WorldWideScience

Sample records for bayesian based design

  1. A Bayesian Network Based Adaptability Design of Product Structures for Function Evolution

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Structure adaptability design is critical for function evolution in product families, in which many structural and functional design factors are intertwined together with manufacturing cost, customer satisfaction, and final market sales. How to achieve a delicate balance among all of these factors to maximize the market performance of the product is too complicated to address based on traditional domain experts’ knowledge or some ad hoc heuristics. Here, we propose a quantitative product evolution design model that is based on Bayesian networks to model the dynamic relationship between customer needs and product structure design. In our model, all of the structural or functional features along with customer satisfaction, manufacturing cost, sale price, market sales, and indirect factors are modeled as random variables denoted as nodes in the Bayesian networks. The structure of the Bayesian model is then determined based on the historical data, which captures the dynamic sophisticated relationship of customer demands of a product, structural design, and market performance. Application of our approach to an electric toothbrush product family evolution design problem shows that our model allows for designers to interrogate with the model and obtain theoretical and decision support for dynamic product feature design process.

  2. Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method

    Science.gov (United States)

    Zhang, Xiangnan

    2018-03-01

    A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.

  3. Bayesian Geostatistical Design

    DEFF Research Database (Denmark)

    Diggle, Peter; Lophaven, Søren Nymand

    2006-01-01

    locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model...

  4. A Bayesian Optimal Design for Sequential Accelerated Degradation Testing

    Directory of Open Access Journals (Sweden)

    Xiaoyang Li

    2017-07-01

    Full Text Available When optimizing an accelerated degradation testing (ADT plan, the initial values of unknown model parameters must be pre-specified. However, it is usually difficult to obtain the exact values, since many uncertainties are embedded in these parameters. Bayesian ADT optimal design was presented to address this problem by using prior distributions to capture these uncertainties. Nevertheless, when the difference between a prior distribution and actual situation is large, the existing Bayesian optimal design might cause some over-testing or under-testing issues. For example, the implemented ADT following the optimal ADT plan consumes too much testing resources or few accelerated degradation data are obtained during the ADT. To overcome these obstacles, a Bayesian sequential step-down-stress ADT design is proposed in this article. During the sequential ADT, the test under the highest stress level is firstly conducted based on the initial prior information to quickly generate degradation data. Then, the data collected under higher stress levels are employed to construct the prior distributions for the test design under lower stress levels by using the Bayesian inference. In the process of optimization, the inverse Gaussian (IG process is assumed to describe the degradation paths, and the Bayesian D-optimality is selected as the optimal objective. A case study on an electrical connector’s ADT plan is provided to illustrate the application of the proposed Bayesian sequential ADT design method. Compared with the results from a typical static Bayesian ADT plan, the proposed design could guarantee more stable and precise estimations of different reliability measures.

  5. Optimal soil venting design using Bayesian Decision analysis

    OpenAIRE

    Kaluarachchi, J. J.; Wijedasa, A. H.

    1994-01-01

    Remediation of hydrocarbon-contaminated sites can be costly and the design process becomes complex in the presence of parameter uncertainty. Classical decision theory related to remediation design requires the parameter uncertainties to be stipulated in terms of statistical estimates based on site observations. In the absence of detailed data on parameter uncertainty, classical decision theory provides little contribution in designing a risk-based optimal design strategy. Bayesian decision th...

  6. Differentiated Bayesian Conjoint Choice Designs

    NARCIS (Netherlands)

    Z. Sándor (Zsolt); M. Wedel (Michel)

    2003-01-01

    textabstractPrevious conjoint choice design construction procedures have produced a single design that is administered to all subjects. This paper proposes to construct a limited set of different designs. The designs are constructed in a Bayesian fashion, taking into account prior uncertainty about

  7. Efficient Bayesian experimental design for contaminant source identification

    Science.gov (United States)

    Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng

    2015-01-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.

  8. A default Bayesian hypothesis test for ANOVA designs

    NARCIS (Netherlands)

    Wetzels, R.; Grasman, R.P.P.P.; Wagenmakers, E.J.

    2012-01-01

    This article presents a Bayesian hypothesis test for analysis of variance (ANOVA) designs. The test is an application of standard Bayesian methods for variable selection in regression models. We illustrate the effect of various g-priors on the ANOVA hypothesis test. The Bayesian test for ANOVA

  9. Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain

    KAUST Repository

    Beck, Joakim

    2018-02-19

    In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized for a specified error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a single-loop Monte Carlo method that uses the Laplace approximation of the return value of the inner loop. The first demonstration example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.

  10. Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain

    Science.gov (United States)

    Beck, Joakim; Dia, Ben Mansour; Espath, Luis F. R.; Long, Quan; Tempone, Raúl

    2018-06-01

    In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized according to the desired error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a more recent single-loop Monte Carlo method that uses the Laplace method as an approximation of the return value of the inner loop. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.

  11. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice

    Science.gov (United States)

    Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa

    2016-03-01

    In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.

  12. Simulation-based optimal Bayesian experimental design for nonlinear systems

    KAUST Repository

    Huan, Xun

    2013-01-01

    The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters.Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter inference problems arising in detailed combustion kinetics. © 2012 Elsevier Inc.

  13. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    Science.gov (United States)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  14. Fully probabilistic design of hierarchical Bayesian models

    Czech Academy of Sciences Publication Activity Database

    Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine

    2016-01-01

    Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf

  15. Designing Resource-Bounded Reasoners using Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are...

  16. A Bayesian sequential design with adaptive randomization for 2-sided hypothesis test.

    Science.gov (United States)

    Yu, Qingzhao; Zhu, Lin; Zhu, Han

    2017-11-01

    Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2-arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Risk-based design of process systems using discrete-time Bayesian networks

    International Nuclear Information System (INIS)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2013-01-01

    Temporal Bayesian networks have gained popularity as a robust technique to model dynamic systems in which the components' sequential dependency, as well as their functional dependency, cannot be ignored. In this regard, discrete-time Bayesian networks have been proposed as a viable alternative to solve dynamic fault trees without resort to Markov chains. This approach overcomes the drawbacks of Markov chains such as the state-space explosion and the error-prone conversion procedure from dynamic fault tree. It also benefits from the inherent advantages of Bayesian networks such as probability updating. However, effective mapping of the dynamic gates of dynamic fault trees into Bayesian networks while avoiding the consequent huge multi-dimensional probability tables has always been a matter of concern. In this paper, a new general formalism has been developed to model two important elements of dynamic fault tree, i.e., cold spare gate and sequential enforcing gate, with any arbitrary probability distribution functions. Also, an innovative Neutral Dependency algorithm has been introduced to model dynamic gates such as priority-AND gate, thus reducing the dimension of conditional probability tables by an order of magnitude. The second part of the paper is devoted to the application of discrete-time Bayesian networks in the risk assessment and safety analysis of complex process systems. It has been shown how dynamic techniques can effectively be applied for optimal allocation of safety systems to obtain maximum risk reduction.

  18. Fast Bayesian optimal experimental design and its applications

    KAUST Repository

    Long, Quan

    2015-01-01

    We summarize our Laplace method and multilevel method of accelerating the computation of the expected information gain in a Bayesian Optimal Experimental Design (OED). Laplace method is a widely-used method to approximate an integration

  19. Optimal Experimental Design for Large-Scale Bayesian Inverse Problems

    KAUST Repository

    Ghattas, Omar

    2014-01-06

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate expressions. The control parameters are the initial mixture composition and the temperature. The approach is based on first building a polynomial based surrogate model for the observables relevant to the shock tube experiments. Based on these surrogates, a novel MAP based approach is used to estimate the expected information gain in the proposed experiments, and to select the best experimental set-ups yielding the optimal expected information gains. The validity of the approach is tested using synthetic data generated by sampling the PC surrogate. We finally outline a methodology for validation using actual laboratory experiments, and extending experimental design methodology to the cases where the control parameters are noisy.

  20. A Bayesian sequential design using alpha spending function to control type I error.

    Science.gov (United States)

    Zhu, Han; Yu, Qingzhao

    2017-10-01

    We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.

  1. Bayesian-based localization in inhomogeneous transmission media

    DEFF Research Database (Denmark)

    Nadimi, E. S.; Blanes-Vidal, V.; Johansen, P. M.

    2013-01-01

    In this paper, we propose a novel robust probabilistic approach based on the Bayesian inference using received-signal-strength (RSS) measurements with varying path-loss exponent. We derived the probability density function (pdf) of the distance between any two sensors in the network with heteroge......In this paper, we propose a novel robust probabilistic approach based on the Bayesian inference using received-signal-strength (RSS) measurements with varying path-loss exponent. We derived the probability density function (pdf) of the distance between any two sensors in the network...... with heterogeneous transmission medium as a function of the given RSS measurements and the characteristics of the heterogeneous medium. The results of this study show that the localization mean square error (MSE) of the Bayesian-based method outperformed all other existing localization approaches. © 2013 ACM....

  2. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.

    Science.gov (United States)

    Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong

    2015-11-01

    The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.

  3. The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2011-01-01

    This paper presents the Relevance VoxelMachine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed to ...

  4. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    Science.gov (United States)

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  5. Fast Bayesian optimal experimental design and its applications

    KAUST Repository

    Long, Quan

    2015-01-07

    We summarize our Laplace method and multilevel method of accelerating the computation of the expected information gain in a Bayesian Optimal Experimental Design (OED). Laplace method is a widely-used method to approximate an integration in statistics. We analyze this method in the context of optimal Bayesian experimental design and extend this method from the classical scenario, where a single dominant mode of the parameters can be completely-determined by the experiment, to the scenarios where a non-informative parametric manifold exists. We show that by carrying out this approximation the estimation of the expected Kullback-Leibler divergence can be significantly accelerated. While Laplace method requires a concentration of measure, multi-level Monte Carlo method can be used to tackle the problem when there is a lack of measure concentration. We show some initial results on this approach. The developed methodologies have been applied to various sensor deployment problems, e.g., impedance tomography and seismic source inversion.

  6. Optimal Experimental Design for Large-Scale Bayesian Inverse Problems

    KAUST Repository

    Ghattas, Omar

    2014-01-01

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation

  7. A two-stage Bayesian design with sample size reestimation and subgroup analysis for phase II binary response trials.

    Science.gov (United States)

    Zhong, Wei; Koopmeiners, Joseph S; Carlin, Bradley P

    2013-11-01

    Frequentist sample size determination for binary outcome data in a two-arm clinical trial requires initial guesses of the event probabilities for the two treatments. Misspecification of these event rates may lead to a poor estimate of the necessary sample size. In contrast, the Bayesian approach that considers the treatment effect to be random variable having some distribution may offer a better, more flexible approach. The Bayesian sample size proposed by (Whitehead et al., 2008) for exploratory studies on efficacy justifies the acceptable minimum sample size by a "conclusiveness" condition. In this work, we introduce a new two-stage Bayesian design with sample size reestimation at the interim stage. Our design inherits the properties of good interpretation and easy implementation from Whitehead et al. (2008), generalizes their method to a two-sample setting, and uses a fully Bayesian predictive approach to reduce an overly large initial sample size when necessary. Moreover, our design can be extended to allow patient level covariates via logistic regression, now adjusting sample size within each subgroup based on interim analyses. We illustrate the benefits of our approach with a design in non-Hodgkin lymphoma with a simple binary covariate (patient gender), offering an initial step toward within-trial personalized medicine. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Optimal Bayesian Experimental Design for Combustion Kinetics

    KAUST Repository

    Huan, Xun

    2011-01-04

    Experimental diagnostics play an essential role in the development and refinement of chemical kinetic models, whether for the combustion of common complex hydrocarbons or of emerging alternative fuels. Questions of experimental design—e.g., which variables or species to interrogate, at what resolution and under what conditions—are extremely important in this context, particularly when experimental resources are limited. This paper attempts to answer such questions in a rigorous and systematic way. We propose a Bayesian framework for optimal experimental design with nonlinear simulation-based models. While the framework is broadly applicable, we use it to infer rate parameters in a combustion system with detailed kinetics. The framework introduces a utility function that reflects the expected information gain from a particular experiment. Straightforward evaluation (and maximization) of this utility function requires Monte Carlo sampling, which is infeasible with computationally intensive models. Instead, we construct a polynomial surrogate for the dependence of experimental observables on model parameters and design conditions, with the help of dimension-adaptive sparse quadrature. Results demonstrate the efficiency and accuracy of the surrogate, as well as the considerable effectiveness of the experimental design framework in choosing informative experimental conditions.

  9. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.

    Science.gov (United States)

    Zhou, Heng; Lee, J Jack; Yuan, Ying

    2017-09-20

    We propose a flexible Bayesian optimal phase II (BOP2) design that is capable of handling simple (e.g., binary) and complicated (e.g., ordinal, nested, and co-primary) endpoints under a unified framework. We use a Dirichlet-multinomial model to accommodate different types of endpoints. At each interim, the go/no-go decision is made by evaluating a set of posterior probabilities of the events of interest, which is optimized to maximize power or minimize the number of patients under the null hypothesis. Unlike other existing Bayesian designs, the BOP2 design explicitly controls the type I error rate, thereby bridging the gap between Bayesian designs and frequentist designs. In addition, the stopping boundary of the BOP2 design can be enumerated prior to the onset of the trial. These features make the BOP2 design accessible to a wide range of users and regulatory agencies and particularly easy to implement in practice. Simulation studies show that the BOP2 design has favorable operating characteristics with higher power and lower risk of incorrectly terminating the trial than some existing Bayesian phase II designs. The software to implement the BOP2 design is freely available at www.trialdesign.org. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Bayesian approach to estimate AUC, partition coefficient and drug targeting index for studies with serial sacrifice design.

    Science.gov (United States)

    Wang, Tianli; Baron, Kyle; Zhong, Wei; Brundage, Richard; Elmquist, William

    2014-03-01

    The current study presents a Bayesian approach to non-compartmental analysis (NCA), which provides the accurate and precise estimate of AUC 0 (∞) and any AUC 0 (∞) -based NCA parameter or derivation. In order to assess the performance of the proposed method, 1,000 simulated datasets were generated in different scenarios. A Bayesian method was used to estimate the tissue and plasma AUC 0 (∞) s and the tissue-to-plasma AUC 0 (∞) ratio. The posterior medians and the coverage of 95% credible intervals for the true parameter values were examined. The method was applied to laboratory data from a mice brain distribution study with serial sacrifice design for illustration. Bayesian NCA approach is accurate and precise in point estimation of the AUC 0 (∞) and the partition coefficient under a serial sacrifice design. It also provides a consistently good variance estimate, even considering the variability of the data and the physiological structure of the pharmacokinetic model. The application in the case study obtained a physiologically reasonable posterior distribution of AUC, with a posterior median close to the value estimated by classic Bailer-type methods. This Bayesian NCA approach for sparse data analysis provides statistical inference on the variability of AUC 0 (∞) -based parameters such as partition coefficient and drug targeting index, so that the comparison of these parameters following destructive sampling becomes statistically feasible.

  11. A Bayesian optimal design for degradation tests based on the inverse Gaussian process

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Weiwen; Liu, Yu; Li, Yan Feng; Zhu, Shun Peng; Huang, Hong Zhong [University of Electronic Science and Technology of China, Chengdu (China)

    2014-10-15

    The inverse Gaussian process is recently introduced as an attractive and flexible stochastic process for degradation modeling. This process has been demonstrated as a valuable complement for models that are developed on the basis of the Wiener and gamma processes. We investigate the optimal design of the degradation tests on the basis of the inverse Gaussian process. In addition to an optimal design with pre-estimated planning values of model parameters, we also address the issue of uncertainty in the planning values by using the Bayesian method. An average pre-posterior variance of reliability is used as the optimization criterion. A trade-off between sample size and number of degradation observations is investigated in the degradation test planning. The effects of priors on the optimal designs and on the value of prior information are also investigated and quantified. The degradation test planning of a GaAs Laser device is performed to demonstrate the proposed method.

  12. Bayesian risk-based decision method for model validation under uncertainty

    International Nuclear Information System (INIS)

    Jiang Xiaomo; Mahadevan, Sankaran

    2007-01-01

    This paper develops a decision-making methodology for computational model validation, considering the risk of using the current model, data support for the current model, and cost of acquiring new information to improve the model. A Bayesian decision theory-based method is developed for this purpose, using a likelihood ratio as the validation metric for model assessment. An expected risk or cost function is defined as a function of the decision costs, and the likelihood and prior of each hypothesis. The risk is minimized through correctly assigning experimental data to two decision regions based on the comparison of the likelihood ratio with a decision threshold. A Bayesian validation metric is derived based on the risk minimization criterion. Two types of validation tests are considered: pass/fail tests and system response value measurement tests. The methodology is illustrated for the validation of reliability prediction models in a tension bar and an engine blade subjected to high cycle fatigue. The proposed method can effectively integrate optimal experimental design into model validation to simultaneously reduce the cost and improve the accuracy of reliability model assessment

  13. Bayesian target tracking based on particle filter

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.

  14. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  15. Bayesian selective response-adaptive design using the historical control.

    Science.gov (United States)

    Kim, Mi-Ok; Harun, Nusrat; Liu, Chunyan; Khoury, Jane C; Broderick, Joseph P

    2018-06-13

    High quality historical control data, if incorporated, may reduce sample size, trial cost, and duration. A too optimistic use of the data, however, may result in bias under prior-data conflict. Motivated by well-publicized two-arm comparative trials in stroke, we propose a Bayesian design that both adaptively incorporates historical control data and selectively adapt the treatment allocation ratios within an ongoing trial responsively to the relative treatment effects. The proposed design differs from existing designs that borrow from historical controls. As opposed to reducing the number of subjects assigned to the control arm blindly, this design does so adaptively to the relative treatment effects only if evaluation of cumulated current trial data combined with the historical control suggests the superiority of the intervention arm. We used the effective historical sample size approach to quantify borrowed information on the control arm and modified the treatment allocation rules of the doubly adaptive biased coin design to incorporate the quantity. The modified allocation rules were then implemented under the Bayesian framework with commensurate priors addressing prior-data conflict. Trials were also more frequently concluded earlier in line with the underlying truth, reducing trial cost, and duration and yielded parameter estimates with smaller standard errors. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons, Ltd.

  16. The image recognition based on neural network and Bayesian decision

    Science.gov (United States)

    Wang, Chugege

    2018-04-01

    The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.

  17. Bayesian optimal experimental design for the Shock-tube experiment

    International Nuclear Information System (INIS)

    Terejanu, G; Bryant, C M; Miki, K

    2013-01-01

    The sequential optimal experimental design formulated as an information-theoretic sensitivity analysis is applied to the ignition delay problem using real experimental. The optimal design is obtained by maximizing the statistical dependence between the model parameters and observables, which is quantified in this study using mutual information. This is naturally posed in the Bayesian framework. The study shows that by monitoring the information gain after each measurement update, one can design a stopping criteria for the experimental process which gives a minimal set of experiments to efficiently learn the Arrhenius parameters.

  18. Bayesian methodology for the design and interpretation of clinical trials in critical care medicine: a primer for clinicians.

    Science.gov (United States)

    Kalil, Andre C; Sun, Junfeng

    2014-10-01

    To review Bayesian methodology and its utility to clinical decision making and research in the critical care field. Clinical, epidemiological, and biostatistical studies on Bayesian methods in PubMed and Embase from their inception to December 2013. Bayesian methods have been extensively used by a wide range of scientific fields, including astronomy, engineering, chemistry, genetics, physics, geology, paleontology, climatology, cryptography, linguistics, ecology, and computational sciences. The application of medical knowledge in clinical research is analogous to the application of medical knowledge in clinical practice. Bedside physicians have to make most diagnostic and treatment decisions on critically ill patients every day without clear-cut evidence-based medicine (more subjective than objective evidence). Similarly, clinical researchers have to make most decisions about trial design with limited available data. Bayesian methodology allows both subjective and objective aspects of knowledge to be formally measured and transparently incorporated into the design, execution, and interpretation of clinical trials. In addition, various degrees of knowledge and several hypotheses can be tested at the same time in a single clinical trial without the risk of multiplicity. Notably, the Bayesian technology is naturally suited for the interpretation of clinical trial findings for the individualized care of critically ill patients and for the optimization of public health policies. We propose that the application of the versatile Bayesian methodology in conjunction with the conventional statistical methods is not only ripe for actual use in critical care clinical research but it is also a necessary step to maximize the performance of clinical trials and its translation to the practice of critical care medicine.

  19. Study on shielded pump system failure analysis method based on Bayesian network

    International Nuclear Information System (INIS)

    Bao Yilan; Huang Gaofeng; Tong Lili; Cao Xuewu

    2012-01-01

    This paper applies Bayesian network to the system failure analysis, with an aim to improve knowledge representation of the uncertainty logic and multi-fault states in system failure analysis. A Bayesian network for shielded pump failure analysis is presented, conducting fault parameter learning, updating Bayesian network parameter based on new samples. Finally, through the Bayesian network inference, vulnerability in this system, the largest possible failure modes, and the fault probability are obtained. The powerful ability of Bayesian network to analyze system fault is illustrated by examples. (authors)

  20. Bayesian signal processing classical, modern, and particle filtering methods

    CERN Document Server

    Candy, James V

    2016-01-01

    This book aims to give readers a unified Bayesian treatment starting from the basics (Baye's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on "Sequential Bayesian Detection," a new section on "Ensemble Kalman Filters" as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to "fill-in-the gaps" of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical "sanity testing" lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed an...

  1. Bayesian outcome-based strategy classification.

    Science.gov (United States)

    Lee, Michael D

    2016-03-01

    Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014) recently developed a method for making inferences about the decision processes people use in multi-attribute forced choice tasks. Their paper makes a number of worthwhile theoretical and methodological contributions. Theoretically, they provide an insightful psychological motivation for a probabilistic extension of the widely-used "weighted additive" (WADD) model, and show how this model, as well as other important models like "take-the-best" (TTB), can and should be expressed in terms of meaningful priors. Methodologically, they develop an inference approach based on the Minimum Description Length (MDL) principles that balances both the goodness-of-fit and complexity of the decision models they consider. This paper aims to preserve these useful contributions, but provide a complementary Bayesian approach with some theoretical and methodological advantages. We develop a simple graphical model, implemented in JAGS, that allows for fully Bayesian inferences about which models people use to make decisions. To demonstrate the Bayesian approach, we apply it to the models and data considered by Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014), showing how a prior predictive analysis of the models, and posterior inferences about which models people use and the parameter settings at which they use them, can contribute to our understanding of human decision making.

  2. Construction of Monitoring Model and Algorithm Design on Passenger Security during Shipping Based on Improved Bayesian Network

    Science.gov (United States)

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping. PMID:25254227

  3. AGGLOMERATIVE CLUSTERING OF SOUND RECORD SPEECH SEGMENTS BASED ON BAYESIAN INFORMATION CRITERION

    Directory of Open Access Journals (Sweden)

    O. Yu. Kydashev

    2013-01-01

    Full Text Available This paper presents the detailed description of agglomerative clustering system implementation for speech segments based on Bayesian information criterion. Numerical experiment results with different acoustic features, as well as the full and diagonal covariance matrices application are given. The error rate DER equal to 6.4% for audio records of radio «Svoboda» was achieved by means of designed system.

  4. Motion Learning Based on Bayesian Program Learning

    Directory of Open Access Journals (Sweden)

    Cheng Meng-Zhen

    2017-01-01

    Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.

  5. A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters

    Directory of Open Access Journals (Sweden)

    Luis Medina

    2017-11-01

    Full Text Available Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU and the other for Field-Programmable Gate Array (FPGA. The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle.

  6. Optimizing Nuclear Reaction Analysis (NRA) using Bayesian Experimental Design

    International Nuclear Information System (INIS)

    Toussaint, Udo von; Schwarz-Selinger, Thomas; Gori, Silvio

    2008-01-01

    Nuclear Reaction Analysis with 3 He holds the promise to measure Deuterium depth profiles up to large depths. However, the extraction of the depth profile from the measured data is an ill-posed inversion problem. Here we demonstrate how Bayesian Experimental Design can be used to optimize the number of measurements as well as the measurement energies to maximize the information gain. Comparison of the inversion properties of the optimized design with standard settings reveals huge possible gains. Application of the posterior sampling method allows to optimize the experimental settings interactively during the measurement process.

  7. Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2010-01-01

    This paper presents how Bayesian networks can be used to make optimal decisions for repairs of offshore wind turbines. The Bayesian network is an efficient tool for updating a deterioration model whenever new information becomes available from inspections/monitoring. The optimal decision is found...... such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Bayesian decision theory. The method is demonstrated through an application example....

  8. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ata Khan

    2013-04-01

    Full Text Available Intelligent transportation systems (ITS are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic environment. The operational requirements can be met with cognitive vehicle design features made possible by advances in artificial intelligence-supported methodology, improved understanding of human factors, and advances in communication technology. This paper describes cognitive features and their information system requirements. The architecture of an information system is presented that supports the features of the cognitive connected vehicle. For better focus, information processing capabilities are specified and the role of Bayesian artificial intelligence is defined for data fusion. Example applications illustrate the role of information systems in integrating intelligent technology, Bayesian artificial intelligence, and abstracted human factors. Concluding remarks highlight the role of the information system and Bayesian artificial intelligence in the design of a new generation of cognitive connected vehicle.

  9. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  10. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.

    Science.gov (United States)

    Hosseini, Marjan; Kerachian, Reza

    2017-09-01

    This paper presents a new methodology for analyzing the spatiotemporal variability of water table levels and redesigning a groundwater level monitoring network (GLMN) using the Bayesian Maximum Entropy (BME) technique and a multi-criteria decision-making approach based on ordered weighted averaging (OWA). The spatial sampling is determined using a hexagonal gridding pattern and a new method, which is proposed to assign a removal priority number to each pre-existing station. To design temporal sampling, a new approach is also applied to consider uncertainty caused by lack of information. In this approach, different time lag values are tested by regarding another source of information, which is simulation result of a numerical groundwater flow model. Furthermore, to incorporate the existing uncertainties in available monitoring data, the flexibility of the BME interpolation technique is taken into account in applying soft data and improving the accuracy of the calculations. To examine the methodology, it is applied to the Dehgolan plain in northwestern Iran. Based on the results, a configuration of 33 monitoring stations for a regular hexagonal grid of side length 3600 m is proposed, in which the time lag between samples is equal to 5 weeks. Since the variance estimation errors of the BME method are almost identical for redesigned and existing networks, the redesigned monitoring network is more cost-effective and efficient than the existing monitoring network with 52 stations and monthly sampling frequency.

  11. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    Science.gov (United States)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  12. A Bayesian Network approach to the evaluation of building design and its consequences for employee performance and operational costs

    DEFF Research Database (Denmark)

    Jensen, Kasper Lynge; Toftum, Jørn; Friis-Hansen, Peter

    2009-01-01

    A Bayesian Network approach has been developed that can compare different building designs by estimating the effects of the thermal indoor environment on the mental performance of office workers. A part of this network is based on the compilation of subjective thermal sensation data and the assoc...

  13. Sparse linear models: Variational approximate inference and Bayesian experimental design

    International Nuclear Information System (INIS)

    Seeger, Matthias W

    2009-01-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  14. Sparse linear models: Variational approximate inference and Bayesian experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)

    2009-12-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  15. The Relevance Voxel Machine (RVoxM): A Self-Tuning Bayesian Model for Informative Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2012-01-01

    This paper presents the relevance voxel machine (RVoxM), a dedicated Bayesian model for making predictions based on medical imaging data. In contrast to the generic machine learning algorithms that have often been used for this purpose, the method is designed to utilize a small number of spatially...

  16. Bayesian Probability Theory

    Science.gov (United States)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  17. An Analysis of Construction Accident Factors Based on Bayesian Network

    OpenAIRE

    Yunsheng Zhao; Jinyong Pei

    2013-01-01

    In this study, we have an analysis of construction accident factors based on bayesian network. Firstly, accidents cases are analyzed to build Fault Tree method, which is available to find all the factors causing the accidents, then qualitatively and quantitatively analyzes the factors with Bayesian network method, finally determines the safety management program to guide the safety operations. The results of this study show that bad condition of geological environment has the largest posterio...

  18. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration.

    Science.gov (United States)

    Conner, Mary M; Saunders, W Carl; Bouwes, Nicolaas; Jordan, Chris

    2015-10-01

    Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ≥20 % increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for assessing natural and human-induced impacts for field experiments, the application of hierarchal Bayesian modeling with MCMC sampling to BACI designs is less common. Here, we combine these approaches and extend the typical presentation of results with an easy to interpret ratio, which provides an answer to the main study question-"How much impact did a management action or natural perturbation have?" As an example of this approach, we evaluate the impact of a restoration project, which implemented beaver dam analogs, on survival and density of juvenile steelhead. Results indicated the probabilities of a ≥30 % increase were high for survival and density after the dams were installed, 0.88 and 0.99, respectively, while probabilities for a higher increase of ≥50 % were variable, 0.17 and 0.82, respectively. This approach demonstrates a useful extension of Bayesian methods that can easily be generalized to other study designs from simple (e.g., single factor ANOVA, paired t test) to more complicated block designs (e.g., crossover, split-plot). This approach is valuable for estimating the probabilities of restoration impacts or other management actions.

  19. Design and Evaluation of the User-Adapted Program Scheduling system based on Bayesian Network and Constraint Satisfaction

    Science.gov (United States)

    Iwasaki, Hirotoshi; Sega, Shinichiro; Hiraishi, Hironori; Mizoguchi, Fumio

    In recent years, lots of music content can be stored in mobile computing devices, such as a portable digital music player and a car navigation system. Moreover, various information content like news or traffic information can be acquired always anywhere by a cellular communication and a wireless LAN. However, usability issues arise from the simple interfaces of mobile computing devices. Moreover, retrieving and selecting such content poses safety issues, especially while driving. Thus, it is important for the mobile system to recommend content automatically adapted to user's preference and situation. In this paper, we present the user-adapted program scheduling that generates sequences of content (Program) suiting user's preference and situation based on the Bayesian network and the Constraint Satisfaction Problem (CSP) technique. We also describe the design and evaluation of its realization system, the Personal Program Producer (P3). First, preference such as a genre ratio of content in a program is learned as a Bayesian network model using simple operations such as a skip behavior. A model including each content tends to become large-scale. In order to make it small, we present the model separation method that carries out losslessly compression of the model. Using the model, probabilistic distributions of preference to generate constraints are inferred. Finally satisfying the constraints, a program is produced. This kind of CSP has an issue of which the number of variables is not fixedness. In order to make it variable, we propose a method using metavariables. To evaluate the above methods, we applied them to P3 on a car navigation system. User evaluations helped us clarify that the P3 can produce the program that a user prefers and adapt it to the user.

  20. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    Science.gov (United States)

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  1. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    Directory of Open Access Journals (Sweden)

    Ke Li

    2016-01-01

    Full Text Available A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF and Diagnostic Bayesian Network (DBN is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO. To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA is proposed to evaluate the sensitiveness of symptom parameters (SPs for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  2. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    Science.gov (United States)

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  3. Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.

    Science.gov (United States)

    Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C

    2015-01-01

    The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.

  4. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  5. Reliability estimation of safety-critical software-based systems using Bayesian networks

    International Nuclear Information System (INIS)

    Helminen, A.

    2001-06-01

    Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear power plants. In the research project 'Programmable automation system safety integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002), various safety assessment methods and tools for software based systems are developed and evaluated. The project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT). In this report the applicability of Bayesian networks to the reliability estimation of software-based systems is studied. The applicability is evaluated by building Bayesian network models for the systems of interest and performing simulations for these models. In the simulations hypothetical evidence is used for defining the parameter relations and for determining the ability to compensate disparate evidence in the models. Based on the experiences from modelling and simulations we are able to conclude that Bayesian networks provide a good method for the reliability estimation of software-based systems. (orig.)

  6. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration

    OpenAIRE

    Conner, Mary M.; Saunders, W. Carl; Bouwes, Nicolaas; Jordan, Chris

    2016-01-01

    Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ?20?% increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for as...

  7. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  8. Personalized Multi-Student Improvement Based on Bayesian Cybernetics

    Science.gov (United States)

    Kaburlasos, Vassilis G.; Marinagi, Catherine C.; Tsoukalas, Vassilis Th.

    2008-01-01

    This work presents innovative cybernetics (feedback) techniques based on Bayesian statistics for drawing questions from an Item Bank towards personalized multi-student improvement. A novel software tool, namely "Module for Adaptive Assessment of Students" (or, "MAAS" for short), implements the proposed (feedback) techniques. In conclusion, a pilot…

  9. Bayesian analysis in plant pathology.

    Science.gov (United States)

    Mila, A L; Carriquiry, A L

    2004-09-01

    ABSTRACT Bayesian methods are currently much discussed and applied in several disciplines from molecular biology to engineering. Bayesian inference is the process of fitting a probability model to a set of data and summarizing the results via probability distributions on the parameters of the model and unobserved quantities such as predictions for new observations. In this paper, after a short introduction of Bayesian inference, we present the basic features of Bayesian methodology using examples from sequencing genomic fragments and analyzing microarray gene-expressing levels, reconstructing disease maps, and designing experiments.

  10. Development of an internet based system for modeling biotin metabolism using Bayesian networks.

    Science.gov (United States)

    Zhou, Jinglei; Wang, Dong; Schlegel, Vicki; Zempleni, Janos

    2011-11-01

    Biotin is an essential water-soluble vitamin crucial for maintaining normal body functions. The importance of biotin for human health has been under-appreciated but there is plenty of opportunity for future research with great importance for human health. Currently, carrying out predictions of biotin metabolism involves tedious manual manipulations. In this paper, we report the development of BiotinNet, an internet based program that uses Bayesian networks to integrate published data on various aspects of biotin metabolism. Users can provide a combination of values on the levels of biotin related metabolites to obtain the predictions on other metabolites that are not specified. As an inherent feature of Bayesian networks, the uncertainty of the prediction is also quantified and reported to the user. This program enables convenient in silico experiments regarding biotin metabolism, which can help researchers design future experiments while new data can be continuously incorporated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models

    Directory of Open Access Journals (Sweden)

    Robert B. Gramacy

    2007-06-01

    Full Text Available The tgp package for R is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring maptree and combinat packages, are also provided for visualization of tgp objects.

  12. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    Science.gov (United States)

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  13. An Intuitive Dashboard for Bayesian Network Inference

    International Nuclear Information System (INIS)

    Reddy, Vikas; Farr, Anna Charisse; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K D V

    2014-01-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++

  14. An Intuitive Dashboard for Bayesian Network Inference

    Science.gov (United States)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  15. E-commerce System Security Assessment based on Bayesian Network Algorithm Research

    OpenAIRE

    Ting Li; Xin Li

    2013-01-01

    Evaluation of e-commerce network security is based on assessment method Bayesian networks, and it first defines the vulnerability status of e-commerce system evaluation index and the vulnerability of the state model of e-commerce systems, and after the principle of the Bayesian network reliability of e-commerce system and the criticality of the vulnerabilities were analyzed, experiments show that the change method is a good evaluation of the security of e-commerce systems.

  16. Distributed Diagnosis in Uncertain Environments Using Dynamic Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a distributed Bayesian fault diagnosis scheme for physical systems. Our diagnoser design is based on a procedure for factoring the global system...

  17. Design of Korean nuclear reliability data-base network using a two-stage Bayesian concept

    International Nuclear Information System (INIS)

    Kim, T.W.; Jeong, K.S.; Chae, S.K.

    1987-01-01

    In an analysis of probabilistic risk, safety, and reliability of a nuclear power plant, the reliability data base (DB) must be established first. As the importance of the reliability data base increases, event reporting systems such as the US Nuclear Regulatory Commission's Licensee Event Report and the International Atomic Energy Agency's Incident Reporting System have been developed. In Korea, however, the systematic reliability data base is not yet available. Therefore, foreign data bases have been directly quoted in reliability analyses of Korean plants. In order to develop a reliability data base for Korean plants, the problem is which methodology is to be used, and the application limits of the selected method must be solved and clarified. After starting the commercial operation of Korea Nuclear Unit-1 (KNU-1) in 1978, six nuclear power plants have begun operation. Of these, only KNU-3 is a Canada Deuterium Uranium pressurized heavy-water reactor, and the others are all pressurized water reactors. This paper describes the proposed reliability data-base network (KNRDS) for Korean nuclear power plants in the context of two-stage Bayesian (TSB) procedure of Kaplan. It describes the concept of TSB to obtain the Korean-specific plant reliability data base, which is updated with the incorporation of both the reported generic reliability data and the operation experiences of similar plants

  18. From qualitative reasoning models to Bayesian-based learner modeling

    NARCIS (Netherlands)

    Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.

    2010-01-01

    Assessing the knowledge of a student is a fundamental part of intelligent learning environments. We present a Bayesian network based approach to dealing with uncertainty when estimating a learner’s state of knowledge in the context of Qualitative Reasoning (QR). A proposal for a global architecture

  19. A dynamic Bayesian network based approach to safety decision support in tunnel construction

    International Nuclear Information System (INIS)

    Wu, Xianguo; Liu, Huitao; Zhang, Limao; Skibniewski, Miroslaw J.; Deng, Qianli; Teng, Jiaying

    2015-01-01

    This paper presents a systemic decision approach with step-by-step procedures based on dynamic Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic and updated feature of geological, design and mechanical variables as the construction progress evolves, in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive, sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide real-time support before and after an accident. A case study in relating to dynamic safety analysis in the construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed approach, as well as its application potential. The relationships between the DBN-based and BN-based approaches are further discussed according to analysis results. The proposed approach can be used as a decision tool to provide support for safety analysis in tunnel construction, and thus increase the likelihood of a successful project in a dynamic project environment. - Highlights: • A dynamic Bayesian network (DBN) based approach for safety decision support is developed. • This approach is able to perform feed-forward, concurrent and back-forward analysis and control. • A case concerning dynamic safety analysis in Wuhan Yangtze Metro Tunnel in China is presented. • DBN-based approach can perform a higher accuracy than traditional static BN-based approach

  20. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.

    Science.gov (United States)

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.

  1. Understanding Computational Bayesian Statistics

    CERN Document Server

    Bolstad, William M

    2011-01-01

    A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic

  2. Bayesian statistics an introduction

    CERN Document Server

    Lee, Peter M

    2012-01-01

    Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as wel

  3. Online variational Bayesian filtering-based mobile target tracking in wireless sensor networks.

    Science.gov (United States)

    Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei

    2014-11-11

    The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer-Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying.

  4. Bayesian Inference of Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design

    Science.gov (United States)

    2016-03-01

    each IDF curve and subsequently used to force a calibrated and validated precipitation - runoff model. Probability-based, risk-informed hydrologic...ERDC/CHL CHETN-X-2 March 2016 Approved for public release; distribution is unlimited. Bayesian Inference of Nonstationary Precipitation Intensity...based means by which to develop local precipitation Intensity-Duration-Frequency (IDF) curves using historical rainfall time series data collected for

  5. Bayesian Optimal Experimental Design Using Multilevel Monte Carlo

    KAUST Repository

    Ben Issaid, Chaouki; Long, Quan; Scavino, Marco; Tempone, Raul

    2015-01-01

    Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.

  6. Bayesian Optimal Experimental Design Using Multilevel Monte Carlo

    KAUST Repository

    Ben Issaid, Chaouki

    2015-01-07

    Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.

  7. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  8. Application of a data-mining method based on Bayesian networks to lesion-deficit analysis

    Science.gov (United States)

    Herskovits, Edward H.; Gerring, Joan P.

    2003-01-01

    Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.

  9. A Bayesian Justification for Random Sampling in Sample Survey

    Directory of Open Access Journals (Sweden)

    Glen Meeden

    2012-07-01

    Full Text Available In the usual Bayesian approach to survey sampling the sampling design, plays a minimal role, at best. Although a close relationship between exchangeable prior distributions and simple random sampling has been noted; how to formally integrate simple random sampling into the Bayesian paradigm is not clear. Recently it has been argued that the sampling design can be thought of as part of a Bayesian's prior distribution. We will show here that under this scenario simple random sample can be given a Bayesian justification in survey sampling.

  10. Wavelet-Based Bayesian Methods for Image Analysis and Automatic Target Recognition

    National Research Council Canada - National Science Library

    Nowak, Robert

    2001-01-01

    .... We have developed two new techniques. First, we have develop a wavelet-based approach to image restoration and deconvolution problems using Bayesian image models and an alternating-maximation method...

  11. Structure-based bayesian sparse reconstruction

    KAUST Repository

    Quadeer, Ahmed Abdul; Al-Naffouri, Tareq Y.

    2012-01-01

    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical

  12. Bayesian inference with ecological applications

    CERN Document Server

    Link, William A

    2009-01-01

    This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analyt...

  13. Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments.

    Science.gov (United States)

    Kaplan, David; Lee, Chansoon

    2018-01-01

    This article provides a review of Bayesian model averaging as a means of optimizing the predictive performance of common statistical models applied to large-scale educational assessments. The Bayesian framework recognizes that in addition to parameter uncertainty, there is uncertainty in the choice of models themselves. A Bayesian approach to addressing the problem of model uncertainty is the method of Bayesian model averaging. Bayesian model averaging searches the space of possible models for a set of submodels that satisfy certain scientific principles and then averages the coefficients across these submodels weighted by each model's posterior model probability (PMP). Using the weighted coefficients for prediction has been shown to yield optimal predictive performance according to certain scoring rules. We demonstrate the utility of Bayesian model averaging for prediction in education research with three examples: Bayesian regression analysis, Bayesian logistic regression, and a recently developed approach for Bayesian structural equation modeling. In each case, the model-averaged estimates are shown to yield better prediction of the outcome of interest than any submodel based on predictive coverage and the log-score rule. Implications for the design of large-scale assessments when the goal is optimal prediction in a policy context are discussed.

  14. A Bayesian Markov geostatistical model for estimation of hydrogeological properties

    International Nuclear Information System (INIS)

    Rosen, L.; Gustafson, G.

    1996-01-01

    A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden

  15. Bayesian approach and application to operation safety

    International Nuclear Information System (INIS)

    Procaccia, H.; Suhner, M.Ch.

    2003-01-01

    The management of industrial risks requires the development of statistical and probabilistic analyses which use all the available convenient information in order to compensate the insufficient experience feedback in a domain where accidents and incidents remain too scarce to perform a classical statistical frequency analysis. The Bayesian decision approach is well adapted to this problem because it integrates both the expertise and the experience feedback. The domain of knowledge is widen, the forecasting study becomes possible and the decisions-remedial actions are strengthen thanks to risk-cost-benefit optimization analyzes. This book presents the bases of the Bayesian approach and its concrete applications in various industrial domains. After a mathematical presentation of the industrial operation safety concepts and of the Bayesian approach principles, this book treats of some of the problems that can be solved thanks to this approach: softwares reliability, controls linked with the equipments warranty, dynamical updating of databases, expertise modeling and weighting, Bayesian optimization in the domains of maintenance, quality control, tests and design of new equipments. A synthesis of the mathematical formulae used in this approach is given in conclusion. (J.S.)

  16. Learning to Detect Traffic Incidents from Data Based on Tree Augmented Naive Bayesian Classifiers

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2017-01-01

    Full Text Available This study develops a tree augmented naive Bayesian (TAN classifier based incident detection algorithm. Compared with the Bayesian networks based detection algorithms developed in the previous studies, this algorithm has less dependency on experts’ knowledge. The structure of TAN classifier for incident detection is learned from data. The discretization of continuous attributes is processed using an entropy-based method automatically. A simulation dataset on the section of the Ayer Rajah Expressway (AYE in Singapore is used to demonstrate the development of proposed algorithm, including wavelet denoising, normalization, entropy-based discretization, and structure learning. The performance of TAN based algorithm is evaluated compared with the previous developed Bayesian network (BN based and multilayer feed forward (MLF neural networks based algorithms with the same AYE data. The experiment results show that the TAN based algorithms perform better than the BN classifiers and have a similar performance to the MLF based algorithm. However, TAN based algorithm would have wider vista of applications because the theory of TAN classifiers is much less complicated than MLF. It should be found from the experiment that the TAN classifier based algorithm has a significant superiority over the speed of model training and calibration compared with MLF.

  17. Predicting Mycobacterium tuberculosis Complex Clades Using Knowledge-Based Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Minoo Aminian

    2014-01-01

    Full Text Available We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC clades. The proposed knowledge-based Bayesian network (KBBN treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes, since these are routinely gathered from MTBC isolates of tuberculosis (TB patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web.

  18. Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng, E-mail: peng@ices.utexas.edu [The Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229 (United States); Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch [Seminar für Angewandte Mathematik, Eidgenössische Technische Hochschule, Römistrasse 101, CH-8092 Zürich (Switzerland)

    2016-07-01

    We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by the so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data

  19. Inverse problems in the Bayesian framework

    International Nuclear Information System (INIS)

    Calvetti, Daniela; Somersalo, Erkki; Kaipio, Jari P

    2014-01-01

    The history of Bayesian methods dates back to the original works of Reverend Thomas Bayes and Pierre-Simon Laplace: the former laid down some of the basic principles on inverse probability in his classic article ‘An essay towards solving a problem in the doctrine of chances’ that was read posthumously in the Royal Society in 1763. Laplace, on the other hand, in his ‘Memoirs on inverse probability’ of 1774 developed the idea of updating beliefs and wrote down the celebrated Bayes’ formula in the form we know today. Although not identified yet as a framework for investigating inverse problems, Laplace used the formalism very much in the spirit it is used today in the context of inverse problems, e.g., in his study of the distribution of comets. With the evolution of computational tools, Bayesian methods have become increasingly popular in all fields of human knowledge in which conclusions need to be drawn based on incomplete and noisy data. Needless to say, inverse problems, almost by definition, fall into this category. Systematic work for developing a Bayesian inverse problem framework can arguably be traced back to the 1980s, (the original first edition being published by Elsevier in 1987), although articles on Bayesian methodology applied to inverse problems, in particular in geophysics, had appeared much earlier. Today, as testified by the articles in this special issue, the Bayesian methodology as a framework for considering inverse problems has gained a lot of popularity, and it has integrated very successfully with many traditional inverse problems ideas and techniques, providing novel ways to interpret and implement traditional procedures in numerical analysis, computational statistics, signal analysis and data assimilation. The range of applications where the Bayesian framework has been fundamental goes from geophysics, engineering and imaging to astronomy, life sciences and economy, and continues to grow. There is no question that Bayesian

  20. Protein construct storage: Bayesian variable selection and prediction with mixtures.

    Science.gov (United States)

    Clyde, M A; Parmigiani, G

    1998-07-01

    Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.

  1. A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model

    Science.gov (United States)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor

    2018-02-01

    Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.

  2. FUZZY CLUSTERING BASED BAYESIAN FRAMEWORK TO PREDICT MENTAL HEALTH PROBLEMS AMONG CHILDREN

    Directory of Open Access Journals (Sweden)

    M R Sumathi

    2017-04-01

    Full Text Available According to World Health Organization, 10-20% of children and adolescents all over the world are experiencing mental disorders. Correct diagnosis of mental disorders at an early stage improves the quality of life of children and avoids complicated problems. Various expert systems using artificial intelligence techniques have been developed for diagnosing mental disorders like Schizophrenia, Depression, Dementia, etc. This study focuses on predicting basic mental health problems of children, like Attention problem, Anxiety problem, Developmental delay, Attention Deficit Hyperactivity Disorder (ADHD, Pervasive Developmental Disorder(PDD, etc. using the machine learning techniques, Bayesian Networks and Fuzzy clustering. The focus of the article is on learning the Bayesian network structure using a novel Fuzzy Clustering Based Bayesian network structure learning framework. The performance of the proposed framework was compared with the other existing algorithms and the experimental results have shown that the proposed framework performs better than the earlier algorithms.

  3. MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.

    Science.gov (United States)

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-09-30

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi-candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and 'graduate' the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Basics of Bayesian methods.

    Science.gov (United States)

    Ghosh, Sujit K

    2010-01-01

    Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.

  5. Bayesian computation with R

    CERN Document Server

    Albert, Jim

    2009-01-01

    There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry. Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The earl

  6. Bayesian Recovery of Clipped OFDM Signals: A Receiver-based Approach

    KAUST Repository

    Al-Rabah, Abdullatif R.

    2013-05-01

    Recently, orthogonal frequency-division multiplexing (OFDM) has been adopted for high-speed wireless communications due to its robustness against multipath fading. However, one of the main fundamental drawbacks of OFDM systems is the high peak-to-average-power ratio (PAPR). Several techniques have been proposed for PAPR reduction. Most of these techniques require transmitter-based (pre-compensated) processing. On the other hand, receiver-based alternatives would save the power and reduce the transmitter complexity. By keeping this in mind, a possible approach is to limit the amplitude of the OFDM signal to a predetermined threshold and equivalently a sparse clipping signal is added. Then, estimating this clipping signal at the receiver to recover the original signal. In this work, we propose a Bayesian receiver-based low-complexity clipping signal recovery method for PAPR reduction. The method is able to i) effectively reduce the PAPR via simple clipping scheme at the transmitter side, ii) use Bayesian recovery algorithm to reconstruct the clipping signal at the receiver side by measuring part of subcarriers, iii) perform well in the absence of statistical information about the signal (e.g. clipping level) and the noise (e.g. noise variance), and at the same time iv is energy efficient due to its low complexity. Specifically, the proposed recovery technique is implemented in data-aided based. The data-aided method collects clipping information by measuring reliable 
data subcarriers, thus makes full use of spectrum for data transmission without the need for tone reservation. The study is extended further to discuss how to improve the recovery of the clipping signal utilizing some features of practical OFDM systems i.e., the oversampling and the presence of multiple receivers. Simulation results demonstrate the superiority of the proposed technique over other recovery algorithms. The overall objective is to show that the receiver-based Bayesian technique is highly

  7. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  8. Kernel Bayesian ART and ARTMAP.

    Science.gov (United States)

    Masuyama, Naoki; Loo, Chu Kiong; Dawood, Farhan

    2018-02-01

    Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Bayesian natural language semantics and pragmatics

    CERN Document Server

    Zeevat, Henk

    2015-01-01

    The contributions in this volume focus on the Bayesian interpretation of natural languages, which is widely used in areas of artificial intelligence, cognitive science, and computational linguistics. This is the first volume to take up topics in Bayesian Natural Language Interpretation and make proposals based on information theory, probability theory, and related fields. The methodologies offered here extend to the target semantic and pragmatic analyses of computational natural language interpretation. Bayesian approaches to natural language semantics and pragmatics are based on methods from signal processing and the causal Bayesian models pioneered by especially Pearl. In signal processing, the Bayesian method finds the most probable interpretation by finding the one that maximizes the product of the prior probability and the likelihood of the interpretation. It thus stresses the importance of a production model for interpretation as in Grice's contributions to pragmatics or in interpretation by abduction.

  10. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming

    2009-02-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.

  11. Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-09

    The use of Bayesian inference in data analysis has become the standard for large scienti c experiments [1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms currently implemented in C++ and Python to easily perform at-prior Markov Chain Monte Carlo Bayesian inference with pure Metropolis sampling. These implementations are designed to be user friendly and extensible for customization based on speci c application requirements. This document describes the algorithmic choices made and presents two use cases.

  12. Nonlinear and non-Gaussian Bayesian based handwriting beautification

    Science.gov (United States)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2013-03-01

    A framework is proposed in this paper to effectively and efficiently beautify handwriting by means of a novel nonlinear and non-Gaussian Bayesian algorithm. In the proposed framework, format and size of handwriting image are firstly normalized, and then typeface in computer system is applied to optimize vision effect of handwriting. The Bayesian statistics is exploited to characterize the handwriting beautification process as a Bayesian dynamic model. The model parameters to translate, rotate and scale typeface in computer system are controlled by state equation, and the matching optimization between handwriting and transformed typeface is employed by measurement equation. Finally, the new typeface, which is transformed from the original one and gains the best nonlinear and non-Gaussian optimization, is the beautification result of handwriting. Experimental results demonstrate the proposed framework provides a creative handwriting beautification methodology to improve visual acceptance.

  13. Probabilistic forecasting and Bayesian data assimilation

    CERN Document Server

    Reich, Sebastian

    2015-01-01

    In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in ap...

  14. Copula Based Factorization in Bayesian Multivariate Infinite Mixture Models

    OpenAIRE

    Martin Burda; Artem Prokhorov

    2012-01-01

    Bayesian nonparametric models based on infinite mixtures of density kernels have been recently gaining in popularity due to their flexibility and feasibility of implementation even in complicated modeling scenarios. In economics, they have been particularly useful in estimating nonparametric distributions of latent variables. However, these models have been rarely applied in more than one dimension. Indeed, the multivariate case suffers from the curse of dimensionality, with a rapidly increas...

  15. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    DEFF Research Database (Denmark)

    Tully, Philip J; Lindén, Henrik; Hennig, Matthias H

    2016-01-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed...... in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods...

  16. Probabilistic safety assessment model in consideration of human factors based on object-oriented bayesian networks

    International Nuclear Information System (INIS)

    Zhou Zhongbao; Zhou Jinglun; Sun Quan

    2007-01-01

    Effect of Human factors on system safety is increasingly serious, which is often ignored in traditional probabilistic safety assessment methods however. A new probabilistic safety assessment model based on object-oriented Bayesian networks is proposed in this paper. Human factors are integrated into the existed event sequence diagrams. Then the classes of the object-oriented Bayesian networks are constructed which are converted to latent Bayesian networks for inference. Finally, the inference results are integrated into event sequence diagrams for probabilistic safety assessment. The new method is applied to the accident of loss of coolant in a nuclear power plant. the results show that the model is not only applicable to real-time situation assessment, but also applicable to situation assessment based certain amount of information. The modeling complexity is kept down and the new method is appropriate to large complex systems due to the thoughts of object-oriented. (authors)

  17. Bayesian and neural networks for preliminary ship design

    DEFF Research Database (Denmark)

    Clausen, H. B.; Lützen, Marie; Friis-Hansen, Andreas

    2001-01-01

    000 ships is acquired and various methods for derivation of empirical relations are employed. A regression analysis is carried out to fit functions to the data. Further, the data are used to learn Bayesian and neural networks to encode the relations between the characteristics. On the basis...

  18. BAYESIAN FORECASTS COMBINATION TO IMPROVE THE ROMANIAN INFLATION PREDICTIONS BASED ON ECONOMETRIC MODELS

    Directory of Open Access Journals (Sweden)

    Mihaela Simionescu

    2014-12-01

    Full Text Available There are many types of econometric models used in predicting the inflation rate, but in this study we used a Bayesian shrinkage combination approach. This methodology is used in order to improve the predictions accuracy by including information that is not captured by the econometric models. Therefore, experts’ forecasts are utilized as prior information, for Romania these predictions being provided by Institute for Economic Forecasting (Dobrescu macromodel, National Commission for Prognosis and European Commission. The empirical results for Romanian inflation show the superiority of a fixed effects model compared to other types of econometric models like VAR, Bayesian VAR, simultaneous equations model, dynamic model, log-linear model. The Bayesian combinations that used experts’ predictions as priors, when the shrinkage parameter tends to infinite, improved the accuracy of all forecasts based on individual models, outperforming also zero and equal weights predictions and naïve forecasts.

  19. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    Science.gov (United States)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation

  20. Bayesian methods for hackers probabilistic programming and Bayesian inference

    CERN Document Server

    Davidson-Pilon, Cameron

    2016-01-01

    Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...

  1. Reinforcement Learning Based on the Bayesian Theorem for Electricity Markets Decision Support

    DEFF Research Database (Denmark)

    Sousa, Tiago; Pinto, Tiago; Praca, Isabel

    2014-01-01

    This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi...

  2. Bayesian inference for heterogeneous caprock permeability based on above zone pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Namhata, Argha; Small, Mitchell J.; Dilmore, Robert M.; Nakles, David V.; King, Seth

    2017-02-01

    The presence of faults/ fractures or highly permeable zones in the primary sealing caprock of a CO2 storage reservoir can result in leakage of CO2. Monitoring of leakage requires the capability to detect and resolve the onset, location, and volume of leakage in a systematic and timely manner. Pressure-based monitoring possesses such capabilities. This study demonstrates a basis for monitoring network design based on the characterization of CO2 leakage scenarios through an assessment of the integrity and permeability of the caprock inferred from above zone pressure measurements. Four representative heterogeneous fractured seal types are characterized to demonstrate seal permeability ranging from highly permeable to impermeable. Based on Bayesian classification theory, the probability of each fractured caprock scenario given above zone pressure measurements with measurement error is inferred. The sensitivity to injection rate and caprock thickness is also evaluated and the probability of proper classification is calculated. The time required to distinguish between above zone pressure outcomes and the associated leakage scenarios is also computed.

  3. Comparison of the genetic algorithm and incremental optimisation routines for a Bayesian inverse modelling based network design

    Science.gov (United States)

    Nickless, A.; Rayner, P. J.; Erni, B.; Scholes, R. J.

    2018-05-01

    The design of an optimal network of atmospheric monitoring stations for the observation of carbon dioxide (CO2) concentrations can be obtained by applying an optimisation algorithm to a cost function based on minimising posterior uncertainty in the CO2 fluxes obtained from a Bayesian inverse modelling solution. Two candidate optimisation methods assessed were the evolutionary algorithm: the genetic algorithm (GA), and the deterministic algorithm: the incremental optimisation (IO) routine. This paper assessed the ability of the IO routine in comparison to the more computationally demanding GA routine to optimise the placement of a five-member network of CO2 monitoring sites located in South Africa. The comparison considered the reduction in uncertainty of the overall flux estimate, the spatial similarity of solutions, and computational requirements. Although the IO routine failed to find the solution with the global maximum uncertainty reduction, the resulting solution had only fractionally lower uncertainty reduction compared with the GA, and at only a quarter of the computational resources used by the lowest specified GA algorithm. The GA solution set showed more inconsistency if the number of iterations or population size was small, and more so for a complex prior flux covariance matrix. If the GA completed with a sub-optimal solution, these solutions were similar in fitness to the best available solution. Two additional scenarios were considered, with the objective of creating circumstances where the GA may outperform the IO. The first scenario considered an established network, where the optimisation was required to add an additional five stations to an existing five-member network. In the second scenario the optimisation was based only on the uncertainty reduction within a subregion of the domain. The GA was able to find a better solution than the IO under both scenarios, but with only a marginal improvement in the uncertainty reduction. These results suggest

  4. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  5. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  6. Bayesian networks improve causal environmental ...

    Science.gov (United States)

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  7. Eyewitness identification: Bayesian information gain, base-rate effect equivalency curves, and reasonable suspicion.

    Science.gov (United States)

    Wells, Gary L; Yang, Yueran; Smalarz, Laura

    2015-04-01

    We provide a novel Bayesian treatment of the eyewitness identification problem as it relates to various system variables, such as instruction effects, lineup presentation format, lineup-filler similarity, lineup administrator influence, and show-ups versus lineups. We describe why eyewitness identification is a natural Bayesian problem and how numerous important observations require careful consideration of base rates. Moreover, we argue that the base rate in eyewitness identification should be construed as a system variable (under the control of the justice system). We then use prior-by-posterior curves and information-gain curves to examine data obtained from a large number of published experiments. Next, we show how information-gain curves are moderated by system variables and by witness confidence and we note how information-gain curves reveal that lineups are consistently more proficient at incriminating the guilty than they are at exonerating the innocent. We then introduce a new type of analysis that we developed called base rate effect-equivalency (BREE) curves. BREE curves display how much change in the base rate is required to match the impact of any given system variable. The results indicate that even relatively modest changes to the base rate can have more impact on the reliability of eyewitness identification evidence than do the traditional system variables that have received so much attention in the literature. We note how this Bayesian analysis of eyewitness identification has implications for the question of whether there ought to be a reasonable-suspicion criterion for placing a person into the jeopardy of an identification procedure. (c) 2015 APA, all rights reserved).

  8. Application of Bayesian Decision Theory Based on Prior Information in the Multi-Objective Optimization Problem

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2010-12-01

    Full Text Available General multi-objective optimization methods are hard to obtain prior information, how to utilize prior information has been a challenge. This paper analyzes the characteristics of Bayesian decision-making based on maximum entropy principle and prior information, especially in case that how to effectively improve decision-making reliability in deficiency of reference samples. The paper exhibits effectiveness of the proposed method using the real application of multi-frequency offset estimation in distributed multiple-input multiple-output system. The simulation results demonstrate Bayesian decision-making based on prior information has better global searching capability when sampling data is deficient.

  9. Bayesian dose selection design for a binary outcome using restricted response adaptive randomization.

    Science.gov (United States)

    Meinzer, Caitlyn; Martin, Renee; Suarez, Jose I

    2017-09-08

    In phase II trials, the most efficacious dose is usually not known. Moreover, given limited resources, it is difficult to robustly identify a dose while also testing for a signal of efficacy that would support a phase III trial. Recent designs have sought to be more efficient by exploring multiple doses through the use of adaptive strategies. However, the added flexibility may potentially increase the risk of making incorrect assumptions and reduce the total amount of information available across the dose range as a function of imbalanced sample size. To balance these challenges, a novel placebo-controlled design is presented in which a restricted Bayesian response adaptive randomization (RAR) is used to allocate a majority of subjects to the optimal dose of active drug, defined as the dose with the lowest probability of poor outcome. However, the allocation between subjects who receive active drug or placebo is held constant to retain the maximum possible power for a hypothesis test of overall efficacy comparing the optimal dose to placebo. The design properties and optimization of the design are presented in the context of a phase II trial for subarachnoid hemorrhage. For a fixed total sample size, a trade-off exists between the ability to select the optimal dose and the probability of rejecting the null hypothesis. This relationship is modified by the allocation ratio between active and control subjects, the choice of RAR algorithm, and the number of subjects allocated to an initial fixed allocation period. While a responsive RAR algorithm improves the ability to select the correct dose, there is an increased risk of assigning more subjects to a worse arm as a function of ephemeral trends in the data. A subarachnoid treatment trial is used to illustrate how this design can be customized for specific objectives and available data. Bayesian adaptive designs are a flexible approach to addressing multiple questions surrounding the optimal dose for treatment efficacy

  10. A Hybrid Approach for Reliability Analysis Based on Analytic Hierarchy Process and Bayesian Network

    International Nuclear Information System (INIS)

    Zubair, Muhammad

    2014-01-01

    By using analytic hierarchy process (AHP) and Bayesian Network (BN) the present research signifies the technical and non-technical issues of nuclear accidents. The study exposed that the technical faults was one major reason of these accidents. Keep an eye on other point of view it becomes clearer that human behavior like dishonesty, insufficient training, and selfishness are also play a key role to cause these accidents. In this study, a hybrid approach for reliability analysis based on AHP and BN to increase nuclear power plant (NPP) safety has been developed. By using AHP, best alternative to improve safety, design, operation, and to allocate budget for all technical and non-technical factors related with nuclear safety has been investigated. We use a special structure of BN based on the method AHP. The graphs of the BN and the probabilities associated with nodes are designed to translate the knowledge of experts on the selection of best alternative. The results show that the improvement in regulatory authorities will decrease failure probabilities and increase safety and reliability in industrial area.

  11. Fast Bayesian optimal experimental design for seismic source inversion

    KAUST Repository

    Long, Quan; Motamed, Mohammad; Tempone, Raul

    2015-01-01

    of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected

  12. Reliability-Based Design and Planning of Inspection and Monitoring of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio

    Maintaining and developing a sustainable wind industry is the main motivation of this PhD thesis entitled “Reliability-based design and planning of inspection and monitoring of offshore wind turbines”. In this thesis, statistical methods and probability theory are important mathematical tools used...... and offshore wind turbine foundations with the aim of improving the design, decreasing structural costs and increasing benefits. Recently, wind energy technology has started to adopt risk and reliability based inspection planning (RBI) as a methodology based on Bayesian decision theories together...

  13. Image interpolation via graph-based Bayesian label propagation.

    Science.gov (United States)

    Xianming Liu; Debin Zhao; Jiantao Zhou; Wen Gao; Huifang Sun

    2014-03-01

    In this paper, we propose a novel image interpolation algorithm via graph-based Bayesian label propagation. The basic idea is to first create a graph with known and unknown pixels as vertices and with edge weights encoding the similarity between vertices, then the problem of interpolation converts to how to effectively propagate the label information from known points to unknown ones. This process can be posed as a Bayesian inference, in which we try to combine the principles of local adaptation and global consistency to obtain accurate and robust estimation. Specially, our algorithm first constructs a set of local interpolation models, which predict the intensity labels of all image samples, and a loss term will be minimized to keep the predicted labels of the available low-resolution (LR) samples sufficiently close to the original ones. Then, all of the losses evaluated in local neighborhoods are accumulated together to measure the global consistency on all samples. Moreover, a graph-Laplacian-based manifold regularization term is incorporated to penalize the global smoothness of intensity labels, such smoothing can alleviate the insufficient training of the local models and make them more robust. Finally, we construct a unified objective function to combine together the global loss of the locally linear regression, square error of prediction bias on the available LR samples, and the manifold regularization term. It can be solved with a closed-form solution as a convex optimization problem. Experimental results demonstrate that the proposed method achieves competitive performance with the state-of-the-art image interpolation algorithms.

  14. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data.

    Science.gov (United States)

    Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.

  15. ANUBIS: artificial neuromodulation using a Bayesian inference system.

    Science.gov (United States)

    Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie

    2013-01-01

    Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework.

  16. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  17. BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Iliadis, C.; Anderson, K. S. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Université Paris–Saclay, Bâtiment 104, F-91405 Orsay Campus (France); Timmes, F. X.; Starrfield, S., E-mail: iliadis@unc.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2016-11-01

    The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We present astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.

  18. Analysis of lifespan monitoring data using Bayesian logic

    International Nuclear Information System (INIS)

    Pozzi, M; Zonta, D; Glisic, B; Inaudi, D; Lau, J M; Fong, C C

    2011-01-01

    In this contribution, we use a Bayesian approach to analyze the data from a 19-storey building block, which is part of the Punggol EC26 construction project undertaken by the Singapore Housing and Development Board in the early 2000s. The building was instrumented during construction with interferometric fiber optic average strain sensors, embedded in ten of the first story columns during construction. The philosophy driving the design of the monitoring system was to instrument a representative number of structural elements, while maintaining the cost at a reasonable level. The analysis of the data, along with prior experience, allowed the engineer to recognize at early stage an ongoing differential settlement of one base column. We show how the whole cognitive process followed by the engineer can be reproduced using Bayesian logic. Particularly, we discuss to what extent the prior knowledge and potential evidence from inspection, can alter the perception of the building response based solely on instrumental data.

  19. Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design

    Science.gov (United States)

    Leube, P. C.; Geiges, A.; Nowak, W.

    2012-02-01

    Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically

  20. Bayesian Graphical Models

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...

  1. [Overcoming the limitations of the descriptive and categorical approaches in psychiatric diagnosis: a proposal based on Bayesian networks].

    Science.gov (United States)

    Sorias, Soli

    2015-01-01

    Efforts to overcome the problems of descriptive and categorical approaches have not yielded results. In the present article, psychiatric diagnosis using Bayesian networks is proposed. Instead of a yes/no decision, Bayesian networks give the probability of diagnostic category inclusion, thereby yielding both a graded, i.e., dimensional diagnosis, and a value of the certainty of the diagnosis. With the use of Bayesian networks in the diagnosis of mental disorders, information about etiology, associated features, treatment outcome, and laboratory results may be used in addition to clinical signs and symptoms, with each of these factors contributing proportionally to their own specificity and sensitivity. Furthermore, a diagnosis (albeit one with a lower probability) can be made even with incomplete, uncertain, or partially erroneous information, and patients whose symptoms are below the diagnostic threshold can be evaluated. Lastly, there is no need of NOS or "unspecified" categories, and comorbid disorders become different dimensions of the diagnostic evaluation. Bayesian diagnoses allow the preservation of current categories and assessment methods, and may be used concurrently with criteria-based diagnoses. Users need not put in extra effort except to collect more comprehensive information. Unlike the Research Domain Criteria (RDoC) project, the Bayesian approach neither increases the diagnostic validity of existing categories nor explains the pathophysiological mechanisms of mental disorders. It, however, can be readily integrated to present classification systems. Therefore, the Bayesian approach may be an intermediate phase between criteria-based diagnosis and the RDoC ideal.

  2. Dynamic model based on Bayesian method for energy security assessment

    International Nuclear Information System (INIS)

    Augutis, Juozas; Krikštolaitis, Ričardas; Pečiulytė, Sigita; Žutautaitė, Inga

    2015-01-01

    Highlights: • Methodology for dynamic indicator model construction and forecasting of indicators. • Application of dynamic indicator model for energy system development scenarios. • Expert judgement involvement using Bayesian method. - Abstract: The methodology for the dynamic indicator model construction and forecasting of indicators for the assessment of energy security level is presented in this article. An indicator is a special index, which provides numerical values to important factors for the investigated area. In real life, models of different processes take into account various factors that are time-dependent and dependent on each other. Thus, it is advisable to construct a dynamic model in order to describe these dependences. The energy security indicators are used as factors in the dynamic model. Usually, the values of indicators are obtained from statistical data. The developed dynamic model enables to forecast indicators’ variation taking into account changes in system configuration. The energy system development is usually based on a new object construction. Since the parameters of changes of the new system are not exactly known, information about their influences on indicators could not be involved in the model by deterministic methods. Thus, dynamic indicators’ model based on historical data is adjusted by probabilistic model with the influence of new factors on indicators using the Bayesian method

  3. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  4. Bayesian models based on test statistics for multiple hypothesis testing problems.

    Science.gov (United States)

    Ji, Yuan; Lu, Yiling; Mills, Gordon B

    2008-04-01

    We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.

  5. Bayesian inferences of generation and growth of corrosion defects on energy pipelines based on imperfect inspection data

    International Nuclear Information System (INIS)

    Qin, H.; Zhou, W.; Zhang, S.

    2015-01-01

    Stochastic process-based models are developed to characterize the generation and growth of metal-loss corrosion defects on oil and gas steel pipelines. The generation of corrosion defects over time is characterized by the non-homogenous Poisson process, and the growth of depths of individual defects is modeled by the non-homogenous gamma process (NHGP). The defect generation and growth models are formulated in a hierarchical Bayesian framework, whereby the parameters of the models are evaluated from the in-line inspection (ILI) data through the Bayesian updating by accounting for the probability of detection (POD) and measurement errors associated with the ILI data. The Markov Chain Monte Carlo (MCMC) simulation in conjunction with the data augmentation (DA) technique is employed to carry out the Bayesian updating. Numerical examples that involve simulated ILI data are used to illustrate and validate the proposed methodology. - Highlights: • Bayesian updating of growth and generation models of defects on energy pipelines. • Non-homogeneous Poisson process for defect generation. • Non-homogeneous gamma process for defect growth. • Updating based on inspection data with detecting and sizing uncertainties. • MCMC in conjunction with data augmentation technique employed for the updating.

  6. Optimization of plasma diagnostics using Bayesian probability theory

    International Nuclear Information System (INIS)

    Dreier, H.; Dinklage, A.; Hirsch, M.; Kornejew, P.; Fischer, R.

    2006-01-01

    The diagnostic set-up for Wendelstein 7-X, a magnetic fusion device presently under construction, is currently in the design process to optimize the outcome under given technical constraints. Compared to traditional design approaches, Bayesian Experimental Design (BED) allows to optimize with respect to physical motivated design criterions. It aims to find the optimal design by maximizing an expected utility function that quantifies the goals of the experiment. The expectation marginalizes over the uncertain physical parameters and the possible values of future data. The approach presented here bases on maximization of an information measure (Kullback-Leibler entropy). As an example, the optimization of an infrared multichannel interferometer is shown in detail. Design aspects like the impact of technical restrictions are discussed

  7. Bayesian methods for the design and interpretation of clinical trials in very rare diseases

    Science.gov (United States)

    Hampson, Lisa V; Whitehead, John; Eleftheriou, Despina; Brogan, Paul

    2014-01-01

    This paper considers the design and interpretation of clinical trials comparing treatments for conditions so rare that worldwide recruitment efforts are likely to yield total sample sizes of 50 or fewer, even when patients are recruited over several years. For such studies, the sample size needed to meet a conventional frequentist power requirement is clearly infeasible. Rather, the expectation of any such trial has to be limited to the generation of an improved understanding of treatment options. We propose a Bayesian approach for the conduct of rare-disease trials comparing an experimental treatment with a control where patient responses are classified as a success or failure. A systematic elicitation from clinicians of their beliefs concerning treatment efficacy is used to establish Bayesian priors for unknown model parameters. The process of determining the prior is described, including the possibility of formally considering results from related trials. As sample sizes are small, it is possible to compute all possible posterior distributions of the two success rates. A number of allocation ratios between the two treatment groups can be considered with a view to maximising the prior probability that the trial concludes recommending the new treatment when in fact it is non-inferior to control. Consideration of the extent to which opinion can be changed, even by data from the best feasible design, can help to determine whether such a trial is worthwhile. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24957522

  8. Hierarchy Bayesian model based services awareness of high-speed optical access networks

    Science.gov (United States)

    Bai, Hui-feng

    2018-03-01

    As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.

  9. Empirical verification for application of Bayesian inference in situation awareness evaluations

    International Nuclear Information System (INIS)

    Kang, Seongkeun; Kim, Ar Ryum; Seong, Poong Hyun

    2017-01-01

    Highlights: • Situation awareness (SA) of human operators is significantly important for safe operation in nuclear power plants (NPPs). • SA of human operators was empirically estimated using Bayesian inference. • In this empirical study, the effect of attention and working memory to SA was considered. • Complexcity of the given task and design of human machine interface (HMI) considerably affect SA of human operators. - Abstract: Bayesian methodology has been widely used in various research fields. According to current research, malfunctions of nuclear power plants can be detected using this Bayesian inference, which consistently piles up newly incoming data and updates the estimation. However, these studies have been based on the assumption that people work like computers—perfectly—a supposition that may cause a problem in real world applications. Studies in cognitive psychology indicate that when the amount of information to be processed becomes larger, people cannot save the whole set of data in their heads due to limited attention and limited memory capacity, also known as working memory. The purpose of the current research is to consider how actual human aware the situation contrasts with our expectations, and how such disparity affects the results of conventional Bayesian inference, if at all. We compared situation awareness (SA) of ideal operators with SA of human operators, and for the human operator we used both text-based human machine interface (HMI) and infographic-based HMI to further compare two existing human operators. In addition, two different scenarios were selected how scenario complexity affects SA of human operators. As a results, when a malfunction occurred, the ideal operator found the malfunction nearly 100% probability of the time using Bayesian inference. In contrast, out of forty-six human operators, only 69.57% found the correct malfunction with simple scenario and 58.70% with complex scenario in the text-based HMI. In

  10. Theory-based Bayesian models of inductive learning and reasoning.

    Science.gov (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  11. Daniel Goodman’s empirical approach to Bayesian statistics

    Science.gov (United States)

    Gerrodette, Tim; Ward, Eric; Taylor, Rebecca L.; Schwarz, Lisa K.; Eguchi, Tomoharu; Wade, Paul; Himes Boor, Gina

    2016-01-01

    Bayesian statistics, in contrast to classical statistics, uses probability to represent uncertainty about the state of knowledge. Bayesian statistics has often been associated with the idea that knowledge is subjective and that a probability distribution represents a personal degree of belief. Dr. Daniel Goodman considered this viewpoint problematic for issues of public policy. He sought to ground his Bayesian approach in data, and advocated the construction of a prior as an empirical histogram of “similar” cases. In this way, the posterior distribution that results from a Bayesian analysis combined comparable previous data with case-specific current data, using Bayes’ formula. Goodman championed such a data-based approach, but he acknowledged that it was difficult in practice. If based on a true representation of our knowledge and uncertainty, Goodman argued that risk assessment and decision-making could be an exact science, despite the uncertainties. In his view, Bayesian statistics is a critical component of this science because a Bayesian analysis produces the probabilities of future outcomes. Indeed, Goodman maintained that the Bayesian machinery, following the rules of conditional probability, offered the best legitimate inference from available data. We give an example of an informative prior in a recent study of Steller sea lion spatial use patterns in Alaska.

  12. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  13. Predicting Click-Through Rates of New Advertisements Based on the Bayesian Network

    Directory of Open Access Journals (Sweden)

    Zhipeng Fang

    2014-01-01

    Full Text Available Most classical search engines choose and rank advertisements (ads based on their click-through rates (CTRs. To predict an ad’s CTR, historical click information is frequently concerned. To accurately predict the CTR of the new ads is challenging and critical for real world applications, since we do not have plentiful historical data about these ads. Adopting Bayesian network (BN as the effective framework for representing and inferring dependencies and uncertainties among variables, in this paper, we establish a BN-based model to predict the CTRs of new ads. First, we built a Bayesian network of the keywords that are used to describe the ads in a certain domain, called keyword BN and abbreviated as KBN. Second, we proposed an algorithm for approximate inferences of the KBN to find similar keywords with those that describe the new ads. Finally based on the similar keywords, we obtain the similar ads and then calculate the CTR of the new ad by using the CTRs of the ads that are similar with the new ad. Experimental results show the efficiency and accuracy of our method.

  14. Development and comparison in uncertainty assessment based Bayesian modularization method in hydrological modeling

    Science.gov (United States)

    Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn

    2013-04-01

    SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.

  15. INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles

    KAUST Repository

    Opitz, Thomas; Huser, Raphaë l; Bakka, Haakon; Rue, Haavard

    2018-01-01

    approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation

  16. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  17. Bus Route Design with a Bayesian Network Analysis of Bus Service Revenues

    OpenAIRE

    Liu, Yi; Jia, Yuanhua; Feng, Xuesong; Wu, Jiang

    2018-01-01

    A Bayesian network is used to estimate revenues of bus services in consideration of the effect of bus travel demands, passenger transport distances, and so on. In this research, the area X in Beijing has been selected as the study area because of its relatively high bus travel demand and, on the contrary, unsatisfactory bus services. It is suggested that the proposed Bayesian network approach is able to rationally predict the probabilities of different revenues of various route services, from...

  18. Bayesian Dose-Response Modeling in Sparse Data

    Science.gov (United States)

    Kim, Steven B.

    This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a

  19. Bayesian Mediation Analysis

    OpenAIRE

    Yuan, Ying; MacKinnon, David P.

    2009-01-01

    This article proposes Bayesian analysis of mediation effects. Compared to conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian mediation analysis, inference is straightforward and exact, which makes it appealing for studies with small samples. Third, the Bayesian approach is conceptua...

  20. A Bayesian Framework for Analysis of Pseudo-Spatial Models of Comparable Engineered Systems with Application to Spacecraft Anomaly Prediction Based on Precedent Data

    Science.gov (United States)

    Ndu, Obibobi Kamtochukwu

    To ensure that estimates of risk and reliability inform design and resource allocation decisions in the development of complex engineering systems, early engagement in the design life cycle is necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept development is the limited amount of high fidelity design and failure information available on the actual system under development. Applying the human ability to learn from experience and augment our state of knowledge to evolve better solutions mitigates this limitation. However, the challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets of generalization, Bayesian inference, and probabilistic risk analysis. We introduce an integrated framework for inferring the reliability, or other probabilistic measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our framework is based on learning from the performance of precedent designs and then applying the acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process. This dissertation presents a method for inferring properties of the conceptual variant using a pseudo-spatial model that describes the spatial configuration of the family of systems to which the concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial model based on rank-ordered subjective expert perception of design similarity between systems that elucidate the psychological space of the family. By a novel extension of Kriging methods for analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a Bayesian inference model that allows prediction of the probabilistic measure of interest.

  1. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  2. Bayesian enhancement two-stage design for single-arm phase II clinical trials with binary and time-to-event endpoints.

    Science.gov (United States)

    Shi, Haolun; Yin, Guosheng

    2018-02-21

    Simon's two-stage design is one of the most commonly used methods in phase II clinical trials with binary endpoints. The design tests the null hypothesis that the response rate is less than an uninteresting level, versus the alternative hypothesis that the response rate is greater than a desirable target level. From a Bayesian perspective, we compute the posterior probabilities of the null and alternative hypotheses given that a promising result is declared in Simon's design. Our study reveals that because the frequentist hypothesis testing framework places its focus on the null hypothesis, a potentially efficacious treatment identified by rejecting the null under Simon's design could have only less than 10% posterior probability of attaining the desirable target level. Due to the indifference region between the null and alternative, rejecting the null does not necessarily mean that the drug achieves the desirable response level. To clarify such ambiguity, we propose a Bayesian enhancement two-stage (BET) design, which guarantees a high posterior probability of the response rate reaching the target level, while allowing for early termination and sample size saving in case that the drug's response rate is smaller than the clinically uninteresting level. Moreover, the BET design can be naturally adapted to accommodate survival endpoints. We conduct extensive simulation studies to examine the empirical performance of our design and present two trial examples as applications. © 2018, The International Biometric Society.

  3. Electricity Purchase Optimization Decision Based on Data Mining and Bayesian Game

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2018-04-01

    Full Text Available The openness of the electricity retail market results in the power retailers facing fierce competition in the market. This article aims to analyze the electricity purchase optimization decision-making of each power retailer with the background of the big data era. First, in order to guide the power retailer to make a purchase of electricity, this paper considers the users’ historical electricity consumption data and a comprehensive consideration of multiple factors, then uses the wavelet neural network (WNN model based on “meteorological similarity day (MSD” to forecast the user load demand. Second, in order to guide the quotation of the power retailer, this paper considers the multiple factors affecting the electricity price to cluster the sample set, and establishes a Genetic algorithm- back propagation (GA-BP neural network model based on fuzzy clustering (FC to predict the short-term market clearing price (MCP. Thirdly, based on Sealed-bid Auction (SA in game theory, a Bayesian Game Model (BGM of the power retailer’s bidding strategy is constructed, and the optimal bidding strategy is obtained by obtaining the Bayesian Nash Equilibrium (BNE under different probability distributions. Finally, a practical example is proposed to prove that the model and method can provide an effective reference for the decision-making optimization of the sales company.

  4. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  5. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.

    Science.gov (United States)

    Gustafsson, Mats G; Wallman, Mikael; Wickenberg Bolin, Ulrika; Göransson, Hanna; Fryknäs, M; Andersson, Claes R; Isaksson, Anders

    2010-06-01

    Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Using Alien Coins to Test Whether Simple Inference Is Bayesian

    Science.gov (United States)

    Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.

    2016-01-01

    Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…

  7. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    OpenAIRE

    Huawei Wang; Jun Gao

    2013-01-01

    Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...

  8. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of... kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function

  9. Intensity-based bayesian framework for image reconstruction from sparse projection data

    International Nuclear Information System (INIS)

    Rashed, E.A.; Kudo, Hiroyuki

    2009-01-01

    This paper presents a Bayesian framework for iterative image reconstruction from projection data measured over a limited number of views. The classical Nyquist sampling rule yields the minimum number of projection views required for accurate reconstruction. However, challenges exist in many medical and industrial imaging applications in which the projection data is undersampled. Classical analytical reconstruction methods such as filtered backprojection (FBP) are not a good choice for use in such cases because the data undersampling in the angular range introduces aliasing and streak artifacts that degrade lesion detectability. In this paper, we propose a Bayesian framework for maximum likelihood-expectation maximization (ML-EM)-based iterative reconstruction methods that incorporates a priori knowledge obtained from expected intensity information. The proposed framework is based on the fact that, in tomographic imaging, it is often possible to expect a set of intensity values of the reconstructed object with relatively high accuracy. The image reconstruction cost function is modified to include the l 1 norm distance to the a priori known information. The proposed method has the potential to regularize the solution to reduce artifacts without missing lesions that cannot be expected from the a priori information. Numerical studies showed a significant improvement in image quality and lesion detectability under the condition of highly undersampled projection data. (author)

  10. GO-Bayes: Gene Ontology-based overrepresentation analysis using a Bayesian approach.

    Science.gov (United States)

    Zhang, Song; Cao, Jing; Kong, Y Megan; Scheuermann, Richard H

    2010-04-01

    A typical approach for the interpretation of high-throughput experiments, such as gene expression microarrays, is to produce groups of genes based on certain criteria (e.g. genes that are differentially expressed). To gain more mechanistic insights into the underlying biology, overrepresentation analysis (ORA) is often conducted to investigate whether gene sets associated with particular biological functions, for example, as represented by Gene Ontology (GO) annotations, are statistically overrepresented in the identified gene groups. However, the standard ORA, which is based on the hypergeometric test, analyzes each GO term in isolation and does not take into account the dependence structure of the GO-term hierarchy. We have developed a Bayesian approach (GO-Bayes) to measure overrepresentation of GO terms that incorporates the GO dependence structure by taking into account evidence not only from individual GO terms, but also from their related terms (i.e. parents, children, siblings, etc.). The Bayesian framework borrows information across related GO terms to strengthen the detection of overrepresentation signals. As a result, this method tends to identify sets of closely related GO terms rather than individual isolated GO terms. The advantage of the GO-Bayes approach is demonstrated with a simulation study and an application example.

  11. Fast Bayesian optimal experimental design for seismic source inversion

    KAUST Repository

    Long, Quan

    2015-07-01

    We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.

  12. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan

    2016-01-06

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  13. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan; Motamed, Mohammad; Tempone, Raul

    2016-01-01

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  14. Efficient design and inference in distributed Bayesian networks: an overview

    NARCIS (Netherlands)

    de Oude, P.; Groen, F.C.A.; Pavlin, G.; Bezhanishvili, N.; Löbner, S.; Schwabe, K.; Spada, L.

    2011-01-01

    This paper discusses an approach to distributed Bayesian modeling and inference, which is relevant for an important class of contemporary real world situation assessment applications. By explicitly considering the locality of causal relations, the presented approach (i) supports coherent distributed

  15. An introduction to Bayesian statistics in health psychology.

    Science.gov (United States)

    Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske

    2017-09-01

    The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.

  16. Bayesian Multi-Energy Computed Tomography reconstruction approaches based on decomposition models

    International Nuclear Information System (INIS)

    Cai, Caifang

    2013-01-01

    Multi-Energy Computed Tomography (MECT) makes it possible to get multiple fractions of basis materials without segmentation. In medical application, one is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical MECT measurements are usually obtained with polychromatic X-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam poly-chromaticity fail to estimate the correct decomposition fractions and result in Beam-Hardening Artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log pre-processing and the water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on non-linear forward models counting the beam poly-chromaticity show great potential for giving accurate fraction images.This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint Maximum A Posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a non-quadratic cost function. To solve it, the use of a monotone Conjugate Gradient (CG) algorithm with suboptimal descent steps is proposed.The performances of the proposed approach are analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  17. Adaptive design optimization: a mutual information-based approach to model discrimination in cognitive science.

    Science.gov (United States)

    Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V

    2010-04-01

    Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.

  18. Phase I (or phase II) dose-ranging clinical trials: proposal of a two-stage Bayesian design.

    Science.gov (United States)

    Zohar, Sarah; Chevret, Sylvie

    2003-02-01

    We propose a new design for phase I (or phase II) dose-ranging clinical trials aiming at determining a dose of an experimental treatment to satisfy safety (respectively efficacy) requirements, at treating a sufficiently large number of patients to estimate the toxicity (respectively failure) probability of the dose level with a given reliability, and at stopping the trial early if it is likely that no dose is safe (respectively efficacious). A two-stage design was derived from the Continual Reassessment Method (CRM), with implementation of Bayesian criteria to generate stopping rules. A simulation study was conducted to compare the operating characteristics of the proposed two-stage design to those reached by the traditional CRM. Finally, two applications to real data sets are provided.

  19. Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida

    Science.gov (United States)

    Arthur, J.D.; Wood, H.A.R.; Baker, A.E.; Cichon, J.R.; Raines, G.L.

    2007-01-01

    The Florida Aquifer Vulnerability Assessment (FAVA) was designed to provide a tool for environmental, regulatory, resource management, and planning professionals to facilitate protection of groundwater resources from surface sources of contamination. The FAVA project implements weights-of-evidence (WofE), a data-driven, Bayesian-probabilistic model to generate a series of maps reflecting relative aquifer vulnerability of Florida's principal aquifer systems. The vulnerability assessment process, from project design to map implementation is described herein in reference to the Floridan aquifer system (FAS). The WofE model calculates weighted relationships between hydrogeologic data layers that influence aquifer vulnerability and ambient groundwater parameters in wells that reflect relative degrees of vulnerability. Statewide model input data layers (evidential themes) include soil hydraulic conductivity, density of karst features, thickness of aquifer confinement, and hydraulic head difference between the FAS and the watertable. Wells with median dissolved nitrogen concentrations exceeding statistically established thresholds serve as training points in the WofE model. The resulting vulnerability map (response theme) reflects classified posterior probabilities based on spatial relationships between the evidential themes and training points. The response theme is subjected to extensive sensitivity and validation testing. Among the model validation techniques is calculation of a response theme based on a different water-quality indicator of relative recharge or vulnerability: dissolved oxygen. Successful implementation of the FAVA maps was facilitated by the overall project design, which included a needs assessment and iterative technical advisory committee input and review. Ongoing programs to protect Florida's springsheds have led to development of larger-scale WofE-based vulnerability assessments. Additional applications of the maps include land-use planning

  20. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

     Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...

  1. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun; Liu Haiyan [University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Structural Biology, School of Life Sciences (China)], E-mail: hyliu@ustc.edu.cn

    2007-01-15

    Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the {alpha} and {beta} regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.

  2. Quality assurance of nuclear analytical techniques based on Bayesian characteristic limits

    International Nuclear Information System (INIS)

    Michel, R.

    2000-01-01

    Based on Bayesian statistics, characteristic limits such as decision threshold, detection limit and confidence limits can be calculated taking into account all sources of experimental uncertainties. This approach separates the complete evaluation of a measurement according to the ISO Guide to the Expression of Uncertainty in Measurement from the determination of the characteristic limits. Using the principle of maximum entropy the characteristic limits are determined from the complete standard uncertainty of the measurand. (author)

  3. Statistics: a Bayesian perspective

    National Research Council Canada - National Science Library

    Berry, Donald A

    1996-01-01

    ...: it is the only introductory textbook based on Bayesian ideas, it combines concepts and methods, it presents statistics as a means of integrating data into the significant process, it develops ideas...

  4. Bayesian Optimal Experimental Design Using Multilevel Monte Carlo

    KAUST Repository

    Ben Issaid, Chaouki

    2015-05-12

    Experimental design can be vital when experiments are resource-exhaustive and time-consuming. In this work, we carry out experimental design in the Bayesian framework. To measure the amount of information that can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data about the model parameters. One of the major difficulties in evaluating the expected information gain is that it naturally involves nested integration over a possibly high dimensional domain. We use the Multilevel Monte Carlo (MLMC) method to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, MLMC can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the MLMC method imposes fewer assumptions, such as the asymptotic concentration of posterior measures, required for instance by the Laplace approximation (LA). We test the MLMC method using two numerical examples. The first example is the design of sensor deployment for a Darcy flow problem governed by a one-dimensional Poisson equation. We place the sensors in the locations where the pressure is measured, and we model the conductivity field as a piecewise constant random vector with two parameters. The second one is chemical Enhanced Oil Recovery (EOR) core flooding experiment assuming homogeneous permeability. We measure the cumulative oil recovery, from a horizontal core flooded by water, surfactant and polymer, for different injection rates. The model parameters consist of the endpoint relative permeabilities, the residual saturations and the relative permeability exponents for the three phases: water, oil and

  5. Classifying emotion in Twitter using Bayesian network

    Science.gov (United States)

    Surya Asriadie, Muhammad; Syahrul Mubarok, Mohamad; Adiwijaya

    2018-03-01

    Language is used to express not only facts, but also emotions. Emotions are noticeable from behavior up to the social media statuses written by a person. Analysis of emotions in a text is done in a variety of media such as Twitter. This paper studies classification of emotions on twitter using Bayesian network because of its ability to model uncertainty and relationships between features. The result is two models based on Bayesian network which are Full Bayesian Network (FBN) and Bayesian Network with Mood Indicator (BNM). FBN is a massive Bayesian network where each word is treated as a node. The study shows the method used to train FBN is not very effective to create the best model and performs worse compared to Naive Bayes. F1-score for FBN is 53.71%, while for Naive Bayes is 54.07%. BNM is proposed as an alternative method which is based on the improvement of Multinomial Naive Bayes and has much lower computational complexity compared to FBN. Even though it’s not better compared to FBN, the resulting model successfully improves the performance of Multinomial Naive Bayes. F1-Score for Multinomial Naive Bayes model is 51.49%, while for BNM is 52.14%.

  6. Structure-based bayesian sparse reconstruction

    KAUST Repository

    Quadeer, Ahmed Abdul

    2012-12-01

    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity. © 1991-2012 IEEE.

  7. Bayesian estimates of linkage disequilibrium

    Directory of Open Access Journals (Sweden)

    Abad-Grau María M

    2007-06-01

    Full Text Available Abstract Background The maximum likelihood estimator of D' – a standard measure of linkage disequilibrium – is biased toward disequilibrium, and the bias is particularly evident in small samples and rare haplotypes. Results This paper proposes a Bayesian estimation of D' to address this problem. The reduction of the bias is achieved by using a prior distribution on the pair-wise associations between single nucleotide polymorphisms (SNPs that increases the likelihood of equilibrium with increasing physical distances between pairs of SNPs. We show how to compute the Bayesian estimate using a stochastic estimation based on MCMC methods, and also propose a numerical approximation to the Bayesian estimates that can be used to estimate patterns of LD in large datasets of SNPs. Conclusion Our Bayesian estimator of D' corrects the bias toward disequilibrium that affects the maximum likelihood estimator. A consequence of this feature is a more objective view about the extent of linkage disequilibrium in the human genome, and a more realistic number of tagging SNPs to fully exploit the power of genome wide association studies.

  8. A default Bayesian hypothesis test for mediation.

    Science.gov (United States)

    Nuijten, Michèle B; Wetzels, Ruud; Matzke, Dora; Dolan, Conor V; Wagenmakers, Eric-Jan

    2015-03-01

    In order to quantify the relationship between multiple variables, researchers often carry out a mediation analysis. In such an analysis, a mediator (e.g., knowledge of a healthy diet) transmits the effect from an independent variable (e.g., classroom instruction on a healthy diet) to a dependent variable (e.g., consumption of fruits and vegetables). Almost all mediation analyses in psychology use frequentist estimation and hypothesis-testing techniques. A recent exception is Yuan and MacKinnon (Psychological Methods, 14, 301-322, 2009), who outlined a Bayesian parameter estimation procedure for mediation analysis. Here we complete the Bayesian alternative to frequentist mediation analysis by specifying a default Bayesian hypothesis test based on the Jeffreys-Zellner-Siow approach. We further extend this default Bayesian test by allowing a comparison to directional or one-sided alternatives, using Markov chain Monte Carlo techniques implemented in JAGS. All Bayesian tests are implemented in the R package BayesMed (Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2014).

  9. Non-homogeneous dynamic Bayesian networks for continuous data

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with

  10. Bayesian biostatistics

    CERN Document Server

    Lesaffre, Emmanuel

    2012-01-01

    The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd

  11. Designing Nanostructures for Phonon Transport via Bayesian Optimization

    Directory of Open Access Journals (Sweden)

    Shenghong Ju

    2017-05-01

    Full Text Available We demonstrate optimization of thermal conductance across nanostructures by developing a method combining atomistic Green’s function and Bayesian optimization. With an aim to minimize and maximize the interfacial thermal conductance (ITC across Si-Si and Si-Ge interfaces by means of the Si/Ge composite interfacial structure, the method identifies the optimal structures from calculations of only a few percent of the entire candidates (over 60 000 structures. The obtained optimal interfacial structures are nonintuitive and impacting: the minimum ITC structure is an aperiodic superlattice that realizes 50% reduction from the best periodic superlattice. The physical mechanism of the minimum ITC can be understood in terms of the crossover of the two effects on phonon transport: as the layer thickness in the superlattice increases, the impact of Fabry-Pérot interference increases, and the rate of reflection at the layer interfaces decreases. An aperiodic superlattice with spatial variation in the layer thickness has a degree of freedom to realize optimal balance between the above two competing mechanisms. Furthermore, the spatial variation enables weakening the impact of constructive phonon interference relative to that of destructive interference. The present work shows the effectiveness and advantage of material informatics in designing nanostructures to control heat conduction, which can be extended to other nanostructures and properties.

  12. Bayesian data analysis for newcomers.

    Science.gov (United States)

    Kruschke, John K; Liddell, Torrin M

    2018-02-01

    This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.

  13. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    Science.gov (United States)

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  14. How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?

    NARCIS (Netherlands)

    Borsboom, D.; Haig, B.D.

    2013-01-01

    Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science

  15. A Bayesian alternative for multi-objective ecohydrological model specification

    Science.gov (United States)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior

  16. An empirical Bayesian approach for model-based inference of cellular signaling networks

    Directory of Open Access Journals (Sweden)

    Klinke David J

    2009-11-01

    Full Text Available Abstract Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.

  17. Bayesian non- and semi-parametric methods and applications

    CERN Document Server

    Rossi, Peter

    2014-01-01

    This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number

  18. Statistical Bayesian method for reliability evaluation based on ADT data

    Science.gov (United States)

    Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong

    2018-05-01

    Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.

  19. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  20. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  1. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...

  2. A review and comparison of Bayesian and likelihood-based inferences in beta regression and zero-or-one-inflated beta regression.

    Science.gov (United States)

    Liu, Fang; Eugenio, Evercita C

    2018-04-01

    Beta regression is an increasingly popular statistical technique in medical research for modeling of outcomes that assume values in (0, 1), such as proportions and patient reported outcomes. When outcomes take values in the intervals [0,1), (0,1], or [0,1], zero-or-one-inflated beta (zoib) regression can be used. We provide a thorough review on beta regression and zoib regression in the modeling, inferential, and computational aspects via the likelihood-based and Bayesian approaches. We demonstrate the statistical and practical importance of correctly modeling the inflation at zero/one rather than ad hoc replacing them with values close to zero/one via simulation studies; the latter approach can lead to biased estimates and invalid inferences. We show via simulation studies that the likelihood-based approach is computationally faster in general than MCMC algorithms used in the Bayesian inferences, but runs the risk of non-convergence, large biases, and sensitivity to starting values in the optimization algorithm especially with clustered/correlated data, data with sparse inflation at zero and one, and data that warrant regularization of the likelihood. The disadvantages of the regular likelihood-based approach make the Bayesian approach an attractive alternative in these cases. Software packages and tools for fitting beta and zoib regressions in both the likelihood-based and Bayesian frameworks are also reviewed.

  3. Linking Bayesian and agent-based models to simulate complex social-ecological systems in semi-arid regions

    Directory of Open Access Journals (Sweden)

    Aloah J Pope

    2015-08-01

    Full Text Available Interdependencies of ecologic, hydrologic, and social systems challenge traditional approaches to natural resource management in semi-arid regions. As a complex social-ecological system, water demands in the Sonoran Desert from agricultural and urban users often conflicts with water needs for its ecologically-significant riparian corridors. To explore this system, we developed an agent-based model to simulate complex feedbacks between human decisions and environmental conditions in the Rio Sonora Watershed. Cognitive mapping in conjunction with stakeholder participation produced a Bayesian model of conditional probabilities of local human decision-making processes resulting to changes in water demand. Probabilities created in the Bayesian model were incorporated into the agent-based model, so that each agent had a unique probability to make a positive decision based on its perceived environment at each point in time and space. By using a Bayesian approach, uncertainty in the human decision-making process could be incorporated. The spatially-explicit agent-based model simulated changes in depth-to-groundwater by well pumping based on an agent’s water demand. Changes in depth-to-groundwater feedback to influence agent behavior, as well as determine unique vegetation classes within the riparian corridor. Each vegetation class then provides varying stakeholder-defined quality values of ecosystem services. Using this modeling approach allowed us to examine effects on both the ecological and social system of semi-arid riparian corridors under various scenarios. The insight provided by the model contributes to understanding how specific interventions may alter the complex social-ecological system in the future.

  4. Model-based dispersive wave processing: A recursive Bayesian solution

    International Nuclear Information System (INIS)

    Candy, J.V.; Chambers, D.H.

    1999-01-01

    Wave propagation through dispersive media represents a significant problem in many acoustic applications, especially in ocean acoustics, seismology, and nondestructive evaluation. In this paper we propose a propagation model that can easily represent many classes of dispersive waves and proceed to develop the model-based solution to the wave processing problem. It is shown that the underlying wave system is nonlinear and time-variable requiring a recursive processor. Thus the general solution to the model-based dispersive wave enhancement problem is developed using a Bayesian maximum a posteriori (MAP) approach and shown to lead to the recursive, nonlinear extended Kalman filter (EKF) processor. The problem of internal wave estimation is cast within this framework. The specific processor is developed and applied to data synthesized by a sophisticated simulator demonstrating the feasibility of this approach. copyright 1999 Acoustical Society of America.

  5. Optimal design under uncertainty of a passive defense structure against snow avalanches: from a general Bayesian framework to a simple analytical model

    Directory of Open Access Journals (Sweden)

    N. Eckert

    2008-10-01

    Full Text Available For snow avalanches, passive defense structures are generally designed by considering high return period events. In this paper, taking inspiration from other natural hazards, an alternative method based on the maximization of the economic benefit of the defense structure is proposed. A general Bayesian framework is described first. Special attention is given to the problem of taking the poor local information into account in the decision-making process. Therefore, simplifying assumptions are made. The avalanche hazard is represented by a Peak Over Threshold (POT model. The influence of the dam is quantified in terms of runout distance reduction with a simple relation derived from small-scale experiments using granular media. The costs corresponding to dam construction and the damage to the element at risk are roughly evaluated for each dam height-hazard value pair, with damage evaluation corresponding to the maximal expected loss. Both the classical and the Bayesian risk functions can then be computed analytically. The results are illustrated with a case study from the French avalanche database. A sensitivity analysis is performed and modelling assumptions are discussed in addition to possible further developments.

  6. A modified GO-FLOW methodology with common cause failure based on Discrete Time Bayesian Network

    International Nuclear Information System (INIS)

    Fan, Dongming; Wang, Zili; Liu, Linlin; Ren, Yi

    2016-01-01

    Highlights: • Identification of particular causes of failure for common cause failure analysis. • Comparison two formalisms (GO-FLOW and Discrete Time Bayesian network) and establish the correlation between them. • Mapping the GO-FLOW model into Bayesian network model. • Calculated GO-FLOW model with common cause failures based on DTBN. - Abstract: The GO-FLOW methodology is a success-oriented system reliability modelling technique for multi-phase missions involving complex time-dependent, multi-state and common cause failure (CCF) features. However, the analysis algorithm cannot easily handle the multiple shared signals and CCFs. In addition, the simulative algorithm is time consuming when vast multi-state components exist in the model, and the multiple time points of phased mission problems increases the difficulty of the analysis method. In this paper, the Discrete Time Bayesian Network (DTBN) and the GO-FLOW methodology are integrated by the unified mapping rules. Based on these rules, the multi operators can be mapped into DTBN followed by, a complete GO-FLOW model with complex characteristics (e.g. phased mission, multi-state, and CCF) can be converted to the isomorphic DTBN and easily analyzed by utilizing the DTBN. With mature algorithms and tools, the multi-phase mission reliability parameter can be efficiently obtained via the proposed approach without considering the shared signals and the various complex logic operation. Meanwhile, CCF can also arise in the computing process.

  7. Bayesian methods for data analysis

    CERN Document Server

    Carlin, Bradley P.

    2009-01-01

    Approaches for statistical inference Introduction Motivating Vignettes Defining the Approaches The Bayes-Frequentist Controversy Some Basic Bayesian Models The Bayes approach Introduction Prior Distributions Bayesian Inference Hierarchical Modeling Model Assessment Nonparametric Methods Bayesian computation Introduction Asymptotic Methods Noniterative Monte Carlo Methods Markov Chain Monte Carlo Methods Model criticism and selection Bayesian Modeling Bayesian Robustness Model Assessment Bayes Factors via Marginal Density Estimation Bayes Factors

  8. Bayesian Alternation During Tactile Augmentation

    Directory of Open Access Journals (Sweden)

    Caspar Mathias Goeke

    2016-10-01

    untrained humans is combined via a subjective Bayesian alternation process. Therefore we conclude that behavior in our bimodal condition is explained better by top down-subjective weighting than by bottom-up weighting based upon objective cue reliability.

  9. Bus Route Design with a Bayesian Network Analysis of Bus Service Revenues

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-01-01

    Full Text Available A Bayesian network is used to estimate revenues of bus services in consideration of the effect of bus travel demands, passenger transport distances, and so on. In this research, the area X in Beijing has been selected as the study area because of its relatively high bus travel demand and, on the contrary, unsatisfactory bus services. It is suggested that the proposed Bayesian network approach is able to rationally predict the probabilities of different revenues of various route services, from the perspectives of both satisfying passenger demand and decreasing bus operation cost. This way, the existing bus routes in the studied area can be optimized for their most probable high revenues.

  10. Lane-Level Road Information Mining from Vehicle GPS Trajectories Based on Naïve Bayesian Classification

    Directory of Open Access Journals (Sweden)

    Luliang Tang

    2015-11-01

    Full Text Available In this paper, we propose a novel approach for mining lane-level road network information from low-precision vehicle GPS trajectories (MLIT, which includes the number and turn rules of traffic lanes based on naïve Bayesian classification. First, the proposed method (MLIT uses an adaptive density optimization method to remove outliers from the raw GPS trajectories based on their space-time distribution and density clustering. Second, MLIT acquires the number of lanes in two steps. The first step establishes a naïve Bayesian classifier according to the trace features of the road plane and road profiles and the real number of lanes, as found in the training samples. The second step confirms the number of lanes using test samples in reference to the naïve Bayesian classifier using the known trace features of test sample. Third, MLIT infers the turn rules of each lane through tracking GPS trajectories. Experiments were conducted using the GPS trajectories of taxis in Wuhan, China. Compared with human-interpreted results, the automatically generated lane-level road network information was demonstrated to be of higher quality in terms of displaying detailed road networks with the number of lanes and turn rules of each lane.

  11. The use of conflicts in searching Bayesian networks

    OpenAIRE

    Poole, David L.

    2013-01-01

    This paper discusses how conflicts (as used by the consistency-based diagnosis community) can be adapted to be used in a search-based algorithm for computing prior and posterior probabilities in discrete Bayesian Networks. This is an "anytime" algorithm, that at any stage can estimate the probabilities and give an error bound. Whereas the most popular Bayesian net algorithms exploit the structure of the network for efficiency, we exploit probability distributions for efficiency; this algorith...

  12. Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate

    KAUST Repository

    Giraldi, Loic

    2017-04-07

    This work addresses the estimation of the parameters of an earthquake model by the consequent tsunami, with an application to the Chile 2010 event. We are particularly interested in the Bayesian inference of the location, the orientation, and the slip of an Okada-based model of the earthquake ocean floor displacement. The tsunami numerical model is based on the GeoClaw software while the observational data is provided by a single DARTⓇ buoy. We propose in this paper a methodology based on polynomial chaos expansion to construct a surrogate model of the wave height at the buoy location. A correlated noise model is first proposed in order to represent the discrepancy between the computational model and the data. This step is necessary, as a classical independent Gaussian noise is shown to be unsuitable for modeling the error, and to prevent convergence of the Markov Chain Monte Carlo sampler. Second, the polynomial chaos model is subsequently improved to handle the variability of the arrival time of the wave, using a preconditioned non-intrusive spectral method. Finally, the construction of a reduced model dedicated to Bayesian inference is proposed. Numerical results are presented and discussed.

  13. A Bayesian approach to estimating variance components within a multivariate generalizability theory framework.

    Science.gov (United States)

    Jiang, Zhehan; Skorupski, William

    2017-12-12

    In many behavioral research areas, multivariate generalizability theory (mG theory) has been typically used to investigate the reliability of certain multidimensional assessments. However, traditional mG-theory estimation-namely, using frequentist approaches-has limits, leading researchers to fail to take full advantage of the information that mG theory can offer regarding the reliability of measurements. Alternatively, Bayesian methods provide more information than frequentist approaches can offer. This article presents instructional guidelines on how to implement mG-theory analyses in a Bayesian framework; in particular, BUGS code is presented to fit commonly seen designs from mG theory, including single-facet designs, two-facet crossed designs, and two-facet nested designs. In addition to concrete examples that are closely related to the selected designs and the corresponding BUGS code, a simulated dataset is provided to demonstrate the utility and advantages of the Bayesian approach. This article is intended to serve as a tutorial reference for applied researchers and methodologists conducting mG-theory studies.

  14. The integration of expert-defined importance factors to enrich Bayesian Fault Tree Analysis

    International Nuclear Information System (INIS)

    Darwish, Molham; Almouahed, Shaban; Lamotte, Florent de

    2017-01-01

    This paper proposes an analysis of a hybrid Bayesian-Importance model for system designers to improve the quality of services related to Active Assisted Living Systems. The proposed model is based on two factors: failure probability measure of different service components and, an expert defined degree of importance that each component holds for the success of the corresponding service. The proposed approach advocates the integration of expert-defined importance factors to enrich the Bayesian Fault Tree Analysis (FTA) approach. The evaluation of the proposed approach is conducted using the Fault Tree Analysis formalism where the undesired state of a system is analyzed using Boolean logic mechanisms to combine a series of lower-level events.

  15. Bayesian benefits with JASP

    NARCIS (Netherlands)

    Marsman, M.; Wagenmakers, E.-J.

    2017-01-01

    We illustrate the Bayesian approach to data analysis using the newly developed statistical software program JASP. With JASP, researchers are able to take advantage of the benefits that the Bayesian framework has to offer in terms of parameter estimation and hypothesis testing. The Bayesian

  16. Bayesian modeling using WinBUGS

    CERN Document Server

    Ntzoufras, Ioannis

    2009-01-01

    A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...

  17. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  18. Universal Darwinism As a Process of Bayesian Inference.

    Science.gov (United States)

    Campbell, John O

    2016-01-01

    Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment." Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

  19. Rational hypocrisy: a Bayesian analysis based on informal argumentation and slippery slopes.

    Science.gov (United States)

    Rai, Tage S; Holyoak, Keith J

    2014-01-01

    Moral hypocrisy is typically viewed as an ethical accusation: Someone is applying different moral standards to essentially identical cases, dishonestly claiming that one action is acceptable while otherwise equivalent actions are not. We suggest that in some instances the apparent logical inconsistency stems from different evaluations of a weak argument, rather than dishonesty per se. Extending Corner, Hahn, and Oaksford's (2006) analysis of slippery slope arguments, we develop a Bayesian framework in which accusations of hypocrisy depend on inferences of shared category membership between proposed actions and previous standards, based on prior probabilities that inform the strength of competing hypotheses. Across three experiments, we demonstrate that inferences of hypocrisy increase as perceptions of the likelihood of shared category membership between precedent cases and current cases increase, that these inferences follow established principles of category induction, and that the presence of self-serving motives increases inferences of hypocrisy independent of changes in the actions themselves. Taken together, these results demonstrate that Bayesian analyses of weak arguments may have implications for assessing moral reasoning. © 2014 Cognitive Science Society, Inc.

  20. A unifying Bayesian account of contextual effects in value-based choice.

    Directory of Open Access Journals (Sweden)

    Francesco Rigoli

    2017-10-01

    Full Text Available Empirical evidence suggests the incentive value of an option is affected by other options available during choice and by options presented in the past. These contextual effects are hard to reconcile with classical theories and have inspired accounts where contextual influences play a crucial role. However, each account only addresses one or the other of the empirical findings and a unifying perspective has been elusive. Here, we offer a unifying theory of context effects on incentive value attribution and choice based on normative Bayesian principles. This formulation assumes that incentive value corresponds to a precision-weighted prediction error, where predictions are based upon expectations about reward. We show that this scheme explains a wide range of contextual effects, such as those elicited by other options available during choice (or within-choice context effects. These include both conditions in which choice requires an integration of multiple attributes and conditions where a multi-attribute integration is not necessary. Moreover, the same scheme explains context effects elicited by options presented in the past or between-choice context effects. Our formulation encompasses a wide range of contextual influences (comprising both within- and between-choice effects by calling on Bayesian principles, without invoking ad-hoc assumptions. This helps clarify the contextual nature of incentive value and choice behaviour and may offer insights into psychopathologies characterized by dysfunctional decision-making, such as addiction and pathological gambling.

  1. Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy

    Science.gov (United States)

    Sharma, Sanjib

    2017-08-01

    Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.

  2. Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images

    International Nuclear Information System (INIS)

    Mumcuglu, E.U.; Leahy, R.; Zhou, Z.; Cherry, S.R.

    1994-01-01

    The authors describe conjugate gradient algorithms for reconstruction of transmission and emission PET images. The reconstructions are based on a Bayesian formulation, where the data are modeled as a collection of independent Poisson random variables and the image is modeled using a Markov random field. A conjugate gradient algorithm is used to compute a maximum a posteriori (MAP) estimate of the image by maximizing over the posterior density. To ensure nonnegativity of the solution, a penalty function is used to convert the problem to one of unconstrained optimization. Preconditioners are used to enhance convergence rates. These methods generally achieve effective convergence in 15--25 iterations. Reconstructions are presented of an 18 FDG whole body scan from data collected using a Siemens/CTI ECAT931 whole body system. These results indicate significant improvements in emission image quality using the Bayesian approach, in comparison to filtered backprojection, particularly when reprojections of the MAP transmission image are used in place of the standard attenuation correction factors

  3. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Science.gov (United States)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  4. Ground-Based Remote Sensing of Volcanic CO2 Fluxes at Solfatara (Italy—Direct Versus Inverse Bayesian Retrieval

    Directory of Open Access Journals (Sweden)

    Manuel Queißer

    2018-01-01

    Full Text Available CO2 is the second most abundant volatile species of degassing magma. CO2 fluxes carry information of incredible value, such as periods of volcanic unrest. Ground-based laser remote sensing is a powerful technique to measure CO2 fluxes in a spatially integrated manner, quickly and from a safe distance, but it needs accurate knowledge of the plume speed. The latter is often difficult to estimate, particularly for complex topographies. So, a supplementary or even alternative way of retrieving fluxes would be beneficial. Here, we assess Bayesian inversion as a potential technique for the case of the volcanic crater of Solfatara (Italy, a complex terrain hosting two major CO2 degassing fumarolic vents close to a steep slope. Direct integration of remotely sensed CO2 concentrations of these vents using plume speed derived from optical flow analysis yielded a flux of 717 ± 121 t day−1, in agreement with independent measurements. The flux from Bayesian inversion based on a simple Gaussian plume model was in excellent agreement under certain conditions. In conclusion, Bayesian inversion is a promising retrieval tool for CO2 fluxes, especially in situations where plume speed estimation methods fail, e.g., optical flow for transparent plumes. The results have implications beyond volcanology, including ground-based remote sensing of greenhouse gases and verification of satellite soundings.

  5. Bayesian Exponential Smoothing.

    OpenAIRE

    Forbes, C.S.; Snyder, R.D.; Shami, R.S.

    2000-01-01

    In this paper, a Bayesian version of the exponential smoothing method of forecasting is proposed. The approach is based on a state space model containing only a single source of error for each time interval. This model allows us to improve current practices surrounding exponential smoothing by providing both point predictions and measures of the uncertainty surrounding them.

  6. The historical biogeography of Pteroglossus aracaris (Aves, Piciformes, Ramphastidae based on Bayesian analysis of mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Sérgio L. Pereira

    2008-01-01

    Full Text Available Most Neotropical birds, including Pteroglossus aracaris, do not have an adequate fossil record to be used as time constraints in molecular dating. Hence, the evolutionary timeframe of the avian biota can only be inferred using alternative time constraints. We applied a Bayesian relaxed clock approach to propose an alternative interpretation for the historical biogeography of Pteroglossus based on mitochondrial DNA sequences, using different combinations of outgroups and time constraints obtained from outgroup fossils, vicariant barriers and molecular time estimates. The results indicated that outgroup choice has little effect on the Bayesian posterior distribution of divergence times within Pteroglossus , that geological and molecular time constraints seem equally suitable to estimate the Bayesian posterior distribution of divergence times for Pteroglossus , and that the fossil record alone overestimates divergence times within the fossil-lacking ingroup. The Bayesian estimates of divergence times suggest that the radiation of Pteroglossus occurred from the Late Miocene to the Pliocene (three times older than estimated by the “standard” mitochondrial rate of 2% sequence divergence per million years, likely triggered by Andean uplift, multiple episodes of marine transgressions in South America, and formation of present-day river basins. The time estimates are in agreement with other Neotropical taxa with similar geographic distributions.

  7. BATSE gamma-ray burst line search. 2: Bayesian consistency methodology

    Science.gov (United States)

    Band, D. L.; Ford, L. A.; Matteson, J. L.; Briggs, M.; Paciesas, W.; Pendleton, G.; Preece, R.; Palmer, D.; Teegarden, B.; Schaefer, B.

    1994-01-01

    We describe a Bayesian methodology to evaluate the consistency between the reported Ginga and Burst and Transient Source Experiment (BATSE) detections of absorption features in gamma-ray burst spectra. Currently no features have been detected by BATSE, but this methodology will still be applicable if and when such features are discovered. The Bayesian methodology permits the comparison of hypotheses regarding the two detectors' observations and makes explicit the subjective aspects of our analysis (e.g., the quantification of our confidence in detector performance). We also present non-Bayesian consistency statistics. Based on preliminary calculations of line detectability, we find that both the Bayesian and non-Bayesian techniques show that the BATSE and Ginga observations are consistent given our understanding of these detectors.

  8. Modelling of population dynamics of red king crab using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Bakanev Sergey ...

    2012-10-01

    Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.

  9. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuška, Ivo

    2016-02-23

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.

  10. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuška, Ivo; Sawlan, Zaid A; Scavino, Marco; Szabó , Barna; Tempone, Raul

    2016-01-01

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.

  11. Bayesian networks with examples in R

    CERN Document Server

    Scutari, Marco

    2014-01-01

    Introduction. The Discrete Case: Multinomial Bayesian Networks. The Continuous Case: Gaussian Bayesian Networks. More Complex Cases. Theory and Algorithms for Bayesian Networks. Real-World Applications of Bayesian Networks. Appendices. Bibliography.

  12. Universal Darwinism as a process of Bayesian inference

    Directory of Open Access Journals (Sweden)

    John Oberon Campbell

    2016-06-01

    Full Text Available Many of the mathematical frameworks describing natural selection are equivalent to Bayes’ Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians. As Bayesian inference can always be cast in terms of (variational free energy minimization, natural selection can be viewed as comprising two components: a generative model of an ‘experiment’ in the external world environment, and the results of that 'experiment' or the 'surprise' entailed by predicted and actual outcomes of the ‘experiment’. Minimization of free energy implies that the implicit measure of 'surprise' experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

  13. A Laplace method for under-determined Bayesian optimal experimental designs

    KAUST Repository

    Long, Quan

    2014-12-17

    In Long et al. (2013), a new method based on the Laplace approximation was developed to accelerate the estimation of the post-experimental expected information gains (Kullback–Leibler divergence) in model parameters and predictive quantities of interest in the Bayesian framework. A closed-form asymptotic approximation of the inner integral and the order of the corresponding dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend that method to the general case where the model parameters cannot be determined completely by the data from the proposed experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the Jacobian matrix of the data model with respect to the parameters, so that the information gain can be reduced to an integration against the marginal density of the transformed parameters that are not determined by the experiments. Furthermore, the expected information gain can be approximated by an integration over the prior, where the integrand is a function of the posterior covariance matrix projected over the aforementioned orthogonal directions. To deal with the issue of dimensionality in a complex problem, we use either Monte Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear under-determined test cases. They include the designs of the scalar parameter in a one dimensional cubic polynomial function with two unidentifiable parameters forming a linear manifold, and the boundary source locations for impedance tomography in a square domain, where the unknown parameter is the conductivity, which is represented as a random field.

  14. Bayesian data analysis in population ecology: motivations, methods, and benefits

    Science.gov (United States)

    Dorazio, Robert

    2016-01-01

    During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.

  15. Bayesian Correlation Analysis for Sequence Count Data.

    Directory of Open Access Journals (Sweden)

    Daniel Sánchez-Taltavull

    Full Text Available Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities' measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low-especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities' signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset.

  16. Robust Trajectory Option Set planning in CTOP based on Bayesian game model

    KAUST Repository

    Li, Lichun; Clarke, John-Paul; Feron, Eric; Shamma, Jeff S.

    2017-01-01

    The Federal Aviation Administration (FAA) rations capacity to reduce en route delay, especially those caused by bad weather. This is accomplished via Collaborative Trajectory Options Program (CTOP) which has been recently developed to provide a mechanism for flight operators to communicate their route preferences for each flight via a Trajectory Option Set (TOS), as well as a mechanism for the FAA to assign the best possible route within the set of trajectories in the TOS for a given flight, i.e. the route with the lowest adjusted cost after consideration of system constraints and the requirements of all flights. The routes assigned to an airline depend not only on the TOS's for its own flights but also on the TOS's of all other flights in the CTOP, which are unknown. This paper aims to provide a detailed algorithm for the airline to design its TOS plan which is robust to the uncertainties of its competitors' TOS's. To this purpose, we model the CTOP problem as a Bayesian game, and use Linear Program (LP) to compute the security strategy in the Bayesian game model. This security strategy guarantees the airline an upper bound on the sum of the assigned times. The numerical results demonstrate the robustness of the strategy, which is not achieved by any other tested strategy.

  17. Robust Trajectory Option Set planning in CTOP based on Bayesian game model

    KAUST Repository

    Li, Lichun

    2017-07-10

    The Federal Aviation Administration (FAA) rations capacity to reduce en route delay, especially those caused by bad weather. This is accomplished via Collaborative Trajectory Options Program (CTOP) which has been recently developed to provide a mechanism for flight operators to communicate their route preferences for each flight via a Trajectory Option Set (TOS), as well as a mechanism for the FAA to assign the best possible route within the set of trajectories in the TOS for a given flight, i.e. the route with the lowest adjusted cost after consideration of system constraints and the requirements of all flights. The routes assigned to an airline depend not only on the TOS\\'s for its own flights but also on the TOS\\'s of all other flights in the CTOP, which are unknown. This paper aims to provide a detailed algorithm for the airline to design its TOS plan which is robust to the uncertainties of its competitors\\' TOS\\'s. To this purpose, we model the CTOP problem as a Bayesian game, and use Linear Program (LP) to compute the security strategy in the Bayesian game model. This security strategy guarantees the airline an upper bound on the sum of the assigned times. The numerical results demonstrate the robustness of the strategy, which is not achieved by any other tested strategy.

  18. Bayesian optimal experimental design for priors of compact support

    KAUST Repository

    Long, Quan

    2016-01-08

    In this study, we optimize the experimental setup computationally by optimal experimental design (OED) in a Bayesian framework. We approximate the posterior probability density functions (pdf) using truncated Gaussian distributions in order to account for the bounded domain of the uniform prior pdf of the parameters. The underlying Gaussian distribution is obtained in the spirit of the Laplace method, more precisely, the mode is chosen as the maximum a posteriori (MAP) estimate, and the covariance is chosen as the negative inverse of the Hessian of the misfit function at the MAP estimate. The model related entities are obtained from a polynomial surrogate. The optimality, quantified by the information gain measures, can be estimated efficiently by a rejection sampling algorithm against the underlying Gaussian probability distribution, rather than against the true posterior. This approach offers a significant error reduction when the magnitude of the invariants of the posterior covariance are comparable to the size of the bounded domain of the prior. We demonstrate the accuracy and superior computational efficiency of our method for shock-tube experiments aiming to measure the model parameters of a key reaction which is part of the complex kinetic network describing the hydrocarbon oxidation. In the experiments, the initial temperature and fuel concentration are optimized with respect to the expected information gain in the estimation of the parameters of the target reaction rate. We show that the expected information gain surface can change its shape dramatically according to the level of noise introduced into the synthetic data. The information that can be extracted from the data saturates as a logarithmic function of the number of experiments, and few experiments are needed when they are conducted at the optimal experimental design conditions.

  19. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  20. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shuanghui Zhang

    2016-04-01

    Full Text Available This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP estimation and the maximum likelihood estimation (MLE are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  1. Blink Number Forecasting Based on Improved Bayesian Fusion Algorithm for Fatigue Driving Detection

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available An improved Bayesian fusion algorithm (BFA is proposed for forecasting the blink number in a continuous video. It assumes that, at one prediction interval, the blink number is correlated with the blink numbers of only a few previous intervals. With this assumption, the weights of the component predictors in the improved BFA are calculated according to their prediction performance only from a few intervals rather than from all intervals. Therefore, compared with the conventional BFA, the improved BFA is more sensitive to the disturbed condition of the component predictors for adjusting their weights more rapidly. To determine the most relevant intervals, the grey relation entropy-based analysis (GREBA method is proposed, which can be used analyze the relevancy between the historical data flows of blink number and the data flow at the current interval. Three single predictors, that is, the autoregressive integrated moving average (ARIMA, radial basis function neural network (RBFNN, and Kalman filter (KF, are designed and incorporated linearly into the BFA. Experimental results demonstrate that the improved BFA obviously outperforms the conventional BFA in both accuracy and stability; also fatigue driving can be accurately warned against in advance based on the blink number forecasted by the improved BFA.

  2. A Bayesian statistical method for particle identification in shower counters

    International Nuclear Information System (INIS)

    Takashimizu, N.; Kimura, A.; Shibata, A.; Sasaki, T.

    2004-01-01

    We report an attempt on identifying particles using a Bayesian statistical method. We have developed the mathematical model and software for this purpose. We tried to identify electrons and charged pions in shower counters using this method. We designed an ideal shower counter and studied the efficiency of identification using Monte Carlo simulation based on Geant4. Without having any other information, e.g. charges of particles which are given by tracking detectors, we have achieved 95% identifications of both particles

  3. BEWARE database: A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts

    Data.gov (United States)

    Department of the Interior — A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, ‘XBNH’) was used to create a large synthetic database for use in a “Bayesian...

  4. Complexity analysis of accelerated MCMC methods for Bayesian inversion

    International Nuclear Information System (INIS)

    Hoang, Viet Ha; Schwab, Christoph; Stuart, Andrew M

    2013-01-01

    The Bayesian approach to inverse problems, in which the posterior probability distribution on an unknown field is sampled for the purposes of computing posterior expectations of quantities of interest, is starting to become computationally feasible for partial differential equation (PDE) inverse problems. Balancing the sources of error arising from finite-dimensional approximation of the unknown field, the PDE forward solution map and the sampling of the probability space under the posterior distribution are essential for the design of efficient computational Bayesian methods for PDE inverse problems. We study Bayesian inversion for a model elliptic PDE with an unknown diffusion coefficient. We provide complexity analyses of several Markov chain Monte Carlo (MCMC) methods for the efficient numerical evaluation of expectations under the Bayesian posterior distribution, given data δ. Particular attention is given to bounds on the overall work required to achieve a prescribed error level ε. Specifically, we first bound the computational complexity of ‘plain’ MCMC, based on combining MCMC sampling with linear complexity multi-level solvers for elliptic PDE. Our (new) work versus accuracy bounds show that the complexity of this approach can be quite prohibitive. Two strategies for reducing the computational complexity are then proposed and analyzed: first, a sparse, parametric and deterministic generalized polynomial chaos (gpc) ‘surrogate’ representation of the forward response map of the PDE over the entire parameter space, and, second, a novel multi-level Markov chain Monte Carlo strategy which utilizes sampling from a multi-level discretization of the posterior and the forward PDE. For both of these strategies, we derive asymptotic bounds on work versus accuracy, and hence asymptotic bounds on the computational complexity of the algorithms. In particular, we provide sufficient conditions on the regularity of the unknown coefficients of the PDE and on the

  5. Bayesian analysis of rare events

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Daniel, E-mail: straub@tum.de; Papaioannou, Iason; Betz, Wolfgang

    2016-06-01

    In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.

  6. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  7. Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration

    Science.gov (United States)

    Wynne, Kevin B.; Knuth, Kevin H.; Petruccelli, Jonathan

    2017-12-01

    As the use of Digital Micro Mirror Devices (DMDs) becomes more prevalent in optics research, the ability to precisely locate the Fourier "footprint" of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam's characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.

  8. Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration

    Directory of Open Access Journals (Sweden)

    Kevin B. Wynne

    2017-12-01

    Full Text Available As the use of Digital Micro Mirror Devices (DMDs becomes more prevalent in optics research, the ability to precisely locate the Fourier “footprint” of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam’s characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.

  9. Bayesian Modeling of a Human MMORPG Player

    Science.gov (United States)

    Synnaeve, Gabriel; Bessière, Pierre

    2011-03-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  10. Bayesian and maximum likelihood estimation of genetic maps

    DEFF Research Database (Denmark)

    York, Thomas L.; Durrett, Richard T.; Tanksley, Steven

    2005-01-01

    There has recently been increased interest in the use of Markov Chain Monte Carlo (MCMC)-based Bayesian methods for estimating genetic maps. The advantage of these methods is that they can deal accurately with missing data and genotyping errors. Here we present an extension of the previous methods...... of genotyping errors. A similar advantage of the Bayesian method was not observed for missing data. We also re-analyse a recently published set of data from the eggplant and show that the use of the MCMC-based method leads to smaller estimates of genetic distances....

  11. Estimating mental states of a depressed person with bayesian networks

    NARCIS (Netherlands)

    Klein, Michel C.A.; Modena, Gabriele

    2013-01-01

    In this work in progress paper we present an approach based on Bayesian Networks to model the relationship between mental states and empirical observations in a depressed person. We encode relationships and domain expertise as a Hierarchical Bayesian Network. Mental states are represented as latent

  12. Bayesian Mediation Analysis

    Science.gov (United States)

    Yuan, Ying; MacKinnon, David P.

    2009-01-01

    In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…

  13. A design-based approximation to the Bayes Information Criterion in finite population sampling

    Directory of Open Access Journals (Sweden)

    Enrico Fabrizi

    2014-05-01

    Full Text Available In this article, various issues related to the implementation of the usual Bayesian Information Criterion (BIC are critically examined in the context of modelling a finite population. A suitable design-based approximation to the BIC is proposed in order to avoid the derivation of the exact likelihood of the sample which is often very complex in a finite population sampling. The approximation is justified using a theoretical argument and a Monte Carlo simulation study.

  14. Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Masoud Asgarpour

    2018-01-01

    Full Text Available Operation and maintenance costs are a major contributor to the Levelized Cost of Energy for electricity produced by offshore wind and can be significantly reduced if existing corrective actions are performed as efficiently as possible and if future corrective actions are avoided by performing sufficient preventive actions. This paper presents an applied and generic diagnostic model for fault detection and condition based maintenance of offshore wind components. The diagnostic model is based on two probabilistic matrices; first, a confidence matrix, representing the probability of detection using each fault detection method, and second, a diagnosis matrix, representing the individual outcome of each fault detection method. Once the confidence and diagnosis matrices of a component are defined, the individual diagnoses of each fault detection method are combined into a final verdict on the fault state of that component. Furthermore, this paper introduces a Bayesian updating model based on observations collected by inspections to decrease the uncertainty of initial confidence matrix. The framework and implementation of the presented diagnostic model are further explained within a case study for a wind turbine component based on vibration, temperature, and oil particle fault detection methods. The last part of the paper will have a discussion of the case study results and present conclusions.

  15. Bayesian inference for psychology. Part II: Example applications with JASP.

    Science.gov (United States)

    Wagenmakers, Eric-Jan; Love, Jonathon; Marsman, Maarten; Jamil, Tahira; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Gronau, Quentin F; Dropmann, Damian; Boutin, Bruno; Meerhoff, Frans; Knight, Patrick; Raj, Akash; van Kesteren, Erik-Jan; van Doorn, Johnny; Šmíra, Martin; Epskamp, Sacha; Etz, Alexander; Matzke, Dora; de Jong, Tim; van den Bergh, Don; Sarafoglou, Alexandra; Steingroever, Helen; Derks, Koen; Rouder, Jeffrey N; Morey, Richard D

    2018-02-01

    Bayesian hypothesis testing presents an attractive alternative to p value hypothesis testing. Part I of this series outlined several advantages of Bayesian hypothesis testing, including the ability to quantify evidence and the ability to monitor and update this evidence as data come in, without the need to know the intention with which the data were collected. Despite these and other practical advantages, Bayesian hypothesis tests are still reported relatively rarely. An important impediment to the widespread adoption of Bayesian tests is arguably the lack of user-friendly software for the run-of-the-mill statistical problems that confront psychologists for the analysis of almost every experiment: the t-test, ANOVA, correlation, regression, and contingency tables. In Part II of this series we introduce JASP ( http://www.jasp-stats.org ), an open-source, cross-platform, user-friendly graphical software package that allows users to carry out Bayesian hypothesis tests for standard statistical problems. JASP is based in part on the Bayesian analyses implemented in Morey and Rouder's BayesFactor package for R. Armed with JASP, the practical advantages of Bayesian hypothesis testing are only a mouse click away.

  16. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...

  17. A flexible Bayesian assessment for the expected impact of data on prediction confidence for optimal sampling designs

    Science.gov (United States)

    Leube, Philipp; Geiges, Andreas; Nowak, Wolfgang

    2010-05-01

    Incorporating hydrogeological data, such as head and tracer data, into stochastic models of subsurface flow and transport helps to reduce prediction uncertainty. Considering limited financial resources available for the data acquisition campaign, information needs towards the prediction goal should be satisfied in a efficient and task-specific manner. For finding the best one among a set of design candidates, an objective function is commonly evaluated, which measures the expected impact of data on prediction confidence, prior to their collection. An appropriate approach to this task should be stochastically rigorous, master non-linear dependencies between data, parameters and model predictions, and allow for a wide variety of different data types. Existing methods fail to fulfill all these requirements simultaneously. For this reason, we introduce a new method, denoted as CLUE (Cross-bred Likelihood Uncertainty Estimator), that derives the essential distributions and measures of data utility within a generalized, flexible and accurate framework. The method makes use of Bayesian GLUE (Generalized Likelihood Uncertainty Estimator) and extends it to an optimal design method by marginalizing over the yet unknown data values. Operating in a purely Bayesian Monte-Carlo framework, CLUE is a strictly formal information processing scheme free of linearizations. It provides full flexibility associated with the type of measurements (linear, non-linear, direct, indirect) and accounts for almost arbitrary sources of uncertainty (e.g. heterogeneity, geostatistical assumptions, boundary conditions, model concepts) via stochastic simulation and Bayesian model averaging. This helps to minimize the strength and impact of possible subjective prior assumptions, that would be hard to defend prior to data collection. Our study focuses on evaluating two different uncertainty measures: (i) expected conditional variance and (ii) expected relative entropy of a given prediction goal. The

  18. Extreme-Scale Bayesian Inference for Uncertainty Quantification of Complex Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Biros, George [Univ. of Texas, Austin, TX (United States)

    2018-01-12

    Uncertainty quantification (UQ)—that is, quantifying uncertainties in complex mathematical models and their large-scale computational implementations—is widely viewed as one of the outstanding challenges facing the field of CS&E over the coming decade. The EUREKA project set to address the most difficult class of UQ problems: those for which both the underlying PDE model as well as the uncertain parameters are of extreme scale. In the project we worked on these extreme-scale challenges in the following four areas: 1. Scalable parallel algorithms for sampling and characterizing the posterior distribution that exploit the structure of the underlying PDEs and parameter-to-observable map. These include structure-exploiting versions of the randomized maximum likelihood method, which aims to overcome the intractability of employing conventional MCMC methods for solving extreme-scale Bayesian inversion problems by appealing to and adapting ideas from large-scale PDE-constrained optimization, which have been very successful at exploring high-dimensional spaces. 2. Scalable parallel algorithms for construction of prior and likelihood functions based on learning methods and non-parametric density estimation. Constructing problem-specific priors remains a critical challenge in Bayesian inference, and more so in high dimensions. Another challenge is construction of likelihood functions that capture unmodeled couplings between observations and parameters. We will create parallel algorithms for non-parametric density estimation using high dimensional N-body methods and combine them with supervised learning techniques for the construction of priors and likelihood functions. 3. Bayesian inadequacy models, which augment physics models with stochastic models that represent their imperfections. The success of the Bayesian inference framework depends on the ability to represent the uncertainty due to imperfections of the mathematical model of the phenomena of interest. This is a

  19. Bayesian Estimation of Wave Spectra – Proper Formulation of ABIC

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2007-01-01

    It is possible to estimate on-site wave spectra using measured ship responses applied to Bayesian Modelling based on two prior information: the wave spectrum must be smooth both directional-wise and frequency-wise. This paper introduces two hyperparameters into Bayesian Modelling and, hence, a pr...

  20. Systematic search of Bayesian statistics in the field of psychotraumatology

    NARCIS (Netherlands)

    van de Schoot, Rens; Schalken, Naomi; Olff, Miranda

    2017-01-01

    In many different disciplines there is a recent increase in interest of Bayesian analysis. Bayesian methods implement Bayes' theorem, which states that prior beliefs are updated with data, and this process produces updated beliefs about model parameters. The prior is based on how much information we

  1. Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework

    Science.gov (United States)

    Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.

    2013-10-01

    The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.

  2. Software Delivery Risk Management: Application of Bayesian Networks in Agile Software Development

    Directory of Open Access Journals (Sweden)

    Ancveire Ieva

    2015-12-01

    Full Text Available The information technology industry cannot be imagined without large- or small-scale projects. They are implemented to develop systems enabling key business processes and improving performance and enterprise resource management. However, projects often experience various difficulties during their execution. These problems are usually related to the three objectives of the project – costs, quality and deadline. A way these challenges can be solved is project risk management. However, not always the main problems and their influencing factors can be easily identified. Usually there is a need for a more profound analysis of the problem situation. In this paper, we propose the use of a Bayesian Network concept for quantitative risk management in agile projects. The Bayesian Network is explored using a case study focusing on a project that faces difficulties during the software delivery process. We explain why an agile risk analysis is needed and assess the potential risk factors, which may occur during the project. Thereafter, we design the Bayesian Network to capture the actual problem situation and make suggestions how to improve the delivery process based on the measures to be taken to reduce the occurrence of project risks.

  3. Perceptual stimulus-A Bayesian-based integration of multi-visual-cue approach and its application

    Institute of Scientific and Technical Information of China (English)

    XUE JianRu; ZHENG NanNing; ZHONG XiaoPin; PING LinJiang

    2008-01-01

    With the view that visual cue could be taken as a kind of stimulus, the study of the mechanism in the visual perception process by using visual cues in their probabilistic representation eventually leads to a class of statistical integration of multiple visual cues (IMVC) methods which have been applied widely in perceptual grouping, video analysis, and other basic problems in computer vision. In this paper, a survey on the basic ideas and recent advances of IMVC methods is presented, and much focus is on the models and algorithms of IMVC for video analysis within the framework of Bayesian estimation. Furthermore, two typical problems in video analysis, robust visual tracking and "switching problem" in multi-target tracking (MTT) are taken as test beds to verify a series of Bayesian-based IMVC methods proposed by the authors. Furthermore, the relations between the statistical IMVC and the visual per-ception process, as well as potential future research work for IMVC, are discussed.

  4. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab; Zedler, Sarah E.; Knio, Omar; Jackson, Charles S.; Hoteit, Ibrahim

    2016-01-01

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference

  5. Risk-Based Operation and Maintenance of Offshore Wind Turbines using Bayesian Networks

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    the lifetime. Two different approaches are used; one uses a threshold value of the failure probability, and one uses a Limited Memory Influence Diagram. Both methods are tested for an application example using MonteCarlo sampling, and they are both found to be efficient and equally good.......For offshore wind farms, the costs due to operation and maintenance are large, and more optimal planning has the potential of reducing these costs. This paper presents how Bayesian networks can be used for risk-based inspection planning, where the inspection plans are updated each year through...

  6. Physics-based, Bayesian sequential detection method and system for radioactive contraband

    Science.gov (United States)

    Candy, James V; Axelrod, Michael C; Breitfeller, Eric F; Chambers, David H; Guidry, Brian L; Manatt, Douglas R; Meyer, Alan W; Sale, Kenneth E

    2014-03-18

    A distributed sequential method and system for detecting and identifying radioactive contraband from highly uncertain (noisy) low-count, radionuclide measurements, i.e. an event mode sequence (EMS), using a statistical approach based on Bayesian inference and physics-model-based signal processing based on the representation of a radionuclide as a monoenergetic decomposition of monoenergetic sources. For a given photon event of the EMS, the appropriate monoenergy processing channel is determined using a confidence interval condition-based discriminator for the energy amplitude and interarrival time and parameter estimates are used to update a measured probability density function estimate for a target radionuclide. A sequential likelihood ratio test is then used to determine one of two threshold conditions signifying that the EMS is either identified as the target radionuclide or not, and if not, then repeating the process for the next sequential photon event of the EMS until one of the two threshold conditions is satisfied.

  7. A Bayesian Approach to Multistage Fitting of the Variation of the Skeletal Age Features

    Directory of Open Access Journals (Sweden)

    Dong Hua

    2009-01-01

    Full Text Available Accurate assessment of skeletal maturity is important clinically. Skeletal age assessment is usually based on features encoded in ossification centers. Therefore, it is critical to design a mechanism to capture as much as possible characteristics of features. We have observed that given a feature, there exist stages of the skeletal age such that the variation pattern of the feature differs in these stages. Based on this observation, we propose a Bayesian cut fitting to describe features in response to the skeletal age. With our approach, appropriate positions for stage separation are determined automatically by a Bayesian approach, and a model is used to fit the variation of a feature within each stage. Our experimental results show that the proposed method surpasses the traditional fitting using only one line or one curve not only in the efficiency and accuracy of fitting but also in global and local feature characterization.

  8. Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Hashem Salarzadeh Jenatabadi

    2016-11-01

    Full Text Available There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM with maximum likelihood and Bayesian predictors. The introduced framework includes economic performance, operational performance, cost performance, and financial performance. Based on both Bayesian SEM (Bayesian-SEM and Classical SEM (Classical-SEM, it was found that economic performance with both operational performance and cost performance are significantly related to the financial performance index. The four mathematical indices employed are root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error to compare the efficiency of Bayesian-SEM and Classical-SEM in predicting the airline financial performance. The outputs confirmed that the framework with Bayesian prediction delivered a good fit with the data, although the framework predicted with a Classical-SEM approach did not prepare a well-fitting model. The reasons for this discrepancy between Classical and Bayesian predictions, as well as the potential advantages and caveats with the application of Bayesian approach in airline sustainability studies, are debated.

  9. Bayesian estimation of the discrete coefficient of determination.

    Science.gov (United States)

    Chen, Ting; Braga-Neto, Ulisses M

    2016-12-01

    The discrete coefficient of determination (CoD) measures the nonlinear interaction between discrete predictor and target variables and has had far-reaching applications in Genomic Signal Processing. Previous work has addressed the inference of the discrete CoD using classical parametric and nonparametric approaches. In this paper, we introduce a Bayesian framework for the inference of the discrete CoD. We derive analytically the optimal minimum mean-square error (MMSE) CoD estimator, as well as a CoD estimator based on the Optimal Bayesian Predictor (OBP). For the latter estimator, exact expressions for its bias, variance, and root-mean-square (RMS) are given. The accuracy of both Bayesian CoD estimators with non-informative and informative priors, under fixed or random parameters, is studied via analytical and numerical approaches. We also demonstrate the application of the proposed Bayesian approach in the inference of gene regulatory networks, using gene-expression data from a previously published study on metastatic melanoma.

  10. User-customized brain computer interfaces using Bayesian optimization.

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K; Bashashati, Ali

    2016-04-01

    The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject's brain characteristics. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  11. qPR: An adaptive partial-report procedure based on Bayesian inference.

    Science.gov (United States)

    Baek, Jongsoo; Lesmes, Luis Andres; Lu, Zhong-Lin

    2016-08-01

    Iconic memory is best assessed with the partial report procedure in which an array of letters appears briefly on the screen and a poststimulus cue directs the observer to report the identity of the cued letter(s). Typically, 6-8 cue delays or 600-800 trials are tested to measure the iconic memory decay function. Here we develop a quick partial report, or qPR, procedure based on a Bayesian adaptive framework to estimate the iconic memory decay function with much reduced testing time. The iconic memory decay function is characterized by an exponential function and a joint probability distribution of its three parameters. Starting with a prior of the parameters, the method selects the stimulus to maximize the expected information gain in the next test trial. It then updates the posterior probability distribution of the parameters based on the observer's response using Bayesian inference. The procedure is reiterated until either the total number of trials or the precision of the parameter estimates reaches a certain criterion. Simulation studies showed that only 100 trials were necessary to reach an average absolute bias of 0.026 and a precision of 0.070 (both in terms of probability correct). A psychophysical validation experiment showed that estimates of the iconic memory decay function obtained with 100 qPR trials exhibited good precision (the half width of the 68.2% credible interval = 0.055) and excellent agreement with those obtained with 1,600 trials of the conventional method of constant stimuli procedure (RMSE = 0.063). Quick partial-report relieves the data collection burden in characterizing iconic memory and makes it possible to assess iconic memory in clinical populations.

  12. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  13. SU-E-T-144: Bayesian Inference of Local Relapse Data Using a Poisson-Based Tumour Control Probability Model

    Energy Technology Data Exchange (ETDEWEB)

    La Russa, D [The Ottawa Hospital Cancer Centre, Ottawa, ON (Canada)

    2015-06-15

    Purpose: The purpose of this project is to develop a robust method of parameter estimation for a Poisson-based TCP model using Bayesian inference. Methods: Bayesian inference was performed using the PyMC3 probabilistic programming framework written in Python. A Poisson-based TCP regression model that accounts for clonogen proliferation was fit to observed rates of local relapse as a function of equivalent dose in 2 Gy fractions for a population of 623 stage-I non-small-cell lung cancer patients. The Slice Markov Chain Monte Carlo sampling algorithm was used to sample the posterior distributions, and was initiated using the maximum of the posterior distributions found by optimization. The calculation of TCP with each sample step required integration over the free parameter α, which was performed using an adaptive 24-point Gauss-Legendre quadrature. Convergence was verified via inspection of the trace plot and posterior distribution for each of the fit parameters, as well as with comparisons of the most probable parameter values with their respective maximum likelihood estimates. Results: Posterior distributions for α, the standard deviation of α (σ), the average tumour cell-doubling time (Td), and the repopulation delay time (Tk), were generated assuming α/β = 10 Gy, and a fixed clonogen density of 10{sup 7} cm−{sup 3}. Posterior predictive plots generated from samples from these posterior distributions are in excellent agreement with the observed rates of local relapse used in the Bayesian inference. The most probable values of the model parameters also agree well with maximum likelihood estimates. Conclusion: A robust method of performing Bayesian inference of TCP data using a complex TCP model has been established.

  14. Mining data from hemodynamic simulations via Bayesian emulation

    Directory of Open Access Journals (Sweden)

    Nair Prasanth B

    2007-12-01

    Full Text Available Abstract Background: Arterial geometry variability is inevitable both within and across individuals. To ensure realistic prediction of cardiovascular flows, there is a need for efficient numerical methods that can systematically account for geometric uncertainty. Methods and results: A statistical framework based on Bayesian Gaussian process modeling was proposed for mining data generated from computer simulations. The proposed approach was applied to analyze the influence of geometric parameters on hemodynamics in the human carotid artery bifurcation. A parametric model in conjunction with a design of computer experiments strategy was used for generating a set of observational data that contains the maximum wall shear stress values for a range of probable arterial geometries. The dataset was mined via a Bayesian Gaussian process emulator to estimate: (a the influence of key parameters on the output via sensitivity analysis, (b uncertainty in output as a function of uncertainty in input, and (c which settings of the input parameters result in maximum and minimum values of the output. Finally, potential diagnostic indicators were proposed that can be used to aid the assessment of stroke risk for a given patient's geometry.

  15. Bayesian uncertainty analyses of probabilistic risk models

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1989-01-01

    Applications of Bayesian principles to the uncertainty analyses are discussed in the paper. A short review of the most important uncertainties and their causes is provided. An application of the principle of maximum entropy to the determination of Bayesian prior distributions is described. An approach based on so called probabilistic structures is presented in order to develop a method of quantitative evaluation of modelling uncertainties. The method is applied to a small example case. Ideas for application areas for the proposed method are discussed

  16. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    Science.gov (United States)

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  17. Bayesian Classification of Image Structures

    DEFF Research Database (Denmark)

    Goswami, Dibyendu; Kalkan, Sinan; Krüger, Norbert

    2009-01-01

    In this paper, we describe work on Bayesian classi ers for distinguishing between homogeneous structures, textures, edges and junctions. We build semi-local classiers from hand-labeled images to distinguish between these four different kinds of structures based on the concept of intrinsic dimensi...

  18. A Web-Based System for Bayesian Benchmark Dose Estimation.

    Science.gov (United States)

    Shao, Kan; Shapiro, Andrew J

    2018-01-11

    Benchmark dose (BMD) modeling is an important step in human health risk assessment and is used as the default approach to identify the point of departure for risk assessment. A probabilistic framework for dose-response assessment has been proposed and advocated by various institutions and organizations; therefore, a reliable tool is needed to provide distributional estimates for BMD and other important quantities in dose-response assessment. We developed an online system for Bayesian BMD (BBMD) estimation and compared results from this software with U.S. Environmental Protection Agency's (EPA's) Benchmark Dose Software (BMDS). The system is built on a Bayesian framework featuring the application of Markov chain Monte Carlo (MCMC) sampling for model parameter estimation and BMD calculation, which makes the BBMD system fundamentally different from the currently prevailing BMD software packages. In addition to estimating the traditional BMDs for dichotomous and continuous data, the developed system is also capable of computing model-averaged BMD estimates. A total of 518 dichotomous and 108 continuous data sets extracted from the U.S. EPA's Integrated Risk Information System (IRIS) database (and similar databases) were used as testing data to compare the estimates from the BBMD and BMDS programs. The results suggest that the BBMD system may outperform the BMDS program in a number of aspects, including fewer failed BMD and BMDL calculations and estimates. The BBMD system is a useful alternative tool for estimating BMD with additional functionalities for BMD analysis based on most recent research. Most importantly, the BBMD has the potential to incorporate prior information to make dose-response modeling more reliable and can provide distributional estimates for important quantities in dose-response assessment, which greatly facilitates the current trend for probabilistic risk assessment. https://doi.org/10.1289/EHP1289.

  19. Model-based Bayesian signal extraction algorithm for peripheral nerves

    Science.gov (United States)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of

  20. Design of a Bayesian adaptive phase 2 proof-of-concept trial for BAN2401, a putative disease-modifying monoclonal antibody for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Satlin, Andrew; Wang, Jinping; Logovinsky, Veronika; Berry, Scott; Swanson, Chad; Dhadda, Shobha; Berry, Donald A

    2016-01-01

    Recent failures in phase 3 clinical trials in Alzheimer's disease (AD) suggest that novel approaches to drug development are urgently needed. Phase 3 risk can be mitigated by ensuring that clinical efficacy is established before initiating confirmatory trials, but traditional phase 2 trials in AD can be lengthy and costly. We designed a Bayesian adaptive phase 2, proof-of-concept trial with a clinical endpoint to evaluate BAN2401, a monoclonal antibody targeting amyloid protofibrils. The study design used dose response and longitudinal modeling. Simulations were used to refine study design features to achieve optimal operating characteristics. The study design includes five active treatment arms plus placebo, a clinical outcome, 12-month primary endpoint, and a maximum sample size of 800. The average overall probability of success is ≥80% when at least one dose shows a treatment effect that would be considered clinically meaningful. Using frequent interim analyses, the randomization ratios are adapted based on the clinical endpoint, and the trial can be stopped for success or futility before full enrollment. Bayesian statistics can enhance the efficiency of analyzing the study data. The adaptive randomization generates more data on doses that appear to be more efficacious, which can improve dose selection for phase 3. The interim analyses permit stopping as soon as a predefined signal is detected, which can accelerate decision making. Both features can reduce the size and duration of the trial. This study design can mitigate some of the risks associated with advancing to phase 3 in the absence of data demonstrating clinical efficacy. Limitations to the approach are discussed.

  1. A Bayesian approach to model uncertainty

    International Nuclear Information System (INIS)

    Buslik, A.

    1994-01-01

    A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given

  2. On the prior probabilities for two-stage Bayesian estimates

    International Nuclear Information System (INIS)

    Kohut, P.

    1992-01-01

    The method of Bayesian inference is reexamined for its applicability and for the required underlying assumptions in obtaining and using prior probability estimates. Two different approaches are suggested to determine the first-stage priors in the two-stage Bayesian analysis which avoid certain assumptions required for other techniques. In the first scheme, the prior is obtained through a true frequency based distribution generated at selected intervals utilizing actual sampling of the failure rate distributions. The population variability distribution is generated as the weighed average of the frequency distributions. The second method is based on a non-parametric Bayesian approach using the Maximum Entropy Principle. Specific features such as integral properties or selected parameters of prior distributions may be obtained with minimal assumptions. It is indicated how various quantiles may also be generated with a least square technique

  3. Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F

    2013-04-01

    In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.

  4. Selection of a design for response surface

    Science.gov (United States)

    Ranade, Shruti Sunil; Thiagarajan, Padma

    2017-11-01

    Box-Behnken, Central-Composite, D and I-optimal designs were compared using statistical tools. Experimental trials for all designs were generated. Random uniform responses were simulated for all models. R-square, Akaike and Bayesian Information Criterion for the fitted models were noted. One-way ANOVA and Tukey’s multiple comparison test were performed on these parameters. These models were evaluated based on the number of experimental trials generated in addition to the results of the statistical analyses. D-optimal design generated 12 trials in its model, which was lesser in comparison to both Central Composite and Box-Behnken designs. The R-square values of the fitted models were found to possess a statistically significant difference (P<0.0001). D-optimal design not only had the highest mean R-square value (0.7231), but also possessed the lowest means for both Akaike and Bayesian Information Criterion. The D-optimal design was recommended for generation of response surfaces, based on the assessment of the above parameters.

  5. Bayesian estimation inherent in a Mexican-hat-type neural network

    Science.gov (United States)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  6. Bayesian Sampling using Condition Indicators

    DEFF Research Database (Denmark)

    Faber, Michael H.; Sørensen, John Dalsgaard

    2002-01-01

    of condition indicators introduced by Benjamin and Cornell (1970) a Bayesian approach to quality control is formulated. The formulation is then extended to the case where the quality control is based on sampling of indirect information about the condition of the components, i.e. condition indicators...

  7. Optimal Detection under the Restricted Bayesian Criterion

    Directory of Open Access Journals (Sweden)

    Shujun Liu

    2017-07-01

    Full Text Available This paper aims to find a suitable decision rule for a binary composite hypothesis-testing problem with a partial or coarse prior distribution. To alleviate the negative impact of the information uncertainty, a constraint is considered that the maximum conditional risk cannot be greater than a predefined value. Therefore, the objective of this paper becomes to find the optimal decision rule to minimize the Bayes risk under the constraint. By applying the Lagrange duality, the constrained optimization problem is transformed to an unconstrained optimization problem. In doing so, the restricted Bayesian decision rule is obtained as a classical Bayesian decision rule corresponding to a modified prior distribution. Based on this transformation, the optimal restricted Bayesian decision rule is analyzed and the corresponding algorithm is developed. Furthermore, the relation between the Bayes risk and the predefined value of the constraint is also discussed. The Bayes risk obtained via the restricted Bayesian decision rule is a strictly decreasing and convex function of the constraint on the maximum conditional risk. Finally, the numerical results including a detection example are presented and agree with the theoretical results.

  8. A Bayesian approach to the evaluation of risk-based microbiological criteria for Campylobacter in broiler meat

    DEFF Research Database (Denmark)

    Ranta, Jukka; Lindqvist, Roland; Hansson, Ingrid

    2015-01-01

    Shifting from traditional hazard-based food safety management toward risk-based management requires statistical methods for evaluating intermediate targets in food production, such as microbiological criteria (MC), in terms of their effects on human risk of illness. A fully risk-based evaluation...... of MC involves several uncertainties that are related to both the underlying Quantitative Microbiological Risk Assessment (QMRA) model and the production-specific sample data on the prevalence and concentrations of microbes in production batches. We used Bayesian modeling for statistical inference...

  9. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors.

    Science.gov (United States)

    Antal, Peter; Fannes, Geert; Timmerman, Dirk; Moreau, Yves; De Moor, Bart

    2004-03-01

    Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate information from free-text resources with statistical data in learning Bayesian networks. Firstly, we report on the collection of prior information resources in the ovarian cancer domain, which includes "kernel" annotations of the domain variables. We introduce methods based on the annotations and literature to derive informative pairwise dependency measures, which are derived from the statistical cooccurrence of the names of the variables, from the similarity of the "kernel" descriptions of the variables and from a combined method. We perform wide-scale evaluation of these text-based dependency scores against an expert reference and against data scores (the mutual information (MI) and a Bayesian score). Next, we transform the text-based dependency measures into informative text-based priors for Bayesian network structures. Finally, we report the benefit of such informative text-based priors on the performance of a Bayesian network for the classification of ovarian tumors from clinical data.

  10. Applying Bayesian Statistics to Educational Evaluation. Theoretical Paper No. 62.

    Science.gov (United States)

    Brumet, Michael E.

    Bayesian statistical inference is unfamiliar to many educational evaluators. While the classical model is useful in educational research, it is not as useful in evaluation because of the need to identify solutions to practical problems based on a wide spectrum of information. The reason Bayesian analysis is effective for decision making is that it…

  11. Optimal Experimental Design of Borehole Locations for Bayesian Inference of Past Ice Sheet Surface Temperatures

    Science.gov (United States)

    Davis, A. D.; Huan, X.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    Borehole data are essential for calibrating ice sheet models. However, field expeditions for acquiring borehole data are often time-consuming, expensive, and dangerous. It is thus essential to plan the best sampling locations that maximize the value of data while minimizing costs and risks. We present an uncertainty quantification (UQ) workflow based on rigorous probability framework to achieve these objectives. First, we employ an optimal experimental design (OED) procedure to compute borehole locations that yield the highest expected information gain. We take into account practical considerations of location accessibility (e.g., proximity to research sites, terrain, and ice velocity may affect feasibility of drilling) and robustness (e.g., real-time constraints such as weather may force researchers to drill at sub-optimal locations near those originally planned), by incorporating a penalty reflecting accessibility as well as sensitivity to deviations from the optimal locations. Next, we extract vertical temperature profiles from these boreholes and formulate a Bayesian inverse problem to reconstruct past surface temperatures. Using a model of temperature advection/diffusion, the top boundary condition (corresponding to surface temperatures) is calibrated via efficient Markov chain Monte Carlo (MCMC). The overall procedure can then be iterated to choose new optimal borehole locations for the next expeditions.Through this work, we demonstrate powerful UQ methods for designing experiments, calibrating models, making predictions, and assessing sensitivity--all performed under an uncertain environment. We develop a theoretical framework as well as practical software within an intuitive workflow, and illustrate their usefulness for combining data and models for environmental and climate research.

  12. A Bayesian Combined Model for Time-Dependent Turning Movement Proportions Estimation at Intersections

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2014-01-01

    Full Text Available Time-dependent turning movement flows are very important input data for intelligent transportation systems but are impossible to be detected directly through current traffic surveillance systems. Existing estimation models have proved to be not accurate and reliable enough during all intervals. An improved way to address this problem is to develop a combined model framework that can integrate multiple submodels running simultaneously. This paper first presents a back propagation neural network model to estimate dynamic turning movements, as well as the self-adaptive learning rate approach and the gradient descent with momentum method for solving. Second, this paper develops an efficient Kalman filtering model and designs a revised sequential Kalman filtering algorithm. Based on the Bayesian method using both historical data and currently estimated results for error calibration, this paper further integrates above two submodels into a Bayesian combined model framework and proposes a corresponding algorithm. A field survey is implemented at an intersection in Beijing city to collect both time series of link counts and actual time-dependent turning movement flows, including historical and present data. The reported estimation results show that the Bayesian combined model is much more accurate and stable than other models.

  13. A Bayesian approach to degradation-based burn-in optimization for display products exhibiting two-phase degradation patterns

    International Nuclear Information System (INIS)

    Yuan, Tao; Bae, Suk Joo; Zhu, Xiaoyan

    2016-01-01

    Motivated by the two-phase degradation phenomena observed in light displays (e.g., plasma display panels (PDPs), organic light emitting diodes (OLEDs)), this study proposes a new degradation-based burn-in testing plan for display products exhibiting two-phase degradation patterns. The primary focus of the burn-in test in this study is to eliminate the initial rapid degradation phase, while the major purpose of traditional burn-in tests is to detect and eliminate early failures from weak units. A hierarchical Bayesian bi-exponential model is used to capture two-phase degradation patterns of the burn-in population. Mission reliability and total cost are introduced as planning criteria. The proposed burn-in approach accounts for unit-to-unit variability within the burn-in population, and uncertainty concerning the model parameters, mainly in the hierarchical Bayesian framework. Available pre-burn-in data is conveniently incorporated into the burn-in decision-making procedure. A practical example of PDP degradation data is used to illustrate the proposed methodology. The proposed method is compared to other approaches such as the maximum likelihood method or the change-point regression. - Highlights: • We propose a degradation-based burn-in test for products with two-phase degradation. • Mission reliability and total cost are used as planning criteria. • The proposed burn-in approach is built within the hierarchical Bayesian framework. • A practical example was used to illustrate the proposed methodology.

  14. Quantum Bayesian rule for weak measurements of qubits in superconducting circuit QED

    International Nuclear Information System (INIS)

    Wang, Peiyue; Qin, Lupei; Li, Xin-Qi

    2014-01-01

    Compared with the quantum trajectory equation (QTE), the quantum Bayesian approach has the advantage of being more efficient to infer a quantum state under monitoring, based on the integrated output of measurements. For weak measurement of qubits in circuit quantum electrodynamics (cQED), properly accounting for the measurement backaction effects within the Bayesian framework is an important problem of current interest. Elegant work towards this task was carried out by Korotkov in ‘bad-cavity’ and weak-response limits (Korotkov 2011 Quantum Bayesian approach to circuit QED measurement (arXiv:1111.4016)). In the present work, based on insights from the cavity-field states (dynamics) and the help of an effective QTE, we generalize the results of Korotkov to more general system parameters. The obtained Bayesian rule is in full agreement with Korotkov's result in limiting cases and as well holds satisfactory accuracy in non-limiting cases in comparison with the QTE simulations. We expect the proposed Bayesian rule to be useful for future cQED measurement and control experiments. (paper)

  15. Banking Crisis Early Warning Model based on a Bayesian Model Averaging Approach

    Directory of Open Access Journals (Sweden)

    Taha Zaghdoudi

    2016-08-01

    Full Text Available The succession of banking crises in which most have resulted in huge economic and financial losses, prompted several authors to study their determinants. These authors constructed early warning models to prevent their occurring. It is in this same vein as our study takes its inspiration. In particular, we have developed a warning model of banking crises based on a Bayesian approach. The results of this approach have allowed us to identify the involvement of the decline in bank profitability, deterioration of the competitiveness of the traditional intermediation, banking concentration and higher real interest rates in triggering bank crisis.

  16. An Exploratory Study Examining the Feasibility of Using Bayesian Networks to Predict Circuit Analysis Understanding

    Science.gov (United States)

    Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.

    2006-01-01

    Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…

  17. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  18. Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach.

    Science.gov (United States)

    Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J

    2017-06-01

    In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision

  19. The Bayesian Score Statistic

    NARCIS (Netherlands)

    Kleibergen, F.R.; Kleijn, R.; Paap, R.

    2000-01-01

    We propose a novel Bayesian test under a (noninformative) Jeffreys'priorspecification. We check whether the fixed scalar value of the so-calledBayesian Score Statistic (BSS) under the null hypothesis is aplausiblerealization from its known and standardized distribution under thealternative. Unlike

  20. Bayesian approach for the reliability assessment of corroded interdependent pipe networks

    International Nuclear Information System (INIS)

    Ait Mokhtar, El Hassene; Chateauneuf, Alaa; Laggoune, Radouane

    2016-01-01

    Pipelines under corrosion are subject to various environment conditions, and consequently it becomes difficult to build realistic corrosion models. In the present work, a Bayesian methodology is proposed to allow for updating the corrosion model parameters according to the evolution of environmental conditions. For reliability assessment of dependent structures, Bayesian networks are used to provide interesting qualitative and quantitative description of the information in the system. The qualitative contribution lies in the modeling of complex system, composed by dependent pipelines, as a Bayesian network. The quantitative one lies in the evaluation of the dependencies between pipelines by the use of a new method for the generation of conditional probability tables. The effectiveness of Bayesian updating is illustrated through an application where the new reliability of degraded (corroded) pipe networks is assessed. - Highlights: • A methodology for Bayesian network modeling of pipe networks is proposed. • Bayesian approach based on Metropolis - Hastings algorithm is conducted for corrosion model updating. • The reliability of corroded pipe network is assessed by considering the interdependencies between the pipelines.

  1. Bayesian Maximum Entropy Based Algorithm for Digital X-ray Mammogram Processing

    Directory of Open Access Journals (Sweden)

    Radu Mutihac

    2009-06-01

    Full Text Available Basics of Bayesian statistics in inverse problems using the maximum entropy principle are summarized in connection with the restoration of positive, additive images from various types of data like X-ray digital mammograms. An efficient iterative algorithm for image restoration from large data sets based on the conjugate gradient method and Lagrange multipliers in nonlinear optimization of a specific potential function was developed. The point spread function of the imaging system was determined by numerical simulations of inhomogeneous breast-like tissue with microcalcification inclusions of various opacities. The processed digital and digitized mammograms resulted superior in comparison with their raw counterparts in terms of contrast, resolution, noise, and visibility of details.

  2. Bayesian methods for proteomic biomarker development

    Directory of Open Access Journals (Sweden)

    Belinda Hernández

    2015-12-01

    In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.

  3. A Bayesian ensemble of sensitivity measures for severe accident modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).

  4. Current trends in Bayesian methodology with applications

    CERN Document Server

    Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia

    2015-01-01

    Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on

  5. [Bayesian approach for the cost-effectiveness evaluation of healthcare technologies].

    Science.gov (United States)

    Berchialla, Paola; Gregori, Dario; Brunello, Franco; Veltri, Andrea; Petrinco, Michele; Pagano, Eva

    2009-01-01

    The development of Bayesian statistical methods for the assessment of the cost-effectiveness of health care technologies is reviewed. Although many studies adopt a frequentist approach, several authors have advocated the use of Bayesian methods in health economics. Emphasis has been placed on the advantages of the Bayesian approach, which include: (i) the ability to make more intuitive and meaningful inferences; (ii) the ability to tackle complex problems, such as allowing for the inclusion of patients who generate no cost, thanks to the availability of powerful computational algorithms; (iii) the importance of a full use of quantitative and structural prior information to produce realistic inferences. Much literature comparing the cost-effectiveness of two treatments is based on the incremental cost-effectiveness ratio. However, new methods are arising with the purpose of decision making. These methods are based on a net benefits approach. In the present context, the cost-effectiveness acceptability curves have been pointed out to be intrinsically Bayesian in their formulation. They plot the probability of a positive net benefit against the threshold cost of a unit increase in efficacy.A case study is presented in order to illustrate the Bayesian statistics in the cost-effectiveness analysis. Emphasis is placed on the cost-effectiveness acceptability curves. Advantages and disadvantages of the method described in this paper have been compared to frequentist methods and discussed.

  6. Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization.

    Directory of Open Access Journals (Sweden)

    Devaraj Jayachandran

    Full Text Available 6-Mercaptopurine (6-MP is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN through enzymatic reaction involving thiopurine methyltransferase (TPMT. Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP's widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient's ability to metabolize the drug instead of the traditional standard-dose-for-all approach.

  7. Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization

    Science.gov (United States)

    Jayachandran, Devaraj; Laínez-Aguirre, José; Rundell, Ann; Vik, Terry; Hannemann, Robert; Reklaitis, Gintaras; Ramkrishna, Doraiswami

    2015-01-01

    6-Mercaptopurine (6-MP) is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN) through enzymatic reaction involving thiopurine methyltransferase (TPMT). Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP’s widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype) plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient’s ability to metabolize the drug instead of the traditional standard-dose-for-all approach. PMID:26226448

  8. User-customized brain computer interfaces using Bayesian optimization

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali

    2016-04-01

    Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  9. A Bayesian framework for risk perception

    NARCIS (Netherlands)

    van Erp, H.R.N.

    2017-01-01

    We present here a Bayesian framework of risk perception. This framework encompasses plausibility judgments, decision making, and question asking. Plausibility judgments are modeled by way of Bayesian probability theory, decision making is modeled by way of a Bayesian decision theory, and relevancy

  10. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  11. Bayesian Methods for Predicting the Shape of Chinese Yam in Terms of Key Diameters

    Directory of Open Access Journals (Sweden)

    Mitsunori Kayano

    2017-01-01

    Full Text Available This paper proposes Bayesian methods for the shape estimation of Chinese yam (Dioscorea opposita using a few key diameters of yam. Shape prediction of yam is applicable to determining optimal cutoff positions of a yam for producing seed yams. Our Bayesian method, which is a combination of Bayesian estimation model and predictive model, enables automatic, rapid, and low-cost processing of yam. After the construction of the proposed models using a sample data set in Japan, the models provide whole shape prediction of yam based on only a few key diameters. The Bayesian method performed well on the shape prediction in terms of minimizing the mean squared error between measured shape and the prediction. In particular, a multiple regression method with key diameters at two fixed positions attained the highest performance for shape prediction. We have developed automatic, rapid, and low-cost yam-processing machines based on the Bayesian estimation model and predictive model. Development of such shape prediction approaches, including our Bayesian method, can be a valuable aid in reducing the cost and time in food processing.

  12. Designing and testing inflationary models with Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics

    2015-11-15

    Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.

  13. Designing and testing inflationary models with Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Price, Layne C. [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Frazer, Jonathan [Deutsches Elektronen-Synchrotron DESY, Theory Group, 22603 Hamburg (Germany); Easther, Richard, E-mail: laynep@andrew.cmu.edu, E-mail: h.peiris@ucl.ac.uk, E-mail: jonathan.frazer@desy.de, E-mail: r.easther@auckland.ac.nz [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2016-02-01

    Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.

  14. Designing and testing inflationary models with Bayesian networks

    International Nuclear Information System (INIS)

    Price, Layne C.; Auckland Univ.; Peiris, Hiranya V.; Frazer, Jonathan; Univ. of the Basque Country, Bilbao; Basque Foundation for Science, Bilbao; Easther, Richard

    2015-11-01

    Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N f -quadratic inflation as an illustrative example, finding that the number of e-folds N * between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.

  15. Incorporating Parameter Uncertainty in Bayesian Segmentation Models: Application to Hippocampal Subfield Volumetry

    DEFF Research Database (Denmark)

    Iglesias, J. E.; Sabuncu, M. R.; Van Leemput, Koen

    2012-01-01

    Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian anal...

  16. Propagation of Uncertainty in Bayesian Kernel Models - Application to Multiple-Step Ahead Forecasting

    DEFF Research Database (Denmark)

    Quinonero, Joaquin; Girard, Agathe; Larsen, Jan

    2003-01-01

    The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models such as the Gaus......The object of Bayesian modelling is predictive distribution, which, in a forecasting scenario, enables evaluation of forecasted values and their uncertainties. We focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models...... such as the Gaussian process and the relevance vector machine. We derive novel analytic expressions for the predictive mean and variance for Gaussian kernel shapes under the assumption of a Gaussian input distribution in the static case, and of a recursive Gaussian predictive density in iterative forecasting...

  17. Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives

    NARCIS (Netherlands)

    Durbin, J.; Koopman, S.J.M.

    1998-01-01

    The analysis of non-Gaussian time series using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Monte Carlo Markov chain methods are not employed. Non-Gaussian

  18. EXONEST: The Bayesian Exoplanetary Explorer

    Directory of Open Access Journals (Sweden)

    Kevin H. Knuth

    2017-10-01

    Full Text Available The fields of astronomy and astrophysics are currently engaged in an unprecedented era of discovery as recent missions have revealed thousands of exoplanets orbiting other stars. While the Kepler Space Telescope mission has enabled most of these exoplanets to be detected by identifying transiting events, exoplanets often exhibit additional photometric effects that can be used to improve the characterization of exoplanets. The EXONEST Exoplanetary Explorer is a Bayesian exoplanet inference engine based on nested sampling and originally designed to analyze archived Kepler Space Telescope and CoRoT (Convection Rotation et Transits planétaires exoplanet mission data. We discuss the EXONEST software package and describe how it accommodates plug-and-play models of exoplanet-associated photometric effects for the purpose of exoplanet detection, characterization and scientific hypothesis testing. The current suite of models allows for both circular and eccentric orbits in conjunction with photometric effects, such as the primary transit and secondary eclipse, reflected light, thermal emissions, ellipsoidal variations, Doppler beaming and superrotation. We discuss our new efforts to expand the capabilities of the software to include more subtle photometric effects involving reflected and refracted light. We discuss the EXONEST inference engine design and introduce our plans to port the current MATLAB-based EXONEST software package over to the next generation Exoplanetary Explorer, which will be a Python-based open source project with the capability to employ third-party plug-and-play models of exoplanet-related photometric effects.

  19. A systematic review of Bayesian articles in psychology : The last 25 years

    OpenAIRE

    van de Schoot, Rens; Winter, Sonja; Ryan, Oisín; Zondervan - Zwijnenburg, Mariëlle; Depaoli, Sarah

    2017-01-01

    Although the statistical tools most often used by researchers in the field of psychology over the last 25 years are based on frequentist statistics, it is often claimed that the alternative Bayesian approach to statistics is gaining in popularity. In the current article, we investigated this claim by performing the very first systematic review of Bayesian psychological articles published between 1990 and 2015 (n = 1,579). We aim to provide a thorough presentation of the role Bayesian statisti...

  20. Guideline for Bayesian Net based Software Fault Estimation Method for Reactor Protection System

    International Nuclear Information System (INIS)

    Eom, Heung Seop; Park, Gee Yong; Jang, Seung Cheol

    2011-01-01

    The purpose of this paper is to provide a preliminary guideline for the estimation of software faults in a safety-critical software, for example, reactor protection system's software. As the fault estimation method is based on Bayesian Net which intensively uses subjective probability and informal data, it is necessary to define formal procedure of the method to minimize the variability of the results. The guideline describes assumptions, limitations and uncertainties, and the product of the fault estimation method. The procedure for conducting a software fault-estimation method is then outlined, highlighting the major tasks involved. The contents of the guideline are based on our own experience and a review of research guidelines developed for a PSA

  1. Bayesian networks in educational assessment

    CERN Document Server

    Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M

    2015-01-01

    Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...

  2. A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2015-01-01

    Full Text Available This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach.

  3. Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the bnlearn R Package

    Directory of Open Access Journals (Sweden)

    Marco Scutari

    2017-03-01

    Full Text Available It is well known in the literature that the problem of learning the structure of Bayesian networks is very hard to tackle: Its computational complexity is super-exponential in the number of nodes in the worst case and polynomial in most real-world scenarios. Efficient implementations of score-based structure learning benefit from past and current research in optimization theory, which can be adapted to the task by using the network score as the objective function to maximize. This is not true for approaches based on conditional independence tests, called constraint-based learning algorithms. The only optimization in widespread use, backtracking, leverages the symmetries implied by the definitions of neighborhood and Markov blanket. In this paper we illustrate how backtracking is implemented in recent versions of the bnlearn R package, and how it degrades the stability of Bayesian network structure learning for little gain in terms of speed. As an alternative, we describe a software architecture and framework that can be used to parallelize constraint-based structure learning algorithms (also implemented in bnlearn and we demonstrate its performance using four reference networks and two real-world data sets from genetics and systems biology. We show that on modern multi-core or multiprocessor hardware parallel implementations are preferable over backtracking, which was developed when single-processor machines were the norm.

  4. Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach

    International Nuclear Information System (INIS)

    Cheng, Yujie; Lu, Chen; Li, Tieying; Tao, Laifa

    2015-01-01

    Existing methods for predicting lithium-ion (Li-ion) battery residual lifetime mostly depend on a priori knowledge on aging mechanism, the use of chemical or physical formulation and analytical battery models. This dependence is usually difficult to determine in practice, which restricts the application of these methods. In this study, we propose a new prediction method for Li-ion battery residual lifetime evaluation based on FPCA (functional principal component analysis) and Bayesian approach. The proposed method utilizes FPCA to construct a nonparametric degradation model for Li-ion battery, based on which the residual lifetime and the corresponding confidence interval can be evaluated. Furthermore, an empirical Bayes approach is utilized to achieve real-time updating of the degradation model and concurrently determine residual lifetime distribution. Based on Bayesian updating, a more accurate prediction result and a more precise confidence interval are obtained. Experiments are implemented based on data provided by the NASA Ames Prognostics Center of Excellence. Results confirm that the proposed prediction method performs well in real-time battery residual lifetime prediction. - Highlights: • Capacity is considered functional and FPCA is utilized to extract more information. • No features required which avoids drawbacks induced by feature extraction. • A good combination of both population and individual information. • Avoiding complex aging mechanism and accurate analytical models of batteries. • Easily applicable to different batteries for life prediction and RLD calculation.

  5. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.

    1998-12-01

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  6. Development of dynamic Bayesian models for web application test management

    Science.gov (United States)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  7. Book review: Bayesian analysis for population ecology

    Science.gov (United States)

    Link, William A.

    2011-01-01

    Brian Dennis described the field of ecology as “fertile, uncolonized ground for Bayesian ideas.” He continued: “The Bayesian propagule has arrived at the shore. Ecologists need to think long and hard about the consequences of a Bayesian ecology. The Bayesian outlook is a successful competitor, but is it a weed? I think so.” (Dennis 2004)

  8. Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-11-01

    Full Text Available Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes.

  9. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... sets validates the applicability of BEEF-vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its Bayesian ensemble error estimate to two intricate surface science problems support this....

  10. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    Science.gov (United States)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  11. A Bayesian Network Schema for Lessening Database Inference

    National Research Council Canada - National Science Library

    Chang, LiWu; Moskowitz, Ira S

    2001-01-01

    .... The authors introduce a formal schema for database inference analysis, based upon a Bayesian network structure, which identifies critical parameters involved in the inference problem and represents...

  12. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis

    Science.gov (United States)

    Down, Thomas A.; Rakyan, Vardhman K.; Turner, Daniel J.; Flicek, Paul; Li, Heng; Kulesha, Eugene; Gräf, Stefan; Johnson, Nathan; Herrero, Javier; Tomazou, Eleni M.; Thorne, Natalie P.; Bäckdahl, Liselotte; Herberth, Marlis; Howe, Kevin L.; Jackson, David K.; Miretti, Marcos M.; Marioni, John C.; Birney, Ewan; Hubbard, Tim J. P.; Durbin, Richard; Tavaré, Simon; Beck, Stephan

    2009-01-01

    DNA methylation is an indispensible epigenetic modification of mammalian genomes. Consequently there is great interest in strategies for genome-wide/whole-genome DNA methylation analysis, and immunoprecipitation-based methods have proven to be a powerful option. Such methods are rapidly shifting the bottleneck from data generation to data analysis, necessitating the development of better analytical tools. Until now, a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling has been the inability to estimate absolute methylation levels. Here we report the development of a novel cross-platform algorithm – Bayesian Tool for Methylation Analysis (Batman) – for analyzing Methylated DNA Immunoprecipitation (MeDIP) profiles generated using arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). The latter is an approach we have developed to elucidate the first high-resolution whole-genome DNA methylation profile (DNA methylome) of any mammalian genome. MeDIP-seq/MeDIP-chip combined with Batman represent robust, quantitative, and cost-effective functional genomic strategies for elucidating the function of DNA methylation. PMID:18612301

  13. General and Local: Averaged k-Dependence Bayesian Classifiers

    Directory of Open Access Journals (Sweden)

    Limin Wang

    2015-06-01

    Full Text Available The inference of a general Bayesian network has been shown to be an NP-hard problem, even for approximate solutions. Although k-dependence Bayesian (KDB classifier can construct at arbitrary points (values of k along the attribute dependence spectrum, it cannot identify the changes of interdependencies when attributes take different values. Local KDB, which learns in the framework of KDB, is proposed in this study to describe the local dependencies implicated in each test instance. Based on the analysis of functional dependencies, substitution-elimination resolution, a new type of semi-naive Bayesian operation, is proposed to substitute or eliminate generalization to achieve accurate estimation of conditional probability distribution while reducing computational complexity. The final classifier, averaged k-dependence Bayesian (AKDB classifiers, will average the output of KDB and local KDB. Experimental results on the repository of machine learning databases from the University of California Irvine (UCI showed that AKDB has significant advantages in zero-one loss and bias relative to naive Bayes (NB, tree augmented naive Bayes (TAN, Averaged one-dependence estimators (AODE, and KDB. Moreover, KDB and local KDB show mutually complementary characteristics with respect to variance.

  14. Application of Bayesian Classification to Content-Based Data Management

    Science.gov (United States)

    Lynnes, Christopher; Berrick, S.; Gopalan, A.; Hua, X.; Shen, S.; Smith, P.; Yang, K-Y.; Wheeler, K.; Curry, C.

    2004-01-01

    The high volume of Earth Observing System data has proven to be challenging to manage for data centers and users alike. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), about 1 TB of new data are archived each day. Distribution to users is also about 1 TB/day. A substantial portion of this distribution is MODIS calibrated radiance data, which has a wide variety of uses. However, much of the data is not useful for a particular user's needs: for example, ocean color users typically need oceanic pixels that are free of cloud and sun-glint. The GES DAAC is using a simple Bayesian classification scheme to rapidly classify each pixel in the scene in order to support several experimental content-based data services for near-real-time MODIS calibrated radiance products (from Direct Readout stations). Content-based subsetting would allow distribution of, say, only clear pixels to the user if desired. Content-based subscriptions would distribute data to users only when they fit the user's usability criteria in their area of interest within the scene. Content-based cache management would retain more useful data on disk for easy online access. The classification may even be exploited in an automated quality assessment of the geolocation product. Though initially to be demonstrated at the GES DAAC, these techniques have applicability in other resource-limited environments, such as spaceborne data systems.

  15. Bayesian Simultaneous Estimation for Means in k Sample Problems

    OpenAIRE

    Imai, Ryo; Kubokawa, Tatsuya; Ghosh, Malay

    2017-01-01

    This paper is concerned with the simultaneous estimation of k population means when one suspects that the k means are nearly equal. As an alternative to the preliminary test estimator based on the test statistics for testing hypothesis of equal means, we derive Bayesian and minimax estimators which shrink individual sample means toward a pooled mean estimator given under the hypothesis. Interestingly, it is shown that both the preliminary test estimator and the Bayesian minimax shrinkage esti...

  16. Evolution of Subjective Hurricane Risk Perceptions: A Bayesian Approach

    OpenAIRE

    David Kelly; David Letson; Forest Nelson; David S. Nolan; Daniel Solis

    2009-01-01

    This paper studies how individuals update subjective risk perceptions in response to hurricane track forecast information, using a unique data set from an event market, the Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts how traders update their perceptions of the probability of a hurricane making landfall in a certain range of coastline. Our results suggest that traders behave in a way consistent with Bayesian updating but this behavior is based on t...

  17. Bayesian network learning for natural hazard assessments

    Science.gov (United States)

    Vogel, Kristin

    2016-04-01

    and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.

  18. Reliability-based econometrics of aerospace structural systems: Design criteria and test options. Ph.D. Thesis - Georgia Inst. of Tech.

    Science.gov (United States)

    Thomas, J. M.; Hanagud, S.

    1974-01-01

    The design criteria and test options for aerospace structural reliability were investigated. A decision methodology was developed for selecting a combination of structural tests and structural design factors. The decision method involves the use of Bayesian statistics and statistical decision theory. Procedures are discussed for obtaining and updating data-based probabilistic strength distributions for aerospace structures when test information is available and for obtaining subjective distributions when data are not available. The techniques used in developing the distributions are explained.

  19. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    Science.gov (United States)

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls

  20. Can natural selection encode Bayesian priors?

    Science.gov (United States)

    Ramírez, Juan Camilo; Marshall, James A R

    2017-08-07

    The evolutionary success of many organisms depends on their ability to make decisions based on estimates of the state of their environment (e.g., predation risk) from uncertain information. These decision problems have optimal solutions and individuals in nature are expected to evolve the behavioural mechanisms to make decisions as if using the optimal solutions. Bayesian inference is the optimal method to produce estimates from uncertain data, thus natural selection is expected to favour individuals with the behavioural mechanisms to make decisions as if they were computing Bayesian estimates in typically-experienced environments, although this does not necessarily imply that favoured decision-makers do perform Bayesian computations exactly. Each individual should evolve to behave as if updating a prior estimate of the unknown environment variable to a posterior estimate as it collects evidence. The prior estimate represents the decision-maker's default belief regarding the environment variable, i.e., the individual's default 'worldview' of the environment. This default belief has been hypothesised to be shaped by natural selection and represent the environment experienced by the individual's ancestors. We present an evolutionary model to explore how accurately Bayesian prior estimates can be encoded genetically and shaped by natural selection when decision-makers learn from uncertain information. The model simulates the evolution of a population of individuals that are required to estimate the probability of an event. Every individual has a prior estimate of this probability and collects noisy cues from the environment in order to update its prior belief to a Bayesian posterior estimate with the evidence gained. The prior is inherited and passed on to offspring. Fitness increases with the accuracy of the posterior estimates produced. Simulations show that prior estimates become accurate over evolutionary time. In addition to these 'Bayesian' individuals, we also

  1. Approximate Bayesian computation.

    Directory of Open Access Journals (Sweden)

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  2. Comprehensive Influence Model of Preschool Children’s Personality Development Based on the Bayesian Network

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2014-01-01

    Full Text Available It is crucial to ascertain the comprehensive influence factors on personality for making effective cultivating plan. However, most existing literatures focus on the effect of individual factor on the personality. In order to comprehensively investigate the causal influences of preschool children’s temperament, school factors (teacher expectation and peer acceptance, and family factors (parental coparenting style, parental education value, and parental parenting style on the personality and the probability of the dependencies among these influence factors, we constructed the influencing factor model of personality development based on the Bayesian network. The models not only reflect the influence on personality development as a whole, but also obtain the probability relationships among the factors. Compared with other influence factors including family and school factors, temperament has more effect on the personality. In addition, teacher expectation also has an important influence on the personality. The experimental results show that it is a valuable exploration to construct the Bayesian network for comprehensively investigating the causal relationships between preschool children’s personality and related influence factors. Further, these results will be helpful to the cultivation of healthy personality.

  3. Hot news recommendation system from heterogeneous websites based on bayesian model.

    Science.gov (United States)

    Xia, Zhengyou; Xu, Shengwu; Liu, Ningzhong; Zhao, Zhengkang

    2014-01-01

    The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs). In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results.

  4. Adaptive Naive Bayesian Anti-Spam Engine

    CERN Document Server

    Gajewski, W P

    2006-01-01

    The problem of spam has been seriously troubling the Internet community during the last few years and currently reached an alarming scale. Observations made at CERN (European Organization for Nuclear Research located in Geneva, Switzerland) show that spam mails can constitute up to 75% of daily SMTP traffic. A naïve Bayesian classifier based on a Bag of Words representation of an email is widely used to stop this unwanted flood as it combines good performance with simplicity of the training and classification processes. However, facing the constantly changing patterns of spam, it is necessary to assure online adaptability of the classifier. This work proposes combining such a classifier with another NBC (naïve Bayesian classifier) based on pairs of adjacent words. Only the latter will be retrained with examples of spam reported by users. Tests are performed on considerable sets of mails both from public spam archives and CERN mailboxes. They suggest that this architecture can increase spam recall without af...

  5. Risk-sensitivity in Bayesian sensorimotor integration.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

  6. 3rd Bayesian Young Statisticians Meeting

    CERN Document Server

    Lanzarone, Ettore; Villalobos, Isadora; Mattei, Alessandra

    2017-01-01

    This book is a selection of peer-reviewed contributions presented at the third Bayesian Young Statisticians Meeting, BAYSM 2016, Florence, Italy, June 19-21. The meeting provided a unique opportunity for young researchers, M.S. students, Ph.D. students, and postdocs dealing with Bayesian statistics to connect with the Bayesian community at large, to exchange ideas, and to network with others working in the same field. The contributions develop and apply Bayesian methods in a variety of fields, ranging from the traditional (e.g., biostatistics and reliability) to the most innovative ones (e.g., big data and networks).

  7. Bayesian inference method for stochastic damage accumulation modeling

    International Nuclear Information System (INIS)

    Jiang, Xiaomo; Yuan, Yong; Liu, Xian

    2013-01-01

    Damage accumulation based reliability model plays an increasingly important role in successful realization of condition based maintenance for complicated engineering systems. This paper developed a Bayesian framework to establish stochastic damage accumulation model from historical inspection data, considering data uncertainty. Proportional hazards modeling technique is developed to model the nonlinear effect of multiple influencing factors on system reliability. Different from other hazard modeling techniques such as normal linear regression model, the approach does not require any distribution assumption for the hazard model, and can be applied for a wide variety of distribution models. A Bayesian network is created to represent the nonlinear proportional hazards models and to estimate model parameters by Bayesian inference with Markov Chain Monte Carlo simulation. Both qualitative and quantitative approaches are developed to assess the validity of the established damage accumulation model. Anderson–Darling goodness-of-fit test is employed to perform the normality test, and Box–Cox transformation approach is utilized to convert the non-normality data into normal distribution for hypothesis testing in quantitative model validation. The methodology is illustrated with the seepage data collected from real-world subway tunnels.

  8. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    Science.gov (United States)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  9. Using Bayesian networks to support decision-focused information retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, P.; Elsaesser, C.; Seligman, L. [Mitre Corp., McLean, VA (United States)

    1996-12-31

    This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base that are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.

  10. Robust bayesian analysis of an autoregressive model with ...

    African Journals Online (AJOL)

    In this work, robust Bayesian analysis of the Bayesian estimation of an autoregressive model with exponential innovations is performed. Using a Bayesian robustness methodology, we show that, using a suitable generalized quadratic loss, we obtain optimal Bayesian estimators of the parameters corresponding to the ...

  11. Statistical assignment of DNA sequences using Bayesian phylogenetics

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Huelsenbeck, John P.

    2008-01-01

    We provide a new automated statistical method for DNA barcoding based on a Bayesian phylogenetic analysis. The method is based on automated database sequence retrieval, alignment, and phylogenetic analysis using a custom-built program for Bayesian phylogenetic analysis. We show on real data...... that the method outperforms Blast searches as a measure of confidence and can help eliminate 80% of all false assignment based on best Blast hit. However, the most important advance of the method is that it provides statistically meaningful measures of confidence. We apply the method to a re......-analysis of previously published ancient DNA data and show that, with high statistical confidence, most of the published sequences are in fact of Neanderthal origin. However, there are several cases of chimeric sequences that are comprised of a combination of both Neanderthal and modern human DNA....

  12. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Priya [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor

  13. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Science.gov (United States)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Bayesian approach to MSD-based analysis of particle motion in live cells.

    Science.gov (United States)

    Monnier, Nilah; Guo, Syuan-Ming; Mori, Masashi; He, Jun; Lénárt, Péter; Bathe, Mark

    2012-08-08

    Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Plug & Play object oriented Bayesian networks

    DEFF Research Database (Denmark)

    Bangsø, Olav; Flores, J.; Jensen, Finn Verner

    2003-01-01

    been shown to be quite suitable for dynamic domains as well. However, processing object oriented Bayesian networks in practice does not take advantage of their modular structure. Normally the object oriented Bayesian network is transformed into a Bayesian network and, inference is performed...... dynamic domains. The communication needed between instances is achieved by means of a fill-in propagation scheme....

  16. Bayesian modeling of ChIP-chip data using latent variables.

    KAUST Repository

    Wu, Mingqi

    2009-10-26

    BACKGROUND: The ChIP-chip technology has been used in a wide range of biomedical studies, such as identification of human transcription factor binding sites, investigation of DNA methylation, and investigation of histone modifications in animals and plants. Various methods have been proposed in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden Markov model-based methods, and Bayesian methods. Although, due to the integrated consideration of uncertainty of the models and model parameters, Bayesian methods can potentially work better than the other two classes of methods, the existing Bayesian methods do not perform satisfactorily. They usually require multiple replicates or some extra experimental information to parametrize the model, and long CPU time due to involving of MCMC simulations. RESULTS: In this paper, we propose a Bayesian latent model for the ChIP-chip data. The new model mainly differs from the existing Bayesian models, such as the joint deconvolution model, the hierarchical gamma mixture model, and the Bayesian hierarchical model, in two respects. Firstly, it works on the difference between the averaged treatment and control samples. This enables the use of a simple model for the data, which avoids the probe-specific effect and the sample (control/treatment) effect. As a consequence, this enables an efficient MCMC simulation of the posterior distribution of the model, and also makes the model more robust to the outliers. Secondly, it models the neighboring dependence of probes by introducing a latent indicator vector. A truncated Poisson prior distribution is assumed for the latent indicator variable, with the rationale being justified at length. CONCLUSION: The Bayesian latent method is successfully applied to real and ten simulated datasets, with comparisons with some of the existing Bayesian methods, hidden Markov model methods, and sliding window methods. The numerical results indicate that the

  17. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective.

    Science.gov (United States)

    Kruschke, John K; Liddell, Torrin M

    2018-02-01

    In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty on the other. Among frequentists in psychology, a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis.

  18. Machine health prognostics using the Bayesian-inference-based probabilistic indication and high-order particle filtering framework

    Science.gov (United States)

    Yu, Jianbo

    2015-12-01

    Prognostics is much efficient to achieve zero-downtime performance, maximum productivity and proactive maintenance of machines. Prognostics intends to assess and predict the time evolution of machine health degradation so that machine failures can be predicted and prevented. A novel prognostics system is developed based on the data-model-fusion scheme using the Bayesian inference-based self-organizing map (SOM) and an integration of logistic regression (LR) and high-order particle filtering (HOPF). In this prognostics system, a baseline SOM is constructed to model the data distribution space of healthy machine under an assumption that predictable fault patterns are not available. Bayesian inference-based probability (BIP) derived from the baseline SOM is developed as a quantification indication of machine health degradation. BIP is capable of offering failure probability for the monitored machine, which has intuitionist explanation related to health degradation state. Based on those historic BIPs, the constructed LR and its modeling noise constitute a high-order Markov process (HOMP) to describe machine health propagation. HOPF is used to solve the HOMP estimation to predict the evolution of the machine health in the form of a probability density function (PDF). An on-line model update scheme is developed to adapt the Markov process changes to machine health dynamics quickly. The experimental results on a bearing test-bed illustrate the potential applications of the proposed system as an effective and simple tool for machine health prognostics.

  19. Competing risk models in reliability systems, a Weibull distribution model with Bayesian analysis approach

    International Nuclear Information System (INIS)

    Iskandar, Ismed; Gondokaryono, Yudi Satria

    2016-01-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  20. An automated land-use mapping comparison of the Bayesian maximum likelihood and linear discriminant analysis algorithms

    Science.gov (United States)

    Tom, C. H.; Miller, L. D.

    1984-01-01

    The Bayesian maximum likelihood parametric classifier has been tested against the data-based formulation designated 'linear discrimination analysis', using the 'GLIKE' decision and "CLASSIFY' classification algorithms in the Landsat Mapping System. Identical supervised training sets, USGS land use/land cover classes, and various combinations of Landsat image and ancilliary geodata variables, were used to compare the algorithms' thematic mapping accuracy on a single-date summer subscene, with a cellularized USGS land use map of the same time frame furnishing the ground truth reference. CLASSIFY, which accepts a priori class probabilities, is found to be more accurate than GLIKE, which assumes equal class occurrences, for all three mapping variable sets and both levels of detail. These results may be generalized to direct accuracy, time, cost, and flexibility advantages of linear discriminant analysis over Bayesian methods.

  1. A Bayesian approach to meta-analysis of plant pathology studies.

    Science.gov (United States)

    Mila, A L; Ngugi, H K

    2011-01-01

    Bayesian statistical methods are used for meta-analysis in many disciplines, including medicine, molecular biology, and engineering, but have not yet been applied for quantitative synthesis of plant pathology studies. In this paper, we illustrate the key concepts of Bayesian statistics and outline the differences between Bayesian and classical (frequentist) methods in the way parameters describing population attributes are considered. We then describe a Bayesian approach to meta-analysis and present a plant pathological example based on studies evaluating the efficacy of plant protection products that induce systemic acquired resistance for the management of fire blight of apple. In a simple random-effects model assuming a normal distribution of effect sizes and no prior information (i.e., a noninformative prior), the results of the Bayesian meta-analysis are similar to those obtained with classical methods. Implementing the same model with a Student's t distribution and a noninformative prior for the effect sizes, instead of a normal distribution, yields similar results for all but acibenzolar-S-methyl (Actigard) which was evaluated only in seven studies in this example. Whereas both the classical (P = 0.28) and the Bayesian analysis with a noninformative prior (95% credibility interval [CRI] for the log response ratio: -0.63 to 0.08) indicate a nonsignificant effect for Actigard, specifying a t distribution resulted in a significant, albeit variable, effect for this product (CRI: -0.73 to -0.10). These results confirm the sensitivity of the analytical outcome (i.e., the posterior distribution) to the choice of prior in Bayesian meta-analyses involving a limited number of studies. We review some pertinent literature on more advanced topics, including modeling of among-study heterogeneity, publication bias, analyses involving a limited number of studies, and methods for dealing with missing data, and show how these issues can be approached in a Bayesian framework

  2. Bayesian error estimation in density-functional theory

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Kaasbjerg, Kristen; Frederiksen, Søren Lund

    2005-01-01

    We present a practical scheme for performing error estimates for density-functional theory calculations. The approach, which is based on ideas from Bayesian statistics, involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies...

  3. 2nd Bayesian Young Statisticians Meeting

    CERN Document Server

    Bitto, Angela; Kastner, Gregor; Posekany, Alexandra

    2015-01-01

    The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Université Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session ...

  4. Bayesian prediction of bacterial growth temperature range based on genome sequences

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Vesth, Tammi Camilla; Hallin, Peter Fischer

    2012-01-01

    Background: The preferred habitat of a given bacterium can provide a hint of which types of enzymes of potential industrial interest it might produce. These might include enzymes that are stable and active at very high or very low temperatures. Being able to accurately predict this based...... on a genomic sequence, would thus allow for an efficient and targeted search for production organisms, reducing the need for culturing experiments. Results: This study found a total of 40 protein families useful for distinction between three thermophilicity classes (thermophiles, mesophiles and psychrophiles...... that protein families associated with specific thermophilicity classes can provide effective input data for thermophilicity prediction, and that the naive Bayesian approach is effective for such a task. The program created for this study is able to efficiently distinguish between thermophilic, mesophilic...

  5. A 3D model retrieval approach based on Bayesian networks lightfield descriptor

    Science.gov (United States)

    Xiao, Qinhan; Li, Yanjun

    2009-12-01

    A new 3D model retrieval methodology is proposed by exploiting a novel Bayesian networks lightfield descriptor (BNLD). There are two key novelties in our approach: (1) a BN-based method for building lightfield descriptor; and (2) a 3D model retrieval scheme based on the proposed BNLD. To overcome the disadvantages of the existing 3D model retrieval methods, we explore BN for building a new lightfield descriptor. Firstly, 3D model is put into lightfield, about 300 binary-views can be obtained along a sphere, then Fourier descriptors and Zernike moments descriptors can be calculated out from binaryviews. Then shape feature sequence would be learned into a BN model based on BN learning algorithm; Secondly, we propose a new 3D model retrieval method by calculating Kullback-Leibler Divergence (KLD) between BNLDs. Beneficial from the statistical learning, our BNLD is noise robustness as compared to the existing methods. The comparison between our method and the lightfield descriptor-based approach is conducted to demonstrate the effectiveness of our proposed methodology.

  6. A multi-agent systems approach to distributed bayesian information fusion

    NARCIS (Netherlands)

    Pavlin, G.; de Oude, P.; Maris, M.; Nunnink, J.; Hood, T.

    2010-01-01

    This paper introduces design principles for modular Bayesian fusion systems which can (i) cope with large quantities of heterogeneous information and (ii) can adapt to changing constellations of information sources on the fly. The presented approach exploits the locality of relations in causal

  7. A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Højbjerre, Malene

    2005-01-01

    -posed estimation problem, where the reconstruction most often has been done by non-linear least squares techniques separately for each entity. The minmal model was originally specified for a single individual and does not combine several individuals with the advantage of estimating the metabolic portrait...... to a population-based model. The estimation of the parameters are efficiently implemented in a Bayesian approach where posterior inference is made through the use of Markov chain Monte Carlo techniques. Hereby we obtain a powerful and flexible modelling framework for regularizing the ill-posed estimation problem...

  8. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  9. Careful with Those Priors: A Note on Bayesian Estimation in Two-Parameter Logistic Item Response Theory Models

    Science.gov (United States)

    Marcoulides, Katerina M.

    2018-01-01

    This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…

  10. Estimation of expected number of accidents and workforce unavailability through Bayesian population variability analysis and Markov-based model

    International Nuclear Information System (INIS)

    Chagas Moura, Márcio das; Azevedo, Rafael Valença; Droguett, Enrique López; Chaves, Leandro Rego; Lins, Isis Didier

    2016-01-01

    Occupational accidents pose several negative consequences to employees, employers, environment and people surrounding the locale where the accident takes place. Some types of accidents correspond to low frequency-high consequence (long sick leaves) events, and then classical statistical approaches are ineffective in these cases because the available dataset is generally sparse and contain censored recordings. In this context, we propose a Bayesian population variability method for the estimation of the distributions of the rates of accident and recovery. Given these distributions, a Markov-based model will be used to estimate the uncertainty over the expected number of accidents and the work time loss. Thus, the use of Bayesian analysis along with the Markov approach aims at investigating future trends regarding occupational accidents in a workplace as well as enabling a better management of the labor force and prevention efforts. One application example is presented in order to validate the proposed approach; this case uses available data gathered from a hydropower company in Brazil. - Highlights: • This paper proposes a Bayesian method to estimate rates of accident and recovery. • The model requires simple data likely to be available in the company database. • These results show the proposed model is not too sensitive to the prior estimates.

  11. Bayesian methods in reliability

    Science.gov (United States)

    Sander, P.; Badoux, R.

    1991-11-01

    The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.

  12. Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data

    Science.gov (United States)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2018-03-01

    In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.

  13. Bayesian networks and food security - An introduction

    NARCIS (Netherlands)

    Stein, A.

    2004-01-01

    This paper gives an introduction to Bayesian networks. Networks are defined and put into a Bayesian context. Directed acyclical graphs play a crucial role here. Two simple examples from food security are addressed. Possible uses of Bayesian networks for implementation and further use in decision

  14. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    Science.gov (United States)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-06-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  15. Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework

    Science.gov (United States)

    Achieng, K. O.; Zhu, J.

    2017-12-01

    There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?

  16. A Primer on Bayesian Decision Analysis With an Application to a Kidney Transplant Decision.

    Science.gov (United States)

    Neapolitan, Richard; Jiang, Xia; Ladner, Daniela P; Kaplan, Bruce

    2016-03-01

    A clinical decision support system (CDSS) is a computer program, which is designed to assist health care professionals with decision making tasks. A well-developed CDSS weighs the benefits of therapy versus the cost in terms of loss of quality of life and financial loss and recommends the decision that can be expected to provide maximum overall benefit. This article provides an introduction to developing CDSSs using Bayesian networks, such CDSS can help with the often complex decisions involving transplants. First, we review Bayes theorem in the context of medical decision making. Then, we introduce Bayesian networks, which can model probabilistic relationships among many related variables and are based on Bayes theorem. Next, we discuss influence diagrams, which are Bayesian networks augmented with decision and value nodes and which can be used to develop CDSSs that are able to recommend decisions that maximize the expected utility of the predicted outcomes to the patient. By way of comparison, we examine the benefit and challenges of using the Kidney Donor Risk Index as the sole decision tool. Finally, we develop a schema for an influence diagram that models generalized kidney transplant decisions and show how the influence diagram approach can provide the clinician and the potential transplant recipient with a valuable decision support tool.

  17. Sequential Inverse Problems Bayesian Principles and the Logistic Map Example

    Science.gov (United States)

    Duan, Lian; Farmer, Chris L.; Moroz, Irene M.

    2010-09-01

    Bayesian statistics provides a general framework for solving inverse problems, but is not without interpretation and implementation problems. This paper discusses difficulties arising from the fact that forward models are always in error to some extent. Using a simple example based on the one-dimensional logistic map, we argue that, when implementation problems are minimal, the Bayesian framework is quite adequate. In this paper the Bayesian Filter is shown to be able to recover excellent state estimates in the perfect model scenario (PMS) and to distinguish the PMS from the imperfect model scenario (IMS). Through a quantitative comparison of the way in which the observations are assimilated in both the PMS and the IMS scenarios, we suggest that one can, sometimes, measure the degree of imperfection.

  18. Multichannel Signals Reconstruction Based on Tunable Q-Factor Wavelet Transform-Morphological Component Analysis and Sparse Bayesian Iteration for Rotating Machines

    Directory of Open Access Journals (Sweden)

    Qing Li

    2018-04-01

    Full Text Available High-speed remote transmission and large-capacity data storage are difficult issues in signals acquisition of rotating machines condition monitoring. To address these concerns, a novel multichannel signals reconstruction approach based on tunable Q-factor wavelet transform-morphological component analysis (TQWT-MCA and sparse Bayesian iteration algorithm combined with step-impulse dictionary is proposed under the frame of compressed sensing (CS. To begin with, to prevent the periodical impulses loss and effectively separate periodical impulses from the external noise and additive interference components, the TQWT-MCA method is introduced to divide the raw vibration signal into low-resonance component (LRC, i.e., periodical impulses and high-resonance component (HRC, thus, the periodical impulses are preserved effectively. Then, according to the amplitude range of generated LRC, the step-impulse dictionary atom is designed to match the physical structure of periodical impulses. Furthermore, the periodical impulses and HRC are reconstructed by the sparse Bayesian iteration combined with step-impulse dictionary, respectively, finally, the final reconstructed raw signals are obtained by adding the LRC and HRC, meanwhile, the fidelity of the final reconstructed signals is tested by the envelop spectrum and error analysis, respectively. In this work, the proposed algorithm is applied to simulated signal and engineering multichannel signals of a gearbox with multiple faults. Experimental results demonstrate that the proposed approach significantly improves the reconstructive accuracy compared with the state-of-the-art methods such as non-convex Lq (q = 0.5 regularization, spatiotemporal sparse Bayesian learning (SSBL and L1-norm, etc. Additionally, the processing time, i.e., speed of storage and transmission has increased dramatically, more importantly, the fault characteristics of the gearbox with multiple faults are detected and saved, i.e., the

  19. Modeling visual search using three-parameter probability functions in a hierarchical Bayesian framework.

    Science.gov (United States)

    Lin, Yi-Shin; Heinke, Dietmar; Humphreys, Glyn W

    2015-04-01

    In this study, we applied Bayesian-based distributional analyses to examine the shapes of response time (RT) distributions in three visual search paradigms, which varied in task difficulty. In further analyses we investigated two common observations in visual search-the effects of display size and of variations in search efficiency across different task conditions-following a design that had been used in previous studies (Palmer, Horowitz, Torralba, & Wolfe, Journal of Experimental Psychology: Human Perception and Performance, 37, 58-71, 2011; Wolfe, Palmer, & Horowitz, Vision Research, 50, 1304-1311, 2010) in which parameters of the response distributions were measured. Our study showed that the distributional parameters in an experimental condition can be reliably estimated by moderate sample sizes when Monte Carlo simulation techniques are applied. More importantly, by analyzing trial RTs, we were able to extract paradigm-dependent shape changes in the RT distributions that could be accounted for by using the EZ2 diffusion model. The study showed that Bayesian-based RT distribution analyses can provide an important means to investigate the underlying cognitive processes in search, including stimulus grouping and the bottom-up guidance of attention.

  20. Damage Detection in Railway Truss Bridges Employing Data Sensitivity under Bayesian Framework: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Kanta Prajapat

    2017-01-01

    Full Text Available In general, for a structure it is quite difficult to get information about all of its modes through its dynamic response under ambient or external excitation. Therefore, it is vital to exhaustively use the available information in the acquired modal data to detect any damage in the structures. Further, in a Bayesian algorithm, it can be quite beneficial if a damage localization algorithm is first used to localize damage in the structure. In this way, the number of unknown parameters in the Bayesian algorithm can be reduced significantly and thus, the efficiency of Bayesian algorithm can be enhanced. This study exploits a mode shape and its derivative based approach to localize damage in truss type structures. For damage quantification purpose, a parameter sensitivity based prediction error variance approach in Bayesian model updating is employed, which allows extracting maximum information available in the modal data. This work employs the sensitivity based Bayesian algorithm to determine the posterior confidence in truss type railway bridges. Results of the study show that the proposed approach can efficiently detect and quantify damage in railway truss bridges.

  1. 12th Brazilian Meeting on Bayesian Statistics

    CERN Document Server

    Louzada, Francisco; Rifo, Laura; Stern, Julio; Lauretto, Marcelo

    2015-01-01

    Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesia...

  2. Invited commentary: Lost in estimation--searching for alternatives to markov chains to fit complex Bayesian models.

    Science.gov (United States)

    Molitor, John

    2012-03-01

    Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.

  3. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such ada......The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...

  4. Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network

    Directory of Open Access Journals (Sweden)

    Ying Yan

    2013-01-01

    Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.

  5. Bayesian Latent Class Analysis Tutorial.

    Science.gov (United States)

    Li, Yuelin; Lord-Bessen, Jennifer; Shiyko, Mariya; Loeb, Rebecca

    2018-01-01

    This article is a how-to guide on Bayesian computation using Gibbs sampling, demonstrated in the context of Latent Class Analysis (LCA). It is written for students in quantitative psychology or related fields who have a working knowledge of Bayes Theorem and conditional probability and have experience in writing computer programs in the statistical language R . The overall goals are to provide an accessible and self-contained tutorial, along with a practical computation tool. We begin with how Bayesian computation is typically described in academic articles. Technical difficulties are addressed by a hypothetical, worked-out example. We show how Bayesian computation can be broken down into a series of simpler calculations, which can then be assembled together to complete a computationally more complex model. The details are described much more explicitly than what is typically available in elementary introductions to Bayesian modeling so that readers are not overwhelmed by the mathematics. Moreover, the provided computer program shows how Bayesian LCA can be implemented with relative ease. The computer program is then applied in a large, real-world data set and explained line-by-line. We outline the general steps in how to extend these considerations to other methodological applications. We conclude with suggestions for further readings.

  6. Bayesian policy reuse

    CSIR Research Space (South Africa)

    Rosman, Benjamin

    2016-02-01

    Full Text Available Keywords Policy Reuse · Reinforcement Learning · Online Learning · Online Bandits · Transfer Learning · Bayesian Optimisation · Bayesian Decision Theory. 1 Introduction As robots and software agents are becoming more ubiquitous in many applications.... The agent has access to a library of policies (pi1, pi2 and pi3), and has previously experienced a set of task instances (τ1, τ2, τ3, τ4), as well as samples of the utilities of the library policies on these instances (the black dots indicate the means...

  7. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    Science.gov (United States)

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.

  8. Bayesian inference in probabilistic risk assessment-The current state of the art

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Smith, Curtis L.

    2009-01-01

    Markov chain Monte Carlo (MCMC) approaches to sampling directly from the joint posterior distribution of aleatory model parameters have led to tremendous advances in Bayesian inference capability in a wide variety of fields, including probabilistic risk analysis. The advent of freely available software coupled with inexpensive computing power has catalyzed this advance. This paper examines where the risk assessment community is with respect to implementing modern computational-based Bayesian approaches to inference. Through a series of examples in different topical areas, it introduces salient concepts and illustrates the practical application of Bayesian inference via MCMC sampling to a variety of important problems

  9. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    Science.gov (United States)

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  10. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  11. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates

    KAUST Repository

    Elsheikh, Ahmed H.; Hoteit, Ibrahim; Wheeler, Mary Fanett

    2014-01-01

    An efficient Bayesian calibration method based on the nested sampling (NS) algorithm and non-intrusive polynomial chaos method is presented. Nested sampling is a Bayesian sampling algorithm that builds a discrete representation of the posterior

  12. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.

    Directory of Open Access Journals (Sweden)

    Philip J Tully

    2016-05-01

    Full Text Available Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx. We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.

  13. Bayesian models: A statistical primer for ecologists

    Science.gov (United States)

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  14. Bayesian Estimation of Small Effects in Exercise and Sports Science.

    Directory of Open Access Journals (Sweden)

    Kerrie L Mengersen

    Full Text Available The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL, and intermittent hypoxic exposure (IHE on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a 'magnitude-based inference' approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.

  15. Bayesian Estimation of Small Effects in Exercise and Sports Science.

    Science.gov (United States)

    Mengersen, Kerrie L; Drovandi, Christopher C; Robert, Christian P; Pyne, David B; Gore, Christopher J

    2016-01-01

    The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a 'magnitude-based inference' approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.

  16. The current state of Bayesian methods in medical product development: survey results and recommendations from the DIA Bayesian Scientific Working Group.

    Science.gov (United States)

    Natanegara, Fanni; Neuenschwander, Beat; Seaman, John W; Kinnersley, Nelson; Heilmann, Cory R; Ohlssen, David; Rochester, George

    2014-01-01

    Bayesian applications in medical product development have recently gained popularity. Despite many advances in Bayesian methodology and computations, increase in application across the various areas of medical product development has been modest. The DIA Bayesian Scientific Working Group (BSWG), which includes representatives from industry, regulatory agencies, and academia, has adopted the vision to ensure Bayesian methods are well understood, accepted more broadly, and appropriately utilized to improve decision making and enhance patient outcomes. As Bayesian applications in medical product development are wide ranging, several sub-teams were formed to focus on various topics such as patient safety, non-inferiority, prior specification, comparative effectiveness, joint modeling, program-wide decision making, analytical tools, and education. The focus of this paper is on the recent effort of the BSWG Education sub-team to administer a Bayesian survey to statisticians across 17 organizations involved in medical product development. We summarize results of this survey, from which we provide recommendations on how to accelerate progress in Bayesian applications throughout medical product development. The survey results support findings from the literature and provide additional insight on regulatory acceptance of Bayesian methods and information on the need for a Bayesian infrastructure within an organization. The survey findings support the claim that only modest progress in areas of education and implementation has been made recently, despite substantial progress in Bayesian statistical research and software availability. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Bayesian site selection for fast Gaussian process regression

    KAUST Repository

    Pourhabib, Arash; Liang, Faming; Ding, Yu

    2014-01-01

    Gaussian Process (GP) regression is a popular method in the field of machine learning and computer experiment designs; however, its ability to handle large data sets is hindered by the computational difficulty in inverting a large covariance matrix. Likelihood approximation methods were developed as a fast GP approximation, thereby reducing the computation cost of GP regression by utilizing a much smaller set of unobserved latent variables called pseudo points. This article reports a further improvement to the likelihood approximation methods by simultaneously deciding both the number and locations of the pseudo points. The proposed approach is a Bayesian site selection method where both the number and locations of the pseudo inputs are parameters in the model, and the Bayesian model is solved using a reversible jump Markov chain Monte Carlo technique. Through a number of simulated and real data sets, it is demonstrated that with appropriate priors chosen, the Bayesian site selection method can produce a good balance between computation time and prediction accuracy: it is fast enough to handle large data sets that a full GP is unable to handle, and it improves, quite often remarkably, the prediction accuracy, compared with the existing likelihood approximations. © 2014 Taylor and Francis Group, LLC.

  18. Bayesian site selection for fast Gaussian process regression

    KAUST Repository

    Pourhabib, Arash

    2014-02-05

    Gaussian Process (GP) regression is a popular method in the field of machine learning and computer experiment designs; however, its ability to handle large data sets is hindered by the computational difficulty in inverting a large covariance matrix. Likelihood approximation methods were developed as a fast GP approximation, thereby reducing the computation cost of GP regression by utilizing a much smaller set of unobserved latent variables called pseudo points. This article reports a further improvement to the likelihood approximation methods by simultaneously deciding both the number and locations of the pseudo points. The proposed approach is a Bayesian site selection method where both the number and locations of the pseudo inputs are parameters in the model, and the Bayesian model is solved using a reversible jump Markov chain Monte Carlo technique. Through a number of simulated and real data sets, it is demonstrated that with appropriate priors chosen, the Bayesian site selection method can produce a good balance between computation time and prediction accuracy: it is fast enough to handle large data sets that a full GP is unable to handle, and it improves, quite often remarkably, the prediction accuracy, compared with the existing likelihood approximations. © 2014 Taylor and Francis Group, LLC.

  19. Bayesian Network Induction via Local Neighborhoods

    National Research Council Canada - National Science Library

    Margaritis, Dimitris

    1999-01-01

    .... We present an efficient algorithm for learning Bayesian networks from data. Our approach constructs Bayesian networks by first identifying each node's Markov blankets, then connecting nodes in a consistent way...

  20. Hot News Recommendation System from Heterogeneous Websites Based on Bayesian Model

    Directory of Open Access Journals (Sweden)

    Zhengyou Xia

    2014-01-01

    Full Text Available The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs. In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results.

  1. A Bayesian encourages dropout

    OpenAIRE

    Maeda, Shin-ichi

    2014-01-01

    Dropout is one of the key techniques to prevent the learning from overfitting. It is explained that dropout works as a kind of modified L2 regularization. Here, we shed light on the dropout from Bayesian standpoint. Bayesian interpretation enables us to optimize the dropout rate, which is beneficial for learning of weight parameters and prediction after learning. The experiment result also encourages the optimization of the dropout.

  2. Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.

    Science.gov (United States)

    Hosoya, Haruo

    2012-08-01

    We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.

  3. Bayesian Data Analysis (lecture 2)

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    framework but we will also go into more detail and discuss for example the role of the prior. The second part of the lecture will cover further examples and applications that heavily rely on the bayesian approach, as well as some computational tools needed to perform a bayesian analysis.

  4. Bayesian Data Analysis (lecture 1)

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    framework but we will also go into more detail and discuss for example the role of the prior. The second part of the lecture will cover further examples and applications that heavily rely on the bayesian approach, as well as some computational tools needed to perform a bayesian analysis.

  5. Bayesian Networks as a Decision Tool for O&M of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2010-01-01

    Costs to operation and maintenance (O&M) of offshore wind turbines are large. This paper presents how influence diagrams can be used to assist in rational decision making for O&M. An influence diagram is a graphical representation of a decision tree based on Bayesian Networks. Bayesian Networks...... offer efficient Bayesian updating of a damage model when imperfect information from inspections/monitoring is available. The extension to an influence diagram offers the calculation of expected utilities for decision alternatives, and can be used to find the optimal strategy among different alternatives...

  6. Multiscale Bayesian neural networks for soil water content estimation

    Science.gov (United States)

    Jana, Raghavendra B.; Mohanty, Binayak P.; Springer, Everett P.

    2008-08-01

    Artificial neural networks (ANN) have been used for some time now to estimate soil hydraulic parameters from other available or more easily measurable soil properties. However, most such uses of ANNs as pedotransfer functions (PTFs) have been at matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs are only required at the same scale as the input data. Unfortunately, this is rarely true. Different hydrologic, hydroclimatic, and contaminant transport models require soil hydraulic parameter data at different spatial scales, depending upon their grid sizes. While conventional (deterministic) ANNs have been traditionally used in these studies, the use of Bayesian training of ANNs is a more recent development. In this paper, we develop a Bayesian framework to derive soil water retention function including its uncertainty at the point or local scale using PTFs trained with coarser-scale Soil Survey Geographic (SSURGO)-based soil data. The approach includes an ANN trained with Bayesian techniques as a PTF tool with training and validation data collected across spatial extents (scales) in two different regions in the United States. The two study areas include the Las Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains 1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific Bayesian ANN is trained using soil texture and bulk density data from the SSURGO database (scale 1:24,000), and predictions of the soil water contents at different pressure heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for bias using both linear and nonlinear correction techniques. The results show good agreement between the soil water content values measured at the point scale and those predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian ANNs coupled with nonlinear bias correction are found to be very suitable tools for deriving soil

  7. A Bayesian Classifier for X-Ray Pulsars Recognition

    Directory of Open Access Journals (Sweden)

    Hao Liang

    2016-01-01

    Full Text Available Recognition for X-ray pulsars is important for the problem of spacecraft’s attitude determination by X-ray Pulsar Navigation (XPNAV. By using the nonhomogeneous Poisson model of the received photons and the minimum recognition error criterion, a classifier based on the Bayesian theorem is proposed. For X-ray pulsars recognition with unknown Doppler frequency and initial phase, the features of every X-ray pulsar are extracted and the unknown parameters are estimated using the Maximum Likelihood (ML method. Besides that, a method to recognize unknown X-ray pulsars or X-ray disturbances is proposed. Simulation results certificate the validity of the proposed Bayesian classifier.

  8. Learning Local Components to Understand Large Bayesian Networks

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge

    2009-01-01

    (domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes......Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....

  9. Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation

    Science.gov (United States)

    Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting

    2014-12-01

    This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.

  10. Philosophy and the practice of Bayesian statistics.

    Science.gov (United States)

    Gelman, Andrew; Shalizi, Cosma Rohilla

    2013-02-01

    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.

  11. A Bayesian Nonparametric Approach to Factor Analysis

    DEFF Research Database (Denmark)

    Piatek, Rémi; Papaspiliopoulos, Omiros

    2018-01-01

    This paper introduces a new approach for the inference of non-Gaussian factor models based on Bayesian nonparametric methods. It relaxes the usual normality assumption on the latent factors, widely used in practice, which is too restrictive in many settings. Our approach, on the contrary, does no...

  12. A bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Xiang, Yang

    2017-01-01

    and experience for both patients and healthcare workers, and the underlying network architecture to support such devices is also referred to as medical smartphone networks (MSNs). MSNs, similar to other networks, are subject to a wide range of attacks (e.g. leakage of sensitive patient information by a malicious...... insider). In this work, we focus on MSNs and present a compact but efficient trust-based approach using Bayesian inference to identify malicious nodes in such an environment. We then demonstrate the effectiveness of our approach in detecting malicious nodes by evaluating the deployment of our proposed...

  13. A decision‐making framework for flood risk management based on a Bayesian Influence Diagram

    DEFF Research Database (Denmark)

    Åstrøm, Helena Lisa Alexandra; Madsen, Henrik; Friis-Hansen, Peter

    2014-01-01

    We develop a Bayesian Influence Diagram (ID) approach for risk‐based decision‐ making in flood management. We show that it is a flexible decision‐making tool to assess flood risk in a non‐stationary environment and with an ability to test different adaptation measures in order to agree on the best...... means to describe uncertainty in the system. Hence, an ID contributes with several advantages in risk assessment and decision‐making. We present an ID approach for risk‐ based decision‐making in which we improve conventional flood risk assessments by including several types of hazards...... measures and combinations of these. Adaptation options can be tested at different points in time (in different time slices) which allows for finding the optimal time to invest. The usefulness of our decision‐making framework was exemplified through case studies in Aarhus and Copenhagen. Risk‐based decision‐making...

  14. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....

  15. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    2013-01-01

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...... intensity function, while the second approach is based on an underlying clustering and branching structure in the Hawkes process. For practical use, MCMC (Markov chain Monte Carlo) methods are employed. The two approaches are compared numerically using three examples of the Hawkes process....

  16. Efficient fuzzy Bayesian inference algorithms for incorporating expert knowledge in parameter estimation

    Science.gov (United States)

    Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad

    2016-05-01

    Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert

  17. Space Shuttle RTOS Bayesian Network

    Science.gov (United States)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores

  18. Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants

    KAUST Repository

    Jin, Ick Hoon

    2014-03-01

    Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis. © 2012 Elsevier B.V. All rights reserved.

  19. Bayesian Utilitarianism

    OpenAIRE

    ZHOU, Lin

    1996-01-01

    In this paper I consider social choices under uncertainty. I prove that any social choice rule that satisfies independence of irrelevant alternatives, translation invariance, and weak anonymity is consistent with ex post Bayesian utilitarianism

  20. Bayesian sample size determination for cost-effectiveness studies with censored data.

    Directory of Open Access Journals (Sweden)

    Daniel P Beavers

    Full Text Available Cost-effectiveness models are commonly utilized to determine the combined clinical and economic impact of one treatment compared to another. However, most methods for sample size determination of cost-effectiveness studies assume fully observed costs and effectiveness outcomes, which presents challenges for survival-based studies in which censoring exists. We propose a Bayesian method for the design and analysis of cost-effectiveness data in which costs and effectiveness may be censored, and the sample size is approximated for both power and assurance. We explore two parametric models and demonstrate the flexibility of the approach to accommodate a variety of modifications to study assumptions.

  1. Bayesian statistics for the calibration of the LISA Pathfinder experiment

    International Nuclear Information System (INIS)

    Armano, M; Freschi, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox. (paper)

  2. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming; Zhang, Jian

    2009-01-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly

  3. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  4. Bayesian Filtering for Phase Noise Characterization and Carrier Synchronization of up to 192 Gb/s PDM 64-QAM

    DEFF Research Database (Denmark)

    Zibar, Darko; Carvalho, L.; Piels, Molly

    2014-01-01

    We show that phase noise estimation based on Bayesian filtering outperforms conventional time-domain approaches in the presence of moderate measurement noise. Additionally, carrier synchronization based on Bayesian filtering, in combination with expectation maximization, is demonstrated for the f...

  5. Searching Algorithm Using Bayesian Updates

    Science.gov (United States)

    Caudle, Kyle

    2010-01-01

    In late October 1967, the USS Scorpion was lost at sea, somewhere between the Azores and Norfolk Virginia. Dr. Craven of the U.S. Navy's Special Projects Division is credited with using Bayesian Search Theory to locate the submarine. Bayesian Search Theory is a straightforward and interesting application of Bayes' theorem which involves searching…

  6. Bayesian fuzzy logic-based estimation of electron cyclotron heating (ECH) power deposition in MHD control systems

    Energy Technology Data Exchange (ETDEWEB)

    Davoudi, Mehdi, E-mail: mehdi.davoudi@polimi.it [Department of Electrical and Computer Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin (Iran, Islamic Republic of); Davoudi, Mohsen, E-mail: davoudi@eng.ikiu.ac.ir [Department of Electrical Engineering, Imam Khomeini International University, Qazvin, 34148-96818 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • A couple of algorithms to diagnose if Electron Cyclotron Heating (ECH) power is deposited properly on the expected deposition minor radius are proposed. • The algorithms are based on Bayesian theory and Fuzzy logic. • The algorithms are tested on the off-line experimental data acquired from Frascati Tokamak Upgrade (FTU), Frascati, Italy. • Uncertainties and evidences derived from the combination of online information formed by the measured diagnostic data and the prior information are also estimated. - Abstract: In the thermonuclear fusion systems, the new plasma control systems use some measured on-line information acquired from different sensors and prior information obtained by predictive plasma models in order to stabilize magnetic hydro dynamics (MHD) activity in a tokamak. Suppression of plasma instabilities is a key issue to improve the confinement time of controlled thermonuclear fusion with tokamaks. This paper proposes a couple of algorithms based on Bayesian theory and Fuzzy logic to diagnose if Electron Cyclotron Heating (ECH) power is deposited properly on the expected deposition minor radius (r{sub DEP}). Both algorithms also estimate uncertainties and evidences derived from the combination of the online information formed by the measured diagnostic data and the prior information. The algorithms have been employed on a set of off-line ECE channels data which have been acquired from the experimental shot number 21364 at Frascati Tokamak Upgrade (FTU), Frascati, Italy.

  7. Bayesian linear regression : different conjugate models and their (in)sensitivity to prior-data conflict

    NARCIS (Netherlands)

    Walter, G.M.; Augustin, Th.; Kneib, Thomas; Tutz, Gerhard

    2010-01-01

    The paper is concerned with Bayesian analysis under prior-data conflict, i.e. the situation when observed data are rather unexpected under the prior (and the sample size is not large enough to eliminate the influence of the prior). Two approaches for Bayesian linear regression modeling based on

  8. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak

    2017-01-01

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix

  9. Bayesian logistic regression approaches to predict incorrect DRG assignment.

    Science.gov (United States)

    Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural

    2018-05-07

    Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.

  10. A new approach for supply chain risk management: Mapping SCOR into Bayesian network

    Directory of Open Access Journals (Sweden)

    Mahdi Abolghasemi

    2015-01-01

    Full Text Available Purpose: Increase of costs and complexities in organizations beside the increase of uncertainty and risks have led the managers to use the risk management in order to decrease risk taking and deviation from goals. SCRM has a close relationship with supply chain performance. During the years different methods have been used by researchers in order to manage supply chain risk but most of them are either qualitative or quantitative. Supply chain operation reference (SCOR is a standard model for SCP evaluation which have uncertainty in its metrics. In This paper by combining qualitative and quantitative metrics of SCOR, supply chain performance will be measured by Bayesian Networks. Design/methodology/approach: First qualitative assessment will be done by recognizing uncertain metrics of SCOR model and then by quantifying them, supply chain performance will be measured by Bayesian Networks (BNs and supply chain operations reference (SCOR in which making decision on uncertain variables will be done by predictive and diagnostic capabilities. Findings: After applying the proposed method in one of the biggest automotive companies in Iran, we identified key factors of supply chain performance based on SCOR model through predictive and diagnostic capability of Bayesian Networks. After sensitivity analysis, we find out that ‘Total cost’ and its criteria that include costs of labors, warranty, transportation and inventory have the widest range and most effect on supply chain performance. So, managers should take their importance into account for decision making. We can make decisions simply by running model in different situations. Research limitations/implications: A more precise model consisted of numerous factors but it is difficult and sometimes impossible to solve big models, if we insert all of them in a Bayesian model. We have adopted real world characteristics with our software and method abilities. On the other hand, fewer data exist for some

  11. Bayesian probabilistic network approach for managing earthquake risks of cities

    DEFF Research Database (Denmark)

    Bayraktarli, Yahya; Faber, Michael

    2011-01-01

    This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...... and a fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated...... on an example considering a portfolio of reinforced concrete structures in a city located close to the western part of the North Anatolian Fault in Turkey....

  12. A Bayesian belief nets based quantitative software reliability assessment for PSA: COTS case study

    International Nuclear Information System (INIS)

    Eom, H. S.; Sung, T. Y.; Jeong, H. S.; Park, J. H.; Kang, H. G.; Lee, K. Y.; Park, J. K

    2002-03-01

    Current reliability assessments of safety critical software embedded in the digital systems in nuclear power plants are based on the rule-based qualitative assessment methods. Then recently practical needs require the quantitative features of software reliability for Probabilistic Safety Assessment (PSA) that is one of important methods being used in assessing the whole safety of nuclear power plant. But conventional quantitative software reliability assessment methods are not enough to get the necessary results in assessing the safety critical software used in nuclear power plants. Thus, current reliability assessment methods for these digital systems exclude the software part or use arbitrary values for the software reliability in the assessment. This reports discusses a Bayesian Belief Nets (BBN) based quantification method that models current qualitative software assessment in formal way and produces quantitative results required for PSA. Commercial Off-The-Shelf (COTS) software dedication process that KAERI developed was applied to the discussed BBN based method for evaluating the plausibility of the proposed method in PSA

  13. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method

    International Nuclear Information System (INIS)

    Ma Xiang; Zabaras, Nicholas

    2009-01-01

    A new approach to modeling inverse problems using a Bayesian inference method is introduced. The Bayesian approach considers the unknown parameters as random variables and seeks the probabilistic distribution of the unknowns. By introducing the concept of the stochastic prior state space to the Bayesian formulation, we reformulate the deterministic forward problem as a stochastic one. The adaptive hierarchical sparse grid collocation (ASGC) method is used for constructing an interpolant to the solution of the forward model in this prior space which is large enough to capture all the variability/uncertainty in the posterior distribution of the unknown parameters. This solution can be considered as a function of the random unknowns and serves as a stochastic surrogate model for the likelihood calculation. Hierarchical Bayesian formulation is used to derive the posterior probability density function (PPDF). The spatial model is represented as a convolution of a smooth kernel and a Markov random field. The state space of the PPDF is explored using Markov chain Monte Carlo algorithms to obtain statistics of the unknowns. The likelihood calculation is performed by directly sampling the approximate stochastic solution obtained through the ASGC method. The technique is assessed on two nonlinear inverse problems: source inversion and permeability estimation in flow through porous media

  14. Bayesian Networks An Introduction

    CERN Document Server

    Koski, Timo

    2009-01-01

    Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include:.: An introduction to Dirichlet Distribution, Exponential Families and their applications.; A detailed description of learni

  15. A systematic review of Bayesian articles in psychology: The last 25 years.

    Science.gov (United States)

    van de Schoot, Rens; Winter, Sonja D; Ryan, Oisín; Zondervan-Zwijnenburg, Mariëlle; Depaoli, Sarah

    2017-06-01

    Although the statistical tools most often used by researchers in the field of psychology over the last 25 years are based on frequentist statistics, it is often claimed that the alternative Bayesian approach to statistics is gaining in popularity. In the current article, we investigated this claim by performing the very first systematic review of Bayesian psychological articles published between 1990 and 2015 (n = 1,579). We aim to provide a thorough presentation of the role Bayesian statistics plays in psychology. This historical assessment allows us to identify trends and see how Bayesian methods have been integrated into psychological research in the context of different statistical frameworks (e.g., hypothesis testing, cognitive models, IRT, SEM, etc.). We also describe take-home messages and provide "big-picture" recommendations to the field as Bayesian statistics becomes more popular. Our review indicated that Bayesian statistics is used in a variety of contexts across subfields of psychology and related disciplines. There are many different reasons why one might choose to use Bayes (e.g., the use of priors, estimating otherwise intractable models, modeling uncertainty, etc.). We found in this review that the use of Bayes has increased and broadened in the sense that this methodology can be used in a flexible manner to tackle many different forms of questions. We hope this presentation opens the door for a larger discussion regarding the current state of Bayesian statistics, as well as future trends. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. A Bayesian model for binary Markov chains

    Directory of Open Access Journals (Sweden)

    Belkheir Essebbar

    2004-02-01

    Full Text Available This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.

  17. Detection of multiple damages employing best achievable eigenvectors under Bayesian inference

    Science.gov (United States)

    Prajapat, Kanta; Ray-Chaudhuri, Samit

    2018-05-01

    A novel approach is presented in this work to localize simultaneously multiple damaged elements in a structure along with the estimation of damage severity for each of the damaged elements. For detection of damaged elements, a best achievable eigenvector based formulation has been derived. To deal with noisy data, Bayesian inference is employed in the formulation wherein the likelihood of the Bayesian algorithm is formed on the basis of errors between the best achievable eigenvectors and the measured modes. In this approach, the most probable damage locations are evaluated under Bayesian inference by generating combinations of various possible damaged elements. Once damage locations are identified, damage severities are estimated using a Bayesian inference Markov chain Monte Carlo simulation. The efficiency of the proposed approach has been demonstrated by carrying out a numerical study involving a 12-story shear building. It has been found from this study that damage scenarios involving as low as 10% loss of stiffness in multiple elements are accurately determined (localized and severities quantified) even when 2% noise contaminated modal data are utilized. Further, this study introduces a term parameter impact (evaluated based on sensitivity of modal parameters towards structural parameters) to decide the suitability of selecting a particular mode, if some idea about the damaged elements are available. It has been demonstrated here that the accuracy and efficiency of the Bayesian quantification algorithm increases if damage localization is carried out a-priori. An experimental study involving a laboratory scale shear building and different stiffness modification scenarios shows that the proposed approach is efficient enough to localize the stories with stiffness modification.

  18. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  19. A Bayesian decision approach to rainfall thresholds based flood warning

    Directory of Open Access Journals (Sweden)

    M. L. V. Martina

    2006-01-01

    Full Text Available Operational real time flood forecasting systems generally require a hydrological model to run in real time as well as a series of hydro-informatics tools to transform the flood forecast into relatively simple and clear messages to the decision makers involved in flood defense. The scope of this paper is to set forth the possibility of providing flood warnings at given river sections based on the direct comparison of the quantitative precipitation forecast with critical rainfall threshold values, without the need of an on-line real time forecasting system. This approach leads to an extremely simplified alert system to be used by non technical stakeholders and could also be used to supplement the traditional flood forecasting systems in case of system failures. The critical rainfall threshold values, incorporating the soil moisture initial conditions, result from statistical analyses using long hydrological time series combined with a Bayesian utility function minimization. In the paper, results of an application of the proposed methodology to the Sieve river, a tributary of the Arno river in Italy, are given to exemplify its practical applicability.

  20. Bayesian theory and applications

    CERN Document Server

    Dellaportas, Petros; Polson, Nicholas G; Stephens, David A

    2013-01-01

    The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...

  1. Accurate phenotyping: Reconciling approaches through Bayesian model averaging.

    Directory of Open Access Journals (Sweden)

    Carla Chia-Ming Chen

    Full Text Available Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers for phenotype ascertainment. Phenotypes for such diseases are often identified on the basis of clinically defined criteria; however such criteria may not be suitable for understanding the genetic composition of the diseases. Various statistical approaches have been proposed for phenotype definition; however our previous studies have shown that differences in phenotypes estimated using different approaches have substantial impact on subsequent analyses. Instead of obtaining results based upon a single model, we propose a new method, using Bayesian model averaging to overcome problems associated with phenotype definition. Although Bayesian model averaging has been used in other fields of research, this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained using multiple models. We illustrate the new method by applying it to simulated genetic and phenotypic data for Kofendred personality disorder-an imaginary disease with several sub-types. Two separate statistical methods were used to identify clusters of individuals with distinct phenotypes: latent class analysis and grade of membership. Bayesian model averaging was then used to combine the two clusterings for the purpose of subsequent linkage analyses. We found that causative genetic loci for the disease produced higher LOD scores using model averaging than under either individual model separately. We attribute this improvement to consolidation of the cores of phenotype clusters identified using each individual method.

  2. Classical-Equivalent Bayesian Portfolio Optimization for Electricity Generation Planning

    Directory of Open Access Journals (Sweden)

    Hellinton H. Takada

    2018-01-01

    Full Text Available There are several electricity generation technologies based on different sources such as wind, biomass, gas, coal, and so on. The consideration of the uncertainties associated with the future costs of such technologies is crucial for planning purposes. In the literature, the allocation of resources in the available technologies has been solved as a mean-variance optimization problem assuming knowledge of the expected values and the covariance matrix of the costs. However, in practice, they are not exactly known parameters. Consequently, the obtained optimal allocations from the mean-variance optimization are not robust to possible estimation errors of such parameters. Additionally, it is usual to have electricity generation technology specialists participating in the planning processes and, obviously, the consideration of useful prior information based on their previous experience is of utmost importance. The Bayesian models consider not only the uncertainty in the parameters, but also the prior information from the specialists. In this paper, we introduce the classical-equivalent Bayesian mean-variance optimization to solve the electricity generation planning problem using both improper and proper prior distributions for the parameters. In order to illustrate our approach, we present an application comparing the classical-equivalent Bayesian with the naive mean-variance optimal portfolios.

  3. Remarks on sequential designs in risk assessment

    International Nuclear Information System (INIS)

    Seidenfeld, T.

    1982-01-01

    The special merits of sequential designs are reviewed in light of particular challenges that attend risk assessment for human population. The kinds of ''statistical inference'' are distinguished and the problem of design which is pursued is the clash between Neyman-Pearson and Bayesian programs of sequential design. The value of sequential designs is discussed and the Neyman-Pearson vs. Bayesian sequential designs are probed in particular. Finally, warnings with sequential designs are considered, especially in relation to utilitarianism

  4. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.

    Directory of Open Access Journals (Sweden)

    Michael Jae-Yoon Chung

    Full Text Available A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i learn probabilistic models of actions through self-discovery and experience, (ii utilize these learned models for inferring the goals of human actions, and (iii perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i a simulated robot that learns human-like gaze following behavior, and (ii a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.

  5. Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects

    Science.gov (United States)

    Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad

    2016-09-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  6. Impact of censoring on learning Bayesian networks in survival modelling.

    Science.gov (United States)

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from

  7. An Importance Sampling Simulation Method for Bayesian Decision Feedback Equalizers

    OpenAIRE

    Chen, S.; Hanzo, L.

    2000-01-01

    An importance sampling (IS) simulation technique is presented for evaluating the lower-bound bit error rate (BER) of the Bayesian decision feedback equalizer (DFE) under the assumption of correct decisions being fed back. A design procedure is developed, which chooses appropriate bias vectors for the simulation density to ensure asymptotic efficiency of the IS simulation.

  8. Theoretical evaluation of the detectability of random lesions in bayesian emission reconstruction

    International Nuclear Information System (INIS)

    Qi, Jinyi

    2003-01-01

    Detecting cancerous lesion is an important task in positron emission tomography (PET). Bayesian methods based on the maximum a posteriori principle (also called penalized maximum likelihood methods) have been developed to deal with the low signal to noise ratio in the emission data. Similar to the filter cut-off frequency in the filtered backprojection method, the prior parameters in Bayesian reconstruction control the resolution and noise trade-off and hence affect detectability of lesions in reconstructed images. Bayesian reconstructions are difficult to analyze because the resolution and noise properties are nonlinear and object-dependent. Most research has been based on Monte Carlo simulations, which are very time consuming. Building on the recent progress on the theoretical analysis of image properties of statistical reconstructions and the development of numerical observers, here we develop a theoretical approach for fast computation of lesion detectability in Bayesian reconstruction. The results can be used to choose the optimum hyperparameter for the maximum lesion detectability. New in this work is the use of theoretical expressions that explicitly model the statistical variation of the lesion and background without assuming that the object variation is (locally) stationary. The theoretical results are validated using Monte Carlo simulations. The comparisons show good agreement between the theoretical predications and the Monte Carlo results

  9. Approximation methods for efficient learning of Bayesian networks

    CERN Document Server

    Riggelsen, C

    2008-01-01

    This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.

  10. Bayesian community detection

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N

    2012-01-01

    Many networks of scientific interest naturally decompose into clusters or communities with comparatively fewer external than internal links; however, current Bayesian models of network communities do not exert this intuitive notion of communities. We formulate a nonparametric Bayesian model...... for community detection consistent with an intuitive definition of communities and present a Markov chain Monte Carlo procedure for inferring the community structure. A Matlab toolbox with the proposed inference procedure is available for download. On synthetic and real networks, our model detects communities...... consistent with ground truth, and on real networks, it outperforms existing approaches in predicting missing links. This suggests that community structure is an important structural property of networks that should be explicitly modeled....

  11. Inverse Problems in a Bayesian Setting

    KAUST Repository

    Matthies, Hermann G.

    2016-02-13

    In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.

  12. Inverse Problems in a Bayesian Setting

    KAUST Repository

    Matthies, Hermann G.; Zander, Elmar; Rosić, Bojana V.; Litvinenko, Alexander; Pajonk, Oliver

    2016-01-01

    In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.

  13. Implementing the Bayesian paradigm in risk analysis

    International Nuclear Information System (INIS)

    Aven, T.; Kvaloey, J.T.

    2002-01-01

    The Bayesian paradigm comprises a unified and consistent framework for analyzing and expressing risk. Yet, we see rather few examples of applications where the full Bayesian setting has been adopted with specifications of priors of unknown parameters. In this paper, we discuss some of the practical challenges of implementing Bayesian thinking and methods in risk analysis, emphasizing the introduction of probability models and parameters and associated uncertainty assessments. We conclude that there is a need for a pragmatic view in order to 'successfully' apply the Bayesian approach, such that we can do the assignments of some of the probabilities without adopting the somewhat sophisticated procedure of specifying prior distributions of parameters. A simple risk analysis example is presented to illustrate ideas

  14. Interactive Instruction in Bayesian Inference

    DEFF Research Database (Denmark)

    Khan, Azam; Breslav, Simon; Hornbæk, Kasper

    2018-01-01

    An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction. These pri......An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction....... These principles concern coherence, personalization, signaling, segmenting, multimedia, spatial contiguity, and pretraining. Principles of self-explanation and interactivity are also applied. Four experiments on the Mammography Problem showed that these principles help participants answer the questions...... that an instructional approach to improving human performance in Bayesian inference is a promising direction....

  15. Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach

    Science.gov (United States)

    Warner, James E.; Hochhalter, Jacob D.

    2016-01-01

    This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.

  16. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuska, Ivo

    2016-01-06

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions.

  17. A Bayesian equivalency test for two independent binomial proportions.

    Science.gov (United States)

    Kawasaki, Yohei; Shimokawa, Asanao; Yamada, Hiroshi; Miyaoka, Etsuo

    2016-01-01

    In clinical trials, it is often necessary to perform an equivalence study. The equivalence study requires actively denoting equivalence between two different drugs or treatments. Since it is not possible to assert equivalence that is not rejected by a superiority test, statistical methods known as equivalency tests have been suggested. These methods for equivalency tests are based on the frequency framework; however, there are few such methods in the Bayesian framework. Hence, this article proposes a new index that suggests the equivalency of binomial proportions, which is constructed based on the Bayesian framework. In this study, we provide two methods for calculating the index and compare the probabilities that have been calculated by these two calculation methods. Moreover, we apply this index to the results of actual clinical trials to demonstrate the utility of the index.

  18. Learning Negotiation Policies Using IB3 and Bayesian Networks

    Science.gov (United States)

    Nalepa, Gislaine M.; Ávila, Bráulio C.; Enembreck, Fabrício; Scalabrin, Edson E.

    This paper presents an intelligent offer policy in a negotiation environment, in which each agent involved learns the preferences of its opponent in order to improve its own performance. Each agent must also be able to detect drifts in the opponent's preferences so as to quickly adjust itself to their new offer policy. For this purpose, two simple learning techniques were first evaluated: (i) based on instances (IB3) and (ii) based on Bayesian Networks. Additionally, as its known that in theory group learning produces better results than individual/single learning, the efficiency of IB3 and Bayesian classifier groups were also analyzed. Finally, each decision model was evaluated in moments of concept drift, being the drift gradual, moderate or abrupt. Results showed that both groups of classifiers were able to effectively detect drifts in the opponent's preferences.

  19. Bayesian median regression for temporal gene expression data

    Science.gov (United States)

    Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.

    2007-09-01

    Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.

  20. Risk-based design of process plants with regard to domino effects and land use planning

    Energy Technology Data Exchange (ETDEWEB)

    Khakzad, Nima, E-mail: nkhakzad@gmail.com [Safety and Security Science Group (S3G), Faculty of Technology, Policy and Management, TU Delft, Delft (Netherlands); Reniers, Genserik [Safety and Security Science Group (S3G), Faculty of Technology, Policy and Management, TU Delft, Delft (Netherlands); Antwerp Research Group on Safety and Security (ARGoSS), Faculty of Applied Economics, Universiteit Antwerpen, Antwerp (Belgium); Research Group CEDON, Campus Brussels, KULeuven, Brussels (Belgium)

    2015-12-15

    Highlights: • A Bayesian network methodology has been developed to estimate the total probability of major accidents in chemical plants. • Total probability of accidents includes the probability of individual accidents and potential domino effects. • The methodology has been extended to calculate on-site and off-site risks. • The results of the risk analysis have been used in a multi-criteria decision analysis technique to risk-based design of chemical plants. - Abstract: Land use planning (LUP) as an effective and crucial safety measure has widely been employed by safety experts and decision makers to mitigate off-site risks posed by major accidents. Accordingly, the concept of LUP in chemical plants has traditionally been considered from two perspectives: (i) land developments around existing chemical plants considering potential off-site risks posed by major accidents and (ii) development of existing chemical plants considering nearby land developments and the level of additional off-site risks the land developments would be exposed to. However, the attempts made to design chemical plants with regard to LUP requirements have been few, most of which have neglected the role of domino effects in risk analysis of major accidents. To overcome the limitations of previous work, first, we developed a Bayesian network methodology to calculate both on-site and off-site risks of major accidents while taking domino effects into account. Second, we combined the results of risk analysis with Analytic Hierarchical Process to design an optimal layout for which the levels of on-site and off-site risks would be minimum.

  1. Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R

    Directory of Open Access Journals (Sweden)

    Paulino Pérez

    2010-09-01

    Full Text Available The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require specialized computer programs, not always available to the end user and not implemented in standard statistical software yet. The R-package BLR (Bayesian Linear Regression implements several statistical procedures (e.g., Bayesian Ridge Regression, Bayesian LASSO in a unified framework that allows including marker genotypes and pedigree data jointly. This article describes the classes of models implemented in the BLR package and illustrates their use through examples. Some challenges faced when applying genomic-enabled selection, such as model choice, evaluation of predictive ability through cross-validation, and choice of hyper-parameters, are also addressed.

  2. Bayesian analysis of magnetic island dynamics

    International Nuclear Information System (INIS)

    Preuss, R.; Maraschek, M.; Zohm, H.; Dose, V.

    2003-01-01

    We examine a first order differential equation with respect to time used to describe magnetic islands in magnetically confined plasmas. The free parameters of this equation are obtained by employing Bayesian probability theory. Additionally, a typical Bayesian change point is solved in the process of obtaining the data

  3. Receiver-based recovery of clipped ofdm signals for papr reduction: A bayesian approach

    KAUST Repository

    Ali, Anum; Al-Rabah, Abdullatif R.; Masood, Mudassir; Al-Naffouri, Tareq Y.

    2014-01-01

    at the receiver for information restoration. In this paper, we acknowledge the sparse nature of the clipping signal and propose a low-complexity Bayesian clipping estimation scheme. The proposed scheme utilizes a priori information about the sparsity rate

  4. Fault detection Based Bayesian network and MOEA/D applied to Sensorless Drive Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhou Qing

    2017-01-01

    Full Text Available Sensorless Drive Diagnosis can be used to assess the process data without the need for additional cost-intensive sensor technology, and you can understand the synchronous motor and connecting parts of the damaged state. Considering the number of features involved in the process data, it is necessary to perform feature selection and reduce the data dimension in the process of fault detection. In this paper, the MOEA / D algorithm based on multi-objective optimization is used to obtain the weight vector of all the features in the original data set. It is more suitable to classify or make decisions based on these features. In order to ensure the fastness and convenience sensorless drive diagnosis, in this paper, the classic Bayesian network learning algorithm-K2 algorithm is used to study the network structure of each feature in sensorless drive, which makes the fault detection and elimination process more targeted.

  5. DESIGNING DAILY PATROL ROUTES FOR POLICING BASED ON ANT COLONY ALGORITHM

    Directory of Open Access Journals (Sweden)

    H. Chen

    2015-07-01

    Full Text Available In this paper, we address the problem of planning police patrol routes to regularly cover street segments of high crime density (hotspots with limited police forces. A good patrolling strategy is required to minimise the average time lag between two consecutive visits to hotspots, as well as coordinating multiple patrollers and imparting unpredictability in patrol routes. Previous studies have designed different police patrol strategies for routing police patrol, but these strategies have difficulty in generalising to real patrolling and meeting various requirements. In this research we develop a new police patrolling strategy based on Bayesian method and ant colony algorithm. In this strategy, virtual marker (pheromone is laid to mark the visiting history of each crime hotspot, and patrollers continuously decide which hotspot to patrol next based on pheromone level and other variables. Simulation results using real data testifies the effective, scalable, unpredictable and extensible nature of this strategy.

  6. Robust real-time pattern matching using bayesian sequential hypothesis testing.

    Science.gov (United States)

    Pele, Ofir; Werman, Michael

    2008-08-01

    This paper describes a method for robust real time pattern matching. We first introduce a family of image distance measures, the "Image Hamming Distance Family". Members of this family are robust to occlusion, small geometrical transforms, light changes and non-rigid deformations. We then present a novel Bayesian framework for sequential hypothesis testing on finite populations. Based on this framework, we design an optimal rejection/acceptance sampling algorithm. This algorithm quickly determines whether two images are similar with respect to a member of the Image Hamming Distance Family. We also present a fast framework that designs a near-optimal sampling algorithm. Extensive experimental results show that the sequential sampling algorithm performance is excellent. Implemented on a Pentium 4 3 GHz processor, detection of a pattern with 2197 pixels, in 640 x 480 pixel frames, where in each frame the pattern rotated and was highly occluded, proceeds at only 0.022 seconds per frame.

  7. Target distribution in cooperative combat based on Bayesian optimization algorithm

    Institute of Scientific and Technical Information of China (English)

    Shi Zhifu; Zhang An; Wang Anli

    2006-01-01

    Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best.

  8. A new Bayesian recursive technique for parameter estimation

    Science.gov (United States)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  9. The accuracy and clinical feasibility of a new Bayesian-based closed-loop control system for propofol administration using the bispectral index as a controlled variable

    NARCIS (Netherlands)

    De Smet, Tom; Struys, Michel M. R. F.; Neckebroek, Martine M.; Van den Hauwe, Kristof; Bonte, Sjoert; Mortier, Eric P.

    2008-01-01

    BACKGROUND: Closed-loop control of the hypnotic component of anesthesia has been proposed in an attempt to optimize drug delivery. Here, we introduce a newly developed Bayesian-based, patient-individualized, model-based, adaptive control method for bispectral index (BIS) guided propofol infusion

  10. A New Mathematical Framework for Design Under Uncertainty

    Science.gov (United States)

    2016-05-05

    Kriging and Gaussian-Markov Random Fields, and 2. Bayesian optimization of the most crucial component of the H2-SWATH, namely, the supercavitating ...Brizzolara S. (-). Physics based Design by Opti- mization of Unconventional Supercavitating Hydrofoils. Under review for the Journal of Ship Research. 9

  11. Bayesian ensemble refinement by replica simulations and reweighting

    Science.gov (United States)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  12. Bayesian Decision Theoretical Framework for Clustering

    Science.gov (United States)

    Chen, Mo

    2011-01-01

    In this thesis, we establish a novel probabilistic framework for the data clustering problem from the perspective of Bayesian decision theory. The Bayesian decision theory view justifies the important questions: what is a cluster and what a clustering algorithm should optimize. We prove that the spectral clustering (to be specific, the…

  13. 2D Bayesian automated tilted-ring fitting of disc galaxies in large H I galaxy surveys: 2DBAT

    Science.gov (United States)

    Oh, Se-Heon; Staveley-Smith, Lister; Spekkens, Kristine; Kamphuis, Peter; Koribalski, Bärbel S.

    2018-01-01

    We present a novel algorithm based on a Bayesian method for 2D tilted-ring analysis of disc galaxy velocity fields. Compared to the conventional algorithms based on a chi-squared minimization procedure, this new Bayesian-based algorithm suffers less from local minima of the model parameters even with highly multimodal posterior distributions. Moreover, the Bayesian analysis, implemented via Markov Chain Monte Carlo sampling, only requires broad ranges of posterior distributions of the parameters, which makes the fitting procedure fully automated. This feature will be essential when performing kinematic analysis on the large number of resolved galaxies expected to be detected in neutral hydrogen (H I) surveys with the Square Kilometre Array and its pathfinders. The so-called 2D Bayesian Automated Tilted-ring fitter (2DBAT) implements Bayesian fits of 2D tilted-ring models in order to derive rotation curves of galaxies. We explore 2DBAT performance on (a) artificial H I data cubes built based on representative rotation curves of intermediate-mass and massive spiral galaxies, and (b) Australia Telescope Compact Array H I data from the Local Volume H I Survey. We find that 2DBAT works best for well-resolved galaxies with intermediate inclinations (20° < i < 70°), complementing 3D techniques better suited to modelling inclined galaxies.

  14. Bayesian posterior sampling via stochastic gradient Fisher scoring

    NARCIS (Netherlands)

    Ahn, S.; Korattikara, A.; Welling, M.; Langford, J.; Pineau, J.

    2012-01-01

    In this paper we address the following question: "Can we approximately sample from a Bayesian posterior distribution if we are only allowed to touch a small mini-batch of data-items for every sample we generate?". An algorithm based on the Langevin equation with stochastic gradients (SGLD) was

  15. Optimized Bayesian dynamic advising theory and algorithms

    CERN Document Server

    Karny, Miroslav

    2006-01-01

    Written by one of the world's leading groups in the area of Bayesian identification, control, and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising. Starting from abstract ideas and formulations, and culminating in detailed algorithms, the book comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modelling by dynamic mixture models

  16. STARD-BLCM: Standards for the Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models

    DEFF Research Database (Denmark)

    Kostoulas, Polychronis; Nielsen, Søren S.; Branscum, Adam J.

    2017-01-01

    The Standards for the Reporting of Diagnostic Accuracy (STARD) statement, which was recently updated to the STARD2015 statement, was developed to encourage complete and transparent reporting of test accuracy studies. Although STARD principles apply broadly, the checklist is limited to studies......-BLCM (Standards for Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models), will facilitate improved quality of reporting on the design, conduct and results of diagnostic accuracy studies that use Bayesian latent class models....

  17. Application of a predictive Bayesian model to environmental accounting.

    Science.gov (United States)

    Anex, R P; Englehardt, J D

    2001-03-30

    Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.

  18. Technical note: Bayesian calibration of dynamic ruminant nutrition models.

    Science.gov (United States)

    Reed, K F; Arhonditsis, G B; France, J; Kebreab, E

    2016-08-01

    Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.

    2013-01-01

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  20. Quantum-Like Representation of Non-Bayesian Inference

    Science.gov (United States)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  1. Correct Bayesian and frequentist intervals are similar

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1986-01-01

    This paper argues that Bayesians and frequentists will normally reach numerically similar conclusions, when dealing with vague data or sparse data. It is shown that both statistical methodologies can deal reasonably with vague data. With sparse data, in many important practical cases Bayesian interval estimates and frequentist confidence intervals are approximately equal, although with discrete data the frequentist intervals are somewhat longer. This is not to say that the two methodologies are equally easy to use: The construction of a frequentist confidence interval may require new theoretical development. Bayesians methods typically require numerical integration, perhaps over many variables. Also, Bayesian can easily fall into the trap of over-optimism about their amount of prior knowledge. But in cases where both intervals are found correctly, the two intervals are usually not very different. (orig.)

  2. Bayesian Information Criterion as an Alternative way of Statistical Inference

    Directory of Open Access Journals (Sweden)

    Nadejda Yu. Gubanova

    2012-05-01

    Full Text Available The article treats Bayesian information criterion as an alternative to traditional methods of statistical inference, based on NHST. The comparison of ANOVA and BIC results for psychological experiment is discussed.

  3. A theory of Bayesian decision making

    OpenAIRE

    Karni, Edi

    2009-01-01

    This paper presents a complete, choice-based, axiomatic Bayesian decision theory. It introduces a new choice set consisting of information-contingent plans for choosing actions and bets and subjective expected utility model with effect-dependent utility functions and action-dependent subjective probabilities which, in conjunction with the updating of the probabilities using Bayes’ rule, gives rise to a unique prior and a set of action-dependent posterior probabilities representing the decisio...

  4. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  5. Posterior consistency for Bayesian inverse problems through stability and regression results

    International Nuclear Information System (INIS)

    Vollmer, Sebastian J

    2013-01-01

    In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes’ formula, giving rise to the posterior distribution on the unknown input. In this setting we prove posterior consistency for nonlinear inverse problems: a sequence of data is considered, with diminishing fluctuations around a single truth and it is then of interest to show that the resulting sequence of posterior measures arising from this sequence of data concentrates around the truth used to generate the data. Posterior consistency justifies the use of the Bayesian approach very much in the same way as error bounds and convergence results for regularization techniques do. As a guiding example, we consider the inverse problem of reconstructing the diffusion coefficient from noisy observations of the solution to an elliptic PDE in divergence form. This problem is approached by splitting the forward operator into the underlying continuum model and a simpler observation operator based on the output of the model. In general, these splittings allow us to conclude posterior consistency provided a deterministic stability result for the underlying inverse problem and a posterior consistency result for the Bayesian regression problem with the push-forward prior. Moreover, we prove posterior consistency for the Bayesian regression problem based on the regularity, the tail behaviour and the small ball probabilities of the prior. (paper)

  6. Bayesian optimization analysis of containment-venting operation in a boiling water reactor severe accident

    International Nuclear Information System (INIS)

    Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu

    2017-01-01

    Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents

  7. Bayesian optimization analysis of containment-venting operation in a boiling water reactor severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu [Nuclear Safety Research Center, Japan Atomic Energy Agency, Ibaraki (Japan)

    2017-03-15

    Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

  8. ACES-Based Testbed and Bayesian Game-Theoretic Framework for Dynamic Airspace Configuration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this effort is the development of algorithms and a framework for automated Dynamic Airspace Configuration (DAC) using a cooperative Bayesian...

  9. Bayesian Modelling of fMRI Time Series

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward

    2000-01-01

    We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...... Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments....

  10. Bayesian Spatial NBDA for Diffusion Data with Home-Base Coordinates.

    Directory of Open Access Journals (Sweden)

    Glenna F Nightingale

    Full Text Available Network-based diffusion analysis (NBDA is a statistical method that allows the researcher to identify and quantify a social influence on the spread of behaviour through a population. Hitherto, NBDA analyses have not directly modelled spatial population structure. Here we present a spatial extension of NBDA, applicable to diffusion data where the spatial locations of individuals in the population, or of their home bases or nest sites, are available. The method is based on the estimation of inter-individual associations (for association matrix construction from the mean inter-point distances as represented on a spatial point pattern of individuals, nests or home bases. We illustrate the method using a simulated dataset, and show how environmental covariates (such as that obtained from a satellite image, or from direct observations in the study area can also be included in the analysis. The analysis is conducted in a Bayesian framework, which has the advantage that prior knowledge of the rate at which the individuals acquire a given task can be incorporated into the analysis. This method is especially valuable for studies for which detailed spatially structured data, but no other association data, is available. Technological advances are making the collection of such data in the wild more feasible: for example, bio-logging facilitates the collection of a wide range of variables from animal populations in the wild. We provide an R package, spatialnbda, which is hosted on the Comprehensive R Archive Network (CRAN. This package facilitates the construction of association matrices with the spatial x and y coordinates as the input arguments, and spatial NBDA analyses.

  11. Bayesian models a statistical primer for ecologists

    CERN Document Server

    Hobbs, N Thompson

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili

  12. Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters

    Science.gov (United States)

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a

  13. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  14. An Efficient Technique for Bayesian Modelling of Family Data Using the BUGS software

    Directory of Open Access Journals (Sweden)

    Harold T Bae

    2014-11-01

    Full Text Available Linear mixed models have become a popular tool to analyze continuous data from family-based designs by using random effects that model the correlation of subjects from the same family. However, mixed models for family data are challenging to implement with the BUGS (Bayesian inference Using Gibbs Sampling software because of the high-dimensional covariance matrix of the random effects. This paper describes an efficient parameterization that utilizes the singular value decomposition of the covariance matrix of random effects, includes the BUGS code for such implementation, and extends the parameterization to generalized linear mixed models. The implementation is evaluated using simulated data and an example from a large family-based study is presented with a comparison to other existing methods.

  15. Bayesian image restoration for medical images using radon transform

    International Nuclear Information System (INIS)

    Shouno, Hayaru; Okada, Masato

    2010-01-01

    We propose an image reconstruction algorithm using Bayesian inference for Radon transformed observation data, which often appears in the field of medical image reconstruction known as computed tomography (CT). In order to apply our Bayesian reconstruction method, we introduced several hyper-parameters that control the ratio between prior information and the fidelity of the observation process. Since the quality of the reconstructed image is influenced by the estimation accuracy of these hyper-parameters, we propose an inference method for them based on the marginal likelihood maximization principle as well as the image reconstruction method. We are able to demonstrate a reconstruction result superior to that obtained using the conventional filtered back projection method. (author)

  16. Evidence reasoning method for constructing conditional probability tables in a Bayesian network of multimorbidity.

    Science.gov (United States)

    Du, Yuanwei; Guo, Yubin

    2015-01-01

    The intrinsic mechanism of multimorbidity is difficult to recognize and prediction and diagnosis are difficult to carry out accordingly. Bayesian networks can help to diagnose multimorbidity in health care, but it is difficult to obtain the conditional probability table (CPT) because of the lack of clinically statistical data. Today, expert knowledge and experience are increasingly used in training Bayesian networks in order to help predict or diagnose diseases, but the CPT in Bayesian networks is usually irrational or ineffective for ignoring realistic constraints especially in multimorbidity. In order to solve these problems, an evidence reasoning (ER) approach is employed to extract and fuse inference data from experts using a belief distribution and recursive ER algorithm, based on which evidence reasoning method for constructing conditional probability tables in Bayesian network of multimorbidity is presented step by step. A multimorbidity numerical example is used to demonstrate the method and prove its feasibility and application. Bayesian network can be determined as long as the inference assessment is inferred by each expert according to his/her knowledge or experience. Our method is more effective than existing methods for extracting expert inference data accurately and is fused effectively for constructing CPTs in a Bayesian network of multimorbidity.

  17. Robust Bayesian detection of unmodelled bursts

    International Nuclear Information System (INIS)

    Searle, Antony C; Sutton, Patrick J; Tinto, Massimo; Woan, Graham

    2008-01-01

    We develop a Bayesian treatment of the problem of detecting unmodelled gravitational wave bursts using the new global network of interferometric detectors. We also compare this Bayesian treatment with existing coherent methods, and demonstrate that the existing methods make implicit assumptions on the distribution of signals that make them sub-optimal for realistic signal populations

  18. A model-based Bayesian framework for ECG beat segmentation

    International Nuclear Information System (INIS)

    Sayadi, O; Shamsollahi, M B

    2009-01-01

    The study of electrocardiogram (ECG) waveform amplitudes, timings and patterns has been the subject of intense research, for it provides a deep insight into the diagnostic features of the heart's functionality. In some recent works, a Bayesian filtering paradigm has been proposed for denoising and compression of ECG signals. In this paper, it is shown that this framework may be effectively used for ECG beat segmentation and extraction of fiducial points. Analytic expressions for the determination of points and intervals are derived and evaluated on various real ECG signals. Simulation results show that the method can contribute to and enhance the clinical ECG beat segmentation performance

  19. New tools for evaluating LQAS survey designs

    OpenAIRE

    Hund, Lauren

    2014-01-01

    Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are pr...

  20. Prior approval: the growth of Bayesian methods in psychology.

    Science.gov (United States)

    Andrews, Mark; Baguley, Thom

    2013-02-01

    Within the last few years, Bayesian methods of data analysis in psychology have proliferated. In this paper, we briefly review the history or the Bayesian approach to statistics, and consider the implications that Bayesian methods have for the theory and practice of data analysis in psychology.