakurai, Hideyuki; Suzuki, Makoto; Sanada, Hiroyuki; Matsui, Hiroya; Sugita, Yutaka
2010-01-01
The distribution of groundwater properties is important for understanding of the deep underground hydrogeological environments. This paper proposes a geostatistical system for modeling the groundwater properties which have a correlation with the ground resistivity data obtained from widespread and exhaustive survey. That is, the methodology for the integration of resistivity data measured by various methods and the methodology for modeling the groundwater properties using the integrated resistivity data has been developed. The proposed system has also been validated using the data obtained in the Horonobe Underground Research Laboratory project. Additionally, the quantification of uncertainties in the estimated model has been tried by numerical simulations based on the data. As a result, the uncertainties of the proposal model have been estimated lower than other traditional model's. (author)
International Nuclear Information System (INIS)
La Pointe, P.R.
1994-11-01
This report describes the comparison of stationary and non-stationary geostatistical models for the purpose of inferring block-scale hydraulic conductivity values from packer tests at Aespoe. The comparison between models is made through the evaluation of cross-validation statistics for three experimental designs. The first experiment consisted of a 'Delete-1' test previously used at Finnsjoen. The second test consisted of 'Delete-10%' and the third test was a 'Delete-50%' test. Preliminary data analysis showed that the 3 m and 30 m packer test data can be treated as a sample from a single population for the purposes of geostatistical analyses. Analysis of the 3 m data does not indicate that there are any systematic statistical changes with depth, rock type, fracture zone vs non-fracture zone or other mappable factor. Directional variograms are ambiguous to interpret due to the clustered nature of the data, but do not show any obvious anisotropy that should be accounted for in geostatistical analysis. Stationary analysis suggested that there exists a sizeable spatially uncorrelated component ('Nugget Effect') in the 3 m data, on the order of 60% of the observed variance for the various models fitted. Four different nested models were automatically fit to the data. Results for all models in terms of cross-validation statistics were very similar for the first set of validation tests. Non-stationary analysis established that both the order of drift and the order of the intrinsic random functions is low. This study also suggests that conventional cross-validation studies and automatic variogram fitting are not necessarily evaluating how well a model will infer block scale hydraulic conductivity values. 20 refs, 20 figs, 14 tabs
Hierarchical Bayesian Modeling of Fluid-Induced Seismicity
Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.
2017-11-01
In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...
Local Geostatistical Models and Big Data in Hydrological and Ecological Applications
Hristopulos, Dionissios
2015-04-01
The advent of the big data era creates new opportunities for environmental and ecological modelling but also presents significant challenges. The availability of remote sensing images and low-cost wireless sensor networks implies that spatiotemporal environmental data to cover larger spatial domains at higher spatial and temporal resolution for longer time windows. Handling such voluminous data presents several technical and scientific challenges. In particular, the geostatistical methods used to process spatiotemporal data need to overcome the dimensionality curse associated with the need to store and invert large covariance matrices. There are various mathematical approaches for addressing the dimensionality problem, including change of basis, dimensionality reduction, hierarchical schemes, and local approximations. We present a Stochastic Local Interaction (SLI) model that can be used to model local correlations in spatial data. SLI is a random field model suitable for data on discrete supports (i.e., regular lattices or irregular sampling grids). The degree of localization is determined by means of kernel functions and appropriate bandwidths. The strength of the correlations is determined by means of coefficients. In the "plain vanilla" version the parameter set involves scale and rigidity coefficients as well as a characteristic length. The latter determines in connection with the rigidity coefficient the correlation length of the random field. The SLI model is based on statistical field theory and extends previous research on Spartan spatial random fields [2,3] from continuum spaces to explicitly discrete supports. The SLI kernel functions employ adaptive bandwidths learned from the sampling spatial distribution [1]. The SLI precision matrix is expressed explicitly in terms of the model parameter and the kernel function. Hence, covariance matrix inversion is not necessary for parameter inference that is based on leave-one-out cross validation. This property
Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design
Leube, P. C.; Geiges, A.; Nowak, W.
2012-02-01
Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically
Robust bayesian analysis of an autoregressive model with ...
African Journals Online (AJOL)
In this work, robust Bayesian analysis of the Bayesian estimation of an autoregressive model with exponential innovations is performed. Using a Bayesian robustness methodology, we show that, using a suitable generalized quadratic loss, we obtain optimal Bayesian estimators of the parameters corresponding to the ...
Geostatistical interpolation for modelling SPT data in northern Izmir
Indian Academy of Sciences (India)
data scatter' stems from the natural randomness of the system under con- ... Geostatistical methods were originally used for ore reserve calculations by the ... ing grain size distribution, plasticity, strength parameters and water content, for ...
Messier, Kyle P; Akita, Yasuyuki; Serre, Marc L
2012-03-06
Geographic information systems (GIS) based techniques are cost-effective and efficient methods used by state agencies and epidemiology researchers for estimating concentration and exposure. However, budget limitations have made statewide assessments of contamination difficult, especially in groundwater media. Many studies have implemented address geocoding, land use regression, and geostatistics independently, but this is the first to examine the benefits of integrating these GIS techniques to address the need of statewide exposure assessments. A novel framework for concentration exposure is introduced that integrates address geocoding, land use regression (LUR), below detect data modeling, and Bayesian Maximum Entropy (BME). A LUR model was developed for tetrachloroethylene that accounts for point sources and flow direction. We then integrate the LUR model into the BME method as a mean trend while also modeling below detects data as a truncated Gaussian probability distribution function. We increase available PCE data 4.7 times from previously available databases through multistage geocoding. The LUR model shows significant influence of dry cleaners at short ranges. The integration of the LUR model as mean trend in BME results in a 7.5% decrease in cross validation mean square error compared to BME with a constant mean trend.
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Geostatistical Spatio-Time model of crime in el Salvador: Structural and Predictive Analysis
Directory of Open Access Journals (Sweden)
Welman Rosa Alvarado
2011-07-01
Full Text Available Today, to study a geospatial and spatio-temporal phenomena requires searching statistical tools that enable the analysis of the dependency of space, time and interactions. The science that studies this kind of subjects is the Geoestatics which the goal is to predict spatial phenomenon. This science is considered the base for modeling phenomena that involves interactions between space and time. In the past 10 years, the Geostatistic had seen a great development in areas like the geology, soils, remote sensing, epidemiology, agriculture, ecology, economy, etc. In this research, the geostatistic had been apply to build a predictive map about crime in El Salvador; for that the variability of space and time together is studied to generate crime scenarios: crime hot spots are determined, crime vulnerable groups are identified, to improve political decisions and facilitate to decision makers about the insecurity in the country.
Reducing uncertainty in geostatistical description with well testing pressure data
Energy Technology Data Exchange (ETDEWEB)
Reynolds, A.C.; He, Nanqun [Univ. of Tulsa, OK (United States); Oliver, D.S. [Chevron Petroleum Technology Company, La Habra, CA (United States)
1997-08-01
Geostatistics has proven to be an effective tool for generating realizations of reservoir properties conditioned to static data, e.g., core and log data and geologic knowledge. Due to the lack of closely spaced data in the lateral directions, there will be significant variability in reservoir descriptions generated by geostatistical simulation, i.e., significant uncertainty in the reservoir descriptions. In past work, we have presented procedures based on inverse problem theory for generating reservoir descriptions (rock property fields) conditioned to pressure data and geostatistical information represented as prior means for log-permeability and porosity and variograms. Although we have shown that the incorporation of pressure data reduces the uncertainty below the level contained in the geostatistical model based only on static information (the prior model), our previous results assumed did not explicitly account for uncertainties in the prior means and the parameters defining the variogram model. In this work, we investigate how pressure data can help detect errors in the prior means. If errors in the prior means are large and are not taken into account, realizations conditioned to pressure data represent incorrect samples of the a posteriori probability density function for the rock property fields, whereas, if the uncertainty in the prior mean is incorporated properly into the model, one obtains realistic realizations of the rock property fields.
Empirical Bayesian inference and model uncertainty
International Nuclear Information System (INIS)
Poern, K.
1994-01-01
This paper presents a hierarchical or multistage empirical Bayesian approach for the estimation of uncertainty concerning the intensity of a homogeneous Poisson process. A class of contaminated gamma distributions is considered to describe the uncertainty concerning the intensity. These distributions in turn are defined through a set of secondary parameters, the knowledge of which is also described and updated via Bayes formula. This two-stage Bayesian approach is an example where the modeling uncertainty is treated in a comprehensive way. Each contaminated gamma distributions, represented by a point in the 3D space of secondary parameters, can be considered as a specific model of the uncertainty about the Poisson intensity. Then, by the empirical Bayesian method each individual model is assigned a posterior probability
Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.
2015-12-01
The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.
Sparse Event Modeling with Hierarchical Bayesian Kernel Methods
2016-01-05
SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function
Golay, Jean; Kanevski, Mikhaïl
2013-04-01
The present research deals with the exploration and modeling of a complex dataset of 200 measurement points of sediment pollution by heavy metals in Lake Geneva. The fundamental idea was to use multivariate Artificial Neural Networks (ANN) along with geostatistical models and tools in order to improve the accuracy and the interpretability of data modeling. The results obtained with ANN were compared to those of traditional geostatistical algorithms like ordinary (co)kriging and (co)kriging with an external drift. Exploratory data analysis highlighted a great variety of relationships (i.e. linear, non-linear, independence) between the 11 variables of the dataset (i.e. Cadmium, Mercury, Zinc, Copper, Titanium, Chromium, Vanadium and Nickel as well as the spatial coordinates of the measurement points and their depth). Then, exploratory spatial data analysis (i.e. anisotropic variography, local spatial correlations and moving window statistics) was carried out. It was shown that the different phenomena to be modeled were characterized by high spatial anisotropies, complex spatial correlation structures and heteroscedasticity. A feature selection procedure based on General Regression Neural Networks (GRNN) was also applied to create subsets of variables enabling to improve the predictions during the modeling phase. The basic modeling was conducted using a Multilayer Perceptron (MLP) which is a workhorse of ANN. MLP models are robust and highly flexible tools which can incorporate in a nonlinear manner different kind of high-dimensional information. In the present research, the input layer was made of either two (spatial coordinates) or three neurons (when depth as auxiliary information could possibly capture an underlying trend) and the output layer was composed of one (univariate MLP) to eight neurons corresponding to the heavy metals of the dataset (multivariate MLP). MLP models with three input neurons can be referred to as Artificial Neural Networks with EXternal
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Bayesian models a statistical primer for ecologists
Hobbs, N Thompson
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili
Geostatistics - bloodhound of uranium exploration
International Nuclear Information System (INIS)
David, Michel
1979-01-01
Geostatistics makes possible the efficient use of the information contained in core samples obtained by diamond drilling. The probability that a core represents the true content of a deposit, and the likely content of an orebody between two core samples can both be estimated using geostatistical methods. A confidence interval can be given for the mean grade of a deposit. The use of a computer is essential in the calculation of the continuity function, the variogram, when as many as 800,000 core samples may be involved. The results may be used to determine where additional samples need to be taken, and to develop a picture of the probable grades throughout the deposit. The basic mathematical model is about 15 years old, but applications to different types of deposit require various adaptations. The Ecole Polytechnique is currently developing methods for uranium deposits. (LL)
Satellite Magnetic Residuals Investigated With Geostatistical Methods
DEFF Research Database (Denmark)
Fox Maule, Chaterine; Mosegaard, Klaus; Olsen, Nils
2005-01-01
(which consists of measurement errors and unmodeled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyze the residuals of the Oersted (09d/04) field model (www.dsri.dk/Oersted/Field models/IGRF 2005 candidates/), which is based...
Babcock, Chad; Finley, Andrew O.; Andersen, Hans-Erik; Pattison, Robert; Cook, Bruce D.; Morton, Douglas C.; Alonzo, Michael; Nelson, Ross; Gregoire, Timothy; Ene, Liviu; Gobakken, Terje; Næsset, Erik
2018-06-01
The goal of this research was to develop and examine the performance of a geostatistical coregionalization modeling approach for combining field inventory measurements, strip samples of airborne lidar and Landsat-based remote sensing data products to predict aboveground biomass (AGB) in interior Alaska's Tanana Valley. The proposed modeling strategy facilitates pixel-level mapping of AGB density predictions across the entire spatial domain. Additionally, the coregionalization framework allows for statistically sound estimation of total AGB for arbitrary areal units within the study area---a key advance to support diverse management objectives in interior Alaska. This research focuses on appropriate characterization of prediction uncertainty in the form of posterior predictive coverage intervals and standard deviations. Using the framework detailed here, it is possible to quantify estimation uncertainty for any spatial extent, ranging from pixel-level predictions of AGB density to estimates of AGB stocks for the full domain. The lidar-informed coregionalization models consistently outperformed their counterpart lidar-free models in terms of point-level predictive performance and total AGB precision. Additionally, the inclusion of Landsat-derived forest cover as a covariate further improved estimation precision in regions with lower lidar sampling intensity. Our findings also demonstrate that model-based approaches that do not explicitly account for residual spatial dependence can grossly underestimate uncertainty, resulting in falsely precise estimates of AGB. On the other hand, in a geostatistical setting, residual spatial structure can be modeled within a Bayesian hierarchical framework to obtain statistically defensible assessments of uncertainty for AGB estimates.
Bayesian methodology for reliability model acceptance
International Nuclear Information System (INIS)
Zhang Ruoxue; Mahadevan, Sankaran
2003-01-01
This paper develops a methodology to assess the reliability computation model validity using the concept of Bayesian hypothesis testing, by comparing the model prediction and experimental observation, when there is only one computational model available to evaluate system behavior. Time-independent and time-dependent problems are investigated, with consideration of both cases: with and without statistical uncertainty in the model. The case of time-independent failure probability prediction with no statistical uncertainty is a straightforward application of Bayesian hypothesis testing. However, for the life prediction (time-dependent reliability) problem, a new methodology is developed in this paper to make the same Bayesian hypothesis testing concept applicable. With the existence of statistical uncertainty in the model, in addition to the application of a predictor estimator of the Bayes factor, the uncertainty in the Bayes factor is explicitly quantified through treating it as a random variable and calculating the probability that it exceeds a specified value. The developed method provides a rational criterion to decision-makers for the acceptance or rejection of the computational model
Yan, Hongxiang; Moradkhani, Hamid; Abbaszadeh, Peyman
2017-04-01
Assimilation of satellite soil moisture and streamflow data into hydrologic models using has received increasing attention over the past few years. Currently, these observations are increasingly used to improve the model streamflow and soil moisture predictions. However, the performance of this land data assimilation (DA) system still suffers from two limitations: 1) satellite data scarcity and quality; and 2) particle weight degeneration. In order to overcome these two limitations, we propose two possible solutions in this study. First, the general Gaussian geostatistical approach is proposed to overcome the limitation in the space/time resolution of satellite soil moisture products thus improving their accuracy at uncovered/biased grid cells. Secondly, an evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC, is developed to further reduce weight degeneration and improve the robustness of the land DA system. This study provides a detailed analysis of the joint and separate assimilation of streamflow and satellite soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed EPF-MCMC and the general Gaussian geostatistical approach. Performance is assessed over several basins in the USA selected from Model Parameter Estimation Experiment (MOPEX) and located in different climate regions. The results indicate that: 1) the general Gaussian approach can predict the soil moisture at uncovered grid cells within the expected satellite data quality threshold; 2) assimilation of satellite soil moisture inferred from the general Gaussian model can significantly improve the soil moisture predictions; and 3) in terms of both deterministic and probabilistic measures, the EPF-MCMC can achieve better streamflow predictions. These results recommend that the geostatistical model is a helpful tool to aid the remote sensing technique and the EPF-MCMC is a
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Study on geological environment model using geostatistics method
International Nuclear Information System (INIS)
Honda, Makoto; Suzuki, Makoto; Sakurai, Hideyuki; Iwasa, Kengo; Matsui, Hiroya
2005-03-01
The purpose of this study is to develop the geostatistical procedure for modeling geological environments and to evaluate the quantitative relationship between the amount of information and the reliability of the model using the data sets obtained in the surface-based investigation phase (Phase 1) of the Horonobe Underground Research Laboratory Project. This study lasts for three years from FY2004 to FY2006 and this report includes the research in FY2005 as the second year of three-year study. In FY2005 research, the hydrogeological model was built as well as FY2004 research using the data obtained from the deep boreholes (HDB-6, 7 and 8) and the ground magnetotelluric (AMT) survey which were executed in FY2004 in addition to the data sets used in the first year of study. Above all, the relationship between the amount of information and the reliability of the model was demonstrated through a comparison of the models at each step which corresponds to the investigation stage in each FY. Furthermore, the statistical test was applied for detecting the difference of basic statistics of various data due to geological features with a view to taking the geological information into the modeling procedures. (author)
A Bayesian model for binary Markov chains
Directory of Open Access Journals (Sweden)
Belkheir Essebbar
2004-02-01
Full Text Available This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.
Kaplan, David; Lee, Chansoon
2018-01-01
This article provides a review of Bayesian model averaging as a means of optimizing the predictive performance of common statistical models applied to large-scale educational assessments. The Bayesian framework recognizes that in addition to parameter uncertainty, there is uncertainty in the choice of models themselves. A Bayesian approach to addressing the problem of model uncertainty is the method of Bayesian model averaging. Bayesian model averaging searches the space of possible models for a set of submodels that satisfy certain scientific principles and then averages the coefficients across these submodels weighted by each model's posterior model probability (PMP). Using the weighted coefficients for prediction has been shown to yield optimal predictive performance according to certain scoring rules. We demonstrate the utility of Bayesian model averaging for prediction in education research with three examples: Bayesian regression analysis, Bayesian logistic regression, and a recently developed approach for Bayesian structural equation modeling. In each case, the model-averaged estimates are shown to yield better prediction of the outcome of interest than any submodel based on predictive coverage and the log-score rule. Implications for the design of large-scale assessments when the goal is optimal prediction in a policy context are discussed.
Bayesian modeling of ChIP-chip data using latent variables.
Wu, Mingqi
2009-10-26
BACKGROUND: The ChIP-chip technology has been used in a wide range of biomedical studies, such as identification of human transcription factor binding sites, investigation of DNA methylation, and investigation of histone modifications in animals and plants. Various methods have been proposed in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden Markov model-based methods, and Bayesian methods. Although, due to the integrated consideration of uncertainty of the models and model parameters, Bayesian methods can potentially work better than the other two classes of methods, the existing Bayesian methods do not perform satisfactorily. They usually require multiple replicates or some extra experimental information to parametrize the model, and long CPU time due to involving of MCMC simulations. RESULTS: In this paper, we propose a Bayesian latent model for the ChIP-chip data. The new model mainly differs from the existing Bayesian models, such as the joint deconvolution model, the hierarchical gamma mixture model, and the Bayesian hierarchical model, in two respects. Firstly, it works on the difference between the averaged treatment and control samples. This enables the use of a simple model for the data, which avoids the probe-specific effect and the sample (control/treatment) effect. As a consequence, this enables an efficient MCMC simulation of the posterior distribution of the model, and also makes the model more robust to the outliers. Secondly, it models the neighboring dependence of probes by introducing a latent indicator vector. A truncated Poisson prior distribution is assumed for the latent indicator variable, with the rationale being justified at length. CONCLUSION: The Bayesian latent method is successfully applied to real and ten simulated datasets, with comparisons with some of the existing Bayesian methods, hidden Markov model methods, and sliding window methods. The numerical results indicate that the
A Bayesian Model of the Memory Colour Effect.
Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects.
Use of geostatistics for remediation planning to transcend urban political boundaries
International Nuclear Information System (INIS)
Milillo, Tammy M.; Sinha, Gaurav; Gardella, Joseph A.
2012-01-01
Soil remediation plans are often dictated by areas of jurisdiction or property lines instead of scientific information. This study exemplifies how geostatistically interpolated surfaces can substantially improve remediation planning. Ordinary kriging, ordinary co-kriging, and inverse distance weighting spatial interpolation methods were compared for analyzing surface and sub-surface soil sample data originally collected by the US EPA and researchers at the University at Buffalo in Hickory Woods, an industrial–residential neighborhood in Buffalo, NY, where both lead and arsenic contamination is present. Past clean-up efforts estimated contamination levels from point samples, but parcel and agency jurisdiction boundaries were used to define remediation sites, rather than geostatistical models estimating the spatial behavior of the contaminants in the soil. Residents were understandably dissatisfied with the arbitrariness of the remediation plan. In this study we show how geostatistical mapping and participatory assessment can make soil remediation scientifically defensible, socially acceptable, and economically feasible. - Highlights: ► Point samples and property boundaries do not appropriately determine the extent of soil contamination. ► Kriging and co-kriging provide best concentration estimates for mapping soil contamination and refining clean-up sites. ► Maps provide a visual representation of geostatistical results to communities to aid in geostatistical decision making. ► Incorporating community input into the assessment of neighborhoods is good public policy practice. - Using geostatistical interpolation and mapping results to involve the affected community can substantially improve remediation planning and promote its long-term effectiveness.
DEFF Research Database (Denmark)
Kuikka, Sakari; Haapasaari, Päivi Elisabet; Helle, Inari
2011-01-01
We review the experience obtained in using integrative Bayesian models in interdisciplinary analysis focusing on sustainable use of marine resources and environmental management tasks. We have applied Bayesian models to both fisheries and environmental risk analysis problems. Bayesian belief...... be time consuming and research projects can be difficult to manage due to unpredictable technical problems related to parameter estimation. Biology, sociology and environmental economics have their own scientific traditions. Bayesian models are becoming traditional tools in fisheries biology, where...
A Bayesian alternative for multi-objective ecohydrological model specification
Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori
2018-01-01
Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior
International Nuclear Information System (INIS)
Metcalfe, D.E.; Campbell, J.E.; RamaRao, B.S.; Harper, W.V.; Battelle Project Management Div., Columbus, OH)
1985-01-01
Sensitivity and uncertainty analysis are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of geostatistical and adjoint sensitivity techniques to aid in the calibration of an existing conceptual model of ground-water flow is demonstrated for the Leadville Limestone in Paradox Basin, Utah. The geostatistical method called kriging is used to statistically analyze the measured potentiometric data for the Leadville. This analysis consists of identifying anomalous data and data trends and characterizing the correlation structure between data points. Adjoint sensitivity analysis is then performed to aid in the calibration of a conceptual model of ground-water flow to the Leadville measured potentiometric data. Sensitivity derivatives of the fit between the modeled Leadville potentiometric surface and the measured potentiometric data to model parameters and boundary conditions are calculated by the adjoint method. These sensitivity derivatives are used to determine which model parameter and boundary condition values should be modified to most efficiently improve the fit of modeled to measured potentiometric conditions
Bayesian disease mapping: hierarchical modeling in spatial epidemiology
National Research Council Canada - National Science Library
Lawson, Andrew
2013-01-01
.... Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications...
Bayesian modeling to assess populated areas impacted by radiation from Fukushima
Hultquist, C.; Cervone, G.
2017-12-01
Citizen-led movements producing spatio-temporal big data are increasingly important sources of information about populations that are impacted by natural disasters. Citizen science can be used to fill gaps in disaster monitoring data, in addition to inferring human exposure and vulnerability to extreme environmental impacts. As a response to the 2011 release of radiation from Fukushima, Japan, the Safecast project began collecting open radiation data which grew to be a global dataset of over 70 million measurements to date. This dataset is spatially distributed primarily where humans are located and demonstrates abnormal patterns of population movements as a result of the disaster. Previous work has demonstrated that Safecast is highly correlated in comparison to government radiation observations. However, there is still a scientific need to understand the geostatistical variability of Safecast data and to assess how reliable the data are over space and time. The Bayesian hierarchical approach can be used to model the spatial distribution of datasets and flexibly integrate new flows of data without losing previous information. This enables an understanding of uncertainty in the spatio-temporal data to inform decision makers on areas of high levels of radiation where populations are located. Citizen science data can be scientifically evaluated and used as a critical source of information about populations that are impacted by a disaster.
A Bayesian approach to model uncertainty
International Nuclear Information System (INIS)
Buslik, A.
1994-01-01
A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given
Directory of Open Access Journals (Sweden)
Hashem Salarzadeh Jenatabadi
2016-11-01
Full Text Available There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM with maximum likelihood and Bayesian predictors. The introduced framework includes economic performance, operational performance, cost performance, and financial performance. Based on both Bayesian SEM (Bayesian-SEM and Classical SEM (Classical-SEM, it was found that economic performance with both operational performance and cost performance are significantly related to the financial performance index. The four mathematical indices employed are root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error to compare the efficiency of Bayesian-SEM and Classical-SEM in predicting the airline financial performance. The outputs confirmed that the framework with Bayesian prediction delivered a good fit with the data, although the framework predicted with a Classical-SEM approach did not prepare a well-fitting model. The reasons for this discrepancy between Classical and Bayesian predictions, as well as the potential advantages and caveats with the application of Bayesian approach in airline sustainability studies, are debated.
Bootstrap prediction and Bayesian prediction under misspecified models
Fushiki, Tadayoshi
2005-01-01
We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...
Geostatistics for radiological characterization: overview and application cases
International Nuclear Information System (INIS)
Desnoyers, Yvon
2016-01-01
The objective of radiological characterization is to find a suitable balance between gathering data (constrained by cost, deadlines, accessibility or radiation) and managing the issues (waste volumes, levels of activity or exposure). It is necessary to have enough information to have confidence in the results without multiplying useless data. Geo-statistics processing of data considers all available pieces of information: historical data, non-destructive measurements and laboratory analyses of samples. The spatial structure modelling is then used to produce maps and to estimate the extent of radioactive contamination (surface and depth). Quantifications of local and global uncertainties are powerful decision-making tools for better management of remediation projects at contaminated sites, and for decontamination and dismantling projects at nuclear facilities. They can be used to identify hot spots, estimate contamination of surfaces and volumes, classify radioactive waste according to thresholds, estimate source terms, and so on. The spatial structure of radioactive contamination makes the optimization of sampling (number and position of data points) particularly important. Geo-statistics methodology can help determine the initial mesh size and reduce estimation uncertainties. Several show cases are presented to illustrate why and how geo-statistics can be applied to a range of radiological characterization where investigated units can represent very small areas (a few m 2 or a few m 3 ) or very large sites (at a country scale). The focus is then put on experience gained over years in the use of geo-statistics and sampling optimization. (author)
Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice
Park, Jincheol; Liang, Faming
2012-01-01
of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model
Directory of Open Access Journals (Sweden)
Pedersen Erling M
2011-10-01
Full Text Available Abstract Background In Uganda, malaria and lymphatic filariasis (causative agent Wuchereria bancrofti are transmitted by the same vector species of Anopheles mosquitoes, and thus are likely to share common environmental risk factors and overlap in geographical space. In a comprehensive nationwide survey in 2000-2003 the geographical distribution of W. bancrofti was assessed by screening school-aged children for circulating filarial antigens (CFA. Concurrently, blood smears were examined for malaria parasites. In this study, the resultant malariological data are analysed for the first time and the CFA data re-analysed in order to identify risk factors, produce age-stratified prevalence maps for each infection, and to define the geographical patterns of Plasmodium sp. and W. bancrofti co-endemicity. Methods Logistic regression models were fitted separately for Plasmodium sp. and W. bancrofti within a Bayesian framework. Models contained covariates representing individual-level demographic effects, school-level environmental effects and location-based random effects. Several models were fitted assuming different random effects to allow for spatial structuring and to capture potential non-linearity in the malaria- and filariasis-environment relation. Model-based risk predictions at unobserved locations were obtained via Bayesian predictive distributions for the best fitting models. Maps of predicted hyper-endemic malaria and filariasis were furthermore overlaid in order to define areas of co-endemicity. Results Plasmodium sp. parasitaemia was found to be highly endemic in most of Uganda, with an overall population adjusted parasitaemia risk of 47.2% in the highest risk age-sex group (boys 5-9 years. High W. bancrofti prevalence was predicted for a much more confined area in northern Uganda, with an overall population adjusted infection risk of 7.2% in the highest risk age-group (14-19 year olds. Observed overall prevalence of individual co
Energy Technology Data Exchange (ETDEWEB)
Flipo, Nicolas [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France)]. E-mail: nicolas.flipo@ensmp.fr; Jeannee, Nicolas [Geovariances, 49 bis, avenue Franklin Roosevelt, F-77212 Avon (France); Poulin, Michel [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France); Even, Stephanie [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France); Ledoux, Emmanuel [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France)
2007-03-15
The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km{sup 2}), part of the Seine basin. CAWAQS results from the coupling of the hydrogeological model NEWSAM with the hydrodynamic and biogeochemical model of river PROSE. CAWAQS is coupled with the agronomic model STICS in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate CAWAQS results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then CAWAQS is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L{sup -1} yr{sup -1}, resulting from an average infiltration flux of 3500 kgN.km{sup -2} yr{sup -1}. - Combined use of geostatistics and physically based modeling allows assessment of nitrate concentrations in aquifer systems.
International Nuclear Information System (INIS)
Flipo, Nicolas; Jeannee, Nicolas; Poulin, Michel; Even, Stephanie; Ledoux, Emmanuel
2007-01-01
The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km 2 ), part of the Seine basin. CAWAQS results from the coupling of the hydrogeological model NEWSAM with the hydrodynamic and biogeochemical model of river PROSE. CAWAQS is coupled with the agronomic model STICS in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate CAWAQS results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then CAWAQS is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L -1 yr -1 , resulting from an average infiltration flux of 3500 kgN.km -2 yr -1 . - Combined use of geostatistics and physically based modeling allows assessment of nitrate concentrations in aquifer systems
Bayesian Modeling of a Human MMORPG Player
Synnaeve, Gabriel; Bessière, Pierre
2011-03-01
This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.
Bayesian inference of chemical kinetic models from proposed reactions
Galagali, Nikhil
2015-02-01
© 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.
Del Monego, Maurici; Ribeiro, Paulo Justiniano; Ramos, Patrícia
2015-04-01
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Matèrn models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.
Geostatistical simulations for radon indoor with a nested model including the housing factor
International Nuclear Information System (INIS)
Cafaro, C.; Giovani, C.; Garavaglia, M.
2016-01-01
The radon prone areas definition is matter of many researches in radioecology, since radon is considered a leading cause of lung tumours, therefore the authorities ask for support to develop an appropriate sanitary prevention strategy. In this paper, we use geostatistical tools to elaborate a definition accounting for some of the available information about the dwellings. Co-kriging is the proper interpolator used in geostatistics to refine the predictions by using external covariates. In advance, co-kriging is not guaranteed to improve significantly the results obtained by applying the common lognormal kriging. Here, instead, such multivariate approach leads to reduce the cross-validation residual variance to an extent which is deemed as satisfying. Furthermore, with the application of Monte Carlo simulations, the paradigm provides a more conservative radon prone areas definition than the one previously made by lognormal kriging. - Highlights: • The housing class is inserted into co-kriging via an indicator function. • Inserting the housing classes in a co-kriging improves predictions. • The housing class has a structured component in space. • A nested model is implemented into the multigaussian algorithm. • A collection of risk maps is merged into one to create RPA.
Li, L.; Xu, C.-Y.; Engeland, K.
2012-04-01
With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD
Energy Technology Data Exchange (ETDEWEB)
Zargar, G
2005-10-15
In this thesis, we present a new approach, which consists in directly up-scaling the geostatistical permeability distribution rather than the individual realizations. Practically, filtering techniques based on. the FFT (Fast Fourier Transform), allows us to generate geostatistical images, which sample the up-scaled distributions. In the log normal case, an equivalence hydraulic criterion is proposed, allowing to re-estimate the geometric mean of the permeabilities. In the anisotropic case, the effective geometric mean becomes a tensor which depends on the level of filtering used and it can be calculated by a method of renormalisation. Then, the method was generalized for the categorial model. Numerical tests of the method were set up for isotropic, anisotropic and categorial models, which shows good agreement with theory. (author)
Leube, Philipp; Geiges, Andreas; Nowak, Wolfgang
2010-05-01
Incorporating hydrogeological data, such as head and tracer data, into stochastic models of subsurface flow and transport helps to reduce prediction uncertainty. Considering limited financial resources available for the data acquisition campaign, information needs towards the prediction goal should be satisfied in a efficient and task-specific manner. For finding the best one among a set of design candidates, an objective function is commonly evaluated, which measures the expected impact of data on prediction confidence, prior to their collection. An appropriate approach to this task should be stochastically rigorous, master non-linear dependencies between data, parameters and model predictions, and allow for a wide variety of different data types. Existing methods fail to fulfill all these requirements simultaneously. For this reason, we introduce a new method, denoted as CLUE (Cross-bred Likelihood Uncertainty Estimator), that derives the essential distributions and measures of data utility within a generalized, flexible and accurate framework. The method makes use of Bayesian GLUE (Generalized Likelihood Uncertainty Estimator) and extends it to an optimal design method by marginalizing over the yet unknown data values. Operating in a purely Bayesian Monte-Carlo framework, CLUE is a strictly formal information processing scheme free of linearizations. It provides full flexibility associated with the type of measurements (linear, non-linear, direct, indirect) and accounts for almost arbitrary sources of uncertainty (e.g. heterogeneity, geostatistical assumptions, boundary conditions, model concepts) via stochastic simulation and Bayesian model averaging. This helps to minimize the strength and impact of possible subjective prior assumptions, that would be hard to defend prior to data collection. Our study focuses on evaluating two different uncertainty measures: (i) expected conditional variance and (ii) expected relative entropy of a given prediction goal. The
Directory of Open Access Journals (Sweden)
Yi-Ming Kuo
2011-06-01
Full Text Available Fine airborne particulate matter (PM2.5 has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS, the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME method. The resulting epistemic framework can assimilate knowledge bases including: (a empirical-based spatial trends of PM concentration based on landuse regression, (b the spatio-temporal dependence among PM observation information, and (c site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan from 2005–2007.
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-06-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.
International Nuclear Information System (INIS)
Lanyon, G.W.; Marschall, P.; Vomvoris, S.; Jaquet, O.; Mazurek, M.
1998-01-01
This paper describes the methodology used to estimate effective hydraulic properties for input into a regional geostatistical model of groundwater flow at the Wellenberg site in Switzerland. The methodology uses a geologically-based discrete fracture network model to calculate effective hydraulic properties for 100m blocks along each borehole. A description of the most transmissive features (Water Conducting Features or WCFs) in each borehole is used to determine local transmissivity distributions which are combined with descriptions of WCF extent, orientation and channelling to create fracture network models. WCF geometry is dependent on the class of WCF. WCF classes are defined for each type of geological structure associated with identified borehole inflows. Local to each borehole, models are conditioned on the observed transmissivity and occurrence of WCFs. Multiple realisations are calculated for each 100m block over approximately 400m of borehole. The results from the numerical upscaling are compared with conservative estimates of hydraulic conductivity. Results from unconditioned models are also compared to identify the consequences of conditioning and interval of boreholes that appear to be atypical. An inverse method is also described by which realisations of the geostatistical model can be used to condition discrete fracture network models away from the boreholes. The method can be used as a verification of the modelling approach by prediction of data at borehole locations. Applications of the models to estimation of post-closure repository performance, including cavern inflow and seal zone modelling, are illustrated
Using consensus bayesian network to model the reactive oxygen species regulatory pathway.
Directory of Open Access Journals (Sweden)
Liangdong Hu
Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.
Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason P.; McCabe, Matthew
2013-01-01
A downscaling approach based on multiple-point geostatistics (MPS) is presented. The key concept underlying MPS is to sample spatial patterns from within training images, which can then be used in characterizing the relationship between different variables across multiple scales. The approach is used here to downscale climate variables including skin surface temperature (TSK), soil moisture (SMOIS), and latent heat flux (LH). The performance of the approach is assessed by applying it to data derived from a regional climate model of the Murray-Darling basin in southeast Australia, using model outputs at two spatial resolutions of 50 and 10 km. The data used in this study cover the period from 1985 to 2006, with 1985 to 2005 used for generating the training images that define the relationships of the variables across the different spatial scales. Subsequently, the spatial distributions for the variables in the year 2006 are determined at 10 km resolution using the 50 km resolution data as input. The MPS geostatistical downscaling approach reproduces the spatial distribution of TSK, SMOIS, and LH at 10 km resolution with the correct spatial patterns over different seasons, while providing uncertainty estimates through the use of multiple realizations. The technique has the potential to not only bridge issues of spatial resolution in regional and global climate model simulations but also in feature sharpening in remote sensing applications through image fusion, filling gaps in spatial data, evaluating downscaled variables with available remote sensing images, and aggregating/disaggregating hydrological and groundwater variables for catchment studies.
Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method
Tsai, F. T. C.; Elshall, A. S.
2014-12-01
Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.
A tutorial introduction to Bayesian models of cognitive development.
Perfors, Amy; Tenenbaum, Joshua B; Griffiths, Thomas L; Xu, Fei
2011-09-01
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the what, the how, and the why of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for developmentalists. We emphasize a qualitative understanding of Bayesian inference, but also include information about additional resources for those interested in the cognitive science applications, mathematical foundations, or machine learning details in more depth. In addition, we discuss some important interpretation issues that often arise when evaluating Bayesian models in cognitive science. Copyright © 2010 Elsevier B.V. All rights reserved.
Accurate phenotyping: Reconciling approaches through Bayesian model averaging.
Directory of Open Access Journals (Sweden)
Carla Chia-Ming Chen
Full Text Available Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers for phenotype ascertainment. Phenotypes for such diseases are often identified on the basis of clinically defined criteria; however such criteria may not be suitable for understanding the genetic composition of the diseases. Various statistical approaches have been proposed for phenotype definition; however our previous studies have shown that differences in phenotypes estimated using different approaches have substantial impact on subsequent analyses. Instead of obtaining results based upon a single model, we propose a new method, using Bayesian model averaging to overcome problems associated with phenotype definition. Although Bayesian model averaging has been used in other fields of research, this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained using multiple models. We illustrate the new method by applying it to simulated genetic and phenotypic data for Kofendred personality disorder-an imaginary disease with several sub-types. Two separate statistical methods were used to identify clusters of individuals with distinct phenotypes: latent class analysis and grade of membership. Bayesian model averaging was then used to combine the two clusterings for the purpose of subsequent linkage analyses. We found that causative genetic loci for the disease produced higher LOD scores using model averaging than under either individual model separately. We attribute this improvement to consolidation of the cores of phenotype clusters identified using each individual method.
Energy Technology Data Exchange (ETDEWEB)
Zargar, G.
2005-10-15
In this thesis, we present a new approach, which consists in directly up-scaling the geostatistical permeability distribution rather than the individual realizations. Practically, filtering techniques based on. the FFT (Fast Fourier Transform), allows us to generate geostatistical images, which sample the up-scaled distributions. In the log normal case, an equivalence hydraulic criterion is proposed, allowing to re-estimate the geometric mean of the permeabilities. In the anisotropic case, the effective geometric mean becomes a tensor which depends on the level of filtering used and it can be calculated by a method of renormalisation. Then, the method was generalized for the categorial model. Numerical tests of the method were set up for isotropic, anisotropic and categorial models, which shows good agreement with theory. (author)
Bayesian inference method for stochastic damage accumulation modeling
International Nuclear Information System (INIS)
Jiang, Xiaomo; Yuan, Yong; Liu, Xian
2013-01-01
Damage accumulation based reliability model plays an increasingly important role in successful realization of condition based maintenance for complicated engineering systems. This paper developed a Bayesian framework to establish stochastic damage accumulation model from historical inspection data, considering data uncertainty. Proportional hazards modeling technique is developed to model the nonlinear effect of multiple influencing factors on system reliability. Different from other hazard modeling techniques such as normal linear regression model, the approach does not require any distribution assumption for the hazard model, and can be applied for a wide variety of distribution models. A Bayesian network is created to represent the nonlinear proportional hazards models and to estimate model parameters by Bayesian inference with Markov Chain Monte Carlo simulation. Both qualitative and quantitative approaches are developed to assess the validity of the established damage accumulation model. Anderson–Darling goodness-of-fit test is employed to perform the normality test, and Box–Cox transformation approach is utilized to convert the non-normality data into normal distribution for hypothesis testing in quantitative model validation. The methodology is illustrated with the seepage data collected from real-world subway tunnels.
Congdon, Peter
2014-01-01
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU
Modelling of JET diagnostics using Bayesian Graphical Models
Energy Technology Data Exchange (ETDEWEB)
Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.
2011-07-01
The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models
International Nuclear Information System (INIS)
Andrade, A.R.; Teixeira, P.F.
2015-01-01
Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a Hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated components between consecutive track sections, namely for the deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese railway line Lisbon–Oporto. - Highlights: • Rail track geometry degradation is analysed using Hierarchical Bayesian models. • A Gibbs sampling strategy is put forward to estimate the HBM. • Model comparison and sensitivity analysis find the most suitable model. • We applied the most suitable model to all the segments of the main Portuguese line. • Tackling spatial correlations using CAR structures lead to a better model fit
Testing adaptive toolbox models: a Bayesian hierarchical approach.
Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan
2013-01-01
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.
Directory of Open Access Journals (Sweden)
Waldir de Carvalho Junior
2014-06-01
Full Text Available Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR and geostatistical (ordinary kriging and co-kriging. The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap. Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI, soil wetness index (SWI, normalized difference vegetation index (NDVI, and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Cooper, Richard J; Krueger, Tobias; Hiscock, Kevin M; Rawlins, Barry G
2014-11-01
Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations. An OFAT sensitivity analysis of sediment fingerprinting mixing models is conductedBayesian models display high sensitivity to error assumptions and structural choicesSource apportionment results differ between Bayesian and frequentist approaches.
Fully probabilistic design of hierarchical Bayesian models
Czech Academy of Sciences Publication Activity Database
Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine
2016-01-01
Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf
Risk Assessment of Sediment Pollution Using Geostatistical Simulations
Golay, J.; Kanevski, M.
2012-04-01
Environmental monitoring networks (EMN) discreetly measure the intensities of continuous phenomena (e.g. pollution, temperature, etc.). Spatial prediction models, like kriging, are then used for modeling. But, they give rise to smooth representations of phenomena which leads to overestimations or underestimations of extreme values. Moreover, they do not reproduce the spatial variability of the original data and the corresponding uncertainties. When dealing with risk assessment, this is unacceptable, since extreme values must be retrieved and probabilities of exceeding given thresholds must be computed [Kanevski et al., 2009]. In order to overcome these obstacles, geostatistics provides another approach: conditional stochastic simulations. Here, the basic idea is to generate multiple estimates of variable values (e.g. pollution concentration) at every location of interest which are calculated as stochastic realizations of an unknown random function (see, for example, [Kanevski, 2008], where both theoretical concepts and real data case studies are presented in detail). Many algorithms implement this approach. The most widely used in spatial modeling are sequential Gaussian simulations/cosimulations, sequential indicator simulations/cosimulations and direct simulations. In the present study, several algorithms of geostatistical conditional simulations were applied on real data collected from Lake Geneva. The main objectives were to compare their effectiveness in reproducing global statistics (histograms, variograms) and the way they characterize the variability and uncertainty of the contamination patterns. The dataset is composed of 200 measurements of the contamination of the lake sediments by heavy metals (i.e. Cadmium, Mercury, Zinc, Copper, Titanium and Chromium). The results obtained show some differences highlighting that risk assessment can be influenced by the algorithm it relies on. Moreover, hybrid models based on machine learning algorithms and
The application of geostatistics in erosion hazard mapping
Beurden, S.A.H.A. van; Riezebos, H.Th.
1988-01-01
Geostatistical interpolation or kriging of soil and vegetation variables has become an important alternative to other mapping techniques. Although a reconnaissance sampling is necessary and basic requirements of geostatistics have to be met, kriging has the advantage of giving estimates with a
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Bayesian spatial modeling of HIV mortality via zero-inflated Poisson models.
Musal, Muzaffer; Aktekin, Tevfik
2013-01-30
In this paper, we investigate the effects of poverty and inequality on the number of HIV-related deaths in 62 New York counties via Bayesian zero-inflated Poisson models that exhibit spatial dependence. We quantify inequality via the Theil index and poverty via the ratios of two Census 2000 variables, the number of people under the poverty line and the number of people for whom poverty status is determined, in each Zip Code Tabulation Area. The purpose of this study was to investigate the effects of inequality and poverty in addition to spatial dependence between neighboring regions on HIV mortality rate, which can lead to improved health resource allocation decisions. In modeling county-specific HIV counts, we propose Bayesian zero-inflated Poisson models whose rates are functions of both covariate and spatial/random effects. To show how the proposed models work, we used three different publicly available data sets: TIGER Shapefiles, Census 2000, and mortality index files. In addition, we introduce parameter estimation issues of Bayesian zero-inflated Poisson models and discuss MCMC method implications. Copyright © 2012 John Wiley & Sons, Ltd.
Bayesian models for astrophysical data using R, JAGS, Python, and Stan
Hilbe, Joseph M; Ishida, Emille E O
2017-01-01
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.
Testing students' e-learning via Facebook through Bayesian structural equation modeling.
Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Testing students' e-learning via Facebook through Bayesian structural equation modeling.
Directory of Open Access Journals (Sweden)
Hashem Salarzadeh Jenatabadi
Full Text Available Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Development of uncertainty-based work injury model using Bayesian structural equation modelling.
Chatterjee, Snehamoy
2014-01-01
This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.
Bayesian Modelling of Functional Whole Brain Connectivity
DEFF Research Database (Denmark)
Røge, Rasmus
the prevalent strategy of standardizing of fMRI time series and model data using directional statistics or we model the variability in the signal across the brain and across multiple subjects. In either case, we use Bayesian nonparametric modeling to automatically learn from the fMRI data the number......This thesis deals with parcellation of whole-brain functional magnetic resonance imaging (fMRI) using Bayesian inference with mixture models tailored to the fMRI data. In the three included papers and manuscripts, we analyze two different approaches to modeling fMRI signal; either we accept...... of funcional units, i.e. parcels. We benchmark the proposed mixture models against state of the art methods of brain parcellation, both probabilistic and non-probabilistic. The time series of each voxel are most often standardized using z-scoring which projects the time series data onto a hypersphere...
Reverse Flow Routing in a Bayesian Framework Using a GPU-accelerated 2D Shallow Water Model
D'Oria, M.; Ferrari, A.; Mignosa, P.; Tanda, M. G.; Vacondio, R.
2017-12-01
Knowledge of discharge hydrographs in specific sites of natural rivers is important for water resource management, flood frequency analysis, design of structures, etc. Many times, the flood hydrograph is needed in a river section upstream of a monitoring station; here the flood wave differs from the upstream one because of the effects of resistance, channel storage, lateral inflow, etc. Reverse flow routing is a method that allows obtaining hydrographs in upstream ungauged stations using information available at downstream monitored sites. In this study, we propose an inverse procedure, based on a Bayesian Geostatistical Approach, to solve the reverse problem. The upstream flow values over time (parameters) are considered as random variables and a-priori information about the parameters and observations (downstream discharge or water level values) are combined together in a Bayesian framework. The methodology needs a forward model of the considered open channel that includes the upstream ungauged station and the downstream gauged one and it is able to describe, with sufficient accuracy, the hydraulic routing processes. In many real cases, especially when large floodable areas are involved, a 1D hydraulic model is not able to capture the complex river hydrodynamic and a 2D model must be used. The inverse procedure requires a high number of flow model run to linearize the forward problem through multiple evaluations of a Jacobian matrix (sensitivity of each observation to each parameter) using a finite difference approach. For this reason, the computational efficiency of the forward model is a crucial element to reduce the overall computational costs. Therefore, in this work we used, in combination with the inverse procedure, a GPU-parallel numerical model for the solution of the 2D Shallow Water equations (implemented in CUDA/C++ code) that allows achieving ratio of physical to computational time of about 500-1000 (depending on the test case features). In addition
Bayesian network modeling of operator's state recognition process
International Nuclear Information System (INIS)
Hatakeyama, Naoki; Furuta, Kazuo
2000-01-01
Nowadays we are facing a difficult problem of establishing a good relation between humans and machines. To solve this problem, we suppose that machine system need to have a model of human behavior. In this study we model the state cognition process of a PWR plant operator as an example. We use a Bayesian network as an inference engine. We incorporate the knowledge hierarchy in the Bayesian network and confirm its validity using the example of PWR plant operator. (author)
A study of finite mixture model: Bayesian approach on financial time series data
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
Bayesian Plackett-Luce Mixture Models for Partially Ranked Data.
Mollica, Cristina; Tardella, Luca
2017-06-01
The elicitation of an ordinal judgment on multiple alternatives is often required in many psychological and behavioral experiments to investigate preference/choice orientation of a specific population. The Plackett-Luce model is one of the most popular and frequently applied parametric distributions to analyze rankings of a finite set of items. The present work introduces a Bayesian finite mixture of Plackett-Luce models to account for unobserved sample heterogeneity of partially ranked data. We describe an efficient way to incorporate the latent group structure in the data augmentation approach and the derivation of existing maximum likelihood procedures as special instances of the proposed Bayesian method. Inference can be conducted with the combination of the Expectation-Maximization algorithm for maximum a posteriori estimation and the Gibbs sampling iterative procedure. We additionally investigate several Bayesian criteria for selecting the optimal mixture configuration and describe diagnostic tools for assessing the fitness of ranking distributions conditionally and unconditionally on the number of ranked items. The utility of the novel Bayesian parametric Plackett-Luce mixture for characterizing sample heterogeneity is illustrated with several applications to simulated and real preference ranked data. We compare our method with the frequentist approach and a Bayesian nonparametric mixture model both assuming the Plackett-Luce model as a mixture component. Our analysis on real datasets reveals the importance of an accurate diagnostic check for an appropriate in-depth understanding of the heterogenous nature of the partial ranking data.
Network structure exploration via Bayesian nonparametric models
International Nuclear Information System (INIS)
Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z
2015-01-01
Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)
Spatiotemporal mapping of ground water pollution in a Greek lignite basin, using geostatistics
Energy Technology Data Exchange (ETDEWEB)
Modis, K. [National Technical Univ. of Athens, Athens (Greece)
2010-07-01
An issue of significant interest in the mining industry in Greece is the occurrence of chemical pollutants in ground water. Ammonium, nitrites and nitrates concentrations have been monitored through an extensive sampling network in the Ptolemais lignite opencast mining area in Greece. Due to intensive mining efforts in the area, the surface topology is continuously altered, affecting the life span of the water boreholes and resulting in messy spatiotemporal distribution of data. This paper discussed the spatiotemporal mapping of ground water pollution in the Ptolemais lignite basin, using geostatistics. More specifically, the spatiotemporal distribution of ground water contamination was examined by the application of the bayesian maximum entropy theory which allows merging spatial and temporal estimations in a single model. The paper provided a description of the site and discussed the materials and methods, including samples and statistics; variography; and spatiotemporal mapping. It was concluded that in the case of the Ptolemais mining area, results revealed an underlying average yearly variation pattern of pollutant concentrations. Inspection of the produced spatiotemporal maps demonstrated a continuous increase in the risk of ammonium contamination, while risk for the other two pollutants appeared in hot spots. 18 refs., 1 tab., 7 figs.
Spatiotemporal mapping of ground water pollution in a Greek lignite basin, using geostatistics
International Nuclear Information System (INIS)
Modis, K.
2010-01-01
An issue of significant interest in the mining industry in Greece is the occurrence of chemical pollutants in ground water. Ammonium, nitrites and nitrates concentrations have been monitored through an extensive sampling network in the Ptolemais lignite opencast mining area in Greece. Due to intensive mining efforts in the area, the surface topology is continuously altered, affecting the life span of the water boreholes and resulting in messy spatiotemporal distribution of data. This paper discussed the spatiotemporal mapping of ground water pollution in the Ptolemais lignite basin, using geostatistics. More specifically, the spatiotemporal distribution of ground water contamination was examined by the application of the bayesian maximum entropy theory which allows merging spatial and temporal estimations in a single model. The paper provided a description of the site and discussed the materials and methods, including samples and statistics; variography; and spatiotemporal mapping. It was concluded that in the case of the Ptolemais mining area, results revealed an underlying average yearly variation pattern of pollutant concentrations. Inspection of the produced spatiotemporal maps demonstrated a continuous increase in the risk of ammonium contamination, while risk for the other two pollutants appeared in hot spots. 18 refs., 1 tab., 7 figs.
Methodology and Applications in Non-linear Model-based Geostatistics
DEFF Research Database (Denmark)
Christensen, Ole Fredslund
that are approximately Gaussian. Parameter estimation and prediction for the transformed Gaussian model is studied. In some cases a transformation cannot possibly render the data Gaussian. A methodology for analysing such data was introduced by Diggle, Tawn and Moyeed (1998): The generalised linear spatial model...... priors for Bayesian inference is discussed. Procedures for parameter estimation and prediction are studied. Theoretical properties of Markov chain Monte Carlo algorithms are investigated, and different algorithms are compared. In addition, the thesis contains a manual for an R-package, geoRglmm, which...
Bayesian network as a modelling tool for risk management in agriculture
DEFF Research Database (Denmark)
Rasmussen, Svend; Madsen, Anders L.; Lund, Mogens
. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions......, and that it has the ability to link uncertainty from different external sources to budget figures and to quantify risk at the farm level....
BUMPER: the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction
Holden, Phil; Birks, John; Brooks, Steve; Bush, Mark; Hwang, Grace; Matthews-Bird, Frazer; Valencia, Bryan; van Woesik, Robert
2017-04-01
We describe the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. The principal motivation for a Bayesian approach is that the palaeoenvironment is treated probabilistically, and can be updated as additional data become available. Bayesian approaches therefore provide a reconstruction-specific quantification of the uncertainty in the data and in the model parameters. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring 2 seconds to build a 100-taxon model from a 100-site training-set on a standard personal computer. We apply the model's probabilistic framework to generate thousands of artificial training-sets under ideal assumptions. We then use these to demonstrate both the general applicability of the model and the sensitivity of reconstructions to the characteristics of the training-set, considering assemblage richness, taxon tolerances, and the number of training sites. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. In all of these applications an identically configured model is used, the only change being the input files that provide the training-set environment and taxon-count data.
Fast model updating coupling Bayesian inference and PGD model reduction
Rubio, Paul-Baptiste; Louf, François; Chamoin, Ludovic
2018-04-01
The paper focuses on a coupled Bayesian-Proper Generalized Decomposition (PGD) approach for the real-time identification and updating of numerical models. The purpose is to use the most general case of Bayesian inference theory in order to address inverse problems and to deal with different sources of uncertainties (measurement and model errors, stochastic parameters). In order to do so with a reasonable CPU cost, the idea is to replace the direct model called for Monte-Carlo sampling by a PGD reduced model, and in some cases directly compute the probability density functions from the obtained analytical formulation. This procedure is first applied to a welding control example with the updating of a deterministic parameter. In the second application, the identification of a stochastic parameter is studied through a glued assembly example.
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Jay Krishna Thakur
2015-08-01
Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.
Geostatistical Borehole Image-Based Mapping of Karst-Carbonate Aquifer Pores.
Sukop, Michael C; Cunningham, Kevin J
2016-03-01
Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes. © 2015, National Ground Water Association.
Schur, Nadine; Hürlimann, Eveline; Garba, Amadou; Traoré, Mamadou S.; Ndir, Omar; Ratard, Raoult C.; Tchuem Tchuenté, Louis-Albert; Kristensen, Thomas K.; Utzinger, Jürg; Vounatsou, Penelope
2011-01-01
Background Schistosomiasis is a water-based disease that is believed to affect over 200 million people with an estimated 97% of the infections concentrated in Africa. However, these statistics are largely based on population re-adjusted data originally published by Utroska and colleagues more than 20 years ago. Hence, these estimates are outdated due to large-scale preventive chemotherapy programs, improved sanitation, water resources development and management, among other reasons. For planning, coordination, and evaluation of control activities, it is essential to possess reliable schistosomiasis prevalence maps. Methodology We analyzed survey data compiled on a newly established open-access global neglected tropical diseases database (i) to create smooth empirical prevalence maps for Schistosoma mansoni and S. haematobium for individuals aged ≤20 years in West Africa, including Cameroon, and (ii) to derive country-specific prevalence estimates. We used Bayesian geostatistical models based on environmental predictors to take into account potential clustering due to common spatially structured exposures. Prediction at unobserved locations was facilitated by joint kriging. Principal Findings Our models revealed that 50.8 million individuals aged ≤20 years in West Africa are infected with either S. mansoni, or S. haematobium, or both species concurrently. The country prevalence estimates ranged between 0.5% (The Gambia) and 37.1% (Liberia) for S. mansoni, and between 17.6% (The Gambia) and 51.6% (Sierra Leone) for S. haematobium. We observed that the combined prevalence for both schistosome species is two-fold lower in Gambia than previously reported, while we found an almost two-fold higher estimate for Liberia (58.3%) than reported before (30.0%). Our predictions are likely to overestimate overall country prevalence, since modeling was based on children and adolescents up to the age of 20 years who are at highest risk of infection. Conclusion/Significance We
International Nuclear Information System (INIS)
Chen, DI-WEN
2001-01-01
Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are mostly of unknown composition and concentration until measurements are taken of post-accident ground concentrations from plume-ground deposition of constituents. Unfortunately, measurements often are days post-incident and rely on hazardous manned air-vehicle measurements. Before this happens, computational plume migration models are the only source of information on the plume characteristics, constituents, concentrations, directions of travel, ground deposition, etc. A mobile ''lighter than air'' (LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response in emergency conditions. These interactive and remote unmanned air vehicles will carry light-weight detectors and weather instrumentation to measure the conditions during and after plume release. This requires a cooperative computationally organized, GPS-controlled set of LTA's that self-coordinate around the objectives in an emergency situation in restricted time frames. A critical step before an optimum and cost-effective field sampling and monitoring program proceeds is the collection of data that provides statistically significant information, collected in a reliable and expeditious manner. Efficient aerial arrangements of the detectors taking the data (for active airborne release conditions) are necessary for plume identification, computational 3-dimensional reconstruction, and source distribution functions. This report describes the application of stochastic or geostatistical simulations to delineate the plume for guiding subsequent sampling and monitoring designs. A case study is presented of building digital plume images, based on existing ''hard'' experimental data and ''soft'' preliminary transport modeling results of Prairie Grass Trials Site. Markov Bayes Simulation, a coupled Bayesian/geostatistical methodology, quantitatively combines soft information
Geostatistical modelling of carbon monoxide levels in Khartoum State (Sudan) - GIS pilot based study
Energy Technology Data Exchange (ETDEWEB)
Alhuseen, A [Comenius University in Bratislava, Faculty of Natural Sciences, Dept. of Landscape Ecology, 84215 Bratislava (Slovakia); Madani, M [Ministry of Environment and Physical Development, 1111 Khartoum (Sudan)
2012-04-25
The objective of this study is to develop a digital GIS model; that can evaluate, predict and visualize carbon monoxide (CO) levels in Khartoum state. To achieve this aim, sample data had been collected, processed and managed to generate a dynamic GIS model of carbon monoxide levels in the study area. Parametric data collected from the field and analysis carried throughout this study show that (CO) emissions were lower than the allowable ambient air quality standards released by National Environment Protection Council (NEPC-USA) for 1998. However, this pilot study has found emissions of (CO) in Omdurman city were the highest. This pilot study shows that GIS and geostatistical modeling can be used as a powerful tool to produce maps of exposure. (authors)
Forecasting Interest Rates Using Geostatistical Techniques
Directory of Open Access Journals (Sweden)
Giuseppe Arbia
2015-11-01
Full Text Available Geostatistical spatial models are widely used in many applied fields to forecast data observed on continuous three-dimensional surfaces. We propose to extend their use to finance and, in particular, to forecasting yield curves. We present the results of an empirical application where we apply the proposed method to forecast Euro Zero Rates (2003–2014 using the Ordinary Kriging method based on the anisotropic variogram. Furthermore, a comparison with other recent methods for forecasting yield curves is proposed. The results show that the model is characterized by good levels of predictions’ accuracy and it is competitive with the other forecasting models considered.
Distributed Bayesian Networks for User Modeling
DEFF Research Database (Denmark)
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang
2006-01-01
The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such ada......The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...
BDgraph: An R Package for Bayesian Structure Learning in Graphical Models
Mohammadi, A.; Wit, E.C.
2017-01-01
Graphical models provide powerful tools to uncover complicated patterns in multivariate data and are commonly used in Bayesian statistics and machine learning. In this paper, we introduce an R package BDgraph which performs Bayesian structure learning for general undirected graphical models with
Development of dynamic Bayesian models for web application test management
Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.
2018-03-01
The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.
Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation
Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.
2012-12-01
This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.
Bayesian uncertainty analyses of probabilistic risk models
International Nuclear Information System (INIS)
Pulkkinen, U.
1989-01-01
Applications of Bayesian principles to the uncertainty analyses are discussed in the paper. A short review of the most important uncertainties and their causes is provided. An application of the principle of maximum entropy to the determination of Bayesian prior distributions is described. An approach based on so called probabilistic structures is presented in order to develop a method of quantitative evaluation of modelling uncertainties. The method is applied to a small example case. Ideas for application areas for the proposed method are discussed
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Spatial Downscaling of TRMM Precipitation Using Geostatistics and Fine Scale Environmental Variables
Directory of Open Access Journals (Sweden)
No-Wook Park
2013-01-01
Full Text Available A geostatistical downscaling scheme is presented and can generate fine scale precipitation information from coarse scale Tropical Rainfall Measuring Mission (TRMM data by incorporating auxiliary fine scale environmental variables. Within the geostatistical framework, the TRMM precipitation data are first decomposed into trend and residual components. Quantitative relationships between coarse scale TRMM data and environmental variables are then estimated via regression analysis and used to derive trend components at a fine scale. Next, the residual components, which are the differences between the trend components and the original TRMM data, are then downscaled at a target fine scale via area-to-point kriging. The trend and residual components are finally added to generate fine scale precipitation estimates. Stochastic simulation is also applied to the residual components in order to generate multiple alternative realizations and to compute uncertainty measures. From an experiment using a digital elevation model (DEM and normalized difference vegetation index (NDVI, the geostatistical downscaling scheme generated the downscaling results that reflected detailed characteristics with better predictive performance, when compared with downscaling without the environmental variables. Multiple realizations and uncertainty measures from simulation also provided useful information for interpretations and further environmental modeling.
Bayesian Inference of High-Dimensional Dynamical Ocean Models
Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.
2015-12-01
This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
Parameterizing Bayesian network Representations of Social-Behavioral Models by Expert Elicitation
Energy Technology Data Exchange (ETDEWEB)
Walsh, Stephen J.; Dalton, Angela C.; Whitney, Paul D.; White, Amanda M.
2010-05-23
Bayesian networks provide a general framework with which to model many natural phenomena. The mathematical nature of Bayesian networks enables a plethora of model validation and calibration techniques: e.g parameter estimation, goodness of fit tests, and diagnostic checking of the model assumptions. However, they are not free of shortcomings. Parameter estimation from relevant extant data is a common approach to calibrating the model parameters. In practice it is not uncommon to find oneself lacking adequate data to reliably estimate all model parameters. In this paper we present the early development of a novel application of conjoint analysis as a method for eliciting and modeling expert opinions and using the results in a methodology for calibrating the parameters of a Bayesian network.
Application of a predictive Bayesian model to environmental accounting.
Anex, R P; Englehardt, J D
2001-03-30
Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.
Modelling of population dynamics of red king crab using Bayesian approach
Directory of Open Access Journals (Sweden)
Bakanev Sergey ...
2012-10-01
Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.
Bayesian methods for data analysis
Carlin, Bradley P.
2009-01-01
Approaches for statistical inference Introduction Motivating Vignettes Defining the Approaches The Bayes-Frequentist Controversy Some Basic Bayesian Models The Bayes approach Introduction Prior Distributions Bayesian Inference Hierarchical Modeling Model Assessment Nonparametric Methods Bayesian computation Introduction Asymptotic Methods Noniterative Monte Carlo Methods Markov Chain Monte Carlo Methods Model criticism and selection Bayesian Modeling Bayesian Robustness Model Assessment Bayes Factors via Marginal Density Estimation Bayes Factors
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
DEFF Research Database (Denmark)
Kessler, Timo Christian; Nilsson, Bertel; Klint, Knud Erik
2010-01-01
(TPROGS) of alternating geological facies. The second method, multiple-point statistics, uses training images to estimate the conditional probability of sand-lenses at a certain location. Both methods respect field observations such as local stratigraphy, however, only the multiple-point statistics can...... of sand-lenses in clay till. Sand-lenses mainly account for horizontal transport and are prioritised in this study. Based on field observations, the distribution has been modeled using two different geostatistical approaches. One method uses a Markov chain model calculating the transition probabilities...
Bayesian network modelling of upper gastrointestinal bleeding
Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri
2013-09-01
Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.
Bayesian models for comparative analysis integrating phylogenetic uncertainty
Directory of Open Access Journals (Sweden)
Villemereuil Pierre de
2012-06-01
Full Text Available Abstract Background Uncertainty in comparative analyses can come from at least two sources: a phylogenetic uncertainty in the tree topology or branch lengths, and b uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow and inflated significance in hypothesis testing (e.g. p-values will be too small. Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible
Bayesian models for comparative analysis integrating phylogenetic uncertainty
2012-01-01
Background Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for
Bayesian Inference of a Multivariate Regression Model
Directory of Open Access Journals (Sweden)
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
International Nuclear Information System (INIS)
Hashemi, Seyyedhossein; Javaherian, Abdolrahim; Ataee-pour, Majid; Khoshdel, Hossein
2014-01-01
Facies models try to explain facies architectures which have a primary control on the subsurface heterogeneities and the fluid flow characteristics of a given reservoir. In the process of facies modeling, geostatistical methods are implemented to integrate different sources of data into a consistent model. The facies models should describe facies interactions; the shape and geometry of the geobodies as they occur in reality. Two distinct categories of geostatistical techniques are two-point and multiple-point (geo) statistics (MPS). In this study, both of the aforementioned categories were applied to generate facies models. A sequential indicator simulation (SIS) and a truncated Gaussian simulation (TGS) represented two-point geostatistical methods, and a single normal equation simulation (SNESIM) selected as an MPS simulation representative. The dataset from an extremely channelized carbonate reservoir located in southwest Iran was applied to these algorithms to analyze their performance in reproducing complex curvilinear geobodies. The SNESIM algorithm needs consistent training images (TI) in which all possible facies architectures that are present in the area are included. The TI model was founded on the data acquired from modern occurrences. These analogies delivered vital information about the possible channel geometries and facies classes that are typically present in those similar environments. The MPS results were conditioned to both soft and hard data. Soft facies probabilities were acquired from a neural network workflow. In this workflow, seismic-derived attributes were implemented as the input data. Furthermore, MPS realizations were conditioned to hard data to guarantee the exact positioning and continuity of the channel bodies. A geobody extraction workflow was implemented to extract the most certain parts of the channel bodies from the seismic data. These extracted parts of the channel bodies were applied to the simulation workflow as hard data
Geostatistical methodology for waste optimization of contaminated premises - 59344
International Nuclear Information System (INIS)
Desnoyers, Yvon; Dubot, Didier
2012-01-01
The presented methodological study illustrates a Geo-statistical approach suitable for radiological evaluation in nuclear premises. The waste characterization is mainly focused on floor concrete surfaces. By modeling the spatial continuity of activities, Geo-statistics provide sound methods to estimate and map radiological activities, together with their uncertainty. The multivariate approach allows the integration of numerous surface radiation measurements in order to improve the estimation of activity levels from concrete samples. This way, a sequential and iterative investigation strategy proves to be relevant to fulfill the different evaluation objectives. Waste characterization is performed on risk maps rather than on direct interpolation maps (due to bias of the selection on kriging results). The use of several estimation supports (punctual, 1 m 2 , room) allows a relevant radiological waste categorization thanks to cost-benefit analysis according to the risk of exceeding a given activity threshold. Global results, mainly total activity, are similarly quantified to precociously lead the waste management for the dismantling and decommissioning project. This paper recalled the geo-statistics principles and demonstrated how this methodology provides innovative tools for the radiological evaluation of contaminated premises. The relevance of this approach relies on the presence of a spatial continuity for radiological contamination. In this case, geo-statistics provides reliable activity estimates, uncertainty quantification and risk analysis, which are essential decision-making tools for decommissioning and dismantling projects of nuclear installations. Waste characterization is then performed taking all relevant information into account: historical knowledge, surface measurements and samples. Thanks to the multivariate processing, the different investigation stages can be rationalized as regards quantity and positioning. Waste characterization is finally
DEFF Research Database (Denmark)
Jansen, T; Kristensen, K; Fairweather, T. P.
2017-01-01
paradoxus are not reflected in the current assessment and management practices for the Benguela Current Large Marine Ecosystem. In this study, we compiled data from multiple demersal trawl surveys from the entire distribution area and applied state-of the-art geostatistical population modelling (Geo...
Spatial and spatio-temporal bayesian models with R - INLA
Blangiardo, Marta
2015-01-01
Dedication iiiPreface ix1 Introduction 11.1 Why spatial and spatio-temporal statistics? 11.2 Why do we use Bayesian methods for modelling spatial and spatio-temporal structures? 21.3 Why INLA? 31.4 Datasets 32 Introduction to 212.1 The language 212.2 objects 222.3 Data and session management 342.4 Packages 352.5 Programming in 362.6 Basic statistical analysis with 393 Introduction to Bayesian Methods 533.1 Bayesian Philosophy 533.2 Basic Probability Elements 573.3 Bayes Theorem 623.4 Prior and Posterior Distributions 643.5 Working with the Posterior Distribution 663.6 Choosing the Prior Distr
Bayesian log-periodic model for financial crashes
DEFF Research Database (Denmark)
Rodríguez-Caballero, Carlos Vladimir; Knapik, Oskar
2014-01-01
This paper introduces a Bayesian approach in econophysics literature about financial bubbles in order to estimate the most probable time for a financial crash to occur. To this end, we propose using noninformative prior distributions to obtain posterior distributions. Since these distributions...... cannot be performed analytically, we develop a Markov Chain Monte Carlo algorithm to draw from posterior distributions. We consider three Bayesian models that involve normal and Student’s t-distributions in the disturbances and an AR(1)-GARCH(1,1) structure only within the first case. In the empirical...... part of the study, we analyze a well-known example of financial bubble – the S&P 500 1987 crash – to show the usefulness of the three methods under consideration and crashes of Merval-94, Bovespa-97, IPCMX-94, Hang Seng-97 using the simplest method. The novelty of this research is that the Bayesian...
Geostatistical inference using crosshole ground-penetrating radar
DEFF Research Database (Denmark)
Looms, Majken C; Hansen, Thomas Mejer; Cordua, Knud Skou
2010-01-01
of the subsurface are used to evaluate the uncertainty of the inversion estimate. We have explored the full potential of the geostatistical inference method using several synthetic models of varying correlation structures and have tested the influence of different assumptions concerning the choice of covariance...... reflection profile. Furthermore, the inferred values of the subsurface global variance and the mean velocity have been corroborated with moisturecontent measurements, obtained gravimetrically from samples collected at the field site....
Modelling dependable systems using hybrid Bayesian networks
International Nuclear Information System (INIS)
Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter
2008-01-01
A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems
International Nuclear Information System (INIS)
Bossong, C.R.; Karlinger, M.R.; Troutman, B.M.; Vecchia, A.V.
1999-01-01
Technical and practical aspects of applying geostatistics are developed for individuals involved in investigation at hazardous-, toxic-, and radioactive-waste sites. Important geostatistical concepts, such as variograms and ordinary, universal, and indicator kriging, are described in general terms for introductory purposes and in more detail for practical applications. Variogram modeling using measured ground-water elevation data is described in detail to illustrate principles of stationarity, anisotropy, transformations, and cross validation. Several examples of kriging applications are described using ground-water-level elevations, bedrock elevations, and ground-water-quality data. A review of contemporary literature and selected public domain software associated with geostatistics also is provided, as is a discussion of alternative methods for spatial modeling, including inverse distance weighting, triangulation, splines, trend-surface analysis, and simulation
Research & development and growth: A Bayesian model averaging analysis
Czech Academy of Sciences Publication Activity Database
Horváth, Roman
2011-01-01
Roč. 28, č. 6 (2011), s. 2669-2673 ISSN 0264-9993. [Society for Non-linear Dynamics and Econometrics Annual Conferencen. Washington DC, 16.03.2011-18.03.2011] R&D Projects: GA ČR GA402/09/0965 Institutional research plan: CEZ:AV0Z10750506 Keywords : Research and development * Growth * Bayesian model averaging Subject RIV: AH - Economic s Impact factor: 0.701, year: 2011 http://library.utia.cas.cz/separaty/2011/E/horvath-research & development and growth a bayesian model averaging analysis.pdf
Energy Technology Data Exchange (ETDEWEB)
De Ascencao, Erika M.; Munckton, Toni; Digregorio, Ricardo [Petropiar (Venezuela)
2011-07-01
The Huyapari field, situated within the Faja Petrolifera del Orinoco (FPO) of Venezuela presents unique problems in terms of modeling. This field is spread over a wide area and is therefore subject to variable oil quality and complex fluvial facies architecture. Ameriven and PDVSA have been working on characterizing the ld's reservoirs in this field since 2000 and the aim of this paper is to present these efforts. Among others, a 3-D seismic survey completed in 1998 and a stratigraphic framework built from 149 vertical wells were used for reservoir characterization. Geostatistical techniques such as sequential Gaussian simulation with locally varying mean and cloud transform were also used. Results showed that these geostatistical methods accurately represented the architecture and properties of the reservoir and its fluid distribution. This paper showed that the application of numerous different techniques in the Hamasca area permitted reservoir complexity to be captured.
Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D
2017-10-01
Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Geostatistical simulations for radon indoor with a nested model including the housing factor.
Cafaro, C; Giovani, C; Garavaglia, M
2016-01-01
The radon prone areas definition is matter of many researches in radioecology, since radon is considered a leading cause of lung tumours, therefore the authorities ask for support to develop an appropriate sanitary prevention strategy. In this paper, we use geostatistical tools to elaborate a definition accounting for some of the available information about the dwellings. Co-kriging is the proper interpolator used in geostatistics to refine the predictions by using external covariates. In advance, co-kriging is not guaranteed to improve significantly the results obtained by applying the common lognormal kriging. Here, instead, such multivariate approach leads to reduce the cross-validation residual variance to an extent which is deemed as satisfying. Furthermore, with the application of Monte Carlo simulations, the paradigm provides a more conservative radon prone areas definition than the one previously made by lognormal kriging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Karagiannis-Voules, Dimitrios-Alexios; Odermatt, Peter; Biedermann, Patricia; Khieu, Virak; Schär, Fabian; Muth, Sinuon; Utzinger, Jürg; Vounatsou, Penelope
2015-01-01
Soil-transmitted helminth infections are intimately connected with poverty. Yet, there is a paucity of using socioeconomic proxies in spatially explicit risk profiling. We compiled household-level socioeconomic data pertaining to sanitation, drinking-water, education and nutrition from readily available Demographic and Health Surveys, Multiple Indicator Cluster Surveys and World Health Surveys for Cambodia and aggregated the data at village level. We conducted a systematic review to identify parasitological surveys and made every effort possible to extract, georeference and upload the data in the open source Global Neglected Tropical Diseases database. Bayesian geostatistical models were employed to spatially align the village-aggregated socioeconomic predictors with the soil-transmitted helminth infection data. The risk of soil-transmitted helminth infection was predicted at a grid of 1×1km covering Cambodia. Additionally, two separate individual-level spatial analyses were carried out, for Takeo and Preah Vihear provinces, to assess and quantify the association between soil-transmitted helminth infection and socioeconomic indicators at an individual level. Overall, we obtained socioeconomic proxies from 1624 locations across the country. Surveys focussing on soil-transmitted helminth infections were extracted from 16 sources reporting data from 238 unique locations. We found that the risk of soil-transmitted helminth infection from 2000 onwards was considerably lower than in surveys conducted earlier. Population-adjusted prevalences for school-aged children from 2000 onwards were 28.7% for hookworm, 1.5% for Ascaris lumbricoides and 0.9% for Trichuris trichiura. Surprisingly, at the country-wide analyses, we did not find any significant association between soil-transmitted helminth infection and village-aggregated socioeconomic proxies. Based also on the individual-level analyses we conclude that socioeconomic proxies might not be good predictors at an
Geostatistical analysis and kriging of Hexachlorocyclohexane residues in topsoil from Tianjin, China
International Nuclear Information System (INIS)
Li, B.G.; Cao, J.; Liu, W.X.; Shen, W.R.; Wang, X.J.; Tao, S.
2006-01-01
A previously published data set of HCH isomer concentrations in topsoil samples from Tianjin, China, was subjected to geospatial analysis. Semivariograms were calculated and modeled using geostatistical techniques. Parameters of semivariogram models were analyzed and compared for four HCH isomers. Two-dimensional ordinary block kriging was applied to HCH isomers data set for mapping purposes. Dot maps and gray-scaled raster maps of HCH concentrations were presented based on kriging results. The appropriateness of the kriging procedure for mapping purposes was evaluated based on the kriging errors and kriging variances. It was found that ordinary block kriging can be applied to interpolate HCH concentrations in Tianjin topsoil with acceptable accuracy for mapping purposes. - Geostatistical analysis and kriging were applied to HCH concentrations in topsoil of Tianjin, China for mapping purposes
Energy Technology Data Exchange (ETDEWEB)
Brown, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hund, Lauren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-02-01
Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesian model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.
A Bayesian ensemble of sensitivity measures for severe accident modeling
Energy Technology Data Exchange (ETDEWEB)
Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)
2015-12-15
Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).
Maritime piracy situation modelling with dynamic Bayesian networks
CSIR Research Space (South Africa)
Dabrowski, James M
2015-05-01
Full Text Available A generative model for modelling maritime vessel behaviour is proposed. The model is a novel variant of the dynamic Bayesian network (DBN). The proposed DBN is in the form of a switching linear dynamic system (SLDS) that has been extended into a...
[Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].
Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L
2017-03-10
To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.
Forward modeling of gravity data using geostatistically generated subsurface density variations
Phelps, Geoffrey
2016-01-01
Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.
International Nuclear Information System (INIS)
MacKay, R.; Cooper, T.A.; Porter, J.D.; O'Connell, P.E.; Metcalfe, A.V.
1988-06-01
A geostatistical approach is applied in a study of the potential migration of contaminants from a hypothetical waste disposal facility near Elstow, Bedfordshire. A deterministic numerical model of groundwater flow in the Kellaways Sands formation and adjacent layers is coupled with geostatistical simulation of the heterogeneous transmissivity field of this principal formation. A particle tracking technique is used to predict the migration pathways for alternative realisations of flow. Alternative statistical descriptions of the spatial structure of the transmissivity field are implemented and the temporal and spatial distributions of escape of contaminants to the biosphere are investigated. (author)
Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping.
Hampton, Kristen H; Serre, Marc L; Gesink, Dionne C; Pilcher, Christopher D; Miller, William C
2011-10-06
Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME) and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset.
Holcomb, David Andrew; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R
2018-06-11
Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modelled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was >90%, 10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.
Hierarchical Bayesian Models of Subtask Learning
Anglim, Jeromy; Wynton, Sarah K. A.
2015-01-01
The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Bayesian estimation of parameters in a regional hydrological model
Directory of Open Access Journals (Sweden)
K. Engeland
2002-01-01
Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis
DEFF Research Database (Denmark)
Quinonero, Joaquin; Girard, Agathe; Larsen, Jan
2003-01-01
The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models such as the Gaus......The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models...... such as the Gaussian process and the relevance vector machine. We derive novel analytic expressions for the predictive mean and variance for Gaussian kernel shapes under the assumption of a Gaussian input distribution in the static case, and of a recursive Gaussian predictive density in iterative forecasting...
Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand; Manchón, Carles Navarro; Badiu, Mihai Alin
2015-01-01
In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued m......In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex...... error, and robustness in low and medium signal-to-noise ratio regimes....
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming
2013-06-01
This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Tauber, Sean; Navarro, Daniel J; Perfors, Amy; Steyvers, Mark
2017-07-01
Recent debates in the psychological literature have raised questions about the assumptions that underpin Bayesian models of cognition and what inferences they license about human cognition. In this paper we revisit this topic, arguing that there are 2 qualitatively different ways in which a Bayesian model could be constructed. The most common approach uses a Bayesian model as a normative standard upon which to license a claim about optimality. In the alternative approach, a descriptive Bayesian model need not correspond to any claim that the underlying cognition is optimal or rational, and is used solely as a tool for instantiating a substantive psychological theory. We present 3 case studies in which these 2 perspectives lead to different computational models and license different conclusions about human cognition. We demonstrate how the descriptive Bayesian approach can be used to answer different sorts of questions than the optimal approach, especially when combined with principled tools for model evaluation and model selection. More generally we argue for the importance of making a clear distinction between the 2 perspectives. Considerable confusion results when descriptive models and optimal models are conflated, and if Bayesians are to avoid contributing to this confusion it is important to avoid making normative claims when none are intended. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Industrial experience feedback of a geostatistical estimation of contaminated soil volumes - 59181
International Nuclear Information System (INIS)
Faucheux, Claire; Jeannee, Nicolas
2012-01-01
Geo-statistics meets a growing interest for the remediation forecast of potentially contaminated sites, by providing adapted methods to perform both chemical and radiological pollution mapping, to estimate contaminated volumes, potentially integrating auxiliary information, and to set up adaptive sampling strategies. As part of demonstration studies carried out for GeoSiPol (Geo-statistics for Polluted Sites), geo-statistics has been applied for the detailed diagnosis of a former oil depot in France. The ability within the geo-statistical framework to generate pessimistic / probable / optimistic scenarios for the contaminated volumes allows a quantification of the risks associated to the remediation process: e.g. the financial risk to excavate clean soils, the sanitary risk to leave contaminated soils in place. After a first mapping, an iterative approach leads to collect additional samples in areas previously identified as highly uncertain. Estimated volumes are then updated and compared to the volumes actually excavated. This benchmarking therefore provides a practical feedback on the performance of the geo-statistical methodology. (authors)
Energy Technology Data Exchange (ETDEWEB)
Song, Xuehang [Florida State Univ., Tallahassee, FL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Xingyuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ye, Ming [Florida State Univ., Tallahassee, FL (United States); Dai, Zhenxue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-07-01
This study develops a new framework of facies-based data assimilation for characterizing spatial distribution of hydrofacies and estimating their associated hydraulic properties. This framework couples ensemble data assimilation with transition probability-based geostatistical model via a parameterization based on a level set function. The nature of ensemble data assimilation makes the framework efficient and flexible to be integrated with various types of observation data. The transition probability-based geostatistical model keeps the updated hydrofacies distributions under geological constrains. The framework is illustrated by using a two-dimensional synthetic study that estimates hydrofacies spatial distribution and permeability in each hydrofacies from transient head data. Our results show that the proposed framework can characterize hydrofacies distribution and associated permeability with adequate accuracy even with limited direct measurements of hydrofacies. Our study provides a promising starting point for hydrofacies delineation in complex real problems.
Bayesian Dimensionality Assessment for the Multidimensional Nominal Response Model
Directory of Open Access Journals (Sweden)
Javier Revuelta
2017-06-01
Full Text Available This article introduces Bayesian estimation and evaluation procedures for the multidimensional nominal response model. The utility of this model is to perform a nominal factor analysis of items that consist of a finite number of unordered response categories. The key aspect of the model, in comparison with traditional factorial model, is that there is a slope for each response category on the latent dimensions, instead of having slopes associated to the items. The extended parameterization of the multidimensional nominal response model requires large samples for estimation. When sample size is of a moderate or small size, some of these parameters may be weakly empirically identifiable and the estimation algorithm may run into difficulties. We propose a Bayesian MCMC inferential algorithm to estimate the parameters and the number of dimensions underlying the multidimensional nominal response model. Two Bayesian approaches to model evaluation were compared: discrepancy statistics (DIC, WAICC, and LOO that provide an indication of the relative merit of different models, and the standardized generalized discrepancy measure that requires resampling data and is computationally more involved. A simulation study was conducted to compare these two approaches, and the results show that the standardized generalized discrepancy measure can be used to reliably estimate the dimensionality of the model whereas the discrepancy statistics are questionable. The paper also includes an example with real data in the context of learning styles, in which the model is used to conduct an exploratory factor analysis of nominal data.
Manzione, Rodrigo L.; Wendland, Edson; Tanikawa, Diego H.
2012-11-01
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Bayesian non parametric modelling of Higgs pair production
Directory of Open Access Journals (Sweden)
Scarpa Bruno
2017-01-01
Full Text Available Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART to describe the atoms in the Dirichlet process.
Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models
DEFF Research Database (Denmark)
Vehtari, Aki; Mononen, Tommi; Tolvanen, Ville
2016-01-01
The future predictive performance of a Bayesian model can be estimated using Bayesian cross-validation. In this article, we consider Gaussian latent variable models where the integration over the latent values is approximated using the Laplace method or expectation propagation (EP). We study...... the properties of several Bayesian leave-one-out (LOO) cross-validation approximations that in most cases can be computed with a small additional cost after forming the posterior approximation given the full data. Our main objective is to assess the accuracy of the approximative LOO cross-validation estimators...
Bayesian artificial intelligence
Korb, Kevin B
2010-01-01
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente
Spatial Distribution of TDS in Drinking Water of Tehsil Jampur using Ordinary and Bayesian Kriging
Directory of Open Access Journals (Sweden)
Maqsood Ahmad
2015-09-01
Full Text Available In this research article, level of TDS in groundwater with spatial domain Tehsil Jampur, Pakistan is considered as response variable. Its enhanced level in drinking water produces both the human health concerns and aquatic ecological impacts. Its high value causes several diseases like bilestone, joints stiffness, obstruction of blood vessel and kidney stones. Some Geostatistical techniques were used to interpolate TDS at unmonitored locations of Tehsil Jampur. Four estimation techniques were comparatively studied for fitting well known matern spatial covariance models. Model based Ordinary Kriging (OK and Bayesian Kriging (BK were used for spatial interpolation at unmonitored locations. Cross validation statistic was used to select best interpolation technique with reduced RMSPE. Prediction maps were generated for visual presentation of interpolated sited for both techniques. This study revealed that among thirty observed locations, 56% water samples exceed the maximum permissible limit (1000g/ml of TDS as described by WHO
The Use of Geostatistics in the Study of Floral Phenology of Vulpia geniculata (L. Link
Directory of Open Access Journals (Sweden)
Eduardo J. León Ruiz
2012-01-01
Full Text Available Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L. Link throughout the study area during sampling season. Ten sampling points, scattered troughout the city and low mountains in the “Sierra de Córdoba” were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to ellaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps.
Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants
Jin, Ick Hoon
2014-03-01
Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis. © 2012 Elsevier B.V. All rights reserved.
A comparison of machine learning and Bayesian modelling for molecular serotyping.
Newton, Richard; Wernisch, Lorenz
2017-08-11
Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological
Bayesian inference for partially identified models exploring the limits of limited data
Gustafson, Paul
2015-01-01
Introduction Identification What Is against Us? What Is for Us? Some Simple Examples of Partially Identified ModelsThe Road Ahead The Structure of Inference in Partially Identified Models Bayesian Inference The Structure of Posterior Distributions in PIMs Computational Strategies Strength of Bayesian Updating, Revisited Posterior MomentsCredible Intervals Evaluating the Worth of Inference Partial Identification versus Model Misspecification The Siren Call of Identification Comp
Bayesian nonparametric hierarchical modeling.
Dunson, David B
2009-04-01
In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.
Bayesian Model Selection under Time Constraints
Hoege, M.; Nowak, W.; Illman, W. A.
2017-12-01
Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.
Geostatistics and GIS: tools for characterizing environmental contamination.
Henshaw, Shannon L; Curriero, Frank C; Shields, Timothy M; Glass, Gregory E; Strickland, Paul T; Breysse, Patrick N
2004-08-01
Geostatistics is a set of statistical techniques used in the analysis of georeferenced data that can be applied to environmental contamination and remediation studies. In this study, the 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) contamination at a Superfund site in western Maryland is evaluated. Concern about the site and its future clean up has triggered interest within the community because residential development surrounds the area. Spatial statistical methods, of which geostatistics is a subset, are becoming increasingly popular, in part due to the availability of geographic information system (GIS) software in a variety of application packages. In this article, the joint use of ArcGIS software and the R statistical computing environment are demonstrated as an approach for comprehensive geostatistical analyses. The spatial regression method, kriging, is used to provide predictions of DDE levels at unsampled locations both within the site and the surrounding areas where residential development is ongoing.
A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.
Houseman, E Andres; Virji, M Abbas
2017-08-01
Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates
International Nuclear Information System (INIS)
Iskandar, Ismed; Gondokaryono, Yudi Satria
2016-01-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range
Bayesian methods for hackers probabilistic programming and Bayesian inference
Davidson-Pilon, Cameron
2016-01-01
Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...
Predicting water main failures using Bayesian model averaging and survival modelling approach
International Nuclear Information System (INIS)
Kabir, Golam; Tesfamariam, Solomon; Sadiq, Rehan
2015-01-01
To develop an effective preventive or proactive repair and replacement action plan, water utilities often rely on water main failure prediction models. However, in predicting the failure of water mains, uncertainty is inherent regardless of the quality and quantity of data used in the model. To improve the understanding of water main failure, a Bayesian framework is developed for predicting the failure of water mains considering uncertainties. In this study, Bayesian model averaging method (BMA) is presented to identify the influential pipe-dependent and time-dependent covariates considering model uncertainties whereas Bayesian Weibull Proportional Hazard Model (BWPHM) is applied to develop the survival curves and to predict the failure rates of water mains. To accredit the proposed framework, it is implemented to predict the failure of cast iron (CI) and ductile iron (DI) pipes of the water distribution network of the City of Calgary, Alberta, Canada. Results indicate that the predicted 95% uncertainty bounds of the proposed BWPHMs capture effectively the observed breaks for both CI and DI water mains. Moreover, the performance of the proposed BWPHMs are better compare to the Cox-Proportional Hazard Model (Cox-PHM) for considering Weibull distribution for the baseline hazard function and model uncertainties. - Highlights: • Prioritize rehabilitation and replacements (R/R) strategies of water mains. • Consider the uncertainties for the failure prediction. • Improve the prediction capability of the water mains failure models. • Identify the influential and appropriate covariates for different models. • Determine the effects of the covariates on failure
Bayesian disease mapping: hierarchical modeling in spatial epidemiology
National Research Council Canada - National Science Library
Lawson, Andrew
2013-01-01
Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas...
Geostatistical enhancement of european hydrological predictions
Pugliese, Alessio; Castellarin, Attilio; Parajka, Juraj; Arheimer, Berit; Bagli, Stefano; Mazzoli, Paolo; Montanari, Alberto; Blöschl, Günter
2016-04-01
second phase, we develop a module, to be added to the flow-duration curve prediction framework, capable of enhancing E-HYPE-based predictions of FDCs by modelling the residuals obtained from the first phase. Among all possible methods, we apply geostatistical modelling of residuals and, alternatively, regional regression, so that residuals between empirical and E-HYPE-base predicted FDCs are described in terms of geomorphological and climatic catchment descriptors.
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
Characterizing economic trends by Bayesian stochastic model specification search
DEFF Research Database (Denmark)
Grassi, Stefano; Proietti, Tommaso
We extend a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. In particular, we focus on autoregressive models with possibly time-varying intercept and slope and decide on ...
Bayesian inference of chemical kinetic models from proposed reactions
Galagali, Nikhil; Marzouk, Youssef M.
2015-01-01
© 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model
Balfer, Jenny; Bajorath, Jürgen
2014-09-22
Supervised machine learning models are widely used in chemoinformatics, especially for the prediction of new active compounds or targets of known actives. Bayesian classification methods are among the most popular machine learning approaches for the prediction of activity from chemical structure. Much work has focused on predicting structure-activity relationships (SARs) on the basis of experimental training data. By contrast, only a few efforts have thus far been made to rationalize the performance of Bayesian or other supervised machine learning models and better understand why they might succeed or fail. In this study, we introduce an intuitive approach for the visualization and graphical interpretation of naïve Bayesian classification models. Parameters derived during supervised learning are visualized and interactively analyzed to gain insights into model performance and identify features that determine predictions. The methodology is introduced in detail and applied to assess Bayesian modeling efforts and predictions on compound data sets of varying structural complexity. Different classification models and features determining their performance are characterized in detail. A prototypic implementation of the approach is provided.
Fast and accurate Bayesian model criticism and conflict diagnostics using R-INLA
Ferkingstad, Egil
2017-10-16
Bayesian hierarchical models are increasingly popular for realistic modelling and analysis of complex data. This trend is accompanied by the need for flexible, general and computationally efficient methods for model criticism and conflict detection. Usually, a Bayesian hierarchical model incorporates a grouping of the individual data points, as, for example, with individuals in repeated measurement data. In such cases, the following question arises: Are any of the groups “outliers,” or in conflict with the remaining groups? Existing general approaches aiming to answer such questions tend to be extremely computationally demanding when model fitting is based on Markov chain Monte Carlo. We show how group-level model criticism and conflict detection can be carried out quickly and accurately through integrated nested Laplace approximations (INLA). The new method is implemented as a part of the open-source R-INLA package for Bayesian computing (http://r-inla.org).
Yang, Ziheng; Zhu, Tianqi
2018-02-20
The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.
Bayesian inference model for fatigue life of laminated composites
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian
2016-01-01
A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference. The ...
Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping
Directory of Open Access Journals (Sweden)
Pilcher Christopher D
2011-10-01
Full Text Available Abstract Background Disease maps of crude rates from routinely collected health data indexed at a small geographical resolution pose specific statistical problems due to the sparse nature of the data. Spatial smoothers allow areas to borrow strength from neighboring regions to produce a more stable estimate of the areal value. Geostatistical smoothers are able to quantify the uncertainty in smoothed rate estimates without a high computational burden. In this paper, we introduce a uniform model extension of Bayesian Maximum Entropy (UMBME and compare its performance to that of Poisson kriging in measures of smoothing strength and estimation accuracy as applied to simulated data and the real data example of HIV infection in North Carolina. The aim is to produce more reliable maps of disease rates in small areas to improve identification of spatial trends at the local level. Results In all data environments, Poisson kriging exhibited greater smoothing strength than UMBME. With the simulated data where the true latent rate of infection was known, Poisson kriging resulted in greater estimation accuracy with data that displayed low spatial autocorrelation, while UMBME provided more accurate estimators with data that displayed higher spatial autocorrelation. With the HIV data, UMBME performed slightly better than Poisson kriging in cross-validatory predictive checks, with both models performing better than the observed data model with no smoothing. Conclusions Smoothing methods have different advantages depending upon both internal model assumptions that affect smoothing strength and external data environments, such as spatial correlation of the observed data. Further model comparisons in different data environments are required to provide public health practitioners with guidelines needed in choosing the most appropriate smoothing method for their particular health dataset.
DPpackage: Bayesian Semi- and Nonparametric Modeling in R
Directory of Open Access Journals (Sweden)
Alejandro Jara
2011-04-01
Full Text Available Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian nonparametric and semiparametric models in R, DPpackage. Currently, DPpackage includes models for marginal and conditional density estimation, receiver operating characteristic curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison and for eliciting the precision parameter of the Dirichlet process prior, and a general purpose Metropolis sampling algorithm. To maximize computational efficiency, the actual sampling for each model is carried out using compiled C, C++ or Fortran code.
Impact of censoring on learning Bayesian networks in survival modelling.
Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola
2009-11-01
Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from
International Nuclear Information System (INIS)
Rohlig, K.J.; Fischer, H.; Poltl, B.
2004-01-01
This paper describes the stepwise utilization of geologic information from various sources for the construction of hydrogeological models of a sedimentary site by means of geostatistical simulation. It presents a practical application of aquifer characterisation by firstly simulating hydrogeological units and then the hydrogeological parameters. Due to the availability of a large amount of hydrogeological, geophysical and other data and information, the Gorleben site (Northern Germany) has been used for a case study in order to demonstrate the approach. The study, which has not yet been completed, tries to incorporate as much as possible of the available information and to characterise the remaining uncertainties. (author)
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas
Qi, L.; Carr, T.R.; Goldstein, R.H.
2007-01-01
In the Hugoton embayment of southwestern Kansas, reservoirs composed of relatively thin (Big Bow and Sand Arroyo Creek fields. Lithofacies in uncored wells were predicted from digital logs using a neural network. The tilting effect from the Laramide orogeny was removed to construct restored structural surfaces at the time of deposition. Well data and structural maps were integrated to build 3-D models of oolitic reservoirs using stochastic simulations with geometry data. Three-dimensional models provide insights into the distribution, the external and internal geometry of oolitic deposits, and the sedimentologic processes that generated reservoir intervals. The structural highs and general structural trend had a significant impact on the distribution and orientation of the oolitic complexes. The depositional pattern and connectivity analysis suggest an overall aggradation of shallow-marine deposits during pulses of relative sea level rise followed by deepening near the top of the St. Louis Limestone. Cemented oolitic deposits were modeled as barriers and baffles and tend to concentrate at the edge of oolitic complexes. Spatial distribution of porous oolitic deposits controls the internal geometry of rock properties. Integrated geostatistical modeling methods can be applicable to other complex carbonate or siliciclastic reservoirs in shallow-marine settings. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
DEFF Research Database (Denmark)
Iglesias, J. E.; Sabuncu, M. R.; Van Leemput, Koen
2012-01-01
Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian anal...
Evidence on Features of a DSGE Business Cycle Model from Bayesian Model Averaging
R.W. Strachan (Rodney); H.K. van Dijk (Herman)
2012-01-01
textabstractThe empirical support for features of a Dynamic Stochastic General Equilibrium model with two technology shocks is valuated using Bayesian model averaging over vector autoregressions. The model features include equilibria, restrictions on long-run responses, a structural break of unknown
Predicting coastal cliff erosion using a Bayesian probabilistic model
Hapke, Cheryl J.; Plant, Nathaniel G.
2010-01-01
Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.
Bayesian Estimation of the Logistic Positive Exponent IRT Model
Bolfarine, Heleno; Bazan, Jorge Luis
2010-01-01
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Constrained bayesian inference of project performance models
Sunmola, Funlade
2013-01-01
Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in ...
Combination of Bayesian Network and Overlay Model in User Modeling
Directory of Open Access Journals (Sweden)
Loc Nguyen
2009-12-01
Full Text Available The core of adaptive system is user model containing personal information such as knowledge, learning styles, goals… which is requisite for learning personalized process. There are many modeling approaches, for example: stereotype, overlay, plan recognition… but they don’t bring out the solid method for reasoning from user model. This paper introduces the statistical method that combines Bayesian network and overlay modeling so that it is able to infer user’s knowledge from evidences collected during user’s learning process.
Bayesian Option Pricing using Mixed Normal Heteroskedasticity Models
DEFF Research Database (Denmark)
Rombouts, Jeroen; Stentoft, Lars
2014-01-01
Option pricing using mixed normal heteroscedasticity models is considered. It is explained how to perform inference and price options in a Bayesian framework. The approach allows to easily compute risk neutral predictive price densities which take into account parameter uncertainty....... In an application to the S&P 500 index, classical and Bayesian inference is performed on the mixture model using the available return data. Comparing the ML estimates and posterior moments small differences are found. When pricing a rich sample of options on the index, both methods yield similar pricing errors...... measured in dollar and implied standard deviation losses, and it turns out that the impact of parameter uncertainty is minor. Therefore, when it comes to option pricing where large amounts of data are available, the choice of the inference method is unimportant. The results are robust to different...
Operational modal analysis modeling, Bayesian inference, uncertainty laws
Au, Siu-Kui
2017-01-01
This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2–7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3), which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic pro...
Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools
Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.
2017-12-01
The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.
Bayesian Network Models in Cyber Security: A Systematic Review
Chockalingam, S.; Pieters, W.; Herdeiro Teixeira, A.M.; van Gelder, P.H.A.J.M.; Lipmaa, Helger; Mitrokotsa, Aikaterini; Matulevicius, Raimundas
2017-01-01
Bayesian Networks (BNs) are an increasingly popular modelling technique in cyber security especially due to their capability to overcome data limitations. This is also instantiated by the growth of BN models development in cyber security. However, a comprehensive comparison and analysis of these
International Nuclear Information System (INIS)
Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems
Energy Technology Data Exchange (ETDEWEB)
Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.
Elsheikh, Ahmed H.
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.
Adversarial life testing: A Bayesian negotiation model
International Nuclear Information System (INIS)
Rufo, M.J.; Martín, J.; Pérez, C.J.
2014-01-01
Life testing is a procedure intended for facilitating the process of making decisions in the context of industrial reliability. On the other hand, negotiation is a process of making joint decisions that has one of its main foundations in decision theory. A Bayesian sequential model of negotiation in the context of adversarial life testing is proposed. This model considers a general setting for which a manufacturer offers a product batch to a consumer. It is assumed that the reliability of the product is measured in terms of its lifetime. Furthermore, both the manufacturer and the consumer have to use their own information with respect to the quality of the product. Under these assumptions, two situations can be analyzed. For both of them, the main aim is to accept or reject the product batch based on the product reliability. This topic is related to a reliability demonstration problem. The procedure is applied to a class of distributions that belong to the exponential family. Thus, a unified framework addressing the main topics in the considered Bayesian model is presented. An illustrative example shows that the proposed technique can be easily applied in practice
Directory of Open Access Journals (Sweden)
Mihaela Simionescu
2014-12-01
Full Text Available There are many types of econometric models used in predicting the inflation rate, but in this study we used a Bayesian shrinkage combination approach. This methodology is used in order to improve the predictions accuracy by including information that is not captured by the econometric models. Therefore, experts’ forecasts are utilized as prior information, for Romania these predictions being provided by Institute for Economic Forecasting (Dobrescu macromodel, National Commission for Prognosis and European Commission. The empirical results for Romanian inflation show the superiority of a fixed effects model compared to other types of econometric models like VAR, Bayesian VAR, simultaneous equations model, dynamic model, log-linear model. The Bayesian combinations that used experts’ predictions as priors, when the shrinkage parameter tends to infinite, improved the accuracy of all forecasts based on individual models, outperforming also zero and equal weights predictions and naïve forecasts.
Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model
Mo, Qianxing
2010-01-29
ChIP-chip experiments are procedures that combine chromatin immunoprecipitation (ChIP) and DNA microarray (chip) technology to study a variety of biological problems, including protein-DNA interaction, histone modification, and DNA methylation. The most important feature of ChIP-chip data is that the intensity measurements of probes are spatially correlated because the DNA fragments are hybridized to neighboring probes in the experiments. We propose a simple, but powerful Bayesian hierarchical approach to ChIP-chip data through an Ising model with high-order interactions. The proposed method naturally takes into account the intrinsic spatial structure of the data and can be used to analyze data from multiple platforms with different genomic resolutions. The model parameters are estimated using the Gibbs sampler. The proposed method is illustrated using two publicly available data sets from Affymetrix and Agilent platforms, and compared with three alternative Bayesian methods, namely, Bayesian hierarchical model, hierarchical gamma mixture model, and Tilemap hidden Markov model. The numerical results indicate that the proposed method performs as well as the other three methods for the data from Affymetrix tiling arrays, but significantly outperforms the other three methods for the data from Agilent promoter arrays. In addition, we find that the proposed method has better operating characteristics in terms of sensitivities and false discovery rates under various scenarios. © 2010, The International Biometric Society.
Schiemann, R.; Erdin, R.; Willi, M.; Frei, C.; Berenguer, M.; Sempere-Torres, D.
2011-05-01
Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation
Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it
P.D. Grünwald (Peter); T. van Ommen (Thijs)
2017-01-01
textabstractWe empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data
Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It
Grünwald, P.; van Ommen, T.
2017-01-01
We empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data are
Money, Eric S; Sackett, Dana K; Aday, D Derek; Serre, Marc L
2011-09-15
Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury. However, due to time and resource constraints, it is difficult to adequately assess fish tissue mercury on a basin wide scale. We hypothesized that, given the nature of fish movement along streams, an analytical approach that takes into account distance traveled along these streams would improve the estimation accuracy for fish tissue mercury in unsampled streams. Therefore, we used a river-based Bayesian Maximum Entropy framework (river-BME) for modern space/time geostatistics to estimate fish tissue mercury at unsampled locations in the Cape Fear and Lumber Basins in eastern North Carolina. We also compared the space/time geostatistical estimation using river-BME to the more traditional Euclidean-based BME approach, with and without the inclusion of a secondary variable. Results showed that this river-based approach reduced the estimation error of fish tissue mercury by more than 13% and that the median estimate of fish tissue mercury exceeded the EPA action level of 0.3 ppm in more than 90% of river miles for the study domain.
Bayesian semiparametric regression models to characterize molecular evolution
Directory of Open Access Journals (Sweden)
Datta Saheli
2012-10-01
Full Text Available Abstract Background Statistical models and methods that associate changes in the physicochemical properties of amino acids with natural selection at the molecular level typically do not take into account the correlations between such properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process prior on the distribution of the regression coefficients that describes the relationship between the changes in amino acid distances and natural selection in protein-coding DNA sequence alignments. Results The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm data. Our method identifies groups of properties which, for this particular dataset, have a similar effect on evolution. The model also provides nonparametric site-specific estimates for the strength of conservation of these properties. Conclusions The model described here is distinguished by its ability to handle a large number of amino acid properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering ability of the model allows for appealing interpretations of the results in terms of properties that are roughly equivalent from the standpoint of molecular evolution.
Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno
2016-01-01
Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.
International Nuclear Information System (INIS)
Quinn, J.J.
1996-01-01
Geostatistical analysis of hydraulic head data is useful in producing unbiased contour plots of head estimates and relative errors. However, at most sites being characterized, monitoring wells are generally present at different densities, with clusters of wells in some areas and few wells elsewhere. The problem that arises when kriging data at different densities is in achieving adequate resolution of the grid while maintaining computational efficiency and working within software limitations. For the site considered, 113 data points were available over a 14-mi 2 study area, including 57 monitoring wells within an area of concern of 1.5 mi 2 . Variogram analyses of the data indicate a linear model with a negligible nugget effect. The geostatistical package used in the study allows a maximum grid of 100 by 100 cells. Two-dimensional kriging was performed for the entire study area with a 500-ft grid spacing, while the smaller zone was modeled separately with a 100-ft spacing. In this manner, grid cells for the dense area and the sparse area remained small relative to the well separation distances, and the maximum dimensions of the program were not exceeded. The spatial head results for the detailed zone were then nested into the regional output by use of a graphical, object-oriented database that performed the contouring of the geostatistical output. This study benefitted from the two-scale approach and from very fine geostatistical grid spacings relative to typical data separation distances. The combining of the sparse, regional results with those from the finer-resolution area of concern yielded contours that honored the actual data at every measurement location. The method applied in this study can also be used to generate reproducible, unbiased representations of other types of spatial data
Bayesian meta-analysis models for microarray data: a comparative study
Directory of Open Access Journals (Sweden)
Song Joon J
2007-03-01
Full Text Available Abstract Background With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. Results Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets
Centralized Bayesian reliability modelling with sensor networks
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Sečkárová, Vladimíra
2013-01-01
Roč. 19, č. 5 (2013), s. 471-482 ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant - others:GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf
Molitor, John
2012-03-01
Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.
Henine, Hocine; Tournebize, Julien; Laurent, Gourdol; Christophe, Hissler; Cournede, Paul-Henry; Clement, Remi
2017-04-01
Research on the Critical Zone (CZ) is a prerequisite for undertaking issues related to ecosystemic services that human societies rely on (nutrient cycles, water supply and quality). However, while the upper part of CZ (vegetation, soil, surface water) is readily accessible, knowledge of the subsurface remains limited, due to the point-scale character of conventional direct observations. While the potential for geophysical methods to overcome this limitation is recognized, the translation of the geophysical information into physical properties or states of interest remains a challenge (e.g. the translation of soil electrical resistivity into soil water content). In this study, we propose a geostatistical framework using the Bayesian Maximum Entropy (BME) approach to assimilate geophysical and point-scale data. We especially focus on the prediction of the spatial distribution of soil water content using (1) TDR point-scale measurements of soil water content, which are considered as accurate data, and (2) soil water content data derived from electrical resistivity measurements, which are uncertain data but spatially dense. We used a synthetic dataset obtained with a vertical 2D domain to evaluate the performance of this geostatistical approach. Spatio-temporal simulations of soil water content were carried out using Hydrus-software for different scenarios: homogeneous or heterogeneous hydraulic conductivity distribution, and continuous or punctual infiltration pattern. From the simulations of soil water content, conceptual soil resistivity models were built using a forward modeling approach and point sampling of water content values, vertically ranged, were done. These two datasets are similar to field measurements of soil electrical resistivity (using electrical resistivity tomography, ERT) and soil water content (using TDR probes) obtained at the Boissy-le-Chatel site, in Orgeval catchment (East of Paris, France). We then integrated them into a specialization
Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices
Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak
2017-01-01
Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix
Directory of Open Access Journals (Sweden)
Moritz eBoos
2016-05-01
Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.
Application of Bayesian Model Selection for Metal Yield Models using ALEGRA and Dakota.
Energy Technology Data Exchange (ETDEWEB)
Portone, Teresa; Niederhaus, John Henry; Sanchez, Jason James; Swiler, Laura Painton
2018-02-01
This report introduces the concepts of Bayesian model selection, which provides a systematic means of calibrating and selecting an optimal model to represent a phenomenon. This has many potential applications, including for comparing constitutive models. The ideas described herein are applied to a model selection problem between different yield models for hardened steel under extreme loading conditions.
Comparative study of the geostatistical ore reserve estimation method over the conventional methods
International Nuclear Information System (INIS)
Kim, Y.C.; Knudsen, H.P.
1975-01-01
Part I contains a comprehensive treatment of the comparative study of the geostatistical ore reserve estimation method over the conventional methods. The conventional methods chosen for comparison were: (a) the polygon method, (b) the inverse of the distance squared method, and (c) a method similar to (b) but allowing different weights in different directions. Briefly, the overall result from this comparative study is in favor of the use of geostatistics in most cases because the method has lived up to its theoretical claims. A good exposition on the theory of geostatistics, the adopted study procedures, conclusions and recommended future research are given in Part I. Part II of this report contains the results of the second and the third study objectives, which are to assess the potential benefits that can be derived by the introduction of the geostatistical method to the current state-of-the-art in uranium reserve estimation method and to be instrumental in generating the acceptance of the new method by practitioners through illustrative examples, assuming its superiority and practicality. These are given in the form of illustrative examples on the use of geostatistics and the accompanying computer program user's guide
Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models
Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.
2017-12-01
Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream
Messier, K. P.; Serre, M. L.
2015-12-01
Radon (222Rn) is a naturally occurring chemically inert, colorless, and odorless radioactive gas produced from the decay of uranium (238U), which is ubiquitous in rocks and soils worldwide. Exposure to 222Rn is likely the second leading cause of lung cancer after cigarette smoking via inhalation; however, exposure through untreated groundwater is also a contributing factor to both inhalation and ingestion routes. A land use regression (LUR) model for groundwater 222Rn with anisotropic geological and 238U based explanatory variables is developed, which helps elucidate the factors contributing to elevated 222Rn across North Carolina. Geological and uranium based variables are constructed in elliptical buffers surrounding each observation such that they capture the lateral geometric anisotropy present in groundwater 222Rn. Moreover, geological features are defined at three different geological spatial scales to allow the model to distinguish between large area and small area effects of geology on groundwater 222Rn. The LUR is also integrated into the Bayesian Maximum Entropy (BME) geostatistical framework to increase accuracy and produce a point-level LUR-BME model of groundwater 222Rn across North Carolina including prediction uncertainty. The LUR-BME model of groundwater 222Rn results in a leave-one out cross-validation of 0.46 (Pearson correlation coefficient= 0.68), effectively predicting within the spatial covariance range. Modeled results of 222Rn concentrations show variability among Intrusive Felsic geological formations likely due to average bedrock 238U defined on the basis of overlying stream-sediment 238U concentrations that is a widely distributed consistently analyzed point-source data.
A geostatistical estimation of zinc grade in bore-core samples
International Nuclear Information System (INIS)
Starzec, A.
1987-01-01
Possibilities and preliminary results of geostatistical interpretation of the XRF determination of zinc in bore-core samples are considered. For the spherical model of the variogram the estimation variance of grade in a disk-shape sample (estimated from the grade on the circumference sample) is calculated. Variograms of zinc grade in core samples are presented and examples of the grade estimation are discussed. 4 refs., 7 figs., 1 tab. (author)
Exploring prediction uncertainty of spatial data in geostatistical and machine learning Approaches
Klump, J. F.; Fouedjio, F.
2017-12-01
Geostatistical methods such as kriging with external drift as well as machine learning techniques such as quantile regression forest have been intensively used for modelling spatial data. In addition to providing predictions for target variables, both approaches are able to deliver a quantification of the uncertainty associated with the prediction at a target location. Geostatistical approaches are, by essence, adequate for providing such prediction uncertainties and their behaviour is well understood. However, they often require significant data pre-processing and rely on assumptions that are rarely met in practice. Machine learning algorithms such as random forest regression, on the other hand, require less data pre-processing and are non-parametric. This makes the application of machine learning algorithms to geostatistical problems an attractive proposition. The objective of this study is to compare kriging with external drift and quantile regression forest with respect to their ability to deliver reliable prediction uncertainties of spatial data. In our comparison we use both simulated and real world datasets. Apart from classical performance indicators, comparisons make use of accuracy plots, probability interval width plots, and the visual examinations of the uncertainty maps provided by the two approaches. By comparing random forest regression to kriging we found that both methods produced comparable maps of estimated values for our variables of interest. However, the measure of uncertainty provided by random forest seems to be quite different to the measure of uncertainty provided by kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. These preliminary results raise questions about assessing the risks associated with decisions based on the predictions from geostatistical and machine learning algorithms in a spatial context, e.g. mineral exploration.
A Pseudo-Bayesian Model for Stock Returns In Financial Crises
Directory of Open Access Journals (Sweden)
Eric S. Fung
2011-12-01
Full Text Available Recently, there has been a considerable interest in the Bayesian approach for explaining investors' behaviorial biases by incorporating conservative and representative heuristics when making financial decisions, (see, for example, Barberis, Shleifer and Vishny (1998. To establish a quantitative link between some important market anomalies and investors' behaviorial biases, Lam, Liu, and Wong (2010 introduced a pseudo-Bayesian approach for developing properties of stock returns, where weights induced by investors' conservative and representative heuristics are assigned to observations of the earning shocks and stock prices. In response to the recent global financial crisis, we introduce a new pseudo-Bayesian model to incorporate the impact of a financial crisis. Properties of stock returns during the financial crisis and recovery from the crisis are established. The proposed model can be applied to investigate some important market anomalies including short-term underreaction, long-term overreaction, and excess volatility during financial crisis. We also explain in some detail the linkage between these market anomalies and investors' behavioral biases during financial crisis.
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Lesaffre, Emmanuel
2012-01-01
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd
Geostatistical methods for radiological evaluation and risk analysis of contaminated premises
International Nuclear Information System (INIS)
Desnoyers, Y.; Jeannee, N.; Chiles, J.P.; Dubot, D.
2009-01-01
inventory? How to integrate the remediation support into the modelling? How to quantify uncertainties in the remediation costs while computing contaminated volumes? This geostatistical approach is currently performed in several former nuclear facilities of the CEA in France. The ATUE (enriched uranium workshops) premise, located in Cadarache, is a case in point. Focusing on this premise, the paper presents the geostatistical methodology and its added value to: (i) optimise the sampling strategy, (2) get a reliable mapping of the contaminated areas and (3) estimate the corresponding waste volumes so as to optimize the remediation plans and therefore cleanup costs. (authors)
Directory of Open Access Journals (Sweden)
Giovanna Raso
2007-11-01
Full Text Available There is growing interest in the use of Bayesian geostatistical models for predicting the spatial distribution of parasitic infections, including hookworm, Schistosoma mansoni and co-infections with both parasites. The aim of this study was to predict the spatial distribution of mono-infections with either hookworm or S. mansoni in a setting where both parasites co-exist. School-based cross-sectional parasitological and questionnaire surveys were carried out in 57 rural schools in the Man region, western Côte d’Ivoire. A single stool specimen was obtained from each schoolchild attending grades 3-5. Stool specimens were processed by the Kato-Katz technique and an ether concentration method and examined for the presence of hookworm and S. mansoni eggs. The combined results from the two diagnostic approaches were considered for the infection status of each child. Demographic data (i.e. age and sex were obtained from readily available school registries. Each child’s socio-economic status was estimated, using the questionnaire data following a household-based asset approach. Environmental data were extracted from satellite imagery. The different data sources were incorporated into a geographical information system. Finally, a Bayesian spatial multinomial regression model was constructed and the spatial patterns of S. mansoni and hookworm mono-infections were investigated using Bayesian kriging. Our approach facilitated the production of smooth risk maps for hookworm and S. mansoni mono-infections that can be utilized for targeting control interventions. We argue that in settings where S. mansoni and hookworm co-exist and control efforts are under way, there is a need for both mono- and co-infection risk maps to enhance the cost-effectiveness of control programmes.
Inventory model using bayesian dynamic linear model for demand forecasting
Directory of Open Access Journals (Sweden)
Marisol Valencia-Cárdenas
2014-12-01
Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti
DEFF Research Database (Denmark)
Salarzadeh Jenatabadi, Hashem; Babashamsi, Peyman; Khajeheian, Datis
2016-01-01
There are many factors which could inﬂuence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM) with maximum likelihood and Bayesian predictors. The introduced...
Introduction to Hierarchical Bayesian Modeling for Ecological Data
Parent, Eric
2012-01-01
Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a
Introduction to Bayesian statistics
Bolstad, William M
2017-01-01
There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...
Directory of Open Access Journals (Sweden)
Hea-Jung Kim
2017-06-01
Full Text Available This paper develops Bayesian inference in reliability of a class of scale mixtures of log-normal failure time (SMLNFT models with stochastic (or uncertain constraint in their reliability measures. The class is comprehensive and includes existing failure time (FT models (such as log-normal, log-Cauchy, and log-logistic FT models as well as new models that are robust in terms of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued utilizing a Markov chain Monte Carlo (MCMC sampling based approach. This paper introduces a two-stage maximum entropy (MaxEnt prior, which elicits a priori uncertain constraint and develops Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC method for Bayesian inference in the SMLNFT model reliability and calls attention to properties of the MaxEnt prior that are useful for method development. Finally, two data sets are used to illustrate how the proposed methodology works.
2nd European Conference on Geostatistics for Environmental Applications
Soares, Amílcar; Froidevaux, Roland
1999-01-01
The Second European Conference on Geostatistics for Environmental Ap plications took place in Valencia, November 18-20, 1998. Two years have past from the first meeting in Lisbon and the geostatistical community has kept active in the environmental field. In these days of congress inflation, we feel that continuity can only be achieved by ensuring quality in the papers. For this reason, all papers in the book have been reviewed by, at least, two referees, and care has been taken to ensure that the reviewer comments have been incorporated in the final version of the manuscript. We are thankful to the members of the scientific committee for their timely review of the scripts. All in all, there are three keynote papers from experts in soil science, climatology and ecology and 43 contributed papers providing a good indication of the status of geostatistics as applied in the environ mental field all over the world. We feel now confident that the geoENV conference series, seeded around a coffee table almost six...
Quantum-Like Bayesian Networks for Modeling Decision Making
Directory of Open Access Journals (Sweden)
Catarina eMoreira
2016-01-01
Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor
2018-02-01
Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.
International Nuclear Information System (INIS)
Duarte, Juliana P.; Leite, Victor C.; Melo, P.F. Frutuoso e
2013-01-01
Bayesian networks have become a very handy tool for solving problems in various application areas. This paper discusses the use of Bayesian networks to treat dependent events in reliability engineering typically modeled by Markovian models. Dependent events play an important role as, for example, when treating load-sharing systems, bridge systems, common-cause failures, and switching systems (those for which a standby component is activated after the main one fails by means of a switching mechanism). Repair plays an important role in all these cases (as, for example, the number of repairmen). All Bayesian network calculations are performed by means of the Netica™ software, of Norsys Software Corporation, and Fortran 90 to evaluate them over time. The discussion considers the development of time-dependent reliability figures of merit, which are easily obtained, through Markovian models, but not through Bayesian networks, because these latter need probability figures as input and not failure and repair rates. Bayesian networks produced results in very good agreement with those of Markov models and pivotal decomposition. Static and discrete time (DTBN) Bayesian networks were used in order to check their capabilities of modeling specific situations, like switching failures in cold-standby systems. The DTBN was more flexible to modeling systems where the time of occurrence of an event is important, for example, standby failure and repair. However, the static network model showed as good results as DTBN by a much more simplified approach. (author)
Energy Technology Data Exchange (ETDEWEB)
Duarte, Juliana P.; Leite, Victor C.; Melo, P.F. Frutuoso e, E-mail: julianapduarte@poli.ufrj.br, E-mail: victor.coppo.leite@poli.ufrj.br, E-mail: frutuoso@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)
2013-07-01
Bayesian networks have become a very handy tool for solving problems in various application areas. This paper discusses the use of Bayesian networks to treat dependent events in reliability engineering typically modeled by Markovian models. Dependent events play an important role as, for example, when treating load-sharing systems, bridge systems, common-cause failures, and switching systems (those for which a standby component is activated after the main one fails by means of a switching mechanism). Repair plays an important role in all these cases (as, for example, the number of repairmen). All Bayesian network calculations are performed by means of the Netica™ software, of Norsys Software Corporation, and Fortran 90 to evaluate them over time. The discussion considers the development of time-dependent reliability figures of merit, which are easily obtained, through Markovian models, but not through Bayesian networks, because these latter need probability figures as input and not failure and repair rates. Bayesian networks produced results in very good agreement with those of Markov models and pivotal decomposition. Static and discrete time (DTBN) Bayesian networks were used in order to check their capabilities of modeling specific situations, like switching failures in cold-standby systems. The DTBN was more flexible to modeling systems where the time of occurrence of an event is important, for example, standby failure and repair. However, the static network model showed as good results as DTBN by a much more simplified approach. (author)
Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework
Achieng, K. O.; Zhu, J.
2017-12-01
There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?
bspmma: An R Package for Bayesian Semiparametric Models for Meta-Analysis
Directory of Open Access Journals (Sweden)
Deborah Burr
2012-07-01
Full Text Available We introduce an R package, bspmma, which implements a Dirichlet-based random effects model specific to meta-analysis. In meta-analysis, when combining effect estimates from several heterogeneous studies, it is common to use a random-effects model. The usual frequentist or Bayesian models specify a normal distribution for the true effects. However, in many situations, the effect distribution is not normal, e.g., it can have thick tails, be skewed, or be multi-modal. A Bayesian nonparametric model based on mixtures of Dirichlet process priors has been proposed in the literature, for the purpose of accommodating the non-normality. We review this model and then describe a competitor, a semiparametric version which has the feature that it allows for a well-defined centrality parameter convenient for determining whether the overall effect is significant. This second Bayesian model is based on a different version of the Dirichlet process prior, and we call it the "conditional Dirichlet model". The package contains functions to carry out analyses based on either the ordinary or the conditional Dirichlet model, functions for calculating certain Bayes factors that provide a check on the appropriateness of the conditional Dirichlet model, and functions that enable an empirical Bayes selection of the precision parameter of the Dirichlet process. We illustrate the use of the package on two examples, and give an interpretation of the results in these two different scenarios.
Bayesian near-boundary analysis in basic macroeconomic time series models
M.D. de Pooter (Michiel); F. Ravazzolo (Francesco); R. Segers (René); H.K. van Dijk (Herman)
2008-01-01
textabstractSeveral lessons learnt from a Bayesian analysis of basic macroeconomic time series models are presented for the situation where some model parameters have substantial posterior probability near the boundary of the parameter region. This feature refers to near-instability within dynamic
A Bayesian framework for risk perception
van Erp, H.R.N.
2017-01-01
We present here a Bayesian framework of risk perception. This framework encompasses plausibility judgments, decision making, and question asking. Plausibility judgments are modeled by way of Bayesian probability theory, decision making is modeled by way of a Bayesian decision theory, and relevancy
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227
Bayesian Sensitivity Analysis of Statistical Models with Missing Data.
Zhu, Hongtu; Ibrahim, Joseph G; Tang, Niansheng
2014-04-01
Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures.
Bayesian models based on test statistics for multiple hypothesis testing problems.
Ji, Yuan; Lu, Yiling; Mills, Gordon B
2008-04-01
We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.
Bayesian risk-based decision method for model validation under uncertainty
International Nuclear Information System (INIS)
Jiang Xiaomo; Mahadevan, Sankaran
2007-01-01
This paper develops a decision-making methodology for computational model validation, considering the risk of using the current model, data support for the current model, and cost of acquiring new information to improve the model. A Bayesian decision theory-based method is developed for this purpose, using a likelihood ratio as the validation metric for model assessment. An expected risk or cost function is defined as a function of the decision costs, and the likelihood and prior of each hypothesis. The risk is minimized through correctly assigning experimental data to two decision regions based on the comparison of the likelihood ratio with a decision threshold. A Bayesian validation metric is derived based on the risk minimization criterion. Two types of validation tests are considered: pass/fail tests and system response value measurement tests. The methodology is illustrated for the validation of reliability prediction models in a tension bar and an engine blade subjected to high cycle fatigue. The proposed method can effectively integrate optimal experimental design into model validation to simultaneously reduce the cost and improve the accuracy of reliability model assessment
Bayesian spatiotemporal model of fMRI data using transfer functions.
Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P
2010-09-01
This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Bayesian inference and model comparison for metallic fatigue data
Babuška, Ivo
2016-02-23
In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.
Bayesian inference and model comparison for metallic fatigue data
Babuška, Ivo; Sawlan, Zaid A; Scavino, Marco; Szabó , Barna; Tempone, Raul
2016-01-01
In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.
Robust Bayesian Experimental Design for Conceptual Model Discrimination
Pham, H. V.; Tsai, F. T. C.
2015-12-01
A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.
Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland
International Nuclear Information System (INIS)
McGrath, David; Zhang Chaosheng; Carton, Owen T.
2004-01-01
Spatial distribution and hazard assessment of soil lead in the mining site of Silvermines, Ireland, were investigated using statistics, geostatistics and geographic information system (GIS) techniques. Positively skewed distribution and possible outlying values of Pb and other heavy metals were observed. Box-Cox transformation was applied in order to achieve normality in the data set and to reduce the effect of outliers. Geostatistical analyses were carried out, including calculation of experimental variograms and model fitting. The ordinary point kriging estimates of Pb concentration were mapped. Kriging standard deviations were regarded as the standard deviations of the interpolated pixel values, and a second map was produced, that quantified the probability of Pb concentration higher than a threshold value of 1000 mg/kg. These maps provide valuable information for hazard assessment and for decision support. - A probability map was produced that was useful for hazard assessment and decision support
Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland
Energy Technology Data Exchange (ETDEWEB)
McGrath, David; Zhang Chaosheng; Carton, Owen T
2004-01-01
Spatial distribution and hazard assessment of soil lead in the mining site of Silvermines, Ireland, were investigated using statistics, geostatistics and geographic information system (GIS) techniques. Positively skewed distribution and possible outlying values of Pb and other heavy metals were observed. Box-Cox transformation was applied in order to achieve normality in the data set and to reduce the effect of outliers. Geostatistical analyses were carried out, including calculation of experimental variograms and model fitting. The ordinary point kriging estimates of Pb concentration were mapped. Kriging standard deviations were regarded as the standard deviations of the interpolated pixel values, and a second map was produced, that quantified the probability of Pb concentration higher than a threshold value of 1000 mg/kg. These maps provide valuable information for hazard assessment and for decision support. - A probability map was produced that was useful for hazard assessment and decision support.
Geostatistical ore reserve estimation for a roll-front type uranium deposit (practitioner's guide)
International Nuclear Information System (INIS)
Kim, Y.C.; Knudsen, H.P.
1977-01-01
This report comprises two parts. Part I contains illustrative examples of each phase of a geostatistical study using a roll-front type uranium deposit. Part II contains five computer programs and comprehensive users' manuals for these programs which are necessary to make a practical geostatistical study
Topics in Bayesian statistics and maximum entropy
International Nuclear Information System (INIS)
Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.
1998-12-01
Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)
Bayesian analysis in plant pathology.
Mila, A L; Carriquiry, A L
2004-09-01
ABSTRACT Bayesian methods are currently much discussed and applied in several disciplines from molecular biology to engineering. Bayesian inference is the process of fitting a probability model to a set of data and summarizing the results via probability distributions on the parameters of the model and unobserved quantities such as predictions for new observations. In this paper, after a short introduction of Bayesian inference, we present the basic features of Bayesian methodology using examples from sequencing genomic fragments and analyzing microarray gene-expressing levels, reconstructing disease maps, and designing experiments.
International Nuclear Information System (INIS)
Magri, E.J.
1978-01-01
For life-of-mine planning, as well as for short- and medium-term planning of grades and mine layouts, it is extremely important to have a clear understanding of the patterns followed by the distribution of gold and uranium within the mining area. This study is an attempt to reconcile the geostatistical approach to the determination of ore-shoot directions, via an analysis of the spatial distribution of gold and uranium values, with the sedimentological approach, which is based on the direct measurement of geological features. For the routine geostatistical estimation of ore reserves, the Hartebeestfontein gold mine was divided into ll sections. In each of these sections, the ore-shoot directions were calculated for gold and uranium from the anisotropies disclosed by geostatistical variogram analyses. This study presents a comparison of these results with those obtained from direct geological measurements of paleo-current directions. The results suggest that geological and geostatistical studies could be of significant mutual benefit [af
Involving stakeholders in building integrated fisheries models using Bayesian methods
DEFF Research Database (Denmark)
Haapasaari, Päivi Elisabet; Mäntyniemi, Samu; Kuikka, Sakari
2013-01-01
the potential of the study to contribute to the development of participatory modeling practices. It is concluded that the subjective perspective to knowledge, that is fundamental in Bayesian theory, suits participatory modeling better than a positivist paradigm that seeks the objective truth. The methodology...
A simulation study on Bayesian Ridge regression models for several collinearity levels
Efendi, Achmad; Effrihan
2017-12-01
When analyzing data with multiple regression model if there are collinearities, then one or several predictor variables are usually omitted from the model. However, there sometimes some reasons, for instance medical or economic reasons, the predictors are all important and should be included in the model. Ridge regression model is not uncommon in some researches to use to cope with collinearity. Through this modeling, weights for predictor variables are used for estimating parameters. The next estimation process could follow the concept of likelihood. Furthermore, for the estimation nowadays the Bayesian version could be an alternative. This estimation method does not match likelihood one in terms of popularity due to some difficulties; computation and so forth. Nevertheless, with the growing improvement of computational methodology recently, this caveat should not at the moment become a problem. This paper discusses about simulation process for evaluating the characteristic of Bayesian Ridge regression parameter estimates. There are several simulation settings based on variety of collinearity levels and sample sizes. The results show that Bayesian method gives better performance for relatively small sample sizes, and for other settings the method does perform relatively similar to the likelihood method.
Gilet, Estelle; Diard, Julien; Bessière, Pierre
2011-01-01
In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043
Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example
Allmaras, Moritz; Bangerth, Wolfgang; Linhart, Jean Marie; Polanco, Javier; Wang, Fang; Wang, Kainan; Webster, Jennifer; Zedler, Sarah
2013-01-01
All mathematical models of real-world phenomena contain parameters that need to be estimated from measurements, either for realistic predictions or simply to understand the characteristics of the model. Bayesian statistics provides a framework
Maurya, S. P.; Singh, K. H.; Singh, N. P.
2018-05-01
In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.
Jha, Sanjeev Kumar
2015-07-21
A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.
AIC, BIC, Bayesian evidence against the interacting dark energy model
International Nuclear Information System (INIS)
Szydlowski, Marek; Krawiec, Adam; Kurek, Aleksandra; Kamionka, Michal
2015-01-01
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)
CSIR Research Space (South Africa)
Johnson, S
2010-02-01
Full Text Available metapopulations was the focus of a Bayesian Network (BN) modelling workshop in South Africa. Using a new heuristics, Iterative Bayesian Network Development Cycle (IBNDC), described in this paper, several networks were formulated to distinguish between the unique...
Bayesian conditional-independence modeling of the AIDS epidemic in England and Wales
Gilks, Walter R.; De Angelis, Daniela; Day, Nicholas E.
We describe the use of conditional-independence modeling, Bayesian inference and Markov chain Monte Carlo, to model and project the HIV-AIDS epidemic in homosexual/bisexual males in England and Wales. Complexity in this analysis arises through selectively missing data, indirectly observed underlying processes, and measurement error. Our emphasis is on presentation and discussion of the concepts, not on the technicalities of this analysis, which can be found elsewhere [D. De Angelis, W.R. Gilks, N.E. Day, Bayesian projection of the the acquired immune deficiency syndrome epidemic (with discussion), Applied Statistics, in press].
Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu
2017-07-05
We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers
International Nuclear Information System (INIS)
Grasshoff, C.; Schetelig, K.; Tomschi, H.
1998-01-01
The following paper demonstrates, how a geostatistical approach can help interpolating hydrogeological parameters over a certain area. The basic elements developed by G. Matheron in the sixties are represented as the preconditions and assumptions, which provide the best results of the estimation. The variogram as the most important tool in geostatistics offers the opportunity to describe the correlating behaviour of a regionalized variable. Some kriging procedures are briefly introduced, which provide under varying circumstances estimating of non-measured values with the theoretical variogram-model. In the Ronneburg mine district 108 screened drill-holes could provide coefficients of hydraulic conductivity. These were interpolated with ordinary kriging over the whole investigation area. An error calculation was performed, which could prove the accuracy of the estimation. Short prospects point out some difficulties handling with geostatistic procedures and make suggestions for further investigations. (orig.) [de
Bayesian modeling of the mass and density of asteroids
Dotson, Jessie L.; Mathias, Donovan
2017-10-01
Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.
Bayesian Network Models in Cyber Security: A Systematic Review
Chockalingam, S.; Pieters, W.; Herdeiro Teixeira, A.M.; van Gelder, P.H.A.J.M.; Lipmaa, Helger; Mitrokotsa, Aikaterini; Matulevicius, Raimundas
2017-01-01
Bayesian Networks (BNs) are an increasingly popular modelling technique in cyber security especially due to their capability to overcome data limitations. This is also instantiated by the growth of BN models development in cyber security. However, a comprehensive comparison and analysis of these models is missing. In this paper, we conduct a systematic review of the scientific literature and identify 17 standard BN models in cyber security. We analyse these models based on 9 different criteri...
Bayesian modeling and prediction of solar particles flux
International Nuclear Information System (INIS)
Dedecius, Kamil; Kalova, Jana
2010-01-01
An autoregression model was developed based on the Bayesian approach. Considering the solar wind non-homogeneity, the idea was applied of combining the pure autoregressive properties of the model with expert knowledge based on a similar behaviour of the various phenomena related to the flux properties. Examples of such situations include the hardening of the X-ray spectrum, which is often followed by coronal mass ejection and a significant increase in the particles flux intensity
Bayesian inference with information content model check for Langevin equations
DEFF Research Database (Denmark)
Krog, Jens F. C.; Lomholt, Michael Andersen
2017-01-01
The Bayesian data analysis framework has been proven to be a systematic and effective method of parameter inference and model selection for stochastic processes. In this work we introduce an information content model check which may serve as a goodness-of-fit, like the chi-square procedure...
Bayesian Comparison of Alternative Graded Response Models for Performance Assessment Applications
Zhu, Xiaowen; Stone, Clement A.
2012-01-01
This study examined the relative effectiveness of Bayesian model comparison methods in selecting an appropriate graded response (GR) model for performance assessment applications. Three popular methods were considered: deviance information criterion (DIC), conditional predictive ordinate (CPO), and posterior predictive model checking (PPMC). Using…
Copula Based Factorization in Bayesian Multivariate Infinite Mixture Models
Martin Burda; Artem Prokhorov
2012-01-01
Bayesian nonparametric models based on infinite mixtures of density kernels have been recently gaining in popularity due to their flexibility and feasibility of implementation even in complicated modeling scenarios. In economics, they have been particularly useful in estimating nonparametric distributions of latent variables. However, these models have been rarely applied in more than one dimension. Indeed, the multivariate case suffers from the curse of dimensionality, with a rapidly increas...
Assessing global vegetation activity using spatio-temporal Bayesian modelling
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support
Merging Digital Surface Models Implementing Bayesian Approaches
Sadeq, H.; Drummond, J.; Li, Z.
2016-06-01
In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES
Directory of Open Access Journals (Sweden)
H. Sadeq
2016-06-01
Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
Directory of Open Access Journals (Sweden)
Pengpeng Jiao
2014-01-01
Full Text Available Time-dependent turning movement flows are very important input data for intelligent transportation systems but are impossible to be detected directly through current traffic surveillance systems. Existing estimation models have proved to be not accurate and reliable enough during all intervals. An improved way to address this problem is to develop a combined model framework that can integrate multiple submodels running simultaneously. This paper first presents a back propagation neural network model to estimate dynamic turning movements, as well as the self-adaptive learning rate approach and the gradient descent with momentum method for solving. Second, this paper develops an efficient Kalman filtering model and designs a revised sequential Kalman filtering algorithm. Based on the Bayesian method using both historical data and currently estimated results for error calibration, this paper further integrates above two submodels into a Bayesian combined model framework and proposes a corresponding algorithm. A field survey is implemented at an intersection in Beijing city to collect both time series of link counts and actual time-dependent turning movement flows, including historical and present data. The reported estimation results show that the Bayesian combined model is much more accurate and stable than other models.
Bayesian model discrimination for glucose-insulin homeostasis
DEFF Research Database (Denmark)
Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene
In this paper we analyse a set of experimental data on a number of healthy and diabetic patients and discuss a variety of models for describing the physiological processes involved in glucose absorption and insulin secretion within the human body. We adopt a Bayesian approach which facilitates...... as parameter uncertainty. Markov chain Monte Carlo methods are used, combining Metropolis Hastings, reversible jump and simulated tempering updates to provide rapidly mixing chains so as to provide robust inference. We demonstrate the methodology for both healthy and type II diabetic populations concluding...... that whilst both populations are well modelled by a common insulin model, their glucose dynamics differ considerably....
Bayesian Predictive Models for Rayleigh Wind Speed
DEFF Research Database (Denmark)
Shahirinia, Amir; Hajizadeh, Amin; Yu, David C
2017-01-01
predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....
Advances in Bayesian Modeling in Educational Research
Levy, Roy
2016-01-01
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
Projecting UK mortality using Bayesian generalised additive models
Hilton, Jason; Dodd, Erengul; Forster, Jonathan; Smith, Peter W.F.
2018-01-01
Forecasts of mortality provide vital information about future populations, with implications for pension and health-care policy as well as for decisions made by private companies about life insurance and annuity pricing. This paper presents a Bayesian approach to the forecasting of mortality that jointly estimates a Generalised Additive Model (GAM) for mortality for the majority of the age-range and a parametric model for older ages where the data are sparser. The GAM allows smooth components...
von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo
2014-06-01
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
International Nuclear Information System (INIS)
Coolen, F.P.A.
1997-01-01
This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables
Bayesian data analysis for newcomers.
Kruschke, John K; Liddell, Torrin M
2018-02-01
This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.
On-line Bayesian model updating for structural health monitoring
Rocchetta, Roberto; Broggi, Matteo; Huchet, Quentin; Patelli, Edoardo
2018-03-01
Fatigue induced cracks is a dangerous failure mechanism which affects mechanical components subject to alternating load cycles. System health monitoring should be adopted to identify cracks which can jeopardise the structure. Real-time damage detection may fail in the identification of the cracks due to different sources of uncertainty which have been poorly assessed or even fully neglected. In this paper, a novel efficient and robust procedure is used for the detection of cracks locations and lengths in mechanical components. A Bayesian model updating framework is employed, which allows accounting for relevant sources of uncertainty. The idea underpinning the approach is to identify the most probable crack consistent with the experimental measurements. To tackle the computational cost of the Bayesian approach an emulator is adopted for replacing the computationally costly Finite Element model. To improve the overall robustness of the procedure, different numerical likelihoods, measurement noises and imprecision in the value of model parameters are analysed and their effects quantified. The accuracy of the stochastic updating and the efficiency of the numerical procedure are discussed. An experimental aluminium frame and on a numerical model of a typical car suspension arm are used to demonstrate the applicability of the approach.
Bayesian Networks for Modeling Dredging Decisions
2011-10-01
years, that algorithms have been developed to solve these problems efficiently. Most modern Bayesian network software uses junction tree (a.k.a. join... software was used to develop the network . This is by no means an exhaustive list of Bayesian network applications, but it is representative of recent...characteristic node (SCN), state- defining node ( SDN ), effect node (EFN), or value node. The five types of nodes can be described as follows: ERDC/EL TR-11
Automated Bayesian model development for frequency detection in biological time series
Directory of Open Access Journals (Sweden)
Oldroyd Giles ED
2011-06-01
Full Text Available Abstract Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and
Automated Bayesian model development for frequency detection in biological time series.
Granqvist, Emma; Oldroyd, Giles E D; Morris, Richard J
2011-06-24
A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time
Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia
Manga, Edna; Awang, Norhashidah
2016-06-01
This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.
Bayesian flood forecasting methods: A review
Han, Shasha; Coulibaly, Paulin
2017-08-01
Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been
Modeling the Frequency of Cyclists’ Red-Light Running Behavior Using Bayesian PG Model and PLN Model
Directory of Open Access Journals (Sweden)
Yao Wu
2016-01-01
Full Text Available Red-light running behaviors of bicycles at signalized intersection lead to a large number of traffic conflicts and high collision potentials. The primary objective of this study is to model the cyclists’ red-light running frequency within the framework of Bayesian statistics. Data was collected at twenty-five approaches at seventeen signalized intersections. The Poisson-gamma (PG and Poisson-lognormal (PLN model were developed and compared. The models were validated using Bayesian p values based on posterior predictive checking indicators. It was found that the two models have a good fit of the observed cyclists’ red-light running frequency. Furthermore, the PLN model outperformed the PG model. The model estimated results showed that the amount of cyclists’ red-light running is significantly influenced by bicycle flow, conflict traffic flow, pedestrian signal type, vehicle speed, and e-bike rate. The validation result demonstrated the reliability of the PLN model. The research results can help transportation professionals to predict the expected amount of the cyclists’ red-light running and develop effective guidelines or policies to reduce red-light running frequency of bicycles at signalized intersections.
AIC, BIC, Bayesian evidence against the interacting dark energy model
Energy Technology Data Exchange (ETDEWEB)
Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Krawiec, Adam [Jagiellonian University, Institute of Economics, Finance and Management, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Kurek, Aleksandra [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Kamionka, Michal [University of Wroclaw, Astronomical Institute, Wroclaw (Poland)
2015-01-01
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)
AIC, BIC, Bayesian evidence against the interacting dark energy model
Energy Technology Data Exchange (ETDEWEB)
Szydłowski, Marek, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Krawiec, Adam, E-mail: adam.krawiec@uj.edu.pl [Institute of Economics, Finance and Management, Jagiellonian University, Łojasiewicza 4, 30-348, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Kurek, Aleksandra, E-mail: alex@oa.uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Kamionka, Michał, E-mail: kamionka@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, ul. Kopernika 11, 51-622, Wrocław (Poland)
2015-01-14
Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model.
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Walter, G.M.; Augustin, Th.; Kneib, Thomas; Tutz, Gerhard
2010-01-01
The paper is concerned with Bayesian analysis under prior-data conflict, i.e. the situation when observed data are rather unexpected under the prior (and the sample size is not large enough to eliminate the influence of the prior). Two approaches for Bayesian linear regression modeling based on
DEFF Research Database (Denmark)
Kristensen, Anders Ringgaard; Søllested, Thomas Algot
2004-01-01
improvements. The biological model of the replacement model is described in a previous paper and in this paper the optimization model is described. The model is developed as a prototype for use under practical conditions. The application of the model is demonstrated using data from two commercial Danish sow......Recent methodological improvements in replacement models comprising multi-level hierarchical Markov processes and Bayesian updating have hardly been implemented in any replacement model and the aim of this study is to present a sow replacement model that really uses these methodological...... herds. It is concluded that the Bayesian updating technique and the hierarchical structure decrease the size of the state space dramatically. Since parameter estimates vary considerably among herds it is concluded that decision support concerning sow replacement only makes sense with parameters...
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.
Karagiannis, Georgios; Lin, Guang
2017-08-01
For many real systems, several computer models may exist with different physics and predictive abilities. To achieve more accurate simulations/predictions, it is desirable for these models to be properly combined and calibrated. We propose the Bayesian calibration of computer model mixture method which relies on the idea of representing the real system output as a mixture of the available computer model outputs with unknown input dependent weight functions. The method builds a fully Bayesian predictive model as an emulator for the real system output by combining, weighting, and calibrating the available models in the Bayesian framework. Moreover, it fits a mixture of calibrated computer models that can be used by the domain scientist as a mean to combine the available computer models, in a flexible and principled manner, and perform reliable simulations. It can address realistic cases where one model may be more accurate than the others at different input values because the mixture weights, indicating the contribution of each model, are functions of the input. Inference on the calibration parameters can consider multiple computer models associated with different physics. The method does not require knowledge of the fidelity order of the models. We provide a technique able to mitigate the computational overhead due to the consideration of multiple computer models that is suitable to the mixture model framework. We implement the proposed method in a real-world application involving the Weather Research and Forecasting large-scale climate model.
Dynamic model based on Bayesian method for energy security assessment
International Nuclear Information System (INIS)
Augutis, Juozas; Krikštolaitis, Ričardas; Pečiulytė, Sigita; Žutautaitė, Inga
2015-01-01
Highlights: • Methodology for dynamic indicator model construction and forecasting of indicators. • Application of dynamic indicator model for energy system development scenarios. • Expert judgement involvement using Bayesian method. - Abstract: The methodology for the dynamic indicator model construction and forecasting of indicators for the assessment of energy security level is presented in this article. An indicator is a special index, which provides numerical values to important factors for the investigated area. In real life, models of different processes take into account various factors that are time-dependent and dependent on each other. Thus, it is advisable to construct a dynamic model in order to describe these dependences. The energy security indicators are used as factors in the dynamic model. Usually, the values of indicators are obtained from statistical data. The developed dynamic model enables to forecast indicators’ variation taking into account changes in system configuration. The energy system development is usually based on a new object construction. Since the parameters of changes of the new system are not exactly known, information about their influences on indicators could not be involved in the model by deterministic methods. Thus, dynamic indicators’ model based on historical data is adjusted by probabilistic model with the influence of new factors on indicators using the Bayesian method
Bayesian Age-Period-Cohort Modeling and Prediction - BAMP
Directory of Open Access Journals (Sweden)
Volker J. Schmid
2007-10-01
Full Text Available The software package BAMP provides a method of analyzing incidence or mortality data on the Lexis diagram, using a Bayesian version of an age-period-cohort model. A hierarchical model is assumed with a binomial model in the first-stage. As smoothing priors for the age, period and cohort parameters random walks of first and second order, with and without an additional unstructured component are available. Unstructured heterogeneity can also be included in the model. In order to evaluate the model fit, posterior deviance, DIC and predictive deviances are computed. By projecting the random walk prior into the future, future death rates can be predicted.
Daly, Rónán; Edwards, Kieron D.; O'Neill, John S.; Aitken, Stuart; Millar, Andrew J.; Girolami, Mark
Modelling gene regulatory networks in organisms is an important task that has recently become possible due to large scale assays using technologies such as microarrays. In this paper, the circadian clock of Arabidopsis thaliana is modelled by fitting dynamic Bayesian networks to luminescence data gathered from experiments. This work differs from previous modelling attempts by using higher-order dynamic Bayesian networks to explicitly model the time lag between the various genes being expressed. In order to achieve this goal, new techniques in preprocessing the data and in evaluating a learned model are proposed. It is shown that it is possible, to some extent, to model these time delays using a higher-order dynamic Bayesian network.
Bayesian Modelling of fMRI Time Series
DEFF Research Database (Denmark)
Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward
2000-01-01
We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...... Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments....
Towards port sustainability through probabilistic models: Bayesian networks
Directory of Open Access Journals (Sweden)
B. Molina
2018-04-01
Full Text Available It is necessary that a manager of an infrastructure knows relations between variables. Using Bayesian networks, variables can be classified, predicted and diagnosed, being able to estimate posterior probability of the unknown ones based on known ones. The proposed methodology has generated a database with port variables, which have been classified as economic, social, environmental and institutional, as addressed in of smart ports studies made in all Spanish Port System. Network has been developed using an acyclic directed graph, which have let us know relationships in terms of parents and sons. In probabilistic terms, it can be concluded from the constructed network that the most decisive variables for port sustainability are those that are part of the institutional dimension. It has been concluded that Bayesian networks allow modeling uncertainty probabilistically even when the number of variables is high as it occurs in port planning and exploitation.
Application of Bayesian model averaging to measurements of the primordial power spectrum
International Nuclear Information System (INIS)
Parkinson, David; Liddle, Andrew R.
2010-01-01
Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940 s s is specified at a pivot scale 0.015 Mpc -1 . For the tensors model averaging can tighten the credible upper limit, depending on prior assumptions.
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.
Wiecki, Thomas V; Sofer, Imri; Frank, Michael J
2013-01-01
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python
Directory of Open Access Journals (Sweden)
Thomas V Wiecki
2013-08-01
Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs
Bayesian model selection of template forward models for EEG source reconstruction.
Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan
2014-06-01
Several EEG source reconstruction techniques have been proposed to identify the generating neuronal sources of electrical activity measured on the scalp. The solution of these techniques depends directly on the accuracy of the forward model that is inverted. Recently, a parametric empirical Bayesian (PEB) framework for distributed source reconstruction in EEG/MEG was introduced and implemented in the Statistical Parametric Mapping (SPM) software. The framework allows us to compare different forward modeling approaches, using real data, instead of using more traditional simulated data from an assumed true forward model. In the absence of a subject specific MR image, a 3-layered boundary element method (BEM) template head model is currently used including a scalp, skull and brain compartment. In this study, we introduced volumetric template head models based on the finite difference method (FDM). We constructed a FDM head model equivalent to the BEM model and an extended FDM model including CSF. These models were compared within the context of three different types of source priors related to the type of inversion used in the PEB framework: independent and identically distributed (IID) sources, equivalent to classical minimum norm approaches, coherence (COH) priors similar to methods such as LORETA, and multiple sparse priors (MSP). The resulting models were compared based on ERP data of 20 subjects using Bayesian model selection for group studies. The reconstructed activity was also compared with the findings of previous studies using functional magnetic resonance imaging. We found very strong evidence in favor of the extended FDM head model with CSF and assuming MSP. These results suggest that the use of realistic volumetric forward models can improve PEB EEG source reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.
Bayesian statistic methods and theri application in probabilistic simulation models
Directory of Open Access Journals (Sweden)
Sergio Iannazzo
2007-03-01
Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.
Ghosh, Sujit K
2010-01-01
Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.
Rings, J.; Vrugt, J.A.; Schoups, G.; Huisman, J.A.; Vereecken, H.
2012-01-01
Bayesian model averaging (BMA) is a standard method for combining predictive distributions from different models. In recent years, this method has enjoyed widespread application and use in many fields of study to improve the spread-skill relationship of forecast ensembles. The BMA predictive
Bayesian Alternation During Tactile Augmentation
Directory of Open Access Journals (Sweden)
Caspar Mathias Goeke
2016-10-01
Full Text Available A large number of studies suggest that the integration of multisensory signals by humans is well described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition, rotation only (native condition, and both augmented and native information (bimodal condition. Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants’ responses with a probit model and calculated the just notable difference (JND. Then we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67 than the Bayesian integration model (χred2= 4.34. Slightly higher accuracy showed a non-Bayesian winner takes all model (χred2= 1.64, which either used only native or only augmented values per subject for prediction. However the performance of the Bayesian alternation model could be substantially improved (χred2= 1.09 utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in
Bayesian prediction of spatial count data using generalized linear mixed models
DEFF Research Database (Denmark)
Christensen, Ole Fredslund; Waagepetersen, Rasmus Plenge
2002-01-01
Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, ...
Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model
Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.
2017-09-01
The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.
Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach.
Fernandes, G S; Bhattacharya, A; McWilliams, D F; Ingham, S L; Doherty, M; Zhang, W
2017-03-20
Twenty-five percent of the British population over the age of 50 years experiences knee pain. Knee pain can limit physical ability and cause distress and bears significant socioeconomic costs. The objectives of this study were to develop and validate the first risk prediction model for incident knee pain in the Nottingham community and validate this internally within the Nottingham cohort and externally within the Osteoarthritis Initiative (OAI) cohort. A total of 1822 participants from the Nottingham community who were at risk for knee pain were followed for 12 years. Of this cohort, two-thirds (n = 1203) were used to develop the risk prediction model, and one-third (n = 619) were used to validate the model. Incident knee pain was defined as pain on most days for at least 1 month in the past 12 months. Predictors were age, sex, body mass index, pain elsewhere, prior knee injury and knee alignment. A Bayesian logistic regression model was used to determine the probability of an OR >1. The Hosmer-Lemeshow χ 2 statistic (HLS) was used for calibration, and ROC curve analysis was used for discrimination. The OAI cohort from the United States was also used to examine the performance of the model. A risk prediction model for knee pain incidence was developed using a Bayesian approach. The model had good calibration, with an HLS of 7.17 (p = 0.52) and moderate discriminative ability (ROC 0.70) in the community. Individual scenarios are given using the model. However, the model had poor calibration (HLS 5866.28, p prediction model for knee pain, regardless of underlying structural changes of knee osteoarthritis, in the community using a Bayesian modelling approach. The model appears to work well in a community-based population but not in individuals with a higher risk for knee osteoarthritis, and it may provide a convenient tool for use in primary care to predict the risk of knee pain in the general population.
Philosophy and the practice of Bayesian statistics.
Gelman, Andrew; Shalizi, Cosma Rohilla
2013-02-01
A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.
Bayesian modeling of ChIP-chip data using latent variables.
Wu, Mingqi; Liang, Faming; Tian, Yanan
2009-01-01
and plants. Various methods have been proposed in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden Markov model-based methods, and Bayesian methods. Although, due to the integrated consideration of uncertainty
Bayesian methods in reliability
Sander, P.; Badoux, R.
1991-11-01
The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.
Prudhomme, Serge; Bryant, Corey M.
2015-01-01
Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves.
Prudhomme, Serge
2015-09-17
Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves.
A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.
Glas, Cees A. W.; Meijer, Rob R.
A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…
Stockton, T.; Black, P.; Tauxe, J.; Catlett, K.
2004-12-01
Bayesian decision analysis provides a unified framework for coherent decision-making. Two key components of Bayesian decision analysis are probability distributions and utility functions. Calculating posterior distributions and performing decision analysis can be computationally challenging, especially for complex environmental models. In addition, probability distributions and utility functions for environmental models must be specified through expert elicitation, stakeholder consensus, or data collection, all of which have their own set of technical and political challenges. Nevertheless, a grand appeal of the Bayesian approach for environmental decision- making is the explicit treatment of uncertainty, including expert judgment. The impact of expert judgment on the environmental decision process, though integral, goes largely unassessed. Regulations and orders of the Environmental Protection Agency, Department Of Energy, and Nuclear Regulatory Agency orders require assessing the impact on human health of radioactive waste contamination over periods of up to ten thousand years. Towards this end complex environmental simulation models are used to assess "risk" to human and ecological health from migration of radioactive waste. As the computational burden of environmental modeling is continually reduced probabilistic process modeling using Monte Carlo simulation is becoming routinely used to propagate uncertainty from model inputs through model predictions. The utility of a Bayesian approach to environmental decision-making is discussed within the context of a buried radioactive waste example. This example highlights the desirability and difficulties of merging the cost of monitoring, the cost of the decision analysis, the cost and viability of clean up, and the probability of human health impacts within a rigorous decision framework.
Bayesian spatial semi-parametric modeling of HIV variation in Kenya.
Directory of Open Access Journals (Sweden)
Oscar Ngesa
Full Text Available Spatial statistics has seen rapid application in many fields, especially epidemiology and public health. Many studies, nonetheless, make limited use of the geographical location information and also usually assume that the covariates, which are related to the response variable, have linear effects. We develop a Bayesian semi-parametric regression model for HIV prevalence data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (McMC. The model is applied to HIV prevalence data among men in Kenya, derived from the Kenya AIDS indicator survey, with n = 3,662. Past studies have concluded that HIV infection has a nonlinear association with age. In this study a smooth function based on penalized regression splines is used to estimate this nonlinear effect. Other covariates were assumed to have a linear effect. Spatial references to the counties were modeled as both structured and unstructured spatial effects. We observe that circumcision reduces the risk of HIV infection. The results also indicate that men in the urban areas were more likely to be infected by HIV as compared to their rural counterpart. Men with higher education had the lowest risk of HIV infection. A nonlinear relationship between HIV infection and age was established. Risk of HIV infection increases with age up to the age of 40 then declines with increase in age. Men who had STI in the last 12 months were more likely to be infected with HIV. Also men who had ever used a condom were found to have higher likelihood to be infected by HIV. A significant spatial variation of HIV infection in Kenya was also established. The study shows the practicality and flexibility of Bayesian semi-parametric regression model in analyzing epidemiological data.
Robust modelling of solubility in supercritical carbon dioxide using Bayesian methods.
Tarasova, Anna; Burden, Frank; Gasteiger, Johann; Winkler, David A
2010-04-01
Two sparse Bayesian methods were used to derive predictive models of solubility of organic dyes and polycyclic aromatic compounds in supercritical carbon dioxide (scCO(2)), over a wide range of temperatures (285.9-423.2K) and pressures (60-1400 bar): a multiple linear regression employing an expectation maximization algorithm and a sparse prior (MLREM) method and a non-linear Bayesian Regularized Artificial Neural Network with a Laplacian Prior (BRANNLP). A randomly selected test set was used to estimate the predictive ability of the models. The MLREM method resulted in a model of similar predictivity to the less sparse MLR method, while the non-linear BRANNLP method created models of substantially better predictivity than either the MLREM or MLR based models. The BRANNLP method simultaneously generated context-relevant subsets of descriptors and a robust, non-linear quantitative structure-property relationship (QSPR) model for the compound solubility in scCO(2). The differences between linear and non-linear descriptor selection methods are discussed. (c) 2009 Elsevier Inc. All rights reserved.
Approximate Bayesian computation for forward modeling in cosmology
International Nuclear Information System (INIS)
Akeret, Joël; Refregier, Alexandre; Amara, Adam; Seehars, Sebastian; Hasner, Caspar
2015-01-01
Bayesian inference is often used in cosmology and astrophysics to derive constraints on model parameters from observations. This approach relies on the ability to compute the likelihood of the data given a choice of model parameters. In many practical situations, the likelihood function may however be unavailable or intractable due to non-gaussian errors, non-linear measurements processes, or complex data formats such as catalogs and maps. In these cases, the simulation of mock data sets can often be made through forward modeling. We discuss how Approximate Bayesian Computation (ABC) can be used in these cases to derive an approximation to the posterior constraints using simulated data sets. This technique relies on the sampling of the parameter set, a distance metric to quantify the difference between the observation and the simulations and summary statistics to compress the information in the data. We first review the principles of ABC and discuss its implementation using a Population Monte-Carlo (PMC) algorithm and the Mahalanobis distance metric. We test the performance of the implementation using a Gaussian toy model. We then apply the ABC technique to the practical case of the calibration of image simulations for wide field cosmological surveys. We find that the ABC analysis is able to provide reliable parameter constraints for this problem and is therefore a promising technique for other applications in cosmology and astrophysics. Our implementation of the ABC PMC method is made available via a public code release
Non-parametric Bayesian graph models reveal community structure in resting state fMRI
DEFF Research Database (Denmark)
Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman
2014-01-01
Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...... models for node clustering in complex networks. In particular, we test their ability to predict unseen data and their ability to reproduce clustering across datasets. The three generative models considered are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and the Infinite...... between clusters. BCD restricts the between-cluster link probabilities to be strictly lower than within-cluster link probabilities to conform to the community structure typically seen in social networks. IDM only models a single between-cluster link probability, which can be interpreted as a background...
A Bayesian Network Model on the Public Bicycle Choice Behavior of Residents: A Case Study of Xi’an
Directory of Open Access Journals (Sweden)
Qiuping Wang
2017-01-01
Full Text Available In order to study the main factors affecting the behaviors that city residents make regarding public bicycle choice and to further study the public bicycle user’s personal characteristics and travel characteristics, a travel mode choice model based on a Bayesian network was established. Taking residents of Xi’an as the research object, a K2 algorithm combined with mutual information and expert knowledge was proposed for Bayesian network structure learning. The Bayesian estimation method was used to estimate the parameters of the network, and a Bayesian network model was established to reflect the interactions among the public bicycle choice behaviors along with other major factors. The K-fold cross-validation method was used to validate the model performance, and the hit rate of each travel mode was more than 80%, indicating the precision of the proposed model. Experimental results also present the higher classification accuracy of the proposed model. Therefore, it may be concluded that the resident travel mode choice may be accurately predicted according to the Bayesian network model proposed in our study. Additionally, this model may be employed to analyze and discuss changes in the resident public bicycle choice and to note that they may possibly be influenced by different travelers’ characteristics and trip characteristics.
Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory
Gopnik, Alison; Wellman, Henry M.
2012-01-01
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Prior Sensitivity Analysis in Default Bayesian Structural Equation Modeling.
van Erp, Sara; Mulder, Joris; Oberski, Daniel L
2017-11-27
Bayesian structural equation modeling (BSEM) has recently gained popularity because it enables researchers to fit complex models and solve some of the issues often encountered in classical maximum likelihood estimation, such as nonconvergence and inadmissible solutions. An important component of any Bayesian analysis is the prior distribution of the unknown model parameters. Often, researchers rely on default priors, which are constructed in an automatic fashion without requiring substantive prior information. However, the prior can have a serious influence on the estimation of the model parameters, which affects the mean squared error, bias, coverage rates, and quantiles of the estimates. In this article, we investigate the performance of three different default priors: noninformative improper priors, vague proper priors, and empirical Bayes priors-with the latter being novel in the BSEM literature. Based on a simulation study, we find that these three default BSEM methods may perform very differently, especially with small samples. A careful prior sensitivity analysis is therefore needed when performing a default BSEM analysis. For this purpose, we provide a practical step-by-step guide for practitioners to conducting a prior sensitivity analysis in default BSEM. Our recommendations are illustrated using a well-known case study from the structural equation modeling literature, and all code for conducting the prior sensitivity analysis is available in the online supplemental materials. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Mayer, J. M.; Stead, D.
2017-04-01
With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.
Bayesian Age-Period-Cohort Model of Lung Cancer Mortality
Directory of Open Access Journals (Sweden)
Bhikhari P. Tharu
2015-09-01
Full Text Available Background The objective of this study was to analyze the time trend for lung cancer mortality in the population of the USA by 5 years based on most recent available data namely to 2010. The knowledge of the mortality rates in the temporal trends is necessary to understand cancer burden.Methods Bayesian Age-Period-Cohort model was fitted using Poisson regression with histogram smoothing prior to decompose mortality rates based on age at death, period at death, and birth-cohort.Results Mortality rates from lung cancer increased more rapidly from age 52 years. It ended up to 325 deaths annually for 82 years on average. The mortality of younger cohorts was lower than older cohorts. The risk of lung cancer was lowered from period 1993 to recent periods.Conclusions The fitted Bayesian Age-Period-Cohort model with histogram smoothing prior is capable of explaining mortality rate of lung cancer. The reduction in carcinogens in cigarettes and increase in smoking cessation from around 1960 might led to decreasing trend of lung cancer mortality after calendar period 1993.
SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events
DEFF Research Database (Denmark)
Cuttone, Andrea; Bækgaard, Per; Sekara, Vedran
2017-01-01
We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals' daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400...... to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient....... participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able...
SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events.
Cuttone, Andrea; Bækgaard, Per; Sekara, Vedran; Jonsson, Håkan; Larsen, Jakob Eg; Lehmann, Sune
2017-01-01
We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals' daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient.
SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events.
Directory of Open Access Journals (Sweden)
Andrea Cuttone
Full Text Available We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals' daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient.
Inference in hybrid Bayesian networks
DEFF Research Database (Denmark)
Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2009-01-01
Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....
Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.
2009-05-01
Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.
Advanced REACH tool: A Bayesian model for occupational exposure assessment
McNally, K.; Warren, N.; Fransman, W.; Entink, R.K.; Schinkel, J.; Van Tongeren, M.; Cherrie, J.W.; Kromhout, H.; Schneider, T.; Tielemans, E.
2014-01-01
This paper describes a Bayesian model for the assessment of inhalation exposures in an occupational setting; the methodology underpins a freely available web-based application for exposure assessment, the Advanced REACH Tool (ART). The ART is a higher tier exposure tool that combines disparate
Directory of Open Access Journals (Sweden)
Sarah Depaoli
2015-03-01
Full Text Available Background: After traumatic events, such as disaster, war trauma, and injuries including burns (which is the focus here, the risk to develop posttraumatic stress disorder (PTSD is approximately 10% (Breslau & Davis, 1992. Latent Growth Mixture Modeling can be used to classify individuals into distinct groups exhibiting different patterns of PTSD (Galatzer-Levy, 2015. Currently, empirical evidence points to four distinct trajectories of PTSD patterns in those who have experienced burn trauma. These trajectories are labeled as: resilient, recovery, chronic, and delayed onset trajectories (e.g., Bonanno, 2004; Bonanno, Brewin, Kaniasty, & Greca, 2010; Maercker, Gäbler, O'Neil, Schützwohl, & Müller, 2013; Pietrzak et al., 2013. The delayed onset trajectory affects only a small group of individuals, that is, about 4–5% (O'Donnell, Elliott, Lau, & Creamer, 2007. In addition to its low frequency, the later onset of this trajectory may contribute to the fact that these individuals can be easily overlooked by professionals. In this special symposium on Estimating PTSD trajectories (Van de Schoot, 2015a, we illustrate how to properly identify this small group of individuals through the Bayesian estimation framework using previous knowledge through priors (see, e.g., Depaoli & Boyajian, 2014; Van de Schoot, Broere, Perryck, Zondervan-Zwijnenburg, & Van Loey, 2015. Method: We used latent growth mixture modeling (LGMM (Van de Schoot, 2015b to estimate PTSD trajectories across 4 years that followed a traumatic burn. We demonstrate and compare results from traditional (maximum likelihood and Bayesian estimation using priors (see, Depaoli, 2012, 2013. Further, we discuss where priors come from and how to define them in the estimation process. Results: We demonstrate that only the Bayesian approach results in the desired theory-driven solution of PTSD trajectories. Since the priors are chosen subjectively, we also present a sensitivity analysis of the
MODELING INFORMATION SYSTEM AVAILABILITY BY USING BAYESIAN BELIEF NETWORK APPROACH
Directory of Open Access Journals (Sweden)
Semir Ibrahimović
2016-03-01
Full Text Available Modern information systems are expected to be always-on by providing services to end-users, regardless of time and location. This is particularly important for organizations and industries where information systems support real-time operations and mission-critical applications that need to be available on 24 7 365 basis. Examples of such entities include process industries, telecommunications, healthcare, energy, banking, electronic commerce and a variety of cloud services. This article presents a modified Bayesian Belief Network model for predicting information system availability, introduced initially by Franke, U. and Johnson, P. (in article “Availability of enterprise IT systems – an expert based Bayesian model”. Software Quality Journal 20(2, 369-394, 2012 based on a thorough review of several dimensions of the information system availability, we proposed a modified set of determinants. The model is parameterized by using probability elicitation process with the participation of experts from the financial sector of Bosnia and Herzegovina. The model validation was performed using Monte Carlo simulation.
Scalable Bayesian nonparametric regression via a Plackett-Luce model for conditional ranks
Gray-Davies, Tristan; Holmes, Chris C.; Caron, François
2018-01-01
We present a novel Bayesian nonparametric regression model for covariates X and continuous response variable Y ∈ ℝ. The model is parametrized in terms of marginal distributions for Y and X and a regression function which tunes the stochastic ordering of the conditional distributions F (y|x). By adopting an approximate composite likelihood approach, we show that the resulting posterior inference can be decoupled for the separate components of the model. This procedure can scale to very large datasets and allows for the use of standard, existing, software from Bayesian nonparametric density estimation and Plackett-Luce ranking estimation to be applied. As an illustration, we show an application of our approach to a US Census dataset, with over 1,300,000 data points and more than 100 covariates. PMID:29623150
Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction
Directory of Open Access Journals (Sweden)
Seong-Gon Kim
2011-06-01
Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.
Wheeler, David C.; Hickson, DeMarc A.; Waller, Lance A.
2010-01-01
Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data. PMID:21243121
Calibration of complex models through Bayesian evidence synthesis: a demonstration and tutorial
Jackson, Christopher; Jit, Mark; Sharples, Linda; DeAngelis, Daniela
2016-01-01
Summary Decision-analytic models must often be informed using data which are only indirectly related to the main model parameters. The authors outline how to implement a Bayesian synthesis of diverse sources of evidence to calibrate the parameters of a complex model. A graphical model is built to represent how observed data are generated from statistical models with unknown parameters, and how those parameters are related to quantities of interest for decision-making. This forms the basis of an algorithm to estimate a posterior probability distribution, which represents the updated state of evidence for all unknowns given all data and prior beliefs. This process calibrates the quantities of interest against data, and at the same time, propagates all parameter uncertainties to the results used for decision-making. To illustrate these methods, the authors demonstrate how a previously-developed Markov model for the progression of human papillomavirus (HPV16) infection was rebuilt in a Bayesian framework. Transition probabilities between states of disease severity are inferred indirectly from cross-sectional observations of prevalence of HPV16 and HPV16-related disease by age, cervical cancer incidence, and other published information. Previously, a discrete collection of plausible scenarios was identified, but with no further indication of which of these are more plausible. Instead, the authors derive a Bayesian posterior distribution, in which scenarios are implicitly weighted according to how well they are supported by the data. In particular, we emphasise the appropriate choice of prior distributions and checking and comparison of fitted models. PMID:23886677
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
A Bayesian approach for parameter estimation and prediction using a computationally intensive model
International Nuclear Information System (INIS)
Higdon, Dave; McDonnell, Jordan D; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M
2015-01-01
Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model η(θ), where θ denotes the uncertain, best input setting. Hence the statistical model is of the form y=η(θ)+ϵ, where ϵ accounts for measurement, and possibly other, error sources. When nonlinearity is present in η(⋅), the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model η(⋅). This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory. (paper)
Characterizing economic trends by Bayesian stochastic model specifi cation search
Grassi, Stefano; Proietti, Tommaso
2010-01-01
We apply a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. We illustrate that the methodology can be quite successfully applied to discriminate between stochastic and deterministic trends. In particular, we formulate autoregressive models with stochastic trends components and decide on whether a specific feature of the series, i.e. the underlying level and/or the rate...
Bayesian modeling of recombination events in bacterial populations
Directory of Open Access Journals (Sweden)
Dowson Chris
2008-10-01
Full Text Available Abstract Background We consider the discovery of recombinant segments jointly with their origins within multilocus DNA sequences from bacteria representing heterogeneous populations of fairly closely related species. The currently available methods for recombination detection capable of probabilistic characterization of uncertainty have a limited applicability in practice as the number of strains in a data set increases. Results We introduce a Bayesian spatial structural model representing the continuum of origins over sites within the observed sequences, including a probabilistic characterization of uncertainty related to the origin of any particular site. To enable a statistically accurate and practically feasible approach to the analysis of large-scale data sets representing a single genus, we have developed a novel software tool (BRAT, Bayesian Recombination Tracker implementing the model and the corresponding learning algorithm, which is capable of identifying the posterior optimal structure and to estimate the marginal posterior probabilities of putative origins over the sites. Conclusion A multitude of challenging simulation scenarios and an analysis of real data from seven housekeeping genes of 120 strains of genus Burkholderia are used to illustrate the possibilities offered by our approach. The software is freely available for download at URL http://web.abo.fi/fak/mnf//mate/jc/software/brat.html.
Bayesian nonparametric estimation of hazard rate in monotone Aalen model
Czech Academy of Sciences Publication Activity Database
Timková, Jana
2014-01-01
Roč. 50, č. 6 (2014), s. 849-868 ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : Aalen model * Bayesian estimation * MCMC Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.541, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/timkova-0438210.pdf
An empirical Bayesian approach for model-based inference of cellular signaling networks
Directory of Open Access Journals (Sweden)
Klinke David J
2009-11-01
Full Text Available Abstract Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.
Constrained optimisation of spatial sampling : a geostatistical approach
Groenigen, van J.W.
1999-01-01
This thesis aims at the development of optimal sampling strategies for geostatistical studies. Special emphasis is on the optimal use of ancillary data, such as co-related imagery, preliminary observations and historic knowledge. Although the object of all studies
Modeling operational risks of the nuclear industry with Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Wieland, Patricia [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Industrial; Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: pwieland@cnen.gov.br; Lustosa, Leonardo J. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Industrial], e-mail: ljl@puc-rio.br
2009-07-01
Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)
Modeling operational risks of the nuclear industry with Bayesian networks
International Nuclear Information System (INIS)
Wieland, Patricia; Lustosa, Leonardo J.
2009-01-01
Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)
Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights
L.F. Hoogerheide (Lennart); R.H. Kleijn (Richard); H.K. van Dijk (Herman); M.J.C.M. Verbeek (Marno)
2009-01-01
textabstractSeveral Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time
Bayesian Model Comparison With the g-Prior
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Cemgil, Ali Taylan
2014-01-01
’s asymptotic MAP rule was an improvement, and in this paper we extend the work by Djuric in several ways. Speciﬁcally, we consider the elicitation of proper prior distributions, treat the case of real- and complex-valued data simultaneously in a Bayesian framework similar to that considered by Djuric......, and develop new model selection rules for a regression model containing both linear and non-linear parameters. Moreover, we use this framework to give a new interpretation of the popular information criteria and relate their performance to the signal-to-noise ratio of the data. By use of simulations, we also...... demonstrate that our proposed model comparison and selection rules outperform the traditional information criteria both in terms of detecting the true model and in terms of predicting unobserved data. The simulation code is available online....
Model Selection in Historical Research Using Approximate Bayesian Computation
Rubio-Campillo, Xavier
2016-01-01
Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel N
2012-01-01
Many networks of scientific interest naturally decompose into clusters or communities with comparatively fewer external than internal links; however, current Bayesian models of network communities do not exert this intuitive notion of communities. We formulate a nonparametric Bayesian model...... for community detection consistent with an intuitive definition of communities and present a Markov chain Monte Carlo procedure for inferring the community structure. A Matlab toolbox with the proposed inference procedure is available for download. On synthetic and real networks, our model detects communities...... consistent with ground truth, and on real networks, it outperforms existing approaches in predicting missing links. This suggests that community structure is an important structural property of networks that should be explicitly modeled....
Nonparametric Bayesian models through probit stick-breaking processes.
Rodríguez, Abel; Dunson, David B
2011-03-01
We describe a novel class of Bayesian nonparametric priors based on stick-breaking constructions where the weights of the process are constructed as probit transformations of normal random variables. We show that these priors are extremely flexible, allowing us to generate a great variety of models while preserving computational simplicity. Particular emphasis is placed on the construction of rich temporal and spatial processes, which are applied to two problems in finance and ecology.
Factors affecting GEBV accuracy with single-step Bayesian models.
Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng
2018-01-01
A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.
Bayesian methods for proteomic biomarker development
Directory of Open Access Journals (Sweden)
Belinda Hernández
2015-12-01
In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.
Bayesian model selection validates a biokinetic model for zirconium processing in humans
2012-01-01
Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152
An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit.
Wong, Rowena Syn Yin; Ismail, Noor Azina
2016-01-01
There are not many studies that attempt to model intensive care unit (ICU) risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU. This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV) model. Bayesian Markov Chain Monte Carlo (MCMC) simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method. The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS) was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC) values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05) for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study. Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes.
Freni, Gabriele; Mannina, Giorgio
In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the
Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.
2013-12-01
The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or
Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models
Directory of Open Access Journals (Sweden)
Plinio Andrade
2015-09-01
Full Text Available In this work, we propose a Bayesian methodology to make inferences for the memory parameter and other characteristics under non-standard assumptions for a class of stochastic processes. This class generalizes the Gamma-modulated process, with trajectories that exhibit long memory behavior, as well as decreasing variability as time increases. Different values of the memory parameter influence the speed of this decrease, making this heteroscedastic model very flexible. Its properties are used to implement an approximate Bayesian computation and MCMC scheme to obtain posterior estimates. We test and validate our method through simulations and real data from the big earthquake that occurred in 2010 in Chile.
Bayesian networks modeling for thermal error of numerical control machine tools
Institute of Scientific and Technical Information of China (English)
Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN
2008-01-01
The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.
International Nuclear Information System (INIS)
Zhou Zhongbao; Zhou Jinglun; Sun Quan
2007-01-01
Effect of Human factors on system safety is increasingly serious, which is often ignored in traditional probabilistic safety assessment methods however. A new probabilistic safety assessment model based on object-oriented Bayesian networks is proposed in this paper. Human factors are integrated into the existed event sequence diagrams. Then the classes of the object-oriented Bayesian networks are constructed which are converted to latent Bayesian networks for inference. Finally, the inference results are integrated into event sequence diagrams for probabilistic safety assessment. The new method is applied to the accident of loss of coolant in a nuclear power plant. the results show that the model is not only applicable to real-time situation assessment, but also applicable to situation assessment based certain amount of information. The modeling complexity is kept down and the new method is appropriate to large complex systems due to the thoughts of object-oriented. (authors)
A Bayesian approach for quantification of model uncertainty
International Nuclear Information System (INIS)
Park, Inseok; Amarchinta, Hemanth K.; Grandhi, Ramana V.
2010-01-01
In most engineering problems, more than one model can be created to represent an engineering system's behavior. Uncertainty is inevitably involved in selecting the best model from among the models that are possible. Uncertainty in model selection cannot be ignored, especially when the differences between the predictions of competing models are significant. In this research, a methodology is proposed to quantify model uncertainty using measured differences between experimental data and model outcomes under a Bayesian statistical framework. The adjustment factor approach is used to propagate model uncertainty into prediction of a system response. A nonlinear vibration system is used to demonstrate the processes for implementing the adjustment factor approach. Finally, the methodology is applied on the engineering benefits of a laser peening process, and a confidence band for residual stresses is established to indicate the reliability of model prediction.
Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems
International Nuclear Information System (INIS)
Tien, Iris; Der Kiureghian, Armen
2016-01-01
Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems. - Highlights: • Novel algorithms developed for Bayesian network modeling of infrastructure systems. • Algorithm presented to compress information in conditional probability tables. • Updating algorithm presented to perform inference on compressed matrices. • Algorithms applied to example systems to investigate their performance. • Orders of magnitude savings in memory storage requirement demonstrated.
Leventhal, Brian C.; Stone, Clement A.
2018-01-01
Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…
A Pareto scale-inflated outlier model and its Bayesian analysis
Scollnik, David P. M.
2016-01-01
This paper develops a Pareto scale-inflated outlier model. This model is intended for use when data from some standard Pareto distribution of interest is suspected to have been contaminated with a relatively small number of outliers from a Pareto distribution with the same shape parameter but with an inflated scale parameter. The Bayesian analysis of this Pareto scale-inflated outlier model is considered and its implementation using the Gibbs sampler is discussed. The paper contains three wor...
Evaluation of spatial variability of metal bioavailability in soils using geostatistics
DEFF Research Database (Denmark)
Owsianiak, Mikolaj; Hauschild, Michael Zwicky; Rosenbaum, Ralph K.
2012-01-01
Soil properties show signifficant spatial variability at local, regional and continental scales. This is a challenge for life cycle impact assessment (LCIA) of metals, because fate, bioavailability and effect factors are controlled by environmental chemistry and can vary orders of magnitude...... is performed using ArcGIS Geostatistical Analyst. Results show that BFs of copper span a range of 6 orders of magnitude, and have signifficant spatial variability at local and continental scales. The model nugget variance is signifficantly higher than zero, suggesting the presence of spatial variability...
Varouchakis, Emmanouil; Hristopulos, Dionissios
2015-04-01
Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs
cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model for fMRI Data Analysis
Directory of Open Access Journals (Sweden)
Adelino R. Ferreira da Silva
2011-10-01
Full Text Available Graphic processing units (GPUs are rapidly gaining maturity as powerful general parallel computing devices. A key feature in the development of modern GPUs has been the advancement of the programming model and programming tools. Compute Unified Device Architecture (CUDA is a software platform for massively parallel high-performance computing on Nvidia many-core GPUs. In functional magnetic resonance imaging (fMRI, the volume of the data to be processed, and the type of statistical analysis to perform call for high-performance computing strategies. In this work, we present the main features of the R-CUDA package cudaBayesreg which implements in CUDA the core of a Bayesian multilevel model for the analysis of brain fMRI data. The statistical model implements a Gibbs sampler for multilevel/hierarchical linear models with a normal prior. The main contribution for the increased performance comes from the use of separate threads for fitting the linear regression model at each voxel in parallel. The R-CUDA implementation of the Bayesian model proposed here has been able to reduce significantly the run-time processing of Markov chain Monte Carlo (MCMC simulations used in Bayesian fMRI data analyses. Presently, cudaBayesreg is only configured for Linux systems with Nvidia CUDA support.
Directory of Open Access Journals (Sweden)
David W Redding
Full Text Available Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT, to a spatial Bayesian SDM method (fitted using R-INLA, when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account
Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E
2017-01-01
Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial
Albert, Jim
2009-01-01
There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry. Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The earl
A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT)
Arenson, Ethan A.; Karabatsos, George
2017-01-01
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
DEFF Research Database (Denmark)
Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen
Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... electromagnetic (AEM) data. Our estimates of model structural uncertainty follow a Bayesian framework that accounts for both the uncertainties in geophysical parameter estimates given AEM data, and the uncertainties in the relationship between lithology and geophysical parameters. Using geostatistical sequential...
Bayesian Inference for Functional Dynamics Exploring in fMRI Data
Directory of Open Access Journals (Sweden)
Xuan Guo
2016-01-01
Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
Benchmarking a geostatistical procedure for the homogenisation of annual precipitation series
Caineta, Júlio; Ribeiro, Sara; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina
2014-05-01
The European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), has brought to attention the importance of establishing reliable homogenisation methods for climate data. In order to achieve that, a benchmark data set, containing monthly and daily temperature and precipitation data, was created to be used as a comparison basis for the effectiveness of those methods. Several contributions were submitted and evaluated by a number of performance metrics, validating the results against realistic inhomogeneous data. HOME also led to the development of new homogenisation software packages, which included feedback and lessons learned during the project. Preliminary studies have suggested a geostatistical stochastic approach, which uses Direct Sequential Simulation (DSS), as a promising methodology for the homogenisation of precipitation data series. Based on the spatial and temporal correlation between the neighbouring stations, DSS calculates local probability density functions at a candidate station to detect inhomogeneities. The purpose of the current study is to test and compare this geostatistical approach with the methods previously presented in the HOME project, using surrogate precipitation series from the HOME benchmark data set. The benchmark data set contains monthly precipitation surrogate series, from which annual precipitation data series were derived. These annual precipitation series were subject to exploratory analysis and to a thorough variography study. The geostatistical approach was then applied to the data set, based on different scenarios for the spatial continuity. Implementing this procedure also promoted the development of a computer program that aims to assist on the homogenisation of climate data, while minimising user interaction. Finally, in order to compare the effectiveness of this methodology with the homogenisation methods submitted during the HOME project, the obtained results
An introduction to Bayesian statistics in health psychology.
Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske
2017-09-01
The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.
Freire, J.; González-Gurriarán, E.; Olaso, I.
1992-12-01
Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.
Kernel Bayesian ART and ARTMAP.
Masuyama, Naoki; Loo, Chu Kiong; Dawood, Farhan
2018-02-01
Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Bayesian Model of the Memory Colour Effect
Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R.
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration....
A Bayesian model of the memory colour effect.
Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R.
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration....
Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates
Directory of Open Access Journals (Sweden)
Piotr Białowolski
2012-03-01
Full Text Available The aim of this paper is to construct a forecasting model oriented on predicting basic macroeconomic variables, namely: the GDP growth rate, the unemployment rate, and the consumer price inflation. In order to select the set of the best regressors, Bayesian Averaging of Classical Estimators (BACE is employed. The models are atheoretical (i.e. they do not reflect causal relationships postulated by the macroeconomic theory and the role of regressors is played by business and consumer tendency survey-based indicators. Additionally, survey-based indicators are included with a lag that enables to forecast the variables of interest (GDP, unemployment, and inflation for the four forthcoming quarters without the need to make any additional assumptions concerning the values of predictor variables in the forecast period. Bayesian Averaging of Classical Estimators is a method allowing for full and controlled overview of all econometric models which can be obtained out of a particular set of regressors. In this paper authors describe the method of generating a family of econometric models and the procedure for selection of a final forecasting model. Verification of the procedure is performed by means of out-of-sample forecasts of main economic variables for the quarters of 2011. The accuracy of the forecasts implies that there is still a need to search for new solutions in the atheoretical modelling.
A discrete-time Bayesian network reliability modeling and analysis framework
International Nuclear Information System (INIS)
Boudali, H.; Dugan, J.B.
2005-01-01
Dependability tools are becoming an indispensable tool for modeling and analyzing (critical) systems. However the growing complexity of such systems calls for increasing sophistication of these tools. Dependability tools need to not only capture the complex dynamic behavior of the system components, but they must be also easy to use, intuitive, and computationally efficient. In general, current tools have a number of shortcomings including lack of modeling power, incapacity to efficiently handle general component failure distributions, and ineffectiveness in solving large models that exhibit complex dependencies between their components. We propose a novel reliability modeling and analysis framework based on the Bayesian network (BN) formalism. The overall approach is to investigate timed Bayesian networks and to find a suitable reliability framework for dynamic systems. We have applied our methodology to two example systems and preliminary results are promising. We have defined a discrete-time BN reliability formalism and demonstrated its capabilities from a modeling and analysis point of view. This research shows that a BN based reliability formalism is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, being based on the BN formalism, the framework is easy to use and intuitive for non-experts, and provides a basis for more advanced and useful analyses such as system diagnosis
2nd Bayesian Young Statisticians Meeting
Bitto, Angela; Kastner, Gregor; Posekany, Alexandra
2015-01-01
The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Université Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session ...
Bayesian natural language semantics and pragmatics
Zeevat, Henk
2015-01-01
The contributions in this volume focus on the Bayesian interpretation of natural languages, which is widely used in areas of artificial intelligence, cognitive science, and computational linguistics. This is the first volume to take up topics in Bayesian Natural Language Interpretation and make proposals based on information theory, probability theory, and related fields. The methodologies offered here extend to the target semantic and pragmatic analyses of computational natural language interpretation. Bayesian approaches to natural language semantics and pragmatics are based on methods from signal processing and the causal Bayesian models pioneered by especially Pearl. In signal processing, the Bayesian method finds the most probable interpretation by finding the one that maximizes the product of the prior probability and the likelihood of the interpretation. It thus stresses the importance of a production model for interpretation as in Grice's contributions to pragmatics or in interpretation by abduction.
Money, Eric S; Reckhow, Kenneth H; Wiesner, Mark R
2012-06-01
We describe the use of Bayesian networks as a tool for nanomaterial risk forecasting and develop a baseline probabilistic model that incorporates nanoparticle specific characteristics and environmental parameters, along with elements of exposure potential, hazard, and risk related to nanomaterials. The baseline model, FINE (Forecasting the Impacts of Nanomaterials in the Environment), was developed using expert elicitation techniques. The Bayesian nature of FINE allows for updating as new data become available, a critical feature for forecasting risk in the context of nanomaterials. The specific case of silver nanoparticles (AgNPs) in aquatic environments is presented here (FINE(AgNP)). The results of this study show that Bayesian networks provide a robust method for formally incorporating expert judgments into a probabilistic measure of exposure and risk to nanoparticles, particularly when other knowledge bases may be lacking. The model is easily adapted and updated as additional experimental data and other information on nanoparticle behavior in the environment become available. The baseline model suggests that, within the bounds of uncertainty as currently quantified, nanosilver may pose the greatest potential risk as these particles accumulate in aquatic sediments. Copyright © 2012 Elsevier B.V. All rights reserved.
LEON-GONZALEZ, Roberto; VINAYAGATHASAN, Thanabalasingam
2013-01-01
This paper investigates the determinants of growth in the Asian developing economies. We use Bayesian model averaging (BMA) in the context of a dynamic panel data growth regression to overcome the uncertainty over the choice of control variables. In addition, we use a Bayesian algorithm to analyze a large number of competing models. Among the explanatory variables, we include a non-linear function of inflation that allows for threshold effects. We use an unbalanced panel data set of 27 Asian ...
Bayesian hierarchical model for large-scale covariance matrix estimation.
Zhu, Dongxiao; Hero, Alfred O
2007-12-01
Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.
Technical Note: Approximate Bayesian parameterization of a complex tropical forest model
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2013-08-01
Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can
A Bayesian MCMC method for point process models with intractable normalising constants
DEFF Research Database (Denmark)
Berthelsen, Kasper Klitgaard; Møller, Jesper
2004-01-01
to simulate from the "unknown distribution", perfect simulation algorithms become useful. We illustrate the method in cases whre the likelihood is given by a Markov point process model. Particularly, we consider semi-parametric Bayesian inference in connection to both inhomogeneous Markov point process models...... and pairwise interaction point processes....
A Geostatistical Approach to Indoor Surface Sampling Strategies
DEFF Research Database (Denmark)
Schneider, Thomas; Petersen, Ole Holm; Nielsen, Allan Aasbjerg
1990-01-01
Particulate surface contamination is of concern in production industries such as food processing, aerospace, electronics and semiconductor manufacturing. There is also an increased awareness that surface contamination should be monitored in industrial hygiene surveys. A conceptual and theoretical...... framework for designing sampling strategies is thus developed. The distribution and spatial correlation of surface contamination can be characterized using concepts from geostatistical science, where spatial applications of statistics is most developed. The theory is summarized and particulate surface...... contamination, sampled from small areas on a table, have been used to illustrate the method. First, the spatial correlation is modelled and the parameters estimated from the data. Next, it is shown how the contamination at positions not measured can be estimated with kriging, a minimum mean square error method...
BAYESIAN MODELS FOR SPECIES DISTRIBUTION MODELLING WITH ONLY-PRESENCE RECORDS
Directory of Open Access Journals (Sweden)
Bartolo de JesÃºs Villar-HernÃ¡ndez
2015-08-01
Full Text Available One of the central issues in ecology is the study of geographical distribution of species of flora and fauna through Species Distribution Models (SDM. Recently, scientific interest has focused on presence-only records. Two recent approaches have been proposed for this problem: a model based on maximum likelihood method (Maxlike and an inhomogeneous poisson process model (IPP. In this paper we discussed two bayesian approaches called MaxBayes and IPPBayes based on Maxlike and IPP model, respectively. To illustrate these proposals, we implemented two study examples: (1 both models were implemented on a simulated dataset, and (2 we modeled the potencial distribution of genus Dalea in the Tehuacan-CuicatlÃ¡n biosphere reserve with both models, the results was compared with that of Maxent. The results show that both models, MaxBayes and IPPBayes, are viable alternatives when species distribution are modeled with only-presence records. For simulated dataset, MaxBayes achieved prevalence estimation, even when the number of records was small. In the real dataset example, both models predict similar potential distributions like Maxent does. Â
Advances in Bayesian Model Based Clustering Using Particle Learning
Energy Technology Data Exchange (ETDEWEB)
Merl, D M
2009-11-19
Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original
A Dynamic Bayesian Network Model for the Production and Inventory Control
Shin, Ji-Sun; Takazaki, Noriyuki; Lee, Tae-Hong; Kim, Jin-Il; Lee, Hee-Hyol
In general, the production quantities and delivered goods are changed randomly and then the total stock is also changed randomly. This paper deals with the production and inventory control using the Dynamic Bayesian Network. Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by the graph structure, and indicates the quantitative relations between individual variables by the conditional probability. The probabilistic distribution of the total stock is calculated through the propagation of the probability on the network. Moreover, an adjusting rule of the production quantities to maintain the probability of a lower limit and a ceiling of the total stock to certain values is shown.
Karabatsos, George
2017-02-01
Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected
Lee, Sik-Yum
2012-01-01
This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduce
Zonta, Zivko J; Flotats, Xavier; Magrí, Albert
2014-08-01
The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.
Hierarchy Bayesian model based services awareness of high-speed optical access networks
Bai, Hui-feng
2018-03-01
As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.
From least squares to multilevel modeling: A graphical introduction to Bayesian inference
Loredo, Thomas J.
2016-01-01
This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.
Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2014-02-01
Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation
R.W. Strachan (Rodney); H.K. van Dijk (Herman)
2010-01-01
textabstractThe empirical support for a real business cycle model with two technology shocks is evaluated using a Bayesian model averaging procedure. This procedure makes use of a finite mixture of many models within the class of vector autoregressive (VAR) processes. The linear VAR model is
Data analysis for radiological characterisation: Geostatistical and statistical complementarity
International Nuclear Information System (INIS)
Desnoyers, Yvon; Dubot, Didier
2012-01-01
Radiological characterisation may cover a large range of evaluation objectives during a decommissioning and dismantling (D and D) project: removal of doubt, delineation of contaminated materials, monitoring of the decontamination work and final survey. At each stage, collecting relevant data to be able to draw the conclusions needed is quite a big challenge. In particular two radiological characterisation stages require an advanced sampling process and data analysis, namely the initial categorization and optimisation of the materials to be removed and the final survey to demonstrate compliance with clearance levels. On the one hand the latter is widely used and well developed in national guides and norms, using random sampling designs and statistical data analysis. On the other hand a more complex evaluation methodology has to be implemented for the initial radiological characterisation, both for sampling design and for data analysis. The geostatistical framework is an efficient way to satisfy the radiological characterisation requirements providing a sound decision-making approach for the decommissioning and dismantling of nuclear premises. The relevance of the geostatistical methodology relies on the presence of a spatial continuity for radiological contamination. Thus geo-statistics provides reliable methods for activity estimation, uncertainty quantification and risk analysis, leading to a sound classification of radiological waste (surfaces and volumes). This way, the radiological characterization of contaminated premises can be divided into three steps. First, the most exhaustive facility analysis provides historical and qualitative information. Then, a systematic (exhaustive or not) surface survey of the contamination is implemented on a regular grid. Finally, in order to assess activity levels and contamination depths, destructive samples are collected at several locations within the premises (based on the surface survey results) and analysed. Combined with
An introduction to using Bayesian linear regression with clinical data.
Baldwin, Scott A; Larson, Michael J
2017-11-01
Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally
The use of sequential indicator simulation to characterize geostatistical uncertainty
International Nuclear Information System (INIS)
Hansen, K.M.
1992-10-01
Sequential indicator simulation (SIS) is a geostatistical technique designed to aid in the characterization of uncertainty about the structure or behavior of natural systems. This report discusses a simulation experiment designed to study the quality of uncertainty bounds generated using SIS. The results indicate that, while SIS may produce reasonable uncertainty bounds in many situations, factors like the number and location of available sample data, the quality of variogram models produced by the user, and the characteristics of the geologic region to be modeled, can all have substantial effects on the accuracy and precision of estimated confidence limits. It is recommended that users of SIS conduct validation studies for the technique on their particular regions of interest before accepting the output uncertainty bounds
Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel
Energy Technology Data Exchange (ETDEWEB)
Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon [Nuclear Materials Laboratory, Seoul National University, Seoul (Korea, Republic of)
2015-10-15
The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties.
Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel
International Nuclear Information System (INIS)
Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon
2015-01-01
The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties
Bayesian modeling to paired comparison data via the Pareto distribution
Directory of Open Access Journals (Sweden)
Nasir Abbas
2017-12-01
Full Text Available A probabilistic approach to build models for paired comparison experiments based on the comparison of two Pareto variables is considered. Analysis of the proposed model is carried out in classical as well as Bayesian frameworks. Informative and uninformative priors are employed to accommodate the prior information. Simulation study is conducted to assess the suitablily and performance of the model under theoretical conditions. Appropriateness of fit of the is also carried out. Entire inferential procedure is illustrated by comparing certain cricket teams using real dataset.
International Nuclear Information System (INIS)
Doctor, P.G.; Oberlander, P.L.; Rice, W.A.; Devary, J.L.; Nelson, R.W.; Tucker, P.E.
1982-09-01
The Office of Nuclear Waste Isolation (ONWI) requested Pacific Northwest Laboratory (PNL) to: (1) use geostatistical analyses to evaluate the adequacy of hydrologic data from three salt regions, each of which contains a potential nuclear waste repository site; and (2) demonstrate a methodology that allows quantification of the value of additional data collection. The three regions examined are the Paradox Basin in Utah, the Permian Basin in Texas, and the Mississippi Study Area. Additional and new data became available to ONWI during and following these analyses; therefore, this report must be considered a methodology demonstration here would apply as illustrated had the complete data sets been available. A combination of geostatistical and hydrologic analyses was used for this demonstration. Geostatistical analyses provided an optimal estimate of the potentiometric surface from the available data, a measure of the uncertainty of that estimate, and a means for selecting and evaluating the location of future data. The hydrologic analyses included the calculation of transmissivities, flow paths, travel times, and ground-water flow rates from hypothetical repository sites. Simulation techniques were used to evaluate the effect of optimally located future data on the potentiometric surface, flow lines, travel times, and flow rates. Data availability, quality, quantity, and conformance with model assumptions differed in each of the salt areas. Report highlights for the three locations are given
An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit.
Directory of Open Access Journals (Sweden)
Rowena Syn Yin Wong
Full Text Available There are not many studies that attempt to model intensive care unit (ICU risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU.This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV model. Bayesian Markov Chain Monte Carlo (MCMC simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method.The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05 for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study.Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes.
De Luca, G.; Magnus, J.R.
2011-01-01
In this article, we describe the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals, which implement, respectively, the exact Bayesian model-averaging estimator and the weighted-average least-squares
An Active Lattice Model in a Bayesian Framework
DEFF Research Database (Denmark)
Carstensen, Jens Michael
1996-01-01
A Markov Random Field is used as a structural model of a deformable rectangular lattice. When used as a template prior in a Bayesian framework this model is powerful for making inferences about lattice structures in images. The model assigns maximum probability to the perfect regular lattice...... by penalizing deviations in alignment and lattice node distance. The Markov random field represents prior knowledge about the lattice structure, and through an observation model that incorporates the visual appearance of the nodes, we can simulate realizations from the posterior distribution. A maximum...... a posteriori (MAP) estimate, found by simulated annealing, is used as the reconstructed lattice. The model was developed as a central part of an algorithm for automatic analylsis of genetic experiments, positioned in a lattice structure by a robot. The algorithm has been successfully applied to many images...
DEFF Research Database (Denmark)
Kostoulas, Polychronis; Nielsen, Søren S.; Branscum, Adam J.
2017-01-01
The Standards for the Reporting of Diagnostic Accuracy (STARD) statement, which was recently updated to the STARD2015 statement, was developed to encourage complete and transparent reporting of test accuracy studies. Although STARD principles apply broadly, the checklist is limited to studies......-BLCM (Standards for Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models), will facilitate improved quality of reporting on the design, conduct and results of diagnostic accuracy studies that use Bayesian latent class models....
Multi-population genomic prediction using a multi-task Bayesian learning model.
Chen, Liuhong; Li, Changxi; Miller, Stephen; Schenkel, Flavio
2014-05-03
Genomic prediction in multiple populations can be viewed as a multi-task learning problem where tasks are to derive prediction equations for each population and multi-task learning property can be improved by sharing information across populations. The goal of this study was to develop a multi-task Bayesian learning model for multi-population genomic prediction with a strategy to effectively share information across populations. Simulation studies and real data from Holstein and Ayrshire dairy breeds with phenotypes on five milk production traits were used to evaluate the proposed multi-task Bayesian learning model and compare with a single-task model and a simple data pooling method. A multi-task Bayesian learning model was proposed for multi-population genomic prediction. Information was shared across populations through a common set of latent indicator variables while SNP effects were allowed to vary in different populations. Both simulation studies and real data analysis showed the effectiveness of the multi-task model in improving genomic prediction accuracy for the smaller Ayshire breed. Simulation studies suggested that the multi-task model was most effective when the number of QTL was small (n = 20), with an increase of accuracy by up to 0.09 when QTL effects were lowly correlated between two populations (ρ = 0.2), and up to 0.16 when QTL effects were highly correlated (ρ = 0.8). When QTL genotypes were included for training and validation, the improvements were 0.16 and 0.22, respectively, for scenarios of the low and high correlation of QTL effects between two populations. When the number of QTL was large (n = 200), improvement was small with a maximum of 0.02 when QTL genotypes were not included for genomic prediction. Reduction in accuracy was observed for the simple pooling method when the number of QTL was small and correlation of QTL effects between the two populations was low. For the real data, the multi-task model achieved an
Ore reserve evalution, through geostatistical methods, in sector C-09, Pocos de Caldas, MG-Brazil
International Nuclear Information System (INIS)
Guerra, P.A.G.; Censi, A.C.; Marques, J.P.M.; Huijbregts, Ch.
1978-01-01
In sector C-09, Pocos de Caldas in the state of Minas Gerais, geostatistical techniques have been used to evaluate the tonnage of U 3 O 8 and associated minerals and to delimit ore from sterile areas. The calculation of reserve was based on borehole information including the results of chemical and/or radiometric analysis. Two-and three dimensional evalutions were made following the existing geological models. Initially, the evaluation was based on chemical analysis using the more classical geostatistical technique of kriging. This was followed by a second evaluation using the more recent technique of co-kriging which permited the incorporation of radiometric information in the calculations. The correlation between ore grade and radiometric was studied using the method of cross-covariance. Following restrictions imposed by mining considerations, a probabilistic selection was made of blocks of appropriate dimensions so as to evaluate the grade tonnage curve for each panel. (Author) [pt
Directory of Open Access Journals (Sweden)
Gunal Bilek
2018-03-01
Full Text Available The aim of this paper is to investigate the factors influencing the Beck Depression Inventory score, the Beck Hopelessness Scale score and the Rosenberg Self-Esteem score and the relationships among the psychiatric, demographic and socio-economic variables with Bayesian network modeling. The data of 823 university students consist of 21 continuous and discrete relevant psychiatric, demographic and socio-economic variables. After the discretization of the continuous variables by two approaches, two Bayesian networks models are constructed using the b n l e a r n package in R, and the results are presented via figures and probabilities. One of the most significant results is that in the first Bayesian network model, the gender of the students influences the level of depression, with female students being more depressive. In the second model, social activity directly influences the level of depression. In each model, depression influences both the level of hopelessness and self-esteem in students; additionally, as the level of depression increases, the level of hopelessness increases, but the level of self-esteem drops.
Experimental validation of a Bayesian model of visual acuity.
LENUS (Irish Health Repository)
Dalimier, Eugénie
2009-01-01
Based on standard procedures used in optometry clinics, we compare measurements of visual acuity for 10 subjects (11 eyes tested) in the presence of natural ocular aberrations and different degrees of induced defocus, with the predictions given by a Bayesian model customized with aberrometric data of the eye. The absolute predictions of the model, without any adjustment, show good agreement with the experimental data, in terms of correlation and absolute error. The efficiency of the model is discussed in comparison with image quality metrics and other customized visual process models. An analysis of the importance and customization of each stage of the model is also given; it stresses the potential high predictive power from precise modeling of ocular and neural transfer functions.
Item selection via Bayesian IRT models.
Arima, Serena
2015-02-10
With reference to a questionnaire that aimed to assess the quality of life for dysarthric speakers, we investigate the usefulness of a model-based procedure for reducing the number of items. We propose a mixed cumulative logit model, which is known in the psychometrics literature as the graded response model: responses to different items are modelled as a function of individual latent traits and as a function of item characteristics, such as their difficulty and their discrimination power. We jointly model the discrimination and the difficulty parameters by using a k-component mixture of normal distributions. Mixture components correspond to disjoint groups of items. Items that belong to the same groups can be considered equivalent in terms of both difficulty and discrimination power. According to decision criteria, we select a subset of items such that the reduced questionnaire is able to provide the same information that the complete questionnaire provides. The model is estimated by using a Bayesian approach, and the choice of the number of mixture components is justified according to information criteria. We illustrate the proposed approach on the basis of data that are collected for 104 dysarthric patients by local health authorities in Lecce and in Milan. Copyright © 2014 John Wiley & Sons, Ltd.
Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using
Bayesian analysis of data and model error in rainfall-runoff hydrological models
Kavetski, D.; Franks, S. W.; Kuczera, G.
2004-12-01
A major unresolved issue in the identification and use of conceptual hydrologic models is realistic description of uncertainty in the data and model structure. In particular, hydrologic parameters often cannot be measured directly and must be inferred (calibrated) from observed forcing/response data (typically, rainfall and runoff). However, rainfall varies significantly in space and time, yet is often estimated from sparse gauge networks. Recent work showed that current calibration methods (e.g., standard least squares, multi-objective calibration, generalized likelihood uncertainty estimation) ignore forcing uncertainty and assume that the rainfall is known exactly. Consequently, they can yield strongly biased and misleading parameter estimates. This deficiency confounds attempts to reliably test model hypotheses, to generalize results across catchments (the regionalization problem) and to quantify predictive uncertainty when the hydrologic model is extrapolated. This paper continues the development of a Bayesian total error analysis (BATEA) methodology for the calibration and identification of hydrologic models, which explicitly incorporates the uncertainty in both the forcing and response data, and allows systematic model comparison based on residual model errors and formal Bayesian hypothesis testing (e.g., using Bayes factors). BATEA is based on explicit stochastic models for both forcing and response uncertainty, whereas current techniques focus solely on response errors. Hence, unlike existing methods, the BATEA parameter equations directly reflect the modeler's confidence in all the data. We compare several approaches to approximating the parameter distributions: a) full Markov Chain Monte Carlo methods and b) simplified approaches based on linear approximations. Studies using synthetic and real data from the US and Australia show that BATEA systematically reduces the parameter bias, leads to more meaningful model fits and allows model comparison taking
A Bayesian method for construction of Markov models to describe dynamics on various time-scales.
Rains, Emily K; Andersen, Hans C
2010-10-14
The dynamics of many biological processes of interest, such as the folding of a protein, are slow and complicated enough that a single molecular dynamics simulation trajectory of the entire process is difficult to obtain in any reasonable amount of time. Moreover, one such simulation may not be sufficient to develop an understanding of the mechanism of the process, and multiple simulations may be necessary. One approach to circumvent this computational barrier is the use of Markov state models. These models are useful because they can be constructed using data from a large number of shorter simulations instead of a single long simulation. This paper presents a new Bayesian method for the construction of Markov models from simulation data. A Markov model is specified by (τ,P,T), where τ is the mesoscopic time step, P is a partition of configuration space into mesostates, and T is an N(P)×N(P) transition rate matrix for transitions between the mesostates in one mesoscopic time step, where N(P) is the number of mesostates in P. The method presented here is different from previous Bayesian methods in several ways. (1) The method uses Bayesian analysis to determine the partition as well as the transition probabilities. (2) The method allows the construction of a Markov model for any chosen mesoscopic time-scale τ. (3) It constructs Markov models for which the diagonal elements of T are all equal to or greater than 0.5. Such a model will be called a "consistent mesoscopic Markov model" (CMMM). Such models have important advantages for providing an understanding of the dynamics on a mesoscopic time-scale. The Bayesian method uses simulation data to find a posterior probability distribution for (P,T) for any chosen τ. This distribution can be regarded as the Bayesian probability that the kinetics observed in the atomistic simulation data on the mesoscopic time-scale τ was generated by the CMMM specified by (P,T). An optimization algorithm is used to find the most
Observing the observer (I): meta-bayesian models of learning and decision-making.
Daunizeau, Jean; den Ouden, Hanneke E M; Pessiglione, Matthias; Kiebel, Stefan J; Stephan, Klaas E; Friston, Karl J
2010-12-14
In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological) responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility") function, which measures the cost incurred by making any admissible decision for any given (hidden) state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context- or subject-dependent) prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions). In a companion paper ('Observing the observer (II): deciding when to decide'), we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.
Observing the observer (I: meta-bayesian models of learning and decision-making.
Directory of Open Access Journals (Sweden)
Jean Daunizeau
2010-12-01
Full Text Available In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden "state of affairs" and a response model, which predicts the ensuing behavioural (or neurophysiological responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called "posterior" beliefs, which are influenced by subjective "prior" beliefs. Preferences and goals are encoded through a "loss" (or "utility" function, which measures the cost incurred by making any admissible decision for any given (hidden state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior beliefs and utility (loss functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to "observe the observer", i.e. identify (context- or subject-dependent prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions. In a companion paper ('Observing the observer (II: deciding when to decide', we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.
Ribeiro, Manuel C; Pinho, P; Branquinho, C; Llop, Esteve; Pereira, Maria J
2016-08-15
In most studies correlating health outcomes with air pollution, personal exposure assignments are based on measurements collected at air-quality monitoring stations not coinciding with health data locations. In such cases, interpolators are needed to predict air quality in unsampled locations and to assign personal exposures. Moreover, a measure of the spatial uncertainty of exposures should be incorporated, especially in urban areas where concentrations vary at short distances due to changes in land use and pollution intensity. These studies are limited by the lack of literature comparing exposure uncertainty derived from distinct spatial interpolators. Here, we addressed these issues with two interpolation methods: regression Kriging (RK) and ordinary Kriging (OK). These methods were used to generate air-quality simulations with a geostatistical algorithm. For each method, the geostatistical uncertainty was drawn from generalized linear model (GLM) analysis. We analyzed the association between air quality and birth weight. Personal health data (n=227) and exposure data were collected in Sines (Portugal) during 2007-2010. Because air-quality monitoring stations in the city do not offer high-spatial-resolution measurements (n=1), we used lichen data as an ecological indicator of air quality (n=83). We found no significant difference in the fit of GLMs with any of the geostatistical methods. With RK, however, the models tended to fit better more often and worse less often. Moreover, the geostatistical uncertainty results showed a marginally higher mean and precision with RK. Combined with lichen data and land-use data of high spatial resolution, RK is a more effective geostatistical method for relating health outcomes with air quality in urban areas. This is particularly important in small cities, which generally do not have expensive air-quality monitoring stations with high spatial resolution. Further, alternative ways of linking human activities with their
Efficient Bayesian network modeling of systems
International Nuclear Information System (INIS)
Bensi, Michelle; Kiureghian, Armen Der; Straub, Daniel
2013-01-01
The Bayesian network (BN) is a convenient tool for probabilistic modeling of system performance, particularly when it is of interest to update the reliability of the system or its components in light of observed information. In this paper, BN structures for modeling the performance of systems that are defined in terms of their minimum link or cut sets are investigated. Standard BN structures that define the system node as a child of its constituent components or its minimum link/cut sets lead to converging structures, which are computationally disadvantageous and could severely hamper application of the BN to real systems. A systematic approach to defining an alternative formulation is developed that creates chain-like BN structures that are orders of magnitude more efficient, particularly in terms of computational memory demand. The formulation uses an integer optimization algorithm to identify the most efficient BN structure. Example applications demonstrate the proposed methodology and quantify the gained computational advantage
Bayesian Dose-Response Modeling in Sparse Data
Kim, Steven B.
This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a
PARALLEL ADAPTIVE MULTILEVEL SAMPLING ALGORITHMS FOR THE BAYESIAN ANALYSIS OF MATHEMATICAL MODELS
Prudencio, Ernesto; Cheung, Sai Hung
2012-01-01
In recent years, Bayesian model updating techniques based on measured data have been applied to many engineering and applied science problems. At the same time, parallel computational platforms are becoming increasingly more powerful and are being used more frequently by the engineering and scientific communities. Bayesian techniques usually require the evaluation of multi-dimensional integrals related to the posterior probability density function (PDF) of uncertain model parameters. The fact that such integrals cannot be computed analytically motivates the research of stochastic simulation methods for sampling posterior PDFs. One such algorithm is the adaptive multilevel stochastic simulation algorithm (AMSSA). In this paper we discuss the parallelization of AMSSA, formulating the necessary load balancing step as a binary integer programming problem. We present a variety of results showing the effectiveness of load balancing on the overall performance of AMSSA in a parallel computational environment.
Directory of Open Access Journals (Sweden)
J. P. Werner
2015-03-01
Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.
Bayesian Analysis for Penalized Spline Regression Using WinBUGS
Directory of Open Access Journals (Sweden)
Ciprian M. Crainiceanu
2005-09-01
Full Text Available Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.
What Type of Finance Matters for Growth? Bayesian Model Averaging Evidence
Czech Academy of Sciences Publication Activity Database
Iftekhar, H.; Horváth, Roman; Mareš, J.
-, - (2018) ISSN 0258-6770 R&D Projects: GA ČR GA16-09190S Institutional support: RVO:67985556 Keywords : long-term economic growth * Bayesian model * uncertainty Subject RIV: AH - Economic s Impact factor: 1.431, year: 2016 http://library.utia.cas.cz/separaty/2017/E/horvath-0466516.pdf
A Robust Bayesian Approach for Structural Equation Models with Missing Data
Lee, Sik-Yum; Xia, Ye-Mao
2008-01-01
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Banking Crisis Early Warning Model based on a Bayesian Model Averaging Approach
Directory of Open Access Journals (Sweden)
Taha Zaghdoudi
2016-08-01
Full Text Available The succession of banking crises in which most have resulted in huge economic and financial losses, prompted several authors to study their determinants. These authors constructed early warning models to prevent their occurring. It is in this same vein as our study takes its inspiration. In particular, we have developed a warning model of banking crises based on a Bayesian approach. The results of this approach have allowed us to identify the involvement of the decline in bank profitability, deterioration of the competitiveness of the traditional intermediation, banking concentration and higher real interest rates in triggering bank crisis.
Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.
2018-01-01
Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.