A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering
Seldin, Yevgeny
2010-01-01
We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generaliza...
Bayesian Analysis of Multiple Populations in Galactic Globular Clusters
Wagner-Kaiser, Rachel A.; Sarajedini, Ata; von Hippel, Ted; Stenning, David; Piotto, Giampaolo; Milone, Antonino; van Dyk, David A.; Robinson, Elliot; Stein, Nathan
2016-01-01
We use GO 13297 Cycle 21 Hubble Space Telescope (HST) observations and archival GO 10775 Cycle 14 HST ACS Treasury observations of Galactic Globular Clusters to find and characterize multiple stellar populations. Determining how globular clusters are able to create and retain enriched material to produce several generations of stars is key to understanding how these objects formed and how they have affected the structural, kinematic, and chemical evolution of the Milky Way. We employ a sophisticated Bayesian technique with an adaptive MCMC algorithm to simultaneously fit the age, distance, absorption, and metallicity for each cluster. At the same time, we also fit unique helium values to two distinct populations of the cluster and determine the relative proportions of those populations. Our unique numerical approach allows objective and precise analysis of these complicated clusters, providing posterior distribution functions for each parameter of interest. We use these results to gain a better understanding of multiple populations in these clusters and their role in the history of the Milky Way.Support for this work was provided by NASA through grant numbers HST-GO-10775 and HST-GO-13297 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. This material is based upon work supported by the National Aeronautics and Space Administration under Grant NNX11AF34G issued through the Office of Space Science. This project was supported by the National Aeronautics & Space Administration through the University of Central Florida's NASA Florida Space Grant Consortium.
Wagner-Kaiser, R; Sarajedini, A; von Hippel, T; van Dyk, D A; Robinson, E; Stein, N; Jefferys, W H
2016-01-01
We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of ~0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster and also find that the proportion of the first population of stars increases with mass as well. Our results are examined in the context of proposed g...
Bayesian Nonparametric Graph Clustering
Banerjee, Sayantan; Akbani, Rehan; Baladandayuthapani, Veerabhadran
2015-01-01
We present clustering methods for multivariate data exploiting the underlying geometry of the graphical structure between variables. As opposed to standard approaches that assume known graph structures, we first estimate the edge structure of the unknown graph using Bayesian neighborhood selection approaches, wherein we account for the uncertainty of graphical structure learning through model-averaged estimates of the suitable parameters. Subsequently, we develop a nonparametric graph cluster...
Bayesian Agglomerative Clustering with Coalescents
Teh, Yee Whye; Daumé III, Hal; Roy, Daniel
2009-01-01
We introduce a new Bayesian model for hierarchical clustering based on a prior over trees called Kingman's coalescent. We develop novel greedy and sequential Monte Carlo inferences which operate in a bottom-up agglomerative fashion. We show experimentally the superiority of our algorithms over others, and demonstrate our approach in document clustering and phylolinguistics.
A Nonparametric Bayesian Model for Nested Clustering.
Lee, Juhee; Müller, Peter; Zhu, Yitan; Ji, Yuan
2016-01-01
We propose a nonparametric Bayesian model for clustering where clusters of experimental units are determined by a shared pattern of clustering another set of experimental units. The proposed model is motivated by the analysis of protein activation data, where we cluster proteins such that all proteins in one cluster give rise to the same clustering of patients. That is, we define clusters of proteins by the way that patients group with respect to the corresponding protein activations. This is in contrast to (almost) all currently available models that use shared parameters in the sampling model to define clusters. This includes in particular model based clustering, Dirichlet process mixtures, product partition models, and more. We show results for two typical biostatistical inference problems that give rise to clustering. PMID:26519174
Wagner-Kaiser, R.; Stenning, D. C.; Robinson, E.; von Hippel, T.; Sarajedini, A.; van Dyk, D. A.; Stein, N.; Jefferys, W. H.
2016-07-01
We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival Advanced Camera for Surveys Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from ˜0.05 to 0.11 for these three clusters. Model grids with solar α-element abundances ([α/Fe] = 0.0) and enhanced α-elements ([α/Fe] = 0.4) are adopted.
Wagner-Kaiser, R; Robinson, E; von Hippel, T; Sarajedini, A; van Dyk, D A; Stein, N; Jefferys, W H
2016-01-01
We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from $\\sim$0.05 to 0.11 for these three clusters. Model grids with solar $\\alpha$-element abundances ([$\\alpha$/Fe] =0.0) and enhanced $\\alpha$-elements ([$\\alpha$/Fe]=0.4) are adopted.
Wagner-Kaiser, R.; Stenning, D. C.; Robinson, E.; von Hippel, T.; Sarajedini, A.; van Dyk, D. A.; Stein, N.; Jefferys, W. H.
2016-07-01
We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival Advanced Camera for Surveys Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from ∼0.05 to 0.11 for these three clusters. Model grids with solar α-element abundances ([α/Fe] = 0.0) and enhanced α-elements ([α/Fe] = 0.4) are adopted.
Fowler, Anna; Menon, Vilas; Heard, Nicholas A
2013-10-01
Clusters of time series data may change location and memberships over time; in gene expression data, this occurs as groups of genes or samples respond differently to stimuli or experimental conditions at different times. In order to uncover this underlying temporal structure, we consider dynamic clusters with time-dependent parameters which split and merge over time, enabling cluster memberships to change. These interesting time-dependent structures are useful in understanding the development of organisms or complex organs, and could not be identified using traditional clustering methods. In cell cycle data, these time-dependent structure may provide links between genes and stages of the cell cycle, whilst in developmental data sets they may highlight key developmental transitions. PMID:24131050
Bayesian Decision Theoretical Framework for Clustering
Chen, Mo
2011-01-01
In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…
Stenning, D. C.; Wagner-Kaiser, R.; Robinson, E.; van Dyk, D. A.; von Hippel, T.; Sarajedini, A.; Stein, N.
2016-07-01
We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations. Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties—age, metallicity, helium abundance, distance, absorption, and initial mass—are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and also show how model misspecification can potentially be identified. As a proof of concept, we analyze the two stellar populations of globular cluster NGC 5272 using our model and methods. (BASE-9 is available from GitHub: https://github.com/argiopetech/base/releases).
Yuan, Ying; MacKinnon, David P.
2009-01-01
This article proposes Bayesian analysis of mediation effects. Compared to conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian mediation analysis, inference is straightforward and exact, which makes it appealing for studies with small samples. Third, the Bayesian approach is conceptua...
Gelman, Andrew; Stern, Hal S; Dunson, David B; Vehtari, Aki; Rubin, Donald B
2013-01-01
FUNDAMENTALS OF BAYESIAN INFERENCEProbability and InferenceSingle-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian ApproachesHierarchical ModelsFUNDAMENTALS OF BAYESIAN DATA ANALYSISModel Checking Evaluating, Comparing, and Expanding ModelsModeling Accounting for Data Collection Decision AnalysisADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional ApproximationsREGRESSION MODELS Introduction to Regression Models Hierarchical Linear
Yuan, Ying; MacKinnon, David P.
2009-01-01
In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…
Sun, Xun; Lall, Upmanu; Merz, Bruno; Dung, Nguyen Viet
2015-08-01
Especially for extreme precipitation or floods, there is considerable spatial and temporal variability in long term trends or in the response of station time series to large-scale climate indices. Consequently, identifying trends or sensitivity of these extremes to climate parameters can be marked by high uncertainty. When one develops a nonstationary frequency analysis model, a key step is the identification of potential trends or effects of climate indices on the station series. An automatic clustering procedure that effectively pools stations where there are similar responses is desirable to reduce the estimation variance, thus improving the identification of trends or responses, and accounting for spatial dependence. This paper presents a new hierarchical Bayesian approach for exploring homogeneity of response in large area data sets, through a multicomponent mixture model. The approach allows the reduction of uncertainties through both full pooling and partial pooling of stations across automatically chosen subsets of the data. We apply the model to study the trends in annual maximum daily stream flow at 68 gauges over Germany. The effects of changing the number of clusters and the parameters used for clustering are demonstrated. The results show that there are large, mainly upward trends in the gauges of the River Rhine Basin in Western Germany and along the main stream of the Danube River in the south, while there are also some small upward trends at gauges in Central and Northern Germany.
Bayesian exploratory factor analysis
Gabriella Conti; Sylvia Frühwirth-Schnatter; James Heckman; Rémi Piatek
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identifi cation criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study c...
Bayesian Exploratory Factor Analysis
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study co...
Bayesian Exploratory Factor Analysis
Gabriella Conti; Sylvia Fruehwirth-Schnatter; Heckman, James J.; Remi Piatek
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on \\emph{ad hoc} classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo s...
Bayesian exploratory factor analysis
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo st...
Bayesian exploratory factor analysis
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James; Piatek, Rémi
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study co...
R/BHC: fast Bayesian hierarchical clustering for microarray data
Directory of Open Access Journals (Sweden)
Grant Murray
2009-08-01
Full Text Available Abstract Background Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained. Results We present an R/Bioconductor port of a fast novel algorithm for Bayesian agglomerative hierarchical clustering and demonstrate its use in clustering gene expression microarray data. The method performs bottom-up hierarchical clustering, using a Dirichlet Process (infinite mixture to model uncertainty in the data and Bayesian model selection to decide at each step which clusters to merge. Conclusion Biologically plausible results are presented from a well studied data set: expression profiles of A. thaliana subjected to a variety of biotic and abiotic stresses. Our method avoids several limitations of traditional methods, for example how many clusters there should be and how to choose a principled distance metric.
Market Segmentation Using Bayesian Model Based Clustering
Van Hattum, P.
2009-01-01
This dissertation deals with two basic problems in marketing, that are market segmentation, which is the grouping of persons who share common aspects, and market targeting, which is focusing your marketing efforts on one or more attractive market segments. For the grouping of persons who share common aspects a Bayesian model based clustering approach is proposed such that it can be applied to data sets that are specifically used for market segmentation. The cluster algorithm can handle very l...
Bayesian Exploratory Factor Analysis
DEFF Research Database (Denmark)
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.;
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the...... corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates...
Bayesian Independent Component Analysis
DEFF Research Database (Denmark)
Winther, Ole; Petersen, Kaare Brandt
2007-01-01
In this paper we present an empirical Bayesian framework for independent component analysis. The framework provides estimates of the sources, the mixing matrix and the noise parameters, and is flexible with respect to choice of source prior and the number of sources and sensors. Inside the engine...
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Bayesian Benchmark Dose Analysis
Fang, Qijun; Piegorsch, Walter W.; Barnes, Katherine Y.
2014-01-01
An important objective in environmental risk assessment is estimation of minimum exposure levels, called Benchmark Doses (BMDs) that induce a pre-specified Benchmark Response (BMR) in a target population. Established inferential approaches for BMD analysis typically involve one-sided, frequentist confidence limits, leading in practice to what are called Benchmark Dose Lower Limits (BMDLs). Appeal to Bayesian modeling and credible limits for building BMDLs is far less developed, however. Indee...
Bayesian nonparametric data analysis
Müller, Peter; Jara, Alejandro; Hanson, Tim
2015-01-01
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.
Bayesian analysis toolkit - BAT
International Nuclear Information System (INIS)
Statistical treatment of data is an essential part of any data analysis and interpretation. Different statistical methods and approaches can be used, however the implementation of these approaches is complicated and at times inefficient. The Bayesian analysis toolkit (BAT) is a software package developed in C++ framework that facilitates the statistical analysis of the data using Bayesian theorem. The tool evaluates the posterior probability distributions for models and their parameters using Markov Chain Monte Carlo which in turn provide straightforward parameter estimation, limit setting and uncertainty propagation. Additional algorithms, such as simulated annealing, allow extraction of the global mode of the posterior. BAT sets a well-tested environment for flexible model definition and also includes a set of predefined models for standard statistical problems. The package is interfaced to other software packages commonly used in high energy physics, such as ROOT, Minuit, RooStats and CUBA. We present a general overview of BAT and its algorithms. A few physics examples are shown to introduce the spectrum of its applications. In addition, new developments and features are summarized.
Bayesian Nonparametric Clustering for Positive Definite Matrices.
Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2016-05-01
Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms. PMID:27046838
BAT - Bayesian Analysis Toolkit
International Nuclear Information System (INIS)
One of the most vital steps in any data analysis is the statistical analysis and comparison with the prediction of a theoretical model. The many uncertainties associated with the theoretical model and the observed data require a robust statistical analysis tool. The Bayesian Analysis Toolkit (BAT) is a powerful statistical analysis software package based on Bayes' Theorem, developed to evaluate the posterior probability distribution for models and their parameters. It implements Markov Chain Monte Carlo to get the full posterior probability distribution that in turn provides a straightforward parameter estimation, limit setting and uncertainty propagation. Additional algorithms, such as Simulated Annealing, allow to evaluate the global mode of the posterior. BAT is developed in C++ and allows for a flexible definition of models. A set of predefined models covering standard statistical cases are also included in BAT. It has been interfaced to other commonly used software packages such as ROOT, Minuit, RooStats and CUBA. An overview of the software and its algorithms is provided along with several physics examples to cover a range of applications of this statistical tool. Future plans, new features and recent developments are briefly discussed.
Bayesian analysis of volcanic eruptions
Ho, Chih-Hsiang
1990-10-01
The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.
Bayesian Inference of Kinematics and Memberships of Open Cluster
Shao, Z. Y.; Chen, L.; Zhong, J.; Hou, J. L.
2014-07-01
Based on the Bayesian Inference (BI) method, the Multiple-modelling approach is improved to combine coordinative positions, proper motions (PM) and radial velocities (RV), to separate the motion of the open cluster from field stars, as well as to describe the intrinsic kinematic status of the cluster.
Bayesian Analysis of Experimental Data
Directory of Open Access Journals (Sweden)
Lalmohan Bhar
2013-10-01
Full Text Available Analysis of experimental data from Bayesian point of view has been considered. Appropriate methodology has been developed for application into designed experiments. Normal-Gamma distribution has been considered for prior distribution. Developed methodology has been applied to real experimental data taken from long term fertilizer experiments.
Bayesian analysis of rare events
Straub, Daniel; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.
ANALYSIS OF BAYESIAN CLASSIFIER ACCURACY
Directory of Open Access Journals (Sweden)
Felipe Schneider Costa
2013-01-01
Full Text Available The naÃ¯ve Bayes classifier is considered one of the most effective classification algorithms today, competing with more modern and sophisticated classifiers. Despite being based on unrealistic (naÃ¯ve assumption that all variables are independent, given the output class, the classifier provides proper results. However, depending on the scenario utilized (network structure, number of samples or training cases, number of variables, the network may not provide appropriate results. This study uses a process variable selection, using the chi-squared test to verify the existence of dependence between variables in the data model in order to identify the reasons which prevent a Bayesian network to provide good performance. A detailed analysis of the data is also proposed, unlike other existing work, as well as adjustments in case of limit values between two adjacent classes. Furthermore, variable weights are used in the calculation of a posteriori probabilities, calculated with mutual information function. Tests were applied in both a naÃ¯ve Bayesian network and a hierarchical Bayesian network. After testing, a significant reduction in error rate has been observed. The naÃ¯ve Bayesian network presented a drop in error rates from twenty five percent to five percent, considering the initial results of the classification process. In the hierarchical network, there was not only a drop in fifteen percent error rate, but also the final result came to zero.
International Nuclear Information System (INIS)
Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K-mean method' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods
Everitt, Brian S; Leese, Morven; Stahl, Daniel
2011-01-01
Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons
Bayesian Model Averaging for Propensity Score Analysis
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Bayesian Group Factor Analysis
Virtanen, Seppo; Klami, Arto; Khan, Suleiman A; Kaski, Samuel
2011-01-01
We introduce a factor analysis model that summarizes the dependencies between observed variable groups, instead of dependencies between individual variables as standard factor analysis does. A group may correspond to one view of the same set of objects, one of many data sets tied by co-occurrence, or a set of alternative variables collected from statistics tables to measure one property of interest. We show that by assuming group-wise sparse factors, active in a subset of the sets, the variat...
DEFF Research Database (Denmark)
Dashab, Golam Reza; Kadri, Naveen Kumar; Mahdi Shariati, Mohammad;
2012-01-01
) Mixed model analysis (MMA), 2) Random haplotype model (RHM), 3) Genealogy-based mixed model (GENMIX), and 4) Bayesian variable selection (BVS). The data consisted of phenotypes of 2000 animals from 20 sire families and were genotyped with 9990 SNPs on five chromosomes. Results: Out of the eight...
Advances in Bayesian Model Based Clustering Using Particle Learning
Energy Technology Data Exchange (ETDEWEB)
Merl, D M
2009-11-19
Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original
Bayesian networks with applications in reliability analysis
Langseth, Helge
2002-01-01
A common goal of the papers in this thesis is to propose, formalize and exemplify the use of Bayesian networks as a modelling tool in reliability analysis. The papers span work in which Bayesian networks are merely used as a modelling tool (Paper I), work where models are specially designed to utilize the inference algorithms of Bayesian networks (Paper II and Paper III), and work where the focus has been on extending the applicability of Bayesian networks to very large domains (Paper IV and ...
Bayesian Statistics for Biological Data: Pedigree Analysis
Stanfield, William D.; Carlton, Matthew A.
2004-01-01
The use of Bayes' formula is applied to the biological problem of pedigree analysis to show that the Bayes' formula and non-Bayesian or "classical" methods of probability calculation give different answers. First year college students of biology can be introduced to the Bayesian statistics.
Bayesian analysis of exoplanet and binary orbits
Schulze-Hartung, Tim; Henning, Thomas
2012-01-01
We introduce BASE (Bayesian astrometric and spectroscopic exoplanet detection and characterisation tool), a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The capabilities of BASE are demonstrated using all publicly available data of the binary Mizar A.
Bayesian inference of mass segregation of open clusters
Shao, Zhengyi; Chen, Li; Lin, Chien-Cheng; Zhong, Jing; Hou, Jinliang
2015-08-01
Based on the Bayesian inference (BI) method, the mixture-modeling approach is improved to combine all kinematic data, including the coordinative position, proper motion (PM) and radial velocity (RV), to separate the motion of the cluster from field stars in its area, as well as to describe the intrinsic kinematic status. Meanwhile, the membership probabilities of individual stars are determined as by product results. This method has been testified by simulation of toy models and it was found that the joint usage of multiple kinematic data can significantly reduce the missing rate of membership determination, say from ~15% for single data type to 1% for using all position, proper motion and radial velocity data.By combining kinematic data from multiple sources of photometric and redshift surveys, such as WIYN and APOGEE, M67 and NGC188 are revisited. Mass segregation is identified clearly for both of these two old open clusters, either in position or in PM spaces, since the Bayesian evidence (BE) of the model, which includes the segregation parameters, is much larger than that without it. The ongoing work is applying this method to the LAMOST released data which contains a large amount of RVs cover ~200 nearby open clusters. If the coming GAIA data can be used, the accuracy of tangential velocity will be largely improved and the intrinsic kinematics of open clusters can be well investigated, though they are usually less than 1 km/s.
Detecting Galaxy Clusters in the DLS and CARS: a Bayesian Cluster Finder
Ascaso, Begoña; Benítez, Narciso
2010-01-01
The detection of galaxy clusters in present and future surveys enables measuring mass-to-light ratios, clustering properties or galaxy cluster abundances and therefore, constraining cosmological parameters. We present a new technique for detecting galaxy clusters, which is based on the Matched Filter Algorithm from a Bayesian point of view. The method is able to determine the position, redshift and richness of the cluster through the maximization of a filter depending on galaxy luminosity, density and photometric redshift combined with a galaxy cluster prior. We tested the algorithm through realistic mock galaxy catalogs, revealing that the detections are 100% complete and 80% pure for clusters up to z 25 (Abell Richness > 0). We applied the algorithm to the CFHTLS Archive Research Survey (CARS) data, recovering similar detections as previously published using the same data plus additional clusters that are very probably real. We also applied this algorithm to the Deep Lens Survey (DLS), obtaining the first ...
An agglomerative hierarchical approach to visualization in Bayesian clustering problems.
Dawson, K J; Belkhir, K
2009-07-01
Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals--the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. As the number of possible partitions grows very rapidly with the sample size, we cannot visualize this probability distribution in its entirety, unless the sample is very small. As a solution to this visualization problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package PartitionView. The exact linkage algorithm takes the posterior co-assignment probabilities as input and yields as output a rooted binary tree, or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306
Low-Complexity Bayesian Estimation of Cluster-Sparse Channels
Ballal, Tarig
2015-09-18
This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.
Bayesian Analysis of Multivariate Probit Models
Siddhartha Chib; Edward Greenberg
1996-01-01
This paper provides a unified simulation-based Bayesian and non-Bayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods, and maximum likelihood estimates are obtained by a Markov chain Monte Carlo version of the E-M algorithm. Computation of Bayes factors from the simulation output is also considered. The methods are applied to a bivariate data set, to a 534-subject, four-year longitudinal dat...
Subjective Bayesian Analysis: Principles and Practice
Goldstein, Michael
2006-01-01
We address the position of subjectivism within Bayesian statistics. We argue, first, that the subjectivist Bayes approach is the only feasible method for tackling many important practical problems. Second, we describe the essential role of the subjectivist approach in scientific analysis. Third, we consider possible modifications to the Bayesian approach from a subjectivist viewpoint. Finally, we address the issue of pragmatism in implementing the subjectivist approach.
Clustering and Bayesian network for image of faces classification
Jayech, Khlifia
2012-01-01
In a content based image classification system, target images are sorted by feature similarities with respect to the query (CBIR). In this paper, we propose to use new approach combining distance tangent, k-means algorithm and Bayesian network for image classification. First, we use the technique of tangent distance to calculate several tangent spaces representing the same image. The objective is to reduce the error in the classification phase. Second, we cut the image in a whole of blocks. For each block, we compute a vector of descriptors. Then, we use K-means to cluster the low-level features including color and texture information to build a vector of labels for each image. Finally, we apply five variants of Bayesian networks classifiers (Na\\"ive Bayes, Global Tree Augmented Na\\"ive Bayes (GTAN), Global Forest Augmented Na\\"ive Bayes (GFAN), Tree Augmented Na\\"ive Bayes for each class (TAN), and Forest Augmented Na\\"ive Bayes for each class (FAN) to classify the image of faces using the vector of labels. ...
Bayesian analysis of contingency tables
Gómez Villegas, Miguel A.; González Pérez, Beatriz
2005-01-01
The display of the data by means of contingency tables is used in different approaches to statistical inference, for example, to broach the test of homogeneity of independent multinomial distributions. We develop a Bayesian procedure to test simple null hypotheses versus bilateral alternatives in contingency tables. Given independent samples of two binomial distributions and taking a mixed prior distribution, we calculate the posterior probability that the proportion of successes in the first...
On Bayesian System Reliability Analysis
International Nuclear Information System (INIS)
The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs
Feroz, F.; Hobson, M. P.; Zwart, J T L; Saunders, R. D. E.; Grainge, K. J. B.
2008-01-01
We present a Bayesian approach to modelling galaxy clusters using multi-frequency pointed observations from telescopes that exploit the Sunyaev--Zel'dovich effect. We use the recently developed MultiNest technique (Feroz, Hobson & Bridges, 2008) to explore the high-dimensional parameter spaces and also to calculate the Bayesian evidence. This permits robust parameter estimation as well as model comparison. Tests on simulated Arcminute Microkelvin Imager observations of a cluster, in the prese...
Bayesian analysis of cosmic structures
Kitaura, Francisco-Shu
2011-01-01
We revise the Bayesian inference steps required to analyse the cosmological large-scale structure. Here we make special emphasis in the complications which arise due to the non-Gaussian character of the galaxy and matter distribution. In particular we investigate the advantages and limitations of the Poisson-lognormal model and discuss how to extend this work. With the lognormal prior using the Hamiltonian sampling technique and on scales of about 4 h^{-1} Mpc we find that the over-dense regions are excellent reconstructed, however, under-dense regions (void statistics) are quantitatively poorly recovered. Contrary to the maximum a posteriori (MAP) solution which was shown to over-estimate the density in the under-dense regions we obtain lower densities than in N-body simulations. This is due to the fact that the MAP solution is conservative whereas the full posterior yields samples which are consistent with the prior statistics. The lognormal prior is not able to capture the full non-linear regime at scales ...
BEAST: Bayesian evolutionary analysis by sampling trees
Drummond Alexei J; Rambaut Andrew
2007-01-01
Abstract Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based m...
BEAST: Bayesian evolutionary analysis by sampling trees
Drummond, Alexei J.; Rambaut, Andrew
2007-01-01
Background: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models su...
A Gentle Introduction to Bayesian Analysis : Applications to Developmental Research
Van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A G
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, t
A SAS Interface for Bayesian Analysis with WinBUGS
Zhang, Zhiyong; McArdle, John J.; Wang, Lijuan; Hamagami, Fumiaki
2008-01-01
Bayesian methods are becoming very popular despite some practical difficulties in implementation. To assist in the practical application of Bayesian methods, we show how to implement Bayesian analysis with WinBUGS as part of a standard set of SAS routines. This implementation procedure is first illustrated by fitting a multiple regression model…
Bayesian analysis of matrix data with rstiefel
Hoff, Peter D.
2013-01-01
We illustrate the use of the R-package "rstiefel" for matrix-variate data analysis in the context of two examples. The first example considers estimation of a reduced-rank mean matrix in the presence of normally distributed noise. The second example considers the modeling of a social network of friendships among teenagers. Bayesian estimation for these models requires the ability to simulate from the matrix-variate von Mises-Fisher distributions and the matrix-variate Bingham distributions on...
Cluster analysis for applications
Anderberg, Michael R
1973-01-01
Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o
Book review: Bayesian analysis for population ecology
Link, William A.
2011-01-01
Brian Dennis described the field of ecology as “fertile, uncolonized ground for Bayesian ideas.” He continued: “The Bayesian propagule has arrived at the shore. Ecologists need to think long and hard about the consequences of a Bayesian ecology. The Bayesian outlook is a successful competitor, but is it a weed? I think so.” (Dennis 2004)
Bayesian Analysis of Individual Level Personality Dynamics
Cripps, Edward; Wood, Robert E.; Beckmann, Nadin; Lau, John; Beckmann, Jens F.; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415
Bayesian Analysis of Individual Level Personality Dynamics.
Cripps, Edward; Wood, Robert E; Beckmann, Nadin; Lau, John; Beckmann, Jens F; Cripps, Sally Ann
2016-01-01
A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415
Directory of Open Access Journals (Sweden)
Guillaume Marrelec
Full Text Available The use of mutual information as a similarity measure in agglomerative hierarchical clustering (AHC raises an important issue: some correction needs to be applied for the dimensionality of variables. In this work, we formulate the decision of merging dependent multivariate normal variables in an AHC procedure as a Bayesian model comparison. We found that the Bayesian formulation naturally shrinks the empirical covariance matrix towards a matrix set a priori (e.g., the identity, provides an automated stopping rule, and corrects for dimensionality using a term that scales up the measure as a function of the dimensionality of the variables. Also, the resulting log Bayes factor is asymptotically proportional to the plug-in estimate of mutual information, with an additive correction for dimensionality in agreement with the Bayesian information criterion. We investigated the behavior of these Bayesian alternatives (in exact and asymptotic forms to mutual information on simulated and real data. An encouraging result was first derived on simulations: the hierarchical clustering based on the log Bayes factor outperformed off-the-shelf clustering techniques as well as raw and normalized mutual information in terms of classification accuracy. On a toy example, we found that the Bayesian approaches led to results that were similar to those of mutual information clustering techniques, with the advantage of an automated thresholding. On real functional magnetic resonance imaging (fMRI datasets measuring brain activity, it identified clusters consistent with the established outcome of standard procedures. On this application, normalized mutual information had a highly atypical behavior, in the sense that it systematically favored very large clusters. These initial experiments suggest that the proposed Bayesian alternatives to mutual information are a useful new tool for hierarchical clustering.
Bayesian analysis for extreme climatic events: A review
Chu, Pao-Shin; Zhao, Xin
2011-11-01
This article reviews Bayesian analysis methods applied to extreme climatic data. We particularly focus on applications to three different problems related to extreme climatic events including detection of abrupt regime shifts, clustering tropical cyclone tracks, and statistical forecasting for seasonal tropical cyclone activity. For identifying potential change points in an extreme event count series, a hierarchical Bayesian framework involving three layers - data, parameter, and hypothesis - is formulated to demonstrate the posterior probability of the shifts throughout the time. For the data layer, a Poisson process with a gamma distributed rate is presumed. For the hypothesis layer, multiple candidate hypotheses with different change-points are considered. To calculate the posterior probability for each hypothesis and its associated parameters we developed an exact analytical formula, a Markov Chain Monte Carlo (MCMC) algorithm, and a more sophisticated reversible jump Markov Chain Monte Carlo (RJMCMC) algorithm. The algorithms are applied to several rare event series: the annual tropical cyclone or typhoon counts over the central, eastern, and western North Pacific; the annual extremely heavy rainfall event counts at Manoa, Hawaii; and the annual heat wave frequency in France. Using an Expectation-Maximization (EM) algorithm, a Bayesian clustering method built on a mixture Gaussian model is applied to objectively classify historical, spaghetti-like tropical cyclone tracks (1945-2007) over the western North Pacific and the South China Sea into eight distinct track types. A regression based approach to forecasting seasonal tropical cyclone frequency in a region is developed. Specifically, by adopting large-scale environmental conditions prior to the tropical cyclone season, a Poisson regression model is built for predicting seasonal tropical cyclone counts, and a probit regression model is alternatively developed toward a binary classification problem. With a non
Bayesian Analysis of Type Ia Supernova Data
Institute of Scientific and Technical Information of China (English)
王晓峰; 周旭; 李宗伟; 陈黎
2003-01-01
Recently, the distances to type Ia supernova (SN Ia) at z ～ 0.5 have been measured with the motivation of estimating cosmological parameters. However, different sleuthing techniques tend to give inconsistent measurements for SN Ia distances (～0.3 mag), which significantly affects the determination of cosmological parameters.A Bayesian "hyper-parameter" procedure is used to analyse jointly the current SN Ia data, which considers the relative weights of different datasets. For a flat Universe, the combining analysis yields ΩM = 0.20 ± 0.07.
Current trends in Bayesian methodology with applications
Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia
2015-01-01
Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on
Doing bayesian data analysis a tutorial with R and BUGS
Kruschke, John K
2011-01-01
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all
ASteCA - Automated Stellar Cluster Analysis
Perren, Gabriel I; Piatti, Andrés E
2014-01-01
We present ASteCA (Automated Stellar Cluster Analysis), a suit of tools designed to fully automatize the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster's center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster's metallicity, age, extinction and distance values along with its unce...
The Application of Bayesian Analysis to Issues in Developmental Research
Walker, Lawrence J.; Gustafson, Paul; Frimer, Jeremy A.
2007-01-01
This article reviews the concepts and methods of Bayesian statistical analysis, which can offer innovative and powerful solutions to some challenging analytical problems that characterize developmental research. In this article, we demonstrate the utility of Bayesian analysis, explain its unique adeptness in some circumstances, address some…
Pitman Yor Diffusion Trees for Bayesian Hierarchical Clustering.
Knowles, David A; Ghahramani, Zoubin
2015-02-01
In this paper we introduce the Pitman Yor Diffusion Tree (PYDT), a Bayesian non-parametric prior over tree structures which generalises the Dirichlet Diffusion Tree [30] and removes the restriction to binary branching structure. The generative process is described and shown to result in an exchangeable distribution over data points. We prove some theoretical properties of the model including showing its construction as the continuum limit of a nested Chinese restaurant process model. We then present two alternative MCMC samplers which allow us to model uncertainty over tree structures, and a computationally efficient greedy Bayesian EM search algorithm. Both algorithms use message passing on the tree structure. The utility of the model and algorithms is demonstrated on synthetic and real world data, both continuous and binary. PMID:26353241
BAT-The Bayesian Analysis Toolkit
International Nuclear Information System (INIS)
The main goals of data analysis are to infer the free parameters of models from data, to draw conclusions on the models' validity, and to compare their predictions allowing to select the most appropriate model. The Bayesian Analysis Toolkit, BAT, is a tool developed to evaluate the posterior probability distribution for models and their parameters. It is centered around Bayes' Theorem and is realized with the use of Markov Chain Monte Carlo giving access to the full posterior probability distribution. This enables straightforward parameter estimation, limit setting and uncertainty propagation. Additional algorithms, such as Simulated Annealing, allow to evaluate the global mode of the posterior. BAT is implemented in C++ and allows for a flexible definition of models. It is interfaced to software packages commonly used in high-energy physics: ROOT, Minuit, RooStats and CUBA. A set of predefined models exists to cover standard statistical problems.
Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.
2011-01-01
Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.
Confirmation via Analogue Simulation: A Bayesian Analysis
Dardashti, Radin; Thebault, Karim P Y; Winsberg, Eric
2016-01-01
Analogue simulation is a novel mode of scientific inference found increasingly within modern physics, and yet all but neglected in the philosophical literature. Experiments conducted upon a table-top 'source system' are taken to provide insight into features of an inaccessible 'target system', based upon a syntactic isomorphism between the relevant modelling frameworks. An important example is the use of acoustic 'dumb hole' systems to simulate gravitational black holes. In a recent paper it was argued that there exists circumstances in which confirmation via analogue simulation can obtain; in particular when the robustness of the isomorphism is established via universality arguments. The current paper supports these claims via an analysis in terms of Bayesian confirmation theory.
BEAST: Bayesian evolutionary analysis by sampling trees
Directory of Open Access Journals (Sweden)
Drummond Alexei J
2007-11-01
Full Text Available Abstract Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. Results BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. Conclusion BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.
Bayesian data analysis in population ecology: motivations, methods, and benefits
Dorazio, Robert
2016-01-01
During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.
Ockham's razor and Bayesian analysis. [statistical theory for systems evaluation
Jefferys, William H.; Berger, James O.
1992-01-01
'Ockham's razor', the ad hoc principle enjoining the greatest possible simplicity in theoretical explanations, is presently shown to be justifiable as a consequence of Bayesian inference; Bayesian analysis can, moreover, clarify the nature of the 'simplest' hypothesis consistent with the given data. By choosing the prior probabilities of hypotheses, it becomes possible to quantify the scientific judgment that simpler hypotheses are more likely to be correct. Bayesian analysis also shows that a hypothesis with fewer adjustable parameters intrinsically possesses an enhanced posterior probability, due to the clarity of its predictions.
Bayesian analysis for EMP damaged function based on Weibull distribution
International Nuclear Information System (INIS)
Weibull distribution is one of the most commonly used statistical distribution in EMP vulnerability analysis. In the paper, the EMP damage function based on Weibull distribution of solid state relays was solved by bayesian computation using gibbs sampling algorithm. (authors)
Euler, Christoph
2015-01-01
Using Monte Carlo simulations of globular clusters we developed a method separating metallicity effects from age effects on observed integrated ugriz colors. We demonstrate that these colors do not evolve with time significantly after an age of 4 Gyr and use Bayesian statistics to calculate a probability distribution function of the metallicity. We tested the method using the M31 globular cluster system and then applied to explain the observed color bimodality in globular cluster sets and tidal effects on it. We show that the color bimodality is an effect of a nonlinearity in the color-metallicity relation caused by stellar dynamics on the Giant Branch, that colors including only the UV show a weaker bimodality than those subtracting from visual bands and that cluster sets with a distinct bimodality are in principle older than those with only a weak bimodal distribution. Furthermore a bimodal color distribution of coeval clusters implies a bimodal metallicity distribution, but a unimodal color distribution do...
Analysis of KATRIN data using Bayesian inference
Riis, Anna Sejersen; Weinheimer, Christian
2011-01-01
The KATRIN (KArlsruhe TRItium Neutrino) experiment will be analyzing the tritium beta-spectrum to determine the mass of the neutrino with a sensitivity of 0.2 eV (90% C.L.). This approach to a measurement of the absolute value of the neutrino mass relies only on the principle of energy conservation and can in some sense be called model-independent as compared to cosmology and neutrino-less double beta decay. However by model independent we only mean in case of the minimal extension of the standard model. One should therefore also analyse the data for non-standard couplings to e.g. righthanded or sterile neutrinos. As an alternative to the frequentist minimization methods used in the analysis of the earlier experiments in Mainz and Troitsk we have been investigating Markov Chain Monte Carlo (MCMC) methods which are very well suited for probing multi-parameter spaces. We found that implementing the KATRIN chi squared function in the COSMOMC package - an MCMC code using Bayesian parameter inference - solved the ...
Objective Bayesian Analysis of Skew- t Distributions
BRANCO, MARCIA D'ELIA
2012-02-27
We study the Jeffreys prior and its properties for the shape parameter of univariate skew-t distributions with linear and nonlinear Student\\'s t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student\\'s t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location-scale models under scale mixtures of skew-normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew-t distributions. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
Bayesian Analysis of Multiple Populations I: Statistical and Computational Methods
Stenning, D C; Robinson, E; van Dyk, D A; von Hippel, T; Sarajedini, A; Stein, N
2016-01-01
We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations (vanDyk et al. 2009, Stein et al. 2013). Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties---age, metallicity, helium abundance, distance, absorption, and initial mass---are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and al...
Bayesian analysis of Markov point processes
DEFF Research Database (Denmark)
Berthelsen, Kasper Klitgaard; Møller, Jesper
2006-01-01
Recently Møller, Pettitt, Berthelsen and Reeves introduced a new MCMC methodology for drawing samples from a posterior distribution when the likelihood function is only specified up to a normalising constant. We illustrate the method in the setting of Bayesian inference for Markov point processes...
Medical decision making tools: Bayesian analysis and ROC analysis
International Nuclear Information System (INIS)
During the diagnostic process of the various oral and maxillofacial lesions, we should consider the following: 'When should we order diagnostic tests? What tests should be ordered? How should we interpret the results clinically? And how should we use this frequently imperfect information to make optimal medical decision?' For the clinicians to make proper judgement, several decision making tools are suggested. This article discusses the concept of the diagnostic accuracy (sensitivity and specificity values) with several decision making tools such as decision matrix, ROC analysis and Bayesian analysis. The article also explain the introductory concept of ORAD program
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits
Seldin, Yevgeny; Shawe-Taylor, John; Peters, Jan; Auer, Peter
2011-01-01
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many ...
[Cluster analysis in biomedical researches].
Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D
2013-01-01
Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781
MATHEMATICAL RISK ANALYSIS: VIA NICHOLAS RISK MODEL AND BAYESIAN ANALYSIS
Directory of Open Access Journals (Sweden)
Anass BAYAGA
2010-07-01
Full Text Available The objective of this second part of a two-phased study was to explorethe predictive power of quantitative risk analysis (QRA method andprocess within Higher Education Institution (HEI. The method and process investigated the use impact analysis via Nicholas risk model and Bayesian analysis, with a sample of hundred (100 risk analysts in a historically black South African University in the greater Eastern Cape Province.The first findings supported and confirmed previous literature (KingIII report, 2009: Nicholas and Steyn, 2008: Stoney, 2007: COSA, 2004 that there was a direct relationship between risk factor, its likelihood and impact, certiris paribus. The second finding in relation to either controlling the likelihood or the impact of occurrence of risk (Nicholas risk model was that to have a brighter risk reward, it was important to control the likelihood ofoccurrence of risks as compared with its impact so to have a direct effect on entire University. On the Bayesian analysis, thus third finding, the impact of risk should be predicted along three aspects. These aspects included the human impact (decisions made, the property impact (students and infrastructural based and the business impact. Lastly, the study revealed that although in most business cases, where as business cycles considerably vary dependingon the industry and or the institution, this study revealed that, most impacts in HEI (University was within the period of one academic.The recommendation was that application of quantitative risk analysisshould be related to current legislative framework that affects HEI.
Baltic sea algae analysis using Bayesian spatial statistics methods
Directory of Open Access Journals (Sweden)
Eglė Baltmiškytė
2013-03-01
Full Text Available Spatial statistics is one of the fields in statistics dealing with spatialy spread data analysis. Recently, Bayes methods are often applied for data statistical analysis. A spatial data model for predicting algae quantity in the Baltic Sea is made and described in this article. Black Carrageen is a dependent variable and depth, sand, pebble, boulders are independent variables in the described model. Two models with different covariation functions (Gaussian and exponential are built to estimate the best model fitting for algae quantity prediction. Unknown model parameters are estimated and Bayesian kriging prediction posterior distribution is computed in OpenBUGS modeling environment by using Bayesian spatial statistics methods.
Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm
Directory of Open Access Journals (Sweden)
Raj Kumar
2012-12-01
Full Text Available In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi Newton-Raphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC simulation method in OpenBUGS(established software for Bayesian analysis using Markov Chain Monte Carlo methods. The R functions are developed to study the statistical properties, model validation and comparison tools of the model and the output analysis of MCMC samples generated from OpenBUGS. Details of applying MCMC to parameter estimation for the Gumbel model are elaborated and a real software reliability data set is considered to illustrate the methods of inference discussed in this paper.
Nested sampling applied in Bayesian room-acoustics decay analysis.
Jasa, Tomislav; Xiang, Ning
2012-11-01
Room-acoustic energy decays often exhibit single-rate or multiple-rate characteristics in a wide variety of rooms/halls. Both the energy decay order and decay parameter estimation are of practical significance in architectural acoustics applications, representing two different levels of Bayesian probabilistic inference. This paper discusses a model-based sound energy decay analysis within a Bayesian framework utilizing the nested sampling algorithm. The nested sampling algorithm is specifically developed to evaluate the Bayesian evidence required for determining the energy decay order with decay parameter estimates as a secondary result. Taking the energy decay analysis in architectural acoustics as an example, this paper demonstrates that two different levels of inference, decay model-selection and decay parameter estimation, can be cohesively accomplished by the nested sampling algorithm. PMID:23145609
Clustering with a Reject Option: Interactive Clustering as Bayesian Prior Elicitation
Srivastava, Akash; Zou, James; Adams, Ryan P.; Sutton, Charles
2016-01-01
A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy for an analyst to know a good clustering when they see one. We present a new approach to interactive clustering for data exploration called TINDER, based on a particularly simple feedback mechanism, in which an analyst can reject a given clusteri...
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
Phycas: software for Bayesian phylogenetic analysis.
Lewis, Paul O; Holder, Mark T; Swofford, David L
2015-05-01
Phycas is open source, freely available Bayesian phylogenetics software written primarily in C++ but with a Python interface. Phycas specializes in Bayesian model selection for nucleotide sequence data, particularly the estimation of marginal likelihoods, central to computing Bayes Factors. Marginal likelihoods can be estimated using newer methods (Thermodynamic Integration and Generalized Steppingstone) that are more accurate than the widely used Harmonic Mean estimator. In addition, Phycas supports two posterior predictive approaches to model selection: Gelfand-Ghosh and Conditional Predictive Ordinates. The General Time Reversible family of substitution models, as well as a codon model, are available, and data can be partitioned with all parameters unlinked except tree topology and edge lengths. Phycas provides for analyses in which the prior on tree topologies allows polytomous trees as well as fully resolved trees, and provides for several choices for edge length priors, including a hierarchical model as well as the recently described compound Dirichlet prior, which helps avoid overly informative induced priors on tree length. PMID:25577605
Research & development and growth: A Bayesian model averaging analysis
Czech Academy of Sciences Publication Activity Database
Horváth, Roman
2011-01-01
Roč. 28, č. 6 (2011), s. 2669-2673. ISSN 0264-9993. [Society for Non-linear Dynamics and Econometrics Annual Conferencen. Washington DC, 16.03.2011-18.03.2011] R&D Projects: GA ČR GA402/09/0965 Institutional research plan: CEZ:AV0Z10750506 Keywords : Research and development * Growth * Bayesian model averaging Subject RIV: AH - Economics Impact factor: 0.701, year: 2011 http://library.utia.cas.cz/separaty/2011/E/horvath-research & development and growth a bayesian model averaging analysis.pdf
On Bayesian analysis of on-off measurements
Nosek, Dalibor
2016-01-01
We propose an analytical solution to the on-off problem within the framework of Bayesian statistics. Both the statistical significance for the discovery of new phenomena and credible intervals on model parameters are presented in a consistent way. We use a large enough family of prior distributions of relevant parameters. The proposed analysis is designed to provide Bayesian solutions that can be used for any number of observed on-off events, including zero. The procedure is checked using Monte Carlo simulations. The usefulness of the method is demonstrated on examples from gamma-ray astronomy.
Integrating cluster formation and cluster evaluation in interactive visual analysis
Turkay, C.; Parulek, J.; Reuter, N.; Hauser, H.
2011-01-01
Cluster analysis is a popular method for data investigation where data items are structured into groups called clusters. This analysis involves two sequential steps, namely cluster formation and cluster evaluation. In this paper, we propose the tight integration of cluster formation and cluster evaluation in interactive visual analysis in order to overcome the challenges that relate to the black-box nature of clustering algorithms. We present our conceptual framework in the form of an interac...
Bayesian analysis of multimodal data and brain imaging
Assadi, Amir H.; Eghbalnia, Hamid; Backonja, Miroslav; Wakai, Ronald T.; Rutecki, Paul; Haughton, Victor
2000-06-01
It is often the case that information about a process can be obtained using a variety of methods. Each method is employed because of specific advantages over the competing alternatives. An example in medical neuro-imaging is the choice between fMRI and MEG modes where fMRI can provide high spatial resolution in comparison to the superior temporal resolution of MEG. The combination of data from varying modes provides the opportunity to infer results that may not be possible by means of any one mode alone. We discuss a Bayesian and learning theoretic framework for enhanced feature extraction that is particularly suited to multi-modal investigations of massive data sets from multiple experiments. In the following Bayesian approach, acquired knowledge (information) regarding various aspects of the process are all directly incorporated into the formulation. This information can come from a variety of sources. In our case, it represents statistical information obtained from other modes of data collection. The information is used to train a learning machine to estimate a probability distribution, which is used in turn by a second machine as a prior, in order to produce a more refined estimation of the distribution of events. The computational demand of the algorithm is handled by proposing a distributed parallel implementation on a cluster of workstations that can be scaled to address real-time needs if required. We provide a simulation of these methods on a set of synthetically generated MEG and EEG data. We show how spatial and temporal resolutions improve by using prior distributions. The method on fMRI signals permits one to construct the probability distribution of the non-linear hemodynamics of the human brain (real data). These computational results are in agreement with biologically based measurements of other labs, as reported to us by researchers from UK. We also provide preliminary analysis involving multi-electrode cortical recording that accompanies
Bayesian clustering of fuzzy feature vectors using a quasi-likelihood approach.
Marttinen, Pekka; Tang, Jing; De Baets, Bernard; Dawyndt, Peter; Corander, Jukka
2009-01-01
Bayesian model-based classifiers, both unsupervised and supervised, have been studied extensively and their value and versatility have been demonstrated on a wide spectrum of applications within science and engineering. A majority of the classifiers are built on the assumption of intrinsic discreteness of the considered data features or on the discretization of them prior to the modeling. On the other hand, Gaussian mixture classifiers have also been utilized to a large extent for continuous features in the Bayesian framework. Often the primary reason for discretization in the classification context is the simplification of the analytical and numerical properties of the models. However, the discretization can be problematic due to its \\textit{ad hoc} nature and the decreased statistical power to detect the correct classes in the resulting procedure. We introduce an unsupervised classification approach for fuzzy feature vectors that utilizes a discrete model structure while preserving the continuous characteristics of data. This is achieved by replacing the ordinary likelihood by a binomial quasi-likelihood to yield an analytical expression for the posterior probability of a given clustering solution. The resulting model can be justified from an information-theoretic perspective. Our method is shown to yield highly accurate clusterings for challenging synthetic and empirical data sets. PMID:19029547
Clustering analysis using Swarm Intelligence
Farmani, Mohammad Reza
2016-01-01
This thesis is concerned with the application of the swarm intelligence methods in clustering analysis of datasets. The main objectives of the thesis are ∙ Take the advantage of a novel evolutionary algorithm, called artificial bee colony, to improve the capability of K-means in finding global optimum clusters in nonlinear partitional clustering problems. ∙ Consider partitional clustering as an optimization problem and an improved antbased algorithm, named Opposition-Based A...
Zhang, Linlin; Guindani, Michele; Versace, Francesco; Vannucci, Marina
2014-07-15
In this paper we present a novel wavelet-based Bayesian nonparametric regression model for the analysis of functional magnetic resonance imaging (fMRI) data. Our goal is to provide a joint analytical framework that allows to detect regions of the brain which exhibit neuronal activity in response to a stimulus and, simultaneously, infer the association, or clustering, of spatially remote voxels that exhibit fMRI time series with similar characteristics. We start by modeling the data with a hemodynamic response function (HRF) with a voxel-dependent shape parameter. We detect regions of the brain activated in response to a given stimulus by using mixture priors with a spike at zero on the coefficients of the regression model. We account for the complex spatial correlation structure of the brain by using a Markov random field (MRF) prior on the parameters guiding the selection of the activated voxels, therefore capturing correlation among nearby voxels. In order to infer association of the voxel time courses, we assume correlated errors, in particular long memory, and exploit the whitening properties of discrete wavelet transforms. Furthermore, we achieve clustering of the voxels by imposing a Dirichlet process (DP) prior on the parameters of the long memory process. For inference, we use Markov Chain Monte Carlo (MCMC) sampling techniques that combine Metropolis-Hastings schemes employed in Bayesian variable selection with sampling algorithms for nonparametric DP models. We explore the performance of the proposed model on simulated data, with both block- and event-related design, and on real fMRI data. PMID:24650600
A Bayesian Predictive Discriminant Analysis with Screened Data
Directory of Open Access Journals (Sweden)
Hea-Jung Kim
2015-09-01
Full Text Available In the application of discriminant analysis, a situation sometimes arises where individual measurements are screened by a multidimensional screening scheme. For this situation, a discriminant analysis with screened populations is considered from a Bayesian viewpoint, and an optimal predictive rule for the analysis is proposed. In order to establish a flexible method to incorporate the prior information of the screening mechanism, we propose a hierarchical screened scale mixture of normal (HSSMN model, which makes provision for flexible modeling of the screened observations. An Markov chain Monte Carlo (MCMC method using the Gibbs sampler and the Metropolis–Hastings algorithm within the Gibbs sampler is used to perform a Bayesian inference on the HSSMN models and to approximate the optimal predictive rule. A simulation study is given to demonstrate the performance of the proposed predictive discrimination procedure.
Ildikó Ungvári; Gábor Hullám; Péter Antal; Petra Sz Kiszel; András Gézsi; Éva Hadadi; Viktor Virág; Gergely Hajós; András Millinghoffer; Adrienne Nagy; András Kiss; Semsei, Ágnes F.; Gergely Temesi; Béla Melegh; Péter Kisfali
2012-01-01
Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called bayesian network based bayesian multilevel analysis of relevance (BN-BMLA). Th...
Bayesian Investigation of Isochrone Consistency Using the Old Open Cluster NGC 188
Hills, Shane; Courteau, Stephane; Geller, Aaron M
2015-01-01
This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color-magnitude diagrams depending on the filters and models used. We examine the consistency and reliability of fitting three widely-used stellar evolution models to fifteen combinations of optical and near-IR photometry for the old open cluster NGC 188. The optical filter response curves match those of the theoretical systems and are thus not the source of fit inconsistencies. NGC 188 is ideally suited to the present study thanks to a wide variety of high-quality photometry and available proper motions and radial velocities which enable us to remove non-cluster members and many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and absorption as a function of the photometric band combinations and stellar models. We show that the historically-favored three band combinations of UBV and VRI can be meaningfully inconsistent with each other and with lo...
Fang, Jun; Zhang, Lizao; Duan, Huiping; Huang, Lei; Li, Hongbin
2016-05-01
The application of sparse representation to SAR/ISAR imaging has attracted much attention over the past few years. This new class of sparse representation based imaging methods present a number of unique advantages over conventional range-Doppler methods, the basic idea behind these works is to formulate SAR/ISAR imaging as a sparse signal recovery problem. In this paper, we propose a new two-dimensional pattern-coupled sparse Bayesian learning(SBL) method to capture the underlying cluster patterns of the ISAR target images. Based on this model, an expectation-maximization (EM) algorithm is developed to infer the maximum a posterior (MAP) estimate of the hyperparameters, along with the posterior distribution of the sparse signal. Experimental results demonstrate that the proposed method is able to achieve a substantial performance improvement over existing algorithms, including the conventional SBL method.
A Clustering Method of Highly Dimensional Patent Data Using Bayesian Approach
Sunghae Jun
2012-01-01
Patent data have diversely technological information of any technology field. So, many companies have managed the patent data to build their RD policy. Patent analysis is an approach to the patent management. Also, patent analysis is an important tool for technology forecasting. Patent clustering is one of the works for patent analysis. In this paper, we propose an efficient clustering method of patent documents. Generally, patent data are consisted of text document. The patent documents have...
Bayesian Variable Selection in Cost-Effectiveness Analysis
Directory of Open Access Journals (Sweden)
Miguel A. Negrín
2010-04-01
Full Text Available Linear regression models are often used to represent the cost and effectiveness of medical treatment. The covariates used may include sociodemographic variables, such as age, gender or race; clinical variables, such as initial health status, years of treatment or the existence of concomitant illnesses; and a binary variable indicating the treatment received. However, most studies estimate only one model, which usually includes all the covariates. This procedure ignores the question of uncertainty in model selection. In this paper, we examine four alternative Bayesian variable selection methods that have been proposed. In this analysis, we estimate the inclusion probability of each covariate in the real model conditional on the data. Variable selection can be useful for estimating incremental effectiveness and incremental cost, through Bayesian model averaging, as well as for subgroup analysis.
Bayesian phylogeny analysis via stochastic approximation Monte Carlo
Cheon, Sooyoung
2009-11-01
Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.
Combination Clustering Analysis Method and its Application
Bang-Chun Wen; Li-Yuan Dong; Qin-Liang Li; Yang Liu
2013-01-01
The traditional clustering analysis method can not automatically determine the optimal clustering number. In this study, we provided a new clustering analysis method which is combination clustering analysis method to solve this problem. Through analyzed 25 kinds of automobile data samples by combination clustering analysis method, the correctness of the analysis result was verified. It showed that combination clustering analysis method could objectively determine the number of clustering firs...
Non-stationarity in GARCH models: A Bayesian analysis
Kleibergen, Frank; Dijk, Herman
1993-01-01
textabstractFirst, the non-stationarity properties of the conditional variances in the GARCH(1,1) model are analysed using the concept of infinite persistence of shocks. Given a time sequence of probabilities for increasing/decreasing conditional variances, a theoretical formula for quasi-strict non-stationarity is defined. The resulting conditions for the GARCH(1,1) model are shown to differ from the weak stationarity conditions mainly used in the literature. Bayesian statistical analysis us...
Using Bayesian Population Viability Analysis to Define Relevant Conservation Objectives
Green, Adam W.; Bailey, Larissa L.
2015-01-01
Adaptive management provides a useful framework for managing natural resources in the face of uncertainty. An important component of adaptive management is identifying clear, measurable conservation objectives that reflect the desired outcomes of stakeholders. A common objective is to have a sustainable population, or metapopulation, but it can be difficult to quantify a threshold above which such a population is likely to persist. We performed a Bayesian metapopulation viability analysis (BM...
REMITTANCES, DUTCH DISEASE, AND COMPETITIVENESS: A BAYESIAN ANALYSIS
FARID MAKHLOUF; MAZHAR MUGHAL
2013-01-01
The paper studies symptoms of Dutch disease in the Pakistani economy arising from international remittances. An IV Bayesian analysis is carried out to take care of the endogeneity and uncertainty due to the managed float of Pakistani Rupee. We find evidence for both spending and resource movement effects in both the short and the long-run. These impacts are stronger and different from those the Official Development Assistance and the FDI exert. We find that while aggregate remittances and the...
Optimizing Nuclear Reaction Analysis (NRA) using Bayesian Experimental Design
von Toussaint, U.; Schwarz-Selinger, T.; Gori, S.
2008-01-01
Nuclear Reaction Analysis with ${}^{3}$He holds the promise to measure Deuterium depth profiles up to large depths. However, the extraction of the depth profile from the measured data is an ill-posed inversion problem. Here we demonstrate how Bayesian Experimental Design can be used to optimize the number of measurements as well as the measurement energies to maximize the information gain. Comparison of the inversion properties of the optimized design with standard settings reveals huge possi...
Integrative cluster analysis in bioinformatics
Abu-Jamous, Basel; Nandi, Asoke K
2015-01-01
Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review o
Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang
2016-07-01
This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.
Bayesian History Reconstruction of Complex Human Gene Clusters on a Phylogeny
Vinař, Tomáš; Song, Giltae; Siepel, Adam
2009-01-01
Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. Improved understanding of these clusters is of utmost importance, since they have been shown to be the source of evolutionary innovation, and have been linked to multiple diseases, including HIV and a variety of cancers. Previously, Zhang et al. (2008) developed an algorithm for reconstructing parsimonious evolutionary histories of such gene clusters, using only human genomic sequence data. In this paper, we propose a probabilistic model for the evolution of gene clusters on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate that our method will be useful in analyzing these valuable new data sets.
Bayesian-network-based safety risk analysis in construction projects
International Nuclear Information System (INIS)
This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical
BaTMAn: Bayesian Technique for Multi-image Analysis
Casado, J; García-Benito, R; Guidi, G; Choudhury, O S; Bellocchi, E; Sánchez, S; Díaz, A I
2016-01-01
This paper describes the Bayesian Technique for Multi-image Analysis (BaTMAn), a novel image segmentation technique based on Bayesian statistics, whose main purpose is to characterize an astronomical dataset containing spatial information and perform a tessellation based on the measurements and errors provided as input. The algorithm will iteratively merge spatial elements as long as they are statistically consistent with carrying the same information (i.e. signal compatible with being identical within the errors). We illustrate its operation and performance with a set of test cases that comprises both synthetic and real Integral-Field Spectroscopic (IFS) data. Our results show that the segmentations obtained by BaTMAn adapt to the underlying structure of the data, regardless of the precise details of their morphology and the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in those regions where the signal is actually con...
Bayesian investigation of isochrone consistency using the old open cluster NGC 188
Energy Technology Data Exchange (ETDEWEB)
Hills, Shane; Courteau, Stéphane [Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6 Canada (Canada); Von Hippel, Ted [Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 (United States); Geller, Aaron M., E-mail: shane.hills@queensu.ca, E-mail: courteau@astro.queensu.ca, E-mail: ted.vonhippel@erau.edu, E-mail: a-geller@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)
2015-03-01
This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color–magnitude diagrams (CMDs) depending on the filters and models used. We examine the consistency and reliability of fitting three widely used stellar evolution models to 15 combinations of optical and near-IR photometry for the old open cluster NGC 188. The optical filter response curves match those of theoretical systems and are thus not the source of fit inconsistencies. NGC 188 is ideally suited to this study thanks to a wide variety of high-quality photometry and available proper motions and radial velocities that enable us to remove non-cluster members and many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and absorption as a function of the photometric band combinations and stellar models. We show that the historically favored three-band combinations of UBV and VRI can be meaningfully inconsistent with each other and with longer baseline data sets such as UBVRIJHK{sub S}. Differences among model sets can also be substantial. For instance, fitting Yi et al. (2001) and Dotter et al. (2008) models to UBVRIJHK{sub S} photometry for NGC 188 yields the following cluster parameters: age = (5.78 ± 0.03, 6.45 ± 0.04) Gyr, [Fe/H] = (+0.125 ± 0.003, −0.077 ± 0.003) dex, (m−M){sub V} = (11.441 ± 0.007, 11.525 ± 0.005) mag, and A{sub V} = (0.162 ± 0.003, 0.236 ± 0.003) mag, respectively. Within the formal fitting errors, these two fits are substantially and statistically different. Such differences among fits using different filters and models are a cautionary tale regarding our current ability to fit star cluster CMDs. Additional modeling of this kind, with more models and star clusters, and future Gaia parallaxes are critical for isolating and quantifying the most relevant uncertainties in stellar evolutionary models.
Bayesian investigation of isochrone consistency using the old open cluster NGC 188
International Nuclear Information System (INIS)
This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color–magnitude diagrams (CMDs) depending on the filters and models used. We examine the consistency and reliability of fitting three widely used stellar evolution models to 15 combinations of optical and near-IR photometry for the old open cluster NGC 188. The optical filter response curves match those of theoretical systems and are thus not the source of fit inconsistencies. NGC 188 is ideally suited to this study thanks to a wide variety of high-quality photometry and available proper motions and radial velocities that enable us to remove non-cluster members and many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and absorption as a function of the photometric band combinations and stellar models. We show that the historically favored three-band combinations of UBV and VRI can be meaningfully inconsistent with each other and with longer baseline data sets such as UBVRIJHKS. Differences among model sets can also be substantial. For instance, fitting Yi et al. (2001) and Dotter et al. (2008) models to UBVRIJHKS photometry for NGC 188 yields the following cluster parameters: age = (5.78 ± 0.03, 6.45 ± 0.04) Gyr, [Fe/H] = (+0.125 ± 0.003, −0.077 ± 0.003) dex, (m−M)V = (11.441 ± 0.007, 11.525 ± 0.005) mag, and AV = (0.162 ± 0.003, 0.236 ± 0.003) mag, respectively. Within the formal fitting errors, these two fits are substantially and statistically different. Such differences among fits using different filters and models are a cautionary tale regarding our current ability to fit star cluster CMDs. Additional modeling of this kind, with more models and star clusters, and future Gaia parallaxes are critical for isolating and quantifying the most relevant uncertainties in stellar evolutionary models.
Bayesian networks for omics data analysis
Gavai, A.K.
2009-01-01
This thesis focuses on two aspects of high throughput technologies, i.e. data storage and data analysis, in particular in transcriptomics and metabolomics. Both technologies are part of a research field that is generally called ‘omics’ (or ‘-omics’, with a leading hyphen), which refers to genomics,
Nonparametric Bayesian Negative Binomial Factor Analysis
Zhou, Mingyuan
2016-01-01
A common approach to analyze an attribute-instance count matrix, an element of which represents how many times an attribute appears in an instance, is to factorize it under the Poisson likelihood. We show its limitation in capturing the tendency for an attribute present in an instance to both repeat itself and excite related ones. To address this limitation, we construct negative binomial factor analysis (NBFA) to factorize the matrix under the negative binomial likelihood, and relate it to a...
Bayesian networks for omics data analysis
Gavai, A.K.
2009-01-01
This thesis focuses on two aspects of high throughput technologies, i.e. data storage and data analysis, in particular in transcriptomics and metabolomics. Both technologies are part of a research field that is generally called ‘omics’ (or ‘-omics’, with a leading hyphen), which refers to genomics, transcriptomics, proteomics, or metabolomics. Although these techniques study different entities (genes, gene expression, proteins, or metabolites), they all have in common that they use high-throu...
Czech Academy of Sciences Publication Activity Database
Valečková, Markéta; Kárný, Miroslav; Sutanto, E. L.
2001-01-01
Roč. 37, č. 6 (2001), s. 1071-1078. ISSN 0005-1098 R&D Projects: GA ČR GA102/99/1564 Grant ostatní: IST(XE) 1999/12058 Institutional research plan: AV0Z1075907 Keywords : Markov chain * clustering * Bayesian mixture estimation Subject RIV: BC - Control Systems Theory Impact factor: 1.449, year: 2001
Zhang, Zhen; Lim, Chae Young; Maiti, Tapabrata; Kato, Seiji
2016-01-01
In climate change study, the infrared spectral signatures of climate change have recently been conceptually adopted, and widely applied to identifying and attributing atmospheric composition change. We propose a Bayesian hierarchical model for spatial clustering of the high-dimensional functional data based on the effects of functional covariates and local features. We couple the functional mixed-effects model with a generalized spatial partitioning method for: (1) producing spatially contigu...
Bayesian analysis to detect abrupt changes in extreme hydrological processes
Jo, Seongil; Kim, Gwangsu; Jeon, Jong-June
2016-07-01
In this study, we develop a new method for a Bayesian change point analysis. The proposed method is easy to implement and can be extended to a wide class of distributions. Using a generalized extreme-value distribution, we investigate the annual maximum of precipitations observed at stations in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the hydrological risk in predictions using the estimated return levels. In addition, we explain that the misspecification of the probability model can lead to a bias in the number of change points and using a simple example, show that this problem is difficult to avoid by technical data transformation.
A Bayesian analysis of pentaquark signals from CLAS data
International Nuclear Information System (INIS)
We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+ pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner
A Bayesian analysis of pentaquark signals from CLAS data
Energy Technology Data Exchange (ETDEWEB)
David Ireland; Bryan McKinnon; Dan Protopopescu; Pawel Ambrozewicz; Marco Anghinolfi; G. Asryan; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; V. Batourine; Marco Battaglieri; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Lukasz Blaszczyk; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Liam Casey; Shifeng Chen; Lu Cheng; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Volker Crede; Natalya Dashyan; Rita De Masi; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Gerald Feldman; Ahmed Fradi; Herbert Funsten; Michel Garcon; Gagik Gavalian; Nerses Gevorgyan; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Wesley Gohn; Atilla Gonenc; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Kawtar Hafidi; Hayk Hakobyan; Charles Hanretty; Neil Hassall; F. Hersman; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde; Yordanka Ilieva; Boris Ishkhanov; Eugeny Isupov; D. Jenkins; Hyon-Suk Jo; John Johnstone; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sergey Kuleshov; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; D. Lawrence; Kenneth Livingston; Haiyun Lu; Marion MacCormick; Nikolai Markov; Paul Mattione; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Brahim Moreno; Kei Moriya; Steven Morrow; Maryam Moteabbed; Edwin Munevar Espitia; Gordon Mutchler; Pawel Nadel-Turonski; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Sergio Pereira; Joshua Pierce; Nikolay Pivnyuk; Oleg Pogorelko; Sergey Pozdnyakov; John Price; Sebastien Procureur; Yelena Prok; Brian Raue; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Dmitri Sharov; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; David Tedeschi; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Daniel Watts; Lawrence Weinstein; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao
2008-02-01
We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a $\\Theta^{+}$ pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a $\\Theta^{+}$. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.
A Bayesian analysis of pentaquark signals from CLAS data
Ireland, D G; Protopopescu, D; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Batourine, V; Battaglieri, M; Bedlinskiy, I; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Casey, L; Chen, S; Cheng, L; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Credé, V; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Deur, A; Dickson, R; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Feldman, G; Fradi, A; Funsten, H; Garçon, M; Gavalian, G; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Gonenc, A; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Gyurjyan, V; Hafidi, K; Hakobyan, H; Hanretty, C; Hassall, N; Hersman, F W; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Jüngst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kossov, M; Krahn, Z; Kramer, L H; Kubarovski, V; Kühn, J; Kuleshov, S V; Kuznetsov, V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Livingston, K; Lu, H Y; MacCormick, M; Markov, N; Mattione, P; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Mirazita, M; Miskimen, R; Mokeev, V; Moreno, B; Moriya, K; Morrow, S A; Moteabbed, M; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Pierce, J; Pivnyuk, N; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Raue, B A; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatie, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Sharov, D; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B; Zhao, Z W
2007-01-01
We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a $\\Theta^{+}$ pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a $\\Theta^{+}$. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.
Development of bayesian update database for PRA data analysis (BUDDA)
International Nuclear Information System (INIS)
It is necessary what independent plant PRA (Probabilistic Risk Assessment) for risk informed applications of nuclear power plant. Therefore, it must build the environment that the utilities can efficiently collect PRA data, and can estimate PRA parameters without statistical expertise. This report explains development of failure events analysis DB for PRA failure rate computation using bayesian update technique. BUDDA has the function to compute failure rate with a combination of multiple DB (include the pre-installed data based on NUCIA), and to manage independent plant DB (failure events, number of components, operation time, number of demand , prior distributions). (author)
Safety Analysis of Liquid Rocket Engine Using Bayesian Networks
Institute of Scientific and Technical Information of China (English)
WANG Hua-wei; YAN Zhi-qiang
2007-01-01
Safety analysis for liquid rocket engine has a great meaning for shortening development cycle, saving development expenditure and reducing development risk. The relationship between the structure and component of liquid rocket engine is much more complex, furthermore test data are absent in development phase. Thereby, the uncertainties exist in safety analysis for liquid rocket engine. A safety analysis model integrated with FMEA(failure mode and effect analysis)based on Bayesian networks (BN) is brought forward for liquid rocket engine, which can combine qualitative analysis with quantitative decision. The method has the advantages of fusing multi-information, saving sample amount and having high veracity. An example shows that the method is efficient.
Implementation of a Bayesian Engine for Uncertainty Analysis
Energy Technology Data Exchange (ETDEWEB)
Leng Vang; Curtis Smith; Steven Prescott
2014-08-01
In probabilistic risk assessment, it is important to have an environment where analysts have access to a shared and secured high performance computing and a statistical analysis tool package. As part of the advanced small modular reactor probabilistic risk analysis framework implementation, we have identified the need for advanced Bayesian computations. However, in order to make this technology available to non-specialists, there is also a need of a simplified tool that allows users to author models and evaluate them within this framework. As a proof-of-concept, we have implemented an advanced open source Bayesian inference tool, OpenBUGS, within the browser-based cloud risk analysis framework that is under development at the Idaho National Laboratory. This development, the “OpenBUGS Scripter” has been implemented as a client side, visual web-based and integrated development environment for creating OpenBUGS language scripts. It depends on the shared server environment to execute the generated scripts and to transmit results back to the user. The visual models are in the form of linked diagrams, from which we automatically create the applicable OpenBUGS script that matches the diagram. These diagrams can be saved locally or stored on the server environment to be shared with other users.
Bayesian analysis of inflationary features in Planck and SDSS data
Benetti, Micol
2016-01-01
We perform a Bayesian analysis to study possible features in the primordial inflationary power spectrum of scalar perturbations. In particular, we analyse the possibility of detecting the imprint of these primordial features in the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) and also in the matter power spectrum P (k). We use the most recent CMB data provided by the Planck Collaboration and P (k) measurements from the eleventh data release of the Sloan Digital Sky Survey. We focus our analysis on a class of potentials whose features are localised at different intervals of angular scales, corresponding to multipoles in the ranges 10 < l < 60 (Oscill-1) and 150 < l < 300 (Oscill-2). Our results show that one of the step-potentials (Oscill-1) provides a better fit to the CMB data than does the featureless LCDM scenario, with a moderate Bayesian evidence in favor of the former. Adding the P (k) data to the analysis weakens the evidence of the Oscill-1 potential relat...
Analysis of Wave Directional Spreading by Bayesian Parameter Estimation
Institute of Scientific and Technical Information of China (English)
钱桦; 莊士贤; 高家俊
2002-01-01
A spatial array of wave gauges installed on an observatoion platform has been designed and arranged to measure the lo-cal features of winter monsoon directional waves off Taishi coast of Taiwan. A new method, named the Bayesian ParameterEstimation Method( BPEM), is developed and adopted to determine the main direction and the directional spreading parame-ter of directional spectra. The BPEM could be considered as a regression analysis to find the maximum joint probability ofparameters, which best approximates the observed data from the Bayesian viewpoint. The result of the analysis of field wavedata demonstrates the highly dependency of the characteristics of normalized directional spreading on the wave age. The Mit-suyasu type empirical formula of directional spectnun is therefore modified to be representative of monsoon wave field. More-over, it is suggested that Smax could be expressed as a function of wave steepness. The values of Smax decrease with increas-ing steepness. Finally, a local directional spreading model, which is simple to be utilized in engineering practice, is prop-osed.
Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.
Hack, C Eric
2006-04-17
Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach. PMID:16466842
Node Augmentation Technique in Bayesian Network Evidence Analysis and Marshaling
Energy Technology Data Exchange (ETDEWEB)
Keselman, Dmitry [Los Alamos National Laboratory; Tompkins, George H [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory
2010-01-01
Given a Bayesian network, sensitivity analysis is an important activity. This paper begins by describing a network augmentation technique which can simplifY the analysis. Next, we present two techniques which allow the user to determination the probability distribution of a hypothesis node under conditions of uncertain evidence; i.e. the state of an evidence node or nodes is described by a user specified probability distribution. Finally, we conclude with a discussion of three criteria for ranking evidence nodes based on their influence on a hypothesis node. All of these techniques have been used in conjunction with a commercial software package. A Bayesian network based on a directed acyclic graph (DAG) G is a graphical representation of a system of random variables that satisfies the following Markov property: any node (random variable) is independent of its non-descendants given the state of all its parents (Neapolitan, 2004). For simplicities sake, we consider only discrete variables with a finite number of states, though most of the conclusions may be generalized.
Inference algorithms and learning theory for Bayesian sparse factor analysis
International Nuclear Information System (INIS)
Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.
Williford, W. O.; Hsieh, P.; Carter, M. C.
1974-01-01
A Bayesian analysis of the two discrete probability models, the negative binomial and the modified negative binomial distributions, which have been used to describe thunderstorm activity at Cape Kennedy, Florida, is presented. The Bayesian approach with beta prior distributions is compared to the classical approach which uses a moment method of estimation or a maximum-likelihood method. The accuracy and simplicity of the Bayesian method is demonstrated.
Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis
International Nuclear Information System (INIS)
This paper deals with the use of Bayesian networks to compute system reliability. The reliability analysis problem is described and the usual methods for quantitative reliability analysis are presented within a case study. Some drawbacks that justify the use of Bayesian networks are identified. The basic concepts of the Bayesian networks application to reliability analysis are introduced and a model to compute the reliability for the case study is presented. Dempster Shafer theory to treat epistemic uncertainty in reliability analysis is then discussed and its basic concepts that can be applied thanks to the Bayesian network inference algorithm are introduced. Finally, it is shown, with a numerical example, how Bayesian networks' inference algorithms compute complex system reliability and what the Dempster Shafer theory can provide to reliability analysis
Risk analysis of dust explosion scenarios using Bayesian networks.
Yuan, Zhi; Khakzad, Nima; Khan, Faisal; Amyotte, Paul
2015-02-01
In this study, a methodology has been proposed for risk analysis of dust explosion scenarios based on Bayesian network. Our methodology also benefits from a bow-tie diagram to better represent the logical relationships existing among contributing factors and consequences of dust explosions. In this study, the risks of dust explosion scenarios are evaluated, taking into account common cause failures and dependencies among root events and possible consequences. Using a diagnostic analysis, dust particle properties, oxygen concentration, and safety training of staff are identified as the most critical root events leading to dust explosions. The probability adaptation concept is also used for sequential updating and thus learning from past dust explosion accidents, which is of great importance in dynamic risk assessment and management. We also apply the proposed methodology to a case study to model dust explosion scenarios, to estimate the envisaged risks, and to identify the vulnerable parts of the system that need additional safety measures. PMID:25264172
Afreen, Nazia; Naqvi, Irshad H; Broor, Shobha; Ahmed, Anwar; Kazim, Syed Naqui; Dohare, Ravins; Kumar, Manoj; Parveen, Shama
2016-03-01
Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India. PMID:26977703
Directory of Open Access Journals (Sweden)
Nazia Afreen
2016-03-01
Full Text Available Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.
Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations
Scargle, Jeffrey D; Jackson, Brad; Chiang, James
2012-01-01
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it - an improved and generalized version of Bayesian Blocks (Scargle 1998) - that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multi-variate time series data, analysis of vari...
Bayesian large-scale structure inference and cosmic web analysis
Leclercq, Florent
2015-01-01
Surveys of the cosmic large-scale structure carry opportunities for building and testing cosmological theories about the origin and evolution of the Universe. This endeavor requires appropriate data assimilation tools, for establishing the contact between survey catalogs and models of structure formation. In this thesis, we present an innovative statistical approach for the ab initio simultaneous analysis of the formation history and morphology of the cosmic web: the BORG algorithm infers the primordial density fluctuations and produces physical reconstructions of the dark matter distribution that underlies observed galaxies, by assimilating the survey data into a cosmological structure formation model. The method, based on Bayesian probability theory, provides accurate means of uncertainty quantification. We demonstrate the application of BORG to the Sloan Digital Sky Survey data and describe the primordial and late-time large-scale structure in the observed volume. We show how the approach has led to the fi...
Bayesian analysis of factors associated with fibromyalgia syndrome subjects
Jayawardana, Veroni; Mondal, Sumona; Russek, Leslie
2015-01-01
Factors contributing to movement-related fear were assessed by Russek, et al. 2014 for subjects with Fibromyalgia (FM) based on the collected data by a national internet survey of community-based individuals. The study focused on the variables, Activities-Specific Balance Confidence scale (ABC), Primary Care Post-Traumatic Stress Disorder screen (PC-PTSD), Tampa Scale of Kinesiophobia (TSK), a Joint Hypermobility Syndrome screen (JHS), Vertigo Symptom Scale (VSS-SF), Obsessive-Compulsive Personality Disorder (OCPD), Pain, work status and physical activity dependent from the "Revised Fibromyalgia Impact Questionnaire" (FIQR). The study presented in this paper revisits same data with a Bayesian analysis where appropriate priors were introduced for variables selected in the Russek's paper.
A Bayesian analysis of regularised source inversions in gravitational lensing
Suyu, S H; Hobson, M P; Marshall, P J
2006-01-01
Strong gravitational lens systems with extended sources are of special interest because they provide additional constraints on the models of the lens systems. To use a gravitational lens system for measuring the Hubble constant, one would need to determine the lens potential and the source intensity distribution simultaneously. A linear inversion method to reconstruct a pixellated source distribution of a given lens potential model was introduced by Warren and Dye. In the inversion process, a regularisation on the source intensity is often needed to ensure a successful inversion with a faithful resulting source. In this paper, we use Bayesian analysis to determine the optimal regularisation constant (strength of regularisation) of a given form of regularisation and to objectively choose the optimal form of regularisation given a selection of regularisations. We consider and compare quantitatively three different forms of regularisation previously described in the literature for source inversions in gravitatio...
A Bayesian Seismic Hazard Analysis for the city of Naples
Faenza, Licia; Pierdominici, Simona; Hainzl, Sebastian; Cinti, Francesca R.; Sandri, Laura; Selva, Jacopo; Tonini, Roberto; Perfetti, Paolo
2016-04-01
In the last years many studies have been focused on determination and definition of the seismic, volcanic and tsunamogenic hazard in the city of Naples. The reason is that the town of Naples with its neighboring area is one of the most densely populated places in Italy. In addition, the risk is increased also by the type and condition of buildings and monuments in the city. It is crucial therefore to assess which active faults in Naples and surrounding area could trigger an earthquake able to shake and damage the urban area. We collect data from the most reliable and complete databases of macroseismic intensity records (from 79 AD to present). For each seismic event an active tectonic structure has been associated. Furthermore a set of active faults, well-known from geological investigations, located around the study area that they could shake the city, not associated with any earthquake, has been taken into account for our studies. This geological framework is the starting point for our Bayesian seismic hazard analysis for the city of Naples. We show the feasibility of formulating the hazard assessment procedure to include the information of past earthquakes into the probabilistic seismic hazard analysis. This strategy allows on one hand to enlarge the information used in the evaluation of the hazard, from alternative models for the earthquake generation process to past shaking and on the other hand to explicitly account for all kinds of information and their uncertainties. The Bayesian scheme we propose is applied to evaluate the seismic hazard of Naples. We implement five different spatio-temporal models to parameterize the occurrence of earthquakes potentially dangerous for Naples. Subsequently we combine these hazard curves with ShakeMap of past earthquakes that have been felt in Naples. The results are posterior hazard assessment for three exposure times, e.g., 50, 10 and 5 years, in a dense grid that cover the municipality of Naples, considering bedrock soil
A Bayesian latent group analysis for detecting poor effort in the assessment of malingering
A. Ortega; E.-J. Wagenmakers; M.D. Lee; H.J. Markowitsch; M. Piefke
2012-01-01
Despite their theoretical appeal, Bayesian methods for the assessment of poor effort and malingering are still rarely used in neuropsychological research and clinical diagnosis. In this article, we outline a novel and easy-to-use Bayesian latent group analysis of malingering whose goal is to identif
Analysis of Various Clustering Algorithms
Asst Prof. Sunila Godara,; Ms. Amita Verma,
2013-01-01
Data clustering is a process of putting similar data into groups. A clustering algorithm partitions a data set into several groups such that the similarity within a group is larger than among groups. This paper reviews four types of clustering techniques- k-Means Clustering, Farther first clustering, Density Based Clustering, Filtered clusterer. These clustering techniques are implemented and analyzed using a clustering tool WEKA. Performance of the 4 techniques are presented and compared.
Multivariate meta-analysis of mixed outcomes: a Bayesian approach.
Bujkiewicz, Sylwia; Thompson, John R; Sutton, Alex J; Cooper, Nicola J; Harrison, Mark J; Symmons, Deborah P M; Abrams, Keith R
2013-09-30
Multivariate random effects meta-analysis (MRMA) is an appropriate way for synthesizing data from studies reporting multiple correlated outcomes. In a Bayesian framework, it has great potential for integrating evidence from a variety of sources. In this paper, we propose a Bayesian model for MRMA of mixed outcomes, which extends previously developed bivariate models to the trivariate case and also allows for combination of multiple outcomes that are both continuous and binary. We have constructed informative prior distributions for the correlations by using external evidence. Prior distributions for the within-study correlations were constructed by employing external individual patent data and using a double bootstrap method to obtain the correlations between mixed outcomes. The between-study model of MRMA was parameterized in the form of a product of a series of univariate conditional normal distributions. This allowed us to place explicit prior distributions on the between-study correlations, which were constructed using external summary data. Traditionally, independent 'vague' prior distributions are placed on all parameters of the model. In contrast to this approach, we constructed prior distributions for the between-study model parameters in a way that takes into account the inter-relationship between them. This is a flexible method that can be extended to incorporate mixed outcomes other than continuous and binary and beyond the trivariate case. We have applied this model to a motivating example in rheumatoid arthritis with the aim of incorporating all available evidence in the synthesis and potentially reducing uncertainty around the estimate of interest. PMID:23630081
Directory of Open Access Journals (Sweden)
Ildikó Ungvári
Full Text Available Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls. The results were evaluated with traditional frequentist methods and we applied a new statistical method, called bayesian network based bayesian multilevel analysis of relevance (BN-BMLA. This method uses bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated.With frequentist methods one SNP (rs3751464 in the FRMD6 gene provided evidence for an association with asthma (OR = 1.43(1.2-1.8; p = 3×10(-4. The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics.In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance.
Survey and Analysis of University Clustering
Directory of Open Access Journals (Sweden)
Srinatha Karur
2013-07-01
Full Text Available This paper gives on Clustering of Universities in the world with respect to their country policies OR local polices OR continent level polices with sub aims. So clustering method can generally apply when objective is specifically mentioned. For general objectives clusters are available in the form of logical or physical groups without networks. In this paper we emphasis on only University Clusters directly or University Clusters with some other clusters. Data miming methods are used for useful for Sampling Analysis and Clustering of Universities and Colleges with respect to local clusters [1] pp 1.
Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis
Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William
2009-01-01
This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).
Bayesian meta-analysis models for microarray data: a comparative study
Song Joon J; Conlon Erin M; Liu Anna
2007-01-01
Abstract Background With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. Results Two Bayesian meta-analysis models for microarray data have recently ...
Bayesian Analysis of Graphical Models of Marginal Independence for Three Way Contingency Tables
Tarantola, Claudia; Ntzoufras, Ioannis
2012-01-01
This paper deals with the Bayesian analysis of graphical models of marginal independence for three way contingency tables. Each marginal independence model corresponds to a particular factorization of the cell probabilities and a conjugate analysis based on Dirichlet prior can be performed. We illustrate a comprehensive Bayesian analysis of such models, involving suitable choices of prior parameters, estimation, model determination, as well as the allied computational issues. The posterior di...
Directory of Open Access Journals (Sweden)
Arturo Medrano-Soto
2004-12-01
Full Text Available Based on mixture models, we present a Bayesian method (called BClass to classify biological entities (e.g. genes when variables of quite heterogeneous nature are analyzed. Various statistical distributions are used to model the continuous/categorical data commonly produced by genetic experiments and large-scale genomic projects. We calculate the posterior probability of each entry to belong to each element (group in the mixture. In this way, an original set of heterogeneous variables is transformed into a set of purely homogeneous characteristics represented by the probabilities of each entry to belong to the groups. The number of groups in the analysis is controlled dynamically by rendering the groups as 'alive' and 'dormant' depending upon the number of entities classified within them. Using standard Metropolis-Hastings and Gibbs sampling algorithms, we constructed a sampler to approximate posterior moments and grouping probabilities. Since this method does not require the definition of similarity measures, it is especially suitable for data mining and knowledge discovery in biological databases. We applied BClass to classify genes in RegulonDB, a database specialized in information about the transcriptional regulation of gene expression in the bacterium Escherichia coli. The classification obtained is consistent with current knowledge and allowed prediction of missing values for a number of genes. BClass is object-oriented and fully programmed in Lisp-Stat. The output grouping probabilities are analyzed and interpreted using graphical (dynamically linked plots and query-based approaches. We discuss the advantages of using Lisp-Stat as a programming language as well as the problems we faced when the data volume increased exponentially due to the ever-growing number of genomic projects.
New Ephemeris for LSI+61 303, A Bayesian Analysis
Gregory, P. C.
1997-12-01
The luminous early-type binary LSI+61 303 is an interesting radio, X-ray and possible gamma-ray source. At radio wavelengths it exhibits periodic outbursts with an approximate period of 26.5 days as well as a longer term modulation of the outburst peaks of approximately 4 years. Recently Paredes et al. have found evidence that the X-ray outbursts are very likely to recur with the same radio outburst period from an analysis of RXTE all sky monitoring data. The system has been observed by many groups at all wavelengths but still the energy source powering the radio outbursts and their relation to the high energy emission remains a mystery. For more details see the "LSI+61 303 Resource Page" at http://www.srl.caltech.edu/personnel/paulr/lsi.html . There has been increasing evidence for a change in the period of the system. We will present a new ephemeris for the system based on a Bayesian analysis of 20 years of radio observations including the GBI-NASA radio monitoring data.
Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems
Directory of Open Access Journals (Sweden)
Goutsias John
2010-11-01
Full Text Available Abstract Background Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time series measurements of molecular concentrations is an important step for building predictive models of cellular function. Inference techniques currently available in the literature may produce rate constant values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore, development of a thermodynamically consistent approach for estimating the rate constants of a biochemical reaction system is highly desirable. Results We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our method employs an appropriately designed prior probability density function that effectively integrates fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into account experimental strategies for collecting informative observations of molecular concentrations through perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides thermodynamically feasible estimates of the rate constant values and computes appropriate measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis techniques discussed in this paper, is available free of charge at http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.html. Conclusions Our approach provides an attractive statistical methodology for
Bayesian Analysis of Dynamic Multivariate Models with Multiple Structural Breaks
Sugita, Katsuhiro
2006-01-01
This paper considers a vector autoregressive model or a vector error correction model with multiple structural breaks in any subset of parameters, using a Bayesian approach with Markov chain Monte Carlo simulation technique. The number of structural breaks is determined as a sort of model selection by the posterior odds. For a cointegrated model, cointegrating rank is also allowed to change with breaks. Bayesian approach by Strachan (Journal of Business and Economic Statistics 21 (2003) 185) ...
Gasparini, Mauro; Eisele, J
2003-01-01
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data. Many of the issues that are discussed with reference to the statistical analysis of compositional data have a natural counterpart in the construction of a Bayesian statistical model for categorical data. This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986) in his seminal book on compositional data. Particular emphasis is put on the pro...
Bayesian Analysis of Marginal Log-Linear Graphical Models for Three Way Contingency Tables
Ntzoufras, Ioannis; Tarantola, Claudia
2008-01-01
This paper deals with the Bayesian analysis of graphical models of marginal independence for three way contingency tables. We use a marginal log-linear parametrization, under which the model is defined through suitable zero-constraints on the interaction parameters calculated within marginal distributions. We undertake a comprehensive Bayesian analysis of these models, involving suitable choices of prior distributions, estimation, model determination, as well as the allied computational issue...
A Bayesian analysis of plutonium exposures in Sellafield workers.
Puncher, M; Riddell, A E
2016-03-01
The joint Russian (Mayak Production Association) and British (Sellafield) plutonium worker epidemiological analysis, undertaken as part of the European Union Framework Programme 7 (FP7) SOLO project, aims to investigate potential associations between cancer incidence and occupational exposures to plutonium using estimates of organ/tissue doses. The dose reconstruction protocol derived for the study makes best use of the most recent biokinetic models derived by the International Commission on Radiological Protection (ICRP) including a recent update to the human respiratory tract model (HRTM). This protocol was used to derive the final point estimates of absorbed doses for the study. Although uncertainties on the dose estimates were not included in the final epidemiological analysis, a separate Bayesian analysis has been performed for each of the 11 808 Sellafield plutonium workers included in the study in order to assess: A. The reliability of the point estimates provided to the epidemiologists and B. The magnitude of the uncertainty on dose estimates. This analysis, which accounts for uncertainties in biokinetic model parameters, intakes and measurement uncertainties, is described in the present paper. The results show that there is excellent agreement between the point estimates of dose and posterior mean values of dose. However, it is also evident that there are significant uncertainties associated with these dose estimates: the geometric range of the 97.5%:2.5% posterior values are a factor of 100 for lung dose, 30 for doses to liver and red bone marrow, and 40 for intakes: these uncertainties are not reflected in estimates of risk when point doses are used to assess them. It is also shown that better estimates of certain key HRTM absorption parameters could significantly reduce the uncertainties on lung dose in future studies. PMID:26584413
Light curve demography via Bayesian functional data analysis
Loredo, Thomas; Budavari, Tamas; Hendry, Martin A.; Kowal, Daniel; Ruppert, David
2015-08-01
Synoptic time-domain surveys provide astronomers, not simply more data, but a different kind of data: large ensembles of multivariate, irregularly and asynchronously sampled light curves. We describe a statistical framework for light curve demography—optimal accumulation and extraction of information, not only along individual light curves as conventional methods do, but also across large ensembles of related light curves. We build the framework using tools from functional data analysis (FDA), a rapidly growing area of statistics that addresses inference from datasets that sample ensembles of related functions. Our Bayesian FDA framework builds hierarchical models that describe light curve ensembles using multiple levels of randomness: upper levels describe the source population, and lower levels describe the observation process, including measurement errors and selection effects. Schematically, a particular object's light curve is modeled as the sum of a parameterized template component (modeling population-averaged behavior) and a peculiar component (modeling variability across the population), subsequently subjected to an observation model. A functional shrinkage adjustment to individual light curves emerges—an adaptive, functional generalization of the kind of adjustments made for Eddington or Malmquist bias in single-epoch photometric surveys. We are applying the framework to a variety of problems in synoptic time-domain survey astronomy, including optimal detection of weak sources in multi-epoch data, and improved estimation of Cepheid variable star luminosities from detailed demographic modeling of ensembles of Cepheid light curves.
STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS
International Nuclear Information System (INIS)
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it—an improved and generalized version of Bayesian Blocks—that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.
STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS
Energy Technology Data Exchange (ETDEWEB)
Scargle, Jeffrey D. [Space Science and Astrobiology Division, MS 245-3, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Norris, Jay P. [Physics Department, Boise State University, 2110 University Drive, Boise, ID 83725-1570 (United States); Jackson, Brad [The Center for Applied Mathematics and Computer Science, Department of Mathematics, San Jose State University, One Washington Square, MH 308, San Jose, CA 95192-0103 (United States); Chiang, James, E-mail: jeffrey.d.scargle@nasa.gov [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)
2013-02-20
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.
Dynamic sensor action selection with Bayesian decision analysis
Kristensen, Steen; Hansen, Volker; Kondak, Konstantin
1998-10-01
The aim of this work is to create a framework for the dynamic planning of sensor actions for an autonomous mobile robot. The framework uses Bayesian decision analysis, i.e., a decision-theoretic method, to evaluate possible sensor actions and selecting the most appropriate ones given the available sensors and what is currently known about the state of the world. Since sensing changes the knowledge of the system and since the current state of the robot (task, position, etc.) determines what knowledge is relevant, the evaluation and selection of sensing actions is an on-going process that effectively determines the behavior of the robot. The framework has been implemented on a real mobile robot and has been proven to be able to control in real-time the sensor actions of the system. In current work we are investigating methods to reduce or automatically generate the necessary model information needed by the decision- theoretic method to select the appropriate sensor actions.
Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations
Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James
2013-01-01
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.
Using Bayesian Population Viability Analysis to Define Relevant Conservation Objectives.
Directory of Open Access Journals (Sweden)
Adam W Green
Full Text Available Adaptive management provides a useful framework for managing natural resources in the face of uncertainty. An important component of adaptive management is identifying clear, measurable conservation objectives that reflect the desired outcomes of stakeholders. A common objective is to have a sustainable population, or metapopulation, but it can be difficult to quantify a threshold above which such a population is likely to persist. We performed a Bayesian metapopulation viability analysis (BMPVA using a dynamic occupancy model to quantify the characteristics of two wood frog (Lithobates sylvatica metapopulations resulting in sustainable populations, and we demonstrate how the results could be used to define meaningful objectives that serve as the basis of adaptive management. We explored scenarios involving metapopulations with different numbers of patches (pools using estimates of breeding occurrence and successful metamorphosis from two study areas to estimate the probability of quasi-extinction and calculate the proportion of vernal pools producing metamorphs. Our results suggest that ≥50 pools are required to ensure long-term persistence with approximately 16% of pools producing metamorphs in stable metapopulations. We demonstrate one way to incorporate the BMPVA results into a utility function that balances the trade-offs between ecological and financial objectives, which can be used in an adaptive management framework to make optimal, transparent decisions. Our approach provides a framework for using a standard method (i.e., PVA and available information to inform a formal decision process to determine optimal and timely management policies.
Using Bayesian Population Viability Analysis to Define Relevant Conservation Objectives.
Green, Adam W; Bailey, Larissa L
2015-01-01
Adaptive management provides a useful framework for managing natural resources in the face of uncertainty. An important component of adaptive management is identifying clear, measurable conservation objectives that reflect the desired outcomes of stakeholders. A common objective is to have a sustainable population, or metapopulation, but it can be difficult to quantify a threshold above which such a population is likely to persist. We performed a Bayesian metapopulation viability analysis (BMPVA) using a dynamic occupancy model to quantify the characteristics of two wood frog (Lithobates sylvatica) metapopulations resulting in sustainable populations, and we demonstrate how the results could be used to define meaningful objectives that serve as the basis of adaptive management. We explored scenarios involving metapopulations with different numbers of patches (pools) using estimates of breeding occurrence and successful metamorphosis from two study areas to estimate the probability of quasi-extinction and calculate the proportion of vernal pools producing metamorphs. Our results suggest that ≥50 pools are required to ensure long-term persistence with approximately 16% of pools producing metamorphs in stable metapopulations. We demonstrate one way to incorporate the BMPVA results into a utility function that balances the trade-offs between ecological and financial objectives, which can be used in an adaptive management framework to make optimal, transparent decisions. Our approach provides a framework for using a standard method (i.e., PVA) and available information to inform a formal decision process to determine optimal and timely management policies. PMID:26658734
Nonparametric survival analysis using Bayesian Additive Regression Trees (BART).
Sparapani, Rodney A; Logan, Brent R; McCulloch, Robert E; Laud, Purushottam W
2016-07-20
Bayesian additive regression trees (BART) provide a framework for flexible nonparametric modeling of relationships of covariates to outcomes. Recently, BART models have been shown to provide excellent predictive performance, for both continuous and binary outcomes, and exceeding that of its competitors. Software is also readily available for such outcomes. In this article, we introduce modeling that extends the usefulness of BART in medical applications by addressing needs arising in survival analysis. Simulation studies of one-sample and two-sample scenarios, in comparison with long-standing traditional methods, establish face validity of the new approach. We then demonstrate the model's ability to accommodate data from complex regression models with a simulation study of a nonproportional hazards scenario with crossing survival functions and survival function estimation in a scenario where hazards are multiplicatively modified by a highly nonlinear function of the covariates. Using data from a recently published study of patients undergoing hematopoietic stem cell transplantation, we illustrate the use and some advantages of the proposed method in medical investigations. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26854022
International Nuclear Information System (INIS)
Classical methods of assessing the uncertainty associated with radiation doses estimated using cytogenetic techniques are now extremely well defined. However, several authors have suggested that a Bayesian approach to uncertainty estimation may be more suitable for cytogenetic data, which are inherently stochastic in nature. The Bayesian analysis framework focuses on identification of probability distributions (for yield of aberrations or estimated dose), which also means that uncertainty is an intrinsic part of the analysis, rather than an 'afterthought'. In this paper Bayesian, as well as some more advanced classical, data analysis methods for radiation cytogenetics are reviewed that have been proposed in the literature. A practical overview of Bayesian cytogenetic dose estimation is also presented, with worked examples from the literature. (authors)
Missing data treatment method on cluster analysis
Elsiddig Elsadig Mohamed Koko; Amin Ibrahim Adam Mohamed
2015-01-01
The missing data in household health survey was challenged for the researcher because of incomplete analysis. The statistical tool cluster analysis methodology implemented in the collected data of Sudan's household health survey in 2006. Current research specifically focuses on the data analysis as the objective is to deal with the missing values in cluster analysis. Two-Step Cluster Analysis is applied in which each participant is classified into one of the identified pattern and the opt...
Cluster analysis for portfolio optimization
Tola, V; Gallegati, M; Mantegna, R N; Tola, Vincenzo; Lillo, Fabrizio; Gallegati, Mauro; Mantegna, Rosario N.
2005-01-01
We consider the problem of the statistical uncertainty of the correlation matrix in the optimization of a financial portfolio. We show that the use of clustering algorithms can improve the reliability of the portfolio in terms of the ratio between predicted and realized risk. Bootstrap analysis indicates that this improvement is obtained in a wide range of the parameters N (number of assets) and T (investment horizon). The predicted and realized risk level and the relative portfolio composition of the selected portfolio for a given value of the portfolio return are also investigated for each considered filtering method.
Cybis, Gabriela Bettella
2014-01-01
Combining models for phenotypic and molecular evolution can lead to powerful inference tools.Under the flexible framework of Bayesian phylogenetics, I develop statistical methods to address phylodynamic problems in this intersection.First, I present a hierarchical phylogeographic method that combines information across multiple datasets to draw inference on a common geographical spread process. Each dataset represents a parallel realization of this geographic process on a different group of ...
Uncertainty analysis using Beta-Bayesian approach in nuclear safety code validation
International Nuclear Information System (INIS)
Highlights: • To meet the 95/95 criterion, the Wilks’ method is identical to the Bayesian approach. • A prior selection in Bayesian approach is of strong influenced on the code run times. • It is possible to utilize prior experience to reduce code runs to meet the 95/95 criterion. • The variation of the probability for each code runs is provided. - Abstract: Since best-estimate plus uncertainty analysis was approved by Nuclear Regulatory Commission for nuclear reactor safety evaluation, several uncertainty assessment methods have been proposed and applied in the framework of best-estimate code validation in nuclear industry. Among them, the Wilks’ method and Bayesian approach are the two most popular statistical methods for uncertainty quantification. This study explores the inherent relation between the two methods using the Beta distribution function as the prior in the Bayesian analysis. Subsequently, the Wilks’ method can be considered as a special case of Beta-Bayesian approach, equivalent to the conservative case with Wallis’ “pessimistic” prior in the Bayesian analysis. However, the results do depend on the choice of the pessimistic prior function forms. The analysis of mean and variance through Beta-Bayesian approach provides insight into the Wilks’ 95/95 results with different orders. It indicates that the 95/95 results of Wilks’ method become more accurate and more precise with the increasing of the order. Furthermore, Bayesian updating process is well demonstrated in the code validation practice. The selection of updating prior can make use of the current experience of the code failure and success statistics, so as to effectively predict further needed number of numerical simulations to reach the 95/95 criterion
Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian Process Hyper-Parameters
Wang, Ziyu; De Freitas, Nando
2014-01-01
Bayesian optimisation has gained great popularity as a tool for optimising the parameters of machine learning algorithms and models. Somewhat ironically, setting up the hyper-parameters of Bayesian optimisation methods is notoriously hard. While reasonable practical solutions have been advanced, they can often fail to find the best optima. Surprisingly, there is little theoretical analysis of this crucial problem in the literature. To address this, we derive a cumulative regret bound for Baye...
Gruber, Lutz F.; West, Mike
2016-01-01
The recently introduced class of simultaneous graphical dynamic linear models (SGDLMs) defines an ability to scale on-line Bayesian analysis and forecasting to higher-dimensional time series. This paper advances the methodology of SGDLMs, developing and embedding a novel, adaptive method of simultaneous predictor selection in forward filtering for on-line learning and forecasting. The advances include developments in Bayesian computation for scalability, and a case study in exploring the resu...
Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network
Bin Suo; Ying Yan
2013-01-01
Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much un...
Exploiting sensitivity analysis in Bayesian networks for consumer satisfaction study
Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.
2004-01-01
The paper presents an application of Bayesian network technology in a empirical customer satisfaction study. The findings of the study should provide insight as to the importance of product/service dimensions in terms of the strength of their influence on overall satisfaction. To this end we apply a
International Nuclear Information System (INIS)
In this paper, we present RADYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the inference on dynamic Bayesian networks, in order to compute reliability measures. After having described the basic features of the tool, we show how it operates on a real world example and we compare the unreliability results it generates with those returned by other methodologies, in order to verify the correctness and the consistency of the results obtained
A Latent Variable Bayesian Approach to Spatial Clustering with Background Noise
Kayabol, K.
2011-01-01
We propose a finite mixture model for clustering of the spatial data patterns. The model is based on the spatial distances between the data locations in such a way that both the distances of the points to the cluster centers and the distances of a given point to its neighbors within a defined window
Complexity analysis of accelerated MCMC methods for Bayesian inversion
Hoang, Viet Ha; Schwab, Christoph; Stuart, Andrew M.
2013-08-01
The Bayesian approach to inverse problems, in which the posterior probability distribution on an unknown field is sampled for the purposes of computing posterior expectations of quantities of interest, is starting to become computationally feasible for partial differential equation (PDE) inverse problems. Balancing the sources of error arising from finite-dimensional approximation of the unknown field, the PDE forward solution map and the sampling of the probability space under the posterior distribution are essential for the design of efficient computational Bayesian methods for PDE inverse problems. We study Bayesian inversion for a model elliptic PDE with an unknown diffusion coefficient. We provide complexity analyses of several Markov chain Monte Carlo (MCMC) methods for the efficient numerical evaluation of expectations under the Bayesian posterior distribution, given data δ. Particular attention is given to bounds on the overall work required to achieve a prescribed error level ε. Specifically, we first bound the computational complexity of ‘plain’ MCMC, based on combining MCMC sampling with linear complexity multi-level solvers for elliptic PDE. Our (new) work versus accuracy bounds show that the complexity of this approach can be quite prohibitive. Two strategies for reducing the computational complexity are then proposed and analyzed: first, a sparse, parametric and deterministic generalized polynomial chaos (gpc) ‘surrogate’ representation of the forward response map of the PDE over the entire parameter space, and, second, a novel multi-level Markov chain Monte Carlo strategy which utilizes sampling from a multi-level discretization of the posterior and the forward PDE. For both of these strategies, we derive asymptotic bounds on work versus accuracy, and hence asymptotic bounds on the computational complexity of the algorithms. In particular, we provide sufficient conditions on the regularity of the unknown coefficients of the PDE and on the
Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey
Leclercq, Florent; Wandelt, Benjamin
2015-01-01
Recent application of the Bayesian algorithm BORG to the Sloan Digital Sky Survey (SDSS) main sample galaxies resulted in the physical inference of the formation history of the observed large-scale structure from its origin to the present epoch. In this work, we use these inferences as inputs for a detailed probabilistic cosmic web-type analysis. To do so, we generate a large set of data-constrained realizations of the large-scale structure using a fast, fully non-linear gravitational model. We then perform a dynamic classification of the cosmic web into four distinct components (voids, sheets, filaments and clusters) on the basis of the tidal field. Our inference framework automatically and self-consistently propagates typical observational uncertainties to web-type classification. As a result, this study produces highly detailed and accurate cosmographic classification of large-scale structure elements in the SDSS volume. By also providing the history of these structure maps, the approach allows an analysis...
一种基于非参数贝叶斯模型的聚类算法%Data Clustering via Nonparametric Bayesian Models
Institute of Scientific and Technical Information of China (English)
张媛媛
2013-01-01
鉴于聚类分析是机器学习和数据挖掘领域的一项重要技术，并且与监督学习不同的是聚类分析中没有类别或标签的指导信息，所以如何选择合适的聚类个数(即模型选择)一直是聚类分析中的难点。由此提出了一种基于Dirichlet过程混合模型的聚类算法，并用collapsed Gibbs采样算法对混合模型的参数进行估计。新算法基于非参数贝叶斯模型的框架，能够在不断的采样过程中优化模型参数并形成合适的聚类个数。在人工合成数据集和真实数据集上的聚类实验结果表明：基于Dirichlet过程混合模型的聚类算法不但能够自动确定聚类个数，而且具有较强灵活性和鲁棒性。%Clustering is one of the most useful techniques in machine learning and data mining. In cluster analysis, model selection concerning how to determine the number of clusters is an important issue. Unlike supervised learning, there are no class labels and criteria to guide the search, so the model for clustering is always difficult to select. To tackle this problem, we present the concept of nonparametric clustering approach based on Dirichlet process mixture model (DPMM), and apply a collapsed Gibbs sampling technique to sample the posterior distribution. The proposed clustering algorithm follows the Bayesian nonparametric framework and can optimize the number of components and the parameters of the model. The experimental result of clustering shows that this Bayes model has promising properties and robust performance.
Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants
Jin, Ick Hoon
2014-03-01
Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis. © 2012 Elsevier B.V. All rights reserved.
A Dynamic Bayesian Approach to Computational Laban Shape Quality Analysis
Directory of Open Access Journals (Sweden)
Dilip Swaminathan
2009-01-01
kinesiology. LMA (especially Effort/Shape emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world. We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data in real time. The method uses a dynamic Bayesian network (DBN to fuse movement features across the body and across time and as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising improvisatory movements. Our approach has been incorporated in Response, a mixed-reality environment where users interact via natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback, with applications to kinesiology training, Parkinson's patient rehabilitation, interactive dance, and many other areas.
A Bayesian Analysis of the Radioactive Releases of Fukushima
DEFF Research Database (Denmark)
Tomioka, Ryota; Mørup, Morten
2012-01-01
types of nuclides and their levels of concentration from the recorded mixture of radiations to take necessary measures. We presently formulate a Bayesian generative model for the data available on radioactive releases from the Fukushima Daiichi disaster across Japan. From the sparsely sampled...... Fukushima Daiichi plant we establish that the model is able to account for the data. We further demonstrate how the model extends to include all the available measurements recorded throughout Japan. The model can be considered a first attempt to apply Bayesian learning unsupervised in order to give a more......The Fukushima Daiichi disaster 11 March, 2011 is considered the largest nuclear accident since the 1986 Chernobyl disaster and has been rated at level 7 on the International Nuclear Event Scale. As different radioactive materials have different effects to human body, it is important to know the...
Bayesian Analysis of the Black-Scholes Option Price
Darsinos, Theofanis; Stephen E Satchell
2001-01-01
This paper investigates the statistical properties of the Black-Scholes option price under a Bayesian approach. We incorporate randomness, both in the price process and in volatility, to derive the prior and posterior densities of a European call option. Expressions for the density of the option price conditional on the sample estimates of volatility and on the asset price respectively, are also derived. Numerical results are presented to compare how the dispersion of the option price changes...
Bayesian analysis of recursive SVAR models with overidentifying restrictions
Kociecki, Andrzej; Rubaszek, Michał; Ca' Zorzi, Michele
2012-01-01
The paper provides a novel Bayesian methodological framework to estimate structural VAR (SVAR) models with recursive identification schemes that allows for the inclusion of over-identifying restrictions. The proposed framework enables the researcher to (i) elicit the prior on the non-zero contemporaneous relations between economic variables and to (ii) derive an analytical expression for the posterior distribution and marginal data density. We illustrate our methodological framework by estima...
SPAM FILTERING FOR OPTIMIZATION IN INTERNET PROMOTIONS USING BAYESIAN ANALYSIS
Ion SMEUREANU; Madalina ZURINI
2010-01-01
The main characteristics of an e-business and its promoting are presented. It contains ways of promoting an e-business, examined in depth the e-mail marketing principle along with advantages and disadvantages of the implementation. E-mail marketing metrics are defined for analyzing the impact on customers. A model for optimization the promoting process via email is created for reaching the threshold of profitability for electronic business. The model implements Bayesian spam filtering and app...
Bayesian analysis of the Hector’s Dolphin data
King, R; Brooks, S.P.
2004-01-01
In recent years there have been increasing concerns for many wildlife populations, due to decreasing population trends. This has led to the introduction of management schemes to increase the survival rates and hence the population size of many species of animals. We concentrate on a particular dolphin population situated off the coast of New Zealand, and investigate whether the introduction of a fishing gill net ban was effective in decreasing dolphin mortality. We undertake a Bayesian analys...
A genetic and spatial Bayesian analysis of mastitis resistance
Frigessi Arnoldo; Sæbø Solve
2004-01-01
Abstract A nationwide health card recording system for dairy cattle was introduced in Norway in 1975 (the Norwegian Cattle Health Services). The data base holds information on mastitis occurrences on an individual cow basis. A reduction in mastitis frequency across the population is desired, and for this purpose risk factors are investigated. In this paper a Bayesian proportional hazards model is used for modelling the time to first veterinary treatment of clinical mastitis, including both ge...
A genetic and spatial Bayesian analysis of mastitis resistance
Sæbø, Solve; Frigessi, Arnoldo
2004-01-01
A nationwide health card recording system for dairy cattle was introduced in Norway in 1975 (the Norwegian Cattle Health Services). The data base holds information on mastitis occurrences on an individual cow basis. A reduction in mastitis frequency across the population is desired, and for this purpose risk factors are investigated. In this paper a Bayesian proportional hazards model is used for modelling the time to first veterinary treatment of clinical mastitis, including both genetic and...
Bayesian network models in brain functional connectivity analysis
Ide, Jaime S.; Zhang, Sheng; Chiang-shan R. Li
2013-01-01
Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and wh...
Hierarchical Bayesian analysis of somatic mutation data in cancer
Ding, Jie; Trippa, Lorenzo; Zhong, Xiaogang; Parmigiani, Giovanni
2013-01-01
Identifying genes underlying cancer development is critical to cancer biology and has important implications across prevention, diagnosis and treatment. Cancer sequencing studies aim at discovering genes with high frequencies of somatic mutations in specific types of cancer, as these genes are potential driving factors (drivers) for cancer development. We introduce a hierarchical Bayesian methodology to estimate gene-specific mutation rates and driver probabilities from somatic mutation data ...
Regional fertility data analysis: A small area Bayesian approach
Eduardo A. Castro; Zhen Zhang; Arnab Bhattacharjee; Martins, José M.; Taps Maiti
2013-01-01
Accurate estimation of demographic variables such as mortality, fertility and migrations, by age groups and regions, is important for analyses and policy. However, traditional estimates based on within cohort counts are often inaccurate, particularly when the sub-populations considered are small. We use small area Bayesian statistics to develop a model for age-specific fertility rates. In turn, such small area estimation requires accurate descriptions of spatial and cross-section dependence. ...
Bayesian analysis of hierarchical multi-fidelity codes
Gratiet, Loic Le
2011-01-01
This paper deals with the Gaussian process based approximation of a code which can be run at different levels of accuracy. This co-kriging method allows us to improve a surrogate model of a complex computer code using fast approximations of it. In particular, we focus on the case of a large number of code levels on the one hand and on a Bayesian approach when we have 2 levels on the other hand. Moreover, based on a Bayes linear formulation, an extension of the universal kriging equations are provided for the co-kriging model. We also address the problem of nested space-filling design for multi-fidelity computer experiments and we provide a significant simplification of the computation of the co-kriging cross-validation equations. A hydrodynamic simulator example is used to illustrate the comparison Bayesian versus non-Bayesian co-kriging. A thermodynamic example is used to illustrate the comparison between 2-level and 3-level co-kriging.
Bayesian Ensemble Trees (BET) for Clustering and Prediction in Heterogeneous Data
Duan, Leo L.; Clancy, John P.; Szczesniak, Rhonda D.
2016-01-01
We propose a novel “tree-averaging” model that utilizes the ensemble of classification and regression trees (CART). Each constituent tree is estimated with a subset of similar data. We treat this grouping of subsets as Bayesian Ensemble Trees (BET) and model them as a Dirichlet process. We show that BET determines the optimal number of trees by adapting to the data heterogeneity. Compared with the other ensemble methods, BET requires much fewer trees and shows equivalent prediction accuracy using weighted averaging. Moreover, each tree in BET provides variable selection criterion and interpretation for each subset. We developed an efficient estimating procedure with improved estimation strategies in both CART and mixture models. We demonstrate these advantages of BET with simulations and illustrate the approach with a real-world data example involving regression of lung function measurements obtained from patients with cystic fibrosis. Supplemental materials are available online. PMID:27524872
Bayesian Modeling of MPSS Data: Gene Expression Analysis of Bovine Salmonella Infection
Dhavala, Soma S.
2010-09-01
Massively Parallel Signature Sequencing (MPSS) is a high-throughput, counting-based technology available for gene expression profiling. It produces output that is similar to Serial Analysis of Gene Expression and is ideal for building complex relational databases for gene expression. Our goal is to compare the in vivo global gene expression profiles of tissues infected with different strains of Salmonella obtained using the MPSS technology. In this article, we develop an exact ANOVA type model for this count data using a zero-inflatedPoisson distribution, different from existing methods that assume continuous densities. We adopt two Bayesian hierarchical models-one parametric and the other semiparametric with a Dirichlet process prior that has the ability to "borrow strength" across related signatures, where a signature is a specific arrangement of the nucleotides, usually 16-21 base pairs long. We utilize the discreteness of Dirichlet process prior to cluster signatures that exhibit similar differential expression profiles. Tests for differential expression are carried out using nonparametric approaches, while controlling the false discovery rate. We identify several differentially expressed genes that have important biological significance and conclude with a summary of the biological discoveries. This article has supplementary materials online. © 2010 American Statistical Association.
Bayesian Analysis for Stellar Evolution with Nine Parameters (BASE-9): User's Manual
von Hippel, Ted; Jeffery, Elizabeth; Wagner-Kaiser, Rachel; DeGennaro, Steven; Stein, Nathan; Stenning, David; Jefferys, William H; van Dyk, David
2014-01-01
BASE-9 is a Bayesian software suite that recovers star cluster and stellar parameters from photometry. BASE-9 is useful for analyzing single-age, single-metallicity star clusters, binaries, or single stars, and for simulating such systems. BASE-9 uses Markov chain Monte Carlo and brute-force numerical integration techniques to estimate the posterior probability distributions for the age, metallicity, helium abundance, distance modulus, and line-of-sight absorption for a cluster, and the mass, binary mass ratio, and cluster membership probability for every stellar object. BASE-9 is provided as open source code on a version-controlled web server. The executables are also available as Amazon Elastic Compute Cloud images. This manual provides potential users with an overview of BASE-9, including instructions for installation and use.
A Gibbs sampler for Bayesian analysis of site-occupancy data
Dorazio, Robert M.; Rodriguez, Daniel Taylor
2012-01-01
1. A Bayesian analysis of site-occupancy data containing covariates of species occurrence and species detection probabilities is usually completed using Markov chain Monte Carlo methods in conjunction with software programs that can implement those methods for any statistical model, not just site-occupancy models. Although these software programs are quite flexible, considerable experience is often required to specify a model and to initialize the Markov chain so that summaries of the posterior distribution can be estimated efficiently and accurately. 2. As an alternative to these programs, we develop a Gibbs sampler for Bayesian analysis of site-occupancy data that include covariates of species occurrence and species detection probabilities. This Gibbs sampler is based on a class of site-occupancy models in which probabilities of species occurrence and detection are specified as probit-regression functions of site- and survey-specific covariate measurements. 3. To illustrate the Gibbs sampler, we analyse site-occupancy data of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly species in Switzerland. Our analysis includes a comparison of results based on Bayesian and classical (non-Bayesian) methods of inference. We also provide code (based on the R software program) for conducting Bayesian and classical analyses of site-occupancy data.
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the mo
PAC-Bayesian Analysis of the Exploration-Exploitation Trade-off
Seldin, Yevgeny; Laviolette, François; Auer, Peter; Shawe-Taylor, John; Peters, Jan
2011-01-01
We develop a coherent framework for integrative simultaneous analysis of the exploration-exploitation and model order selection trade-offs. We improve over our preceding results on the same subject (Seldin et al., 2011) by combining PAC-Bayesian analysis with Bernstein-type inequality for martingales. Such a combination is also of independent interest for studies of multiple simultaneously evolving martingales.
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
PUNJABI TEXT CLUSTERING BY SENTENCE STRUCTURE ANALYSIS
Directory of Open Access Journals (Sweden)
Saurabh Sharma
2012-10-01
Full Text Available Punjabi Text Document Clustering is done by analyzing the sentence structure of similar documents sharing same topics and grouping them into clusters. The prevalent algorithms in this field utilize the vector space model which treats the documents as a bag of words. The meaning in natural language inherently depends on the word sequences which are overlooked and ignored while clustering. The current paper deals with a new Punjabi text clustering algorithm named Clustering by Sentence Structure Analysis(CSSA which has been carried out on 221 Punjabi news articles available on news sites. The phrases are extracted for processing by a meticulous analysis of the structure of a sentence by applying the basic grammatical rules of Karaka. Sequences formed from phrases, are used to find the topic and for finding similarities among all documents which results in the formation of meaningful clusters.
Mugnes, J-M
2015-01-01
Spectral analysis is a powerful tool to investigate stellar properties and it has been widely used for decades now. However, the methods considered to perform this kind of analysis are mostly based on iteration among a few diagnostic lines to determine the stellar parameters. While these methods are often simple and fast, they can lead to errors and large uncertainties due to the required assumptions. Here we present a method based on Bayesian statistics to find simultaneously the best combination of effective temperature, surface gravity, projected rotational velocity, and microturbulence velocity, using all the available spectral lines. Different tests are discussed to demonstrate the strength of our method, which we apply to 54 mid-resolution spectra of field and cluster B stars obtained at the Observatoire du Mont-M\\'egantic. We compare our results with those found in the literature. Differences are seen which are well explained by the different methods used. We conclude that the B-star microturbulence ve...
Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.
Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka
2014-02-01
In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain. PMID:24246289
Pooled Bayesian meta-analysis of two Polish studies on radiation-induced cancers
International Nuclear Information System (INIS)
The robust Bayesian regression method was applied to perform meta-analysis of two independent studies on influence of low ionising radiation doses on the occurrence of fatal cancers. The re-analysed data come from occupational exposure analysis of nuclear workers in Swierk (Poland) and from ecological study of cancer risk from natural background radiation in Poland. Such two different types of data were analysed, and three popular models were tested: constant, linear and quadratic dose-response dependencies. The Bayesian model selection algorithm was used for all models. The Bayesian statistics clearly indicates that the popular linear no-threshold (LNT) assumption is not valid for presented cancer risks in the range of low doses of ionising radiation. The subject of LNT hypothesis use in radiation risk prediction and assessment is also discussed. (authors)
Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared
Mandel, Kaisey S; Friedman, Andrew S; Kirshner, Robert P
2009-01-01
We present a comprehensive statistical analysis of the properties of Type Ia SN light curves in the near infrared using recent data from PAIRITEL and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction and intrinsic variations, for coherent statistical inference. SN Ia light curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR dataset. The logical structure of the hierarchical Bayesian model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient MCMC algorithm exploiting the conditional structure using Gibbs sampling. We apply this framework to the JHK_s SN Ia light curve data. A new light curve model captures the observed J-band light curve shape variations. The intrinsic variances in peak absolute magnitudes are: sigm...
A Bayesian analysis of extrasolar planet data for HD 208487
Gregory, P. C.
2005-01-01
Precision radial velocity data for HD 208487 has been re-analyzed using a new Bayesian multi-planet Kepler periodogram. The periodgram employs a parallel tempering Markov chain Monte Carlo algorithm with a novel statistical control system. We confirm the previously reported orbit (Tinney et al. 2005) of 130 days. In addition, we conclude there is strong evidence for a second planet with a period of 998 -62 +57 days, an eccentricity of 0.19 -0.18 +0.05, and an M sin i = 0.46 -0.13 +0.05 of Jup...
Bayesian Analysis of Demand Elasticity in the Italian Electricity Market
Maria Chiara D'Errico; Carlo Andrea Bollino
2015-01-01
The liberalization of the Italian electricity market is a decade old. Within these last ten years, the supply side has been extensively analyzed, but not the demand side. The aim of this paper is to provide a new method for estimation of the demand elasticity, based on Bayesian methods applied to the Italian electricity market. We used individual demand bids data in the day-ahead market in the Italian Power Exchange (IPEX), for 2011, in order to construct an aggregate demand function at the h...
Risk Analysis of New Product Development Using Bayesian Networks
Directory of Open Access Journals (Sweden)
MohammadRahim Ramezanian
2012-06-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios..
Bayesian Analysis of Demand Elasticity in the Italian Electricity Market
Directory of Open Access Journals (Sweden)
Maria Chiara D'Errico
2015-09-01
Full Text Available The liberalization of the Italian electricity market is a decade old. Within these last ten years, the supply side has been extensively analyzed, but not the demand side. The aim of this paper is to provide a new method for estimation of the demand elasticity, based on Bayesian methods applied to the Italian electricity market. We used individual demand bids data in the day-ahead market in the Italian Power Exchange (IPEX, for 2011, in order to construct an aggregate demand function at the hourly level. We took into account the existence of both elastic and inelastic bidders on the demand side. The empirical results show that elasticity varies significantly during the day and across periods of the year. In addition, the elasticity hourly distribution is clearly skewed and more so in the daily hours. The Bayesian method is a useful tool for policy-making, insofar as the regulator can start with a priori historical information on market behavior and estimate actual market outcomes in response to new policy actions.
Exclusive breastfeeding practice in Nigeria: a bayesian stepwise regression analysis.
Gayawan, Ezra; Adebayo, Samson B; Chitekwe, Stanley
2014-11-01
Despite the importance of breast milk, the prevalence of exclusive breastfeeding (EBF) in Nigeria is far lower than what has been recommended for developing countries. Worse still, the practise has been on downward trend in the country recently. This study was aimed at investigating the determinants and geographical variations of EBF in Nigeria. Any intervention programme would require a good knowledge of factors that enhance the practise. A pooled data set from Nigeria Demographic and Health Survey conducted in 1999, 2003, and 2008 were analyzed using a Bayesian stepwise approach that involves simultaneous selection of variables and smoothing parameters. Further, the approach allows for geographical variations at a highly disaggregated level of states to be investigated. Within a Bayesian context, appropriate priors are assigned on all the parameters and functions. Findings reveal that education of women and their partners, place of delivery, mother's age at birth, and current age of child are associated with increasing prevalence of EBF. However, visits for antenatal care during pregnancy are not associated with EBF in Nigeria. Further, results reveal considerable geographical variations in the practise of EBF. The likelihood of exclusively breastfeeding children are significantly higher in Kwara, Kogi, Osun, and Oyo states but lower in Jigawa, Katsina, and Yobe. Intensive interventions that can lead to improved practise are required in all states in Nigeria. The importance of breastfeeding needs to be emphasized to women during antenatal visits as this can encourage and enhance the practise after delivery. PMID:24619227
Bayesian analysis of deterministic and stochastic prisoner's dilemma games
Directory of Open Access Journals (Sweden)
Howard Kunreuther
2009-08-01
Full Text Available This paper compares the behavior of individuals playing a classic two-person deterministic prisoner's dilemma (PD game with choice data obtained from repeated interdependent security prisoner's dilemma games with varying probabilities of loss and the ability to learn (or not learn about the actions of one's counterpart, an area of recent interest in experimental economics. This novel data set, from a series of controlled laboratory experiments, is analyzed using Bayesian hierarchical methods, the first application of such methods in this research domain. We find that individuals are much more likely to be cooperative when payoffs are deterministic than when the outcomes are probabilistic. A key factor explaining this difference is that subjects in a stochastic PD game respond not just to what their counterparts did but also to whether or not they suffered a loss. These findings are interpreted in the context of behavioral theories of commitment, altruism and reciprocity. The work provides a linkage between Bayesian statistics, experimental economics, and consumer psychology.
Risk Analysis of New Product Development Using Bayesian Networks
Directory of Open Access Journals (Sweden)
Mohammad Rahim Ramezanian
2012-01-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios.
New Developments in Fuzzy Cluster Analysis
Czech Academy of Sciences Publication Activity Database
Řezanková, H.; Húsek, Dušan
Praha: Nakladatelství Oeconomica, 2009 - (Fischer, J.), s. 403-416 ISBN 978-80-245-1600-4. [AMSE 2009. International Conference on Mathematics and Statistics in Economy /12./. Uherské Hradiště (CZ), 26.08.2009-28.08.2009] R&D Projects: GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy cluster analysis * ensembles of fuzzy clustering * relationships between clusters and variables * cluster number determination Subject RIV: BB - Applied Statistics, Operational Research
Gutiérrez, Jose Manuel; San Martín, Daniel; Herrera, Sixto; Santiago Cofiño, Antonio
2016-04-01
The growing availability of spatial datasets (observations, reanalysis, and regional and global climate models) demands efficient multivariate spatial modeling techniques for many problems of interest (e.g. teleconnection analysis, multi-site downscaling, etc.). Complex networks have been recently applied in this context using graphs built from pairwise correlations between the different stations (or grid boxes) forming the dataset. However, this analysis does not take into account the full dependence structure underlying the data, gien by all possible marginal and conditional dependencies among the stations, and does not allow a probabilistic analysis of the dataset. In this talk we introduce Bayesian networks as an alternative multivariate analysis and modeling data-driven technique which allows building a joint probability distribution of the stations including all relevant dependencies in the dataset. Bayesian networks is a sound machine learning technique using a graph to 1) encode the main dependencies among the variables and 2) to obtain a factorization of the joint probability distribution of the stations given by a reduced number of parameters. For a particular problem, the resulting graph provides a qualitative analysis of the spatial relationships in the dataset (alternative to complex network analysis), and the resulting model allows for a probabilistic analysis of the dataset. Bayesian networks have been widely applied in many fields, but their use in climate problems is hampered by the large number of variables (stations) involved in this field, since the complexity of the existing algorithms to learn from data the graphical structure grows nonlinearly with the number of variables. In this contribution we present a modified local learning algorithm for Bayesian networks adapted to this problem, which allows inferring the graphical structure for thousands of stations (from observations) and/or gridboxes (from model simulations) thus providing new
A Bayesian Surrogate Model for Rapid Time Series Analysis and Application to Exoplanet Observations
Ford, Eric B; Veras, Dimitri
2011-01-01
We present a Bayesian surrogate model for the analysis of periodic or quasi-periodic time series data. We describe a computationally efficient implementation that enables Bayesian model comparison. We apply this model to simulated and real exoplanet observations. We discuss the results and demonstrate some of the challenges for applying our surrogate model to realistic exoplanet data sets. In particular, we find that analyses of real world data should pay careful attention to the effects of uneven spacing of observations and the choice of prior for the "jitter" parameter.
Application of Bayesian networks for risk analysis of MV air insulated switch operation
International Nuclear Information System (INIS)
Electricity distribution companies regard risk-based approaches as a good philosophy to address their asset management challenges, and there is an increasing trend on developing methods to support decisions where different aspects of risks are taken into consideration. This paper describes a methodology for application of Bayesian networks for risk analysis in electricity distribution system maintenance management. The methodology is used on a case analysing safety risk related to operation of MV air insulated switches. The paper summarises some challenges and benefits of using Bayesian networks as a part of distribution system maintenance management.
Bayesian Factor Analysis as a Variable-Selection Problem: Alternative Priors and Consequences.
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2016-01-01
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor-loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, Muthén & Asparouhov proposed a Bayesian structural equation modeling (BSEM) approach to explore the presence of cross loadings in CFA models. We show that the issue of determining factor-loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov's approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike-and-slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set is used to demonstrate our approach. PMID:27314566
Family Background Variables as Instruments for Education in Income Regressions: A Bayesian Analysis
Hoogerheide, Lennart; Block, Joern H.; Thurik, Roy
2012-01-01
The validity of family background variables instrumenting education in income regressions has been much criticized. In this paper, we use data from the 2004 German Socio-Economic Panel and Bayesian analysis to analyze to what degree violations of the strict validity assumption affect the estimation results. We show that, in case of moderate direct…
In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) were combined to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT). In this hybrid method, several SWAT models with different structures are first selected; next GA i...
A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data
DeSarbo, WS; Kim, Y; Fong, D
1999-01-01
We present a new Bayesian formulation of a vector multidimensional scaling procedure for the spatial analysis of binary choice data. The Gibbs sampler is gainfully employed to estimate the posterior distribution of the specified scalar products, bilinear model parameters. The computational procedure
Exact WKB analysis and cluster algebras
International Nuclear Information System (INIS)
We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
Variational Bayesian Causal Connectivity Analysis for fMRI
Directory of Open Access Journals (Sweden)
Martin eLuessi
2014-05-01
Full Text Available The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressive model for the latent variables describing neuronal activity in combination with a linear observation model based on a convolution with a hemodynamic response function. Due to the employed modeling, it is possible to efficiently estimate all latent variables of the model using a variational Bayesian inference algorithm. The computational efficiency of the method enables us to apply it to large scale problems with high sampling rates and several hundred regions of interest. We use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate the performance of our method under various conditions.
Unsupervised Transient Light Curve Analysis Via Hierarchical Bayesian Inference
Sanders, Nathan; Soderberg, Alicia
2014-01-01
Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometr...
A Software Risk Analysis Model Using Bayesian Belief Network
Institute of Scientific and Technical Information of China (English)
Yong Hu; Juhua Chen; Mei Liu; Yang Yun; Junbiao Tang
2006-01-01
The uncertainty during the period of software project development often brings huge risks to contractors and clients. Ifwe can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project, we can reduce the risk.Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we built up network structure by Delphi method for conditional probability table learning, and learn update probability table and nodes' confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately. This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.
Bayesian analysis of repairable systems showing a bounded failure intensity
International Nuclear Information System (INIS)
The failure pattern of repairable mechanical equipment subject to deterioration phenomena sometimes shows a finite bound for the increasing failure intensity. A non-homogeneous Poisson process with bounded increasing failure intensity is then illustrated and its characteristics are discussed. A Bayesian procedure, based on prior information on model-free quantities, is developed in order to allow technical information on the failure process to be incorporated into the inferential procedure and to improve the inference accuracy. Posterior estimation of the model-free quantities and of other quantities of interest (such as the optimal replacement interval) is provided, as well as prediction on the waiting time to the next failure and on the number of failures in a future time interval is given. Finally, numerical examples are given to illustrate the proposed inferential procedure
Direct message passing for hybrid Bayesian networks and performance analysis
Sun, Wei; Chang, K. C.
2010-04-01
Probabilistic inference for hybrid Bayesian networks, which involves both discrete and continuous variables, has been an important research topic over the recent years. This is not only because a number of efficient inference algorithms have been developed and used maturely for simple types of networks such as pure discrete model, but also for the practical needs that continuous variables are inevitable in modeling complex systems. Pearl's message passing algorithm provides a simple framework to compute posterior distribution by propagating messages between nodes and can provides exact answer for polytree models with pure discrete or continuous variables. In addition, applying Pearl's message passing to network with loops usually converges and results in good approximation. However, for hybrid model, there is a need of a general message passing algorithm between different types of variables. In this paper, we develop a method called Direct Message Passing (DMP) for exchanging messages between discrete and continuous variables. Based on Pearl's algorithm, we derive formulae to compute messages for variables in various dependence relationships encoded in conditional probability distributions. Mixture of Gaussian is used to represent continuous messages, with the number of mixture components up to the size of the joint state space of all discrete parents. For polytree Conditional Linear Gaussian (CLG) Bayesian network, DMP has the same computational requirements and can provide exact solution as the one obtained by the Junction Tree (JT) algorithm. However, while JT can only work for the CLG model, DMP can be applied for general nonlinear, non-Gaussian hybrid model to produce approximate solution using unscented transformation and loopy propagation. Furthermore, we can scale the algorithm by restricting the number of mixture components in the messages. Empirically, we found that the approximation errors are relatively small especially for nodes that are far away from
Directory of Open Access Journals (Sweden)
Urbi Garay
2016-03-01
Full Text Available We define a dynamic and self-adjusting mixture of Gaussian Graphical Models to cluster financial returns, and provide a new method for extraction of nonparametric estimates of dynamic alphas (excess return and betas (to a choice set of explanatory factors in a multivariate setting. This approach, as well as the outputs, has a dynamic, nonstationary and nonparametric form, which circumvents the problem of model risk and parametric assumptions that the Kalman filter and other widely used approaches rely on. The by-product of clusters, used for shrinkage and information borrowing, can be of use to determine relationships around specific events. This approach exhibits a smaller Root Mean Squared Error than traditionally used benchmarks in financial settings, which we illustrate through simulation. As an illustration, we use hedge fund index data, and find that our estimated alphas are, on average, 0.13% per month higher (1.6% per year than alphas estimated through Ordinary Least Squares. The approach exhibits fast adaptation to abrupt changes in the parameters, as seen in our estimated alphas and betas, which exhibit high volatility, especially in periods which can be identified as times of stressful market events, a reflection of the dynamic positioning of hedge fund portfolio managers.
Cluster Analysis of the Malaysian Hipposideros
Sazali, Siti Nurlydia; Laman, Charlie J.; Abdullah, M. T.
2008-01-01
A preliminary study on the morphometric variations among species in the genus Hipposideros was conducted using voucher specimens from the Universiti Malaysia Sarawak (UNIMAS) Zoological Museum and the Department of Wildlife and National Park (DWNP) Kuala Lumpur. A total of 24 individuals from six species of this genus were morphologically studied where all related measurements of body, skull and dental were measured and recorded. The statistical data subjected to the cluster analysis shows that the genus Hipposideros is divided into two major clusters where each species was clearly separated. The cluster analysis among Hipposideros species is useful for aiding in species identification.
Buddhavarapu, Prasad; Smit, Andre F; Prozzi, Jorge A
2015-07-01
Permeable friction course (PFC), a porous hot-mix asphalt, is typically applied to improve wet weather safety on high-speed roadways in Texas. In order to warrant expensive PFC construction, a statistical evaluation of its safety benefits is essential. Generally, the literature on the effectiveness of porous mixes in reducing wet-weather crashes is limited and often inconclusive. In this study, the safety effectiveness of PFC was evaluated using a fully Bayesian before-after safety analysis. First, two groups of road segments overlaid with PFC and non-PFC material were identified across Texas; the non-PFC or reference road segments selected were similar to their PFC counterparts in terms of site specific features. Second, a negative binomial data generating process was assumed to model the underlying distribution of crash counts of PFC and reference road segments to perform Bayesian inference on the safety effectiveness. A data-augmentation based computationally efficient algorithm was employed for a fully Bayesian estimation. The statistical analysis shows that PFC is not effective in reducing wet weather crashes. It should be noted that the findings of this study are in agreement with the existing literature, although these studies were not based on a fully Bayesian statistical analysis. Our study suggests that the safety effectiveness of PFC road surfaces, or any other safety infrastructure, largely relies on its interrelationship with the road user. The results suggest that the safety infrastructure must be properly used to reap the benefits of the substantial investments. PMID:25897515
Figueira, P.; Faria, J. P.; Adibekyan, V. Zh.; Oshagh, M.; Santos, N. C.
2016-05-01
We apply the Bayesian framework to assess the presence of a correlation between two quantities. To do so, we estimate the probability distribution of the parameter of interest, ρ, characterizing the strength of the correlation. We provide an implementation of these ideas and concepts using python programming language and the pyMC module in a very short (˜ 130 lines of code, heavily commented) and user-friendly program. We used this tool to assess the presence and properties of the correlation between planetary surface gravity and stellar activity level as measured by the log( R^' }_{{HK}}) indicator. The results of the Bayesian analysis are qualitatively similar to those obtained via p-value analysis, and support the presence of a correlation in the data. The results are more robust in their derivation and more informative, revealing interesting features such as asymmetric posterior distributions or markedly different credible intervals, and allowing for a deeper exploration. We encourage the reader interested in this kind of problem to apply our code to his/her own scientific problems. The full understanding of what the Bayesian framework is can only be gained through the insight that comes by handling priors, assessing the convergence of Monte Carlo runs, and a multitude of other practical problems. We hope to contribute so that Bayesian analysis becomes a tool in the toolkit of researchers, and they understand by experience its advantages and limitations.
Bayesian analysis of data for a stochastic detector
Energy Technology Data Exchange (ETDEWEB)
Lesimple, M
2000-07-01
A study of the inverse problem, related to individual electron detectors for track nanodosimetry is presented. It is shown that, despite the stochastic character of these detectors, events such as the presence of clusters can be inferred from data independently of the conditions of measurement. An algorithmic reconstruction of the a priori probability distribution of ionisation is proposed. (author)
Bayesian analysis of data for a stochastic detector
International Nuclear Information System (INIS)
A study of the inverse problem, related to individual electron detectors for track nanodosimetry is presented. It is shown that, despite the stochastic character of these detectors, events such as the presence of clusters can be inferred from data independently of the conditions of measurement. An algorithmic reconstruction of the a priori probability distribution of ionisation is proposed. (author)
Towards optimal cluster power spectrum analysis
Smith, Robert E.; Marian, Laura
2016-04-01
The power spectrum of galaxy clusters is an important probe of the cosmological model. In this paper, we develop a formalism to compute the optimal weights for the estimation of the matter power spectrum from cluster power spectrum measurements. We find a closed-form analytic expression for the optimal weights, which takes into account: the cluster mass, finite survey volume effects, survey masking, and a flux limit. The optimal weights are w(M,χ ) ∝ b(M,χ )/[1+bar{n}_h(χ ) overline{b^2}(χ )overline{P}(k)], where b(M, χ) is the bias of clusters of mass M at radial position χ(z), bar{n}_h(χ ) and overline{b^2}(χ ) are the expected space density and bias squared of all clusters, and overline{P}(k) is the matter power spectrum at wavenumber k. This result is analogous to that of Percival et al. We compare our optimal weighting scheme with mass weighting and also with the original power spectrum scheme of Feldman et al. We show that our optimal weighting scheme outperforms these approaches for both volume- and flux-limited cluster surveys. Finally, we present a new expression for the Fisher information matrix for cluster power spectrum analysis. Our expression shows that for an optimally weighted cluster survey the cosmological information content is boosted, relative to the standard approach of Tegmark.
Bayesian Analysis of Cosmic Ray Propagation: Evidence against Homogeneous Diffusion
Jóhannesson, G.; Ruiz de Austri, R.; Vincent, A. C.; Moskalenko, I. V.; Orlando, E.; Porter, T. A.; Strong, A. W.; Trotta, R.; Feroz, F.; Graff, P.; Hobson, M. P.
2016-06-01
We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, \\bar{p}, and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p,\\bar{p}, and He data are significantly different from those that fit light elements, including the B/C and 10Be/9Be secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.
OVERALL SENSITIVITY ANALYSIS UTILIZING BAYESIAN NETWORK FOR THE QUESTIONNAIRE INVESTIGATION ON SNS
Tsuyoshi Aburai; Kazuhiro Takeyasu
2013-01-01
Social Networking Service (SNS) is prevailing rapidly in Japan in recent years. The most popular ones are Facebook, mixi, and Twitter, which are utilized in various fields of life together with the convenient tool such as smart-phone. In this work, a questionnaire investigation is carried out in order to clarify the current usage condition, issues and desired functions. More than 1,000 samples are gathered. Bayesian network is utilized for this analysis. Sensitivity analysis is carried out by...
Evaluating Mixture Modeling for Clustering: Recommendations and Cautions
Steinley, Douglas; Brusco, Michael J.
2011-01-01
This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…
Clustering analysis of telecommunication customers
Institute of Scientific and Technical Information of China (English)
REN Hong; ZHENG Yan; WU Ye-rong
2009-01-01
In this article, a clustering method based on genetic algorithm (GA) for telecommunication customer subdivision is presented. First, the features of telecommunication customers (such as the calling behavior and consuming behavior) are extracted. Second, the similarities between the multidimensional feature vectors of telecommunication customers are computed and mapped as the distance between samples on a two-dimensional plane. Finally, the distances are adjusted to approximate the similarities gradually by GA. One advantage of this method is the independent distribution of the sample space. The experiments demonstrate the feasibility of the proposed method.
Online Nonparametric Bayesian Activity Mining and Analysis From Surveillance Video.
Bastani, Vahid; Marcenaro, Lucio; Regazzoni, Carlo S
2016-05-01
A method for online incremental mining of activity patterns from the surveillance video stream is presented in this paper. The framework consists of a learning block in which Dirichlet process mixture model is employed for the incremental clustering of trajectories. Stochastic trajectory pattern models are formed using the Gaussian process regression of the corresponding flow functions. Moreover, a sequential Monte Carlo method based on Rao-Blackwellized particle filter is proposed for tracking and online classification as well as the detection of abnormality during the observation of an object. Experimental results on real surveillance video data are provided to show the performance of the proposed algorithm in different tasks of trajectory clustering, classification, and abnormality detection. PMID:26978823
Predicting the effect of missense mutations on protein function: analysis with Bayesian networks
Directory of Open Access Journals (Sweden)
Care Matthew A
2006-09-01
Full Text Available Abstract Background A number of methods that use both protein structural and evolutionary information are available to predict the functional consequences of missense mutations. However, many of these methods break down if either one of the two types of data are missing. Furthermore, there is a lack of rigorous assessment of how important the different factors are to prediction. Results Here we use Bayesian networks to predict whether or not a missense mutation will affect the function of the protein. Bayesian networks provide a concise representation for inferring models from data, and are known to generalise well to new data. More importantly, they can handle the noisy, incomplete and uncertain nature of biological data. Our Bayesian network achieved comparable performance with previous machine learning methods. The predictive performance of learned model structures was no better than a naïve Bayes classifier. However, analysis of the posterior distribution of model structures allows biologically meaningful interpretation of relationships between the input variables. Conclusion The ability of the Bayesian network to make predictions when only structural or evolutionary data was observed allowed us to conclude that structural information is a significantly better predictor of the functional consequences of a missense mutation than evolutionary information, for the dataset used. Analysis of the posterior distribution of model structures revealed that the top three strongest connections with the class node all involved structural nodes. With this in mind, we derived a simplified Bayesian network that used just these three structural descriptors, with comparable performance to that of an all node network.
International Nuclear Information System (INIS)
In Bayesian inference, the initial knowledge regarding the value of a parameter, before additional data are considered, is represented as a prior probability distribution. This paper describes the derivation of a prior distribution of intake that was used for the Bayesian analysis of plutonium and uranium worker doses in a recent epidemiology study. The chosen distribution is log- normal with a geometric standard deviation of 6 and a median value that is derived for each worker based on the duration of the work history and the number of reported acute intakes. The median value is a function of the work history and a constant related to activity in air concentration, M, which is derived separately for uranium and plutonium. The value of M is based primarily on measurements of plutonium and uranium in air derived from historical personal air sampler (PAS) data. However, there is significant uncertainty on the value of M that results from paucity of PAS data and from extrapolating these measurements to actual intakes. This paper compares posterior and prior distributions of intake and investigates the sensitivity of the Bayesian analyses to the assumed value of M. It is found that varying M by a factor of 10 results in a much smaller factor of 2 variation in mean intake and lung dose for both plutonium and uranium. It is concluded that if a log-normal distribution is considered to adequately represent worker intakes, then the Bayesian posterior distribution of dose is relatively insensitive to the value assumed of M. (authors)
Using Cluster Analysis to Examine Husband-Wife Decision Making
Bonds-Raacke, Jennifer M.
2006-01-01
Cluster analysis has a rich history in many disciplines and although cluster analysis has been used in clinical psychology to identify types of disorders, its use in other areas of psychology has been less popular. The purpose of the current experiments was to use cluster analysis to investigate husband-wife decision making. Cluster analysis was…
UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE
Energy Technology Data Exchange (ETDEWEB)
Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: nsanders@cfa.harvard.edu [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2015-02-10
Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.
Mugnes, J.-M.; Robert, C.
2015-11-01
Spectral analysis is a powerful tool to investigate stellar properties and it has been widely used for decades now. However, the methods considered to perform this kind of analysis are mostly based on iteration among a few diagnostic lines to determine the stellar parameters. While these methods are often simple and fast, they can lead to errors and large uncertainties due to the required assumptions. Here, we present a method based on Bayesian statistics to find simultaneously the best combination of effective temperature, surface gravity, projected rotational velocity, and microturbulence velocity, using all the available spectral lines. Different tests are discussed to demonstrate the strength of our method, which we apply to 54 mid-resolution spectra of field and cluster B stars obtained at the Observatoire du Mont-Mégantic. We compare our results with those found in the literature. Differences are seen which are well explained by the different methods used. We conclude that the B-star microturbulence velocities are often underestimated. We also confirm the trend that B stars in clusters are on average faster rotators than field B stars.
Application of Bayesian Network Learning Methods to Land Resource Evaluation
Institute of Scientific and Technical Information of China (English)
HUANG Jiejun; HE Xiaorong; WAN Youchuan
2006-01-01
Bayesian network has a powerful ability for reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to deal with prediction, classification and clustering. Firstly, this paper presented an overview of Bayesian network and its characteristics, and discussed how to learn a Bayesian network structure from given data, and then constructed a Bayesian network model for land resource evaluation with expert knowledge and the dataset. The experimental results based on the test dataset are that evaluation accuracy is 87.5%, and Kappa index is 0.826. All these prove the method is feasible and efficient, and indicate that Bayesian network is a promising approach for land resource evaluation.
Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.
Orbanz, Peter; Roy, Daniel M
2015-02-01
The natural habitat of most Bayesian methods is data represented by exchangeable sequences of observations, for which de Finetti's theorem provides the theoretical foundation. Dirichlet process clustering, Gaussian process regression, and many other parametric and nonparametric Bayesian models fall within the remit of this framework; many problems arising in modern data analysis do not. This article provides an introduction to Bayesian models of graphs, matrices, and other data that can be modeled by random structures. We describe results in probability theory that generalize de Finetti's theorem to such data and discuss their relevance to nonparametric Bayesian modeling. With the basic ideas in place, we survey example models available in the literature; applications of such models include collaborative filtering, link prediction, and graph and network analysis. We also highlight connections to recent developments in graph theory and probability, and sketch the more general mathematical foundation of Bayesian methods for other types of data beyond sequences and arrays. PMID:26353253
Learning Bayesian Networks from Correlated Data
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola
2016-05-01
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Bayesian Statistical Analysis Applied to NAA Data for Neutron Flux Spectrum Determination
Chiesa, D.; Previtali, E.; Sisti, M.
2014-04-01
In this paper, we present a statistical method, based on Bayesian statistics, to evaluate the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation analysis (NAA) experiment [A. Borio di Tigliole et al., Absolute flux measurement by NAA at the Pavia University TRIGA Mark II reactor facilities, ENC 2012 - Transactions Research Reactors, ISBN 978-92-95064-14-0, 22 (2012)] performed at the TRIGA Mark II reactor of Pavia University (Italy). In order to evaluate the neutron flux spectrum, subdivided in energy groups, we must solve a system of linear equations containing the grouped cross sections and the activation rate data. We solve this problem with Bayesian statistical analysis, including the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, is used to define the problem statistical model and solve it. The energy group fluxes and their uncertainties are then determined with great accuracy and the correlations between the groups are analyzed. Finally, the dependence of the results on the prior distribution choice and on the group cross section data is investigated to confirm the reliability of the analysis.
Kanada-En'yo, Yoshiko
2015-01-01
I investigate entanglement entropy of one dimension (1D) cluster states to discuss the delocalization of clusters in linear-chain $3\\alpha$- and $4\\alpha$-cluster states. In analysis of entanglement entropy of 1D Tohsaki-Horiuchi-Schuck-R\\"opke (THSR) and Brink-Bloch cluster wave functions, I show clear differences in the entanglement entropy between localized cluster wave functions and delocalized cluster wave functions. In order to clarify spatial regions where the entanglement entropy is g...
Figueira, P; Adibekyan, V Zh; Oshagh, M; Santos, N C
2016-01-01
We apply the Bayesian framework to assess the presence of a correlation between two quantities. To do so, we estimate the probability distribution of the parameter of interest, $\\rho$, characterizing the strength of the correlation. We provide an implementation of these ideas and concepts using python programming language and the pyMC module in a very short ($\\sim$130 lines of code, heavily commented) and user-friendly program. We used this tool to assess the presence and properties of the correlation between planetary surface gravity and stellar activity level as measured by the log($R'_{\\mathrm{HK}}$) indicator. The results of the Bayesian analysis are qualitatively similar to those obtained via p-value analysis, and support the presence of a correlation in the data. The results are more robust in their derivation and more informative, revealing interesting features such as asymmetric posterior distributions or markedly different credible intervals, and allowing for a deeper exploration. We encourage the re...
Statistical performance analysis by loopy belief propagation in Bayesian image modeling
International Nuclear Information System (INIS)
The mathematical structures of loopy belief propagation are reviewed for Bayesian image modeling from the standpoint of statistical mechanical informatics. We propose some schemes for evaluating the statistical performance of probabilistic binary image restoration. The schemes are constructed by means of the LBP, which is known as the Bethe approximation in statistical mechanics. We show some results of numerical experiments obtained by using the LBP algorithm as well as the statistical performance analysis for the probabilistic image restorations.
A Hybrid Approach for Reliability Analysis Based on Analytic Hierarchy Process and Bayesian Network
Zubair, Muhammad
2014-01-01
By using analytic hierarchy process (AHP) and Bayesian Network (BN) the present research signifies the technical and non-technical issues of nuclear accidents. The study exposed that the technical faults was one major reason of these accidents. Keep an eye on other point of view it becomes clearer that human behavior like dishonesty, insufficient training, and selfishness are also play a key role to cause these accidents. In this study, a hybrid approach for reliability analysis based on AHP ...
A Bayesian Based Functional Mixed-Effects Model for Analysis of LC-MS Data
Befekadu, Getachew K.; Tadesse, Mahlet G.; Ressom, Habtom W
2009-01-01
A Bayesian multilevel functional mixed-effects model with group specific random-effects is presented for analysis of liquid chromatography-mass spectrometry (LC-MS) data. The proposed framework allows alignment of LC-MS spectra with respect to both retention time (RT) and mass-to-charge ratio (m/z). Affine transformations are incorporated within the model to account for any variability along the RT and m/z dimensions. Simultaneous posterior inference of all unknown parameters is accomplished ...
Lu, Zhaohua; Zhu, Hongtu; Knickmeyer, Rebecca C.; Sullivan, Patrick F.; Stephanie, Williams N.; Zou, Fei
2015-01-01
The power of genome-wide association studies (GWAS) for mapping complex traits with single SNP analysis may be undermined by modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing the association between a single SNP-set and individual phenotypes have been shown to be promising for improving the power of GWAS. We propose a Bayesian latent variable selection (BLVS) method to simultaneously model the joint a...
Hongjun Xiao; Yiqi Liu; Daoping Huang
2016-01-01
Mainly due to the hostile environment in wastewater plants (WWTPs), the reliability of sensors with respect to important qualities is often poor. In this work, we present the design of a semiadaptive fault diagnosis method based on the variational Bayesian mixture factor analysis (VBMFA) to support process monitoring. The proposed method is capable of capturing strong nonlinearity and the significant dynamic feature of WWTPs that seriously limit the application of conventional multivariate st...
Caiado, C. C. S.; Goldstein, M.
2015-09-01
In this paper we present and illustrate basic Bayesian techniques for the uncertainty analysis of complex physical systems modelled by computer simulators. We focus on emulation and history matching and also discuss the treatment of observational errors and structural discrepancies in time series. We exemplify such methods using a four-box model for the termohaline circulation. We show how these methods may be applied to systems containing tipping points and how to treat possible discontinuities using multiple emulators.
Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach
Refik Soyer; M. Murat Tarimcilar
2008-01-01
In this paper, we present a modulated Poisson process model to describe and analyze arrival data to a call center. The attractive feature of this model is that it takes into account both covariate and time effects on the call volume intensity, and in so doing, enables us to assess the effectiveness of different advertising strategies along with predicting the arrival patterns. A Bayesian analysis of the model is developed and an extension of the model is presented to describe potential hetero...
conting : an R package for Bayesian analysis of complete and incomplete contingency tables
Overstall, Antony M.; Ruth King
2014-01-01
The aim of this paper is to demonstrate the R package conting for the Bayesian analysis of complete and incomplete contingency tables using hierarchical log-linear models. This package allows a user to identify interactions between categorical factors (via complete contingency tables) and to estimate closed population sizes using capture-recapture studies (via incomplete contingency tables). The models are fitted using Markov chain Monte Carlo methods. In particular, implementations of the ...
Hierarchical genetic clusters for phenotypic analysis
Directory of Open Access Journals (Sweden)
Luiza Barbosa da Matta
2015-10-01
Full Text Available Methods to obtain phenotypic information were evaluated to help breeders choosing the best methodology for analysis of genetic diversity in backcross populations. Phenotypes were simulated for 13 characteristics generated in 10 populations with 100 individuals each. Genotypic information was generated from 100 loci of which 20 were taken at random to determine the characteristics expressing two alleles. Dissimilarity measures were calculated, and genetic diversity was analyzed through hierarchical clustering and graphic projection of the distances. A backcross was performed from the two most divergent populations. A set of characteristics with variable heritability was taken into account. The environmental effect was simulated assuming . For hierarchical clusters, the following methods were used: Gower Method, average linkage within the cluster, average linkage among clusters, the furthest neighbor method, the nearest neighbor method, Ward’s method, and the median method. The environmental effect and heritability of the analyzed variables had an influence on the pattern of hierarchical clustering populations according to the backcrossed generations. The nearest neighbor method was the most efficient in reconstructing the system of backcrossing, and it presented the highest cophenetic correlation. The efficiency of the nearest neighbor method was the highest when the analysis involved characteristics of high heritability.
Dating ancient Chinese celadon porcelain by neutron activation analysis and bayesian classification
International Nuclear Information System (INIS)
Dating ancient Chinese porcelain is one of the most important and difficult problems in porcelain archaeological field. Eighteen elements in bodies of ancient celadon porcelains fired in Southern Song to Yuan period (AD 1127-1368) and Ming dynasty (AD 1368-1644), including La, Sm, U, Ce, etc., were determined by neutron activation analysis (NAA). After the outliers of experimental data were excluded and multivariate normal distribution was tested, and Bayesian classification was used for dating of 165 ancient celadon porcelain samples. The results show that 98.2% of total ancient celadon porcelain samples are classified correctly. It means that NAA and Bayesian classification are very useful for dating ancient porcelain. (authors)
Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network
Directory of Open Access Journals (Sweden)
Ying Yan
2013-01-01
Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.
Bayesian estimation of dynamic matching function for U-V analysis in Japan
Kyo, Koki; Noda, Hideo; Kitagawa, Genshiro
2012-05-01
In this paper we propose a Bayesian method for analyzing unemployment dynamics. We derive a Beveridge curve for unemployment and vacancy (U-V) analysis from a Bayesian model based on a labor market matching function. In our framework, the efficiency of matching and the elasticities of new hiring with respect to unemployment and vacancy are regarded as time varying parameters. To construct a flexible model and obtain reasonable estimates in an underdetermined estimation problem, we treat the time varying parameters as random variables and introduce smoothness priors. The model is then described in a state space representation, enabling the parameter estimation to be carried out using Kalman filter and fixed interval smoothing. In such a representation, dynamic features of the cyclic unemployment rate and the structural-frictional unemployment rate can be accurately captured.
A Bayesian analysis of rare B decays with advanced Monte Carlo methods
Energy Technology Data Exchange (ETDEWEB)
Beaujean, Frederik
2012-11-12
Searching for new physics in rare B meson decays governed by b {yields} s transitions, we perform a model-independent global fit of the short-distance couplings C{sub 7}, C{sub 9}, and C{sub 10} of the {Delta}B=1 effective field theory. We assume the standard-model set of b {yields} s{gamma} and b {yields} sl{sup +}l{sup -} operators with real-valued C{sub i}. A total of 59 measurements by the experiments BaBar, Belle, CDF, CLEO, and LHCb of observables in B{yields}K{sup *}{gamma}, B{yields}K{sup (*)}l{sup +}l{sup -}, and B{sub s}{yields}{mu}{sup +}{mu}{sup -} decays are used in the fit. Our analysis is the first of its kind to harness the full power of the Bayesian approach to probability theory. All main sources of theory uncertainty explicitly enter the fit in the form of nuisance parameters. We make optimal use of the experimental information to simultaneously constrain theWilson coefficients as well as hadronic form factors - the dominant theory uncertainty. Generating samples from the posterior probability distribution to compute marginal distributions and predict observables by uncertainty propagation is a formidable numerical challenge for two reasons. First, the posterior has multiple well separated maxima and degeneracies. Second, the computation of the theory predictions is very time consuming. A single posterior evaluation requires O(1s), and a few million evaluations are needed. Population Monte Carlo (PMC) provides a solution to both issues; a mixture density is iteratively adapted to the posterior, and samples are drawn in a massively parallel way using importance sampling. The major shortcoming of PMC is the need for cogent knowledge of the posterior at the initial stage. In an effort towards a general black-box Monte Carlo sampling algorithm, we present a new method to extract the necessary information in a reliable and automatic manner from Markov chains with the help of hierarchical clustering. Exploiting the latest 2012 measurements, the fit
A Bayesian analysis of rare B decays with advanced Monte Carlo methods
International Nuclear Information System (INIS)
Searching for new physics in rare B meson decays governed by b → s transitions, we perform a model-independent global fit of the short-distance couplings C7, C9, and C10 of the ΔB=1 effective field theory. We assume the standard-model set of b → sγ and b → sl+l- operators with real-valued Ci. A total of 59 measurements by the experiments BaBar, Belle, CDF, CLEO, and LHCb of observables in B→K*γ, B→K(*)l+l-, and Bs→μ+μ- decays are used in the fit. Our analysis is the first of its kind to harness the full power of the Bayesian approach to probability theory. All main sources of theory uncertainty explicitly enter the fit in the form of nuisance parameters. We make optimal use of the experimental information to simultaneously constrain theWilson coefficients as well as hadronic form factors - the dominant theory uncertainty. Generating samples from the posterior probability distribution to compute marginal distributions and predict observables by uncertainty propagation is a formidable numerical challenge for two reasons. First, the posterior has multiple well separated maxima and degeneracies. Second, the computation of the theory predictions is very time consuming. A single posterior evaluation requires O(1s), and a few million evaluations are needed. Population Monte Carlo (PMC) provides a solution to both issues; a mixture density is iteratively adapted to the posterior, and samples are drawn in a massively parallel way using importance sampling. The major shortcoming of PMC is the need for cogent knowledge of the posterior at the initial stage. In an effort towards a general black-box Monte Carlo sampling algorithm, we present a new method to extract the necessary information in a reliable and automatic manner from Markov chains with the help of hierarchical clustering. Exploiting the latest 2012 measurements, the fit reveals a flipped-sign solution in addition to a standard-model-like solution for the couplings Ci. The two solutions are related
Application of Bayesian graphs to SN Ia data analysis and compression
Ma, Con; Bassett, Bruce A
2016-01-01
Bayesian graphical models are an efficient tool for modelling complex data and derive self-consistent expressions of the posterior distribution of model parameters. We apply Bayesian graphs to perform statistical analyses of Type Ia supernova (SN Ia) luminosity distance measurements from the Joint Light-curve Analysis (JLA) dataset (Betoule et al. 2014, arXiv:1401.4064). In contrast to the $\\chi^2$ approach used in previous studies, the Bayesian inference allows us to fully account for the standard-candle parameter dependence of the data covariance matrix. Comparing with $\\chi^2$ analysis results we find a systematic offset of the marginal model parameter bounds. We demonstrate that the bias is statistically significant in the case of the SN Ia standardization parameters with a maximal $6\\sigma$ shift of the SN light-curve colour correction. In addition, we find that the evidence for a host galaxy correction is now only $2.4\\sigma$. Systematic offsets on the cosmological parameters remain small, but may incre...
cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model for fMRI Data Analysis
Directory of Open Access Journals (Sweden)
Adelino R. Ferreira da Silva
2011-10-01
Full Text Available Graphic processing units (GPUs are rapidly gaining maturity as powerful general parallel computing devices. A key feature in the development of modern GPUs has been the advancement of the programming model and programming tools. Compute Unified Device Architecture (CUDA is a software platform for massively parallel high-performance computing on Nvidia many-core GPUs. In functional magnetic resonance imaging (fMRI, the volume of the data to be processed, and the type of statistical analysis to perform call for high-performance computing strategies. In this work, we present the main features of the R-CUDA package cudaBayesreg which implements in CUDA the core of a Bayesian multilevel model for the analysis of brain fMRI data. The statistical model implements a Gibbs sampler for multilevel/hierarchical linear models with a normal prior. The main contribution for the increased performance comes from the use of separate threads for fitting the linear regression model at each voxel in parallel. The R-CUDA implementation of the Bayesian model proposed here has been able to reduce significantly the run-time processing of Markov chain Monte Carlo (MCMC simulations used in Bayesian fMRI data analyses. Presently, cudaBayesreg is only configured for Linux systems with Nvidia CUDA support.
Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula
Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.
2016-03-01
A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.
bspmma: An R Package for Bayesian Semiparametric Models for Meta-Analysis
Directory of Open Access Journals (Sweden)
Deborah Burr
2012-07-01
Full Text Available We introduce an R package, bspmma, which implements a Dirichlet-based random effects model specific to meta-analysis. In meta-analysis, when combining effect estimates from several heterogeneous studies, it is common to use a random-effects model. The usual frequentist or Bayesian models specify a normal distribution for the true effects. However, in many situations, the effect distribution is not normal, e.g., it can have thick tails, be skewed, or be multi-modal. A Bayesian nonparametric model based on mixtures of Dirichlet process priors has been proposed in the literature, for the purpose of accommodating the non-normality. We review this model and then describe a competitor, a semiparametric version which has the feature that it allows for a well-defined centrality parameter convenient for determining whether the overall effect is significant. This second Bayesian model is based on a different version of the Dirichlet process prior, and we call it the "conditional Dirichlet model". The package contains functions to carry out analyses based on either the ordinary or the conditional Dirichlet model, functions for calculating certain Bayes factors that provide a check on the appropriateness of the conditional Dirichlet model, and functions that enable an empirical Bayes selection of the precision parameter of the Dirichlet process. We illustrate the use of the package on two examples, and give an interpretation of the results in these two different scenarios.
Baltic sea algae analysis using Bayesian spatial statistics methods
Eglė Baltmiškytė; Kęstutis Dučinskas
2013-01-01
Spatial statistics is one of the fields in statistics dealing with spatialy spread data analysis. Recently, Bayes methods are often applied for data statistical analysis. A spatial data model for predicting algae quantity in the Baltic Sea is made and described in this article. Black Carrageen is a dependent variable and depth, sand, pebble, boulders are independent variables in the described model. Two models with different covariation functions (Gaussian and exponential) are built to estima...
SOMBI: Bayesian identification of parameter relations in unstructured cosmological data
Frank, Philipp; Enßlin, Torsten A
2016-01-01
This work describes the implementation and application of a correlation determination method based on Self Organizing Maps and Bayesian Inference (SOMBI). SOMBI aims to automatically identify relations between different observed parameters in unstructured cosmological or astrophysical surveys by automatically identifying data clusters in high-dimensional datasets via the Self Organizing Map neural network algorithm. Parameter relations are then revealed by means of a Bayesian inference within respective identified data clusters. Specifically such relations are assumed to be parametrized as a polynomial of unknown order. The Bayesian approach results in a posterior probability distribution function for respective polynomial coefficients. To decide which polynomial order suffices to describe correlation structures in data, we include a method for model selection, the Bayesian Information Criterion, to the analysis. The performance of the SOMBI algorithm is tested with mock data. As illustration we also provide ...
Implementation and experimental analysis of consensus clustering
Perc, Domen
2011-01-01
Consensus clustering is a machine learning tehnique for class discovery and clustering validation. The method uses various clustering algorithms in conjunction with different resampling tehniques for data clustering. It is based on multiple runs of clustering and sampling algorithm. Data gathered in these runs is used for clustering and for visual representation of clustering. Visual representation helps us to understand clustering results. In this thesis we compare consensus clustering with ...
Schirmer, Sophie; Langbein, Frank
2014-01-01
We compare the accuracy, precision and reliability of different methods for estimating key system parameters for two-level systems subject to Hamiltonian evolution and decoherence. It is demonstrated that the use of Bayesian modelling and maximum likelihood estimation is superior to common techniques based on Fourier analysis. Even for simple two-parameter estimation problems, the Bayesian approach yields higher accuracy and precision for the parameter estimates obtained. It requires less dat...
caBIG™ VISDA: Modeling, visualization, and discovery for cluster analysis of genomic data
Directory of Open Access Journals (Sweden)
Xuan Jianhua
2008-09-01
Full Text Available Abstract Background The main limitations of most existing clustering methods used in genomic data analysis include heuristic or random algorithm initialization, the potential of finding poor local optima, the lack of cluster number detection, an inability to incorporate prior/expert knowledge, black-box and non-adaptive designs, in addition to the curse of dimensionality and the discernment of uninformative, uninteresting cluster structure associated with confounding variables. Results In an effort to partially address these limitations, we develop the VIsual Statistical Data Analyzer (VISDA for cluster modeling, visualization, and discovery in genomic data. VISDA performs progressive, coarse-to-fine (divisive hierarchical clustering and visualization, supported by hierarchical mixture modeling, supervised/unsupervised informative gene selection, supervised/unsupervised data visualization, and user/prior knowledge guidance, to discover hidden clusters within complex, high-dimensional genomic data. The hierarchical visualization and clustering scheme of VISDA uses multiple local visualization subspaces (one at each node of the hierarchy and consequent subspace data modeling to reveal both global and local cluster structures in a "divide and conquer" scenario. Multiple projection methods, each sensitive to a distinct type of clustering tendency, are used for data visualization, which increases the likelihood that cluster structures of interest are revealed. Initialization of the full dimensional model is based on first learning models with user/prior knowledge guidance on data projected into the low-dimensional visualization spaces. Model order selection for the high dimensional data is accomplished by Bayesian theoretic criteria and user justification applied via the hierarchy of low-dimensional visualization subspaces. Based on its complementary building blocks and flexible functionality, VISDA is generally applicable for gene clustering, sample
Unavailability analysis of a PWR safety system by a Bayesian network
International Nuclear Information System (INIS)
Bayesian networks (BN) are directed acyclic graphs that have dependencies between variables, which are represented by nodes. These dependencies are represented by lines connecting the nodes and can be directed or not. Thus, it is possible to model conditional probabilities and calculate them with the help of Bayes' Theorem. The objective of this paper is to present the modeling of the failure of a safety system of a typical second generation light water reactor plant, the Containment Heat Removal System (CHRS), whose function is to cool the water of containment reservoir being recirculated through the Containment Spray Recirculation System (CSRS). CSRS is automatically initiated after a loss of coolant accident (LOCA) and together with the CHRS cools the reservoir water. The choice of this system was due to the fact that its analysis by a fault tree is available in Appendix II of the Reactor Safety Study Report (WASH-1400), and therefore all the necessary technical information is also available, such as system diagrams, failure data input and the fault tree itself that was developed to study system failure. The reason for the use of a bayesian network in this context was to assess its ability to reproduce the results of fault tree analyses and also verify the feasibility of treating dependent events. Comparing the fault trees and bayesian networks, the results obtained for the system failure were very close. (author)
Puncher, M; Birchall, A; Bull, R K
2014-12-01
In Bayesian inference, the initial knowledge regarding the value of a parameter, before additional data are considered, is represented as a prior probability distribution. This paper describes the derivation of a prior distribution of intake that was used for the Bayesian analysis of plutonium and uranium worker doses in a recent epidemiology study. The chosen distribution is log-normal with a geometric standard deviation of 6 and a median value that is derived for each worker based on the duration of the work history and the number of reported acute intakes. The median value is a function of the work history and a constant related to activity in air concentration, M, which is derived separately for uranium and plutonium. The value of M is based primarily on measurements of plutonium and uranium in air derived from historical personal air sampler (PAS) data. However, there is significant uncertainty on the value of M that results from paucity of PAS data and from extrapolating these measurements to actual intakes. This paper compares posterior and prior distributions of intake and investigates the sensitivity of the Bayesian analyses to the assumed value of M. It is found that varying M by a factor of 10 results in a much smaller factor of 2 variation in mean intake and lung dose for both plutonium and uranium. It is concluded that if a log-normal distribution is considered to adequately represent worker intakes, then the Bayesian posterior distribution of dose is relatively insensitive to the value assumed of M. PMID:24191121
International Nuclear Information System (INIS)
This paper assesses factors that potentially influence the volatility of crude oil prices and the possible linkage between this volatility and agricultural commodity markets. Stochastic volatility models are applied to weekly crude oil, corn, and wheat futures prices from November 1998 to January 2009. Model parameters are estimated using Bayesian Markov Chain Monte Carlo methods. Speculation, scalping, and petroleum inventories are found to be important in explaining the volatility of crude oil prices. Several properties of crude oil price dynamics are established, including mean-reversion, an asymmetry between returns and volatility, volatility clustering, and infrequent compound jumps. We find evidence of volatility spillover among crude oil, corn, and wheat markets after the fall of 2006. This can be largely explained by tightened interdependence between crude oil and these commodity markets induced by ethanol production.
Semi-supervised consensus clustering for gene expression data analysis
Wang, Yunli; Pan, Youlian
2014-01-01
Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...
A Dynamic Bayesian Approach to Computational Laban Shape Quality Analysis
Pavithra Sampath; Gang Qian; Ellen Campana; Todd Ingalls; Jodi James; Stjepan Rajko; Jessica Mumford; Harvey Thornburg; Dilip Swaminathan; Bo Peng
2009-01-01
Laban movement analysis (LMA) is a systematic framework for describing all forms of human movement and has been widely applied across animation, biomedicine, dance, and kinesiology. LMA (especially Effort/Shape) emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world...
Directory of Open Access Journals (Sweden)
Jinfei Liu
2013-04-01
Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..
Alves, Nelson A; Rizzi, Leandro G
2015-01-01
Microcanonical thermostatistics analysis has become an important tool to reveal essential aspects of phase transitions in complex systems. An efficient way to estimate the microcanonical inverse temperature $\\beta(E)$ and the microcanonical entropy $S(E)$ is achieved with the statistical temperature weighted histogram analysis method (ST-WHAM). The strength of this method lies on its flexibility, as it can be used to analyse data produced by algorithms with generalised sampling weights. However, for any sampling weight, ST-WHAM requires the calculation of derivatives of energy histograms $H(E)$, which leads to non-trivial and tedious binning tasks for models with continuous energy spectrum such as those for biomolecular and colloidal systems. Here, we discuss two alternative methods that avoid the need for such energy binning to obtain continuous estimates for $H(E)$ in order to evaluate $\\beta(E)$ by using ST-WHAM: (i) a series expansion to estimate probability densities from the empirical cumulative distrib...
Bayesian Analysis and Segmentation of Multichannel Image Sequences
Chang, Michael Ming Hsin
This thesis is concerned with the segmentation and analysis of multichannel image sequence data. In particular, we use maximum a posteriori probability (MAP) criterion and Gibbs random fields (GRF) to formulate the problems. We start by reviewing the significance of MAP estimation with GRF priors and study the feasibility of various optimization methods for implementing the MAP estimator. We proceed to investigate three areas where image data and parameter estimates are present in multichannels, multiframes, and interrelated in complicated manners. These areas of study include color image segmentation, multislice MR image segmentation, and optical flow estimation and segmentation in multiframe temporal sequences. Besides developing novel algorithms in each of these areas, we demonstrate how to exploit the potential of MAP estimation and GRFs, and we propose practical and efficient implementations. Illustrative examples and relevant experimental results are included.
MANNER OF STOCKS SORTING USING CLUSTER ANALYSIS METHODS
Directory of Open Access Journals (Sweden)
Jana Halčinová
2014-06-01
Full Text Available The aim of the present article is to show the possibility of using the methods of cluster analysis in classification of stocks of finished products. Cluster analysis creates groups (clusters of finished products according to similarity in demand i.e. customer requirements for each product. Manner stocks sorting of finished products by clusters is described a practical example. The resultants clusters are incorporated into the draft layout of the distribution warehouse.
Bayesian meta-analysis models for microarray data: a comparative study
Directory of Open Access Journals (Sweden)
Song Joon J
2007-03-01
Full Text Available Abstract Background With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. Results Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets
OVERALL SENSITIVITY ANALYSIS UTILIZING BAYESIAN NETWORK FOR THE QUESTIONNAIRE INVESTIGATION ON SNS
Directory of Open Access Journals (Sweden)
Tsuyoshi Aburai
2013-11-01
Full Text Available Social Networking Service (SNS is prevailing rapidly in Japan in recent years. The most popular ones are Facebook, mixi, and Twitter, which are utilized in various fields of life together with the convenient tool such as smart-phone. In this work, a questionnaire investigation is carried out in order to clarify the current usage condition, issues and desired functions. More than 1,000 samples are gathered. Bayesian network is utilized for this analysis. Sensitivity analysis is carried out by setting evidence to all items. This enables overall analysis for each item. We analyzed them by sensitivity analysis and some useful results were obtained. We have presented the paper concerning this. But the volume becomes too large, therefore we have split them and this paper shows the latter half of the investigation result by setting evidence to Bayesian Network parameters. Differences in usage objectives and SNS sites are made clear by the attributes and preference of SNS users. They can be utilized effectively for marketing by clarifying the target customer through the sensitivity analysis.
Transdimensional Bayesian approach to pulsar timing noise analysis
Ellis, J. A.; Cornish, N. J.
2016-04-01
The modeling of intrinsic noise in pulsar timing residual data is of crucial importance for gravitational wave detection and pulsar timing (astro)physics in general. The noise budget in pulsars is a collection of several well-studied effects including radiometer noise, pulse-phase jitter noise, dispersion measure variations, and low-frequency spin noise. However, as pulsar timing data continue to improve, nonstationary and non-power-law noise terms are beginning to manifest which are not well modeled by current noise analysis techniques. In this work, we use a transdimensional approach to model these nonstationary and non-power-law effects through the use of a wavelet basis and an interpolation-based adaptive spectral modeling. In both cases, the number of wavelets and the number of control points in the interpolated spectrum are free parameters that are constrained by the data and then marginalized over in the final inferences, thus fully incorporating our ignorance of the noise model. We show that these new methods outperform standard techniques when nonstationary and non-power-law noise is present. We also show that these methods return results consistent with the standard analyses when no such signals are present.
Brane inflation and the WMAP data: a Bayesian analysis
International Nuclear Information System (INIS)
The Wilkinson Microwave Anisotropy Probe (WMAP) constraints on string inspired 'brane inflation' are investigated. Here, the inflaton field is interpreted as the distance between two branes placed in a flux-enriched background geometry and has a Dirac–Born–Infeld (DBI) kinetic term. Our method relies on an exact numerical integration of the inflationary power spectra coupled to a Markov chain Monte Carlo exploration of the parameter space. This analysis is valid for any perturbative value of the string coupling constant and of the string length, and includes a phenomenological modelling of the reheating era to describe the post-inflationary evolution. It is found that the data favour a scenario where inflation stops by violation of the slow-roll conditions well before brane annihilation, rather than by tachyonic instability. As regards the background geometry, it is established that logv>−10 at 95% confidence level (CL), where v is the dimensionless ratio of the five-dimensional sub-manifold at the base of the six-dimensional warped conifold geometry to the volume of the unit 5-sphere. The reheating energy scale remains poorly constrained, Treh>20 GeV at 95% CL, for an extreme equation of state (wreh∼>-1/3) only. Assuming that the string length is known, the favoured values of the string coupling and of the Ramond–Ramond total background charge appear to be correlated. Finally, the stochastic regime (without and with volume effects) is studied using a perturbative treatment of the Langevin equation. The validity of such an approximate scheme is discussed and shown to be too limited for a full characterization of the quantum effects
CLUSTERING-BASED ANALYSIS OF TEXT SIMILARITY
Bovcon , Borja
2013-01-01
The focus of this thesis is comparison of analysis of text-document similarity using clustering algorithms. We begin by defining main problem and then, we proceed to describe the two most used text-document representation techniques, where we present words filtering methods and their importance, Porter's algorithm and tf-idf term weighting algorithm. We then proceed to apply all previously described algorithms on selected data-sets, which vary in size and compactness. Fallowing this, we ...
Javier Saavedra; Tereza Aparecida Silva; Freddy Mora; Carlos Alberto Scapim
2013-01-01
Several studies have confirmed that popcorn (Zea mays L. var. everta) has a narrow genetic basis, which affects the quality of breeding programs. In this study, we present a genetic characterization of 420 individuals representing 28 popcorn populations from Brazilian germplasm banks. All individuals were genotyped using 11 microsatellite markers from the Maize Genetics and Genomics Database. A Bayesian clustering approach via Monte Carlo Markov chains was performed to examine the genetic dif...
Intelligent Pattern Mining and Data Clustering for Pattern Cluster Analysis using Cancer Data
Directory of Open Access Journals (Sweden)
G.Raj Kumar
2010-12-01
Full Text Available Data mining techniques are used for the knowledge discovery process under the large data set environment. Clustering techniques are used to group up the relevant data sets. Hierarchical and partitioned clustering techniques are used for the clustering process. The clustering process is the complex task with high process time. The pattern extraction scheme is applied to find frequent item sets. Association rule mining techniques are applied to carry out the pattern extraction process. The pattern extraction scheme and the clustering scheme are integrated in the simultaneous pattern extraction and clustering scheme. The clustering process is improved with pattern comparison and transaction transfer process. The simultaneous clustering scheme is implemented to analyze the cancer patient diagnosis reports. The system is implemented as four major modules data set management, pattern extraction, clustering process and performance analysis. The data sets are preprocessed before the pattern extraction process. The patterns are used in the simultaneous clustering process. The performance analysis is done with the comparison of the data clustering scheme and pattern clustering schemes. The process time and memory factors are used in the performance analysis process. The cluster accuracy is represented using the fitness values. The system is enhanced with the K-means clustering algorithm.
ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.
Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi
2015-01-01
Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks. PMID:26357321
Revisiting k-means: New Algorithms via Bayesian Nonparametrics
Kulis, Brian; Jordan, Michael I.
2011-01-01
Bayesian models offer great flexibility for clustering applications---Bayesian nonparametrics can be used for modeling infinite mixtures, and hierarchical Bayesian models can be utilized for sharing clusters across multiple data sets. For the most part, such flexibility is lacking in classical clustering methods such as k-means. In this paper, we revisit the k-means clustering algorithm from a Bayesian nonparametric viewpoint. Inspired by the asymptotic connection between k-means and mixtures...
CO MPARATIVE STUDY OF CLUSTERING TECHNIQUES IN MULTIVARIATE DATA ANALYSIS
Sabba Ruhi; Md. Shamim Reza
2015-01-01
In present, Clustering techniques is a standard tool in several exploratory pattern - analysis, grouping, decision making, and machine - learning situations; including data mining, document retrieval, image segmentation, pattern recognition and in the field of artificial intelligenc e. In this study we have compared five different types of clustering techniques such as Fuzzy clustering, K - Means clustering, Hierarc...
BayesLCA: An R Package for Bayesian Latent Class Analysis
Directory of Open Access Journals (Sweden)
Arthur White
2014-11-01
Full Text Available The BayesLCA package for R provides tools for performing latent class analysis within a Bayesian setting. Three methods for fitting the model are provided, incorporating an expectation-maximization algorithm, Gibbs sampling and a variational Bayes approximation. The article briefly outlines the methodology behind each of these techniques and discusses some of the technical difficulties associated with them. Methods to remedy these problems are also described. Visualization methods for each of these techniques are included, as well as criteria to aid model selection.
Filipponi, A.; Di Cicco, A.; Principi, E.
2012-12-01
A Bayesian data-analysis approach to data sets of maximum undercooling temperatures recorded in repeated melting-cooling cycles of high-purity samples is proposed. The crystallization phenomenon is described in terms of a nonhomogeneous Poisson process driven by a temperature-dependent sample nucleation rate J(T). The method was extensively tested by computer simulations and applied to real data for undercooled liquid Ge. It proved to be particularly useful in the case of scarce data sets where the usage of binned data would degrade the available experimental information.
Cluster Analysis in Rapeseed (Brassica Napus L.)
International Nuclear Information System (INIS)
With widening edible deficit, Kenya has become increasingly dependent on imported edible oils. Many oilseed crops (e.g. sunflower, soya beans, rapeseed/mustard, sesame, groundnuts etc) can be grown in Kenya. But oilseed rape is preferred because it very high yielding (1.5 tons-4.0 tons/ha) with oil content of 42-46%. Other uses include fitting in various cropping systems as; relay/inter crops, rotational crops, trap crops and fodder. It is soft seeded hence oil extraction is relatively easy. The meal is high in protein and very useful in livestock supplementation. Rapeseed can be straight combined using adjusted wheat combines. The priority is to expand domestic oilseed production, hence the need to introduce improved rapeseed germplasm from other countries. The success of any crop improvement programme depends on the extent of genetic diversity in the material. Hence, it is essential to understand the adaptation of introduced genotypes and the similarities if any among them. Evaluation trials were carried out on 17 rapeseed genotypes (nine Canadian origin and eight of European origin) grown at 4 locations namely Endebess, Njoro, Timau and Mau Narok in three years (1992, 1993 and 1994). Results for 1993 were discarded due to severe drought. An analysis of variance was carried out only on seed yields and the treatments were found to be significantly different. Cluster analysis was then carried out on mean seed yields and based on this analysis; only one major group exists within the material. In 1992, varieties 2,3,8 and 9 didn't fall in the same cluster as the rest. Variety 8 was the only one not classified with the rest of the Canadian varieties. Three European varieties (2,3 and 9) were however not classified with the others. In 1994, varieties 10 and 6 didn't fall in the major cluster. Of these two, variety 10 is of Canadian origin. Varieties were more similar in 1994 than 1992 due to favorable weather. It is evident that, genotypes from different geographical
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Directory of Open Access Journals (Sweden)
Fang Yan
Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.
Chaotic map clustering algorithm for EEG analysis
Bellotti, R.; De Carlo, F.; Stramaglia, S.
2004-03-01
The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.
Clustering Analysis within Text Classification Techniques
Directory of Open Access Journals (Sweden)
Madalina ZURINI
2011-01-01
Full Text Available The paper represents a personal approach upon the main applications of classification which are presented in the area of knowledge based society by means of methods and techniques widely spread in the literature. Text classification is underlined in chapter two where the main techniques used are described, along with an integrated taxonomy. The transition is made through the concept of spatial representation. Having the elementary elements of geometry and the artificial intelligence analysis, spatial representation models are presented. Using a parallel approach, spatial dimension is introduced in the process of classification. The main clustering methods are described in an aggregated taxonomy. For an example, spam and ham words are clustered and spatial represented, when the concepts of spam, ham and common and linkage word are presented and explained in the xOy space representation.
Data Clustering Analysis Based on Wavelet Feature Extraction
Institute of Scientific and Technical Information of China (English)
QIANYuntao; TANGYuanyan
2003-01-01
A novel wavelet-based data clustering method is presented in this paper, which includes wavelet feature extraction and cluster growing algorithm. Wavelet transform can provide rich and diversified information for representing the global and local inherent structures of dataset. therefore, it is a very powerful tool for clustering feature extraction. As an unsupervised classification, the target of clustering analysis is dependent on the specific clustering criteria. Several criteria that should be con-sidered for general-purpose clustering algorithm are pro-posed. And the cluster growing algorithm is also con-structed to connect clustering criteria with wavelet fea-tures. Compared with other popular clustering methods,our clustering approach provides multi-resolution cluster-ing results,needs few prior parameters, correctly deals with irregularly shaped clusters, and is insensitive to noises and outliers. As this wavelet-based clustering method isaimed at solving two-dimensional data clustering prob-lem, for high-dimensional datasets, self-organizing mapand U-matrlx method are applied to transform them intotwo-dimensional Euclidean space, so that high-dimensional data clustering analysis,Results on some sim-ulated data and standard test data are reported to illus-trate the power of our method.
AMI Consortium; Shimwell, Timothy W.; Carpenter, John M.; Feroz, Farhan; Grainge, Keith J. B.; Hobson, Michael P.; Hurley-Walker, Natasha; Lasenby, Anthony N.; Olamaie, Malak; Perrott, Yvette C.; Pooley, Guy G.; Rodríguez-Gonzálvez, Carmen; Rumsey, Clare; Saunders, Richard D. E.; Schammel, Michel P.; Scott, Paul F.; Titterington, David J.; Waldram, Elizabeth M.
2013-08-01
We present Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of a massive galaxy cluster discovered in the Arcminute Microkelvin Imager (AMI) blind Sunyaev-Zel'dovich (SZ) survey. Without knowledge of the cluster redshift a Bayesian analysis of the AMI, CARMA and joint AMI and CARMA uv-data is used to quantify the detection significance and parametrize both the physical and observational properties of the cluster whilst accounting for the statistics of primary cosmic microwave background anisotropies, receiver noise and radio sources. The joint analysis of the AMI and CARMA uv-data was performed with two parametric physical cluster models: the β-model; and the model described in Olamaie et al. with the pressure profile fixed according to Arnaud et al. The cluster mass derived from these different models is comparable but our Bayesian evidences indicate a preference for the β-profile which we, therefore, use throughout our analysis. From the CARMA data alone we obtain a formal Bayesian probability of detection ratio of 12.8:1 when assuming that a cluster exists within our search area; alternatively assuming that Jenkins et al. accurately predict the number of clusters as a function of mass and redshift, the formal Bayesian probability of detection is 0.29:1. From the Bayesian analysis of the AMI or AMI and CARMA data the probability of detection ratio exceeds 4.5 × 103:1. Performing a joint analysis of the AMI and CARMA data with a physical cluster model we derive the total mass internal to r200 as MT, 200 = 4.1 ± 1.1 × 1014 M⊙. Using a phenomenological β-model to quantify the temperature decrement as a function of angular distance we find a central SZ temperature decrement of 170 ± 24 μK in the AMI and CARMA data. The SZ decrement in the CARMA data is weaker than expected and we speculate that this is a consequence of the cluster morphology. In a forthcoming study the pipeline that we have developed for the analyses of these
Bayesian analysis of esophageal cancer mortality in the presence of misclassification
Directory of Open Access Journals (Sweden)
Mohamad Amin Pourhoseingholi
2011-12-01
Full Text Available
Background: Esophageal cancer (EC is one of the most common cancers worldwide. Mortality is a familiar projection that addresses the burden of cancers. With regards to cancer mortality, data are important and used to monitor the effects of screening programs, earlier diagnosis and other prognostic factors. But according to the Iranian death registry, about 20% of death statistics are still recorded in misclassified categories. The aim of this study is to estimate EC mortality in the Iranian population, using a Bayesian approach in order to revise this misclassification.
Methods: We analyzed National death Statistics reported by the Iranian Ministry of Health and Medical Education from 1995 to 2004. ECs [ICD-9; C15] were expressed as annual mortality rates/100,000, overall, by sex, by age group and age standardized rate (ASR. The Bayesian approach was used to correct and account for misclassification effects in Poisson count regression, with a beta prior employed to estimate the mortality rate of EC in age and sex groups.
Results: According to the Bayesian analysis, there were between 20 to 30 percent underreported deaths in mortality records related to EC, and the rate of mortality from EC has increased through recent years.
Conclusions: Our findings suggested a substantial undercount of EC mortality in the Iranian population. So
policy makers who determine research and treatment priorities based on reported death rates should notice of this underreported data.
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. PMID:26433361
Application of evidence theory in information fusion of multiple sources in bayesian analysis
Institute of Scientific and Technical Information of China (English)
周忠宝; 蒋平; 武小悦
2004-01-01
How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form could be easily known in some certain way while the parameters are hard to determine. In this paper, based on the evidence theory, a new method is presented to fuse the information of multiple sources and determine the parameters of the prior distribution when the form is known. By taking the prior distributions which result from the information of multiple sources and converting them into corresponding mass functions which can be combined by Dempster-Shafer (D-S) method, we get the combined mass function and the representative points of the prior distribution. These points are used to fit with the given distribution form to determine the parameters of the prior distrbution. And then the fused prior distribution is obtained and Bayesian analysis can be performed.How to convert the prior distributions into mass functions properly and get the representative points of the fused prior distribution is the central question we address in this paper. The simulation example shows that the proposed method is effective.
BayGO: Bayesian analysis of ontology term enrichment in microarray data
Directory of Open Access Journals (Sweden)
Gomes Suely L
2006-02-01
Full Text Available Abstract Background The search for enriched (aka over-represented or enhanced ontology terms in a list of genes obtained from microarray experiments is becoming a standard procedure for a system-level analysis. This procedure tries to summarize the information focussing on classification designs such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes. Although it is well known in statistics that association and significance are distinct concepts, only the former approach has been used to deal with the ontology term enrichment problem. Results BayGO implements a Bayesian approach to search for enriched terms from microarray data. The R source-code is freely available at http://blasto.iq.usp.br/~tkoide/BayGO in three versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock response dataset, since this stress triggers known system-level responses. Conclusion The Bayesian model accounts for the fact that, eventually, not all the genes from a given category are observable in microarray data due to low intensity signal, quality filters, genes that were not spotted and so on. Moreover, BayGO allows one to measure the statistical association between generic ontology terms and differential expression, instead of working only with the common significance analysis.
Integrative Bayesian analysis of neuroimaging-genetic data with application to cocaine dependence.
Azadeh, Shabnam; Hobbs, Brian P; Ma, Liangsuo; Nielsen, David A; Moeller, F Gerard; Baladandayuthapani, Veerabhadran
2016-01-15
Neuroimaging and genetic studies provide distinct and complementary information about the structural and biological aspects of a disease. Integrating the two sources of data facilitates the investigation of the links between genetic variability and brain mechanisms among different individuals for various medical disorders. This article presents a general statistical framework for integrative Bayesian analysis of neuroimaging-genetic (iBANG) data, which is motivated by a neuroimaging-genetic study in cocaine dependence. Statistical inference necessitated the integration of spatially dependent voxel-level measurements with various patient-level genetic and demographic characteristics under an appropriate probability model to account for the multiple inherent sources of variation. Our framework uses Bayesian model averaging to integrate genetic information into the analysis of voxel-wise neuroimaging data, accounting for spatial correlations in the voxels. Using multiplicity controls based on the false discovery rate, we delineate voxels associated with genetic and demographic features that may impact diffusion as measured by fractional anisotropy (FA) obtained from DTI images. We demonstrate the benefits of accounting for model uncertainties in both model fit and prediction. Our results suggest that cocaine consumption is associated with FA reduction in most white matter regions of interest in the brain. Additionally, gene polymorphisms associated with GABAergic, serotonergic and dopaminergic neurotransmitters and receptors were associated with FA. PMID:26484829
Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data.
Yu, Zhiwen; Chen, Hantao; You, Jane; Liu, Jiming; Wong, Hau-San; Han, Guoqiang; Li, Le
2015-01-01
Performing clustering analysis is one of the important research topics in cancer discovery using gene expression profiles, which is crucial in facilitating the successful diagnosis and treatment of cancer. While there are quite a number of research works which perform tumor clustering, few of them considers how to incorporate fuzzy theory together with an optimization process into a consensus clustering framework to improve the performance of clustering analysis. In this paper, we first propose a random double clustering based cluster ensemble framework (RDCCE) to perform tumor clustering based on gene expression data. Specifically, RDCCE generates a set of representative features using a randomly selected clustering algorithm in the ensemble, and then assigns samples to their corresponding clusters based on the grouping results. In addition, we also introduce the random double clustering based fuzzy cluster ensemble framework (RDCFCE), which is designed to improve the performance of RDCCE by integrating the newly proposed fuzzy extension model into the ensemble framework. RDCFCE adopts the normalized cut algorithm as the consensus function to summarize the fuzzy matrices generated by the fuzzy extension models, partition the consensus matrix, and obtain the final result. Finally, adaptive RDCFCE (A-RDCFCE) is proposed to optimize RDCFCE and improve the performance of RDCFCE further by adopting a self-evolutionary process (SEPP) for the parameter set. Experiments on real cancer gene expression profiles indicate that RDCFCE and A-RDCFCE works well on these data sets, and outperform most of the state-of-the-art tumor clustering algorithms. PMID:26357330
Bayesian soft x-ray tomography and MHD mode analysis on HL-2A
Li, Dong; Liu, Yi; Svensson, J.; Liu, Y. Q.; Song, X. M.; Yu, L. M.; Mao, Rui; Fu, B. Z.; Deng, Wei; Yuan, B. S.; Ji, X. Q.; Xu, Yuan; Chen, Wei; Zhou, Yan; Yang, Q. W.; Duan, X. R.; Liu, Yong; HL-2A Team
2016-03-01
A Bayesian based tomography method using so-called Gaussian processes (GPs) for the emission model has been applied to the soft x-ray (SXR) diagnostics on HL-2A tokamak. To improve the accuracy of reconstructions, the standard GP is extended to a non-stationary version so that different smoothness between the plasma center and the edge can be taken into account in the algorithm. The uncertainty in the reconstruction arising from measurement errors and incapability can be fully analyzed by the usage of Bayesian probability theory. In this work, the SXR reconstructions by this non-stationary Gaussian processes tomography (NSGPT) method have been compared with the equilibrium magnetic flux surfaces, generally achieving a satisfactory agreement in terms of both shape and position. In addition, singular-value-decomposition (SVD) and Fast Fourier Transform (FFT) techniques have been applied for the analysis of SXR and magnetic diagnostics, in order to explore the spatial and temporal features of the saturated long-lived magnetohydrodynamics (MHD) instability induced by energetic particles during neutral beam injection (NBI) on HL-2A. The result shows that this ideal internal kink instability has a dominant m/n = 1/1 mode structure along with a harmonics m/n = 2/2, which are coupled near the q = 1 surface with a rotation frequency of 12 kHz.
Baldacchino, Tara; Cross, Elizabeth J.; Worden, Keith; Rowson, Jennifer
2016-01-01
Most physical systems in reality exhibit a nonlinear relationship between input and output variables. This nonlinearity can manifest itself in terms of piecewise continuous functions or bifurcations, between some or all of the variables. The aims of this paper are two-fold. Firstly, a mixture of experts (MoE) model was trained on different physical systems exhibiting these types of nonlinearities. MoE models separate the input space into homogeneous regions and a different expert is responsible for the different regions. In this paper, the experts were low order polynomial regression models, thus avoiding the need for high-order polynomials. The model was trained within a Bayesian framework using variational Bayes, whereby a novel approach within the MoE literature was used in order to determine the number of experts in the model. Secondly, Bayesian sensitivity analysis (SA) of the systems under investigation was performed using the identified probabilistic MoE model in order to assess how uncertainty in the output can be attributed to uncertainty in the different inputs. The proposed methodology was first tested on a bifurcating Duffing oscillator, and it was then applied to real data sets obtained from the Tamar and Z24 bridges. In all cases, the MoE model was successful in identifying bifurcations and different physical regimes in the data by accurately dividing the input space; including identifying boundaries that were not parallel to coordinate axes.
Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures.
Moore, Brian R; Höhna, Sebastian; May, Michael R; Rannala, Bruce; Huelsenbeck, John P
2016-08-23
Bayesian analysis of macroevolutionary mixtures (BAMM) has recently taken the study of lineage diversification by storm. BAMM estimates the diversification-rate parameters (speciation and extinction) for every branch of a study phylogeny and infers the number and location of diversification-rate shifts across branches of a tree. Our evaluation of BAMM reveals two major theoretical errors: (i) the likelihood function (which estimates the model parameters from the data) is incorrect, and (ii) the compound Poisson process prior model (which describes the prior distribution of diversification-rate shifts across branches) is incoherent. Using simulation, we demonstrate that these theoretical issues cause statistical pathologies; posterior estimates of the number of diversification-rate shifts are strongly influenced by the assumed prior, and estimates of diversification-rate parameters are unreliable. Moreover, the inability to correctly compute the likelihood or to correctly specify the prior for rate-variable trees precludes the use of Bayesian approaches for testing hypotheses regarding the number and location of diversification-rate shifts using BAMM. PMID:27512038
Directory of Open Access Journals (Sweden)
Kai Cao
2016-05-01
Full Text Available Objective: To explore the spatial-temporal interaction effect within a Bayesian framework and to probe the ecological influential factors for tuberculosis. Methods: Six different statistical models containing parameters of time, space, spatial-temporal interaction and their combination were constructed based on a Bayesian framework. The optimum model was selected according to the deviance information criterion (DIC value. Coefficients of climate variables were then estimated using the best fitting model. Results: The model containing spatial-temporal interaction parameter was the best fitting one, with the smallest DIC value (−4,508,660. Ecological analysis results showed the relative risks (RRs of average temperature, rainfall, wind speed, humidity, and air pressure were 1.00324 (95% CI, 1.00150–1.00550, 1.01010 (95% CI, 1.01007–1.01013, 0.83518 (95% CI, 0.93732–0.96138, 0.97496 (95% CI, 0.97181–1.01386, and 1.01007 (95% CI, 1.01003–1.01011, respectively. Conclusions: The spatial-temporal interaction was statistically meaningful and the prevalence of tuberculosis was influenced by the time and space interaction effect. Average temperature, rainfall, wind speed, and air pressure influenced tuberculosis. Average humidity had no influence on tuberculosis.
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. PMID:26722989
Bayesian analysis of nanodosimetric ionisation distributions due to alpha particles and protons.
De Nardo, L; Ferretti, A; Colautti, P; Grosswendt, B
2011-02-01
Track-nanodosimetry has the objective to investigate the stochastic aspect of ionisation events in particle tracks, by evaluating the probability distribution of the number of ionisations produced in a nanometric target volume positioned at distance d from a particle track. Such kind of measurements makes use of electron (or ion) gas detectors with detecting efficiencies non-uniformly distributed inside the target volume. This fact makes the reconstruction of true ionisation distributions, which correspond to an ideal efficiency of 100%, non-trivial. Bayesian unfolding has been applied to ionisation distributions produced by 5.4 MeV alpha particles and 20 MeV protons in cylindrical volumes of propane of 20 nm equivalent size, positioned at different impact parameters with respect to the primary beam. It will be shown that a Bayesian analysis performed by subdividing the target volume in sub-regions of different detection efficiencies is able to provide a good reconstruction of the true nanodosimetric ionisation distributions. PMID:21112893
A Bayesian analysis of the 69 highest energy cosmic rays detected by the Pierre Auger Observatory
Khanin, Alexander
2016-01-01
The origins of ultra-high energy cosmic rays (UHECRs) remain an open question. Several attempts have been made to cross-correlate the arrival directions of the UHECRs with catalogs of potential sources, but no definite conclusion has been reached. We report a Bayesian analysis of the 69 events from the Pierre Auger Observatory (PAO), that aims to determine the fraction of the UHECRs that originate from known AGNs in the Veron-Cety & Veron (VCV) catalog, as well as AGNs detected with the Swift Burst Alert Telescope (Swift-BAT), galaxies from the 2MASS Redshift Survey (2MRS), and an additional volume-limited sample of 17 nearby AGNs. The study makes use of a multi-level Bayesian model of UHECR injection, propagation and detection. We find that for reasonable ranges of prior parameters, the Bayes factors disfavour a purely isotropic model. For fiducial values of the model parameters, we report 68% credible intervals for the fraction of source originating UHECRs of 0.09+0.05-0.04, 0.25+0.09-0.08, 0.24+0.12-0....
Bayesian Analysis of $C_{x'}$ and $C_{z'}$ Double Polarizations in Kaon Photoproduction
Hutauruk, P T P
2010-01-01
Have been analyzed the latest experimental data for $\\gamma + p \\to K^{+} + \\Lambda$ reaction of $C_{x'}$ and $C_{z'}$ double polarizations. In theoretical calculation, all of these observables can be classified into four Legendre classes and represented by associated Legendre polynomial function itself \\cite{fasano92}. In this analysis we attempt to determine the best data model for both observables. We use the bayesian technique to select the best model by calculating the posterior probabilities and comparing the posterior among the models. The posteriors probabilities for each data model are computed using a Nested sampling integration. From this analysis we concluded that $C_{x'}$ and $C_{z'}$ double polarizations require two and three order of associated Legendre polynomials respectively to describe the data well. The extracted coefficients of each observable will also be presented. It shows the structure of baryon resonances qualitatively
DEFF Research Database (Denmark)
Burgess, Stephen; Thompson, Simon G; Andrews, G;
2010-01-01
Genetic markers can be used as instrumental variables, in an analogous way to randomization in a clinical trial, to estimate the causal relationship between a phenotype and an outcome variable. Our purpose is to extend the existing methods for such Mendelian randomization studies to the context of...... multiple genetic markers measured in multiple studies, based on the analysis of individual participant data. First, for a single genetic marker in one study, we show that the usual ratio of coefficients approach can be reformulated as a regression with heterogeneous error in the explanatory variable. This...... can be implemented using a Bayesian approach, which is next extended to include multiple genetic markers. We then propose a hierarchical model for undertaking a meta-analysis of multiple studies, in which it is not necessary that the same genetic markers are measured in each study. This provides an...
Bayesian analysis for exponential random graph models using the adaptive exchange sampler
Jin, Ick Hoon
2013-01-01
Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the issue of intractable normalizing constants encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.
Bayesian Analysis of Inertial Confinement Fusion Experiments at the National Ignition Facility
Gaffney, J A; Sonnad, V; Libby, S B
2012-01-01
We develop a Bayesian inference method that allows the efficient determination of several interesting parameters from complicated high-energy-density experiments performed on the National Ignition Facility (NIF). The model is based on an exploration of phase space using the hydrodynamic code HYDRA. A linear model is used to describe the effect of nuisance parameters on the analysis, allowing an analytic likelihood to be derived that can be determined from a small number of HYDRA runs and then used in existing advanced statistical analysis methods. This approach is applied to a recent experiment in order to determine the carbon opacity and X-ray drive; it is found that the inclusion of prior expert knowledge and fluctuations in capsule dimensions and chemical composition significantly improve the agreement between experiment and theoretical opacity calculations. A parameterisation of HYDRA results is used to test the application of both Markov chain Monte Carlo (MCMC) and genetic algorithm (GA) techniques to e...
Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.
Jin, Ick Hoon; Yuan, Ying; Liang, Faming
2013-10-01
Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency. PMID:24653788
Directory of Open Access Journals (Sweden)
Hakan Sarikaya
Full Text Available OBJECTIVE: To compare the effects of antiplatelets and anticoagulants on stroke and death in patients with acute cervical artery dissection. DESIGN: Systematic review with Bayesian meta-analysis. DATA SOURCES: The reviewers searched MEDLINE and EMBASE from inception to November 2012, checked reference lists, and contacted authors. STUDY SELECTION: Studies were eligible if they were randomised, quasi-randomised or observational comparisons of antiplatelets and anticoagulants in patients with cervical artery dissection. DATA EXTRACTION: Data were extracted by one reviewer and checked by another. Bayesian techniques were used to appropriately account for studies with scarce event data and imbalances in the size of comparison groups. DATA SYNTHESIS: Thirty-seven studies (1991 patients were included. We found no randomised trial. The primary analysis revealed a large treatment effect in favour of antiplatelets for preventing the primary composite outcome of ischaemic stroke, intracranial haemorrhage or death within the first 3 months after treatment initiation (relative risk 0.32, 95% credibility interval 0.12 to 0.63, while the degree of between-study heterogeneity was moderate (τ(2 = 0.18. In an analysis restricted to studies of higher methodological quality, the possible advantage of antiplatelets over anticoagulants was less obvious than in the main analysis (relative risk 0.73, 95% credibility interval 0.17 to 2.30. CONCLUSION: In view of these results and the safety advantages, easier usage and lower cost of antiplatelets, we conclude that antiplatelets should be given precedence over anticoagulants as a first line treatment in patients with cervical artery dissection unless results of an adequately powered randomised trial suggest the opposite.
The Rest-Frame Golenetskii Correlation via a Hierarchical Bayesian Analysis
Burgess, J Michael
2015-01-01
Gamma-ray bursts (GRBs) are characterised by a strong correlation between the instantaneous luminosity and the spectral peak energy within a burst. This correlation, which is known as the hardness-intensity correlation or the Golenetskii correlation, not only holds important clues to the physics of GRBs but is thought to have the potential to determine redshifts of bursts. In this paper, I use a hierarchical Bayesian model to study the universality of the rest-frame Golenetskii correlation and in particular I assess its use as a redshift estimator for GRBs. I find that, using a power-law prescription of the correlation, the power-law indices cluster near a common value, but have a broader variance than previously reported ($\\sim 1-2$). Furthermore, I find evidence that there is spread in intrinsic rest-frame correlation normalizations for the GRBs in our sample ($\\sim 10^{51}-10^{53}$ erg s$^{-1}$). This points towards variable physical settings of the emission (magnetic field strength, number of emitting ele...
Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale
Emmons, Scott; Gallant, Mike; Börner, Katy
2016-01-01
Notions of community quality underlie network clustering. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms -- Blondel, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 o...
Constraints on cosmic-ray propagation models from a global Bayesian analysis
Trotta, R; Moskalenko, I V; Porter, T A; de Austri, R Ruiz; Strong, A W
2010-01-01
Research in many areas of modern physics such as, e.g., indirect searches for dark matter and particle acceleration in SNR shocks, rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions, The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, that uses astrophysical information, nuclear and particle data as input to self-consistently predict ...
Bayesian analysis of flaw sizing data of the NESC III exercise
International Nuclear Information System (INIS)
Non-destructive inspections are performed to give confidence of the non-existence of flaws exceeding a certain safe limit in the inspected structural component. The principal uncertainties related to these inspections are the probability of not detecting an existing flaw larger than a given size, the probability of a false call, and the uncertainty related to the sizing of a flaw. Inspection reliability models aim to account for these uncertainties. This paper presents the analysis of sizing uncertainty of flaws for the results of the NESC III Round Robin Trials on defect-containing dissimilar metal welds. Model parameters are first estimated to characterize the sizing capabilities of various teams. A Bayesian updating of the flaw depth distribution is then demonstrated by combining information from measurement results and sizing performance
Fermi's paradox, extraterrestrial life and the future of humanity: a Bayesian analysis
Verendel, Vilhelm
2015-01-01
The Great Filter interpretation of Fermi's great silence asserts that $Npq$ is not a very large number, where $N$ is the number of potentially life-supporting planets in the observable universe, $p$ is the probability that a randomly chosen such planet develops intelligent life to the level of present-day human civilization, and $q$ is the conditional probability that it then goes on to develop a technological supercivilization visible all over the observable universe. Evidence suggests that $N$ is huge, which implies that $pq$ is very small. Hanson (1998) and Bostrom (2008) have argued that the discovery of extraterrestrial life would point towards $p$ not being small and therefore a very small $q$, which can be seen as bad news for humanity's prospects of colonizing the universe. Here we investigate whether a Bayesian analysis supports their argument, and the answer turns out to depend critically on the choice of prior distribution.
Bayesian semiparametric power spectral density estimation in gravitational wave data analysis
Edwards, Matthew C; Christensen, Nelson
2015-01-01
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with non-stationary data by breaking longer data streams into smaller and locally stationary components.
Edwards, Matthew C.; Meyer, Renate; Christensen, Nelson
2015-09-01
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.
Selection of Trusted Service Providers by Enforcing Bayesian Analysis in iVCE
Institute of Scientific and Technical Information of China (English)
GU Bao-jun; LI Xiao-yong; WANG Wei-nong
2008-01-01
The initiative of internet-based virtual computing environment (iVCE) aims to provide the end users and applications With a harmonious, trustworthy and transparent integrated computing environment which will facilitate sharing and collaborating of network resources between applications. Trust management is an elementary component for iVCE. The uncertain and dynamic characteristics of iVCE necessitate the requirement for the trust management to be subjective, historical evidence based and context dependent. This paper presents a Bayesian analysis-based trust model, which aims to secure the active agents for selecting appropriate trustod services in iVCE. Simulations are made to analyze the properties of the trust model which show that the subjective prior information influences trust evaluation a lot and the model stimulates positive interactions.
Bayesian Reliability Analysis of Non-Stationarity in Multi-agent Systems
Directory of Open Access Journals (Sweden)
TONT Gabriela
2013-05-01
Full Text Available The Bayesian methods provide information about the meaningful parameters in a statistical analysis obtained by combining the prior and sampling distributions to form the posterior distribution of theparameters. The desired inferences are obtained from this joint posterior. An estimation strategy for hierarchical models, where the resulting joint distribution of the associated model parameters cannotbe evaluated analytically, is to use sampling algorithms, known as Markov Chain Monte Carlo (MCMC methods, from which approximate solutions can be obtained. Both serial and parallel configurations of subcomponents are permitted. The capability of time-dependent method to describe a multi-state system is based on a case study, assessingthe operatial situation of studied system. The rationality and validity of the presented model are demonstrated via a case of study. The effect of randomness of the structural parameters is alsoexamined.
pyBLoCXS: Bayesian Low-Count X-ray Spectral analysis
Siemiginowska, Aneta; Kashyap, Vinay; Refsdal, Brian; van Dyk, David; Connors, Alanna; Park, Taeyoung
2012-04-01
pyBLoCXS is a sophisticated Markov chain Monte Carlo (MCMC) based algorithm designed to carry out Bayesian Low-Count X-ray Spectral (BLoCXS) analysis in the Sherpa environment. The code is a Python extension to Sherpa that explores parameter space at a suspected minimum using a predefined Sherpa model to high-energy X-ray spectral data. pyBLoCXS includes a flexible definition of priors and allows for variations in the calibration information. It can be used to compute posterior predictive p-values for the likelihood ratio test. The pyBLoCXS code has been tested with a number of simple single-component spectral models; it should be used with great care in more complex settings.
Krychowiak, M.; König, R.; Klinger, T.; Fischer, R.
2004-11-01
At the stellarator Wendelstein 7-AS (W7-AS) a spectrally resolving two channel system for the measurement of line-of-sight averaged Zeff values has been tested in preparation for its planned installation as a multichannel Zeff-profile measurement system on the stellarator Wendelstein 7-X (W7-X) which is presently under construction. The measurement is performed using the bremsstrahlung intensity in the wavelength region of ultraviolet to near infrared. The spectrally resolved measurement allows to eliminate signal contamination by line radiation. For statistical data analysis a procedure based on Bayesian probability theory has been developed. With this method it is possible to estimate the bremsstrahlung background in the measured signal and its error without the necessity to fit the spectral lines. For evaluation of the random error in Zeff the signal noise has been investigated. Furthermore, the linearity and behavior of the charge-coupled device detector at saturation has been analyzed.
Intuitive logic revisited: new data and a Bayesian mixed model meta-analysis.
Directory of Open Access Journals (Sweden)
Henrik Singmann
Full Text Available Recent research on syllogistic reasoning suggests that the logical status (valid vs. invalid of even difficult syllogisms can be intuitively detected via differences in conceptual fluency between logically valid and invalid syllogisms when participants are asked to rate how much they like a conclusion following from a syllogism (Morsanyi & Handley, 2012. These claims of an intuitive logic are at odds with most theories on syllogistic reasoning which posit that detecting the logical status of difficult syllogisms requires effortful and deliberate cognitive processes. We present new data replicating the effects reported by Morsanyi and Handley, but show that this effect is eliminated when controlling for a possible confound in terms of conclusion content. Additionally, we reanalyze three studies (n = 287 without this confound with a Bayesian mixed model meta-analysis (i.e., controlling for participant and item effects which provides evidence for the null-hypothesis and against Morsanyi and Handley's claim.
TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED
International Nuclear Information System (INIS)
We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHKs SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are σ(MJ) = 0.17 ± 0.03, σ(MH) = 0.11 ± 0.03, and σ(MKs) = 0.19 ± 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms-1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.
Linkov, Igor; Massey, Olivia; Keisler, Jeff; Rusyn, Ivan; Hartung, Thomas
2015-01-01
"Weighing" available evidence in the process of decision-making is unavoidable, yet it is one step that routinely raises suspicions: what evidence should be used, how much does it weigh, and whose thumb may be tipping the scales? This commentary aims to evaluate the current state and future roles of various types of evidence for hazard assessment as it applies to environmental health. In its recent evaluation of the US Environmental Protection Agency's Integrated Risk Information System assessment process, the National Research Council committee singled out the term "weight of evidence" (WoE) for critique, deeming the process too vague and detractive to the practice of evaluating human health risks of chemicals. Moving the methodology away from qualitative, vague and controversial methods towards generalizable, quantitative and transparent methods for appropriately managing diverse lines of evidence is paramount for both regulatory and public acceptance of the hazard assessments. The choice of terminology notwithstanding, a number of recent Bayesian WoE-based methods, the emergence of multi criteria decision analysis for WoE applications, as well as the general principles behind the foundational concepts of WoE, show promise in how to move forward and regain trust in the data integration step of the assessments. We offer our thoughts on the current state of WoE as a whole and while we acknowledge that many WoE applications have been largely qualitative and subjective in nature, we see this as an opportunity to turn WoE towards a quantitative direction that includes Bayesian and multi criteria decision analysis. PMID:25592482
Cluster analysis of word frequency dynamics
International Nuclear Information System (INIS)
This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations
Cluster analysis of word frequency dynamics
Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.
2015-01-01
This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.
A parametric Bayesian combination of local and regional information in flood frequency analysis
Seidou, O.; Ouarda, T. B. M. J.; Barbet, M.; Bruneau, P.; BobéE, B.
2006-11-01
Because of their impact on hydraulic structure design as well as on floodplain management, flood quantiles must be estimated with the highest precision given available information. If the site of interest has been monitored for a sufficiently long period (more than 30-40 years), at-site frequency analysis can be used to estimate flood quantiles with a fair precision. Otherwise, regional estimation may be used to mitigate the lack of data, but local information is then ignored. A commonly used approach to combine at-site and regional information is the linear empirical Bayes estimation: Under the assumption that both local and regional flood quantile estimators have a normal distribution, the empirical Bayesian estimator of the true quantile is the weighted average of both estimations. The weighting factor for each estimator is conversely proportional to its variance. We propose in this paper an alternative Bayesian method for combining local and regional information which provides the full probability density of quantiles and parameters. The application of the method is made with the generalized extreme values (GEV) distribution, but it can be extended to other types of extreme value distributions. In this method the prior distributions are obtained using a regional log linear regression model, and then local observations are used within a Markov chain Monte Carlo algorithm to infer the posterior distributions of parameters and quantiles. Unlike the empirical Bayesian approach the proposed method works even with a single local observation. It also relaxes the hypothesis of normality of the local quantiles probability distribution. The performance of the proposed methodology is compared to that of local, regional, and empirical Bayes estimators on three generated regional data sets with different statistical characteristics. The results show that (1) when the regional log linear model is unbiased, the proposed method gives better estimations of the GEV quantiles and
Lung scintigraphy clustering by texture analysis
International Nuclear Information System (INIS)
The efficiency of texture analysis parameters, describing the organization of grey level variations of an image, was studied for lung scintigraphic data classification. Twenty one patients received a99mTC-MAA perfusion scan and 81mKr and 127Xe ventilation scans. Scans were scaled to 64 grey levels and 100 k events for inter subject comparison. The texture index was the average of the absolute difference between a pixel and its neighbors. Energy, entropy, correlation, local homogeneity and inertia were computed using co-occurrence matrices. A principal component analysis was carried out on each parameter for each type of scan and the first principal components were selected as clustering indices. Validation was achieved by simulating 2 series of 20 increasingly heterogenous perfusion and ventilation scans. For most of the texture parameters, one principal component could summarize the patients data since it corresponded to the relative variances of 67%-88% for perfusion scans, 53%-99% for 81mKr scans and 38%-97% for 127Xe scans. The simulated series demonstrated a linear relationship between the heterogeneity and the first principal component for texture index, energy, entropy and inertia. This was not the case for correlation and local Homogeneity. We conclude that heterogeneity of lung scans may be quantified by texture analysis. The texture index is the easiest to compute and provides the most efficient results for clinical purpose. (orig.)
Gamma prior distribution selection for Bayesian analysis of failure rate and reliability
International Nuclear Information System (INIS)
It is assumed that the phenomenon under study is such that the time-to-failure may be modeled by an exponential distribution with failure rate lambda. For Bayesian analyses of the assumed model, the family of gamma distributions provides conjugate prior models for lambda. Thus, an experimenter needs to select a particular gamma model to conduct a Bayesian reliability analysis. The purpose of this report is to present a methodology that can be used to translate engineering information, experience, and judgment into a choice of a gamma prior distribution. The proposed methodology assumes that the practicing engineer can provide percentile data relating to either the failure rate or the reliability of the phenomenon being investigated. For example, the methodology will select the gamma prior distribution which conveys an engineer's belief that the failure rate lambda simultaneously satisfies the probability statements, P(lambda less than 1.0 x 10-3) equals 0.50 and P(lambda less than 1.0 x 10-5) equals 0.05. That is, two percentiles provided by an engineer are used to determine a gamma prior model which agrees with the specified percentiles. For those engineers who prefer to specify reliability percentiles rather than the failure rate percentiles illustrated above, it is possible to use the induced negative-log gamma prior distribution which satisfies the probability statements, P(R(t0) less than 0.99) equals 0.50 and P(R(t0) less than 0.99999) equals 0.95, for some operating time t0. The report also includes graphs for selected percentiles which assist an engineer in applying the procedure. 28 figures, 16 tables
International Nuclear Information System (INIS)
A domino effect is a low frequency high consequence chain of accidents where a primary accident (usually fire and explosion) in a unit triggers secondary accidents in adjacent units. High complexity and growing interdependencies of chemical infrastructures make them increasingly vulnerable to domino effects. Domino effects can be considered as time dependent processes. Thus, not only the identification of involved units but also their temporal entailment in the chain of accidents matter. More importantly, in the case of domino-induced fires which can generally last much longer compared to explosions, foreseeing the temporal evolution of domino effects and, in particular, predicting the most probable sequence of accidents (or involved units) in a domino effect can be of significance in the allocation of preventive and protective safety measures. Although many attempts have been made to identify the spatial evolution of domino effects, the temporal evolution of such accidents has been overlooked. We have proposed a methodology based on dynamic Bayesian network to model both the spatial and temporal evolutions of domino effects and also to quantify the most probable sequence of accidents in a potential domino effect. The application of the developed methodology has been demonstrated via a hypothetical fuel storage plant. - Highlights: • A Dynamic Bayesian Network methodology has been developed to model domino effects. • Considering time-dependencies, both spatial and temporal evolutions of domino effects have been modeled. • The concept of most probable sequence of accidents has been proposed instead of the most probable combination of accidents. • Using backward analysis, the most vulnerable units have been identified during a potential domino effect. • The proposed methodology does not need to identify a unique primary unit (accident) for domino effect modeling
Gamma prior distribution selection for Bayesian analysis of failure rate and reliability
Energy Technology Data Exchange (ETDEWEB)
Waller, R.A.; Johnson, M.M.; Waterman, M.S.; Martz, H.F. Jr.
1976-07-01
It is assumed that the phenomenon under study is such that the time-to-failure may be modeled by an exponential distribution with failure rate lambda. For Bayesian analyses of the assumed model, the family of gamma distributions provides conjugate prior models for lambda. Thus, an experimenter needs to select a particular gamma model to conduct a Bayesian reliability analysis. The purpose of this report is to present a methodology that can be used to translate engineering information, experience, and judgment into a choice of a gamma prior distribution. The proposed methodology assumes that the practicing engineer can provide percentile data relating to either the failure rate or the reliability of the phenomenon being investigated. For example, the methodology will select the gamma prior distribution which conveys an engineer's belief that the failure rate lambda simultaneously satisfies the probability statements, P(lambda less than 1.0 x 10/sup -3/) equals 0.50 and P(lambda less than 1.0 x 10/sup -5/) equals 0.05. That is, two percentiles provided by an engineer are used to determine a gamma prior model which agrees with the specified percentiles. For those engineers who prefer to specify reliability percentiles rather than the failure rate percentiles illustrated above, it is possible to use the induced negative-log gamma prior distribution which satisfies the probability statements, P(R(t/sub 0/) less than 0.99) equals 0.50 and P(R(t/sub 0/) less than 0.99999) equals 0.95, for some operating time t/sub 0/. The report also includes graphs for selected percentiles which assist an engineer in applying the procedure. 28 figures, 16 tables.
Reliability Analysis of I and C Architecture of Research Reactors Using Bayesian Networks
International Nuclear Information System (INIS)
The objective of this research project is to identify a configuration of architecture which gives highest availability with maintaining low cost of manufacturing. In this regard, two configurations of a single channel of RPS are formulated in the current article and BN models were constructed. Bayesian network analysis was performed to find the reliability features. This is a continuation of study towards the standardization of I and C architecture for low and medium power research reactors. This research is the continuation of study to analyze the reliability of single channel of Reactor Protection System (RPS) using Bayesian networks. The focus of research was on the development of architecture for low power research reactors. What level of reliability is sufficient for protection, safety and control systems in case of low power research reactors? There should be a level which should satisfy all the regulatory requirements as well as operational demands with optimized cost of construction. Scholars, researchers and material investigators from educational and research institutes are demanding for construction of more research reactors. In order to meet this demand and construct more units, it is necessary to do more research in various areas. The research is also needed to make a standardization of research reactor I and C architectures on the same lines of commercial power plants. The research reactors are categorized into two broad categories, Low power research reactors and medium to high power research reactors. According to IAEA TECDOC-1234, Research reactors with 0.250-2.0 MW power rating or 2.5-10 Χ 1011 n/cm2.s. flux are termed low power reactor whereas research reactors ranging from 2-10 MW power rating or 0.1-10 Χ 1013 n/cm2.s. are considered as Medium to High power research reactors. Some other standards (IAEA NP-T-5.1) define multipurpose research reactor ranging from power few hundred KW to 10 MW as low power research reactor
Bias correction and Bayesian analysis of aggregate counts in SAGE libraries
Directory of Open Access Journals (Sweden)
Briggs William M
2010-02-01
Full Text Available Abstract Background Tag-based techniques, such as SAGE, are commonly used to sample the mRNA pool of an organism's transcriptome. Incomplete digestion during the tag formation process may allow for multiple tags to be generated from a given mRNA transcript. The probability of forming a tag varies with its relative location. As a result, the observed tag counts represent a biased sample of the actual transcript pool. In SAGE this bias can be avoided by ignoring all but the 3' most tag but will discard a large fraction of the observed data. Taking this bias into account should allow more of the available data to be used leading to increased statistical power. Results Three new hierarchical models, which directly embed a model for the variation in tag formation probability, are proposed and their associated Bayesian inference algorithms are developed. These models may be applied to libraries at both the tag and aggregate level. Simulation experiments and analysis of real data are used to contrast the accuracy of the various methods. The consequences of tag formation bias are discussed in the context of testing differential expression. A description is given as to how these algorithms can be applied in that context. Conclusions Several Bayesian inference algorithms that account for tag formation effects are compared with the DPB algorithm providing clear evidence of superior performance. The accuracy of inferences when using a particular non-informative prior is found to depend on the expression level of a given gene. The multivariate nature of the approach easily allows both univariate and joint tests of differential expression. Calculations demonstrate the potential for false positive and negative findings due to variation in tag formation probabilities across samples when testing for differential expression.
A semi-parametric Bayesian model for unsupervised differential co-expression analysis
Directory of Open Access Journals (Sweden)
Medvedovic Mario
2010-05-01
Full Text Available Abstract Background Differential co-expression analysis is an emerging strategy for characterizing disease related dysregulation of gene expression regulatory networks. Given pre-defined sets of biological samples, such analysis aims at identifying genes that are co-expressed in one, but not in the other set of samples. Results We developed a novel probabilistic framework for jointly uncovering contexts (i.e. groups of samples with specific co-expression patterns, and groups of genes with different co-expression patterns across such contexts. In contrast to current clustering and bi-clustering procedures, the implicit similarity measure in this model used for grouping biological samples is based on the clustering structure of genes within each sample and not on traditional measures of gene expression level similarities. Within this framework, biological samples with widely discordant expression patterns can be placed in the same context as long as the co-clustering structure of genes is concordant within these samples. To the best of our knowledge, this is the first method to date for unsupervised differential co-expression analysis in this generality. When applied to the problem of identifying molecular subtypes of breast cancer, our method identified reproducible patterns of differential co-expression across several independent expression datasets. Sample groupings induced by these patterns were highly informative of the disease outcome. Expression patterns of differentially co-expressed genes provided new insights into the complex nature of the ERα regulatory network. Conclusions We demonstrated that the use of the co-clustering structure as the similarity measure in the unsupervised analysis of sample gene expression profiles provides valuable information about expression regulatory networks.
An analysis of hospital brand mark clusters.
Vollmers, Stacy M; Miller, Darryl W; Kilic, Ozcan
2010-07-01
This study analyzed brand mark clusters (i.e., various types of brand marks displayed in combination) used by hospitals in the United States. The brand marks were assessed against several normative criteria for creating brand marks that are memorable and that elicit positive affect. Overall, results show a reasonably high level of adherence to many of these normative criteria. Many of the clusters exhibited pictorial elements that reflected benefits and that were conceptually consistent with the verbal content of the cluster. Also, many clusters featured icons that were balanced and moderately complex. However, only a few contained interactive imagery or taglines communicating benefits. PMID:20582849
Smartness and Italian Cities. A Cluster Analysis
Directory of Open Access Journals (Sweden)
Flavio Boscacci
2014-05-01
Full Text Available Smart cities have been recently recognized as the most pleasing and attractive places to live in; due to this, both scholars and policy-makers pay close attention to this topic. Specifically, urban “smartness” has been identified by plenty of characteristics that can be grouped into six dimensions (Giffinger et al. 2007: smart Economy (competitiveness, smart People (social and human capital, smart Governance (participation, smart Mobility (both ICTs and transport, smart Environment (natural resources, and smart Living (quality of life. According to this analytical framework, in the present paper the relation between urban attractiveness and the “smart” characteristics has been investigated in the 103 Italian NUTS3 province capitals in the year 2011. To this aim, a descriptive statistics has been followed by a regression analysis (OLS, where the dependent variable measuring the urban attractiveness has been proxied by housing market prices. Besides, a Cluster Analysis (CA has been developed in order to find differences and commonalities among the province capitals.The OLS results indicate that living, people and economy are the key drivers for achieving a better urban attractiveness. Environment, instead, keeps on playing a minor role. Besides, the CA groups the province capitals a
Quartulli, Marco Francesco
2006-01-01
In this thesis, structured hierarchical Bayesian models and estimators are considered for the analysis of multidimensional datasets representing high complexity phenomena. The analysis is motivated by the problem of urban scene reconstruction and understanding from meter resolution InSAR data, observations of highly diverse, structured settlements through sophisticated, coherent radar based instruments from airborne or spaceborne platforms at distances of up to hundreds of kilometers from ...
Using Cluster Analysis for Data Mining in Educational Technology Research
Antonenko, Pavlo D.; Toy, Serkan; Niederhauser, Dale S.
2012-01-01
Cluster analysis is a group of statistical methods that has great potential for analyzing the vast amounts of web server-log data to understand student learning from hyperlinked information resources. In this methodological paper we provide an introduction to cluster analysis for educational technology researchers and illustrate its use through…
Simultaneous Two-Way Clustering of Multiple Correspondence Analysis
Hwang, Heungsun; Dillon, William R.
2010-01-01
A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is applied…
A Survey of Popular R Packages for Cluster Analysis
Flynt, Abby; Dean, Nema
2016-01-01
Cluster analysis is a set of statistical methods for discovering new group/class structure when exploring data sets. This article reviews the following popular libraries/commands in the R software language for applying different types of cluster analysis: from the stats library, the kmeans, and hclust functions; the mclust library; the poLCA…
Application of Bayesian and cost benefit risk analysis in water resources management
Varouchakis, E. A.; Palogos, I.; Karatzas, G. P.
2016-03-01
Decision making is a significant tool in water resources management applications. This technical note approaches a decision dilemma that has not yet been considered for the water resources management of a watershed. A common cost-benefit analysis approach, which is novel in the risk analysis of hydrologic/hydraulic applications, and a Bayesian decision analysis are applied to aid the decision making on whether or not to construct a water reservoir for irrigation purposes. The alternative option examined is a scaled parabolic fine variation in terms of over-pumping violations in contrast to common practices that usually consider short-term fines. The methodological steps are analytically presented associated with originally developed code. Such an application, and in such detail, represents new feedback. The results indicate that the probability uncertainty is the driving issue that determines the optimal decision with each methodology, and depending on the unknown probability handling, each methodology may lead to a different optimal decision. Thus, the proposed tool can help decision makers to examine and compare different scenarios using two different approaches before making a decision considering the cost of a hydrologic/hydraulic project and the varied economic charges that water table limit violations can cause inside an audit interval. In contrast to practices that assess the effect of each proposed action separately considering only current knowledge of the examined issue, this tool aids decision making by considering prior information and the sampling distribution of future successful audits.
Directory of Open Access Journals (Sweden)
C. Mukherjee
2011-01-01
Full Text Available Inverse modeling applications in atmospheric chemistry are increasingly addressing the challenging statistical issues of data synthesis by adopting refined statistical analysis methods. This paper advances this line of research by addressing several central questions in inverse modeling, focusing specifically on Bayesian statistical computation. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on increasingly high-resolution satellite retrievals of atmospheric chemical concentrations, we address head-on the need for integrating formal spatial statistical methods of residual error structure in global scale inversion models. We do this using analytically and computationally tractable spatial statistical models, know as conditional autoregressive spatial models, as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors in a more physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a~proof-of-concept and model assessment, and then in analysis of real MOPITT data.
Shoemaker, Christine; Espinet, Antoine; Pang, Min
2015-04-01
Models of complex environmental systems can be computationally expensive in order to describe the dynamic interactions of the many components over a sizeable time period. Diagnostics of these systems can include forward simulations of calibrated models under uncertainty and analysis of alternatives of systems management. This discussion will focus on applications of new surrogate optimization and uncertainty analysis methods to environmental models that can enhance our ability to extract information and understanding. For complex models, optimization and especially uncertainty analysis can require a large number of model simulations, which is not feasible for computationally expensive models. Surrogate response surfaces can be used in Global Optimization and Uncertainty methods to obtain accurate answers with far fewer model evaluations, which made the methods practical for computationally expensive models for which conventional methods are not feasible. In this paper we will discuss the application of the SOARS surrogate method for estimating Bayesian posterior density functions for model parameters for a TOUGH2 model of geologic carbon sequestration. We will also briefly discuss new parallel surrogate global optimization algorithm applied to two groundwater remediation sites that was implemented on a supercomputer with up to 64 processors. The applications will illustrate the use of these methods to predict the impact of monitoring and management on subsurface contaminants.
International Nuclear Information System (INIS)
We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented
Energy Technology Data Exchange (ETDEWEB)
George, J.S.; Schmidt, D.M.; Wood, C.C.
1999-02-01
We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented.
Energy Technology Data Exchange (ETDEWEB)
Itagaki, H. [Yokohama National University, Yokohama (Japan). Faculty of Engineering; Asada, H.; Ito, S. [National Aerospace Laboratory, Tokyo (Japan); Shinozuka, M.
1996-12-31
Risk assessed structural positions in a pressurized fuselage of a transport-type aircraft applied with damage tolerance design are taken up as the subject of discussion. A small number of data obtained from inspections on the positions was used to discuss the Bayesian reliability analysis that can estimate also a proper non-periodic inspection schedule, while estimating proper values for uncertain factors. As a result, time period of generating fatigue cracks was determined according to procedure of detailed visual inspections. The analysis method was found capable of estimating values that are thought reasonable and the proper inspection schedule using these values, in spite of placing the fatigue crack progress expression in a very simple form and estimating both factors as the uncertain factors. Thus, the present analysis method was verified of its effectiveness. This study has discussed at the same time the structural positions, modeling of fatigue cracks generated and develop in the positions, conditions for destruction, damage factors, and capability of the inspection from different viewpoints. This reliability analysis method is thought effective also on such other structures as offshore structures. 18 refs., 8 figs., 1 tab.
Bayesian Analysis Made Simple An Excel GUI for WinBUGS
Woodward, Philip
2011-01-01
From simple NLMs to complex GLMMs, this book describes how to use the GUI for WinBUGS - BugsXLA - an Excel add-in written by the author that allows a range of Bayesian models to be easily specified. With case studies throughout, the text shows how to routinely apply even the more complex aspects of model specification, such as GLMMs, outlier robust models, random effects Emax models, auto-regressive errors, and Bayesian variable selection. It provides brief, up-to-date discussions of current issues in the practical application of Bayesian methods. The author also explains how to obtain free so
Bayesian analysis for the Burr type XII distribution based on record values
Directory of Open Access Journals (Sweden)
Mustafa Nadar
2013-05-01
Full Text Available In this paper we reviewed and extended some results that have been derived on record values from the two parameters Burr Type XII distribution. The two parameters were assumed to be random variables and Bayes estimates were derived on the basis of a linear exponential (LINEX loss function. Estimates for future record values were derived using non Bayesian and Bayesian approaches. In the Bayesian approach we reviewed the estimators obtained by Ahmedi and Doostparast (2006 using the well known squared error loss (SEL function and we derived estimate for the future record value under LINEX loss function. A numerical example with tables and figures illustrated the findings.
Kanada-En'yo, Yoshiko
2015-01-01
I investigate entanglement entropy of one dimension (1D) cluster states to discuss the delocalization of clusters in linear-chain $3\\alpha$- and $4\\alpha$-cluster states. In analysis of entanglement entropy of 1D Tohsaki-Horiuchi-Schuck-R\\"opke (THSR) and Brink-Bloch cluster wave functions, I show clear differences in the entanglement entropy between localized cluster wave functions and delocalized cluster wave functions. In order to clarify spatial regions where the entanglement entropy is generated by the delocalization of clusters, I analyze the spatial distribution of entanglement entropy. In the linear-chain $3\\alpha$ cluster state, the delocalization occurs dominantly in a low-density tail region while it is relatively suppressed in an inner region because of Pauli blocking effect between clusters. In the linear-chain 4$\\alpha$ state having a larger system size than the linear-chain $3\\alpha$ state, the delocalization occurs in the whole system. The entanglement entropy is found to be a measure of the d...
TOURISM DESTINATION MAPPING THROUGH CLUSTER ANALYSIS
Directory of Open Access Journals (Sweden)
Ion DONA
2013-01-01
Full Text Available The concept of tourism destination appeared in theory and practice after the development of mass tourism and tourism marketing. They are theoretically “travel market units” or areas that are capable “to exist independently and efficiently in the tourism market according to the principles of marketing and the policy of tourism product”. However the main idea of which we start this paper is that the most of tourism destinations are not born naturally, they were created by implementing an efficient development management of attractions, accessibility and amenities at a specific area level. We consider that the stakeholders can intervene in an area with touristic potential to support the development of rural tourism and implement measures that can transform it in a touristic destination. With this purpose in mind we present in this paper a methodology to map the areas with rural tourism development potential by utilising cluster analysis. The case studies are the villages from Gorj County with touristic potential that have a proximity access to high value natural and/or anthropic touristic resources. The main results of our research is that in this county exists five areas where can be implemented tourism destination management plans and through which can be assured a better promotion and valorisation of rural tourism.
BayesPeak: Bayesian analysis of ChIP-seq data
Directory of Open Access Journals (Sweden)
Stark Rory
2009-09-01
Full Text Available Abstract Background High-throughput sequencing technology has become popular and widely used to study protein and DNA interactions. Chromatin immunoprecipitation, followed by sequencing of the resulting samples, produces large amounts of data that can be used to map genomic features such as transcription factor binding sites and histone modifications. Methods Our proposed statistical algorithm, BayesPeak, uses a fully Bayesian hidden Markov model to detect enriched locations in the genome. The structure accommodates the natural features of the Solexa/Illumina sequencing data and allows for overdispersion in the abundance of reads in different regions. Moreover, a control sample can be incorporated in the analysis to account for experimental and sequence biases. Markov chain Monte Carlo algorithms are applied to estimate the posterior distributions of the model parameters, and posterior probabilities are used to detect the sites of interest. Conclusion We have presented a flexible approach for identifying peaks from ChIP-seq reads, suitable for use on both transcription factor binding and histone modification data. Our method estimates probabilities of enrichment that can be used in downstream analysis. The method is assessed using experimentally verified data and is shown to provide high-confidence calls with low false positive rates.
Sandric, I.; Petropoulos, Y.; Chitu, Z.; Mihai, B.
2012-04-01
The landslide hazard analysis models takes into consideration both predisposing and triggering factors combined into a Bayesian temporal network with uncertainty propagation. The model uses as predisposing factors the first and second derivatives from DEM, the effective precipitations, runoff, lithology and land use. The latter is expressed not as land use classes, as for example CORINE, but as leaf area index. The LAI offers the advantage of modelling not just the changes from different time periods expressed in years, but also the seasonal changes in land use throughout a year. The LAI index was derived from Landsat time series images, starting from 1984 and up to 2011. All the images available for the Panatau administrative unit in Buzau County, Romania, have been downloaded from http://earthexplorer.usgs.gov, including the images with cloud cover. The model is run in a monthly time step and for each time step all the parameters values, a-priory, conditional and posterior probability are obtained and stored in a log file. The validation process uses landslides that have occurred during the period up to the active time step and checks the records of the probabilities and parameters values for those times steps with the values of the active time step. Each time a landslide has been positive identified new a-priory probabilities are recorded for each parameter. A complete log for the entire model is saved and used for statistical analysis and a NETCDF file is created
Bayesian analysis of anisotropic cosmologies: Bianchi VII_h and WMAP
McEwen, J D; Feeney, S M; Peiris, H V; Lasenby, A N
2013-01-01
We perform a definitive analysis of Bianchi VII_h cosmologies with WMAP observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky, masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky, masked W-band map of WMAP 9-year observations. In addition to the physically motivated Bianchi VII_h model, we examine phenomenological models considered in previous studies, in which the Bianchi VII_h parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fit Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evi...
International Nuclear Information System (INIS)
In the context of risk analysis under uncertainty, we focus here on the problem of estimating a so-called quantity of interest of an uncertainty analysis problem, i.e. a given feature of the probability distribution function (pdf) of the output of a deterministic model with uncertain inputs. We will stay here in a fully probabilistic setting. A common problem is how to account for epistemic uncertainty tainting the parameter of the probability distribution of the inputs. In the standard practice, this uncertainty is often neglected (plug-in approach). When a specific uncertainty assessment is made, under the basis of the available information (expertise and/or data), a common solution consists in marginalizing the joint distribution of both observable inputs and parameters of the probabilistic model (i.e. computing the predictive pdf of the inputs), then propagating it through the deterministic model. We will reinterpret this approach in the light of Bayesian decision theory, and will put into evidence that this practice leads the analyst to adopt implicitly a specific loss function which may be inappropriate for the problem under investigation, and suboptimal from a decisional perspective. These concepts are illustrated on a simple numerical example, concerning a case of flood risk assessment.
International Nuclear Information System (INIS)
The complex nature of inertial confinement fusion (ICF) experiments results in a very large number of experimental parameters which, when combined with the myriad physical models that govern target evolution, make the reliable extraction of physics from experimental campaigns very difficult. We develop an inference method that allows all important experimental parameters, and previous knowledge, to be taken into account when investigating underlying microphysics models. The result is framed as a modified χ2 analysis which is easy to implement in existing analyses, and quite portable. We present a first application to a recent convergent ablator experiment performed at the National Ignition Facility (NIF), and investigate the effect of variations in all physical dimensions of the target (very difficult to do using other methods). We show that for well characterized targets in which dimensions vary at the 0.5% level there is little effect, but 3% variations change the results of inferences dramatically. Our Bayesian method allows particular inference results to be associated with prior errors in microphysics models; in our example, tuning the carbon opacity to match experimental data (i.e. ignoring prior knowledge) is equivalent to an assumed prior error of 400% in the tabop opacity tables. This large error is unreasonable, underlining the importance of including prior knowledge in the analysis of these experiments. (paper)
Bayesian Analysis for Dynamic Generalized Linear Latent Model with Application to Tree Survival Rate
Directory of Open Access Journals (Sweden)
Yu-sheng Cheng
2014-01-01
Full Text Available Logistic regression model is the most popular regression technique, available for modeling categorical data especially for dichotomous variables. Classic logistic regression model is typically used to interpret relationship between response variables and explanatory variables. However, in real applications, most data sets are collected in follow-up, which leads to the temporal correlation among the data. In order to characterize the different variables correlations, a new method about the latent variables is introduced in this study. At the same time, the latent variables about AR (1 model are used to depict time dependence. In the framework of Bayesian analysis, parameters estimates and statistical inferences are carried out via Gibbs sampler with Metropolis-Hastings (MH algorithm. Model comparison, based on the Bayes factor, and forecasting/smoothing of the survival rate of the tree are established. A simulation study is conducted to assess the performance of the proposed method and a pika data set is analyzed to illustrate the real application. Since Bayes factor approaches vary significantly, efficiency tests have been performed in order to decide which solution provides a better tool for the analysis of real relational data sets.
Meta-analysis for 2 x 2 tables: a Bayesian approach.
Carlin, J B
1992-01-30
This paper develops and implements a fully Bayesian approach to meta-analysis, in which uncertainty about effects in distinct but comparable studies is represented by an exchangeable prior distribution. Specifically, hierarchical normal models are used, along with a parametrization that allows a unified approach to deal easily with both clinical trial and case-control study data. Monte Carlo methods are used to obtain posterior distributions for parameters of interest, integrating out the unknown parameters of the exchangeable prior or 'random effects' distribution. The approach is illustrated with two examples, the first involving a data set on the effect of beta-blockers after myocardial infarction, and the second based on a classic data set comprising 14 case-control studies on the effects of smoking on lung cancer. In both examples, rather different conclusions from those previously published are obtained. In particular, it is claimed that widely used methods for meta-analysis, which involve complete pooling of 'O-E' values, lead to understatement of uncertainty in the estimation of overall or typical effect size. PMID:1349763
Updating reliability data using feedback analysis: feasibility of a Bayesian subjective method
International Nuclear Information System (INIS)
For years, EDF has used Probabilistic Safety Assessment to evaluate a global indicator of the safety of its nuclear power plants and to optimize the performance while ensuring a certain safety level. Therefore, robustness and relevancy of PSA are very important. That is the reason why EDF wants to improve the relevancy of the reliability parameters used in these models. This article aims to propose a Bayesian approach to build PSA parameters when feedback data is not large enough to use the frequentist method. Our method is called subjective because its purpose is to give engineers pragmatic criteria to apply Bayesian in a controlled and consistent way. Using Bayesian is quite common for example in the United States, because the nuclear power plants are less standardized. Bayesian is often used with generic data as prior. So we have to adapt the general methodology within EDF context. (authors)
EM Clustering Analysis of Diabetes Patients Basic Diagnosis Index
Wu, Cai; Steinbauer, Jeffrey R.; Kuo, Grace M
2005-01-01
Cluster analysis can group similar instances into same group. Partitioning cluster assigns classes to samples without known the classes in advance. Most common algorithms are K-means and Expectation Maximization (EM). EM clustering algorithm can find number of distributions of generating data and build “mixture models”. It identifies groups that are either overlapping or varying sizes and shapes. In this project, by using EM in Machine Learning Algorithm in JAVA (WEKA) syste...
Clustering and Feature Selection using Sparse Principal Component Analysis
Luss, Ronny; d'Aspremont, Alexandre
2007-01-01
In this paper, we study the application of sparse principal component analysis (PCA) to clustering and feature selection problems. Sparse PCA seeks sparse factors, or linear combinations of the data variables, explaining a maximum amount of variance in the data while having only a limited number of nonzero coefficients. PCA is often used as a simple clustering technique and sparse factors allow us here to interpret the clusters in terms of a reduced set of variables. We begin with a brief int...
Iryna Lobach; Ruzong Fan
2012-01-01
A key component to understanding etiology of complex diseases, such as cancer, diabetes, alcohol dependence, is to investigate gene-environment interactions. This work is motivated by the following two concerns in the analysis of gene-environment interactions. First, multiple genetic markers in moderate linkage disequilibrium may be involved in susceptibility to a complex disease. Second, environmental factors may be subject to misclassification. We develop a genotype based Bayesian pseudolik...
Reefhuis, Jennita; Devine, Owen; Friedman, Jan M.; Louik, Carol; Honein, Margaret A.
2015-01-01
Objective To follow up on previously reported associations between periconceptional use of selective serotonin reuptake inhibitors (SSRIs) and specific birth defects using an expanded dataset from the National Birth Defects Prevention Study. Design Bayesian analysis combining results from independent published analyses with data from a multicenter population based case-control study of birth defects. Setting 10 centers in the United States. Participants 17 952 mothers of infants with birth de...
Toward optimal cluster power spectrum analysis
Smith, Robert E
2014-01-01
The power spectrum of galaxy clusters is an important probe of the cosmological model. In this paper we determine the optimal weighting scheme for maximizing the signal-to-noise ratio for such measurements. We find a closed form analytic expression for the optimal weights. Our expression takes into account: cluster mass, finite survey volume effects, survey masking, and a flux limit. The implementation of this weighting scheme requires knowledge of the measured cluster masses, and analytic models for the bias and space-density of clusters as a function of mass and redshift. Recent studies have suggested that the optimal method for reconstruction of the matter density field from a set of clusters is mass-weighting (Seljak et al 2009, Hamaus et al 2010, Cai et al 2011). We compare our optimal weighting scheme with this approach and also with the original power spectrum scheme of Feldman et al (1994). We show that our optimal weighting scheme outperforms these approaches for both volume- and flux-limited cluster...
No control genes required: Bayesian analysis of qRT-PCR data.
Directory of Open Access Journals (Sweden)
Mikhail V Matz
Full Text Available BACKGROUND: Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. RESULTS: In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts. Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. CONCLUSIONS: Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been
Strauss, Jillian; Miranda-Moreno, Luis F; Morency, Patrick
2013-10-01
This study proposes a two-equation Bayesian modelling approach to simultaneously study cyclist injury occurrence and bicycle activity at signalized intersections as joint outcomes. This approach deals with the potential presence of endogeneity and unobserved heterogeneities and is used to identify factors associated with both cyclist injuries and volumes. Its application to identify high-risk corridors is also illustrated. Montreal, Quebec, Canada is the application environment, using an extensive inventory of a large sample of signalized intersections containing disaggregate motor-vehicle traffic volumes and bicycle flows, geometric design, traffic control and built environment characteristics in the vicinity of the intersections. Cyclist injury data for the period of 2003-2008 is used in this study. Also, manual bicycle counts were standardized using temporal and weather adjustment factors to obtain average annual daily volumes. Results confirm and quantify the effects of both bicycle and motor-vehicle flows on cyclist injury occurrence. Accordingly, more cyclists at an intersection translate into more cyclist injuries but lower injury rates due to the non-linear association between bicycle volume and injury occurrence. Furthermore, the results emphasize the importance of turning motor-vehicle movements. The presence of bus stops and total crosswalk length increase cyclist injury occurrence whereas the presence of a raised median has the opposite effect. Bicycle activity through intersections was found to increase as employment, number of metro stations, land use mix, area of commercial land use type, length of bicycle facilities and the presence of schools within 50-800 m of the intersection increase. Intersections with three approaches are expected to have fewer cyclists than those with four. Using Bayesian analysis, expected injury frequency and injury rates were estimated for each intersection and used to rank corridors. Corridors with high bicycle volumes
Owen, R. C.; Honrath, R. E.; Merrill, J.
2003-12-01
The use of cluster analysis to group atmospheric trajectories according to similar flow paths has become a common tool in atmospheric studies. Many methods are available to conduct a cluster analysis. However, the dependence of the resulting clusters upon the specific clustering method chosen has not been fully characterized. Specifically, the use of hierarchical versus non-hierarchical clustering algorithms has received little focus. This study presents the results of two cluster analyses: one using the hierarchical clustering algorithm average linkage, and one using the non-hierarchical clustering algorithm k-means. These results demonstrate the sensitivity of this cluster analysis to the use of a hierarchical method versus a non-hierarchical method. In addition, this study analyzes methods for dealing with the vertical component of trajectories during the clustering process. The analyses were performed using a 40-year set of trajectories to the PICO-NARE station, located atop Pico Mountain in the Azores Islands in the central North Atlantic.
Schmithorst, Vincent J; Holland, Scott K
2007-03-01
A Bayesian method for functional connectivity analysis was adapted to investigate between-group differences. This method was applied in a large cohort of almost 300 children to investigate differences in boys and girls in the relationship between intelligence and functional connectivity for the task of narrative comprehension. For boys, a greater association was shown between intelligence and the functional connectivity linking Broca's area to auditory processing areas, including Wernicke's areas and the right posterior superior temporal gyrus. For girls, a greater association was shown between intelligence and the functional connectivity linking the left posterior superior temporal gyrus to Wernicke's areas bilaterally. A developmental effect was also seen, with girls displaying a positive correlation with age in the association between intelligence and the functional connectivity linking the right posterior superior temporal gyrus to Wernicke's areas bilaterally. Our results demonstrate a sexual dimorphism in the relationship of functional connectivity to intelligence in children and an increasing reliance on inter-hemispheric connectivity in girls with age. PMID:17223578
Rubio, Francisco J; Genton, Marc G
2016-06-30
We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26856806
Analysis of the Schiphol Cell Complex fire using a Bayesian belief net based model
International Nuclear Information System (INIS)
In the night of the 26 and 27 October 2005, a fire broke out in the K-Wing of the Schiphol Cell Complex near Amsterdam. Eleven of 43 occupants of this wing died due to smoke inhalation. The Dutch Safety Board analysed the fire and released a report 1 year later. This article presents how a probabilistic model based on Bayesian networks can be used to analyse such a fire. The paper emphasises the usefulness of the model for this analysis. In additional it discusses the applicability for prioritisation of the recommendations such as those posed by the investigation board for the improvements of fire safety in special buildings. The big advantage of the model is that it can be used not only for fire analyses after accidents, but also prior to the accident, for example in the design phase of the building, to estimate the outcome of a possible fire given different possible scenarios. This contribution shows that if such a model was used before the fire occurred the number of fatalities would have not come as a surprise, since the model predicts a larger percentage of people dying than happened in the real fire.
Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya
2015-10-01
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings. PMID:26129670
International Nuclear Information System (INIS)
Bayesian network (BN) is a powerful tool for human reliability analysis (HRA) as it can characterize the dependency among different human performance shaping factors (PSFs) and associated actions. It can also quantify the importance of different PSFs that may cause a human error. Data required to fully quantify BN for HRA in offshore emergency situations are not readily available. For many situations, there is little or no appropriate data. This presents significant challenges to assign the prior and conditional probabilities that are required by the BN approach. To handle the data scarcity problem, this paper presents a data collection methodology using a virtual environment for a simplified BN model of offshore emergency evacuation. A two-level, three-factor experiment is used to collect human performance data under different mustering conditions. Collected data are integrated in the BN model and results are compared with a previous study. The work demonstrates that the BN model can assess the human failure likelihood effectively. Besides, the BN model provides the opportunities to incorporate new evidence and handle complex interactions among PSFs and associated actions
Assessment of occupational safety risks in Floridian solid waste systems using Bayesian analysis.
Bastani, Mehrad; Celik, Nurcin
2015-10-01
Safety risks embedded within solid waste management systems continue to be a significant issue and are prevalent at every step in the solid waste management process. To recognise and address these occupational hazards, it is necessary to discover the potential safety concerns that cause them, as well as their direct and/or indirect impacts on the different types of solid waste workers. In this research, our goal is to statistically assess occupational safety risks to solid waste workers in the state of Florida. Here, we first review the related standard industrial codes to major solid waste management methods including recycling, incineration, landfilling, and composting. Then, a quantitative assessment of major risks is conducted based on the data collected using a Bayesian data analysis and predictive methods. The risks estimated in this study for the period of 2005-2012 are then compared with historical statistics (1993-1997) from previous assessment studies. The results have shown that the injury rates among refuse collectors in both musculoskeletal and dermal injuries have decreased from 88 and 15 to 16 and three injuries per 1000 workers, respectively. However, a contrasting trend is observed for the injury rates among recycling workers, for whom musculoskeletal and dermal injuries have increased from 13 and four injuries to 14 and six injuries per 1000 workers, respectively. Lastly, a linear regression model has been proposed to identify major elements of the high number of musculoskeletal and dermal injuries. PMID:26219294
Composite behavior analysis for video surveillance using hierarchical dynamic Bayesian networks
Cheng, Huanhuan; Shan, Yong; Wang, Runsheng
2011-03-01
Analyzing composite behaviors involving objects from multiple categories in surveillance videos is a challenging task due to the complicated relationships among human and objects. This paper presents a novel behavior analysis framework using a hierarchical dynamic Bayesian network (DBN) for video surveillance systems. The model is built for extracting objects' behaviors and their relationships by representing behaviors using spatial-temporal characteristics. The recognition of object behaviors is processed by the DBN at multiple levels: features of objects at low level, objects and their relationships at middle level, and event at high level, where event refers to behaviors of a single type object as well as behaviors consisting of several types of objects such as ``a person getting in a car.'' Furthermore, to reduce the complexity, a simple model selection criterion is addressed, by which the appropriated model is picked out from a pool of candidate models. Experiments are shown to demonstrate that the proposed framework could efficiently recognize and semantically describe composite object and human activities in surveillance videos.
Paired Comparison Analysis of the van Baaren Model Using Bayesian Approach with Noninformative Prior
Directory of Open Access Journals (Sweden)
Saima Altaf
2012-03-01
Full Text Available 800x600 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} One technique being commonly studied these days because of its attractive applications for the comparison of several objects is the method of paired comparisons. This technique permits the ranking of the objects by means of a score, which reflects the merit of the items on a linear scale. The present study is concerned with the Bayesian analysis of a paired comparison model, namely the van Baaren model VI using noninformative uniform prior. For this purpose, the joint posterior distribution for the parameters of the model, their marginal distributions, posterior estimates (means and modes, the posterior probabilities for comparing the two treatment parameters and the predictive probabilities are obtained.
Directory of Open Access Journals (Sweden)
Brentani Helena
2004-08-01
Full Text Available Abstract Background An important challenge for transcript counting methods such as Serial Analysis of Gene Expression (SAGE, "Digital Northern" or Massively Parallel Signature Sequencing (MPSS, is to carry out statistical analyses that account for the within-class variability, i.e., variability due to the intrinsic biological differences among sampled individuals of the same class, and not only variability due to technical sampling error. Results We introduce a Bayesian model that accounts for the within-class variability by means of mixture distribution. We show that the previously available approaches of aggregation in pools ("pseudo-libraries" and the Beta-Binomial model, are particular cases of the mixture model. We illustrate our method with a brain tumor vs. normal comparison using SAGE data from public databases. We show examples of tags regarded as differentially expressed with high significance if the within-class variability is ignored, but clearly not so significant if one accounts for it. Conclusion Using available information about biological replicates, one can transform a list of candidate transcripts showing differential expression to a more reliable one. Our method is freely available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language scripts at supplemental web-site.
Bayesian analysis of sparse anisotropic universe models and application to the 5-yr WMAP data
Groeneboom, Nicolaas E
2008-01-01
We extend the previously described CMB Gibbs sampling framework to allow for exact Bayesian analysis of anisotropic universe models, and apply this method to the 5-year WMAP temperature observations. This involves adding support for non-diagonal signal covariance matrices, and implementing a general spectral parameter MCMC sampler. As a worked example we apply these techniques to the model recently introduced by Ackerman et al., describing for instance violations of rotational invariance during the inflationary epoch. After verifying the code with simulated data, we analyze the foreground-reduced 5-year WMAP temperature sky maps. For l < 400 and the W-band data, we find tentative evidence for a preferred direction pointing towards (l,b) = (110 deg, 10 deg) with an anisotropy amplitude of g* = 0.15 +- 0.039, nominally equivalent to a 3.8 sigma detection. Similar results are obtained from the V-band data [g* = 0.11 +- 0.039; (l,b) = (130 deg, 20 deg)]. Further, the preferred direction is stable with respect ...
Rubio, Francisco J.
2016-02-09
We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information.
Ryu, Duchwan
2010-09-28
We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.
Bayesian analysis of heavy-tailed and long-range dependent Processes
Graves, Timothy; Watkins, Nick; Gramacy, Robert; Franzke, Christian
2014-05-01
We have used MCMC algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average ARFIMA(p,d,q) processes, which are capable of modelling long range dependence (e.g. Beran et al, 2013). Our principal aim is to obtain inference about the long memory parameter, d, with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series. We have extended the ARFIMA model by weakening the Gaussianity assumption, assuming an alpha-stable, heavy tailed, distribution for the innovations, and performing joint inference on d and alpha. We will present a study of the dependence of the posterior variance of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other popular measures of d.
Brody, Samuel; Lapata, Mirella
2009-01-01
Sense induction seeks to automatically identify word senses directly from a corpus. A key assumption underlying previous work is that the context surrounding an ambiguous word is indicative of its meaning. Sense induction is thus typically viewed as an unsupervised clustering problem where the aim is to partition a word’s contexts into different classes, each representing a word sense. Our work places sense induction in a Bayesian context by modeling the contexts of the ambiguous word as samp...
Bayesian belief networks for human reliability analysis: A review of applications and gaps
International Nuclear Information System (INIS)
The use of Bayesian Belief Networks (BBNs) in risk analysis (and in particular Human Reliability Analysis, HRA) is fostered by a number of features, attractive in fields with shortage of data and consequent reliance on subjective judgments: the intuitive graphical representation, the possibility of combining diverse sources of information, the use the probabilistic framework to characterize uncertainties. In HRA, BBN applications are steadily increasing, each emphasizing a different BBN feature or a different HRA aspect to improve. This paper aims at a critical review of these features as well as at suggesting research needs. Five groups of BBN applications are analysed: modelling of organizational factors, analysis of the relationships among failure influencing factors, BBN-based extensions of existing HRA methods, dependency assessment among human failure events, assessment of situation awareness. Further, the paper analyses the process for building BBNs and in particular how expert judgment is used in the assessment of the BBN conditional probability distributions. The gaps identified in the review suggest the need for establishing more systematic frameworks to integrate the different sources of information relevant for HRA (cognitive models, empirical data, and expert judgment) and to investigate algorithms to avoid elicitation of many relationships via expert judgment. - Highlights: • We analyze BBN uses for HRA applications; but some conclusions can be generalized. • Special review focus on BBN building approaches, key for model acceptance. • Gaps relate to the transparency of the BBN building and quantification phases. • Need for more systematic framework to integrate different sources of information. • Need of ways to avoid elicitation of many relationships via expert judgment
Lazzeretti, Luciana; Boix, Rafael; Capone, Francesco
2009-01-01
Creative industries tend to concentrate mainly around large- and medium-sized cities, forming creative local production systems. The text analyses the forces behind clustering of creative industries to provide the first empirical explanation of the determinants of creative employment clustering following a multidisciplinary approach based on cultural and creative economics, evolutionary geography and urban economics. A comparative analysis has been performed for Italy and Spain. The results s...
Lesaffre, Emmanuel
2012-01-01
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd
Schirmer, Sophie G.; Langbein, Frank C.
2015-02-01
We compare the accuracy, precision, and reliability of different methods for estimating key system parameters for two-level systems subject to Hamiltonian evolution and decoherence. It is demonstrated that the use of Bayesian modeling and maximum likelihood estimation is superior to common techniques based on Fourier analysis. Even for simple two-parameter estimation problems, the Bayesian approach yields higher accuracy and precision for the parameter estimates obtained. It requires less data, is more flexible in dealing with different model systems, can deal better with uncertainty in initial conditions and measurements, and enables adaptive refinement of the estimates. The comparison results show that this holds for measurements of large ensembles of spins and atoms limited by Gaussian noise as well as projection noise limited data from repeated single-shot measurements of a single quantum device.
von Nessi, G T
2012-01-01
A new method, based on Bayesian analysis, is presented which unifies the inference of plasma equilibria parameters in a Tokamak with the ability to quantify differences between inferred equilibria and Grad-Shafranov force-balance solutions. At the heart of this technique is the new method of observation splitting, which allows multiple forward models to be associated with a single diagnostic observation. This new idea subsequently provides a means by which the the space of GS solutions can be efficiently characterised via a prior distribution. Moreover, by folding force-balance directly into one set of forward models and utilising simple Biot-Savart responses in another, the Bayesian inference of the plasma parameters itself produces an evidence (a normalisation constant of the inferred posterior distribution) which is sensitive to the relative consistency between both sets of models. This evidence can then be used to help determine the relative accuracy of the tested force-balance model across several discha...
Şenel, Talat; Cengiz, Mehmet Ali
2016-01-01
In today's world, Public expenditures on health are one of the most important issues for governments. These increased expenditures are putting pressure on public budgets. Therefore, health policy makers have focused on the performance of their health systems and many countries have introduced reforms to improve the performance of their health systems. This study investigates the most important determinants of healthcare efficiency for OECD countries using second stage approach for Bayesian Stochastic Frontier Analysis (BSFA). There are two steps in this study. First we measure 29 OECD countries' healthcare efficiency by BSFA using the data from the OECD Health Database. At second stage, we expose the multiple relationships between the healthcare efficiency and characteristics of healthcare systems across OECD countries using Bayesian beta regression. PMID:27118987
Obstructive Sleep Apnea: A Cluster Analysis at Time of Diagnosis
Grillet, Yves; Richard, Philippe; Stach, Bruno; Vivodtzev, Isabelle; Timsit, Jean-Francois; Lévy, Patrick; Tamisier, Renaud; Pépin, Jean-Louis
2016-01-01
Background The classification of obstructive sleep apnea is on the basis of sleep study criteria that may not adequately capture disease heterogeneity. Improved phenotyping may improve prognosis prediction and help select therapeutic strategies. Objectives: This study used cluster analysis to investigate the clinical clusters of obstructive sleep apnea. Methods An ascending hierarchical cluster analysis was performed on baseline symptoms, physical examination, risk factor exposure and co-morbidities from 18,263 participants in the OSFP (French national registry of sleep apnea). The probability for criteria to be associated with a given cluster was assessed using odds ratios, determined by univariate logistic regression. Results: Six clusters were identified, in which patients varied considerably in age, sex, symptoms, obesity, co-morbidities and environmental risk factors. The main significant differences between clusters were minimally symptomatic versus sleepy obstructive sleep apnea patients, lean versus obese, and among obese patients different combinations of co-morbidities and environmental risk factors. Conclusions Our cluster analysis identified six distinct clusters of obstructive sleep apnea. Our findings underscore the high degree of heterogeneity that exists within obstructive sleep apnea patients regarding clinical presentation, risk factors and consequences. This may help in both research and clinical practice for validating new prevention programs, in diagnosis and in decisions regarding therapeutic strategies. PMID:27314230
Entropic Approach to Multiscale Clustering Analysis
Directory of Open Access Journals (Sweden)
Antonio Insolia
2012-05-01
Full Text Available Recently, a novel method has been introduced to estimate the statistical significance of clustering in the direction distribution of objects. The method involves a multiscale procedure, based on the Kullback–Leibler divergence and the Gumbel statistics of extreme values, providing high discrimination power, even in presence of strong background isotropic contamination. It is shown that the method is: (i semi-analytical, drastically reducing computation time; (ii very sensitive to small, medium and large scale clustering; (iii not biased against the null hypothesis. Applications to the physics of ultra-high energy cosmic rays, as a cosmological probe, are presented and discussed.
Directory of Open Access Journals (Sweden)
C. Mukherjee
2011-06-01
Full Text Available We present and discuss the use of Bayesian modeling and computational methods for atmospheric chemistry inverse analyses that incorporate evaluation of spatial structure in model-data residuals. Motivated by problems of refining bottom-up estimates of source/sink fluxes of trace gas and aerosols based on satellite retrievals of atmospheric chemical concentrations, we address the need for formal modeling of spatial residual error structure in global scale inversion models. We do this using analytically and computationally tractable conditional autoregressive (CAR spatial models as components of a global inversion framework. We develop Markov chain Monte Carlo methods to explore and fit these spatial structures in an overall statistical framework that simultaneously estimates source fluxes. Additional aspects of the study extend the statistical framework to utilize priors on source fluxes in a physically realistic manner, and to formally address and deal with missing data in satellite retrievals. We demonstrate the analysis in the context of inferring carbon monoxide (CO sources constrained by satellite retrievals of column CO from the Measurement of Pollution in the Troposphere (MOPITT instrument on the TERRA satellite, paying special attention to evaluating performance of the inverse approach using various statistical diagnostic metrics. This is developed using synthetic data generated to resemble MOPITT data to define a proof-of-concept and model assessment, and then in analysis of real MOPITT data. These studies demonstrate the ability of these simple spatial models to substantially improve over standard non-spatial models in terms of statistical fit, ability to recover sources in synthetic examples, and predictive match with real data.
Bayesian network modeling: A case study of an epidemiologic system analysis of cardiovascular risk.
Fuster-Parra, P; Tauler, P; Bennasar-Veny, M; Ligęza, A; López-González, A A; Aguiló, A
2016-04-01
An extensive, in-depth study of cardiovascular risk factors (CVRF) seems to be of crucial importance in the research of cardiovascular disease (CVD) in order to prevent (or reduce) the chance of developing or dying from CVD. The main focus of data analysis is on the use of models able to discover and understand the relationships between different CVRF. In this paper a report on applying Bayesian network (BN) modeling to discover the relationships among thirteen relevant epidemiological features of heart age domain in order to analyze cardiovascular lost years (CVLY), cardiovascular risk score (CVRS), and metabolic syndrome (MetS) is presented. Furthermore, the induced BN was used to make inference taking into account three reasoning patterns: causal reasoning, evidential reasoning, and intercausal reasoning. Application of BN tools has led to discovery of several direct and indirect relationships between different CVRF. The BN analysis showed several interesting results, among them: CVLY was highly influenced by smoking being the group of men the one with highest risk in CVLY; MetS was highly influence by physical activity (PA) being again the group of men the one with highest risk in MetS, and smoking did not show any influence. BNs produce an intuitive, transparent, graphical representation of the relationships between different CVRF. The ability of BNs to predict new scenarios when hypothetical information is introduced makes BN modeling an Artificial Intelligence (AI) tool of special interest in epidemiological studies. As CVD is multifactorial the use of BNs seems to be an adequate modeling tool. PMID:26777431
A Bayesian Network Approach for Offshore Risk Analysis Through Linguistic Variables
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks (BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the α-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the authorised vessels due to human elements during operation is used to illustrate the application of the proposed model.
Bayesian hierarchical multi-subject multiscale analysis of functional MRI data.
Sanyal, Nilotpal; Ferreira, Marco A R
2012-11-15
We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation. PMID:22951257
Draper, D.
2001-01-01
© 2012 Springer Science+Business Media, LLC. All rights reserved. Article Outline: Glossary Definition of the Subject and Introduction The Bayesian Statistical Paradigm Three Examples Comparison with the Frequentist Statistical Paradigm Future Directions Bibliography
Logistics Enterprise Evaluation Model Based On Fuzzy Clustering Analysis
Fu, Pei-hua; Yin, Hong-bo
In this thesis, we introduced an evaluation model based on fuzzy cluster algorithm of logistics enterprises. First of all,we present the evaluation index system which contains basic information, management level, technical strength, transport capacity,informatization level, market competition and customer service. We decided the index weight according to the grades, and evaluated integrate ability of the logistics enterprises using fuzzy cluster analysis method. In this thesis, we introduced the system evaluation module and cluster analysis module in detail and described how we achieved these two modules. At last, we gave the result of the system.
Cluster analysis for anomaly detection in accounting data : an audit approach
Thiprungsri, Sutapat; Vasarhelyi, Miklos A.
2011-01-01
This study examines the application of cluster analysis in the accounting domain, particularly discrepancy detection in audit. Cluster analysis groups data so that points within a single group or cluster are similar to one another and distinct from points in other clusters. Clustering has been shown to be a good candidate for anomaly detection. The purpose of this study is to examine the use of clustering technology to automate fraud filtering during an audit. We use cluster analysis to help ...
Atlas-guided cluster analysis of large tractography datasets.
Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer
2013-01-01
Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment. PMID:24386292
Cancer incidence in men: a cluster analysis of spatial patterns
Directory of Open Access Journals (Sweden)
D'Alò Daniela
2008-11-01
Full Text Available Abstract Background Spatial clustering of different diseases has received much less attention than single disease mapping. Besides chance or artifact, clustering of different cancers in a given area may depend on exposure to a shared risk factor or to multiple correlated factors (e.g. cigarette smoking and obesity in a deprived area. Models developed so far to investigate co-occurrence of diseases are not well-suited for analyzing many cancers simultaneously. In this paper we propose a simple two-step exploratory method for screening clusters of different cancers in a population. Methods Cancer incidence data were derived from the regional cancer registry of Umbria, Italy. A cluster analysis was performed on smoothed and non-smoothed standardized incidence ratios (SIRs of the 13 most frequent cancers in males. The Besag, York and Mollie model (BYM and Poisson kriging were used to produce smoothed SIRs. Results Cluster analysis on non-smoothed SIRs was poorly informative in terms of clustering of different cancers, as only larynx and oral cavity were grouped, and of characteristic patterns of cancer incidence in specific geographical areas. On the other hand BYM and Poisson kriging gave similar results, showing cancers of the oral cavity, larynx, esophagus, stomach and liver formed a main cluster. Lung and urinary bladder cancers clustered together but not with the cancers mentioned above. Both methods, particularly the BYM model, identified distinct geographic clusters of adjacent areas. Conclusion As in single disease mapping, non-smoothed SIRs do not provide reliable estimates of cancer risks because of small area variability. The BYM model produces smooth risk surfaces which, when entered into a cluster analysis, identify well-defined geographical clusters of adjacent areas. It probably enhances or amplifies the signal arising from exposure of more areas (statistical units to shared risk factors that are associated with different cancers. In
Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed. PMID:26942604
Directory of Open Access Journals (Sweden)
Ram K Raghavan
Full Text Available This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.
Bayesian Analysis of Linear Inverse Problems with Applications in Economics and Finance
De Simoni, Anna
2009-01-01
In my PhD thesis I propose a Bayesian nonparametric estimation method for structural econometric models where the functional parameter of interest describes the economic agent's behavior. The structural parameter is characterized as the solution of a functional equation, or by using more technical words, as the solution of an inverse problem that can be either ill-posed or well-posed. From a Bayesian point of view, the parameter of interest is a random function and the solution to the infe...
Gilkey, Kelly M.; Myers, Jerry G.; McRae, Michael P.; Griffin, Elise A.; Kallrui, Aditya S.
2012-01-01
The Exploration Medical Capability project is creating a catalog of risk assessments using the Integrated Medical Model (IMM). The IMM is a software-based system intended to assist mission planners in preparing for spaceflight missions by helping them to make informed decisions about medical preparations and supplies needed for combating and treating various medical events using Probabilistic Risk Assessment. The objective is to use statistical analyses to inform the IMM decision tool with estimated probabilities of medical events occurring during an exploration mission. Because data regarding astronaut health are limited, Bayesian statistical analysis is used. Bayesian inference combines prior knowledge, such as data from the general U.S. population, the U.S. Submarine Force, or the analog astronaut population located at the NASA Johnson Space Center, with observed data for the medical condition of interest. The posterior results reflect the best evidence for specific medical events occurring in flight. Bayes theorem provides a formal mechanism for combining available observed data with data from similar studies to support the quantification process. The IMM team performed Bayesian updates on the following medical events: angina, appendicitis, atrial fibrillation, atrial flutter, dental abscess, dental caries, dental periodontal disease, gallstone disease, herpes zoster, renal stones, seizure, and stroke.
Using cluster analysis to organize and explore regional GPS velocities
Simpson, Robert W.; Thatcher, Wayne; Savage, James C.
2012-01-01
Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.
Bayesian approach to the analysis of neutron Brillouin scattering data on liquid metals
De Francesco, A.; Guarini, E.; Bafile, U.; Formisano, F.; Scaccia, L.
2016-08-01
When the dynamics of liquids and disordered systems at mesoscopic level is investigated by means of inelastic scattering (e.g., neutron or x ray), spectra are often characterized by a poor definition of the excitation lines and spectroscopic features in general and one important issue is to establish how many of these lines need to be included in the modeling function and to estimate their parameters. Furthermore, when strongly damped excitations are present, commonly used and widespread fitting algorithms are particularly affected by the choice of initial values of the parameters. An inadequate choice may lead to an inefficient exploration of the parameter space, resulting in the algorithm getting stuck in a local minimum. In this paper, we present a Bayesian approach to the analysis of neutron Brillouin scattering data in which the number of excitation lines is treated as unknown and estimated along with the other model parameters. We propose a joint estimation procedure based on a reversible-jump Markov chain Monte Carlo algorithm, which efficiently explores the parameter space, producing a probabilistic measure to quantify the uncertainty on the number of excitation lines as well as reliable parameter estimates. The method proposed could turn out of great importance in extracting physical information from experimental data, especially when the detection of spectral features is complicated not only because of the properties of the sample, but also because of the limited instrumental resolution and count statistics. The approach is tested on generated data set and then applied to real experimental spectra of neutron Brillouin scattering from a liquid metal, previously analyzed in a more traditional way.
New class of hybrid EoS and Bayesian M - R data analysis
International Nuclear Information System (INIS)
We explore systematically a new class of two-phase equations of state (EoS) for hybrid stars that is characterized by three main features: (1) stiffening of the nuclear EoS at supersaturation densities due to quark exchange effects (Pauli blocking) between hadrons, modelled by an excluded volume correction; (2) stiffening of the quark matter EoS at high densities due to multiquark interactions; and (3) possibility for a strong first-order phase transition with an early onset and large density jump. The third feature results from a Maxwell construction for the possible transition from the nuclear to a quark matter phase and its properties depend on the two parameters used for (1) and (2), respectively. Varying these two parameters, one obtains a class of hybrid EoS that yields solutions of the Tolman-Oppenheimer-Volkoff (TOV) equations for sequences of hadronic and hybrid stars in the mass-radius diagram which cover the full range of patterns according to the Alford-Han-Prakash classification following which a hybrid star branch can be either absent, connected or disconnected with the hadronic one. The latter case often includes a tiny connected branch. The disconnected hybrid star branch, also called ''third family'', corresponds to high-mass twin stars characterized by the same gravitational mass but different radii. We perform a Bayesian analysis and demonstrate that the observation of such a pair of high-mass twin stars would have a sufficient discriminating power to favor hybrid EoS with a strong first-order phase transition over alternative EoS. (orig.)
New class of hybrid EoS and Bayesian M - R data analysis
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Castillo, D. [JINR Dubna, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Ayriyan, A.; Grigorian, H. [JINR Dubna, Laboratory of Information Technologies, Dubna (Russian Federation); Benic, S. [University of Zagreb, Department of Physics, Zagreb (Croatia); Blaschke, D. [JINR Dubna, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation); Typel, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)
2016-03-15
We explore systematically a new class of two-phase equations of state (EoS) for hybrid stars that is characterized by three main features: (1) stiffening of the nuclear EoS at supersaturation densities due to quark exchange effects (Pauli blocking) between hadrons, modelled by an excluded volume correction; (2) stiffening of the quark matter EoS at high densities due to multiquark interactions; and (3) possibility for a strong first-order phase transition with an early onset and large density jump. The third feature results from a Maxwell construction for the possible transition from the nuclear to a quark matter phase and its properties depend on the two parameters used for (1) and (2), respectively. Varying these two parameters, one obtains a class of hybrid EoS that yields solutions of the Tolman-Oppenheimer-Volkoff (TOV) equations for sequences of hadronic and hybrid stars in the mass-radius diagram which cover the full range of patterns according to the Alford-Han-Prakash classification following which a hybrid star branch can be either absent, connected or disconnected with the hadronic one. The latter case often includes a tiny connected branch. The disconnected hybrid star branch, also called ''third family'', corresponds to high-mass twin stars characterized by the same gravitational mass but different radii. We perform a Bayesian analysis and demonstrate that the observation of such a pair of high-mass twin stars would have a sufficient discriminating power to favor hybrid EoS with a strong first-order phase transition over alternative EoS. (orig.)
Slater, Hannah; Michael, Edwin
2013-01-01
There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account
New class of hybrid EoS and Bayesian M - R data analysis
Alvarez-Castillo, D.; Ayriyan, A.; Benic, S.; Blaschke, D.; Grigorian, H.; Typel, S.
2016-03-01
We explore systematically a new class of two-phase equations of state (EoS) for hybrid stars that is characterized by three main features: 1) stiffening of the nuclear EoS at supersaturation densities due to quark exchange effects (Pauli blocking) between hadrons, modelled by an excluded volume correction; 2) stiffening of the quark matter EoS at high densities due to multiquark interactions; and 3) possibility for a strong first-order phase transition with an early onset and large density jump. The third feature results from a Maxwell construction for the possible transition from the nuclear to a quark matter phase and its properties depend on the two parameters used for 1) and 2), respectively. Varying these two parameters, one obtains a class of hybrid EoS that yields solutions of the Tolman-Oppenheimer-Volkoff (TOV) equations for sequences of hadronic and hybrid stars in the mass-radius diagram which cover the full range of patterns according to the Alford-Han-Prakash classification following which a hybrid star branch can be either absent, connected or disconnected with the hadronic one. The latter case often includes a tiny connected branch. The disconnected hybrid star branch, also called "third family", corresponds to high-mass twin stars characterized by the same gravitational mass but different radii. We perform a Bayesian analysis and demonstrate that the observation of such a pair of high-mass twin stars would have a sufficient discriminating power to favor hybrid EoS with a strong first-order phase transition over alternative EoS.
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
Graves, Timothy; Watkins, Nicholas; Franzke, Christian; Gramacy, Robert
2013-04-01
Recent studies [e.g. the Antarctic study of Franzke, J. Climate, 2010] have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. As we briefly review, the LRD idea originated at the same time as H-selfsimilarity, so it is often not realised that a model does not have to be H-self similar to show LRD [e.g. Watkins, GRL Frontiers, 2013]. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average ARFIMA(p,d,q) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d, with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series. Many physical processes, for example the Faraday Antarctic time series, are significantly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption, assuming an alpha-stable distribution for the innovations, and performing joint inference on d and alpha. Such a modified FARIMA(p,d,q) process is a flexible, initial model for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
Statistical fractal analysis of 25 young star clusters
Gregorio-Hetem, J; Santos-Silva, T; Fernandes, B
2015-01-01
A large sample of young stellar groups is analysed aiming to investigate their clustering properties and dynamical evolution. A comparison of the Q statistical parameter, measured for the clusters, with the fractal dimension estimated for the projected clouds shows that 52% of the sample has substructures and tends to follow the theoretically expected relation between clusters and clouds, according to calculations for artificial distribution of points. The fractal statistics was also compared to structural parameters revealing that clusters having radial density profile show a trend of parameter s increasing with mean surface stellar density. The core radius of the sample, as a function of age, follows a distribution similar to that observed in stellar groups of Milky Way and other galaxies. They also have dynamical age, indicated by their crossing time that is similar to unbound associations. The statistical analysis allowed us to separate the sample into two groups showing different clustering characteristi...
Entropic Approach to Multiscale Clustering Analysis
Antonio Insolia; Manlio De Domenico
2012-01-01
Recently, a novel method has been introduced to estimate the statistical significance of clustering in the direction distribution of objects. The method involves a multiscale procedure, based on the Kullback–Leibler divergence and the Gumbel statistics of extreme values, providing high discrimination power, even in presence of strong background isotropic contamination. It is shown that the method is: (i) semi-analytical, drastically reducing computation time; (ii) very sensitive to small, med...
Cluster Analysis of Gene Expression Data
Domany, E
2002-01-01
The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...
Phan, Kevin; Xie, Ashleigh; Kumar, Narendra; Wong, Sophia; Medi, Caroline; La Meir, Mark; Yan, Tristan D
2015-08-01
Simplified maze procedures involving radiofrequency, cryoenergy and microwave energy sources have been increasingly utilized for surgical treatment of atrial fibrillation as an alternative to the traditional cut-and-sew approach. In the absence of direct comparisons, a Bayesian network meta-analysis is another alternative to assess the relative effect of different treatments, using indirect evidence. A Bayesian meta-analysis of indirect evidence was performed using 16 published randomized trials identified from 6 databases. Rank probability analysis was used to rank each intervention in terms of their probability of having the best outcome. Sinus rhythm prevalence beyond the 12-month follow-up was similar between the cut-and-sew, microwave and radiofrequency approaches, which were all ranked better than cryoablation (respectively, 39, 36, and 25 vs 1%). The cut-and-sew maze was ranked worst in terms of mortality outcomes compared with microwave, radiofrequency and cryoenergy (2 vs 19, 34, and 24%, respectively). The cut-and-sew maze procedure was associated with significantly lower stroke rates compared with microwave ablation [odds ratio <0.01; 95% confidence interval 0.00, 0.82], and ranked the best in terms of pacemaker requirements compared with microwave, radiofrequency and cryoenergy (81 vs 14, and 1, <0.01% respectively). Bayesian rank probability analysis shows that the cut-and-sew approach is associated with the best outcomes in terms of sinus rhythm prevalence and stroke outcomes, and remains the gold standard approach for AF treatment. Given the limitations of indirect comparison analysis, these results should be viewed with caution and not over-interpreted. PMID:25391388
A Comparative Analysis of Density Based Clustering Techniques for Outlier Mining
R.Prabahari*,; Dr.V.Thiagarasu
2014-01-01
Density based Clustering Algorithms such as Density Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points to Identify the Clustering Structure (OPTICS) and DENsity based CLUstering (DENCLUE) are designed to discover clusters of arbitrary shape. DBSCAN grows clusters according to a density based connectivity analysis. OPTICS, which is an extension of DBSCAN used to produce clusters ordering obtained by setting range of parameter. DENCLUE clusters object ...
Genome-wide association study of swine farrowing traits. Part II: Bayesian analysis of marker data.
Schneider, J F; Rempel, L A; Snelling, W M; Wiedmann, R T; Nonneman, D J; Rohrer, G A
2012-10-01
Reproductive efficiency has a great impact on the economic success of pork (sus scrofa) production. Number born alive (NBA) and average piglet birth weight (ABW) contribute greatly to reproductive efficiency. To better understand the underlying genetics of birth traits, a genome-wide association study (GWAS) was undertaken. Samples of DNA were collected and tested using the Illumina PorcineSNP60 BeadChip from 1,152 first parity gilts. Traits included total number born (TNB), NBA, number born dead (NBD), number stillborn (NSB), number of mummies (MUM), total litter birth weight (LBW), and ABW. A total of 41,151 SNP were tested using a Bayesian approach. Beginning with the first 5 SNP on SSC1 and ending with the last 5 SNP on the SSCX, SNP were assigned to groups of 5 consecutive SNP by chromosome-position order and analyzed again using a Bayesian approach. From that analysis, 5-SNP groups were selected having no overlap with another 5-SNP groups and no overlap across chromosomes. These selected 5-SNP non-overlapping groups were defined as QTL. Of the available 8,814 QTL, 124 were found to be statistically significant (P false positives. Eleven QTL were found for TNB, 3 on SSC1, 3 on SSC4, 1 on SSC13, 1 on SSC14, 2 on SSC15, and 1 on SSC17. Statistical testing for NBA identified 14 QTL, 4 on SSC1, 1 on SSC4, 1 on SSC6, 1 on SSC10, 1on SSC13, 3 on SSC15, and 3 on SSC17. A single NBD QTL was found on SSC11. No QTL were identified for NSB or MUM. Thirty-three QTL were found for LBW, 3 on SSC1, 1 on SSC2, 1 on SSC3, 5 on SSC4, 2 on SSC5, 5 on SSC6, 3 on SSC7, 2 on SSC9, 1 on SSC10, 2 on SSC14, 6 on SSC15, and 2 on SSC17. A total of 65 QTL were found for ABW, 9 on SSC1, 3 on SSC2, 9 on SSC5, 5 on SSC6, 1 on SSC7, 2 on SSC8, 2 on SSC9, 3 on SSC10, 1 on SSC11, 3 on SSC12, 2 on SSC13, 8 on SSC14, 8 on SSC15, 1 on SSC17, and 8 on SSC18. Several candidate genes have been identified that overlap QTL locations among TNB, NBA, NBD, and ABW. These QTL when combined with
Hierarchical Bayesian Analysis of Biased Beliefs and Distributional Other-Regarding Preferences
Directory of Open Access Journals (Sweden)
Jeroen Weesie
2013-02-01
Full Text Available This study investigates the relationship between an actor’s beliefs about others’ other-regarding (social preferences and her own other-regarding preferences, using an “avant-garde” hierarchical Bayesian method. We estimate two distributional other-regarding preference parameters, α and β, of actors using incentivized choice data in binary Dictator Games. Simultaneously, we estimate the distribution of actors’ beliefs about others α and β, conditional on actors’ own α and β, with incentivized belief elicitation. We demonstrate the benefits of the Bayesian method compared to it’s hierarchical frequentist counterparts. Results show a positive association between an actor’s own (α; β and her beliefs about average(α; β in the population. The association between own preferences and the variance in beliefs about others’ preferences in the population, however, is curvilinear for α and insignificant for β. These results are partially consistent with the cone effect [1,2] which is described in detail below. Because in the Bayesian-Nash equilibrium concept, beliefs and own preferences are assumed to be independent, these results cast doubt on the application of the Bayesian-Nash equilibrium concept to experimental data.
Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks
DEFF Research Database (Denmark)
Skare, Øivind; Møller, Jesper; Vedel Jensen, Eva B.
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample f...
Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks
DEFF Research Database (Denmark)
Skare, Øivind; Møller, Jesper; Jensen, Eva B. Vedel
2007-01-01
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample f...
Cluster analysis of WIBS single particle bioaerosol data
Robinson, N. H.; Allan, J. D.; Huffman, J. A.; Kaye, P. H.; Foot, V. E.; Gallagher, M.
2012-09-01
Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial datasets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Waveband Integrated Bioaerosol Sensor (WIBS). The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL) before being applied to two separate contemporaneous ambient WIBS datasets recorded in a forest site in Colorado, USA as part of the BEACHON-RoMBAS project. Cluster analysis results between both datasets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity) to represent: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long term online PBAP measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics is improved.
Cluster analysis of WIBS single particle bioaerosol data
Directory of Open Access Journals (Sweden)
N. H. Robinson
2012-09-01
Full Text Available Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial datasets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Waveband Integrated Bioaerosol Sensor (WIBS. The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL before being applied to two separate contemporaneous ambient WIBS datasets recorded in a forest site in Colorado, USA as part of the BEACHON-RoMBAS project. Cluster analysis results between both datasets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity to represent: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long term online PBAP measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics is improved.
Cluster analysis of clinical data identifies fibromyalgia subgroups.
Directory of Open Access Journals (Sweden)
Elisa Docampo
Full Text Available INTRODUCTION: Fibromyalgia (FM is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. MATERIAL AND METHODS: 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. RESULTS: VARIABLES CLUSTERED INTO THREE INDEPENDENT DIMENSIONS: "symptomatology", "comorbidities" and "clinical scales". Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1, high symptomatology and comorbidities (Cluster 2, and high symptomatology but low comorbidities (Cluster 3, showing differences in measures of disease severity. CONCLUSIONS: We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment.
Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data
Chandrasekhar, T; Elayaraja, E
2011-01-01
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clus...
Variable cluster analysis method for building neural network model
Institute of Scientific and Technical Information of China (English)
王海东; 刘元东
2004-01-01
To address the problems that input variables should be reduced as much as possible and explain output variables fully in building neural network model of complicated system, a variable selection method based on cluster analysis was investigated. Similarity coefficient which describes the mutual relation of variables was defined. The methods of the highest contribution rate, part replacing whole and variable replacement are put forwarded and deduced by information theory. The software of the neural network based on cluster analysis, which can provide many kinds of methods for defining variable similarity coefficient, clustering system variable and evaluating variable cluster, was developed and applied to build neural network forecast model of cement clinker quality. The results show that all the network scale, training time and prediction accuracy are perfect. The practical application demonstrates that the method of selecting variables for neural network is feasible and effective.
Three Systems of Insular Functional Connectivity Identified with Cluster Analysis
Deen, Ben; Pitskel, Naomi B.; Kevin A. Pelphrey
2010-01-01
Despite much research on the function of the insular cortex, few studies have investigated functional subdivisions of the insula in humans. The present study used resting-state functional connectivity magnetic resonance imaging (MRI) to parcellate the human insular lobe based on clustering of functional connectivity patterns. Connectivity maps were computed for each voxel in the insula based on resting-state functional MRI (fMRI) data and segregated using cluster analysis. We identified 3 ins...
Advanced Heat Map and Clustering Analysis Using Heatmap3
Shilin Zhao; Yan Guo; Quanhu Sheng; Yu Shyr
2014-01-01
Heat maps and clustering are used frequently in expression analysis studies for data visualization and quality control. Simple clustering and heat maps can be produced from the “heatmap” function in R. However, the “heatmap” function lacks certain functionalities and customizability, preventing it from generating advanced heat maps and dendrograms. To tackle the limitations of the “heatmap” function, we have developed an R package “heatmap3” which significantly improves the original “heatmap”...
Reliability Analysis of a Glacier Lake Warning System Using a Bayesian Net
Sturny, Rouven A.; Bründl, Michael
2013-04-01
Beside structural mitigation measures like avalanche defense structures, dams and galleries, warning and alarm systems have become important measures for dealing with Alpine natural hazards. Integrating them into risk mitigation strategies and comparing their effectiveness with structural measures requires quantification of the reliability of these systems. However, little is known about how reliability of warning systems can be quantified and which methods are suitable for comparing their contribution to risk reduction with that of structural mitigation measures. We present a reliability analysis of a warning system located in Grindelwald, Switzerland. The warning system was built for warning and protecting residents and tourists from glacier outburst floods as consequence of a rapid drain of the glacier lake. We have set up a Bayesian Net (BN, BPN) that allowed for a qualitative and quantitative reliability analysis. The Conditional Probability Tables (CPT) of the BN were determined according to manufacturer's reliability data for each component of the system as well as by assigning weights for specific BN nodes accounting for information flows and decision-making processes of the local safety service. The presented results focus on the two alerting units 'visual acoustic signal' (VAS) and 'alerting of the intervention entities' (AIE). For the summer of 2009, the reliability was determined to be 94 % for the VAS and 83 % for the AEI. The probability of occurrence of a major event was calculated as 0.55 % per day resulting in an overall reliability of 99.967 % for the VAS and 99.906 % for the AEI. We concluded that a failure of the VAS alerting unit would be the consequence of a simultaneous failure of the four probes located in the lake and the gorge. Similarly, we deduced that the AEI would fail either if there were a simultaneous connectivity loss of the mobile and fixed network in Grindelwald, an Internet access loss or a failure of the regional operations
Spatial Data Mining using Cluster Analysis
Directory of Open Access Journals (Sweden)
Ch.N.Santhosh Kumar
2012-09-01
Full Text Available Data mining, which is refers to as Knowledge Discovery in Databases(KDD, means a process of nontrivialexaction of implicit, previously useful and unknown information such as knowledge rules, descriptions,regularities, and major trends from large databases. Data mining is evolved in a multidisciplinary field ,including database technology, machine learning, artificial intelligence, neural network, informationretrieval, and so on. In principle data mining should be applicable to the different kind of data and databasesused in many different applications, including relational databases, transactional databases, datawarehouses, object- oriented databases, and special application- oriented databases such as spatialdatabases, temporal databases, multimedia databases, and time- series databases. Spatial data mining, alsocalled spatial mining, is data mining as applied to the spatial data or spatial databases. Spatial data are thedata that have spatial or location component, and they show the information, which is more complex thanclassical data. A spatial database stores spatial data represents by spatial data types and spatialrelationships and among data. Spatial data mining encompasses various tasks. These include spatialclassification, spatial association rule mining, spatial clustering, characteristic rules, discriminant rules,trend detection. This paper presents how spatial data mining is achieved using clustering.
Fuzzy clustering analysis to study geomagnetic coastal effects
Directory of Open Access Journals (Sweden)
M. Sridharan
2005-06-01
Full Text Available The utility of fuzzy set theory in cluster analysis and pattern recognition has been evolving since the mid 1960s, in conjunction with the emergence and evolution of computer technology. The classification of objects into categories is the subject of cluster analysis. The aim of this paper is to employ Fuzzy-clustering technique to examine the interrelationship of geomagnetic coastal and other effects at Indian observatories. Data from the observatories used for the present studies are from Alibag on the West Coast, Visakhapatnam and Pondicherry on the East Coast, Hyderabad and Nagpur as central inland stations which are located far from either of the coasts; all the above stations are free from the influence of the daytime equatorial electrojet. It has been found that Alibag and Pondicherry Observatories form a separate cluster showing anomalous variations in the vertical (Z-component. H- and D-components form different clusters. The results are compared with the graphical method. Analytical technique and the results of Fuzzy-clustering analysis are discussed here.
Multivariate Analysis of the Globular Clusters in M87
Das, Sukanta; Chattopadhayay, Tanuka; Davoust, Emmanuel
2015-11-01
An objective classification of 147 globular clusters (GCs) in the inner region of the giant elliptical galaxy M87 is carried out with the help of two methods of multivariate analysis. First, independent component analysis (ICA) is used to determine a set of independent variables that are linear combinations of various observed parameters (mostly Lick indices) of the GCs. Next, K-means cluster analysis (CA) is applied on the independent components (ICs), to find the optimum number of homogeneous groups having an underlying structure. The properties of the four groups of GCs thus uncovered are used to explain the formation mechanism of the host galaxy. It is suggested that M87 formed in two successive phases. First a monolithic collapse, which gave rise to an inner group of metal-rich clusters with little systematic rotation and an outer group of metal-poor clusters in eccentric orbits. In a second phase, the galaxy accreted low-mass satellites in a dissipationless fashion, from the gas of which the two other groups of GCs formed. Evidence is given for a blue stellar population in the more metal rich clusters, which we interpret by Helium enrichment. Finally, it is found that the clusters of M87 differ in some of their chemical properties (NaD, TiO1, light-element abundances) from GCs in our Galaxy and M31.
Multivariate analysis of the globular clusters in M87
Das, Sukanta; Davoust, Emmanuel
2015-01-01
An objective classification of 147 globular clusters in the inner region of the giant elliptical galaxy M87 is carried out with the help of two methods of multivariate analysis. First independent component analysis is used to determine a set of independent variables that are linear combinations of various observed parameters (mostly Lick indices) of the globular clusters. Next K-means cluster analysis is applied on the independent components, to find the optimum number of homogeneous groups having an underlying structure. The properties of the four groups of globular clusters thus uncovered are used to explain the formation mechanism of the host galaxy. It is suggested that M87 formed in two successive phases. First a monolithic collapse, which gave rise to an inner group of metal-rich clusters with little systematic rotation and an outer group of metal-poor clusters in eccentric orbits. In a second phase, the galaxy accreted low-mass satellites in a dissipationless fashion, from the gas of which the two othe...
Bayesian Inference on Gravitational Waves
Directory of Open Access Journals (Sweden)
Asad Ali
2015-12-01
Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.
Towards eliminating bias in cluster analysis of TB genotyped data.
van Schalkwyk, Cari; Cule, Madeleine; Welte, Alex; van Helden, Paul; van der Spuy, Gian; Uys, Pieter
2012-01-01
The relative contributions of transmission and reactivation of latent infection to TB cases observed clinically has been reported in many situations, but always with some uncertainty. Genotyped data from TB organisms obtained from patients have been used as the basis for heuristic distinctions between circulating (clustered strains) and reactivated infections (unclustered strains). Naïve methods previously applied to the analysis of such data are known to provide biased estimates of the proportion of unclustered cases. The hypergeometric distribution, which generates probabilities of observing clusters of a given size as realized clusters of all possible sizes, is analyzed in this paper to yield a formal estimator for genotype cluster sizes. Subtle aspects of numerical stability, bias, and variance are explored. This formal estimator is seen to be stable with respect to the epidemiologically interesting properties of the cluster size distribution (the number of clusters and the number of singletons) though it does not yield satisfactory estimates of the number of clusters of larger sizes. The problem that even complete coverage of genotyping, in a practical sampling frame, will only provide a partial view of the actual transmission network remains to be explored. PMID:22479534
Cluster analysis of radionuclide concentrations in beach sand
de Meijer, R.J.; James, I.; Jennings, P.J.; Keoyers, J.E.
2001-01-01
This paper presents a method in which natural radionuclide concentrations of beach sand minerals are traced along a stretch of coast by cluster analysis. This analysis yields two groups of mineral deposit with different origins. The method deviates from standard methods of following dispersal of rad
A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.
Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung
2016-03-01
With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the
Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Meon, Günter; Rode, Michael
2015-10-01
For capturing spatial variations of runoff and nutrient fluxes attributed to catchment heterogeneity, multi-site hydrological water quality monitoring strategies are increasingly put into practice. This study aimed to investigate the impacts of spatially distributed streamflow and streamwater Inorganic Nitrogen (IN) concentration observations on the identification of a continuous time, spatially semi-distributed and process-based hydrological water quality model HYPE (HYdrological Predictions for the Environment). A Bayesian inference based approach DREAM(ZS) (DiffeRential Evolution Adaptive Metrololis algorithm) was combined with HYPE to implement model optimisation and uncertainty analysis on streamflow and streamwater IN concentration simulations at a nested meso scale catchment in central Germany. To this end, a 10-year period (1994-1999 for calibration and 1999-2004 for validation) was utilised. We compared the parameters' posterior distributions, modelling performance using the best estimated parameter set and 95% prediction confidence intervals at catchment outlet for the calibration period that were derived from single-site calibration (SSC) and multi-site calibration (MSC) modes. For SSC, streamflow and streamwater IN concentration observations at only the catchment outlet were used. While, for MSC, streamflow and streamwater IN concentration observations from both catchment outlet and two internal sites were considered. Results showed that the uncertainty intervals of hydrological water quality parameters' posterior distributions estimated from MSC, were narrower than those obtained from SSC. In addition, it was found that the MSC outperformed SSC on streamwater IN concentration simulations at internal sites for both calibration and validation periods, while the influence on streamflow modelling performance was small. This can be explained by the "nested" nature of the catchment and high correlation between discharge observations from different sites
Apples and oranges: avoiding different priors in Bayesian DNA sequence analysis
Directory of Open Access Journals (Sweden)
Posch Stefan
2010-03-01
Full Text Available Abstract Background One of the challenges of bioinformatics remains the recognition of short signal sequences in genomic DNA such as donor or acceptor splice sites, splicing enhancers or silencers, translation initiation sites, transcription start sites, transcription factor binding sites, nucleosome binding sites, miRNA binding sites, or insulator binding sites. During the last decade, a wealth of algorithms for the recognition of such DNA sequences has been developed and compared with the goal of improving their performance and to deepen our understanding of the underlying cellular processes. Most of these algorithms are based on statistical models belonging to the family of Markov random fields such as position weight matrix models, weight array matrix models, Markov models of higher order, or moral Bayesian networks. While in many comparative studies different learning principles or different statistical models have been compared, the influence of choosing different prior distributions for the model parameters when using different learning principles has been overlooked, and possibly lead to questionable conclusions. Results With the goal of allowing direct comparisons of different learning principles for models from the family of Markov random fields based on the same a-priori information, we derive a generalization of the commonly-used product-Dirichlet prior. We find that the derived prior behaves like a Gaussian prior close to the maximum and like a Laplace prior in the far tails. In two case studies, we illustrate the utility of the derived prior for a direct comparison of different learning principles with different models for the recognition of binding sites of the transcription factor Sp1 and human donor splice sites. Conclusions We find that comparisons of different learning principles using the same a-priori information can lead to conclusions different from those of previous studies in which the effect resulting from different
Bayesian Analysis of Hmi Images and Comparison to Tsi Variations and MWO Image Observables
Parker, D. G.; Ulrich, R. K.; Beck, J.; Tran, T. V.
2015-12-01
We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from June, 2010 to December, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables.The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment.Ulrich, R.K., Parker, D, Bertello, L. and
Petit, V
2011-01-01
In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known, and therefore the rotational phases of the observations are ambiguous. The model assumes that the magnetic observations correspond to a dipole oblique rotator, a situation commonly encountered in intermediate and high-mass stars. Using reasonable assumptions regarding the model parameter prior probability density distributions, the Bayesian algorithm determines the posterior probability densities corresponding to the surface magnetic field geometry and strength by performing a comparison between the observed and computed Stokes V profiles. Based on the results of numerical simulations, we conclude that this method yields a useful estimate of the surface dipole field strength based on a small number (i.e. 1 or 2) of...
A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies
International Nuclear Information System (INIS)
This paper analyses the technical efficiency of Chinese fossil-fuel electricity generation companies from 1999 to 2011, using a Bayesian stochastic frontier model. The results reveal that efficiency varies among the fossil-fuel electricity generation companies that were analysed. We also focus on the factors of size, location, government ownership and mixed sources of electricity generation for the fossil-fuel electricity generation companies, and also examine their effects on the efficiency of these companies. Policy implications are derived. - Highlights: • We analyze the efficiency of 27 quoted Chinese fossil-fuel electricity generation companies during 1999–2011. • We adopt a Bayesian stochastic frontier model taking into consideration the identified heterogeneity. • With reform background in Chinese energy industry, we propose four hypotheses and check their influence on efficiency. • Big size, coastal location, government control and hydro energy sources all have increased costs
PARALLEL ADAPTIVE MULTILEVEL SAMPLING ALGORITHMS FOR THE BAYESIAN ANALYSIS OF MATHEMATICAL MODELS
Prudencio, Ernesto
2012-01-01
In recent years, Bayesian model updating techniques based on measured data have been applied to many engineering and applied science problems. At the same time, parallel computational platforms are becoming increasingly more powerful and are being used more frequently by the engineering and scientific communities. Bayesian techniques usually require the evaluation of multi-dimensional integrals related to the posterior probability density function (PDF) of uncertain model parameters. The fact that such integrals cannot be computed analytically motivates the research of stochastic simulation methods for sampling posterior PDFs. One such algorithm is the adaptive multilevel stochastic simulation algorithm (AMSSA). In this paper we discuss the parallelization of AMSSA, formulating the necessary load balancing step as a binary integer programming problem. We present a variety of results showing the effectiveness of load balancing on the overall performance of AMSSA in a parallel computational environment.
Gajic-Veljanoski, Olga; Cheung, Angela M; Bayoumi, Ahmed M; Tomlinson, George
2016-05-30
Bivariate random-effects meta-analysis (BVMA) is a method of data synthesis that accounts for treatment effects measured on two outcomes. BVMA gives more precise estimates of the population mean and predicted values than two univariate random-effects meta-analyses (UVMAs). BVMA also addresses bias from incomplete reporting of outcomes. A few tutorials have covered technical details of BVMA of categorical or continuous outcomes. Limited guidance is available on how to analyze datasets that include trials with mixed continuous-binary outcomes where treatment effects on one outcome or the other are not reported. Given the advantages of Bayesian BVMA for handling missing outcomes, we present a tutorial for Bayesian BVMA of incompletely reported treatment effects on mixed bivariate outcomes. This step-by-step approach can serve as a model for our intended audience, the methodologist familiar with Bayesian meta-analysis, looking for practical advice on fitting bivariate models. To facilitate application of the proposed methods, we include our WinBUGS code. As an example, we use aggregate-level data from published trials to demonstrate the estimation of the effects of vitamin K and bisphosphonates on two correlated bone outcomes, fracture, and bone mineral density. We present datasets where reporting of the pairs of treatment effects on both outcomes was 'partially' complete (i.e., pairs completely reported in some trials), and we outline steps for modeling the incompletely reported data. To assess what is gained from the additional work required by BVMA, we compare the resulting estimates to those from separate UVMAs. We discuss methodological findings and make four recommendations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26553369
Bhattacharjee, Arnab; Bhattacharjee, Madhuchhanda
2007-01-01
We propose Bayesian inference in hazard regression models where the baseline hazard is unknown, covariate effects are possibly age-varying (non-proportional), and there is multiplicative frailty with arbitrary distribution. Our framework incorporates a wide variety of order restrictions on covariate dependence and duration dependence (ageing). We propose estimation and evaluation of age-varying covariate effects when covariate dependence is monotone rather than proportional. In particular, we...
Muhammad eZubair
2014-01-01
The investigation of the nuclear accidents reveals that the accumulation of various technical and nontechnical lapses compounded the nuclear disaster. By using Analytic Hierarchy Process (AHP) and Bayesian Network (BN) the present research signifies the technical and nontechnical issues of nuclear accidents. The study exposed that besides technical fixes such as enhanced engineering safety features and better siting choices, the critical ingredient for safe operation of nuclear reactors lie i...
Petit, V.; Wade, G. A.
2011-01-01
In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known, and therefore the rotational phases of the observations are ambiguous. The model assumes that the magnetic observations correspond to a dipole oblique rotator, a situation commonly encountered in i...
Growth of Screen-Detected Abdominal Aortic Aneurysms in Men: A Bayesian Analysis
Sherer, E A; Bies, R R; Clancy, P; Norman, P. E.; Golledge, J
2012-01-01
There is considerable interindividual variability in the growth of abdominal aortic aneurysms (AAAs), but an individual's growth observations, risk factors, and biomarkers could potentially be used to tailor surveillance. To assess the potential for tailoring surveillance, this study determined the accuracy of individualized predictions of AAA size at the next surveillance observation. A hierarchical Bayesian model was fitted to a total of 1,732 serial ultrasound measurements from 299 men in ...
A Bayesian Analysis of GPS Guidance System in Precision Agriculture: The Role of Expectations
Khanal, Aditya R; Mishra, Ashok K.; Lambert, Dayton M.; Paudel, Krishna P.
2013-01-01
Farmer’s post adoption responses about technology are important in continuation and diffusion of a technology in precision agriculture. We studied farmer’s frequency of application decisions of GPS guidance system, after adoption. Using a Cotton grower’s precision farming survey in the U.S. and Bayesian approaches, our study suggests that ‘meeting expectation’ plays an important positive role. Farmer’s income level, farm size, and farming occupation are other important factors in modeling GPS...
On the choice of prior density for the Bayesian analysis of pedigree structure
Almudevar, Anthony; LaCombe, Jason
2011-01-01
This article is concerned with the choice of structural prior density for use in a fully Bayesian approach to pedigree inference. It is found that the choice of prior has considerable influence on the accuracy of the estimation. To guide this choice, a scale invariance property is introduced. Under a structural prior with this property, the marginal prior distribution of the local properties of a pedigree node (number of parents, offspring, etc.) does not depend on the number of nodes in the ...
Bayesian meta-analysis for identifying periodically expressed genes in fission yeast cell cycle
Fan, Xiaodan; Pyne, Saumyadipta; Liu, Jun S
2010-01-01
The effort to identify genes with periodic expression during the cell cycle from genome-wide microarray time series data has been ongoing for a decade. However, the lack of rigorous modeling of periodic expression as well as the lack of a comprehensive model for integrating information across genes and experiments has impaired the effort for the accurate identification of periodically expressed genes. To address the problem, we introduce a Bayesian model to integrate multiple independent micr...
A Bayesian spatio-temporal analysis of forest fires in Portugal
Silva, Giovani Loiola; Dias, Maria Inês
2013-01-01
In the last decade, forest fires have become a natural disaster in Portugal, causing great forest devastation, leading to both economic and environmental losses and putting at risk populations and the livelihoods of the forest itself. In this work, we present Bayesian hierarchical models to analyze spatio-temporal fire data on the proportion of burned area in Portugal, by municipalities and over three decades. Mixture of distributions was employed to model jointly the proportion of area burn...
Using ICD for structural analysis of clusters: a case study on NeAr clusters
International Nuclear Information System (INIS)
We present a method to utilize interatomic Coulombic decay (ICD) to retrieve information about the mean geometric structures of heteronuclear clusters. It is based on observation and modelling of competing ICD channels, which involve the same initial vacancy, but energetically different final states with vacancies in different components of the cluster. Using binary rare gas clusters of Ne and Ar as an example, we measure the relative intensity of ICD into (Ne+)2 and Ne+Ar+ final states with spectroscopically well separated ICD peaks. We compare in detail the experimental ratios of the Ne–Ne and Ne–Ar ICD contributions and their positions and widths to values calculated for a diverse set of possible structures. We conclude that NeAr clusters exhibit a core–shell structure with an argon core surrounded by complete neon shells and, possibly, further an incomplete shell of neon atoms for the experimental conditions investigated. Our analysis allows one to differentiate between clusters of similar size and stochiometric Ar content, but different internal structure. We find evidence for ICD of Ne 2s−1, producing Ar+ vacancies in the second coordination shell of the initial site. (paper)
Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data
Directory of Open Access Journals (Sweden)
T. Chandrasekhar
2011-11-01
Full Text Available Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clusters with perform well in terms of the Silhouette Coefficients cluster measure.
Sankararaman, Shankar
2016-01-01
This paper presents a computational framework for uncertainty characterization and propagation, and sensitivity analysis under the presence of aleatory and epistemic un- certainty, and develops a rigorous methodology for efficient refinement of epistemic un- certainty by identifying important epistemic variables that significantly affect the overall performance of an engineering system. The proposed methodology is illustrated using the NASA Langley Uncertainty Quantification Challenge (NASA-LUQC) problem that deals with uncertainty analysis of a generic transport model (GTM). First, Bayesian inference is used to infer subsystem-level epistemic quantities using the subsystem-level model and corresponding data. Second, tools of variance-based global sensitivity analysis are used to identify four important epistemic variables (this limitation specified in the NASA-LUQC is reflective of practical engineering situations where not all epistemic variables can be refined due to time/budget constraints) that significantly affect system-level performance. The most significant contribution of this paper is the development of the sequential refine- ment methodology, where epistemic variables for refinement are not identified all-at-once. Instead, only one variable is first identified, and then, Bayesian inference and global sensi- tivity calculations are repeated to identify the next important variable. This procedure is continued until all 4 variables are identified and the refinement in the system-level perfor- mance is computed. The advantages of the proposed sequential refinement methodology over the all-at-once uncertainty refinement approach are explained, and then applied to the NASA Langley Uncertainty Quantification Challenge problem.
Clustering and Feature Selection using Sparse Principal Component Analysis
Luss, Ronny
2007-01-01
In this paper, we use sparse principal component analysis (PCA) to solve clustering and feature selection problems. Sparse PCA seeks sparse factors, or linear combinations of the data variables, explaining a maximum amount of variance in the data while having only a limited number of nonzero coefficients. PCA is often used as a simple clustering technique and sparse factors allow us here to interpret the clusters in terms of a reduced set of variables. We begin with a brief introduction and motivation on sparse PCA and detail our implementation of the algorithm in d'Aspremont et al. (2005). We finish by describing the application of sparse PCA to clustering and by a brief description of DSPCA, the numerical package used in these experiments.
International Nuclear Information System (INIS)
This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables
Uncertainty Analysis in Fatigue Life Prediction of Gas Turbine Blades Using Bayesian Inference
Li, Yan-Feng; Zhu, Shun-Peng; Li, Jing; Peng, Weiwen; Huang, Hong-Zhong
2015-12-01
This paper investigates Bayesian model selection for fatigue life estimation of gas turbine blades considering model uncertainty and parameter uncertainty. Fatigue life estimation of gas turbine blades is a critical issue for the operation and health management of modern aircraft engines. Since lots of life prediction models have been presented to predict the fatigue life of gas turbine blades, model uncertainty and model selection among these models have consequently become an important issue in the lifecycle management of turbine blades. In this paper, fatigue life estimation is carried out by considering model uncertainty and parameter uncertainty simultaneously. It is formulated as the joint posterior distribution of a fatigue life prediction model and its model parameters using Bayesian inference method. Bayes factor is incorporated to implement the model selection with the quantified model uncertainty. Markov Chain Monte Carlo method is used to facilitate the calculation. A pictorial framework and a step-by-step procedure of the Bayesian inference method for fatigue life estimation considering model uncertainty are presented. Fatigue life estimation of a gas turbine blade is implemented to demonstrate the proposed method.
Cognitive analysis of multiple sclerosis utilizing fuzzy cluster means
Directory of Open Access Journals (Sweden)
Imianvan Anthony Agboizebeta
2012-01-01
Full Text Available Multiple sclerosis, often called MS, is a disease that affects the central nervous system (the brain and spinal cord. Myelin provides insulation for nerve cells improves the conduction of impulses along the nerves and is important for maintaining the health of the nerves. In multiple sclerosis, inflammation causes the myelin to disappear. Genetic factors, environmental issues and viral infection may also play a role in developing the disease. Ms is characterized by life threatening symptoms such as; loss of balance, hearing problem and depression. The application of Fuzzy Cluster Means (FCM or Fuzzy CMean analysis to the diagnosis of different forms of multiple sclerosis is the focal point of this paper. Application of cluster analysis involves a sequence of methodological and analytical decision steps that enhances the quality and meaning of the clusters produced. Uncertainties associated with analysis of multiple sclerosis test data are eliminated by the system
Climatology of Mexico: a Description Based on Clustering Analysis
Pineda-Martinez, L. F.; Carbajal, N.
2007-05-01
Climate regions of Mexico are delimitated using hierarchical clustering analysis (HCA). We assign the variables, precipitation and temperature, to groups or clusters based on similar statistical characteristics. Since meteorological stations in Mexico expose a heterogonous geographic distribution, we used principal components analysis (PCA) to obtain a standardized reduced matrix to apply conveniently HCA. We consider monthly means of maxima and minima temperature and monthly accumulated precipitation from a meteorological dataset of the National Water Commission of Mexico. It allows defining groups of station delimiting regions of similar climate. It also allows describing the regional effect of events such as the Mexican monsoon and ENSO.
Traffic Accident, System Model and Cluster Analysis in GIS
Directory of Open Access Journals (Sweden)
Veronika Vlčková
2015-07-01
Full Text Available One of the many often frequented topics as normal journalism, so the professional public, is the problem of traffic accidents. This article illustrates the orientation of considerations to a less known context of accidents, with the help of constructive systems theory and its methods, cluster analysis and geoinformation engineering. Traffic accident is reframing the space-time, and therefore it can be to study with tools of technology of geographic information systems. The application of system approach enabling the formulation of the system model, grabbed by tools of geoinformation engineering and multicriterial and cluster analysis.
Cameron, E
2012-01-01
"Approximate Bayesian Computation" (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable-the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference (e.g. conventional Markov Chain Monte Carlo simulation; MCMC). In this article we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high redshift galaxies. To this end we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe; and second, through an ABC-based comparison against the observed demographics of the first generation of massive (M_gal > 10^11 M_sun) galaxies (at 1.5 < z < 3) in the CANDELS/EGS dataset we derive posterior probability densities for the key parameters of this model. The "Sequent...
Bhadra, Anindya
2013-04-22
We describe a Bayesian technique to (a) perform a sparse joint selection of significant predictor variables and significant inverse covariance matrix elements of the response variables in a high-dimensional linear Gaussian sparse seemingly unrelated regression (SSUR) setting and (b) perform an association analysis between the high-dimensional sets of predictors and responses in such a setting. To search the high-dimensional model space, where both the number of predictors and the number of possibly correlated responses can be larger than the sample size, we demonstrate that a marginalization-based collapsed Gibbs sampler, in combination with spike and slab type of priors, offers a computationally feasible and efficient solution. As an example, we apply our method to an expression quantitative trait loci (eQTL) analysis on publicly available single nucleotide polymorphism (SNP) and gene expression data for humans where the primary interest lies in finding the significant associations between the sets of SNPs and possibly correlated genetic transcripts. Our method also allows for inference on the sparse interaction network of the transcripts (response variables) after accounting for the effect of the SNPs (predictor variables). We exploit properties of Gaussian graphical models to make statements concerning conditional independence of the responses. Our method compares favorably to existing Bayesian approaches developed for this purpose. © 2013, The International Biometric Society.
Bhadra, Anindya; Mallick, Bani K
2013-06-01
We describe a Bayesian technique to (a) perform a sparse joint selection of significant predictor variables and significant inverse covariance matrix elements of the response variables in a high-dimensional linear Gaussian sparse seemingly unrelated regression (SSUR) setting and (b) perform an association analysis between the high-dimensional sets of predictors and responses in such a setting. To search the high-dimensional model space, where both the number of predictors and the number of possibly correlated responses can be larger than the sample size, we demonstrate that a marginalization-based collapsed Gibbs sampler, in combination with spike and slab type of priors, offers a computationally feasible and efficient solution. As an example, we apply our method to an expression quantitative trait loci (eQTL) analysis on publicly available single nucleotide polymorphism (SNP) and gene expression data for humans where the primary interest lies in finding the significant associations between the sets of SNPs and possibly correlated genetic transcripts. Our method also allows for inference on the sparse interaction network of the transcripts (response variables) after accounting for the effect of the SNPs (predictor variables). We exploit properties of Gaussian graphical models to make statements concerning conditional independence of the responses. Our method compares favorably to existing Bayesian approaches developed for this purpose. PMID:23607608
Gong, Maozhen
Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.
Triaxial strong-lensing analysis of the z > 0.5 MACS clusters: the mass-concentration relation
Sereno, M
2011-01-01
The high concentrations derived for several strong-lensing clusters present a major inconsistency between theoretical LambdaCDM expectations and measurements. Triaxiality and orientation biases might be at the origin of this disagreement, as clusters elongated along the line-of-sight would have a relatively higher projected mass density, boosting the resulting lensing properties. Analyses of statistical samples can probe further these effects and crucially reduce biases. In this work we perform a fully triaxial strong-lensing analysis of the 12 MACS clusters at z > 0.5, a complete X-ray selected sample, and fully account for the impact of the intrinsic 3D shapes on their strong lensing properties. We first construct strong-lensing mass models for each cluster based on multiple-images, and fit projected ellipsoidal Navarro-Frenk-White halos with arbitrary orientations to each mass distribution. We then invert the measured surface mass densities using Bayesian statistics. Although the Einstein radii of this sam...
Umetsu, Keiichi; Gruen, Daniel; Merten, Julian; Donahue, Megan; Postman, Marc
2015-01-01
We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters selected from the CLASH survey. Our analysis combines constraints from 16-band HST observations and wide-field multi-color imaging taken primarily with Subaru/Suprime-Cam. We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all clusters. We find internal consistency of the ensemble mass calibration to be $\\le 5\\% \\pm 6\\%$ by comparison with the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample, we examine the concentration-mass relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $c|_{z=0.34} = 3.95 \\pm 0.35$ at $M_{200c} \\simeq 14\\times 10^{14}M_\\odot$ and an intrinsic scatter of $\\sigma(\\ln c_{200c}) = 0.13 \\pm 0.06$, in excellent...
Examination of European Union economic cohesion: A cluster analysis approach
Directory of Open Access Journals (Sweden)
Jiri Mazurek
2014-01-01
Full Text Available In the past years majority of EU members experienced the highest economic decline in their modern history, but impacts of the global financial crisis were not distributed homogeneously across the continent. The aim of the paper is to examine a cohesion of European Union (plus Norway and Iceland in terms of an economic development of its members from the 1st of January 2008 to the 31st of December 2012. For the study five economic indicators were selected: GDP growth, unemployment, inflation, labour productivity and government debt. Annual data from Eurostat databases were averaged over the whole period and then used as an input for a cluster analysis. It was found that EU countries were divided into six different clusters. The most populated cluster with 14 countries covered Central and West Europe and reflected relative homogeneity of this part of Europe. Countries of Southern Europe (Greece, Portugal and Spain shared their own cluster of the most affected countries by the recent crisis as well as the Baltics and the Balkans states in another cluster. On the other hand Slovakia and Poland, only two countries that escaped a recession, were classified in their own cluster of the most successful countries
A Geometric Analysis of Subspace Clustering with Outliers
Soltanolkotabi, Mahdi
2011-01-01
This paper considers the problem of clustering a collection of unlabeled data points assumed to lie near a union of lower dimensional planes. As is common in computer vision or unsupervised learning applications, we do not know in advance how many subspaces there are nor do we have any information about their dimensions. We develop a novel geometric analysis of an algorithm named {\\em sparse subspace clustering} (SSC) \\cite{Elhamifar09}, which significantly broadens the range of problems where it is provably effective. For instance, we show that SSC can recover multiple subspaces, each of dimension comparable to the ambient dimension. We also prove that SSC can correctly cluster data points even when the subspaces of interest intersect. Further, we develop an extension of SSC that succeeds when the data set is corrupted with possibly overwhelmingly many outliers. Underlying our analysis are clear geometric insights, which may bear on other sparse recovery problems. A numerical study complements our theoretica...
Cluster analysis of WIBS single-particle bioaerosol data
Robinson, N. H.; Allan, J. D.; Huffman, J. A.; Kaye, P. H.; Foot, V. E.; Gallagher, M.
2013-02-01
Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial data sets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Wideband Integrated Bioaerosol Sensors (WIBSs). The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL) before being applied to two separate contemporaneous ambient WIBS data sets recorded in a forest site in Colorado, USA, as part of the BEACHON-RoMBAS project. Cluster analysis results between both data sets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity) to represent the following: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long-term online primary biological aerosol particle (PBAP) measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics are improved.
Cluster analysis of WIBS single-particle bioaerosol data
Directory of Open Access Journals (Sweden)
N. H. Robinson
2013-02-01
Full Text Available Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial data sets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Wideband Integrated Bioaerosol Sensors (WIBSs. The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL before being applied to two separate contemporaneous ambient WIBS data sets recorded in a forest site in Colorado, USA, as part of the BEACHON-RoMBAS project. Cluster analysis results between both data sets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity to represent the following: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long-term online primary biological aerosol particle (PBAP measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics are improved.
Topics in Bayesian statistics and maximum entropy
International Nuclear Information System (INIS)
Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)
Energy Technology Data Exchange (ETDEWEB)
Haddad, Khaled [School of Computing, Engineering and Mathematics, University of Western Sydney, Building XB, Locked Bag 1797, Penrith, NSW 2751 (Australia); Egodawatta, Prasanna [Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane 4001 (Australia); Rahman, Ataur [School of Computing, Engineering and Mathematics, University of Western Sydney, Building XB, Locked Bag 1797, Penrith, NSW 2751 (Australia); Goonetilleke, Ashantha, E-mail: a.goonetilleke@qut.edu.au [Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane 4001 (Australia)
2013-04-01
Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality datasets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares regression and Bayesian weighted least squares regression for the estimation of uncertainty associated with pollutant build-up prediction using limited datasets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling. - Highlights: ► Water quality data spans short time scales leading to significant model uncertainty. ► Assessment of uncertainty essential for informed decision making in water
Bayesian survival analysis modeling applied to sensory shelf life of foods
Calle, M. Luz; Hough, Guillermo; Curia, Ana; Gómez, Guadalupe
2006-01-01
Data from sensory shelf-life studies can be analyzed using survival statistical methods. The objective of this research was to introduce Bayesian methodology to sensory shelf-life studies and discuss its advantages in relation to classical (frequentist) methods. A specific algorithm which incorporates the interval censored data from shelf-life studies is presented. Calculations were applied to whole-fat and fat-free yogurt, each tasted by 80 consumers who answered ‘‘yes’’ or ‘‘no’’ t...
Mechanisms of motivational interviewing in health promotion: a Bayesian mediation analysis
Directory of Open Access Journals (Sweden)
Pirlott Angela G
2012-06-01
Full Text Available Abstract Background Counselor behaviors that mediate the efficacy of motivational interviewing (MI are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the relationship between counselor variables and subsequent client behavior change. Methods Purposeful sampling identified individuals from a prospective randomized worksite trial using an MI intervention to promote firefighters’ healthy diet and regular exercise that increased dietary intake of fruits and vegetables (n = 21 or did not increase intake of fruits and vegetables (n = 22. MI interactions were coded using the Motivational Interviewing Skill Code (MISC 2.1 to categorize counselor and firefighter verbal utterances. Both Bayesian and frequentist mediation analyses were used to investigate whether client change talk mediated the relationship between counselor skills and behavior change. Results Counselors’ global spirit, empathy, and direction and MI-consistent behavioral counts (e.g., reflections, open questions, affirmations, emphasize control significantly correlated with firefighters’ total client change talk utterances (rs = 0.42, 0.40, 0.30, and 0.61, respectively, which correlated significantly with their fruit and vegetable intake increase (r = 0.33. Both Bayesian and frequentist mediation analyses demonstrated that findings were consistent with hypotheses, such that total client change talk mediated the relationship between counselor’s skills—MI-consistent behaviors [Bayesian mediated effect: αβ = .06 (.03, 95% CI = .02, .12] and MI spirit [Bayesian mediated effect: αβ = .06 (.03, 95% CI = .01, .13]—and increased fruit and vegetable consumption. Conclusion Motivational interviewing is a resource- and time-intensive intervention, and is currently being applied in many arenas. Previous research has identified the importance of counselor behaviors and client
Silva Junqueira, Vinícius; de Azevedo Peixoto, Leonardo; Galvêas Laviola, Bruno; Lopes Bhering, Leonardo; Mendonça, Simone; Agostini Costa, Tania da Silveira; Antoniassi, Rosemar
2016-01-01
The biggest challenge for jatropha breeding is to identify superior genotypes that present high seed yield and seed oil content with reduced toxicity levels. Therefore, the objective of this study was to estimate genetic parameters for three important traits (weight of 100 seed, oil seed content, and phorbol ester concentration), and to select superior genotypes to be used as progenitors in jatropha breeding. Additionally, the genotypic values and the genetic parameters estimated under the Bayesian multi-trait approach were used to evaluate different selection indices scenarios of 179 half-sib families. Three different scenarios and economic weights were considered. It was possible to simultaneously reduce toxicity and increase seed oil content and weight of 100 seed by using index selection based on genotypic value estimated by the Bayesian multi-trait approach. Indeed, we identified two families that present these characteristics by evaluating genetic diversity using the Ward clustering method, which suggested nine homogenous clusters. Future researches must integrate the Bayesian multi-trait methods with realized relationship matrix, aiming to build accurate selection indices models. PMID:27281340
Cluster analysis of WIBS single-particle bioaerosol data
N. H. Robinson; Allan, J. D.; Huffman, J. A.; P. H. Kaye; V. E. Foot; Gallagher, M
2013-01-01
Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial data sets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Wideband Integrated Bioaerosol Sensors (WIBSs). The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL) before being applied to two separate contemporaneous ambient WIBS data sets recorded in...
Frailty phenotypes in the elderly based on cluster analysis
DEFF Research Database (Denmark)
Dato, Serena; Montesanto, Alberto; Lagani, Vincenzo;
2012-01-01
genetic background on the frailty status is still questioned. We investigated the applicability of a cluster analysis approach based on specific geriatric parameters, previously set up and validated in a southern Italian population, to two large longitudinal Danish samples. In both cohorts, we identified...
A Cluster Analysis of Personality Style in Adults with ADHD
Robin, Arthur L.; Tzelepis, Angela; Bedway, Marquita
2008-01-01
Objective: The purpose of this study was to use hierarchical linear cluster analysis to examine the normative personality styles of adults with ADHD. Method: A total of 311 adults with ADHD completed the Millon Index of Personality Styles, which consists of 24 scales assessing motivating aims, cognitive modes, and interpersonal behaviors. Results:…
International Nuclear Information System (INIS)
The use of expert systems can be helpful to improve the transparency and repeatability of assessments in areas of risk analysis with limited data available. In this field, human reliability analysis (HRA) is no exception, and, in particular, dependence analysis is an HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure Events refers to the assessment of the effect of an earlier human failure on the probability of the subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the input (i.e. when probability distributions can be assigned to describe the input parameters uncertainty), since it provides a satisfactory representation of the uncertainty and its output is directly interpretable for use within PSA. On the other hand, in cases characterized by very limited knowledge, an analyst may feel constrained by the probabilistic framework, which requires assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input and output uncertainty. - Highlights: • We analyse treatment of uncertainty in two expert systems. • We compare a Bayesian Belief Network (BBN) and a Fuzzy Expert System (FES). • We focus on the input assessment, inference engines and output assessment. • We focus on an application problem of interest for human reliability analysis. • We emphasize the application rather than math to reach non-BBN or FES specialists
Analysis of axle and vehicle load properties through Bayesian Networks based on Weigh-in-Motion data
International Nuclear Information System (INIS)
Weigh-in-Motion (WIM) systems are used, among other applications, in pavement and bridge reliability. The system measures quantities such as individual axle load, vehicular loads, vehicle speed, vehicle length and number of axles. Because of the nature of traffic configuration, the quantities measured are evidently regarded as random variables. The dependence structure of the data of such complex systems as the traffic systems is also very complex. It is desirable to be able to represent the complex multidimensional-distribution with models where the dependence may be explained in a clear way and different locations where the system operates may be treated simultaneously. Bayesian Networks (BNs) are models that comply with the characteristics listed above. In this paper we discuss BN models and results concerning their ability to adequately represent the data. The paper places attention on the construction and use of the models. We discuss applications of the proposed BNs in reliability analysis. In particular we show how the proposed BNs may be used for computing design values for individual axles, vehicle weight and maximum bending moments of bridges in certain time intervals. These estimates have been used to advise authorities with respect to bridge reliability. Directions as to how the model may be extended to include locations where the WIM system does not operate are given whenever possible. These ideas benefit from structured expert judgment techniques previously used to quantify Hybrid Bayesian Networks (HBNs) with success
Directory of Open Access Journals (Sweden)
Giulia Carreras
2012-09-01
Full Text Available
Background: parameter uncertainty in the Markov model’s description of a disease course was addressed. Probabilistic sensitivity analysis (PSA is now considered the only tool that properly permits parameter uncertainty’s examination. This consists in sampling values from the parameter’s probability distributions.
Methods: Markov models fitted with microsimulation were considered and methods for carrying out a PSA on transition probabilities were studied. Two Bayesian solutions were developed: for each row of the modeled transition matrix the prior distribution was assumed as a product of Beta or a Dirichlet. The two solutions differ in the source of information: several different sources for each transition in the Beta approach and a single source for each transition from a given health state in the Dirichlet. The two methods were applied to a simple cervical cancer’s model.
Results : differences between posterior estimates from the two methods were negligible. Results showed that the prior variability highly influence the posterior distribution.
Conclusions: the novelty of this work is the Bayesian approach that integrates the two distributions with a product of Binomial distributions likelihood. Such methods could be also applied to cohort data and their application to more complex models could be useful and unique in the cervical cancer context, as well as in other disease modeling.
Bolin, Jocelyn H.; Edwards, Julianne M.; Finch, W. Holmes; Cassady, Jerrell C.
2014-01-01
Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple cluster...
Analysis of urban traffic patterns using clustering
Weijermars, Wilhelmina Adriana Maria
2007-01-01
Mobility is still increasing, as are its corresponding negative side effects such as congestion and air pollution. To be able to take adequate measures to minimize these side effects, it is important to obtain insight into the functioning of the traffic system. In common practice, the traffic analysis process deals with average traffic volumes. However, also the variability of traffic volumes is of crucial importance, for example with regard to travel time reliability, the robustness of the r...
Clustering Analysis within Text Classification Techniques
Madalina ZURINI; Catalin SBORA
2011-01-01
The paper represents a personal approach upon the main applications of classification which are presented in the area of knowledge based society by means of methods and techniques widely spread in the literature. Text classification is underlined in chapter two where the main techniques used are described, along with an integrated taxonomy. The transition is made through the concept of spatial representation. Having the elementary elements of geometry and the artificial intelligence analysis,...
K-means cluster analysis and seismicity partitioning for Pakistan
Rehman, Khaista; Burton, Paul W.; Weatherill, Graeme A.
2014-07-01
Pakistan and the western Himalaya is a region of high seismic activity located at the triple junction between the Arabian, Eurasian and Indian plates. Four devastating earthquakes have resulted in significant numbers of fatalities in Pakistan and the surrounding region in the past century (Quetta, 1935; Makran, 1945; Pattan, 1974 and the recent 2005 Kashmir earthquake). It is therefore necessary to develop an understanding of the spatial distribution of seismicity and the potential seismogenic sources across the region. This forms an important basis for the calculation of seismic hazard; a crucial input in seismic design codes needed to begin to effectively mitigate the high earthquake risk in Pakistan. The development of seismogenic source zones for seismic hazard analysis is driven by both geological and seismotectonic inputs. Despite the many developments in seismic hazard in recent decades, the manner in which seismotectonic information feeds the definition of the seismic source can, in many parts of the world including Pakistan and the surrounding regions, remain a subjective process driven primarily by expert judgment. Whilst much research is ongoing to map and characterise active faults in Pakistan, knowledge of the seismogenic properties of the active faults is still incomplete in much of the region. Consequently, seismicity, both historical and instrumental, remains a primary guide to the seismogenic sources of Pakistan. This study utilises a cluster analysis approach for the purposes of identifying spatial differences in seismicity, which can be utilised to form a basis for delineating seismogenic source regions. An effort is made to examine seismicity partitioning for Pakistan with respect to earthquake database, seismic cluster analysis and seismic partitions in a seismic hazard context. A magnitude homogenous earthquake catalogue has been compiled using various available earthquake data. The earthquake catalogue covers a time span from 1930 to 2007 and
Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation
Directory of Open Access Journals (Sweden)
Tushar H Jaware
2013-10-01
Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.
Identifying clinical course patterns in SMS data using cluster analysis
DEFF Research Database (Denmark)
Kent, Peter; Kongsted, Alice
2012-01-01
whole group, by including all SMS time points in their original form. It was a 'proof of concept' study to explore the potential, clinical relevance, strengths and weakness of such an approach. METHODS: This was a secondary analysis of longitudinal SMS data collected in two randomised controlled trials...... subgroups in the outcomes of research studies. Two previous studies have investigated detailed clinical course patterns in SMS data obtained from people seeking care for low back pain. One used a visual analysis approach and the other performed a cluster analysis of SMS data that had first been transformed...... conducted simultaneously from a single clinical population (n = 322) . Fortnightly SMS data collected over a year on 'days of problematic low back pain' and on 'days of sick leave' were analysed using Two-Step (probabilistic) Cluster Analysis. RESULTS: Clinical course patterns were identified that were...
Cluster analysis of movement patterns in multiarticular actions: a tutorial.
Rein, Robert; Button, Chris; Davids, Keith; Summers, Jeffery
2010-04-01
The present paper proposes a technical analysis method for extracting information about movement patterning in studies of motor control, based on a cluster analysis of movement kinematics. In a tutorial fashion, data from three different experiments are presented to exemplify and validate the technical method. When applied to three different basketball-shooting techniques, the method clearly distinguished between the different patterns. When applied to a cyclical wrist supination-pronation task, the cluster analysis provided the same results as an analysis using the conventional discrete relative phase measure. Finally, when analyzing throwing performance constrained by distance to target, the method grouped movement patterns together according to throwing distance. In conclusion, the proposed technical method provides a valuable tool to improve understanding of coordination and control in different movement models, including multiarticular actions. PMID:20484771