WorldWideScience

Sample records for battery system final

  1. Analysis of batteries for use in photovoltaic systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Podder, A; Kapner, M

    1981-02-01

    An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

  2. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  3. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  4. Canadian consumer battery baseline study : final report

    International Nuclear Information System (INIS)

    2007-02-01

    This report provided information about the estimated number of consumer and household batteries sold, re-used, stored, recycled, and disposed each year in Canada. The report discussed the ways in which different batteries posed risks to human health and the environment, and legislative trends were also reviewed. Data used in the report were obtained from a literature review as well as through a series of interviews. The study showed that alkaline batteries are the most common primary batteries used by Canadians, followed by zinc carbon batteries. However, lithium primary batteries are gaining in popularity, and silver oxide and zinc air button cell batteries are also used in applications requiring a flat voltage and high energy. Secondary batteries used in laptop computers, and cell phones are often made of nickel-cadmium, nickel-metal-hydroxide, and lithium ion. Small sealed lead batteries are also commonly used in emergency lighting and alarm systems. Annual consumption statistics for all types of batteries were provided. Results of the study showed that the primary battery market is expected to decline. Total units of secondary batteries are expected to increase to 38.6 million units by 2010. The report also used a spreadsheet model to estimate the flow of consumer batteries through the Canadian waste management system. An estimated 347 million consumer batteries were discarded in 2004. By 2010, it is expected that an estimated 494 million units will be discarded by consumers. The study also considered issues related to lead, cadmium, mercury, and nickel disposal and the potential for groundwater contamination. It was concluded that neither Canada nor its provinces or territories have initiated legislative or producer responsibility programs targeting primary or secondary consumer batteries. 79 refs., 37 tabs., 1 fig

  5. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  6. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  7. Intelligent automotive battery systems

    Science.gov (United States)

    Witehira, P.

    A single power-supply battery is incompatible with modern vehicles. A one-cmbination 12 cell/12 V battery, developed by Power Beat International Limited (PBIL), is described. The battery is designed to be a 'drop in' replacement for existing batteries. The cell structures, however, are designed according to load function, i.e., high-current shallow-discharge cycles and low-current deep-discharge cycles. The preferred energy discharge management logic and integration into the power distribution network of the vehicle to provide safe user-friendly usage is described. The system is designed to operate transparent to the vehicle user. The integrity of the volatile high-current cells is maintained by temperature-sensitive voltage control and discharge management. The deep-cycle cells can be fully utilized without affecting startability under extreme conditions. Electric energy management synchronization with engine starting will provide at least 6% overall reduction in hydrocarbon emissions using an intelligent on-board power-supply technology developed by PBIL.

  8. Impact resistant battery enclosure systems

    Science.gov (United States)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  9. Nickel Hydrogen Battery Expert System

    Science.gov (United States)

    Johnson, Yvette B.; Mccall, Kurt E.

    1992-01-01

    The Nickel Cadmium Battery Expert System-2, or 'NICBES-2', which was used by the NASA HST six-battery testbed, was subsequently converted into the Nickel Hydrogen Battery Expert System, or 'NICHES'. Accounts are presently given of this conversion process and future uses being contemplated for NICHES. NICHES will calculate orbital summary data at the end of each orbit, and store these files for trend analyses and rules-generation.

  10. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  11. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  12. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    Science.gov (United States)

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  13. Stationary battery guide: Design, application, and maintenance. Final report

    International Nuclear Information System (INIS)

    1997-11-01

    This guide has been prepared to assist a variety of users with stationary battery design, application, and maintenance. The following battery-related topics are discussed in detail: (1) fundamentals--how batteries are designed and how they work; (2) aging, degradation, and failures with an emphasis on how various maintenance tasks can prevent, detect, or repair certain degradation mechanisms; (3) applications--how batteries are designed for a specific purpose and how the battery industry has evolved; (4) sizing for different applications; (5) protection and charging; (6) periodic inspections and checks; (7) capacity discharge testing; (8) installation and replacement considerations; and (9) problems that can occur with battery systems. Since the original guide was published, new IEEE Recommended Practices related to stationary battery applications have been issued. This revision addresses those industry changes as well as some of the emerging issues related to the development of other industry documents. This guide has been prepared as a comprehensive reference source for stationary batteries and is intended to address the design, application, and maintenance needs of users. The technical discussions are at the application level. Fundamentals of battery design are covered in greater detail in this revision. More details related to internal cell materials, their operational relationship, and performance over the expected life of the battery cell are provided. This information has been included because many changes in battery cell materials, manufacturing and design processes are not always communicated to the user

  14. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  15. Wireless battery management control and monitoring system

    Science.gov (United States)

    Zumstein, James M.; Chang, John T.; Farmer, Joseph C.; Kovotsky, Jack; Lavietes, Anthony; Trebes, James Edward

    2018-01-16

    A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.

  16. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  17. Development of nickel hydrogen battery expert system

    Science.gov (United States)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  18. Final report on the development of a 250-kW modular, factory-assembled battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D. [Omnion Power Engineering Corp., East Troy, WI (United States); Nerbun, W. [AC Battery Corp., East Troy, WI (United States); Corey, G. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1998-08-01

    A power management energy storage system was developed for stationary applications such as peak shaving, voltage regulation, and spinning reserve. Project activities included design, manufacture, factory testing, and field installation. The major features that characterize the development are the modularity of the production, its transportability, the power conversion method that aggregates power on the AC side of the converter, and the use of commonly employed technology for system components. 21 figs.

  19. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  20. Thin film battery/fuel cell power generating system. Final report, Task E-4, April 1976-April 1978

    Energy Technology Data Exchange (ETDEWEB)

    Feduska, W.

    1978-03-31

    A two-year researth program to design and demonstrate the technical feasibility of a high-temperature solid-electrolyte fuel cell is described in detail. A rare-earth chromite, in particular, La /sub 95/Mg /sub 05/Cr /sub 75/Al /sub 25/0/sub 3/ was identified, synthesized by RF-sputtering tested for resistivity, thermal expansion and inertness in contact with yttria-stabilized zirconia, and was found promising as a candidate interconnection material. Films of these interconnection materials have been successfully deposited onto stabilized zirconia tubes by electrochemical vapor deposition (EVD) and the technique has been used to fabricate such films in building fuel cell stacks. Tin-doped indium oxide and antimony-doped tin oxide air electrode current collector materials have been successfully (CVD) chemically vapor deposited, as thin films, onto zirconia tubes. Fabrication procedures for the preparation of thin films of the nickel-cermet fuel electrode and yttria-stabilized zirconia solid electrolyte have been re-verified and improved for use in preparing unit cells and cell stacks on the program. An in-house extrusion technology for porous calcia-stabilized zirconia tubes has been developed and has been used to provide suitable support tubes for component combination samples, unit cell and cell stack sample preparation. Test concepts for component combinations and for unit cells and cell stacks have been evolved, particularly, the crossed electrode technique, and test equipment has been designed, built and used to evaluate fuel cell components and their interfaces. A five-cell fuel cell stack has been fabricated and operated for 700 hours at 200 mA/cm/sup 2/ at 950 to 980/sup 0/C and was subjected to three temperature cycles during the testing. Three series connected cells of this five cell stack met the 80% voltage efficiency final target objective of the program (less than 10% voltage degradation in 700 hours - with only 300 hours required.)

  1. Battery Management System Hardware Concepts: An Overview

    Directory of Open Access Journals (Sweden)

    Markus Lelie

    2018-03-01

    Full Text Available This paper focuses on the hardware aspects of battery management systems (BMS for electric vehicle and stationary applications. The purpose is giving an overview on existing concepts in state-of-the-art systems and enabling the reader to estimate what has to be considered when designing a BMS for a given application. After a short analysis of general requirements, several possible topologies for battery packs and their consequences for the BMS’ complexity are examined. Four battery packs that were taken from commercially available electric vehicles are shown as examples. Later, implementation aspects regarding measurement of needed physical variables (voltage, current, temperature, etc. are discussed, as well as balancing issues and strategies. Finally, safety considerations and reliability aspects are investigated.

  2. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  3. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B. (Bogdan); Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  4. Lithium-polymer batteries for EV applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.O. [Uppsala Univ. (Sweden). Dept. of Inorganic Chemistry

    2000-05-01

    The project initially held a strong 'battery materials' profile, but has moved in its final year into more 'battery engineering' aspects; the performances of a range of potential materials have been screened, and candidates have emerged. It is noteworthy that these same materials have also now become 'best-choice' materials in commercial Japanese Li-ion batteries for mobile-phone, lap-top and, more recently, even electric-vehicle (EV) applications. It is now clear that the Li-ion (polymer) battery offers a genuinely viable option in electric and electric-hybrid vehicle concepts. Specifically, our work has involved synthetic, structural, morphological and electrochemical studies of lithium insertion mechanisms in TMO-based cathodes (LiMn{sub 2}O{sub 4}, V{sub 6}O{sub 13}, LiCoO{sub 2}, LiFePO{sub 4}, etc) and graphitic carbon anodes. Performance has been optimised from cell capacity, power, shelf-life and safety viewpoints. Cost has also emerged as a critical variable. Novel methods have been developed within the project for elevated-temperature battery studies (up to 80 deg C); they have become widely applied internationally. The electrode materials which have been developed have subsequently been incorporated into laboratory-scale lithium-ion battery prototypes, whose performance has then been evaluated. The final phase of the project has focussed on a new cathode material (LiFePO{sub 4}) not in current commercial use and yet ideally suited to EV application by virtue of its cheapness, high capacity (ca 170 mAh/g), high voltage vs. Li (3.5V), and extremely flat discharge curve. This could well prove to be the 'best compromise' Li-ion battery cathode for EV applications in the future.

  5. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size DATES: The meeting...

  6. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  7. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. DATES: The meeting will...

  8. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held...

  9. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  10. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held May...

  11. An Improved Wireless Battery Charging System

    OpenAIRE

    Woo-Seok Lee; Jin-Hak Kim; Shin-Young Cho; Il-Oun Lee

    2018-01-01

    This paper presents a direct wireless battery charging system. The output current of the series-series compensated wireless power transfer (SS-WPT) system is used as a current source, and the output voltage of AC-DC converter controls the current source. Therefore, the proposed wireless battery charging system needs no battery charging circuit to carry out charging profiles, and can solve space constraints and thermal problems in many battery applications. In addition, the proposed wireless b...

  12. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-02-03

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  13. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-04-20

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  14. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-07-01

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  15. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-09-01

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  16. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  17. An Advanced HIL Simulation Battery Model for Battery Management System Testing

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Fleischer, Christian; Christensen, Andreas Elkjær

    2016-01-01

    Developers and manufacturers of battery management systems (BMSs) require extensive testing of controller Hardware (HW) and Software (SW), such as analog front-end and performance of generated control code. In comparison with the tests conducted on real batteries, tests conducted on a state......-of-the-art hardware-in-the-loop (HIL) simulator can be more cost and time effective, easier to reproduce, and safer beyond the normal range of operation, especially at early stages in the development process or during fault insertion. In this paper, an HIL simulation battery model is developed for purposes of BMS...... testing on a commercial HIL simulator. A multicell electrothermal Li-ion battery (LIB) model is integrated in a system-level simulation. Then, the LIB system model is converted to C code and run in real time with the HIL simulator. Finally, in order to demonstrate the capabilities of the setup...

  18. Battery Monitoring and Charging System

    National Research Council Canada - National Science Library

    Thivierge, Daniel P

    2007-01-01

    A battery monitoring device for a battery having cells grouped in modules. The device includes a monitoring circuit for each module which monitors the voltage in each cell and the overall module voltage...

  19. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  20. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  1. The Mechanical Response of Multifunctional Battery Systems

    Science.gov (United States)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following

  2. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  3. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    CLARK,NANCY H.; EIDLER,PHILLIP

    1999-10-01

    This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

  4. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  5. Nickel-hydrogen bipolar battery system

    Science.gov (United States)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  6. Numerical Analysis and Design of Thermal Management System for Lithium Ion Battery Pack Using Thermoelectric Coolers

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2014-08-01

    Full Text Available A new design of thermal management system for lithium ion battery pack using thermoelectric coolers (TECs is proposed. Firstly, the 3D thermal model of a high power lithium ion battery and the TEC is elaborated. Then the model is calibrated with experiment results. Finally, the calibrated model is applied to investigate the performance of a thermal management system for a lithium ion battery pack. The results show that battery thermal management system (BTMS with TEC can cool the battery in very high ambient temperature. It can also keep a more uniform temperature distribution in the battery pack than common BTMS, which will extend the life of the battery pack and may save the expensive battery equalization system.

  7. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  8. A brief review on key technologies in the battery management system of electric vehicles

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  9. Modeling aluminum-air battery systems

    Science.gov (United States)

    Savinell, R. F.; Willis, M. S.

    The performance of a complete aluminum-air battery system was studied with a flowsheet model built from unit models of each battery system component. A plug flow model for heat transfer was used to estimate the amount of heat transferred from the electrolyte to the air stream. The effect of shunt currents on battery performance was found to be insignificant. Using the flowsheet simulator to analyze a 100 cell battery system now under development demonstrated that load current, aluminate concentration, and electrolyte temperature are dominant variables controlling system performance. System efficiency was found to decrease as both load current and aluminate concentration increases. The flowsheet model illustrates the interdependence of separate units on overall system performance.

  10. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  11. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  12. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  13. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-11-01

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  15. Design and Implementation of the Battery Energy Storage System in DC Micro-Grid Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Chih Chang

    2018-06-01

    Full Text Available The design and implementation of the battery energy storage system in DC micro-grid systems is demonstrated in this paper. The battery energy storage system (BESS is an important part of a DC micro-grid because renewable energy generation sources are fluctuating. The BESS can provide energy while the renewable energy is absent in the DC micro-grid. The circuit topology of the proposed BESS will be introduced. The design of the voltage controller and the current controller for the battery charger/discharger are also illustrated. Finally, experimental results are provided to validate the performance of the BESS.

  16. Battery Modeling: A Versatile Tool to Design Advanced Battery Management Systems

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.L.

    Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. Refined

  17. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  18. System state estimation and optimal energy control framework for multicell lithium-ion battery system

    International Nuclear Information System (INIS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai; Kang, Yu

    2017-01-01

    Highlights: • Employed a dual-scale EKF based estimator for in-pack cells’ SOC values. • Proposed a two-stage hybrid state-feedback and output-feedback equalization algorithm. • A switchable balance current mode is designed in the equalization topology. • Verified the performance of proposed method under two conditions. - Abstract: Cell variations caused by the inevitable inconsistency during manufacture and use of battery cells have significant impacts on battery capacity, security and durability for battery energy storage systems. Thus, the battery equalization systems are essentially required to reduce variations of in-pack cells and increase battery pack capability. In order to protect all in-pack cells from damaging, estimate battery state and reduce variations, a system state estimation and energy optimal control framework for multicell lithium-ion battery system is proposed. The state-of-charge (SOC) values of all in-pack cells are firstly estimated using a dual-scale extended Kalman filtering (EKF) to improve estimation accuracy and reduce computation simultaneously. These estimated SOC values provide specific details of battery system, which cannot only be used to protect cells from over-charging/over-discharging, but also be employed to design state-feedback controller for battery equalization system. A two-stage hybrid state-feedback and output-feedback equalization algorithm is proposed. The state-feedback controller is firstly employed for coarse-grained adjustment to reduce equalization time cost with large current. However, due to the inevitable SOC estimation errors, the output-feedback controller is then used for fine-grained adjustment with trickle current. Experimental results show that the proposed framework can provide an effectively estimation and energy control for multicell battery systems. Finally, the implementation of the proposed method is further discussed for the real applications.

  19. Final treatment of spent batteries by thermal plasma.

    Science.gov (United States)

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries. Copyright © 2015. Published by Elsevier Ltd.

  20. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, Paulus P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  1. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2011-11-14

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225, Rechargeable Lithium Battery and...

  2. Efficient and powerful batteries for driverless transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    1986-11-01

    In driverless transportation systems batteries are playing an essential role. The capacitive operation or cycling of driverless systems require the use of different battery systems. Energy supply concepts have to be based on the perspective functional descriptions. The required data comprise full details on discharging processes (temporal current flows), intermediate and complete charging, ambient temperature ranges (which determine the type of battery to be used), and the minimum discharge voltage. Data on the exchange of batteries as well as on the maximum weight and volume of batteries complete the list of data. Any systems evaluation of the batteries to be used has to take account of the operating conditions.

  3. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  4. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process....... It must address all the current quality and safety (Q&S) standards. In this review article, an effective battery thermal management is sought considering the existing battery Q&S standards and scientific literature. The article contains a broad overview of the current existing standards and literature...... on a generic compliant BTMS. The aim is to assist in the design of a novel compatible BTMS. Additionally, the article delivers a set of recommendations to make an effective BTMS....

  5. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process...

  6. The Earth Observing System (EOS) nickel-hydrogen battery

    Science.gov (United States)

    Bennett, Charles W.

    1992-01-01

    Information is given in viewgraph form on the Earth Observing System (EOS) nickel hydrogen battery. Information is given on the life evaluation test, cell characteristics, acceptance and characterization tests, and the battery system description.

  7. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  8. Cosmological Final Focus Systems

    International Nuclear Information System (INIS)

    Irwin, J

    2004-01-01

    We develop the many striking parallels between the dynamics of light streams from distant galaxies and particle beams in accelerator final focus systems. Notably the deflections of light by mass clumps are identical to the kicks arising from the long-range beam-beam interactions of two counter-rotating particle beams (known as parasitic crossings). These deflections have sextupolar as well as quadrupolar components. We estimate the strength of such distortions for a variety of circumstances and argue that the sextupolar distortions from clumping within clusters may be observable. This possibility is enhanced by the facts that (1) the sextupolar distortions of background galaxies is a factor of 5 smaller than the quadrupolar distortion, (2) the angular orientation of the sextupolar and quadrupolar distortions from a mass distribution would be correlated, appearing as a slightly curved image, (3) these effects should be spatially clumped on the sky

  9. Environmental consequences of the use of batteries in low carbon systems: The impact of battery production

    International Nuclear Information System (INIS)

    McManus, M.C.

    2012-01-01

    Highlights: ► Lithium based batteries show the most significant GHG and metal depletion impacts. ► Nickel metal hydride batteries perform worst in terms of cumulative energy demand. ► Charge and discharge cycles will have significant effect on the environmental impact. ► Limited data on the life cycle impacts of some types of batteries is available. - Abstract: Adoption of small scale micro-generation is sometimes coupled with the use of batteries in order to overcome daily variability in the supply and demand of energy. For example, photovoltaic cells and small wind turbines can be coupled with energy storage systems such as batteries. When used effectively with renewable energy production, batteries can increase the versatility of an energy system by providing energy storage that enables the systems to satisfy the highly variable electrical load of an individual dwelling, therefore changing usage patterns on the national grid. A significant shift towards electric or hybrid cars would also increase the number of batteries required. However, batteries can be inefficient and comprise of materials that have high environmental and energy impacts. In addition, some materials, such as lithium, are scarce natural resources. As a result, the overall impact of increasing our reliance on such “sustainable or “low carbon” systems may in fact have an additional detrimental impact. This paper reviews the currently available data and calculated and highlights the impact of the production of several types of battery in terms of energy, raw materials and greenhouse gases. The impact of the production of batteries is examined and presented in order that future studies may be able to include the impact of batteries more easily within any system. It is shown that lithium based batteries have the most significant impact in many environmental areas in terms of production. As the use phases of batteries are extremely variable within different situations this has not been

  10. Battery-powered transport systems. Possible methods of automatically charging drive batteries

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    In modern driverless transport systems, not only easy maintenance of the drive battery is important but also automatic charging during times of standstill. Some systems are presented; one system is pointed out in particular in which 100 batteries can be charged at the same time.

  11. System and Battery Charge Control for PV-Powered AC Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  12. Thermal management of EV battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Birch, P.K.

    1984-01-01

    The thermal limitations of the actual design and the benefits of more extensive thermal management of electric vehicle systems are described. During this work a number of practical limitations in vehicle design, which has to be frozen relatively early in the project, made it impossible to take advantage of the benefits of thermal management in connection with the design of the modular battery system. This study, therfore, deals only very briefly with the actual project. The aim has been to show the possibilities of improvement based on traditional electrochemical systems (e.g., all lead-acid) by means of thermal management.

  13. Maximizing System Lifetime by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the

  14. 75 FR 63 - Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery...

    Science.gov (United States)

    2010-01-04

    ... contained in equipment, fuel cell systems must not charge batteries during transport; (3) For transportation... 2137-AE54 Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery... batteries and battery-powered devices. This final rule corrects several errors in the January 14, 2009 final...

  15. Environmental impact analysis of electric and hybrid vehicle batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-16

    This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

  16. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    Science.gov (United States)

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  17. VRLA automotive batteries for stop&go and dual battery systems

    Science.gov (United States)

    May, G. J.; Calasanzio, D.; Aliberti, R.

    The electrical power requirements for vehicles are continuing to increase and evolve. A substantial amount of effort has been directed towards the development of 36/42 V systems as a route to higher power with reduced current levels but high implementation costs have resulted in the introduction of these systems becoming deferred. In the interim, however, alternator power outputs at 14 V are being increased substantially and at the same time the requirements for batteries are becoming more intensive. In particular, stop&go systems and wire-based vehicle systems are resulting in new demands. For stop&go, the engine is stopped each time the vehicle comes to rest and is restarted when the accelerator is pressed again. This results in an onerous duty cycle with many shallow discharge cycles. Flooded lead-acid batteries cannot meet this duty cycle and valve-regulated lead-acid (VRLA) batteries are needed to meet the demands that are applied. For wire-based systems, such as brake-by-wire or steer-by-wire, electrical power has become more critical and although the alternator and battery provide double redundancy, triple redundancy with a small reserve battery is specified. In this case, a small VRLA battery can be used and is optimised for standby service rather than for repeated discharges. The background to these applications is considered and test results under simulated operating conditions are discussed. Good performance can be obtained in batteries adapted for both applications. Battery management is also critical for both applications: in stop&go service, the state-of-charge (SOC) and state-of-health (SOH) need to be monitored to ensure that the vehicle can be restarted; for reserve or back-up batteries, the SOC and SOH are monitored to verify that the battery is always capable of carrying out the duty cycle if required. Practical methods of battery condition monitoring will be described.

  18. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  19. Diagnosing battery behavior with an expert system in Prolog

    International Nuclear Information System (INIS)

    Kirkwood, N.; Weeks, D.J.

    1986-01-01

    Power for the Hubble Space Telescope comes from a system of 20 solar panel assemblies (SPAs) and six nickel-cadmium batteries. The HST battery system is simulated by the HST Electrical Power System (EPS) testbed at Marshall Space Flight Center. The Nickel Cadmium Battery Expert System (NICBES) is being used to diagnose faults of the testbed system, evaluate battery status and provide decision support for the engineer. Extensive telemetry of system operating conditions is relayed through a DEC LSI-11, and sent on to an IBM PC-AT. A BASIC program running on the PC monitors the flow of data, figures cell divergence and recharge ratio and stores these values, along with other selected data, for use by the expert system. The expert system is implemented in the logic programming language Prolog. It has three modes of operation: fault diagnosis, status and advice, and decision support. An alert or failure of the system will trigger a diagnosis by the system to assist the operator. The operator can also request battery status information as well as a number of plots and histograms of recent battery behavior. Trends in EOC and EOD voltage, recharge ratio and divergence are used by the expert system in its analysis of battery status. A future enhancement to the system includes the statistical prediction of battery life. Incorporating learning into the expert system is another possible enhancement; This is a difficult task, but one which could promise great rewards in improved battery performance

  20. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  1. Aqueous electrolytes for redox flow battery systems

    Science.gov (United States)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-10-17

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  2. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  3. Improving compliance in remote healthcare systems through smartphone battery optimization.

    Science.gov (United States)

    Alshurafa, Nabil; Eastwood, Jo-Ann; Nyamathi, Suneil; Liu, Jason J; Xu, Wenyao; Ghasemzadeh, Hassan; Pourhomayoun, Mohammad; Sarrafzadeh, Majid

    2015-01-01

    Remote health monitoring (RHM) has emerged as a solution to help reduce the cost burden of unhealthy lifestyles and aging populations. Enhancing compliance to prescribed medical regimens is an essential challenge to many systems, even those using smartphone technology. In this paper, we provide a technique to improve smartphone battery consumption and examine the effects of smartphone battery lifetime on compliance, in an attempt to enhance users' adherence to remote monitoring systems. We deploy WANDA-CVD, an RHM system for patients at risk of cardiovascular disease (CVD), using a wearable smartphone for detection of physical activity. We tested the battery optimization technique in an in-lab pilot study and validated its effects on compliance in the Women's Heart Health Study. The battery optimization technique enhanced the battery lifetime by 192% on average, resulting in a 53% increase in compliance in the study. A system like WANDA-CVD can help increase smartphone battery lifetime for RHM systems monitoring physical activity.

  4. Hubble Space Telescope nickel hydrogen battery system briefing

    Science.gov (United States)

    Nawrocki, David; Saldana, David; Rao, Gopal

    1993-01-01

    The topics covered are presented in viewgraph form and include the following: the Hubble Space Telescope (HST) Mission; system constraints; battery specification; battery module; simplified block diagram; cell design summary; present status; voltage decay; system depth of discharge; pressure since launch; system capacity; eclipse time vs. trickle charge; capacity test objectives; and capacity during tests.

  5. Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for its platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.

  6. Nickel-cadmium battery system for electric vehicles

    Science.gov (United States)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  7. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  8. [Redesign of the Spacesuit Long Life Battery and the Personal Life Support System Battery

    Science.gov (United States)

    Scharf, Stephanie

    2015-01-01

    This fall I was working on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the department. The purpose of this document is to create a standard process and ensure that the data in the same way no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own all while taking notes on the procedure. These notes were used to write the final work instruction that will become is the department standard. My second project continued the work of the summer co-op before me. I was testing aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks were designed by the summer intern but there was not much time for testing before he left. We ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (energy systems test area) and are providing very promising results that safe, high performing (greater than 180 Wh/kg) designs are possible. My main project was a redesign of the LLB battery. Another summer intern did some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the current design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density and the rest of the design was up to me. First, I created new heat sink banks in Creo using the information gathered in the metal heat sink tests from the summer intern. After this, I made

  9. Multikilowatt hydrogen-nickel oxide battery system

    Science.gov (United States)

    Dunlop, J. D.

    1985-01-01

    The potential of the H2-NiO battery for terrestrial applications was assessed. A multicell design approach that differs significantly from the aerospace individual pressure vessel was used. A number of experimental 100-Ah cells were built to evaluate the new design concepts and components. The experimental cells provided the input needed for a multicell battery design. It is found that new multicell H2-NiO battery has a number of potential advantages for aerospace applications such as the manned space station. The advantages are discussed, and a design concept is presented for a multikilowatt battery in a lightweight pressure vessel.

  10. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  11. Final focus system for TLC

    International Nuclear Information System (INIS)

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal β function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs

  12. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  13. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  14. Battery-Aware Scheduling of Mixed Criticality Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Hansen, Rene Rydhof; Larsen, Kim Guldstrand

    2014-01-01

    . Mixed criticality and soft real-time systems may accept deadline violations and therefore enable trade-offs and evaluation of performance by criteria such as the number of tasks that can be completed with a given battery. We model a task set in combination with the kinetic battery model as a stochastic...

  15. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  16. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    Science.gov (United States)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian; Cheng, Feng; Greenwood, Wesley; Hawkins, Jonathan; Willard, Steve

    2017-06-27

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unit and the photovoltaic energy source.

  17. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  18. Design and Implementation of Battery Management System for Electric Bicycle

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Today the electric vehicle (EV has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optimized in order to replace the current energy which is fossil fuel. A clean and green energy [2]. Because of this, it is very important to make sure that the battery that being used is reliable as the fossil fuel. Thus, the design of the battery management system plays an important role on battery life preservation and performance improvement of EV [3]. The BMS also performs many tasks including the measurement of system voltage, current and temperature, the cells’ state of charge (SOC, state of health (SOH, remaining useful life (RUL determination, controlling and monitoring the charge / discharge characteristics and cell balancing [3]. For this project, 18650 Lithium-Ion battery is used to develop battery management for 144V 50Ah. As lithium-ion batteries have high value of specific energy, high energy density, high open circuit voltage, and low self-discharge, they are a proper candidate for EVs among other cell chemistries [4].

  19. Battery Health Management System for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — In summary, this paper lays out a novel battery health management technique for application onboard an electric UAV. This technique is also applicable to other...

  20. Optimal control of photovoltaic systems by a new battery state-of-charge observer

    Energy Technology Data Exchange (ETDEWEB)

    Giglioli, R; Zini, G; Conte, M; Raugi, M

    1988-06-01

    In photovoltaic power plants, the ability to accurately determine battery state-of-charge at any given time can reduce the risk of curtailed energy and allow more precise and less costly battery sizing. In this paper, a new state-of-charge observer, based on an original equivalent electric network of the lead-acid battery, is shown and used to develop an optimal control of the system. Hence, a management plan for a complete photovoltaic system is studied. Finally, a comparison between a simulation of the proposed plan and experimental data from a monitored photovoltaic plant, with very simple management requirements, is made and discussed. The present work was carried out within the framework of the Italian Finalized Energy Project-2.

  1. Mathematical analysis and coordinated current allocation control in battery power module systems

    Science.gov (United States)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  2. The impact of the new 36 V lead-acid battery systems on lead consumption

    Science.gov (United States)

    Prengaman, R. David

    The production of vehicles utilizing 36 V battery systems has begun with the introduction of the Toyota Crown. Other vehicles with 36 V batteries are in the near horizon. These vehicles may contain single or dual battery systems. These vehicles will most likely contain valve-regulated lead-acid (VRLA) batteries. The battery systems developed to date utilize significantly more lead than conventional 12 V batteries. This paper will evaluate the different proposed 36 V battery systems and estimate the lead requirements for each of the competing systems. It will also project the penetration of and resultant increased lead usage of these new batteries into the future.

  3. Zinc polymer electrolytes in battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W.P.; Latham, R.J.; Linford, R.G.; Vickers, S.L. (Dept. of Chemistry, School of Applied Sciences, De Montfort Univ., Leicester (United Kingdom))

    1994-06-01

    We have previously reported results of our studies of structure-conductivity relationships for polymer electrolytes of the form PEO[sub n][center dot]ZnX[sub 2]. In this paper we report the results of investigations of battery systems based on these electrolytes. Results will be presented for OCV and discharge curves for loaded cells of the type: Zn/polymer electrolyte/MnO[sub 2]. We are particularly interested in the speciation between oxidation states of manganese as a function of the degree of cell discharge, and have carried out determinations by chemical methods based on polarography. Preliminary studies indicate the presence of Mn[sup II] in cells discharged at various rates. The discharge times for a series of optimised cells show an exponential decrease with increasing load. This is consistent with a low electrolyte conductivity and less than ideal cathode conductivity, which leads to an increased 'front face' reaction with increasing load

  4. Research on Battery Energy Storage System Based on User Side

    Science.gov (United States)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  5. Advances in battery manufacturing, service, and management systems

    CERN Document Server

    Zhou, Shiyu; Han, Yehui

    2016-01-01

    This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, opera ions, and hybrid storage systems to ensure overall performance and safety, as well as EV management.

  6. Remote monitoring of VRLA batteries for telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Tomonobu; Matsushima, Toshio [NTT Facilities Inc., G.H.Y. Building, 2-13-1 Kita-Otsuka, Toshima-ku, Tokyo 170-0004 (Japan)

    2007-05-25

    This paper describes a remote monitoring system that can be set up in an operating center to monitor the state of valve regulated lead acid batteries (VRLA) used as a backup power supply for telecommunications. This system has a battery voltage monitoring function, a lifetime prediction function based on ambient temperature, and a discharge circuit diagnosis function. In addition, the system can be equipped with an internal resistance measurement function and an electrolyte leakage detection function to further insure power-supply reliability. Various states of batteries observed with the system are transmitted to the remote operating center by a remote monitoring function. This function enables obtaining immediate information about the condition of batteries and helps to avoid unexpected failures. (author)

  7. Classification of robotic battery service systems for unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Ngo Tien

    2018-01-01

    Full Text Available Existing examples of prototypes of ground-based robotic platforms used as a landing site for unmanned aerial vehicles are considered. In some cases, they are equipped with a maintenance mechanism for the power supply module. The main requirements for robotic multi-copter battery maintenance systems depending on operating conditions, required processing speed, operator experience and other parameters are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicles on the platform and approach to servicing battery. The existing prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint work of the platform and unmanned aerial vehicles during the landing and maintenance of the battery. The classification of robotic systems for servicing the power supply of multi-copter batteries criteria is presented using the following: the type of basing, the method of navigation during landing, the shape of the landing pad, the method of restoring the power supply module. The proposed algorithmic model of the operation of battery power maintenance system of the multi-copter on ground-based robotic platform during solving the target agrarian problem is described. Wireless methods of battery recovery are most promising, so further development and prototyping of a wireless charging station for multi-copter batteries will be developed.

  8. Economic Optimization of Component Sizing for Residential Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-06-01

    Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.

  9. Battery system including batteries that have a plurality of positive terminals and a plurality of negative terminals

    Science.gov (United States)

    Dougherty, Thomas J; Symanski, James S; Kuempers, Joerg A; Miles, Ronald C; Hansen, Scott A; Smith, Nels R; Taghikhani, Majid; Mrotek, Edward N; Andrew, Michael G

    2014-01-21

    A lithium battery for use in a vehicle includes a container, a plurality of positive terminals extending from a first end of the lithium battery, and a plurality of negative terminals extending from a second end of the lithium battery. The plurality of positive terminals are provided in a first configuration and the plurality of negative terminals are provided in a second configuration, the first configuration differing from the second configuration. A battery system for use in a vehicle may include a plurality of electrically connected lithium cells or batteries.

  10. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    OpenAIRE

    Xinan Zhang; Yifeng Li; Maria Skyllas-Kazacos; Jie Bao

    2016-01-01

    The penetration of solar photovoltaic (PV) systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS). With concern for the high investment cost, the choice of a cost-effective BESS with prop...

  11. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available (SOPAC Miscellaneous Report 406, 2005). The battery bank is cycled frequently, shortening its lifetime. If the inverter fails there is complete loss of power to the load, unless the load can be supplied directly from the diesel generator for emergency purposes....5 Sizing the inverter ............................................................................................... 67 5.6 Sizing the charge Controller ............................................................................... 68 5.7 Sizing...

  12. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  13. Lead/acid batteries in systems to improve power quality

    Science.gov (United States)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  14. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs...

  15. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    International Nuclear Information System (INIS)

    Li, Gaoran; Li, Zhoupeng; Zhang, Bin; Lin, Zhan

    2015-01-01

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg −1 ), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  16. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gaoran; Li, Zhoupeng [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China); Zhang, Bin [Anhui Academy for Environmental Science Research, Hefei, Anhui (China); Lin, Zhan, E-mail: zhanlin@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China)

    2015-02-11

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg{sup −1}), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  17. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  18. Model-Based Battery Management Systems: From Theory to Practice

    Science.gov (United States)

    Pathak, Manan

    Lithium-ion batteries are now extensively being used as the primary storage source. Capacity and power fade, and slow recharging times are key issues that restrict its use in many applications. Battery management systems are critical to address these issues, along with ensuring its safety. This dissertation focuses on exploring various control strategies using detailed physics-based electrochemical models developed previously for lithium-ion batteries, which could be used in advanced battery management systems. Optimal charging profiles for minimizing capacity fade based on SEI-layer formation are derived and the benefits of using such control strategies are shown by experimentally testing them on a 16 Ah NMC-based pouch cell. This dissertation also explores different time-discretization strategies for non-linear models, which gives an improved order of convergence for optimal control problems. Lastly, this dissertation also explores a physics-based model for predicting the linear impedance of a battery, and develops a freeware that is extremely robust and computationally fast. Such a code could be used for estimating transport, kinetic and material properties of the battery based on the linear impedance spectra.

  19. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    2016-10-01

    Full Text Available The penetration of solar photovoltaic (PV systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS. With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB, which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.

  20. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Boyes, John D.; De Anda, Mindi Farber; Torres, Wenceslao

    1999-08-11

    The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.

  1. Lithium-thionyl chloride battery. Final report, 1 October 1978-30 November 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.; Bowden, W.; Hamilton, N.; Cubbison, D.; Dey, A.N.

    1981-04-01

    The main objective is to develop, fabricate, test, and deliver safe high rate lithium-thionyl chloride batteries for various U.S. Army applications such as manpack ratios and GLLD Laser Designators. We have devoted our efforts in the following major areas: (1) Optimization of the spirally wound D cell for high rate applications, (2) Development of a 3 inch diameter flat cylindrical cell for the GLLD laser designator application, and (3) Investigation of the reduction mechanism of SOCl2. The rate capability of the spirally wound D cell previously developed by us has been optimized for both the manpack radio (BA5590) battery and GLLD laser designator battery application in this program. A flat cylindrical cell has also been developed for the GLLD laser designator application. It is 3 inches in diameter and 0.9 inch in height with extremely low internal cell impedance that minimizes cell heating and polarization on the GLLD load. Typical cell capacity was found to be 18.0-19.0 Ahr with a few cells delivering up to about 21.0 Ahr on the GLLD test load. Study of the reduction mechanism of SOCl2 using electrochemical and spectroscopic techniques has also been carried out in this program which may be directly relevant to the intrinsic safety of the system.

  2. Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Clark, N.H.

    1999-04-01

    In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

  3. Design options for automotive batteries in advanced car electrical systems

    Science.gov (United States)

    Peters, K.

    The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.

  4. Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden

    International Nuclear Information System (INIS)

    Zhang, Yang; Lundblad, Anders; Campana, Pietro Elia; Benavente, F.; Yan, Jinyue

    2017-01-01

    Highlights: • Battery sizing and rule-based operation are achieved concurrently. • Hybrid operation strategy that combines different strategies is proposed. • Three operation strategies are compared through multi-objective optimization. • High Net Present Value and Self Sufficiency Ratio are achieved at the same time. - Abstract: The optimal components design for grid-connected photovoltaic-battery systems should be determined with consideration of system operation. This study proposes a method to simultaneously optimize the battery capacity and rule-based operation strategy. The investigated photovoltaic-battery system is modeled using single diode photovoltaic model and Improved Shepherd battery model. Three rule-based operation strategies—including the conventional operation strategy, the dynamic price load shifting strategy, and the hybrid operation strategy—are designed and evaluated. The rule-based operation strategies introduce different operation parameters to run the system operation. multi-objective Genetic Algorithm is employed to optimize the decisional variables, including battery capacity and operation parameters, towards maximizing the system’s Self Sufficiency Ratio and Net Present Value. The results indicate that employing battery with the conventional operation strategy is not profitable, although it increases Self Sufficiency Ratio. The dynamic price load shifting strategy has similar performance with the conventional operation strategy because the electricity price variation is not large enough. The proposed hybrid operation strategy outperforms other investigated strategies. When the battery capacity is lower than 72 kW h, Self Sufficiency Ratio and Net Present Value increase simultaneously with the battery capacity.

  5. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  6. The Research of Super Capacitor and Battery Hybrid Energy Storage System with the THIPWM

    Directory of Open Access Journals (Sweden)

    Jianwei Ma

    2014-02-01

    Full Text Available It has to be considered that dynamic performance of Super Capacitor and Battery hybrid energy storage system is poor and the output waveform of AC voltage distorted seriously. The Third Harmonic Injection PWM (THIPWM with the three-level inverter, which has a excellent performance to improve the dynamic performance of the super capacitor and battery, gathers information from ends of the DC output voltage or current and the total current of the DC side to solve the problem of unbalanced neutral line voltage of three-level inverter .It also keeps super capacitor and battery controlled smoothly during the operation, and reduces the final output waveform distortion index. The simulation results verify the practicality and correctness of the three-level inverter topology and its control algorithm.

  7. Battery systems. State of the art; Batteriesysteme. Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    Jossen, Andreas; Doering, Harry [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Ulm (Germany)

    2009-07-01

    Due to the emergence of electromobility and the increase in the fluctuating supply of renewable energy (wind and PV) electrical storage systems are gaining in importance again. In the area of electromobility they have even become a key technology. In the electromobile sector a clear decision in favour of Li ion batteries has already been evident for some time. None of the other technologies are being discussed any longer with regard to this application. Hybrid vehicles today mostly use NiMH storages, but this area too will see the entry of Li ion batteries. In the microhybrid area the improvements achieved with lead batteries will play an important role. Regarding stationary systems there is as yet no such clear-cut focus on any single technology to be observed, but rather a number of technologies being developed and tested concurrently. Redox flow batteries and high temperature batteries will play an important role here. However, lithium ion systems will try to get a foot in the door in this area as well.

  8. Battery management systems with thermally integrated fire suppression

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2017-07-11

    A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.

  9. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  10. Integration Strategy for Free-form Lithium Ion Battery: Material, Design to System level Applications

    KAUST Repository

    Kutbee, Arwa T.

    2017-10-31

    Power supply in any electronic system is a crucial necessity. Especially so in fully compliant personalized advanced healthcare electronic self-powered systems where we envision seamless integration of sensors and actuators with data management components in a single freeform platform to augment the quality of our healthcare, smart living and sustainable future. However, the status-quo energy storage (battery) options require packaging to protect the indwelling toxic materials against harsh physiological environment and vice versa, compromising its mechanical flexibility, conformability and wearability at the highest electrochemical performance. Therefore, clean and safe energy storage solutions for wearable and implantable electronics are needed to replace the commercially used unsafe lithium-ion batteries. This dissertation discusses a highly manufacturable integration strategy for a free-form lithium-ion battery towards a genuine mechanically compliant wearable system. We sequentially start with the optimization process for the preparation of all solid-state material comprising a ‘’Lithium-free’’ lithium-ion microbattery with a focus on thin film texture optimization of the cathode material. State of the art complementary metal oxide semiconductor technology was used for the thin film based battery. Additionally, this thesis reports successful development of a transfer-less scheme for a flexible battery with small footprint and free form factor in a high yield production process. The reliable process for the flexible lithium-ion battery achieves an enhanced energy density by three orders of magnitude compared to the available rigid ones. Interconnection and bonding procedures of the developed batteries are discussed for a reliable back end of line process flexible, stretchable and stackable modules. Special attention is paid to the advanced bonding, handling and packaging strategies of flexible batteries towards system-level applications. Finally, this

  11. Model Predictive Control for Distributed Microgrid Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Morstyn, Thomas; Hredzak, Branislav; Aguilera, Ricardo P.

    2018-01-01

    , and converter current constraints to be addressed. In addition, nonlinear variations in the charge and discharge efficiencies of lithium ion batteries are analyzed and included in the control strategy. Real-time digital simulations were carried out for an islanded microgrid based on the IEEE 13 bus prototypical......This brief proposes a new convex model predictive control (MPC) strategy for dynamic optimal power flow between battery energy storage (ES) systems distributed in an ac microgrid. The proposed control strategy uses a new problem formulation, based on a linear $d$ – $q$ reference frame voltage...... feeder, with distributed battery ES systems and intermittent photovoltaic generation. It is shown that the proposed control strategy approaches the performance of a strategy based on nonconvex optimization, while reducing the required computation time by a factor of 1000, making it suitable for a real...

  12. Generic modelling framework for economic analysis of battery systems

    DEFF Research Database (Denmark)

    You, Shi; Rasmussen, Claus Nygaard

    2011-01-01

    opportunities, a generic modelling framework is proposed to handle this task. This framework outlines a set of building blocks which are necessary for carrying out the economic analysis of various BS applications. Further, special focus is given on describing how to use the rainflow cycle counting algorithm...... for battery cycle life estimation, since the cycle life plays a central role in the economic analysis of BS. To illustrate the modelling framework, a case study using a Sodium Sulfur Battery (NAS) system with 5-minute regulating service is performed. The economic performances of two dispatch scenarios, a so......Deregulated electricity markets provide opportunities for Battery Systems (BS) to participate in energy arbitrage and ancillary services (regulation, operating reserves, contingency reserves, voltage regulation, power quality etc.). To evaluate the economic viability of BS with different business...

  13. Organic electrolytes for sodium batteries. Final report, 1 April 1990-31 March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Vestergaard, B.

    1992-09-01

    This final report for the project 'Organic Electrolytes for Sodium Batteries' contains a summary of earlier given status reports in connection with the project. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  14. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  15. Batteries

    Directory of Open Access Journals (Sweden)

    Yang Lijuan

    2016-01-01

    Full Text Available Fe3O4/carbon microspheres (Fe3O4/C were prepared by a facile hydrothermal reaction using cellulose and ferric trichloride as precursors. The resultant composite spheres have been investigated as anode materials for the lithium-ion batteries, and they show high capacity and good cycle stability (830mAhg−1 at a current density of 0.1C up to 70 cycles, as well as enhanced rate capability. The excellent electrochemical performance is attributed to the high structural stability and high rate of ionic/electronic conduction arising from the porous character and the synergetic effect of the carbon coated Fe3O4 structure and conductive carbon coating.

  16. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  17. SUNRAYCE 95: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States). Biomedical and Environmental Assessment Group

    1994-05-27

    This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.

  18. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  19. Optimization analysis of thermal management system for electric vehicle battery pack

    Science.gov (United States)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  20. Design and simulation of liquid cooled system for power battery of PHEV

    Science.gov (United States)

    Wang, Jianpeng; Xu, Haijun; Xu, Xiaojun; Pan, Cunyun

    2017-09-01

    Various battery chemistries have different responses to failure, but the most common failure mode of a cell under abusive conditions is the generation of heat and gas. To prevent battery thermal abuse, a battery thermal management system is essential. An excellent design of battery thermal management system can ensure that the battery is working at a suitable temperature and keeps the battery temperature diffenence at 2-3 °C. This paper presents a thermal-elcetric coupling model for a 37Ah lithium battery using AMESim. A liquid cooled system of hybrid electric vehicle power battery is designed to control the battery temperature.A liquid cooled model of thermal management system is built using AMESim, the simulation results showed that the temperature difference within 3°C of cell in the pack.

  1. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  2. A Novel Electric Bicycle Battery Monitoring System Based on Android Client

    Directory of Open Access Journals (Sweden)

    Chuanxue Song

    2017-01-01

    Full Text Available The battery monitoring system (BMS plays a crucial role in maintaining the safe operation of the lithium battery electric bicycle and prolonging the life of the battery pack. This paper designed a set of new battery monitoring systems based on the Android system and ARM single-chip microcomputer to enable direct management of the lithium battery pack and convenient monitoring of the state of the battery pack. The BMS realizes the goal of monitoring the voltage, current, and ambient temperature of lithium batteries, estimating the state of charge (SOC and state of health (SOH, protecting the battery from abuse during charging or discharging, and ensuring the consistency of the batteries by integrating the passive equalization circuit. The BMS was proven effective and feasible through several tests, including charging/discharging, estimation accuracy, and communication tests. The results indicated that the BMS could be used in the design and application of the electric bicycle.

  3. Physical Integration of a Photovoltaic-Battery System : A Thermal Analysis

    NARCIS (Netherlands)

    Vega Garita, V.E.; Ramirez Elizondo, L.M.; Bauer, P.

    2017-01-01

    Solar-battery systems are still expensive, bulky, and space consuming. To tackle these issues, we propose a novel device that combines all the components of a solar-battery system in one device. This device might help reduce installation cost compared to the current solar-battery systems as well as

  4. Model-based energy analysis of battery powered systems

    NARCIS (Netherlands)

    Jongerden, M.R.

    2010-01-01

    The use of mobile devices is often limited by the lifetime of the included batteries. This lifetime naturally depends on the battery's capacity and on the rate at which the battery is discharged. However, it also depends on the usage pattern, i.e., the workload, of the battery. When a battery is

  5. Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System

    Directory of Open Access Journals (Sweden)

    Shyang-Chyuan Fang

    2017-06-01

    Full Text Available The greenhouse gases and air pollution generated by extensive energy use have exacerbated climate change. Electric-bus (e-bus transportation systems help reduce pollution and carbon emissions. This study analyzed the minimization of construction costs for an all battery-swapping public e-bus transportation system. A simulation was conducted according to existing timetables and routes. Daytime charging was incorporated during the hours of operation; the two parameters of the daytime charging scheme were the residual battery capacity and battery-charging energy during various intervals of daytime peak electricity hours. The parameters were optimized using three algorithms: particle swarm optimization (PSO, a genetic algorithm (GA, and a PSO–GA. This study observed the effects of optimization on cost changes (e.g., number of e-buses, on-board battery capacity, number of extra batteries, charging facilities, and energy consumption and compared the plug-in and battery-swapping e-bus systems. The results revealed that daytime charging can reduce the construction costs of both systems. In contrast to the other two algorithms, the PSO–GA yielded the most favorable optimization results for the charging scheme. Finally, according to the cases investigated and the parameters of this study, the construction cost of the plug-in e-bus system was shown to be lower than that of the battery-swapping e-bus system.

  6. Methods and systems for thermodynamic evaluation of battery state of health

    Science.gov (United States)

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2014-12-02

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  7. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  8. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  9. Autonomous wind/solar power systems with battery storage

    Energy Technology Data Exchange (ETDEWEB)

    Protogeropoulos, C I

    1993-12-31

    The performance of an autonomous hybrid renewable energy system consisting of combined photovoltaic/wind power generation with battery storage is under evaluation in this thesis. Detailed mathematical analysis of the renewable components and the battery was necessary in order to establish the theoretical background for accurate simulation results. Model validation was achieved through experimentation. The lack of a sizing method to combine both hybrid system total cost and long-term reliability level was the result of an extended literature survey. The new achievements which are described in this research work refer to: - simplified modelling for the performance of amorphous-silicon photovoltaic panels for all solar irradiance levels. -development of a new current-voltage expression with respect to wind speed for wind turbine performance simulation. -establishment of the battery storage state of voltage, SOV, simulation algorithm for long-term dynamic operational conditions. The proposed methodology takes into account 8 distinct cases covering steady state and transient effects and can be used for autonomous system reliability calculations. -techno-economic evaluation of the size of the hybrid system components by considering both reliability and economic criteria as design parameters. Two sizing scenarios for the renewable components are examined : the average year method and the ``worst renewable`` month method. (Author)

  10. NONLINEAR DYNAMICAL SYSTEMS - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Philip Holmes

    2005-12-31

    This document is the final report on the work completed on DE-FG02-95ER25238 since the start of the second renewal period: Jan 1, 2001. It supplements the annual reports submitted in 2001 and 2002. In the renewal proposal I envisaged work in three main areas: Analytical and topological tools for studying flows and maps Low dimensional models of fluid flow Models of animal locomotion and I describe the progess made on each project.

  11. Battery-Less Electroencephalogram System Architecture Optimization

    Science.gov (United States)

    2016-12-01

    self-powered, adaptive data acquisition, subthreshold, internet of things 34 Peter Gadfort 301-394-0949Unclassified Unclassified Unclassified UU ii...desirable, such as for Internet of Things systems. The presented architecture is capable of low- power operation while maintaining a similar signal...the system will need to be harvested from the environment. There are several methods to harvest power from RF, solar , motion, and thermal. In this case

  12. Optimum sizing of wind-battery systems incorporating resource uncertainty

    International Nuclear Information System (INIS)

    Roy, Anindita; Kedare, Shireesh B.; Bandyopadhyay, Santanu

    2010-01-01

    The inherent uncertainty of the wind is a major impediment for successful implementation of wind based power generation technology. A methodology has been proposed in this paper to incorporate wind speed uncertainty in sizing wind-battery system for isolated applications. The uncertainty associated with the wind speed is incorporated using chance constraint programming approach. For a pre-specified reliability requirement, a deterministic equivalent energy balance equation may be derived from the chance constraint that allows time series simulation of the entire system. This results in a generation of the entire set of feasible design options, satisfying different system level constraints, on a battery capacity vs. generator rating diagram, also known as the design space. The proposed methodology highlights the trade-offs between the wind turbine rating, rotor diameter and the battery size for a given reliability of power supply. The optimum configuration is chosen on the basis of the minimum cost of energy (US$/kWh). It is shown with the help of illustrative examples that the proposed methodology is generic and flexible to incorporate alternate sub-component models. (author)

  13. State of health detection for Lithium ion batteries in photovoltaic system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2013-01-01

    Highlights: ► DC resistances of batteries. ► Fuzzy logic inference. ► SOH detection for battery. - Abstract: In many photovoltaic systems, rechargeable batteries are required to even out irregularities in solar irradiation. However, the health conditions of the batteries are crucial for the reliability of the overall system. In this paper, the equivalent DC resistances of Lithium ion battery cells of various health conditions during charging under different temperatures have been collected and the relationships between equivalent DC resistance, health condition and working temperature have been identified. The equivalent DC resistance can easily be obtained during the charging period of a battery by switching off the charging current periodically for a very short duration of time. A simple and effective battery charger with state of health (SOH) detection for Lithium ion battery cell has been developed based on the identified equivalent DC resistance. Experimental results are included to demonstrate the effectiveness of the proposed SOH determination scheme.

  14. Experimental lithium system. Final report

    International Nuclear Information System (INIS)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m 3 lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion

  15. Second life battery energy storage system for enhancing renewable energy grid integration

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.

    2015-01-01

    of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish...... electricity market for a whole year are used for validating the results....

  16. Operating conditions of batteries in off-grid renewable energy systems

    DEFF Research Database (Denmark)

    Svoboda, V.; Wenzl, H.; Kaiser, R.

    2007-01-01

    for batteries. Categories are defined in such a way that batteries belonging to the same category are subjected to similar operating conditions and a similar combination of stress factors. The results provide a comprehensive overview of battery operating conditions in existing off-grid renewable energy systems...

  17. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The

  18. Charging system and method for multicell storage batteries

    Science.gov (United States)

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  19. Polymeric membrane systems of potential use for battery separators

    Science.gov (United States)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  20. Model-based energy analysis of battery powered systems

    NARCIS (Netherlands)

    Jongerden, M.R.

    2010-01-01

    The use of mobile devices is often limited by the lifetime of the included batteries. This lifetime naturally depends on the battery’s capacity and on the rate at which the battery is discharged. However, it also depends on the usage pattern, i.e., the workload, of the battery. When a battery is

  1. Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems

    OpenAIRE

    Dulout , Jérémy; Anvari-Moghaddam , Amjad ,; Luna , Adriana; Jammes , Bruno; Alonso , Corinne; Guerrero , Josep ,

    2017-01-01

    International audience; This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also dis...

  2. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  3. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  4. Distributed Control of Battery Energy Storage Systems for Voltage Regulation in Distribution Networks with High PV Penetration

    DEFF Research Database (Denmark)

    Zeraati, Mehdi; Golshan, Mohamad Esmaeil Hamedani; Guerrero, Josep M.

    2018-01-01

    of their installed capacity whereas the second one modifies the BESs performance in terms of their state of charge (SoC) to prevent the excessive saturation or depletion of batteries. The proposed controller enables the effective use of storage capacity in different conditions. Finally, the simulation results based...... issues of distribution networks. In this paper, the battery energy storage (BES) systems are used in order to solve the voltage rise during the peak PV generation as well as the voltage drop while meeting the peak load. A coordinated control strategy is proposed to regulate the charge/discharge of BESs...

  5. Lunar power systems. Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified

  6. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  7. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ferdowsi

    2013-10-01

    Full Text Available Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs. An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite the need for extensive research in this field, the majority of research conducted on Li-ion battery packs and BMS are proprietary works conducted by manufacturers. The available literature, however, provides either general descriptions or detailed analysis of individual components of the battery system, and ignores addressing details of the overall system development. This paper addresses the development of an experimental research testbed for studying Li-ion batteries and their BMS design. The testbed can be configured in a variety of cell and pack architectures, allowing for a wide range of BMS monitoring, diagnostics, and control technologies to be tested and analyzed. General considerations that should be taken into account while designing Li-ion battery systems are reviewed and different technologies and challenges commonly encountered in Li-ion battery systems are investigated. This testbed facilitates future development of more practical and improved BMS technologies with the aim of increasing the safety, reliability, and efficiency of existing Li-ion battery systems. Experimental results of initial tests performed on the system are used to demonstrate some of the capabilities of the developed research testbed. To the authors

  8. Primary frequency regulation supported by battery storage systems in power systems dominated by renewable energy sources

    DEFF Research Database (Denmark)

    Turk, Ana; Sandelic, Monika; Noto, Giancarlo

    2018-01-01

    replaced by intermittent renewable generators. Therefore, maintaining system quality and stability in terms of power system frequency control is one of the major challenges that requires new resources and their system integration. Battery energy storage systems (BESS), as fast-acting energy storage systems...

  9. Monitoring electrolyte concentrations in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  10. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • A feasibility study of a hybrid solar–wind–battery system is carried out. • Techno-economic evaluation is conducted for this proposed system. • Thousands of cases are simulated to achieve an optimal system configuration. • The performance of the proposed system is analyzed in detail. • A sensitivity analysis on its load and renewable energy resource is performed. - Abstract: This paper presents a detailed feasibility study and techno-economic evaluation of a standalone hybrid solar–wind system with battery energy storage for a remote island. The solar radiation and wind data on this island in 2009 was recorded for this study. The HOMER software was employed to do the simulations and perform the techno-economic evaluation. Thousands of cases have been carried out to achieve an optimal autonomous system configuration, in terms of system net present cost (NPC) and cost of energy (COE). A detailed analysis, description and expected performance of the proposed system were presented. Moreover, the effects of the PV panel sizing, wind turbine sizing and battery bank capacity on the system’s reliability and economic performance were examined. Finally, a sensitivity analysis on its load consumption and renewable energy resource was performed to evaluate the robustness of economic analysis and identify which variable has the greatest impact on the results. The results demonstrate the techno-economic feasibility of implementing the solar–wind–battery system to supply power to this island

  11. Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Barney, P.; Ingersoll, D.; Jungst, R.; O' Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-24

    We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

  12. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs

  13. Final Focus Systems in Linear Colliders

    International Nuclear Information System (INIS)

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  14. Behavior Patterns, Origin of Problems and Solutions Regarding Hysteresis Phenomena in Complex Battery Systems

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Barreras, Jorge Varela; Stan, Ana-Irina

    2014-01-01

    . Therefore, an accurate knowledge of the hysteresis of OCV is vital for various applications and battery models. This is because currently Battery Management Systems (BMS) use the well-defined OCV-SoC representative curve for SoC estimation and power prediction. Particularly lithium-ion batteries with iron......One of the common phenomenona for most of the battery cell chemistries is hysteresis. Since an open circuit voltage (OCV) path is not identical for the charge and discharge of the battery cell at different states of charge (SoC) level, the battery cells show the hysteresis effect. Usually, the OCV...... i.e. voltage with zero current after previous charge is higher than the OCV after discharge at the same SoC level. It embodies the hysteresis of the battery cell. The OCV is principally subjected to previous operating condition and cannot be taken as self-regulating from the operating history...

  15. Development of battery management systems (BMS) for electric vehicles (EVs) in Malaysia

    OpenAIRE

    Salehen P.M.W.; Su’ait M.S.; Razali H.; Sopian K.

    2017-01-01

    Battery Management Systems (BMS) is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV) systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the...

  16. Development of novel strategies for enhancing the cycle life of lithium solid polymer electrolyte batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby D.; Urquidi-Macdonald, Mirna; Allcock, Harry; Engelhard, George; Bomberger, N.; Gao, L.; Olmeijer, D.

    2001-04-30

    Lithium/solid polymer electrolyte (Li/SPE) secondary batteries are under intense development as power sources for portable electronic devices as well as electric vehicles. These batteries offer high specific energy, high energy density, very low self-discharge rates, and flexibility in packaging; however, problems have inhibited their introduction into the marketplace. This report summarizes findings to examine processes that occur with Li/SPE secondary batteries upon cyclic charging/discharging. The report includes a detailed analysis of the impedance measured on the Li/SPE/IC and IC/SPE/IC systems. The SPE was a derivative of methoxyethoxyethoxyphosphazene (MEEP) with lithium triflate salt as the electrolyte, while the intercalated cathodes (IC) comprised mixtures of manganese dioxide, carbon powder, and MEEP as a binder. Studies on symmetrical Li/SPE/Li laminates show that cycling results in a significant expansion of the structure over the first few tens of cycles; however, no corresponding increase in the impedance was noted. The cycle life of the intercalation cathode was found to be very sensitive to the method of fabrication. Results indicate that the cycle life is due to the failure of the IC, not to the failure of the lithium/SPE interface. A pattern recognition neural network was developed to predict the cycle life of a battery from the charge/discharge characteristics.

  17. Investigation of lithium-thionyl chloride battery safety hazards. Final report 28 Sep 81-31 Dec 82

    Energy Technology Data Exchange (ETDEWEB)

    Attia, A.I.; Gabriel, K.A.; Burns, R.P.

    1983-01-01

    In the ten years since the feasibility of a lithium-thionyl chloride cell was first recognized (1) remarkable progress has been made in hardware development. Cells as large as 16,000 Ah (2) and batteries of 10.8 MWh (3) have been demonstrated. In a low rate configuration, energy densities of 500 to 600 Wh/kg are easily achieved. Even in the absence of reported explosions, safety would be a concern for such a dense energetic package; the energy density of a lithium-thionyl chloride cell is approaching that of dynamite (924 Wh/kg). In fact explosions have occurred. In general the hazards associated with lithium-thionyl chloride batteries may be divided into four categories: Explosions as a result of an error in battery design. Very large cells were in prototype development prior to a full appreciation of the hazards of the system. It is possible that some of the remaining safety issues are related to cell design; Explosions as a result of external physical abuse such as cell incineration and puncture; Explosions due to short circuiting which could lead to thermal runaway reactions. These problems appear to have been solved by changes in the battery design (4); and Expolsions due to abnormal electrical operation (i.e., charging (5) and overdischarging (6) and in partially or fully discharged cells on storage (7 and 8).

  18. Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model

    International Nuclear Information System (INIS)

    Xu Long; Wang Junping; Chen Quanshi

    2012-01-01

    Highlights: ► A novel extended Kalman Filtering SOC estimation method based on a stochastic fuzzy neural network (SFNN) battery model is proposed. ► The SFNN which has filtering effect on noisy input can model the battery nonlinear dynamic with high accuracy. ► A robust parameter learning algorithm for SFNN is studied so that the parameters can converge to its true value with noisy data. ► The maximum SOC estimation error based on the proposed method is 0.6%. - Abstract: Extended Kalman filtering is an intelligent and optimal means for estimating the state of a dynamic system. In order to use extended Kalman filtering to estimate the state of charge (SOC), we require a mathematical model that can accurately capture the dynamics of battery pack. In this paper, we propose a stochastic fuzzy neural network (SFNN) instead of the traditional neural network that has filtering effect on noisy input to model the battery nonlinear dynamic. Then, the paper studies the extended Kalman filtering SOC estimation method based on a SFNN model. The modeling test is realized on an 80 Ah Ni/MH battery pack and the Federal Urban Driving Schedule (FUDS) cycle is used to verify the SOC estimation method. The maximum SOC estimation error is 0.6% compared with the real SOC obtained from the discharging test.

  19. Control system considerations for an aluminum-air battery powered electric vehicle

    Science.gov (United States)

    Cox, L. E.; Hassman, G. V.; Post, S. F.

    1980-05-01

    Basic motor controller requirements and tradeoffs between 30 cell and 60 cell aluminum air battery systems were established. A sample controller design was evolved and basic characteristics were evaluated. Advantages of a 60 cell battery system over a 30 cell were found in the areas of control system costs, weights, and efficiency.

  20. High rate lithium-thionyl chloride battery development for undersea weapon propulsion applications. Revised. Final report 1 Sep 77-30 Jun 78

    Energy Technology Data Exchange (ETDEWEB)

    Merz, W.C.; Walk, C.R.

    1978-08-23

    This report describes the experimental results obtained in the development of a high rate lithium, thionyl chloride battery system. Initially, cell optimization studies were conducted with so-called neutral electrolyte, i.e., thionyl chloride containing equimolar quantities of LiCl and AlCl/sup 3/. This report is divided into four sections, Section I - Cell Performance in Neutral Electrolyte, Section II - Cell Performance in Acid Electrolyte, Section III - Discussions of Battery Characteristics and Section IV - Active Battery Considerations.

  1. Sizing procedures for sun-tracking PV system with batteries

    Directory of Open Access Journals (Sweden)

    Gerek Ömer Nezih

    2017-01-01

    Full Text Available Deciding optimum number of PV panels, wind turbines and batteries (i.e. a complete renewable energy system for minimum cost and complete energy balance is a challenging and interesting problem. In the literature, some rough data models or limited recorded data together with low resolution hourly averaged meteorological values are used to test the sizing strategies. In this study, active sun tracking and fixed PV solar power generation values of ready-to-serve commercial products are recorded throughout 2015–2016. Simultaneously several outdoor parameters (solar radiation, temperature, humidity, wind speed/direction, pressure are recorded with high resolution. The hourly energy consumption values of a standard 4-person household, which is constructed in our campus in Eskisehir, Turkey, are also recorded for the same period. During sizing, novel parametric random process models for wind speed, temperature, solar radiation, energy demand and electricity generation curves are achieved and it is observed that these models provide sizing results with lower LLP through Monte Carlo experiments that consider average and minimum performance cases. Furthermore, another novel cost optimization strategy is adopted to show that solar tracking PV panels provide lower costs by enabling reduced number of installed batteries. Results are verified over real recorded data.

  2. Sizing procedures for sun-tracking PV system with batteries

    Science.gov (United States)

    Nezih Gerek, Ömer; Başaran Filik, Ümmühan; Filik, Tansu

    2017-11-01

    Deciding optimum number of PV panels, wind turbines and batteries (i.e. a complete renewable energy system) for minimum cost and complete energy balance is a challenging and interesting problem. In the literature, some rough data models or limited recorded data together with low resolution hourly averaged meteorological values are used to test the sizing strategies. In this study, active sun tracking and fixed PV solar power generation values of ready-to-serve commercial products are recorded throughout 2015-2016. Simultaneously several outdoor parameters (solar radiation, temperature, humidity, wind speed/direction, pressure) are recorded with high resolution. The hourly energy consumption values of a standard 4-person household, which is constructed in our campus in Eskisehir, Turkey, are also recorded for the same period. During sizing, novel parametric random process models for wind speed, temperature, solar radiation, energy demand and electricity generation curves are achieved and it is observed that these models provide sizing results with lower LLP through Monte Carlo experiments that consider average and minimum performance cases. Furthermore, another novel cost optimization strategy is adopted to show that solar tracking PV panels provide lower costs by enabling reduced number of installed batteries. Results are verified over real recorded data.

  3. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Helm, R.; Irwin, J.

    1992-08-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We will outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We will discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread, bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, will be described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC will be given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC)

  4. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Helm, R.; Irwing, J.

    1992-01-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread , bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, are described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC are given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC). (Author) 16 refs., 4 tabs., 6 figs

  5. An electric vehicle propulsion system's impact on battery performance: An overview

    Science.gov (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  6. Studies on Equalization Strategy of Battery Management System for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nan Jinrui

    2013-02-01

    Full Text Available Battery management system is one of the key technologies strengthening practical utilization and industrialization of electric vehicles. As an integral part of the battery management system, equalization system played an important role in development of electric vehicles. Based on the analysis of the key technologies of electric vehicle and the development trend of battery management system, a systematic method for bi-directional equalization of lithium ion battery pack is presented in this paper. The basic principle utilizes a Flyback Converter with a multiwinding transformer. Equalization with voltage is employed to balance the cell voltage of battery pack. In order to ensure the accuracy requirements of the cell voltage, a voltage measurement scheme based on analog multiplexers using photoelectric relay was adopted in this unit to detect the voltage of battery one by one. Experimental results show that the proposed battery equalization scheme can not only enhance the uniformity of power battery pack, but also improve the life of the battery as a whole.

  7. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Jammes, Bruno; Alonso, Corinne

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC...... microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also discussed through a probabilistic analysis on some years of real data from the ADREAM photovoltaic building of the LAAS...

  8. Engine Tune-Up Service. Unit 1: Battery and Cranking System. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson-Roberts, Ludy; And Others

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 1, Battery and Cranking System. Focus of the posttests is the testing of the battery and cranking system. Four multiple choice posttests are provided, one for each of the performance objectives contained in the unit. (No answer keys are provided.)…

  9. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    OpenAIRE

    Daniel Akinyele; Juri Belikov; Yoash Levron

    2017-01-01

    Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an ove...

  10. Rechargeable MnO/sub 2/ battery systems

    International Nuclear Information System (INIS)

    Wroblowa, H.S.

    1987-01-01

    Sixty years after Volta used for the first time (1800) zinc as an electrode, Leclanche patented a MnO/sub 2/NH/sub 4/Cl/Zn cell with a zinc rod negative, which was then shortly replaced by the amalgamated zinc can. Although the original patents for wet and dry alkaline systems were filed already towards the end of 19th and during the first two decades of the 20th century, the first alkaline commercial battery (Herbert's crown cell), appeared only in the early fifties. Since then the introduction of large area zinc electrodes and voluminous work leading to the development of positive electrodes with highest possible reactivity, i.e., capable of releasing a maximum charge at a maximum voltage difference between terminals over longest periods of time, coupled with growing demands of the electronic industries led to the emergence of a several billion dollar primary cell market of which alkaline MnO/sub 2//Zn cells are capturing a rapidly increasing share and are expected to fully dominate the dry cell market. Their better performance/cost ratio compensates for a cost higher than that of their Leclanche type counterparts. The prospects of better utilization of this more expensive system, problems of energy wste4 and of waste disposal of the ever increasing numbers of throw-away batteries, prompted numerous attempts to produce a rechargeable MnO/sub 2//Zn system capable not only of high reactivity, i.e., high power drains, but also applicable for several commercial uses

  11. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  12. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  13. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel...... a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operating window. The second is a non-linear static model, while the third takes into account first......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  14. Sodium-sulfur battery development. Phase VB final report, October 1, 1981--February 28, 1985

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-04-01

    This report describes the technical progress made under Contract No. DE-AM04-79CH10012 between the U.S. Department of Energy, Ford Aerospace & Communications Corporations and Ford Motor Company, for the period 1 October 1981 through 28 February 1985, which is designated as Phase VB of the Sodium-Sulfur Battery Development Program. During this period, Ford Aerospace held prime technical responsibility and Ford Motor Company carried out supporting research. Ceramatec, Inc., was a major subcontractor to Ford Aerospace for electrolyte development and production.

  15. Comparative techno-economic analysis of hybrid micro-grid systems utilizing different battery types

    International Nuclear Information System (INIS)

    Ciez, Rebecca E.; Whitacre, J.F.

    2016-01-01

    Highlights: • Comparative analysis of 3 battery chemistries in microgrid storage application. • At discount rates >1%, diesel-only generation still cheapest electricity option. • Optimal battery chemistry highly dependent on discount rate. • For discount rates <4%, lead acid is the cheapest storage options. • High energy density li-ion the cheapest storage option for discount rates >4%. - Abstract: A systems-level lifetime cost-of-use optimization model was applied to a hypothetical hybrid off-grid power system to compare the impacts of different battery technologies. Specifically, a time-step battery degradation model was used to account for unit degradation over a 20-year system lifetime for three different batteries. Variables examined included: battery type, allowed state of charge swing during cycling, number of battery replacements, fractional renewable energy requirements, and applied discount rate. Our analyses show that storage packs with high energy, low cost lithium-ion cells have the potential to compete with a non-renewable solution in some cases. The discount rate also proves to be significant in determining the cost competitiveness of the hybrid systems: at low discount rates, the levelized cost of electricity (LCOE) is only slightly higher than diesel generation, with costs diverging as the discount rate increases. The discount rate also determines which battery technology delivers the lowest cost of electricity: lead acid batteries are favorable at low rates, while high-energy lithium-ion batteries deliver lower cost electricity at higher rates. Similarly, market forces, like fuel or battery price changes, feed-in tariffs, or carbon taxes, required to trigger a switch to a hybrid system vary substantially with the discount rate.

  16. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  17. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  18. Modular battery design for reliable, flexible and multi-technology energy storage systems

    International Nuclear Information System (INIS)

    Rothgang, Susanne; Baumhöfer, Thorsten; Hoek, Hauke van; Lange, Tobias; De Doncker, Rik W.; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Collection of existing battery topologies in electric vehicles. • Analysis of load profiles and the power consumption for electric vehicles. • Composition of battery packs and their passive components. • Modular, hybrid battery architecture with a dc-link. - Abstract: With large scale battery systems being more and more used in demanding applications regarding lifetime, performance and safety, it is of great importance to utilize not only cells with a high cyclic and calendric lifetime but also to optimize the whole system architecture. The aim of this work is therefore, to highlight the benefits of a modular system architecture allowing the use of hybrid battery systems combining high power and high energy cells in a multi-technology system. To achieve an optimized performance, efficiency and lifetime for an electric vehicle the complete drive train topology has to be taken into account instead of optimizing one of the components individually. Consequently, the topic will be analyzed from the system’s point of view, addressing in particular the modularization of the battery as well as the power electronics needed to do so. It will be shown that a highly flexible battery system can be realized by dc-to-dc converters between a modular, hybrid battery system and the drive inverter. By the dc-to-dc converters the battery output voltages and the inverter input voltages are decoupled. Hence, the battery’s topology can be chosen unrestrictedly within a wide range and easily be interconnected to a common dc-link of a different voltage. The benefits of this flexibility will be analyzed in detail showing especially how the lifetime of the battery system can be improved and the impact on system weight

  19. Hybrid battery/supercapacitor energy storage system for the electric vehicles

    Science.gov (United States)

    Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy

    2018-01-01

    Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.

  20. A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems

    International Nuclear Information System (INIS)

    Klee Barillas, Joaquín; Li, Jiahao; Günther, Clemens; Danzer, Michael A.

    2015-01-01

    Highlights: • Description of state observers for estimating the battery’s SOC. • Implementation of four estimation algorithms in a BMS. • Reliability and performance study of BMS regarding the estimation algorithms. • Analysis of the robustness and code properties of the estimation approaches. • Guide to evaluate estimation algorithms to improve the BMS performance. - Abstract: To increase lifetime, safety, and energy usage battery management systems (BMS) for Li-ion batteries have to be capable of estimating the state of charge (SOC) of the battery cells with a very low estimation error. The accurate SOC estimation and the real time reliability are critical issues for a BMS. In general an increasing complexity of the estimation methods leads to higher accuracy. On the other hand it also leads to a higher computational load and may exceed the BMS limitations or increase its costs. An approach to evaluate and verify estimation algorithms is presented as a requisite prior the release of the battery system. The approach consists of an analysis concerning the SOC estimation accuracy, the code properties, complexity, the computation time, and the memory usage. Furthermore, a study for estimation methods is proposed for their evaluation and validation with respect to convergence behavior, parameter sensitivity, initialization error, and performance. In this work, the introduced analysis is demonstrated with four of the most published model-based estimation algorithms including Luenberger observer, sliding-mode observer, Extended Kalman Filter and Sigma-point Kalman Filter. The experiments under dynamic current conditions are used to verify the real time functionality of the BMS. The results show that a simple estimation method like the sliding-mode observer can compete with the Kalman-based methods presenting less computational time and memory usage. Depending on the battery system’s application the estimation algorithm has to be selected to fulfill the

  1. State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model

    Directory of Open Access Journals (Sweden)

    Hongjie Wu

    2013-01-01

    Full Text Available State of charge (SOC is a critical factor to guarantee that a battery system is operating in a safe and reliable manner. Many uncertainties and noises, such as fluctuating current, sensor measurement accuracy and bias, temperature effects, calibration errors or even sensor failure, etc. pose a challenge to the accurate estimation of SOC in real applications. This paper adds two contributions to the existing literature. First, the auto regressive exogenous (ARX model is proposed here to simulate the battery nonlinear dynamics. Due to its discrete form and ease of implemention, this straightforward approach could be more suitable for real applications. Second, its order selection principle and parameter identification method is illustrated in detail in this paper. The hybrid pulse power characterization (HPPC cycles are implemented on the 60AH LiFePO4 battery module for the model identification and validation. Based on the proposed ARX model, SOC estimation is pursued using the extended Kalman filter. Evaluation of the adaptability of the battery models and robustness of the SOC estimation algorithm are also verified. The results indicate that the SOC estimation method using the Kalman filter based on the ARX model shows great performance. It increases the model output voltage accuracy, thereby having the potential to be used in real applications, such as EVs and HEVs.

  2. The stabilisation of final focus system

    Indian Academy of Sciences (India)

    The StaFF (stabilisation of final focus) system will use interferometers to monitor the relative ... quadrupole magnets will be the most demanding application, where mutual and beam- ... interferometers to measure lines of a geodetic network to record relative motion between two beam ... coupled interferometer design.

  3. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  4. Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety Standard

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    Temperature excursions and non-uniformity of the temperature inside the battery systems are the main concern and drawback for any attempt to scale-up battery cells to the larger sizes as required for high power applications. The applications may include electric generating stations, substations, ...

  5. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    NARCIS (Netherlands)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.; Hansen, René Rydhof; Larsen, K.G.; Sankaranarayanan, Sriram; Vicario, Enrico

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact of

  6. Model-Based Design and Integration of Large Li-ion Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  7. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...

  8. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user......The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric......'s energy consumption during a period of one year. Furthermore, simulations were performed considering real data of PV generation, consumption, prices taken from the Spanish market and costs of battery and photovoltaic systems....

  9. A VRLA battery simulation model

    International Nuclear Information System (INIS)

    Pascoe, Phillip E.; Anbuky, Adnan H.

    2004-01-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet

  10. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  11. Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft

    Science.gov (United States)

    Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae

    2017-06-01

    In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.

  12. Hybrid photovoltaic-diesel-battery systems for remote energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines and battery energy storage are powering isolated mountain lodges, information centres in nature parks, isolated farms or dwellings all over Europe. A total of 300000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaics, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilisation of the electric energy produced by the PV generator. (orig.) 8 refs.

  13. A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems

    International Nuclear Information System (INIS)

    Tan, Chee Wei; Green, Tim C.; Hernandez-Aramburo, Carlos A.

    2010-01-01

    This paper presents a stochastic simulation using Monte Carlo technique to size a battery to meet dual objectives of demand shift at peak electricity cost times and outage protection in BIPV (building integrated photovoltaic) systems. Both functions require battery storage and the sizing of battery using numerical optimization is popularly used. However, the weather conditions, outage events and demand peaks are not deterministic in nature. Therefore, the sizing of battery storage capacity should also be based on a probabilistic approach. The Monte Carlo simulation is a rigorous method to sizing BIPV system as it takes into account a real building load profiles, the weather information and the local historical outage distribution. The simulation is split into seasonal basis for the analysis of demand shifting and outage events in order to match the seasonal weather conditions and load profiles. Five configurations of PV (photovoltaic) are assessed that cover different areas and orientations. The simulation output includes the predicted PV energy yield, the amount of energy required for demand management and outage event. Therefore, consumers can base sizing decisions on the historical data and local risk of outage statistics and the success rate of meeting the demand shift required. Finally, the economic evaluations together with the sensitivity analysis and the assessment of customers' outage cost are discussed.

  14. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    Science.gov (United States)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  15. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  16. Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

    Directory of Open Access Journals (Sweden)

    Jorge Nájera

    2017-10-01

    Full Text Available This paper focuses on Hybrid Energy Storage Systems (HESS, consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC, for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries, an EDLC pack, up to two DC-DC converters (depending on the topology, and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia. Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass, using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

  17. Electronic nicotine delivery system (ENDS) battery-related burns presenting to US emergency departments, 2016.

    Science.gov (United States)

    Corey, Catherine G; Chang, Joanne T; Rostron, Brian L

    2018-03-05

    Currently, an estimated 7.9 million US adults use electronic nicotine delivery systems (ENDS). Although published reports have identified fires and explosions related to use of ENDS since 2009, these reports do not provide national estimates of burn injuries associated with ENDS batteries in the US. We analyzed nationally representative data provided in the National Electronic Injury Surveillance System (NEISS) to estimate the number of US emergency department (ED) visits for burn injuries associated with ENDS batteries. We reviewed the case narrative field to gain additional insights into the circumstances of the burn injury. In 2016, 26 ENDS battery-related burn cases were captured by NEISS, which translates to a national estimate of 1007 (95%CI: 357-1657) injuries presenting in US EDs. Most of the burns were thermal burns (80.4%) and occurred to the upper leg/lower trunk (77.3%). Examination of the case narrative field indicated that at least 20 of the burn injuries occurred while ENDS batteries were in the user's pocket. Our study provides valuable information for understanding the current burden of ENDS battery-related burn injuries treated in US EDs. The nature and circumstances of the injuries suggest these incidents were unintentional and would potentially be prevented through battery design requirements, battery testing standards and public education related to ENDS battery safety.

  18. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  19. Effect of tariffs on the performance and economic benefits of PV-coupled battery systems

    International Nuclear Information System (INIS)

    Parra, David; Patel, Martin K.

    2016-01-01

    Highlights: • Pb-acid and Li-ion batteries are compared under three different retail tariffs. • The battery ageing, i.e. capacity and discharge capability reduction is simulated. • A dynamic tariff (1-h resolution) increases the battery discharge value up to 28%. • A Li-ion cost of 375 CHF/kW h is required for Geneva for PV energy time-shift. • This requirement becomes 500 CHF/kW h if demand peak-shaving is also performed. - Abstract: The use of batteries in combination with PV systems in single homes is expected to become a widely applied energy storage solution. Since PV system cost is decreasing and the electricity market is constantly evolving there is marked interest in understanding the performance and economic benefits of adding battery systems to PV generation under different retail tariffs. The performance of lead-acid (PbA) and lithium-ion (Li-ion) battery systems in combination with PV generation for a single home in Switzerland is studied using a time-dependant analysis. Firstly, the economic benefits of the two battery types are analysed for three different types of tariffs, i.e. a dynamic tariff based on the wholesale market (one price per hour for every day of the year), a flat rate and time-of-use tariff with two periods. Secondly, the reduction of battery capacity and annual discharge throughout the battery lifetime are simulated for PbA and Li-ion batteries. It was found that despite the levelised value of battery systems reaches up to 28% higher values with the dynamic tariff compared to the flat rate tariff, the levelised cost increases by 94% for the dynamic tariff, resulting in lower profitability. The main reason for this is the reduction of equivalent full cycles performed with by battery systems with the dynamic tariff. Economic benefits also depend on the regulatory context and Li-ion battery systems were able to achieve internal rate of return (IRR) up to 0.8% and 4.3% in the region of Jura (Switzerland) and Germany due to

  20. Characterization of lithium batteries for application to photovoltaic systems

    International Nuclear Information System (INIS)

    Guzman Ortiz, S.

    2015-01-01

    This master's thesis addresses the characterization of four different types of Battery technologies; the li-ion, the LiFePO4, the lead crystal and the lead acid. Because these devices are used in electric applications, calculations were made to assess the capacities and energies of the batteries while at different discharges ratios in runs from 5 to 50 hours, which are the most common on the photovoltaic sector. Also, we observed the behavior of the batteries when put through a rise of temperature to measure the fluctuations in the voltage, capacity and energy. Tests were performed at constant power to observe the behavior of the discharge intensity. When making the comparisons of the capacity and the energy, the LiFePO4 battery proved to be the best and better behavior in the tests at constant discharge rates. (Author)

  1. Naval application of battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Kim, N. H.; Kim, T. W.; Son, H. M.; Suh, K. Y.

    2007-01-01

    Past civilian N.S. Savanna (80 MW t h), Otto-Hahn (38 MW t h) and Mutsu (36 MW t h) experienced stable operations under various sea conditions to prove that the reactors were stable and suitable for ship power source. Russian nuclear icebreakers such as Lenin (90 MW t h x2), Arukuchika (150 MW t h x2) showed stable operations under severe conditions during navigation on the Arctic Sea. These reactor systems, however, should be made even more efficient, compact, safe and long life, because adding support from the land may not be available on the sea. In order to meet these requirements, a compact, simple, safe and innovative integral system named Naval Application Vessel Integral System (NAVIS) is being designed with such novel concepts as a primary liquid metal coolant, a secondary supercritical carbon dioxide (SCO 2 ) coolant, emergency reactor cooling system, safety containment and so on. NAVIS is powered by Battery Optimized Reactor Integral System (BORIS). An ultra-small, ultra-long-life, versatile-purpose, fast-spectrum reactor named BORIS is being developed for a multi-purpose application such as naval power source, electric power generation in remote areas, seawater desalination, and district heating. NAVIS aims to satisfy special environment on the sea with BORIS using the lead (Pb) coolant in the primary system. NAVIS improves the economical efficiency resorting to the SCO 2 Brayton cycle for the secondary system. BORIS is operated by natural circulation of Pb without needing pumps. The reactor power is autonomously controlled by load-following operation without an active reactivity control system, whereas B 4 C based shutdown control rod is equipped for an emergency condition. SCO 2 promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. Therefore, the SCO 2 Brayton

  2. Comparative study of a small size wind generation system efficiency for battery charging

    Directory of Open Access Journals (Sweden)

    Mayouf Messaoud

    2013-01-01

    Full Text Available This paper presents an energetic comparison between two control strategies of a small size wind generation system for battery charging. The output voltage of the direct drive PMSG is connected to the battery through a switch mode rectifier. A DC-DC boost converter is used to regulate the battery bank current in order to achieve maximum power from the wind. A maximum powertracking algorithm calculates the current command that corresponds to maximum power output of the turbine. The DC-DC converter uses this current to calculate the duty cycle witch is necessary to control the pulse width modulated (PWM active switching device (IGPT. The system overview and modeling are presented including characteristics of wind turbine, generator, batteries, power converter, control system, and supervisory system. A simulation of the system is performed using MATLAB/SIMULINK.

  3. Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management

    Science.gov (United States)

    Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.

    2008-09-01

    A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.

  4. Functional Analysis of Battery Management Systems using Multi-Cell HIL Simulator

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Swierczynski, Maciej Jozef; Schaltz, Erik

    2015-01-01

    Developers and manufacturers of Battery Management Systems (BMSs) require extensive testing of controller HW and SW, such as analog front-end (AFE) and performance of generated control code. In comparison with tests conducted on real batteries, tests conducted on hardware-in-the-loop (HIL......) simulator may be more costant time effective, easier to reproduce and safer beyond the normal range of operation, especially at early stages in the development process or during fault simulation. In this paper a li-ion battery (LIB) electro-thermal multicell model coupled with an aging model is designed......, characterized and validated based on experimental data, converted to C code and emulated in real-time with a dSpace HIL simulator. The BMS to be tested interacts with the emulated battery pack as if it was managing a real battery pack. BMS functions such as protection, measuring of current, voltage...

  5. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...... if the batteries are able to meet several performance requirements, which are application dependent. Furthermore, for the VPP, the degradation or failure of the interconnected BESS can lead to costly downtime. Thus, an accurate estimation of the battery cells lifetime becomes mandatory. However, lifetime...

  6. Development of automotive battery systems capable of surviving modern underhood environments

    Science.gov (United States)

    Pierson, John R.; Johnson, Richard T.

    The starting, lighting, and ignition (SLI) battery in today's automobile typically finds itself in an engine compartment that is jammed with mechanical, electrical, and electronic devices. The spacing of these devices precludes air movement and, thus, heat transfer out of the compartment. Furthermore, many of the devices, in addition to the internal combustion engine, actually generate heat. The resulting underhood environment is extremely hostile to thermally-sensitive components, especially the battery. All indications point to a continuation of this trend towards higher engine-compartment temperatures as future vehicles evolve. The impact of ambient temperature on battery life is clearly demonstrated in the failure-mode analysis conducted by the Battery Council International in 1990. This study, when combined with additional failure-mode analyses, vehicle systems simulation, and elevated temperature life testing, provides insight into the potential for extension of life of batteries. Controlled fleet and field tests are used to document and quantify improvements in product design. Three approaches to battery life extension under adverse thermal conditions are assessed, namely: (i) battery design; (ii) thermal management, and (iii) alternative battery locations. The advantages and disadvantages of these approaches (both individually and in combination) for original equipment and aftermarket applications are explored.

  7. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids

    International Nuclear Information System (INIS)

    Purvins, Arturs; Papaioannou, Ioulia T.; Debarberis, Luigi

    2013-01-01

    Highlights: ► Battery system application in demand smoothening in distribution grids is analysed. ► Five European countries are studied with and without high photovoltaic deployment. ► A sensitivity analysis for different battery system parameters is performed. ► A simple battery system management is sufficient for low demand smoothening. ► More elaborate management is required for high demand smoothening. - Abstract: This article analyses in technical terms the application of battery-based storage systems for household-demand smoothening in electricity-distribution grids. The analysis includes case studies of Denmark, Portugal, Greece, France and Italy. A high penetration of photovoltaic systems in distribution grids is considered as an additional scenario. A sensitivity analysis is performed in order to examine the smoothening effect of daily demand profiles for different configurations of the battery system. In general, battery-storage systems with low rated power and low battery capacity can smooth the demand sufficiently with the aid of a simple management process. For example, with 1 kW of peak demand, a 30–45% decrease in the variability of the daily demand profile can be achieved with a battery system of 0.1 kW rated power and up to 0.6 kW h battery capacity. However, further smoothening requires higher battery-system capacity and power. In this case, more elaborate management is also needed to use the battery system efficiently.

  8. Two novel techniques for increasing energy efficiency of photovoltaic-battery systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2015-01-01

    Highlights: • Two novel techniques for increasing the energy efficiency of PV-battery systems. • Practically, 27% increase in the energy efficiency of PV-battery systems. • Novel proposed DC/PWM inverter for substituting conventional primary DC/DC converters. • Presenting theoretical, simulation & experimental results to verify the above claims. - Abstract: A photovoltaic (PV)-battery power source consists of a PV panel, a primary DC/DC converter, and a battery or a batteries bank. It is generally used to provide electric energy for local consumers such as buildings. Maximum power point tracking (MPPT) schemes cannot be applied to it because the PV panel output current is only determined by the state of charge (SOC) of the battery. In this study, two novel techniques are proposed to increase the energy efficiency of PV-battery power sources. Replacing the primary DC/DC converter with a novel proposed DC/PWM inverter, and decomposing the PV panel into a set of parallel homogenous configured PV modules are the two proposed techniques. It is shown that the implementation of each technique effectively increases the energy efficiency of PV-battery power sources. The two techniques are combined to each other to implement a new PV-battery power source. It is proved that the energy efficiency of the new version is significantly more than conventional version. Simulated results performed in MATLAB/Proteus 6 verify an increase of 29% in the energy efficiency. Four PV-battery power sources have been built, and comparative experimental results are presented that verify an increase of 27% in the energy efficiency.

  9. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    Science.gov (United States)

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  10. Hybrid Lithium-ion Capacitor / Lithium-ion Battery System for Extended Performance

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed task will involve the design of a hybrid power system with lithium-ion (li-ion) capacitors (LICs), li-ion batteries and solar cells. The challenge in...

  11. Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell

    Science.gov (United States)

    Jossen, Andreas; Garche, Juergen; Doering, Harry; Goetz, Markus; Knaupp, Werner; Joerissen, Ludwig

    Hybrid systems, based on a lead-acid battery and a proton-exchange membrane fuel cell (PEMFC) give the possibility to combine the advantages of both technologies. The benefits for different applications are discussed and the practical realisation of such systems is shown. Furthermore a numerical model for such a hybrid system is described and results are shown and discussed. The results show that the combination of lead-acid batteries and PEMFC shows advantages in case of applications with high peak power requirements (i.e. electric scooter) and applications where the fuel cell is used as auxiliary power supply to recharge the battery. The high efficiency of fuel cells at partial load operation results in a good fuel economy for recharging of lead-acid batteries with a fuel cell system.

  12. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  13. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  14. Computational analysis of battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Hwang, J. S.; Son, H. M.; Jeong, W. S.; Kim, T. W.; Suh, K. Y.

    2007-01-01

    Battery Optimized Reactor Integral System (BORIS) is being developed as a multi-purpose fast spectrum reactor cooled by lead (Pb). BORIS is an integral optimized reactor with an ultra-long life core. BORIS aims to satisfy various energy demands maintaining inherent safety with the primary coolant Pb, and improving economics. BORIS is being designed to generate 23 MW t h with 10 MW e for at least twenty consecutive years without refueling and to meet the Generation IV Nuclear Energy System goals of sustainability, safety, reliability, and economics. BORIS is conceptualized to be used as the main power and heat source for remote areas and barren lands, and also considered to be deployed for desalinisation purpose. BORIS, based on modular components to be viable for rapid construction and easy maintenance, adopts an integrated heat exchanger system operated by natural circulation of Pb without pumps to realize a small sized reactor. The BORIS primary system is designed through an optimization study. Thermal hydraulic characteristics during a reactor steady state with heat source and sink by core and heat exchanger, respectively, have been carried out by utilizing a computational fluid dynamics code and hand calculations based on first principles. This paper analyzes a transient condition of the BORIS primary system. The Pb coolant was selected for its lower chemical activity with air or water than sodium (Na) and good thermal characteristics. The reactor transient conditions such as core blockage, heat exchanger failure, and loss of heat sink, were selected for this study. Blockage in the core or its inlet structure causes localized flow starvation in one or several fuel assemblies. The coolant loop blockages cause a more or less uniform flow reduction across the core, which may trigger coolant temperature transient. General conservation equations were applied to model the primary system transients. Numerical approaches were adopted to discretized the governing

  15. Optimised operation of an off-grid hybrid wind-diesel-battery system using genetic algorithm

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2016-01-01

    Highlights: • Diesel generator’s operation is optimised in a hybrid wind-diesel-battery system. • Optimisation is performed using wind speed and load demand forecasts. • The objective is to maximise wind energy utilisation with limited battery storage. • Physical modelling approach (Simscape) is used to verify mathematical model. • Sensitivity analyses are performed with synthesised wind and load forecast errors. - Abstract: In an off-grid hybrid wind-diesel-battery system, the diesel generator is often not utilised efficiently, therefore compromising its lifetime. In particular, the general rule of thumb of running the diesel generator at more than 40% of its rated capacity is often unmet. This is due to the variation in power demand and wind speed which needs to be supplied by the diesel generator. In addition, the frequent start-stop of the diesel generator leads to additional mechanical wear and fuel wastage. This research paper proposes a novel control algorithm which optimises the operation of a diesel generator, using genetic algorithm. With a given day-ahead forecast of local renewable energy resource and load demand, it is possible to optimise the operation of a diesel generator, subjected to other pre-defined constraints. Thus, the utilisation of the renewable energy sources to supply electricity can be maximised. Usually, the optimisation studies of a hybrid system are being conducted through simple analytical modelling, coupled with a selected optimisation algorithm to seek the optimised solution. The obtained solution is not verified using a more realistic system model, for instance the physical modelling approach. This often led to the question of the applicability of such optimised operation being used in reality. In order to take a step further, model-based design using Simulink is employed in this research to perform a comparison through a physical modelling approach. The Simulink model has the capability to incorporate the electrical

  16. Investigation on a hydrogel based passive thermal management system for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Sijie; Zhao, Rui; Liu, Jie; Gu, Junjie

    2014-01-01

    An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. - Highlights: • A hydrogel thermal management system (TMS) is proposed for Li-ion battery. • It is found that the heat from internal resistance predominates at high discharge rate. • Effectiveness of hydrogel in controlling cell temperature is proved. • Battery equipped with hydrogel TMS is safer at continuous high rate cycle test. • The capacity fading rate of battery pack decreases when hydrogel TMS is implemented

  17. Stochastic Optimisation of Battery System Operation Strategy under different Utility Tariff Structures

    OpenAIRE

    Erdal, Jørgen Sørgård

    2017-01-01

    This master thesis develops a stochastic optimisation software for household grid-connected batteries combined with PV-systems. The objective of the optimisation is to operate the battery system in order to minimise the costs of the consumer, and it was implemented in MATLAB using a self-written stochastic dynamic programming algorithm. Load was considered as a stochastic variable and modelled as a Markov Chain. Transition probabilities between time steps were calculated using historic load p...

  18. SatisFactory Final System Evaluation Report

    OpenAIRE

    Sunlight SA

    2018-01-01

    The present document is a deliverable of the SatisFactory project, funded by the European Commission’s Directorate-General for Research and Innovation (DG RTD), under its Horizon 2020 Research and innovation programme (H2020). The main objective of this deliverable is to report on the SatisFactory Final System Evaluation, with regards to the industrial pilots at COMAU and SUNLIGHT. The evaluation of SatisFactory platform is based on the implementation of the business scenarios where each tool...

  19. Structures of battery- and energy management systems using lead-acid batteries and ultracaps; Strukturen von Batterie- und Energiemanagementsystemen mit Bleibatterien und Ultracaps

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, D.

    2007-07-01

    The publication presents methods of damage-free operation of lead batteries in electric road vehicles. The original charging method used in the citySTROMer car was based on the total voltage, causing permanent overload and fast ageing of modules. The charge state of the vehicle is defined on the basis of the residual charge state, a charge balance, and an evaluation of the temperature-compensated minimum module voltage. The time when current limiting is necessary is recognized reliably, and the charge state indicator works reliably soon after starting. The vehicle has an integrated power-assist store. Ultracap modules of various capacities were characterized in the laboratory. A variant was constructed in which the battery is discharged permanently with average driving current while the ultracap is used for making up the difference to the load at a given moment. The load cases for power-assist were identified on the basis of real driving cycles. The system can be described as an onboard dual-voltage system. The higher voltage of the ultracap provides higher power for acceleration. The availability of the ultracap is ensured in 90 percent of all accelerations. The first battery set installed in the car is now in its fourth winter, with a mileage of nearly 7000 km. In March 2006, 63 Ah were recorded in battery driving cycle in urban traffic at temperatures below freezing point. After commissioning in May 2002, 71 Ah were recorded. [German] Die vorliegende Arbeit entwickelt Verfahren zum schaedigungsfreien Betrieb von Bleibatterien in elektrischen Strassenfahrzeugen. Das urspruenglich im untersuchten citySTROMer eingesetzte Ladeverfahren war an der Gesamtspannung orientiert und hat Module hoeherer Spannungslage ueberladen. Die permanente Ueberladung fuehrt zu einem sehr schnellen Alterungsprozess. Die Ladezustandsbestimmung im Fahrzeug erfolgt ueber die Bestimmung des Restladegrades, eine Ladungsbilanzierung und die Auswertung der temperaturkompensierten

  20. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  1. Preventive maintenance basis: Volume 24 -- Battery -- flooded lead-acid (lead-calcium, lead antimony, plante). Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-12-01

    US nuclear power plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This document provides a program of preventive maintenance tasks suitable for application to flooded lead-acid batteries. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. This document provides a program of preventive maintenance (PM) tasks suitable for application to flooded lead-acid batteries. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, system engineers, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs

  2. Impact Safety Control Strategy for the Battery System of an Example Electric Bus

    Directory of Open Access Journals (Sweden)

    Zhen-po Wang

    2015-01-01

    Full Text Available This paper proposes a side impact safety control strategy for the battery system, aiming at defusing the hazards of unacceptable behaviors of the battery system such as high-voltage hazards. Based on some collision identification metrics, a side impact discrimination algorithm and a side impact severity algorithm are developed for electric buses. Based on the study on the time to break for power battery, the side impact discrimination algorithm response time is about 20 ms posing a great challenge to the side impact discrimination algorithm. At the same time, the reliability of the impact safety control strategy developed in this paper is evaluated for other plausible side impact signals generated by finite element analysis. The results verify that the impact safety control strategy exhibits robust performance and is able to trigger a breaking signal for power battery system promptly and accurately.

  3. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

    Directory of Open Access Journals (Sweden)

    Jens Noack

    2016-08-01

    Full Text Available A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

  4. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Wu, Yue

    2014-01-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling

  5. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    Science.gov (United States)

    Wang, Zhuoran; Wu, Yue

    2014-03-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling.

  6. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-31

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  7. Average Behavior of Battery - Electric Vehicles for Distributed Energy System Studies

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben

    2010-01-01

    The increase of focus on electric vehicles (EVs) as distributed energy resources calls for new concepts of aggregated models of batteries. Despite the developed battery models for EVs applications, when looking at energy storage scenarios using EVs, both geographical-temporal aspects and battery...... conditions. The obtained results show that EV fleets are non-linear time-variant systems which however can be described with good approximation taking into account a number of variables such as number of cycles, temperature, depth-of-discharge and current rates....

  8. How the system approach is determining automotive battery design and use

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, J [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg); Stephany, J M [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg); Sheppelman, T [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg)

    1993-01-29

    Today, the battery in a vehicle system is specific and designed as a single, stand-alone vehicle product. Traditionally, customer specifications were the driving force behind battery design and application requirements. This method is not able to comprehend the fluctuating requirements of real-time, vehicle systems. Growing competition in the automotive market is increasing customer needs and expectations in regards to cost, weight, size efficiency, time-to-market, and quality of the products and systems. System engineering is a service that Delco Remy, as an electrical power system supplier, offers to help their customers secure gains in the market place. System development and application engineering is essential for the development of performance-optimized components that meet the systems and total vehicle cost, reliability and timing objectives. The battery integration must be managed through the electrical power system during the complete vehicle development process in order to increase ultimately customer satisfaction. (orig.)

  9. How the systems approach is determining automotive battery design and use

    Science.gov (United States)

    Bonnet, Jean; Stephany, Jean-Marie; Sheppelman, Todd

    Today, the battery in a vehicle system is specific and designed as a single, stand-alone vehicle product. Traditionally, customer specifications were the driving force behind battery design and application requirements. This method is not able to comprehend the fluctuating requirements of real-time, vehicle systems. Growing competition in the automotive market is increasing customer needs and expectations in regards to cost, weight, size efficiency, time-to-market, and quality of the products and systems. System engineering is a service that Delco Remy, as an electrical power system supplier, offers to help their customers secure gains in the market place. System development and application engineering is essential for the development of performance-optimized components that meet the systems and total vehicle cost, reliability and timing objectives. The battery integration must be managed through the electrical power system during the complete vehicle development process in order to increase ultimately customer satisfaction.

  10. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-12-01

    Full Text Available Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

  11. Influence of Adhesive System on Performance of SiO/C Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    Teng Xin

    2015-01-01

    Full Text Available Silicon based anode material is turning into the research hot point of lithium-ion battery material field due to Si inside supporting higher capacity. Furthermore binder applied as major accessory material of anode system could bring anode material & current collector together, thus the influence given by binder system to battery performance becomes the key point. The paper describes the procedure of adopting commercial LiCoO2 SiO/C as composite material & electrolyte, with using styrene butadiene rubber and acrylic acid copolymer as binder to figure out lithium-ion battery with 2.5Ah, which is testified to present better performance on cold temperature & cycle life plus having a little bit swelling compared with the lithium-ion battery using only styrene butadiene rubber as binder.

  12. A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Edison Banguero

    2018-04-01

    Full Text Available Energy storage has become a fundamental component in renewable energy systems, especially those including batteries. However, in charging and discharging processes, some of the parameters are not controlled by the battery’s user. That uncontrolled working leads to aging of the batteries and a reduction of their life cycle. Therefore, it causes an early replacement. Development of control methods seeks battery protection and a longer life expectancy, thus the constant-current–constant-voltage method is mostly used. However, several studies show that charging time can be reduced by using fuzzy logic control or model predictive control. Another benefit is temperature control. This paper reviews the existing control methods used to control charging and discharging processes, focusing on their impacts on battery life. Classical and modern methods are studied together in order to find the best approach to real systems.

  13. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  14. Functional Analysis of Battery Management Systems using Multi-Cell HIL Simulator

    OpenAIRE

    Barreras, Jorge Varela; Swierczynski, Maciej Jozef; Schaltz, Erik; Andreasen, Søren Juhl; Fleischer, Christian; Sauer, Dirk Uwe; Christensen, Andreas Elkjær

    2015-01-01

    Developers and manufacturers of Battery Management Systems (BMSs) require extensive testing of controller HW and SW, such as analog front-end (AFE) and performance of generated control code. In comparison with tests conducted on real batteries, tests conducted on hardware-in-the-loop (HIL) simulator may be more costant time effective, easier to reproduce and safer beyond the normal range of operation, especially at early stages in the development process or during fault simulation. In this pa...

  15. The new coke oven battery heating control system at Rautaruukki Steel

    Energy Technology Data Exchange (ETDEWEB)

    Palmu, P.; Swanljung, J. [Rautaruukki Steel, Raahe (Finland)

    1998-07-01

    The heating control system of the coke oven batteries has been developed strongly during the existence of the coke oven plant. The first step of the heating control was a statistical model which had a good monitoring system. This was enough in those days due to bigger problems elsewhere. The second generation heating control system is designed for irregular coke oven battery operation. Coke production in Rautaruukki Steel is based on one coke-oven plant consisting of two batteries and a by-product plant. The whole coke production is cooled by three dry quenching units. The first coke-oven battery was taken into operation in October 1987 and the second in November 1992. Originally the plant was mainly designed and equipped by Ukrainian Giprokoks except Finnish CDQ-boilers, German ammonia recovery process and electric and automation designed by Rautaruukki. Before building of the second coke oven battery, there was a huge amount of development and modification work to do, to ensure the proper function of the coke production. For example all electronic and hydraulic systems of the Russian supplier were replaced by systems designed by Rautaruukki's own personnel. When the coke production capacity was doubled, the only design by Gibrokoks related to the battery and one additional dry quenching chamber. The expansion project itself was managed and executed by Rautaruukki. The expansion project consisted of: the second battery, third CDQ-unit, Desulphurization and Benzol plants for the by-product plant and upgrading of automation system. Battery and CDQ chamber refractory materials were Russian origin and all other main equipment were purchased by Rautaruukki from western and domestic manufacturers based on the operation difficulties and experience of coke oven battery No. 1. These modification practices made a good basis for later development in the field of coke oven battery automation. The hierarchy of the coke oven battery automation at Rautaruukki Steel consist

  16. Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes

    Science.gov (United States)

    Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.

    2016-06-01

    This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.

  17. Neural Network Modeling of the Lithium/Thionyl Chloride Battery System

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Jungst, R.G.; O' Gorman, C.C.; Paez, T.L.

    1998-10-29

    Battery systems have traditionally relied on extensive build and test procedures for product realization. Analytical models have been developed to diminish this reliance, but have only been partially successful in consistently predicting the performance of battery systems. The complex set of interacting physical and chemical processes within battery systems has made the development of analytical models a significant challenge. Advanced simulation tools are needed to more accurately model battery systems which will reduce the time and cost required for product realization. Sandia has initiated an advanced model-based design strategy to battery systems, beginning with the performance of lithiumhhionyl chloride cells. As an alternative approach, we have begun development of cell performance modeling using non-phenomenological models for battery systems based on artificial neural networks (ANNs). ANNs are inductive models for simulating input/output mappings with certain advantages over phenomenological models, particularly for complex systems. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. For example, ANN models are also being studied for simulating complex physical processes within the Li/SOC12 cell, such as the time and temperature dependence of the anode interracial resistance. ANNs have been shown to provide a very robust and computationally efficient simulation tool for predicting voltage and capacity output for Li/SOC12 cells under a variety of operating conditions. The ANN modeling approach should be applicable to a wide variety of battery chemistries, including rechargeable systems.

  18. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  19. Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods

    International Nuclear Information System (INIS)

    Xia, Bing; Zhao, Xin; Callafon, Raymond de; Garnier, Hugues; Nguyen, Truong; Mi, Chris

    2016-01-01

    Highlights: • Continuous-time system identification is applied in Lithium-ion battery modeling. • Continuous-time and discrete-time identification methods are compared in detail. • The instrumental variable method is employed to further improve the estimation. • Simulations and experiments validate the advantages of continuous-time methods. - Abstract: The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2"n"d-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications.

  20. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    Science.gov (United States)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  1. Optimization of an off-grid hybrid PV-wind-diesel-battery system

    Energy Technology Data Exchange (ETDEWEB)

    Merei, Ghada [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); Sauer, Dirk Uwe [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); RWTH Aachen Univ. (Germany). Inst. for Power Generation and Storage Systems (PGS)

    2012-07-01

    The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents the modelling and optimisation of a stand-alone hybrid energy system. The system consists of photovoltaic (PV) panels and a wind turbine as renewable power sources, a diesel generator for back-up power and batteries to store excess energy and to improve the system reliability. For storage the technologies of lithium-ion, lead-acid, vanadium redox-flow or a combination thereof are considered. In order to use different battery technologies at once, a battery management system (BMS) is needed. The presented BMS minimises operation cost while taking into account different battery operating points and ageing mechanisms. The system is modelled and implemented in Matlab/Simulink. As input, the model uses data of the irradiation, wind speed and air temperature measured in ten minute intervals for ten years in Aachen, Germany. The load is assumed to be that of a rural UMTS/GSM base station for telecommunication. For a timeframe of 20 years, the performance is evaluated and the total costs are determined. Using a genetic algorithm, component sizes and settings are then varied and the system re-evaluated to minimise the overall cost. The optimisation results show that using batteries in combination with the renewables is economic and ecologic. However, the best solution is to combine redox-flow batteries with the renewables. In addition, a power supply system consisting only of batteries, PV and wind generators can satisfy the power demand.

  2. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.

    2010-05-01

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.

  3. Multi-Point Combustion System: Final Report

    Science.gov (United States)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  4. Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-10-01

    Full Text Available In electric vehicles, the battery pack is one of the most important components that strongly influence the system performance. The battery thermal management system (BTMS is critical to remove the heat generated by the battery pack, which guarantees the appropriate working temperature for the battery pack. Air cooling is one of the most commonly-used solutions among various battery thermal management technologies. In this paper, the cooling performance of the parallel air-cooled BTMS is improved through choosing appropriate system parameters. The flow field and the temperature field of the system are calculated using the computational fluid dynamics method. Typical numerical cases are introduced to study the influences of the operation parameters and the structure parameters on the performance of the BTMS. The operation parameters include the discharge rate of the battery pack, the inlet air temperature and the inlet airflow rate. The structure parameters include the cell spacing and the angles of the divergence plenum and the convergence plenum. The results show that the temperature rise and the temperature difference of the batter pack are not affected by the inlet air flow temperature and are increased as the discharge rate increases. Increasing the inlet airflow rate can reduce the maximum temperature, but meanwhile significantly increase the power consumption for driving the airflow. Adopting smaller cell spacing can reduce the temperature and the temperature difference of the battery pack, but it consumes much more power. Designing the angles of the divergence plenum and the convergence plenum is an effective way to improve the performance of the BTMS without occupying more system volume. An optimization strategy is used to obtain the optimal values of the plenum angles. For the numerical cases with fixed power consumption, the maximum temperature and the maximum temperature difference at the end of the five-current discharge process for

  5. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  6. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    -170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active......The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...

  7. Design method for photovoltaics-battery storage systems under tropical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, A I.E.; Bassyouni, A H; Al-Motawakel, M K

    1989-01-01

    A very limited number of the available design methods can be used with confidence in sizing and costing the stand-alone photovoltaic-battery storage systems operating under the weather conditions of the tropical countries located between 0 and 30/sup 0/N. For this reason we investigated the performance and economics of various photovoltaic-battery storage system configurations. The aim was to prepare a number of sizing and costing design diagrams which detail the effect of climatic, social, and economics parameters on the choice of the stand-alone photovoltaic-battery storage systems. Our strategy was to guide designers, particularly those trying to utilize the stand-alone photovoltaic-battery storage systems in Sana'a (15/sup 0/N) and Cairo (30/sup 0/N), to the logic for selecting a system that physically and economically matches the site potential and the user's electrical needs. Considered here are the relatively small stand-alone photovoltaic-battery storage systems that can be purchased by individuals or commercial and governmental firms to supply all or part of the electrical needs consumed in residence, farms, remote rural communities, or small factories.

  8. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany

    Directory of Open Access Journals (Sweden)

    Alexander Zeh

    2016-09-01

    Full Text Available The application of stationary battery storage systems to German electrical grids can help with various storage services. This application requires controlling the charge and discharge power of such a system. For example, photovoltaic (PV home storage, uninterruptible power supply, and storage systems for providing ancillary services such as primary control reserves (PCRs represent battery applications with positive profitability. Because PCRs are essential for stabilizing grid frequency and maintaining a robust electrical grid, German transmission system operators (TSOs released strict regulations in August 2015 for providing PCRs with battery storage systems as part of regulating the International Grid Control Cooperation (IGCC region in Europe. These regulations focused on the permissible state of charge (SoC of the battery during nominal and extreme conditions. The concomitant increased capacity demand oversizing may result in a significant profitability reduction, which can be attenuated only by using an optimal parameterization of the control algorithm for energy management of the storage systems. In this paper, the sizing optimization is achieved and a recommendation for a control algorithm that includes the appropriate parameters for the requirements in the German market is given. Furthermore, the storage cost is estimated, including battery aging simulations for different aging parameter sets to allow for a realistic profitability calculation.

  9. Towards Robust Predictive Fault–Tolerant Control for a Battery Assembly System

    Directory of Open Access Journals (Sweden)

    Seybold Lothar

    2015-12-01

    Full Text Available The paper deals with the modeling and fault-tolerant control of a real battery assembly system which is under implementation at the RAFI GmbH company (one of the leading electronic manufacturing service providers in Germany. To model and control the battery assembly system, a unified max-plus algebra and model predictive control framework is introduced. Subsequently, the control strategy is enhanced with fault-tolerance features that increase the overall performance of the production system being considered. In particular, it enables tolerating (up to some degree mobile robot, processing and transportation faults. The paper discusses also robustness issues, which are inevitable in real production systems. As a result, a novel robust predictive fault-tolerant strategy is developed that is applied to the battery assembly system. The last part of the paper shows illustrative examples, which clearly exhibit the performance of the proposed approach.

  10. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system

    International Nuclear Information System (INIS)

    Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Sohn, Dong Kee; Yeo, Taejung

    2016-01-01

    Highlights: • Three-dimensional electrochemical thermal model of Li-ion battery pack using computational fluid dynamics (CFD). • Novel pack design for compact liquid cooling based thermal management system. • Simple temperature estimation algorithm for the cells in the pack using the results from the model. • Sensitivity of the thermal performance to contact resistance has been investigated. - Abstract: Thermal management system is of critical importance for a Li-ion battery pack, as high performance and long battery pack life can be simultaneously achieved when operated within a narrow range of temperature around the room temperature. An efficient thermal management system is required to keep the battery temperature in this range, despite widely varying operating conditions. A novel liquid coolant based thermal management system, for 18,650 battery pack has been introduced herein. This system is designed to be compact and economical without compromising safety. A coupled three-dimensional (3D) electrochemical thermal model is constructed for the proposed Li-ion battery pack. The model is used to evaluate the effects of different operating conditions like coolant flow-rate and discharge current on the pack temperature. Contact resistance is found to have the strongest impact on the thermal performance of the pack. From the numerical solution, a simple and novel temperature correlation of predicting the temperatures of all the individual cells given the temperature measurement of one cell is devised and validated with experimental results. Such coefficients have great potential of reducing the sensor requirement and complexity in a large Li-ion battery pack, typical of an electric vehicle.

  11. H2-O2 fuel cell and advanced battery power systems for autonomous underwater vehicles: performance envelope comparisons

    International Nuclear Information System (INIS)

    Schubak, G.E.; Scott, D.S.

    1993-01-01

    Autonomous underwater vehicles have traditionally been powered by low energy density lead-acid batteries. Recently, advanced battery technologies and H 2 -O 2 fuel cells have become available, offering significant improvements in performance. This paper compares the solid polymer fuel cell to the lithium-thionyl chloride primary battery, sodium-sulfur battery, and lead acid battery for a variety of missions. The power system performance is simulated using computer modelling techniques. Performance envelopes are constructed, indicating domains of preference for competing power system technologies. For most mission scenarios, the solid polymer fuel cell using liquid reactant storage is the preferred system. Nevertheless, the advanced battery systems are competitive with the fuel cell systems using gaseous hydrogen storage, and they illustrate preferred performance for missions requiring high power density. 11 figs., 4 tabs., 15 refs

  12. Design of Efficient Sound Systems for Low Voltage Battery Driven Applications

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Oortgiesen, Rien; Knott, Arnold

    2016-01-01

    The efficiency of portable battery driven sound systems is crucial as it relates to both the playback time and cost of the system. This paper presents design considerations when designing such systems. This include loudspeaker and amplifier design. Using a low resistance voice coil realized...

  13. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available A solar-based power supply system, such as a photovoltaic (PV)-diesel-battery system, is a particularly attractive option for decentralised power supply in southern Africa where solar radiation is ubiquitous in most countries. Such systems can make...

  14. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  15. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  16. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    International Nuclear Information System (INIS)

    Hamid Vishkasougheh, Mehdi; Tunaboylu, Bahadir

    2014-01-01

    Highlights: • An Li-ion battery based stand-alone a-Si PV was designed. The system composed of three a-Si panels with an efficiency of 7% and 40 cells of LFP batteries. • Effects of solar radiation and environmental temperature for three cities, Istanbul, Ankara, and Adana, have been investigated on a-Si panels. • Using transition formulas BSPV outputs are predictable for any location out of standard test condition. - Abstract: The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a

  17. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Vishkasougheh, Mehdi, E-mail: mehdi.hamid2@gmail.com [Istanbul Sehir University, Kubakisi Caddesi, No: 27, Altunizade, Uskudar, Istanbul 34662 (Turkey); Tunaboylu, Bahadir [Istanbul Sehir University, Kubakisi Caddesi, No: 27, Altunizade, Uskudar, Istanbul 34662 (Turkey); Marmara Research Center, Materials Institute, PO Box 21, Gebze, Kocaeli 41470 (Turkey)

    2014-11-01

    Highlights: • An Li-ion battery based stand-alone a-Si PV was designed. The system composed of three a-Si panels with an efficiency of 7% and 40 cells of LFP batteries. • Effects of solar radiation and environmental temperature for three cities, Istanbul, Ankara, and Adana, have been investigated on a-Si panels. • Using transition formulas BSPV outputs are predictable for any location out of standard test condition. - Abstract: The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a

  18. Battery monitoring in Mexican hybrid power systems; Monitoreo de las baterias en sistemas de potencia hibridos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. Roberto; Agredano, Jaime [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    Hybrid power systems for an autonomous power supply are based on different renewable and fossil energy sources. They are considered as a good option for the power supply of remote areas. In these systems an energy storage is a vital necessity and very often this storage will consist of batteries which are generally connected in series and parallel arrays, or both. In Mexico as in other countries, the most extensively use batteries used for this application are the stationary and electric car type deep cycle batteries. However the experience with them in these systems is generally not very good. One way to overcome this problem is to maintain a regular monitoring of installing monitoring equipment, in order to make preventive actions before a developing fault can have serious consequences and in this manner increase the practical lifetime of the batteries. Unfortunately, battery monitoring is not easy task because most of the hybrid power systems are installed in remote areas which makes it difficult and expensive. In Mexico it has been not possible to maintain a regular monitoring of all hybrid power systems installed, due to the high cost of this work and the lack of founds. The hybrid power systems installed in the state of Quintana Roo are the only systems that have been continuously monitored since their installation. This paper gives an overview of the hybrid power systems installed in Mexico, focusing in the battery banks, the way they are being monitored, the main parameters used to detect possible premature problems and the method used to evaluate the battery bank conditions. Finally some results from the battery banks monitoring activities are presented. [Espanol] Los sistemas de potencia hibridos para un suministro autonomo de energia a regiones remotas, estan basados en diferentes fuentes de energia fosiles y renovables. Estos son considerados como una buena opcion para el suministro de energia a areas remotas. En estos sistemas es una necesidad vital el

  19. Battery monitoring in Mexican hybrid power systems; Monitoreo de las baterias en sistemas de potencia hibridos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J Roberto; Agredano, Jaime [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Hybrid power systems for an autonomous power supply are based on different renewable and fossil energy sources. They are considered as a good option for the power supply of remote areas. In these systems an energy storage is a vital necessity and very often this storage will consist of batteries which are generally connected in series and parallel arrays, or both. In Mexico as in other countries, the most extensively use batteries used for this application are the stationary and electric car type deep cycle batteries. However the experience with them in these systems is generally not very good. One way to overcome this problem is to maintain a regular monitoring of installing monitoring equipment, in order to make preventive actions before a developing fault can have serious consequences and in this manner increase the practical lifetime of the batteries. Unfortunately, battery monitoring is not easy task because most of the hybrid power systems are installed in remote areas which makes it difficult and expensive. In Mexico it has been not possible to maintain a regular monitoring of all hybrid power systems installed, due to the high cost of this work and the lack of founds. The hybrid power systems installed in the state of Quintana Roo are the only systems that have been continuously monitored since their installation. This paper gives an overview of the hybrid power systems installed in Mexico, focusing in the battery banks, the way they are being monitored, the main parameters used to detect possible premature problems and the method used to evaluate the battery bank conditions. Finally some results from the battery banks monitoring activities are presented. [Espanol] Los sistemas de potencia hibridos para un suministro autonomo de energia a regiones remotas, estan basados en diferentes fuentes de energia fosiles y renovables. Estos son considerados como una buena opcion para el suministro de energia a areas remotas. En estos sistemas es una necesidad vital el

  20. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  1. Computational models of an inductive power transfer system for electric vehicle battery charge

    International Nuclear Information System (INIS)

    Anele, A O; Hamam, Y; Djouani, K; Chassagne, L; Alayli, Y; Linares, J

    2015-01-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV. (paper)

  2. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    Science.gov (United States)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  3. Identification of lead acid battery parameters using kalman filtering in photovoltaic system

    International Nuclear Information System (INIS)

    Boutte, Aissa

    2006-01-01

    The conventional methods of battery identification parameters consist in estimating the state of charge (SOC), and in establishing a command adapted to charge or to discharge the battery, based on electrical model developed with fixed parameters, These methods are inefficient. The causes of this ineffectiveness are different: In the first place model does not adapt itself with the battery (fixed parameters, lack of modulated parameters, a big non-linearity ...).Secondly, the impossibility for the developed algorithms, to adapt itself with the change of the battery's parameters. New models of identification are used by combining the conventional methods with adaptive and dynamic techniques. They already used in other domains where they have proved a good efficiency and a robustness. Taking into consideration the problems mentioned, and trying to resolve them, we have chosen among the various methods of estimation, Kalman filter (KF) known for its efficiency, in the field of tracking parameters. In this work we try tp represent new ideas, to identify battery parameters using KF method and make an experimental analysis of the performance of this method by using Lead Acid Battery, which is a part of a photovoltaic system (PV).(Author)

  4. Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications

    Science.gov (United States)

    Brainard, W. A.

    1983-01-01

    Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage).

  5. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  6. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  7. An improved control method of battery energy storage system for hourly dispatch of photovoltaic power sources

    International Nuclear Information System (INIS)

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M.A.

    2013-01-01

    Highlights: • Control of BES for smoothing and hourly dispatch of a PV farm output is developed. • Optimal control strategy for SOC and size of BES are evaluated using GA. • Effectiveness of the control system has been investigated for the case of Malaysia. • The proposed optimal SOC feedback controller has been found effective. • Payback calculations of BES investment is given to highlight the economic benefits. - Abstract: The effects of intermittent cloud and changes in temperature cause a randomly fluctuated output of a photovoltaic (PV) system. To mitigate the PV system impacts particularly on a weak electricity network, battery energy storage (BES) system is an effective means to smooth out the power fluctuations. Consequently, the net power injected to the electricity grid by PV and BES (PV/BES) systems can be dispatched smoothly such as on an hourly basis. This paper presents an improved control strategy for a grid-connected hybrid PV/BES systems for mitigating PV farm output power fluctuations. A feedback controller for BES state of charge is proposed, where the control parameters are optimized using genetic algorithm (GA). GA-based multi objective optimization utilizes the daily average PV farm output power profile which was obtained from simulation using the historical PV system input data of Malaysia. In this way, the optimal size for the BES is also determined to hourly dispatch a 1.2 MW PV farm. A case study for Malaysia is carried out to evaluate the effectiveness of the proposed control scheme using PSCAD/EMTDC software package. Furthermore, the validation of results of the proposed controller and BES size on the actual PV system output data are also given. Finally, a simple payback calculation is presented to study the economical aspects of the BES investment on the proposed mitigation strategy under Malaysian Feed-in Tariff program

  8. SUNRAYCE 1993: Working safely with lead-acid batteries and photovoltaic power systems

    Science.gov (United States)

    Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-11-01

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have 'hands-on' contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  9. SUNRAYCE 93: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-11-03

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems, and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have {open_quotes}hands-on{close_quotes} contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use, and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  10. Exploding the Black Box: Personal Computing, the Notebook Battery Crisis, and Postindustrial Systems Thinking.

    Science.gov (United States)

    Eisler, Matthew N

    Historians of science and technology have generally ignored the role of power sources in the development of consumer electronics. In this they have followed the predilections of historical actors. Research, development, and manufacturing of batteries has historically occurred at a social and intellectual distance from the research, development, and manufacturing of the devices they power. Nevertheless, power source technoscience should properly be understood as an allied yet estranged field of electronics. The separation between the fields has had important consequences for the design and manufacturing of mobile consumer electronics. This paper explores these dynamics in the co-construction of notebook batteries and computers. In so doing, it challenges assumptions of historians and industrial engineers and planners about the nature of computer systems in particular and the development of technological systems. The co-construction of notebook computers and batteries, and the occasional catastrophic failure of their compatibility, challenges systems thinking more generally.

  11. Computational Design of Batteries from Materials to Systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Graf, Peter A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Usseglio Viretta, Francois L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Qibo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Finegan, Donal [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pesaran, Ahmad A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yao, Koffi (Pierre) [Argonne National Laboratory; Abraham, Daniel [Argonne National Laboratory; Dees, Dennis [Argonne National Laboratory; Jansen, Andy [Argonne National Laboratory; Mukherjee, Partha [Texas A& M University; Mistry, Aashutosh [Texas A& M University; Verma, Ankit [Texas A& M University; Lamb, Josh [Sandia National Laboratories; Darcy, Eric [NASA

    2017-09-01

    Computer models are helping to accelerate the design and validation of next generation batteries and provide valuable insights not possible through experimental testing alone. Validated 3-D physics-based models exist for predicting electrochemical performance, thermal and mechanical response of cells and packs under normal and abuse scenarios. The talk describes present efforts to make the models better suited for engineering design, including improving their computation speed, developing faster processes for model parameter identification including under aging, and predicting the performance of a proposed electrode material recipe a priori using microstructure models.

  12. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  13. Thermal Characteristics of an Oscillating Heat Pipe Cooling System for Electric Vehicle Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ri-Guang Chi

    2018-03-01

    Full Text Available The heat generation of lithium ion batteries in electric vehicles (EVs leads to a degradation of energy capacity and lifetime. To solve this problem, a new cooling concept using an oscillating heat pipe (OHP is proposed. In the present study, an OHP has been adopted for Li-ion battery cooling. Due to the limited space in EVs, the cooling channel is installed on the bottom of the battery module. In the bottom cooling method with an OHP, generated heat can be dissipated easily and conveniently. However, most studies on heat pipes have used bottom heating and top or side cooling methods, so we investigate the various effects of parameters with a top heating/bottom cooling mode with the OHP, i.e., the inclination angle of the system, amount of working fluid charged, the heating amount, and the cold plate temperature with ethanol as a working fluid. The experimental results show that the thermal resistance (0.6 °C/W and uneven pulsating features influence the heat transfer performance. A heater used as a simulated battery was sustained under 60 °C under 10 W and 14 W heating conditions. This indicates that the proposed cooling system with the bottom cooling is feasible for use as an EV’s battery cooling system.

  14. Optimal Sizing for Wind/PV/Battery System Using Fuzzy c-Means Clustering with Self-Adapted Cluster Number

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available Integrating wind generation, photovoltaic power, and battery storage to form hybrid power systems has been recognized to be promising in renewable energy development. However, considering the system complexity and uncertainty of renewable energies, such as wind and solar types, it is difficult to obtain practical solutions for these systems. In this paper, optimal sizing for a wind/PV/battery system is realized by trade-offs between technical and economic factors. Firstly, the fuzzy c-means clustering algorithm was modified with self-adapted parameters to extract useful information from historical data. Furthermore, the Markov model is combined to determine the chronological system states of natural resources and load. Finally, a power balance strategy is introduced to guide the optimization process with the genetic algorithm to establish the optimal configuration with minimized cost while guaranteeing reliability and environmental factors. A case of island hybrid power system is analyzed, and the simulation results are compared with the general FCM method and chronological method to validate the effectiveness of the mentioned method.

  15. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...

  16. Optimal operation strategy of battery energy storage system to real-time electricity price in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    markets in some ways, is chosen as the studied power system in this paper. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studies in the paper. Simulation results show, that the proposed optimal operation strategy is an effective measure to achieve......Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...

  17. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  18. Development of Final Running Test System for Digital Systems

    International Nuclear Information System (INIS)

    Lee, Kwang-Dae; Lee, Eui-Jong; Lim, Hee-Taek; Kim, Min-Seok

    2016-01-01

    In nuclear industry, the newly designed systems to upgrade are qualified to meet IEEE standards and the regulatory guidelines for their functions, performance and reliability requirements. Failure Mode and Effect Analysis, Fault Tree Analysis, and Hazard Analysis have been used to improve the reliability of the control system. To ensure the completeness of the software, the verification and validation processes are carried out during the development process. In spite of the many efforts depending on the analysis and procedures, there are limitations to improve the reliability. The lessons learned from the currently installed system failures show the incompleteness of the final integration test. The current point-to-point and logic-to-logic separate test procedures manually performed by the engineers can cause some procedures missed and have effects on the critical functions. The design processes of the digital systems are met in accordance with the international standards and regulatory guidelines. The lessons learned from the failures of the running digital systems showed the limitations of the current verification and validation efforts. The various improvements and attempts have been considered including the expert review processes and the completeness of the test. In this paper, the Final Running Test Method evaluating the completeness of the digital system using the control patterns and the Test System Architecture are proposed

  19. Development of Final Running Test System for Digital Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang-Dae; Lee, Eui-Jong; Lim, Hee-Taek; Kim, Min-Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In nuclear industry, the newly designed systems to upgrade are qualified to meet IEEE standards and the regulatory guidelines for their functions, performance and reliability requirements. Failure Mode and Effect Analysis, Fault Tree Analysis, and Hazard Analysis have been used to improve the reliability of the control system. To ensure the completeness of the software, the verification and validation processes are carried out during the development process. In spite of the many efforts depending on the analysis and procedures, there are limitations to improve the reliability. The lessons learned from the currently installed system failures show the incompleteness of the final integration test. The current point-to-point and logic-to-logic separate test procedures manually performed by the engineers can cause some procedures missed and have effects on the critical functions. The design processes of the digital systems are met in accordance with the international standards and regulatory guidelines. The lessons learned from the failures of the running digital systems showed the limitations of the current verification and validation efforts. The various improvements and attempts have been considered including the expert review processes and the completeness of the test. In this paper, the Final Running Test Method evaluating the completeness of the digital system using the control patterns and the Test System Architecture are proposed.

  20. Optimization of a PEMFC/battery pack power system for a bus application

    International Nuclear Information System (INIS)

    Barelli, Linda; Bidini, Gianni; Ottaviano, Andrea

    2012-01-01

    Highlights: ► A dynamic model of a PEMFC/battery system for bus traction has been developed. ► The model incorporates the dynamics of the fuel cell and the state of charge (SOC) of the battery pack. ► The system output power have been determined according to the real driving load demand of a bus during 12 h. ► The model has allowed the sizing of the fuel cell and the hydrogen tank with the SOC control strategy optimization. ► The PEMFC power that allows to optimize the operation in terms of both SOC control strategy and consumption is 33 kW e . -- Abstract: In a global environment context in which the urgent need to reduce pollutant emissions is of central relevance, it is becoming increasingly important the research for solutions, concerning the vehicular transport sector with low environmental impact. Fuel cell technology is expected to become a viable solution for these applications due to its environmental friendly characteristics. The present study concerns the traction system of a bus considering the case of hybrid solutions consisting of a proton exchange membrane fuel cell (PEMFC) in parallel with a battery pack. In particular, a dynamic model of a PEMFC/battery system is presented for the application under study. The model incorporates the dynamics of the fuel cell and the state of charge (SOC) of the battery pack. The fuel cell and the battery output power have been determined according to the real driving load demand of a bus taking into consideration a daily operation of 12 h. Such a model has allowed the correct dimensioning of the hybrid power system (giving a particular attention to the fuel cell and the hydrogen tank) together with the optimization of the SOC control strategy.

  1. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  2. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn; Jongerden, Marijn

    2015-01-01

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact...... of usage (charge and discharge) profiles on cycle life. The wear score function can not only be used to rank different usage profiles, these rankings can also be used as a criterion for optimizing the overall lifetime of a battery-powered system. We perform such an optimization on a nano-satellite case...... checking and reinforcement learning to synthesize near-optimal scheduling strategies subject to possible hard timing-constaints. We use this to study the trade-off between optimal short-term dynamic payload selection and the operational life of the satellite....

  3. Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jichao Hong

    2017-07-01

    Full Text Available A thermal runaway prognosis scheme for battery systems in electric vehicles is proposed based on the big data platform and entropy method. It realizes the diagnosis and prognosis of thermal runaway simultaneously, which is caused by the temperature fault through monitoring battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring data is derived from the National Service and Management Center for Electric Vehicles (NSMC-EV in Beijing. Furthermore, a thermal security management strategy for thermal runaway is presented under the Z-score approach. The abnormity coefficient is introduced to present real-time precautions of temperature abnormity. The results illustrated that the proposed method can accurately forecast both the time and location of the temperature fault within battery packs. The presented method is flexible in all disorder systems and possesses widespread application potential in not only electric vehicles, but also other areas with complex abnormal fluctuating environments.

  4. From battery modeling to battery management

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.

    2011-01-01

    The principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. These electronic network models are based on

  5. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  6. Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems

    International Nuclear Information System (INIS)

    Darcovich, K.; Kenney, B.; MacNeil, D.D.; Armstrong, M.M.

    2015-01-01

    Highlights: • Canadian home energy system modeled with PV, ICE CHP, battery and power grid. • Battery function is modeled on fundamental electrochemical principles. • Techno-economics of control strategies assessed. • Impact of control strategies battery cycles is developed for wear analysis. • Non-monotonic nature of battery cycles with transient renewables is discussed. - Abstract: Energy storage units have become important components in residential micro-cogeneration (MCG) systems. As MCG systems are often connected to single residences or buildings in a wide variety of settings, they are frequently unique and highly customized. Lithium-ion batteries have recently gained some profile as energy storage units of choice, because of their good capacity, high efficiency, robustness and ability to meet the demands of typical residential electrical loads. In the present work, modeled scenarios are explored which examine the performance of a MCG system with an internal combustion engine, photovoltaic input and a Li-ion storage battery. An electricity demand profile from new data collected in Ottawa, Canada is used to provide a full year energy use context for the analyses. The demands placed on the battery are examined to assess the suitability of the battery size and performance, as well as control related functionalities which reveal significantly varying battery use, and led to a quantitative expression for equivalent cycles. The energy use simulations are derived from electrochemical fundamentals adapted for a larger battery pack. Simulation output provides the basis for techno-economic commentary on how to assess large-scale Li-ion batteries for effective electrical storage purposes in MCG systems, and the impact of the nature of the control strategy on the battery service life

  7. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  8. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  9. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  10. Engine Tune-Up Service. Unit 1: Battery and Cranking System. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson-Roberts, Ludy; And Others

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 1, Battery and Cranking System. Focus of the exercises and pretests is testing the battery and cranking system. Pretests and performance checklists are provided for each of the four performance objectives contained in the unit.…

  11. Intelligent energy systems - Regulating the electricity grid using car batteries

    International Nuclear Information System (INIS)

    Horbaty, R.

    2009-01-01

    This article takes a look at how the electricity supply industry will, in the future, be able to substantially rely on decentrally organised sources of renewable energy. As such forms of power generation are, in part, difficult to plan, the increasing importance of regulating energy is being stressed. The use of the batteries of plug-in hybrid vehicles to provide such regulating power is discussed. So-called smart grids within the framework of a deregulated energy market are discussed and examples of possible configurations are noted. The intelligent control of apparatus and generation and storage facilities is discussed. Individual mobility with lower emissions is examined. New business areas now opening up for the electricity economy and vehicle manufacturers are discussed.

  12. Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-01-01

    Full Text Available The battery is a key component and the major fault source in electric vehicles (EVs. Ensuring power battery safety is of great significance to make the diagnosis more effective and predict the occurrence of faults, for the power battery is one of the core technologies of EVs. This paper proposes a voltage fault diagnosis detection mechanism using entropy theory which is demonstrated in an EV with a multiple-cell battery system during an actual operation situation. The preliminary analysis, after collecting and preprocessing the typical data periods from Operation Service and Management Center for Electric Vehicle (OSMC-EV in Beijing, shows that overvoltage fault for Li-ion batteries cell can be observed from the voltage curves. To further locate abnormal cells and predict faults, an entropy weight method is established to calculate the objective weight, which reduces the subjectivity and improves the reliability. The result clearly identifies the abnormity of cell voltage. The proposed diagnostic model can be used for EV real-time diagnosis without laboratory testing methods. It is more effective than traditional methods based on contrastive analysis.

  13. Multi-physics Model for the Aging Prediction of a Vanadium Redox Flow Battery System

    International Nuclear Information System (INIS)

    Merei, Ghada; Adler, Sophie; Magnor, Dirk; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Present a multi-physics model of vanadium redox-flow battery. • This model is essential for aging prediction. • It is applicable for VRB system of different power and capacity ratings. • Good results comparing with current research in this field. - Abstract: The all-vanadium redox-flow battery is an attractive candidate to compensate the fluctuations of non-dispatchable renewable energy generation. While several models for vanadium redox batteries have been described yet, no model has been published, which is adequate for the aging prediction. Therefore, the present paper presents a multi-physics model which determines all parameters that are essential for an aging prediction. In a following paper, the corresponding aging model of vanadium redox flow battery (VRB) is described. The model combines existing models for the mechanical losses and temperature development with new approaches for the batteries side reactions. The model was implemented in Matlab/Simulink. The modeling results presented in the paper prove to be consistent with the experimental results of other research groups

  14. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  15. Dynamic performance improvement of standalone battery integrated PMSG wind energy system using proportional resonant controller

    Directory of Open Access Journals (Sweden)

    Dileep Kumar Varma Sagiraju

    2017-08-01

    Full Text Available The load voltage and frequency should be controlled under steady state and transient conditions in off grid applications. Power quality and power management is very important task for rural communities under erratic wind and load conditions. This paper presents a coordinated Proportional resonant (PR and battery energy controller for enhancement of power quality and power management in direct drive standalone wind energy system. The dynamic performance of standalone direct drive Permanent Magnet Synchronous Generator (PMSG is investigated with the proposed control scheme under various operating conditions such as fluctuating wind with step increase and decrease in wind velocity, balanced and unbalanced load conditions. The proposed PR control strategy with battery energy controller also ensures effective power balance between wind and battery source in order to fulfill the load demand. The superiority of the proposed control strategy is confirmed by comparing with the traditional vector control strategy under fluctuating wind and load conditions through MATLAB/SIMULINK platform.

  16. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F; Sauter, J -C; Masanz, G; Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  17. Power Management of Hybrid Power Systems with Li-Fe Batteries and Supercapacitors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Guohui Wang

    2014-05-01

    Full Text Available This paper presents an energy management strategy of a Li-Fe battery and supercapacitor hybrid power system to provide both high power density and energy density for mobile robots with fluctuating workloads. A two-phase power-optimization approach is proposed to exploit the high power density of supercapacitors and the high energy density of Li-Fe batteries. With our strategy, large peak power can be provided for a short time period whenever needed, while low power can be provided for very long time. A set of experiments have been conducted. The experimental results show that our strategy can effectively improve the performance of mobile robots and extend the lifetime of batteries.

  18. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    Science.gov (United States)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  19. Battery- and aging-aware embedded control systems for electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Probstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2014-01-01

    In this paper, for the first time, we propose a battery- and aging-aware optimization framework for embedded control systems design in electric vehicles (EVs). Performance and reliability of an EV are influenced by feedback control loops implemented into in-vehicle electrical/electronic (E/E)

  20. Optimal Utilization of Microgrids Supplemented with Battery Energy Storage Systems in Grid Support Applications

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper proposes a control scheme which minimizes the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What distinguishes approach presented here from conventional strategies is that not only the price of electricity is considered...

  1. Adaptive state-of-charge indication system for a Li-ion battery-powered devices

    NARCIS (Netherlands)

    Pop, V.; Danilov, D.; Bergveld, H.J.; Notten, P.H.L.; Regtien, P.P.L.

    2006-01-01

    Accurate State-of-Charge (SoC) and remammg run-time indication for portable devices is important for the user convenience and to prolong the lifetime of batteries. So far, no one succeeded in coming up with a SoC system that is accurate enough under all realistic user conditions. An algorithm that

  2. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Meeting ambitious goals of transition to distributed and environmentally-friendly renewable energy generation can be difficult to achieve without energy storage systems due to technical and economical challenges. Moreover, energy storage systems have a high potential of not only smoothing and imp...... electricity market. Moreover, in this paper a possible improvement of the Li-ion BESS energy management strategy is shown, which allows for obtaining the higher NPV....... lifetime, which introduces significant risk into the business model. This paper deals with the investigation of the lifetime of LiFeP04/C battery systems when they are used to provide primary frequency regulation service. A semi-empirical lifetime model for these battery cells was developed based...... on the results obtained from accelerated lifetime testing. The developed Li­-ion battery lifetime model is later a base for the analyses of the economic profitability of the investment in the Li-ion battery energy storage system (BESS), which delivers the primary frequency regulation service on the Danish...

  3. Optimization of Utility-Scale Wind-Hydrogen-Battery Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, L. J.

    2004-07-01

    Traditional utility-scale wind energy systems are not dispatchable; that is, the utility cannot instantaneously control their power output. Energy storage, which can come in many forms, is needed to add dispatchability to a wind farm. This study investigates two options: batteries and hydrogen.

  4. Control of a battery energy storage system connected to a low voltage grid

    NARCIS (Netherlands)

    van Dun, J.J.C.M.; de Groot, Robert; Morren, Johan; Slootweg, Han

    2015-01-01

    This paper describes the development of a control algorithm for a battery energy storage system, which is connected to a residential low voltage grid. By predicting future load demand and photovoltaic production within the neighbourhood concerned, flattening of the aggregated neighbourhood

  5. Knowledge management system for risk mitigation in supply chain uncertainty: case from automotive battery supply chain

    Science.gov (United States)

    Marie, I. A.; Sugiarto, D.; Surjasa, D.; Witonohadi, A.

    2018-01-01

    Automotive battery supply chain include battery manufacturer, sulphuric acid suppliers, polypropylene suppliers, lead suppliers, transportation service providers, warehouses, retailers and even customers. Due to the increasingly dynamic condition of the environment, supply chain actors were required to improve their ability to overcome various uncertainty issues in the environment. This paper aims to describe the process of designing a knowledge management system for risk mitigation in supply chain uncertainty. The design methodology began with the identification of the knowledge needed to solve the problems associated with uncertainty and analysis of system requirements. The design of the knowledge management system was described in the form of a data flow diagram. The results of the study indicated that key knowledge area that needs to be managed were the knowledge to maintain the stability of process in sulphuric acid process and knowledge to overcome the wastes in battery manufacturing process. The system was expected to be a media acquisition, dissemination and storage of knowledge associated with the uncertainty in the battery supply chain and increase the supply chain performance.

  6. The Selection of a Marine Artillery Battery Fire Direction Computer System.

    Science.gov (United States)

    1982-12-01

    twenty special fanc -tion keys. Six of the special function keys arc- currently spares and will be programmed -o support the P31 software aiditions...than the size and weight of --h: system. Battery power frees the unit from relying on gene =- a4*or power in fast moving situations. Gererators car

  7. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  8. The Study of Operation Modes and Control Strategies of a Multidirectional MC for Battery Based System

    Directory of Open Access Journals (Sweden)

    Saman Toosi

    2015-01-01

    Full Text Available To enhance the performance of stand-alone battery based system and to achieve the continuous power transmission, the behavior of multidirectional matrix converter (MDMC has been analyzed in different operation modes. A systematic method interfacing a renewable source, a storage battery, and a load is proposed for a stand-alone battery based power system (SABBPS to utilize the MDMC as PWM converter, inverter, or PWM converter and inverter in different operation modes. In this study, the Extended Direct Duty Pulse Width Modulation (EDDPWM technique has been applied to control the power flow path between the renewable source, load, and the battery. Corresponding to generator voltage, input frequency, and loads demands, several operating states and control strategies are possible. Therefore, the boundaries and distribution of operation modes are discussed and illustrated to improve the system performance. The mathematical equation of the EDDPWM under different operation modes has been derived to achieve the maximum voltage ratio in each mode. The theoretical and modulation concepts presented have been verified in simulation using MATLAB and experimental testing. Moreover, the THD, ripple, and power flow direction have been analyzed for output current to investigate the behavior of system in each operation mode.

  9. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  10. An adaptive state of charge estimation approach for lithium-ion series-connected battery system

    Science.gov (United States)

    Peng, Simin; Zhu, Xuelai; Xing, Yinjiao; Shi, Hongbing; Cai, Xu; Pecht, Michael

    2018-07-01

    Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge (SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model parameter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed method shows the highest SOC estimation accuracy.

  11. Control mechanisms for battery energy storage system performing primary frequency regulation and self-consumption optimization

    NARCIS (Netherlands)

    Pliatskas Stylianidis, A.

    2016-01-01

    This report contains the design of a model for the integration of a battery energy system in a household level and its use for primary frequency regulation and self-consumption optimization. The main goal of this project was to investigate what are the possible applications and the most suitable for

  12. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  13. Chromatic correction for the final transport system

    International Nuclear Information System (INIS)

    Brown, K.L.; Peterson, J.M.

    1980-01-01

    The final transport and focusing of the heavy-ion beam onto the fusion pellet in vacuum is complicated by several non-linear effects - namely, chromatic (momentum dependent) effects, geometric aberrations, and space-charge forces. This paper gives an example of how the chromatic effects can be nullified, at least to second order. Whether third- or higher-order terms are important is not yet clear. Space-charge effects are important but are not considered here

  14. Used Battery Collection and Recycling

    International Nuclear Information System (INIS)

    Pistoia, G.; Wiaux, J.P.; Wolsky, S.P.

    2001-01-01

    This book covers all aspects of spent battery collection and recycling. First of all, the legislative and regulatory updates are addressed and the main institutions and programs worldwide are mentioned. An overview of the existing battery systems, of the chemicals used in them and their hazardous properties is made, followed by a survey of the major industrial recycling processes. The safety and efficiency of such processes are stressed. Particular consideration is given to the released emissions, i.e. to the impact on human health and the environment. Methods for the evaluation of this impact are described. Several chapters deal with specific battery chemistries: lead-acid, nickel-cadmium and nickel-metal hydride, zinc (carbon and alkaline), lithium and lithium-ion. For each type of battery, details are provided on the collection/recycling process from the technical, economic and environmental viewpoint. The chemicals recoverable from each process and remarketable are mentioned. A chapter deals with recovering of the large batteries powering electric vehicles, e.g. lead-acid, nickel-metal hydride and lithium-ion. The final chapter is devoted to the important topic of collecting batteries from used electrical and electronic equipment. The uncontrolled disposal of these devices still containing their batteries contributes to environmental pollution

  15. LANL environmental restoration site ranking system: System description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Merkhofer, L.; Kann, A.; Voth, M. [Applied Decision Analysis, Inc., Menlo Park, CA (United States)

    1992-10-13

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides.

  16. LANL environmental restoration site ranking system: System description. Final report

    International Nuclear Information System (INIS)

    Merkhofer, L.; Kann, A.; Voth, M.

    1992-01-01

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides

  17. Fault-Tolerant Control for a Flexible Group Battery Energy Storage System Based on Cascaded Multilevel Converters

    Directory of Open Access Journals (Sweden)

    Junhong Song

    2018-01-01

    Full Text Available A flexible group battery energy storage system (FGBESS based on cascaded multilevel converters is attractive for renewable power generation applications because of its high modularity and high power quality. However, reliability is one of the most important issues and the system may suffer from great financial loss after fault occurs. In this paper, based on conventional fundamental phase shift compensation and third harmonic injection, a hybrid compensation fault-tolerant method is proposed to improve the post-fault performance in the FGBESS. By adjusting initial phase offset and amplitude of injected component, the optimal third harmonic injection is generated in an asymmetric system under each faulty operation. Meanwhile, the optimal redundancy solution under each fault condition is also elaborated comprehensively with a comparison of the presented three fault-tolerant strategies. This takes full advantage of battery utilization and minimizes the loss of energy capacity. Finally, the effectiveness and feasibility of the proposed methods are verified by results obtained from simulations and a 10 kW experimental platform.

  18. Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector

    International Nuclear Information System (INIS)

    Bianchi, M.; Branchini, L.; Ferrari, C.; Melino, F.

    2014-01-01

    Highlights: • A feasibility study on a stand-alone solar–battery power generation system is carried out. • An in-house developed calculation code able to estimate photovoltaic panels behaviour is described. • The feasibility of replacing grid electricity with hybrid system is examined. • Guidelines for optimal photovoltaic design are given. • Guidelines for optimal storage sizing in terms of batteries number and capacity are given. - Abstract: The penetration of renewable sources into the grid, particularly wind and solar, have been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. The study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. In particular, this paper presents first results for photovoltaic (PV)/battery (B) hybrid configuration. The main objective of this paper is focused on PV/B system, to recommend hybrid system optimal design in terms of PV module number, PV module tilt, number and capacity of batteries to minimize or, if possible, to neglect grid supply. This paper is the early stage of a theoretical and experimental study in which two different hybrid power system configurations will be evaluated and compared: (i) PV/B system and (ii) PV/B/fuel cell (FC) system. The aim of the overall study will be the definition of the

  19. Preparation and impedance characterization of all-solid-state thin film battery systems

    OpenAIRE

    Schichtel, Patrick

    2018-01-01

    In this thesis the behavior and properties of solid-state batteries based on multiple electrodes are analysed. For this purpose thin film systems of the relevant materials are prepared to achieve model system for more detailed analysis of the material specific properties. The characterisation of the systems is carried out with typical physical and electrochemical methods and especially using impedance spectroscopy. The first material analysed in this thesis is Li4Ti5O12 which was recognize...

  20. Development of battery management systems (BMS for electric vehicles (EVs in Malaysia

    Directory of Open Access Journals (Sweden)

    Salehen P.M.W.

    2017-01-01

    Full Text Available Battery Management Systems (BMS is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the numbers will keep rising as numbers of registered car increase close up to 1 million yearly; double the amounts in the last two decades. The uncertainty of a battery’s performance poses a challenge to predict the extended range of EVs, which need BMS implementation of optimization of optimum power management. Hence, using MATLAB/SIMULINK software is one of the potential methods of BMS optimization with power generated by Hybrid Energy Storage system of lithium-ion battery. Therefore, this paper address through reviewing previous literatures initially focuses on the BMS optimization for EVs (car in Malaysia as prognostic technology model improvement on performance management of EVs.

  1. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  2. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  3. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  4. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  5. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  6. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  7. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  8. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  9. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    Science.gov (United States)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  10. Lithium batteries: Status, prospects and future

    International Nuclear Information System (INIS)

    Scrosati, Bruno; Garche, Juergen

    2010-01-01

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content. (author)

  11. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  12. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.; Hsu, P.C.; Wu, M.S.; Ho, P.Y.

    2010-01-01

    . This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first

  13. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia

    International Nuclear Information System (INIS)

    Halabi, Laith M.; Mekhilef, Saad; Olatomiwa, Lanre; Hazelton, James

    2017-01-01

    Highlights: • The performance of two decentralized power stations in Malaysia has been studied. • All possible scenarios of hybrid PV/diesel/battery system have been analyzed. • A comparison with the optimum design was included in this work using HOMER. • Sensitivity analysis showing the impact of main factors on the system was examined. • The advantages/disadvantages of utilizing each scenario are showed and clarified. - Abstract: This study considered two decentralized power stations in Sabah, Malaysia; each contains different combination of photovoltaic (PV), diesel generators, system converters, and storage batteries. The work was built upon previous related site surveys and data collections from each site. Verification of the site data sets, simulation of different operational scenarios, and a comparison with the optimum design were all considered in the work. This includes all possible standalone diesel generators, hybrid PV/diesel/battery, and 100% PV/battery scenarios for the proposed stations. HOMER software has been used in the modeling entire systems. The operational behaviors of different PV penetration levels were analyzed to accurately quantify the impact of PV integration. The performance of these stations was analyzed based on technical, economic and environmental constraints, besides, placing emphasis on comparative cost analysis between different operational scenarios. The results satisfied the load demand with the minimum total net present cost (NPC) and levelized cost of energy (LCOE). Moreover, sensitivity analysis was carried out to represents the effects of changing main parameters, such as; fuel, PV, battery prices, and load demand (load growth) on the system performance. Comparison of all operational behaviors scenarios was carried out to elucidate the advantages/disadvantages of utilizing each scenario. The impact of different PV penetration levels on the system performance and the generation of harmful emissions is also

  14. Study on a Battery Thermal Management System Based on a Thermoelectric Effect

    Directory of Open Access Journals (Sweden)

    Chuan-Wei Zhang

    2018-01-01

    Full Text Available As is known to all, a battery pack is significantly important for electric vehicles. However, its performance is easily affected by temperature. In order to address this problem, an enhanced battery thermal management system is proposed, which includes two parts: a modified cooling structure and a control unit. In this paper, more attention has been paid to the structure part. According to the heat generation mechanism of a battery and a thermoelectric chip, a simplified heat generation model for a single cell and a special cooling model were created in ANSYS 17.0. The effects of inlet velocity on the performance of different heat exchanger structures were studied. The results show that the U loop structure is more reasonable and the flow field distribution is the most uniform at the inlet velocity of 1.0 m/s. Then, on the basis of the above heat exchanger and the liquid flow velocity, the cooling effect of the improved battery temperature adjustment structure and the traditional liquid temperature regulating structure were analyzed. It can be seen that the liquid cooling structure combined with thermoelectric cooling demonstrates a better performance. With respect to the control system, the corresponding hardware and software were also developed. In general, the design process for this enhanced battery thermal management system can provide a wealth of guidelines for solving similar problems. The H commutation circuit, matrix switch circuit, temperature measurement circuit, and wireless communication modules were designed in the control system and the temperature control strategy was also developed.

  15. Photovoltaic systems concept study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The work performed in the conceptual design and systems analysis of three sizes of photovoltaic solar electric power systems is contained in five volumes consisting of nine sections plus appendices. Separate abstracts were prepared for the two sections in this volume. (MHR)

  16. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Chau, K.T.; Wu, K.C.; Chan, C.C.; Shen, W.X.

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents

  17. Hybrid wind–photovoltaic–diesel–battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2015-01-01

    Highlights: • Methods of sizing a hybrid wind–photovoltaic–diesel–battery system is described. • The hybrid system components are modelled using empirical data. • Twenty years lifecycle cost of the hybrid system is considered. • The trade-offs between battery storage capacity and diesel fuel usage is studied. • A hybrid system sizing tool has been developed as a graphical user interface (GUI). - Abstract: The concept of off-grid hybrid wind energy system is financially attractive and more reliable than stand-alone power systems since it is based on more than one electricity generation source. One of the most expensive components in a stand-alone wind-power system is the energy storage system as very often it is oversized to increase system autonomy. In this work, we consider a hybrid system which consists of wind turbines, photovoltaic panels, diesel generator and battery storage. One of the main challenges experienced by project managers is the sizing of components for different sites. This challenge is due to the variability of the renewable energy resource and the load demand for different sites. This paper introduces a sizing model that has been developed and implemented as a graphical user interface, which predicts the optimum configuration of a hybrid system. In particular, this paper focuses on seeking the optimal size of the batteries and the diesel generator usage. Both of these components are seen to be trade-offs from each other. The model simulates real time operation of the hybrid system, using the annual measured hourly wind speed and solar irradiation. The benefit of using time series approach is that it reflects a more realistic situation; here, the peaks and troughs of the renewable energy resource are a central part of the sizing model. Finally, load sensitivity and hybrid system performance analysis are demonstrated.

  18. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  19. Aging studies of batteries and transformers in class IE power systems

    International Nuclear Information System (INIS)

    Edson, J.L.; Roberts, E.W.

    1992-01-01

    A Phase I aging study of batteries used in 1E Power Systems of nuclear power plants concluded that significant aging effects for aged batteries are growth of positive plants, loosening of active material in plates that have grown, loss of active material caused by gassing and corrosion, and embrittlement of the lead grids and straps. These effects contribute to decreased electrical capacity and decreased seismic ruggedness which, during a seismic event, can lead to decreased electrical performance or complete failure. Subsequently a Phase II test program was conducted to determine if seismic ruggedness of aged batteries can be inadequate even if the electrical capacity is satisfactory, as determined by tests recommended by IEEE Std 450-1987, open-quote IEEE Recommended Practice for Maintenance, Testing, and Replacement of Large Storage Batteries for Generating Stations and Substations.close quotes In addition, a Phase I aging study of transformers in 1E Power Systems was performed to identify stressors and failure mechanisms, investigate whether transformers are showing the effects of aging as they grow older, and to determine if current surveillance methods are effective in mitigating aging effects. This paper presents the results of these studies

  20. Report on achievements in technological development in fiscal 1999. Development of technology to put photovoltaic power generation system into practical use (Research and development of high reliability storage batteries for photovoltaic power generation use); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Kenkyu kaihatsu kanri (taiyoko hatsuden'yo chikudenchi kaihatsu bukai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Storage batteries used in household photovoltaic systems must be free of electrolyte leakage and maintenance, and be readily installable in residential houses. Lead-acid batteries that can meet these requirements and have been put into practical use may include the sealed storage batteries. However, these batteries currently in use have drawbacks in life performance and price. Therefore, development is under way on lead-acid batteries for household photovoltaic systems by improving said sealed lead-acid batteries. The targeted batteries should have as long life as passing 3,000 cycles under a condition of 0.1 to 1 CA discharge (at depth of discharge of 50%), energy density of more than 70 Wh per liter, and cost of 12 yen or lower per watt-hour. A prototype battery as the final candidate was fabricated, that uses silica powder as the electrolyte retainer (silica powder filled between plates, and into clearance between plate groups), pasted plates made of expanded metal grids for positive plates, and micro conductive network plates with increased addition amount of carbon to micro active material (PbO{sub 2}) as negative plates. Life performance testes thereon are being performed. This lead-acid battery is estimated to be capable of satisfying the intended performance based on the result of discussions having been made so far. (NEDO)

  1. Proximity sensor system development. CRADA final report

    International Nuclear Information System (INIS)

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors

  2. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  3. Design of a Bidirectional Energy Storage System for a Vanadium Redox Flow Battery in a Microgrid with SOC Estimation

    Directory of Open Access Journals (Sweden)

    Qingwu Gong

    2017-03-01

    Full Text Available This paper used a Vanadium Redox flow Battery (VRB as the storage battery and designed a two-stage topology of a VRB energy storage system in which a phase-shifted full bridge dc-dc converter and three-phase inverter were used, considering the low terminal voltage of the VRB. Following this, a model of the VRB was simplified, according to the operational characteristics of the VRB in this designed topology of a VRB energy storage system (ESS. By using the simplified equivalent model of the VRB, the control parameters of the ESS were designed. For effectively estimating the state of charge (SOC of the VRB, a traditional method for providing the SOC estimation was simplified, and a simple and effective SOC estimation method was proposed in this paper. Finally, to illustrate the proper design of the VRB ESS and the proposed SOC estimation method, a corresponding simulation was designed by Simulink. The test results have demonstrated that this proposed SOC estimation method is feasible and effective for indicating the SOC of a VRB and the proper design of this VRB ESS is very reasonable for VRB applications.

  4. Minimisation of the LCOE for the hybrid power supply system with the lead-acid battery

    Directory of Open Access Journals (Sweden)

    Kasprzyk Leszek

    2017-01-01

    Full Text Available The paper presents the methodology of minimisation of the unit cost of production of energy generated in the hybrid system compatible with the lead-acid battery, and used to power a load with the known daily load curve. For this purpose, the objective function in the form of the LCOE and the genetic algorithm method were used. Simulation tests for three types of load with set daily load characteristics were performed. By taking advantage of the legal regulations applicable in the territory of Poland, regarding the energy storing in the power system, the optimal structure of the prosumer solar-wind system including the lead-acid battery, which meets the condition of maximum rated power, was established. An assumption was made that the whole solar energy supplied to the load would be generated in the optimised system.

  5. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  6. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  7. Intelligent Transportation Systems statewide architecture : final report.

    Science.gov (United States)

    2003-06-01

    This report describes the development of Kentuckys Statewide Intelligent Transportation Systems (ITS) Architecture. The process began with the development of an ITS Strategic Plan in 1997-2000. A Business Plan, developed in 2000-2001, translated t...

  8. Traffic Management Systems Performance Measurement: Final Report

    OpenAIRE

    Banks, James H.; Kelly, Gregory

    1997-01-01

    This report documents a study of performance measurement for Transportation Management Centers (TMCs). Performance measurement requirements were analyzed, data collection and management techniques were investigated, and case study traffic data system improvement plans were prepared for two Caltrans districts.

  9. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  10. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  11. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  12. Final report on the FMIT Control System

    International Nuclear Information System (INIS)

    Johnson, J.A.

    1985-01-01

    The computer control system for the Fusion Materials Irradiation Test Facility (FMIT) prototype accelerator was designed using distributed intelligence driven by a distributed database. The system consists of two minicomputers in the central control room and four microcomputers residing in CAMAC crates located near appropriate subsystems of the accelerator. The system uses single vendor hardware as much as practical in an attempt to minimize the maintenance problems. Local control consoles are an integral part of each node computer to provide subsystem check-out. The main console is located in the central control room and permits one-point operation of the complete control system. Automatic surveillance is provided for each data channel by the node computer with out-of-bounds alarms sent to the main console. Report by exception is used for data logging. This control system has been operational for two years. The computers are too heavily loaded and the operator response is slower than desired. A system upgrade to a faster local-area network has been undertaken and is scheduled to be operational by conference time

  13. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  14. Optimal sizing of small wind/battery systems considering the DC bus voltage stability effect on energy capture, wind speed variability, and load uncertainty

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2012-01-01

    Highlights: ► We propose a mathematical model for optimal sizing of small wind energy systems. ► No other previous work has considered all the aspects included in this paper. ► The model considers several parameters about batteries. ► Wind speed variability is considered by means of ARMA model. ► The results show how to minimize the expected energy that is not supplied. - Abstract: In this paper, a mathematical model for stochastic simulation and optimization of small wind energy systems is presented. This model is able to consider the operation of the charge controller, the coulombic efficiency during charge and discharge processes, the influence of temperature on the battery bank capacity, the wind speed variability, and load uncertainty. The joint effect of charge controller operation, ambient temperature, and coulombic efficiency is analyzed in a system installed in Zaragoza (Spain), concluding that if the analysis without considering these factors is carried out, the reliability level of the physical system could be lower than expected, and an increment of 25% in the battery bank capacity would be required to reach a reliability level of 90% in the analyzed case. Also, the effect of the wind speed variability and load uncertainty in the system reliability is analyzed. Finally, the uncertainty in the battery bank lifetime and its effect on the net present cost are discussed. The results showed that, considering uncertainty of 17.5% in the battery bank lifetime calculated using the Ah throughput model, about 12% of uncertainty in the net present cost is expected. The model presented in this research could be a useful stochastic simulation and optimization tool that allows the consideration of important uncertainty factors in techno-economic analysis.

  15. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  16. Analysis and Design of CLL Resonant Converter for Solar Panel-battery Systems

    OpenAIRE

    D.Ramasubramanian; C.Nagarajan; M.Muruganandam

    2012-01-01

    This paper presents a CLL resonant converter with DSP based Fuzzy Logic Controller (FLC) for solar panel to battery charging system. The mathematical model of the converters has been developed and simulated using MATLAB. The state space model of the converter is developed; it is used to analysis the steady state stability of the system. The aim of the proposed converter is to regulate and control of the output voltage from the solar panel voltage. The performance of the proposed converter is ...

  17. Advanced Quasioptical Launcher System. Final Report

    International Nuclear Information System (INIS)

    Neilson, Jeffrey

    2010-01-01

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  18. NKS MOMS. Final report. [Mobile Measurement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nilssen, J. [Norwegian Radiation Protection Authority (NRPA) (Norway); Aage, H.K. [Danish Emergency Management Agency (DEMA) (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority (IRSA) (Iceland)

    2013-02-15

    Mobile car-borne measurement systems are an important asset in early phase emergency response in all Nordic countries. However, through the development of the systems in the different countries, there are considerable differences between the systems developed. This complicates Nordic cooperation and mutual assistance in emergency situations. This project aimed to facilitate harmonization of mobile measurement systems between the Nordic countries. The project focused on harmonizing data formats, information exchange and measurement strategies. Although the work done was funded by each member, the project established a good platform for cooperation which will hopefully continue beyond the scope of the project. A two-day seminar was held in May 2012, where all participants presented the current status (equipment, methods used etc.), in addition to invited speakers presenting development within the field of mobile detection and in situ measurements. Exchange of experiences and information on different measurement systems and practises in use was an important part of the seminar. The seminar was followed up by a small workshop during the REFOX exercise in Lund, Sweden, September 2012. Exchange of measurement data from the exercise was facilitated through a workspace proveded by NRPA as part of the MOMS project. The work done in this project will be presented at the NordEx12 seminar in March 2013. (Author)

  19. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    Science.gov (United States)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  20. Sequencing Information Management System (SIMS). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fields, C.

    1996-02-15

    A feasibility study to develop a requirements analysis and functional specification for a data management system for large-scale DNA sequencing laboratories resulted in a functional specification for a Sequencing Information Management System (SIMS). This document reports the results of this feasibility study, and includes a functional specification for a SIMS relational schema. The SIMS is an integrated information management system that supports data acquisition, management, analysis, and distribution for DNA sequencing laboratories. The SIMS provides ad hoc query access to information on the sequencing process and its results, and partially automates the transfer of data between laboratory instruments, analysis programs, technical personnel, and managers. The SIMS user interfaces are designed for use by laboratory technicians, laboratory managers, and scientists. The SIMS is designed to run in a heterogeneous, multiplatform environment in a client/server mode. The SIMS communicates with external computational and data resources via the internet.

  1. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  2. Development of units for change measurement of batteries at photovoltaic plant. Final report; Entwicklung von Einheiten zur Ladezustandserfassung von Batterien in PV-Anlagen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rothert, M.; Knorr, R.; Willer, B.

    1996-12-31

    The aim of the project was to contribute to enhanced service life and reliability of batteries in photovoltaic systems by developing further processes and components for charge measurement. The essential basic information in charge determination is the direct measurement of acid concentration in the electrolyte compartment of lead batteries and the evaluation and processing of this signal. Within the framework of this project, operative acidity sensors were developed and tested. They are accurate within an error margin of 0.5 per cent for short periods and of 2 per cent for long periods. A charge measurement unit based on the acid concentration reading was built and special algorithms for measuring charge were developed and tested. This unit stands out particularly because of the following: determination of dynamic charge, long-term stability, and automatic and regular adaptation to the type, size and age of the battery. Using this unit in combination with the acid concentration sensor in photovoltaic plant will permit more efficient plant operation and reliable protection of the battery. (orig./MM) [Deutsch] Ziel des Vorhabens war es, Massnahmen zur Verbesserung der Lebensdauer und Zuverlaessigkeit von Batterien in PV-Anlagen durch die konkrete Weiterentwicklung von Verfahren und Komponenten zur Ladezustandserfassung aufzuzeigen, durchzufuehren und zu demonstrieren. Die direkte Messung der Saeuredichte im Elektrolytraum von Bleibatterien sowie die Auswertung und Weiterverarbeitung dieses Signals bildet dabei die wesentliche Basisinformation. Im Rahmen des Vorhabens wurden funktionstuechtige Saeuredichtesensoren entwickelt und erprobt. Die dabei erreichte Genauigkeit betraegt im Kurzzeitbereich 0,5% und im Langzeitbereich ca. 2%. Eine Ladezustandseinheit basierend auf dem Saeuredichtesignal wurde aufgebaut und spezielle Algorithmen zur Ladezustandserfassung entwickelt und getestet. Besonders die Bestimmung des dynamischen Ladezustands, die Langzeitstabilitaet sowie

  3. Laser fusion system design study. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    The following studies were completed: (1) The synthesis of a pointing/control system compatible with existing and advanced laser opto-mechanical configurations. (2) Attainment of the required pointing angle, longitudinal focus, and differential pathlength accuracies. (3) Maximum modularization of the sensor and gimbal assemblies to provide the required accuracies at minimum cost. Detailed information is given on each. (MOW)

  4. Fuel cell/back-up battery hybrid energy conversion systems: Dynamic modeling and harmonic considerations

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2015-01-01

    Highlights: • Novel technique to completely eliminate the harmful harmonics of fuel cell system. • Presenting a novel high accurate detailed electrochemical dynamic model of fuel cells. • Back-up battery system to compensate the slow dynamic response of fuel cell system. • Exact analysis of real electrochemical reactions occurring inside fuel cells. - Abstract: In this study, a novel dynamic model of fuel cells is presented. High accurate static and dynamic responses of the proposed model are experimentally validated by comparing simulated results with real experimental data. The obtained model together with theoretical results shows that a fuel cell or a fuel cell stack has very slow dynamic response, so that, it cannot adapt itself to the fast variations in load demand. It is shown that for adapting well a fuel cell stack to the load demand, the stack should be equipped with a proposed back-up battery system which compensates the slow dynamic response of the stack by providing a bidirectional path to transmit/absorb the extra instant power. It is proved that the conventional switching waveforms used in the converters of the stacks and back-up systems produce an enormous amount of harmful harmonics. Then, a novel technique is proposed to completely eliminate main harmful harmonics. It is worthwhile to note that all the other techniques only reduce the harmful harmonics. Simulated results verify that the back-up battery system together with applying the proposed technique provide a fast dynamic response for the fuel cell/back-up battery system, and also completely eliminate the main harmful harmonics

  5. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corporation

    2017-09-06

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  6. Power system EMP protection. Final report

    International Nuclear Information System (INIS)

    Marable, J.H.; Barnes, P.R.; Nelson, D.B.

    1975-05-01

    Voltage transients induced in electric power lines and control circuits by the electromagnetic pulse (EMP) from high-altitude nuclear detonations may cause widespread power failure and damage in electric power systems. This report contains a parametric study of EMP power line surges and discusses protective measures to minimize their effects. Since EMP surges have considerably greater rates of rise than lightning surges, recommended standards and test procedures are given to assure that surge arresters protect equipment from damage by EMP. Expected disturbances and damage to power systems are reviewed, and actions are presented which distribution companies can take to counter them. These include backup communications methods, stockpiling of vulnerable parts, repair procedures, and dispatcher actions to prevent blackout from EMP-caused instabilities. A long-range program is presented for improving distributors' protection against EMP. This involves employee training, hardware protection for power and control circuits, and improvement of plans for emergency action. (U.S.)

  7. Integrated radwaste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1997-10-01

    In May 1988, the West Valley Demonstration Project (WVDP) began pretreating liquid high-level radioactive waste (HLW). This HLW was produced during spent nuclear fuel reprocessing operations that took place at the Western New York Nuclear Service Center from 1966 to 1972. Original reprocessing operations used plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) processes to recover usable isotopes from spent nuclear fuel. The PUREX process produced a nitric acid-based waste stream, which was neutralized by adding sodium hydroxide to it. About two million liters of alkaline liquid HLW produced from PUREX neutralization were stored in an underground carbon steel tank identified as Tank 8D-2. The THOREX process, which was used to reprocess one core of mixed uranium-thorium fuel, resulted in about 31,000 liters of acidic waste. This acidic HLW was stored in an underground stainless steel tank identified as Tank 8D-4. Pretreatment of the HLW was carried out using the Integrated Radwaste Treatment System (IRTS), from May 1988 until May 1995. This system was designed to decontaminate the liquid HLW, remove salts from it, and encapsulate the resulting waste into a cement waste form that achieved US Nuclear Regulatory Commission (NRC) criteria for low-level waste (LLW) storage and disposal. A thorough discussion of IRTS operations, including all systems, subsystems, and components, is presented in US Department of Energy (DOE) Topical Report (DOE/NE/44139-68), Integrated Radwaste Treatment System Lessons Learned from 2 1/2 Years of Operation. This document also presents a detailed discussion of lessons learned during the first 2 1/2 years of IRTS operation. This report provides a general discussion of all phases of IRTS operation, and presents additional lessons learned during seven years of IRTS operation

  8. A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid

    International Nuclear Information System (INIS)

    Pavković, Danijel; Lobrović, Mihael; Hrgetić, Mario; Komljenović, Ante

    2016-01-01

    Highlights: • Battery/ultracapacitor storage is considered for a direct-current microgrid. • Microgrid voltage cascade control system with load compensator is designed. • Current references are allocated so that ultracapacitor takes on transient loads. • Adaptive Kalman filter-based estimator is used for indirect load compensation. • Control strategy has been verified on a downscaled hardware-in-the-loop setup. - Abstract: A control system design based on an actively-controlled battery/ultracapacitor hybrid energy storage system suitable for direct current microgrid energy management purposes is presented in this paper. The proposed cascade control system arrangement is based on the superimposed proportional–integral voltage controller designed according to Damping Optimum criterion and a zero-pole canceling feed-forward load compensator aimed at voltage excursion suppression under variable load conditions. The superimposed controller commands the inner battery and ultracapacitor current control loops through a dynamic current reference distribution scheme, wherein the ultracapacitor takes on the highly-dynamic (transient) current demands, and the battery covers for steady-state loads. In order to avoid deep discharges of the ultracapacitor module, it is equipped with an auxiliary state-of-charge controller. Finally, for those applications where load is not measured, an adaptive Kalman filter-based load compensator is proposed and tested. The presented control strategy has been implemented on the low-cost industrial controller unit, and its effectiveness has been verified by means of simulations and experiments for the cases of abrupt load changes and quasi-stochastic load profiles using a downscaled battery/ultracapacitor hardware-in-the-loop experimental setup.

  9. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    Science.gov (United States)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  10. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    International Nuclear Information System (INIS)

    Ustinov, A; Khayrullina, A; Khmelik, M; Sveshnikova, A; Borzenko, V

    2016-01-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia. (paper)

  11. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  12. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Tay, Andrew A.O.

    2015-01-01

    Thermal management is crucial for the operation of electric vehicles because lithium ion batteries are vulnerable to excessive heat generation during fast charging or other severe scenarios. In this work, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack. A numerical model is developed and comprehensively validated with experimental results. This model is then employed to investigate the thermal performance of the HPTMS under steady state and transient conditions. It is found that a cylinder vortex generator placed in front of the heat pipe condensers in the coolant stream improves the temperature uniformity. The uses of cooper heat spreaders and cooling fins greatly improve the performance of the thermal management system. Experiments and transient simulations of heat pipe thermal management system integrated with batteries prove that the improved HPTMS is capable for thermal management of batteries during fast charging. The air-cooled HPTMS is infeasible for thermal management of batteries during fast charging at the pack level due to the limitation of low specific heat capacity. - Highlights: • We develop a numerical model for optimizing a heat pipe thermal management system for fast charging batteries. • The numerical model is comprehensively validated with experimental data. • A cylinder vortex generator is placed at the inlet of the cooling stream to improve the temperature uniformity. • We validate the effectiveness of the optimized system with integration of prismatic batteries

  13. Final Report of Strongly Interacting Fermion Systems

    International Nuclear Information System (INIS)

    Wilkins, J. W.

    2001-01-01

    There has been significant progress in three broad areas: (A) Optical properties, (B) Large-scale computations, and (C) Many-body systems. In this summary the emphasis is primarily on those papers that point to the research plans. At the same time, some important analytic work is not neglected, some of it even appearing in the description of large-scale Computations. Indeed one of the aims of such computations is to give new insights which lead to development of models capable of simple analytic or nearly analytic analysis

  14. Comparison of Battery-Powered and Manual Bone Biopsy Systems for Core Needle Biopsy of Sclerotic Bone Lesions.

    Science.gov (United States)

    Cohen, Micah G; McMahon, Colm J; Kung, Justin W; Wu, Jim S

    2016-05-01

    The purpose of this study was to compare manual and battery-powered bone biopsy systems for diagnostic yield and procedural factors during core needle biopsy of sclerotic bone lesions. A total of 155 consecutive CT-guided core needle biopsies of sclerotic bone lesions were performed at one institution from January 2006 to November 2014. Before March 2012, lesions were biopsied with manual bone drill systems. After March 2012, most biopsies were performed with a battery-powered system and either noncoaxial or coaxial biopsy needles. Diagnostic yield, crush artifact, CT procedure time, procedure radiation dose, conscious sedation dose, and complications were compared between the manual and battery-powered core needle biopsy systems by Fisher exact test and t test. One-way ANOVA was used for subgroup analysis of the two battery-powered systems for procedure time and radiation dose. The diagnostic yield for all sclerotic lesions was 60.0% (93/155) and was significantly higher with the battery-powered system (73.0% [27/37]) than with the manual systems (55.9% [66/118]) (p = 0.047). There was no significant difference between the two systems in terms of crush artifact, procedure time, radiation dose, conscious sedation administered, or complications. In subgroup analysis, the coaxial battery-powered biopsies had shorter procedure times (p = 0.01) and lower radiation doses (p = 0.002) than the coaxial manual systems, but the noncoaxial battery-powered biopsies had longer average procedure times and higher radiation doses than the coaxial manual systems. In biopsy of sclerotic bone lesions, use of a battery-powered bone drill system improves diagnostic yield over use of a manual system.

  15. Functional Assessment of Battery Management System Tested on Hardware-in-the-Loop Simulator

    DEFF Research Database (Denmark)

    Kalogiannis, Theodoros; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    . The BMS under test is interacting in real-time with the emulated battery pack and several of its functions such as current, voltage and State of Charge (SOC) estimation are evaluated. Also, passive balancing experiments are conducted during charging in order to assess different balancing settings...... of the BMS as far as their respective balancing times and deviations in SOC are concerned. Finally, the energy efficiency of the BMS is accurately measured which, depending on the requirements, can achieve more than 99% of efficiency. In general, it is demonstrated that the HIL setup can provide...... representative outcomes at minimum resources and time requirements....

  16. Investigation of Impedance-Based Parameters in Metal-O2 Batteries for Next Generation of Battery Management Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan

    2015-01-01

    -of-health of lithium-ion batteries. Applied Energy, 86(9), 1506–1511. doi:10.1016/j.apenergy.2008.11.021 [4] McCloskey, B. D., Garcia, J. M., & Luntz, A. C. (2014). Chemical and Electrochemical Differences in Nonaqueous Li–O 2and Na–O2 Batteries. The Journal of Physical Chemistry Letters, 5(7), 1230–1235. doi:10...... electrolyte. Journal of Power Sources, 272(c), 415–421. doi:10.1016/j.jpowsour.2014.08.056 [Figure]...

  17. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  18. Dual Manifold System for Arraying Biomolecules; FINAL

    International Nuclear Information System (INIS)

    Doktycz, M.J.

    2001-01-01

    The objective of this CRADA is to establish a new approach to fluid transfer and array construction. This new approach will involve a high-speed, multiplexed fluid distribution valve and ink jet valves. It will enable the parallel handling of multiple reagents for a system that will have multiple applications in addition to the high-speed construction of microarrays. The primary tasks involve proof of principle experiments aimed at establishing key components of the technology and evaluating various optional configurations. The basic platform for evaluating the technology will be set-up by the Contractor at Oak Ridge National Laboratory (ORNL) and will employ custom valving prepared by Rheodyne. The test platform will consist of a motion controller, 3-axes of motion, software, and pneumatic control; and will be used to evaluate the hybrid valve

  19. Field Trial on a Rack-mounted DC Power Supply System with 80-Ah Lithium-ion Batteries

    Science.gov (United States)

    Matsushima, Toshio

    Using an industrial lithium-ion battery that has higher energy density than conventional valve-regulated lead-acid batteries, a rack-mounted DC-power-supply system was assembled and tested at a base transceiver station (BTS) offering actual services. A nominal output voltage and maximum output current of the system is 53.5V and 20A, respectively. An 80-Ah lithium-ion battery composed of 13 cells connected in series was applied in the system and maintained in a floating charge method. The DC-power-supply system was installed in a 19-inch power rack in the telecommunications equipment box at BTS. The characteristics of the 80Ah lithium-ion battery, specifications of the DC-power-supply system and field-test results were shown in this paper.

  20. Applications of porous electrodes to metal-ion removal and the design of battery systems

    International Nuclear Information System (INIS)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 μg Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected

  1. Applications of porous electrodes to metal-ion removal and the design of battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.

  2. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  3. Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system

    KAUST Repository

    Kutbee, Arwa T.

    2017-09-25

    To augment the quality of our life, fully compliant personalized advanced health-care electronic system is pivotal. One of the major requirements to implement such systems is a physically flexible high-performance biocompatible energy storage (battery). However, the status-quo options do not match all of these attributes simultaneously and we also lack in an effective integration strategy to integrate them in complex architecture such as orthodontic domain in human body. Here we show, a physically complaint lithium-ion micro-battery (236 μg) with an unprecedented volumetric energy (the ratio of energy to device geometrical size) of 200 mWh/cm3 after 120 cycles of continuous operation. Our results of 90% viability test confirmed the battery’s biocompatibility. We also show seamless integration of the developed battery in an optoelectronic system embedded in a three-dimensional printed smart dental brace. We foresee the resultant orthodontic system as a personalized advanced health-care application, which could serve in faster bone regeneration and enhanced enamel health-care protection and subsequently reducing the overall health-care cost.

  4. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  5. Analysis of battery behavior in small photovoltaic systems; Analise do comportamento da bateria utilizada em sistemas fotovoltaicos de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Jose Renato Castro Pompeia; Cagnon, Jose Angelo [Programa de Pos-Graduacao em Agronomia - Energia na Agricultura - FCA/UNESP, Botucatu, SP (Brazil); Dept. de Engenharia Eletrica - FEB/UNESP, Bauru, SP (Brazil)], e-mails: jrfraga@feb.unesp.br, jacagnon@feb.unesp.br

    2011-07-01

    This work aimed to analyze the electric energy storage system generated from a photovoltaic system with lead-acid batteries. The increasing claim for energy in the world in addition to the need of using renewable energy sources in order to preserve the environment makes necessary the development of efficient techniques of power supply and control. Two photovoltaic systems were used in this work, a conventional one with stationary solar panel and another with automatic solar position system. The comparative analysis has allowed assessing the advantages of both systems. The following characteristics were obtained during the development of this work: charge, discharge, battery capacity, operating time rate, auto-discharge reaction (through fluctuation state), among other important information that allows an extended life to the stationary battery studied. The obtained results indicate that the battery connected to the mobile system provides 36% of additional energy compared to the fixed system. When the battery was unable to provide energy to the load, the battery connected to the mobile system consumed about 33% less energy than that one connected to the fixed system (author)

  6. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  7. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff

    DEFF Research Database (Denmark)

    Subramani, Gopinath; Ramachandaramurthy, Vigna K.; Padmanaban, Sanjeevikumar

    2017-01-01

    Under the current energy sector framework of electricity tariff in Malaysia, commercial and industrial customers are required to pay the maximum demand (MD) charge apart from the net consumption charges every month. The maximum demand charge will contribute up to 20% of the electricity bill......, and will hence result in commercial and industrial customers focussing on alternative energy supply to minimize the billing cost. This paper aims to review the technical assessment methods of a grid-connected solar photovoltaic (PV)-battery storage system-with respect to maximum demand shaving. An effective......, technical, and economic aspects of the solar PV-battery system and the Malaysian electricity tariff for commercial and industrial customers....

  8. Architecture for improved mass transport and system performance in redox flow batteries

    Science.gov (United States)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  9. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  10. Buried waste containment system materials. Final Report

    International Nuclear Information System (INIS)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers

  11. Mirror confinement systems: Final technical report

    International Nuclear Information System (INIS)

    1988-08-01

    This report contains: (1) A discussion of azimuthal asymmetrics and fluctuations in RFC-XX-M. Both lead to enhanced radial transport in RFC-XX-M, and presumably most other tandem mirror machines as well; A report on four operating modes of RFC-XX-M which were developed and studied as part of the collaboration. These operating modes were the simple tandem mode, the negative (floating) potential mode, the hot electron mode, and the ECH (electron cyclotron heating) mode; A pulsed rf heated discharge cleaning system which was developed for RFC-XX-M. This method of cleaning proved much more effective than normal glow discharge cleaning, and variations of it are currently in use on the GAMMA-10 tandem mirror and the JIPP TII-U tokamak at the Institute for Plasma Physics at Nagoya; Short descriptions of the diagnostics development and improvement done in conjunction with the work on RFC-XX-M; and a compilation of the work performed at the University of Tsukuba on GAMMA-10. Most of the effort on GAMMA-10 involved diagnostics development and improvement. 16 refs., 42 figs., 1 tab

  12. Condenser inleakage monitoring system development. Final report

    International Nuclear Information System (INIS)

    Kassen, W.R.; Putkey, T.A.; Sawochka, S.G.; Pearl, W.L.; Clouse, M.E.

    1982-09-01

    An instrument/hardware package for air and condenser cooling water inleakage location employing the helium and freon techniques was designed and fabricated. The package consists of design details for tracer gas distribution hardware, injection plenums, and a sample preconditioner and instrument module. Design of the package was based on an evaluation of helium and freon leak detectors and a survey of utility user's experience with the helium and freon techniques. The applicability of the instrument/hardware package to air and cooling water inleakage location was demonstrated at Pacific Gas and Electric Company's Moss Landing Station. The use of calibrated leaks indicated that cooling water leaks down to 1.5 x 10 -4 gpm (0.56 ml/min) and air leaks down to 0.05 cfm were readily detectable with the helium technique, whereas a 4 x 10 -4 gpm (1.5 ml/min) liquid leak was the readily detectable minimum via the freon technique. The field demonstration and in-house detector testing showed the helium technique to be preferable to the freon technique for inleakage location at PWRs, BWRs, and fossil-fueled systems

  13. Load leveling by a battery system in an electric power system with a photovoltaic system; Taiyoko hatsuden system ga donyusareta denryoku keito no chikudenchi ni yoru fuka heijunka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    Storage battery-aided load leveling system is introduced into a power system having a photovoltaic power generation (PV) system, and the effect of the introduction is examined. For this purpose, the resultant improvement on the load factor and reduction in the annual cost are evaluated. Used as the load factor in the studies are the hourly records of power transmitted and received by Chubu Electric Power Co., Inc., in 1995. The output of the PV system is calculated using weather data collected in Nagoya City in the same year. Findings as the result of the studies are stated below. The maximum power is suppressed but a little if it is only the PV system that is introduced into the system. That is, a 2GW PV system introduced into the system suppresses the maximum power only by 0.5GW or less. The maximum power is suppressed more effectively when a storage battery is added, and it decreases linearly with an increase in the storage battery capacity. As for reduction in the cost, the reducing effect is higher when the rate of storage battery capacity/introduced PV capacity is higher in the presence of an introduced PV capacity of 0.8GW or more. 2 refs., 7 figs., 3 tabs.

  14. Transactive Campus Energy Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haack, Jereme N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Woohyun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, Donna J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akyol, Bora A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Allwardt, Craig H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Brandon J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Underhill, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-26

    Transactive energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. The fundamental purpose of transactive energy management is to seamlessly coordinate the operation of large numbers of new intelligent assets—such as distributed solar, energy storage and responsive building loads—to provide the flexibility needed to operate the power grid reliably and at minimum cost, particularly one filled with intermittent renewable generation such as the Pacific Northwest. It addresses the key challenge of providing smooth, stable, and predictable “control” of these assets, despite the fact that most are neither owned nor directly controlled by the power grid. The Clean Energy and Transactive Campus (CETC) work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and the Washington State Department of Commerce (Commerce) through the Clean Energy Fund (CEF). The project team consisted of PNNL, the University of Washington (UW) and Washington State University (WSU), to connect the PNNL, UW, and WSU campuses to form a multi-campus testbed for transaction-based energy management—transactive—solutions. Building on the foundational transactive system established by the Pacific Northwest Smart Grid Demonstration (PNWSGD), the purpose of the project was to construct the testbed as both a regional flexibility resource and as a platform for research and development (R&D) on buildings/grid integration and information-based energy efficiency. This report provides a summary of the various tasks performed under the CRADA.

  15. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems

    KAUST Repository

    Malheiro, André

    2015-05-22

    In this paper we address the optimal sizing and scheduling of isolated hybrid systems using an optimization framework. The hybrid system features wind and photovoltaic conversion systems, batteries and diesel backup generators to supply electricity demand. A Mixed-Integer Linear Programming formulation is used to model system behavior over a time horizon of one year, considering hourly changes in both the availability of renewable resources and energy demand. The optimal solution is achieved with respect to the minimization of the levelized cost of energy (LCOE) over a lifetime of 20 years. Results for a case study show that the most economical solution features all four postulated subsystems. © 2015 Elsevier Ltd.

  16. Aluminum-air battery: System design alternatives and status of components

    Science.gov (United States)

    Maimoni, A.

    1988-09-01

    This report summarizes the status of the various components of the aluminum-air battery system developed for the U.S. Department of Energy Technology Base Project for Electrochemical Energy Storage from 1978 to mid-1987, and presents results of system analysis. Preliminary information indicated that the concentration of carbon dioxide in the incoming air will need to be reduced to 5--100 ppM. A detailed calculation was performed to predict the performance of a full-size-vehicle system with 6-m air-cathode surface area; results showed that previous estimates of system performance are reasonable and consistent with currently available components.

  17. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems

    KAUST Repository

    Malheiro, André ; Castro, Pedro M.; Lima, Ricardo; Estanqueiro, Ana; Estanqueiro, Ana

    2015-01-01

    In this paper we address the optimal sizing and scheduling of isolated hybrid systems using an optimization framework. The hybrid system features wind and photovoltaic conversion systems, batteries and diesel backup generators to supply electricity demand. A Mixed-Integer Linear Programming formulation is used to model system behavior over a time horizon of one year, considering hourly changes in both the availability of renewable resources and energy demand. The optimal solution is achieved with respect to the minimization of the levelized cost of energy (LCOE) over a lifetime of 20 years. Results for a case study show that the most economical solution features all four postulated subsystems. © 2015 Elsevier Ltd.

  18. DECONTAMINATION SYSTEMS AND INFORMATION RESEARCH PROGRAM; FINAL

    International Nuclear Information System (INIS)

    Echol E. Cook, Ph.D., PE.

    1998-01-01

    Tek Centrifugal Membrane System was a unique separation process introduced through the Agreement that is now being used at the Los Alamos National Laboratory. Based on the cost to the USDOE for both technologies and considering their usefulness in cleaning up contaminated sites, no other technologies developed through USDOE provide or have the propensity to provide as great a return on investment and impact on environmental remediation. These technologies alone make the$10.3 million USDOE investment in the WVU Cooperative Agreement a tremendous investment

  19. The completed design of the SLC Final Focus System

    International Nuclear Information System (INIS)

    Murray, J.J.; Brown, K.L.; Fieguth, T.

    1987-02-01

    The design of the SLC Final Focus System has evolved from its initial conceptual design into its final form. This final design is described including a review of the critical decisions influencing the adoption of particular features. The creation of a feasible design has required that these decisions be tempered by practical considerations such as site constraints, correction of optical errors caused by imperfections, and accommodations requested by engineers and particle detector physicists. As this is the first such system to be built, it is hoped that the experience gained will be useful for the design of future systems

  20. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  1. Remote power supply by wind/diesel/battery systems - operational experience and economy

    International Nuclear Information System (INIS)

    Kniehl, R.; Cramer, G.; Toenges, K.H.

    1995-01-01

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these 'Intelligent Power Systems (IPS)' have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  2. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G; Toenges, K H [SMA Regelsysteme GmbH, Niestetal (Germany)

    1996-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  3. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R. [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G.; Toenges, K.H. [SMA Regelsysteme GmbH, Niestetal (Germany)

    1995-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  4. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials

    International Nuclear Information System (INIS)

    Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan

    2017-01-01

    Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the

  5. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  6. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  7. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable

  8. A feasibility and load sensitivity analysis of photovoltaic water pumping system with battery and diesel generator

    International Nuclear Information System (INIS)

    Muhsen, Dhiaa Halboot; Khatib, Tamer; Haider, Haider Tarish

    2017-01-01

    Highlights: • Feasibility and load sensitivity analysis is conducted for PVPS. • Battery and diesel generator are considered as supporting units to the system. • The configuration of the PV array and the initial status of the tank are important. • The COU is more sensitive to the capital cost of PV array than other components. • Increasing the maximum capacity of water storage tank is better storage and DG. - Abstract: In this paper, a feasibility and load sensitivity analysis is conducted for photovoltaic water pumping systems with storage device (battery) or diesel generator so as to obtain an optimal configuration that achieves a reliable system. The analysis is conducted based on techno-economic aspects, where the loss of load probability and life cycle cost are represented as technical and economic criteria, respectively. Various photovoltaic water pumping systems scenarios with initially full storage tank; battery and hybrid DG-PV energy source are proposed to analyze the feasibility of system. The result shows that the configuration of the PV array and the initial status of the storage tank are important variables to be considered. Moreover, the sensitivity of cost of unit for various PVPS components is studied. It is found that the cost of unit is more sensitive to the initial capital cost of photovoltaic array than other components. In this paper a standalone PV based pumping system with a PV array capacity of 2.4 kWp and a storage tank with a capacity of 80 m 3 was proposed an a optimum system. The system with the aforementioned configuration pumps an average hourly water volume of approximately 3.297 m 3 over one year with a unit of 0.05158 USD/m 3 . Moreover, according to results, increasing the maximum capacity of water storage tank is technically and economically better than supporting a photovoltaic water pumping systems with another energy source or extra storage device.

  9. Ecotoxicological evaluation of the additive butylated hydroxyanisole using a battery with six model systems and eighteen endpoints.

    Science.gov (United States)

    Jos, Angeles; Repetto, Guillermo; Ríos, Juan Carlos; del Peso, Ana; Salguero, Manuel; Hazen, María José; Molero, María Luisa; Fernández-Freire, Paloma; Pérez-Martín, Jose Manuel; Labrador, Verónica; Cameán, Ana

    2005-01-26

    The occurrence and fate of additives in the aquatic environment is an emerging issue in environmental chemistry. This paper describes the ecotoxicological effects of the commonly used additive butylated hydroxyanisole (BHA) using a test battery, comprising of several different organisms and in vitro test systems, representing a proportion of the different trophic levels. The most sensitive system to BHA was the inhibition of bioluminescence in Vibrio fischeri bacteria, which resulted in an acute low observed adverse effect concentration (LOAEC) of 0.28 microM. The next most sensitive system was the immobilization of the cladoceran Daphnia magna followed by: the inhibition of the growth of the unicellular alga Chlorella vulgaris; the endpoints evaluated in Vero (mammalian) cells (total protein content, LDH activity, neutral red uptake and MTT metabolization), mitotic index and root growth inhibition in the terrestrial plant Allium cepa, and finally, the endpoints used on the RTG-2 salmonid fish cell line (neutral red uptake, total protein content, MTS metabolization, lactate dehydrogenase leakage and activity, and glucose-6-phosphate dehydrogenase activity). Morphological alterations in RTG-2 cells were also assessed and these included loss of cells, induction of cellular pleomorphism, hydropic degeneration and induction of apoptosis at high concentrations. The results from this study also indicated that micronuclei were not induced in A.cepa exposed to BHA. The differences in sensitivity for the diverse systems that were used (EC50 ranged from 1.2 to >500 microM) suggest the importance for a test battery approach in the evaluation of the ecological consequences of chemicals. According to the results, the levels of BHA reported in industrial wastewater would elicit adverse effects in the environment. This, coupled with its potential to bioaccumulate, makes BHA a pollutant of concern not only for acute exposures, but also for the long-term.

  10. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  11. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  12. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans; Henriques, David; Giel, Hans; Markus, Thorsten

    2017-01-01

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  13. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans [Vienna Univ. (Austria). Dept. of Inorganic Chemistry - Functional Materials; Li, Dajian; Cupid, Damian [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Henriques, David; Giel, Hans; Markus, Thorsten [Mannheim Univ. of Applied Sciences (Germany). Inst. for Thermo- and Fluiddynamics

    2017-11-15

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  14. Multi-objective design of PV-wind-diesel-hydrogen-battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L. [Department of Electrical Engineering, University of Zaragoza, Calle Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-12-15

    This paper presents, for the first time, a triple multi-objective design of isolated hybrid systems minimizing, simultaneously, the total cost throughout the useful life of the installation, pollutant emissions (CO{sub 2}) and unmet load. For this task, a multi-objective evolutionary algorithm (MOEA) and a genetic algorithm (GA) have been used in order to find the best combination of components of the hybrid system and control strategies. As an example of application, a complex PV-wind-diesel-hydrogen-battery system has been designed, obtaining a set of possible solutions (Pareto Set). The results achieved demonstrate the practical utility of the developed design method. (author)

  15. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  16. Verification of Safety Margins of Battery Banks Capacity of Class 1E DC System in a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lukman, Abdulrauf; Zhu, Oon-Pyo

    2015-01-01

    According to Ref 'Station blackout (SBO) is generally a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and uninterruptible AC power supplies may be available as long as batteries can supply the loads, alternate AC power supplies are available'. The above IAEA document indicated the importance of batteries during SBO. Prior to the Fukushima accident, most batteries might be designed with coping capability of four hours. However, the accident showed the need for the coping capability to be increased to at least eight hours. The purpose of this research is to verify the safety capacity margin of the nuclear qualified battery banks of class 1E DC system and test the response to SBO using the load profile of a Korean design nuclear power plant (NPP). The capacity margins of class 1E batteries of DC power system batteries in a nuclear power plant were determined using the load profile of the plant. It was observed that if appropriate manufacturer Kt data are not available, the accuracy of the battery capacity might not be accurately calculated. The result obtained shows that the batteries have the coping capability of two hours for channel A and B, and eight hours for channel C and D. Also capacity margin as show in figure show a reasonable margin for each batteries of the DC system

  17. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system

    International Nuclear Information System (INIS)

    Khatib, Tamer; Ibrahim, Ibrahim A.; Mohamed, Azah

    2016-01-01

    Highlights: • We review the current methods for sizing standalone PV systems. • We review the current criteria adapted in sizing standalone PV systems. • We review current method for sizing battery in standalone PV systems. - Abstract: The reliance of future energy demand on standalone PV system is based on its payback period and particular electrical grid parity prices. This highlights the importance for optimum and applicable methods for sizing these systems. Moreover, the designers are being more sensitive toward simple and reliable sizing models for standalone PV system. This paper proposes a review on important knowledge that needs to be taken into account while designing and implementing standalone PV systems. Such a knowledge includes configurations of standalone photovoltaic system, evaluation criteria for unit sizing, sizing methodologies. Moreover, this review provides highlights on challenges and limitations of standalone PV system size optimization techniques.

  18. Review of battery powered embedded systems design for mission-critical low-power applications

    Science.gov (United States)

    Malewski, Matthew; Cowell, David M. J.; Freear, Steven

    2018-06-01

    The applications and uses of embedded systems is increasingly pervasive. Mission and safety critical systems relying on embedded systems pose specific challenges. Embedded systems is a multi-disciplinary domain, involving both hardware and software. Systems need to be designed in a holistic manner so that they are able to provide the desired reliability and minimise unnecessary complexity. The large problem landscape means that there is no one solution that fits all applications of embedded systems. With the primary focus of these mission and safety critical systems being functionality and reliability, there can be conflicts with business needs, and this can introduce pressures to reduce cost at the expense of reliability and functionality. This paper examines the challenges faced by battery powered systems, and then explores at more general problems, and several real-world embedded systems.

  19. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    Science.gov (United States)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  20. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid....... Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be optimized for dierent kind of grid services. As an energy storage solution with timing for few seconds...... multilevel converter structure with integrated energy storage is introduced. This converter structure is suitable to interface low and medium voltage energy storage units to medium and high voltage grids. It can also interconnect a DC and AC grid with bidirectional power ow, were both can be backed...

  1. General method for final focus system design for circular colliders

    Directory of Open Access Journals (Sweden)

    Riccardo de Maria

    2008-03-01

    Full Text Available Colliders use final focus systems to reduce the transverse beam sizes at the interaction point in order to increase collision event rates. The maximum focal strength (gradient of the quadrupoles, and the maximum beam size in them, together limit the beam size reduction that is possible. The goal of a final focus system design is to find the best compromise between quadrupole aperture and quadrupole gradient, for the magnet technology that is used. This paper develops a design method that identifies the intrinsic limitations of a final focus system, validates the results of the method against realistic designs, and reports its application to the upgrade of the Large Hadron Collider final focus.

  2. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L -1 , giving a total energy density of 38 Wh L -1 at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm -2 the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  4. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Corbus, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  5. Technical and economic design of photovoltaic and battery energy storage system

    International Nuclear Information System (INIS)

    Bortolini, Marco; Gamberi, Mauro; Graziani, Alessandro

    2014-01-01

    Highlights: • Design of grid connected photovoltaic system integrating battery energy storage system. • A model to manage the energy flows and assess the system profitability is presented. • The model evaluates the effective PV power rate and battery energy system capacity. • An application and multi-scenario analysis based on an Italian context is discussed. • Results show the system technical feasibility and an energy cost save of 52 €/MW h. - Abstract: In the last years, the technological development and the increasing market competitiveness of renewable energy systems, like solar and wind energy power plants, create favorable conditions to the switch of the electricity generation from large centralized facilities to small decentralized energy systems. The distributed electricity generation is a suitable option for a sustainable development thanks to the environmental impact reduction, the load management benefits and the opportunity to provide electricity to remote areas. Despite the current cut off of the national supporting policies to the renewables, the photovoltaic (PV) systems still find profitable conditions for the grid connected users when the produced energy is self-consumed. Due to the intermittent and random nature of the solar source, PV plants require the adoption of an energy storage system to compensate fluctuations and to meet the energy demand during the night hours. This paper presents a technical and economic model for the design of a grid connected PV plant with battery energy storage (BES) system, in which the electricity demand is satisfied through the PV–BES system and the national grid, as the backup source. The aim is to present the PV–BES system design and management strategy and to discuss the analytical model to determine the PV system rated power and the BES system capacity able to minimize the Levelized Cost of the Electricity (LCOE). The proposed model considers the hourly energy demand profile for a reference

  6. Control and management of energy in a PV system equipped with batteries storage

    Directory of Open Access Journals (Sweden)

    Kamal Hirech

    2016-06-01

    Full Text Available In this paper we present a work concerning the conception, implementation and testing of a photovoltaic system that is equipped with a new concept of control and manage the energy in a PV system with a battery storage. The objective is to exploit the maximum of power using Hill climbing improved algorithm that considers optimal electrical characteristics of PV panels regardless of the system perturbation, to manage the energy between blocs of PV system in order to control the charge/discharge process and inject the energy surplus into the grid and also to estimate the state of charge with precision. Moreover, the system guarantees the acquisition and presentation of results on computer, supervision and so on. The results obtained show the robustness of the PV system, good control and protection of batteries under the maximum of energy provided by the PV panels. The state of charge estimation is evaluated by using measured parameters in real time; it shows an improvement of around 5% compared to the conventional technique.

  7. AGC of a multi-area power system under deregulated environment using redox flow batteries and interline power flow controller

    Directory of Open Access Journals (Sweden)

    Tulasichandra Sekhar Gorripotu

    2015-12-01

    Full Text Available In this paper, Proportional Integral Derivative with Filter (PIDF is proposed for Automatic Generation Control (AGC of a multi-area power system in deregulated environment. Initially, a two area four units thermal system without any physical constraints is considered and the gains of the PIDF controller are optimized employing Differential Evolution (DE algorithm using ITAE criterion. The superiority of proposed DE optimized PIDF controller over Fuzzy Logic controller is demonstrated. Then, to further improve the system performance, an Interline Power Flow Controller (IPFC is placed in the tie-line and Redox Flow Batteries (RFB is considered in the first area and the controller parameters are tuned. Additionally, to get an accurate insight of the AGC problem, important physical constraints such as Time Delay (TD and Generation Rate Constraints (GRC are considered and the controller parameters are retuned. The performance of proposed controller is evaluated under different operating conditions that take place in a deregulated power market. Further, the proposed approach is extended to a two area six units hydro thermal system. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values.

  8. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  9. Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-01-01

    The operating temperatures of lithium ion battery packs in electrical vehicles and hybrid electrical vehicles need to be maintained in an optimum range for better performance and longer battery life. This paper proposes a new battery pack cooling system that utilizes the low saturation temperature of the fuel in ammonia based future hybrid electric vehicles. In the proposed cooling system, the batteries are partially submerged in to the liquid ammonia, and the liquid ammonia cools the battery by absorbing the heat and evaporating and the ammonia vapor cools the part of the battery not covered by liquid ammonia. The relationships between the performance of the battery cooling system and the maximum temperature (and the temperature distribution) in the battery are investigated for practical applications. The effect of the length of the battery that is submerged in to the liquid ammonia on the thermal performance of battery is studied and evaluated. The present results show that the proposed ammonia based cooling system offers a unique opportunity to maintain the operating temperature of the battery in an optimum range for consecutive charging and discharging phases at a high rate of 7.5C.

  10. Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage

    International Nuclear Information System (INIS)

    Jou, Hurng-Liahng; Chang, Yi-Hao; Wu, Jinn-Chang; Wu, Kuen-Der

    2015-01-01

    Highlights: • The operation strategy for grid-connected PV generation system integrated with battery energy storage is proposed. • The PV system is composed of an inverter and two DC-DC converter. • The negative impact of grid-connected PV generation systems on the grid can be alleviated by integrating a battery. • The operation of the developed system can be divided into nine modes. - Abstract: The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DC–DC boost converter, an isolated bidirectional DC–DC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance

  11. A novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse

    Science.gov (United States)

    Arora, Shashank; Kapoor, Ajay; Shen, Weixiang

    2018-02-01

    Parasitic load, which describes electrical energy consumed by battery thermal management system (TMS), is an important design criterion for battery packs. Passive TMSs using phase change materials (PCMs) are thus generating much interest. However, PCMs suffer from low thermal conductivities. Most current thermal conductivity enhancement techniques involve addition of foreign particles to PCMs. Adding foreign particles increases effective thermal conductivity of PCM-systems but at expense of their latent heat capacity. This paper presents an alternate approach for improving thermal performance of PCM-based TMSs. The introduced technique involves placing battery cells in a vertically inverted position within the battery-pack. It is demonstrated through experiments that inverted cell-layout facilitates build-up of convection current in the pack, which in turn minimises thermal variations within the PCM matrix by enabling PCM mass transfer between the top and the bottom regions of the battery pack. The proposed system is found capable of maintaining tight control over battery cell temperature even during abusive usage, defined as high-rate repetitive cycling with minimal rest periods. In addition, this novel TMS can recover waste heat from PCM-matrix through thermoelectric devices, thereby resulting in a negative parasitic load for TMS.

  12. FOCUS: a fire management planning system -- final report

    Science.gov (United States)

    Frederick W. Bratten; James B. Davis; George T. Flatman; Jerold W. Keith; Stanley R. Rapp; Theodore G. Storey

    1981-01-01

    FOCUS (Fire Operational Characteristics Using Simulation) is a computer simulation model for evaluating alternative fire management plans. This final report provides a broad overview of the FOCUS system, describes two major modules-fire suppression and cost, explains the role in the system of gaming large fires, and outlines the support programs and ways of...

  13. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  14. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  15. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  16. Optimal Design of Wind-PV-Diesel-Battery System using Genetic Algorithm

    Science.gov (United States)

    Suryoatmojo, Heri; Hiyama, Takashi; Elbaset, Adel A.; Ashari, Mochamad

    Application of diesel generators to supply the load demand on isolated islands in Indonesia has widely spread. With increases in oil price and the concerns about global warming, the integration of diesel generators with renewable energy systems have become an attractive energy sources for supplying the load demand. This paper performs an optimal design of integrated system involving Wind-PV-Diesel-Battery system for isolated island with CO2 emission evaluation by using genetic algorithm. The proposed system has been designed for the hybrid power generation in East Nusa Tenggara, Indonesia-latitude 09.30S, longitude 122.0E. From simulation results, the proposed system is able to minimize the total annual cost of the system under study and reduce CO2 emission generated by diesel generators.

  17. Stand-alone wind system with Vanadium Redox Battery energy storage

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Barote, L.; Weissbach, R.

    2008-01-01

    Energy storage devices are required for power balance and power quality in stand alone wind energy systems. A Vanadium Redox Flow Battery (VRB) system has many features which make its integration with a stand-alone wind energy system attractive. This paper proposes the integration of a VRB system...... with a typical stand-alone wind energy system during wind speed variation as well as transient performance under variable load. The investigated system consists of a variable speed wind turbine with permanent magnet synchronous generator (PMSG), diode rectifier bridge, buck-boost converter, bidirectional charge...... controller, transformer, inverter, ac loads and VRB (to store a surplus of wind energy and to supply power during a wind power shortage). The main purpose is to supply domestic appliances through a single phase 230V, 50Hz inverter. Simulations are accomplished in order to validate the stability of the supply....

  18. Validation of battery-alternator model against experimental data - a first step towards developing a future power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Boulos, A.M.; Burnham, K.J.; Mahtani, J.L. [Coventry University (United Kingdom). Control Theory and Applications Centre; Pacaud, C. [Jaguar Cars Ltd., Coventry (United Kingdom). Engineering Centre

    2004-01-01

    The electric power system of a modern vehicle has to supply enough electrical energy to drive numerous electrical and electronic systems and components. The electric power system of a vehicle consists of two major components: an alternator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands and the operating environment, such as road conditions and vehicle laden weight, is required when the capacities of the generator and the battery are to be determined for a vehicle. In this study, a battery-alternator system has been developed and simulated in MATLAB/Simulink, and data obtained from vehicle tests have been used as a basis for validating the models. This is considered to be a necessary first step in the design and development of a new 42 V power supply system. (author)

  19. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    International Nuclear Information System (INIS)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K.; Akimoto, H.

    2013-01-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery

  20. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  1. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  2. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  3. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  4. FINAL IMPLEMENTATION AND PERFORMANCE OF THE LHC COLLIMATOR CONTROL SYSTEM

    CERN Document Server

    Redaelli, S; Masi, A; Losito, R

    2009-01-01

    The 2008 collimation system of the CERN Large Hadron Collider (LHC) included 80 movable collimators for a total of 316 degrees of freedom. Before beam operation, the final controls implementation was deployed and commissioned. The control system enabled remote control and appropriate diagnostics of the relevant parameters. The collimator motion is driven with time-functions, synchronized with other accelerator systems, which allows controlling the collimator jaw positions with a micrometer accuracy during all machine phases. The machine protection functionality of the system, which also relies on function-based tolerance windows, was also fully validated. The collimator control challenges are reviewed and the final system architecture is presented. The results of the remote system commissioning and the overall performance are discussed.

  5. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  6. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    Science.gov (United States)

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  7. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. Copyright © 2016. Published by Elsevier Inc.

  8. Energy Management Strategy for Micro-Grids with PV-Battery Systems and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Torres-Moreno

    2018-02-01

    Full Text Available This paper analyzes the impact of photovoltaic (PV systems on storage and electric vehicles in micro-grids. As these kinds of systems are becoming increasingly popular in the residential sector, the development of a new generation of equipment, such as more efficient batteries or solar panels, makes further study necessary. These systems are especially interesting in commercial or office buildings, since they have a more repetitive daily pattern of electricity consumption, which usually occurs within the maximum solar radiation hours. Based on this need, a novel control strategy aimed at efficiently managing this kind of micro-grid is proposed. The core of this strategy is a rule-based controller managing the power flows between the grid and the batteries of both the PV system and the electric vehicle. Through experimental data and simulations, this strategy was tested under different scenarios. The selected testbed consisted of the laboratory of a research center, which could be easily scalable to the entire building. Results showed the benefits of using an electric vehicle as an active agent in energy balance, leading to a reduction of the energetic costs of a micro-grid.

  9. Recycling of batteries after storage

    International Nuclear Information System (INIS)

    Posthumus, W.

    1997-06-01

    An overview is given of the types and composition of batteries and their waste processing techniques that are operational or under development. Attention is paid to the demands of the waste processing techniques with respect to the quality of the collected batteries. Finally the storage of batteries is discussed. 18 refs

  10. Investigation into the traction system of battery-driven vehicle (electric motorcar) with super capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kuzomin, Oleksandr; Gurtovyi, Mykhailo; Kirylyuk, Artur; Pismenckiy, Viktor; Slipchenko, Mykola [Kharkiv National Univ. of Radio Electronics, Kharkiv (Ukraine)

    2012-11-01

    The results of investigations into the main characteristics of the traction system of the electric motorcar (EM) with application of super capacitors (SC) to the EM starting and acceleration regimes are given. Dynamics of the consumed power at the EM starting and acceleration up to the specified speed, taking into account its mass, acceleration time and aerodynamic characteristics, is investigated. The authors have developed the microcontroller device ensuring the decrease in the peak load on the accumulator battery (AB) at the moment of the EM starting and acceleration, as well as the automatic redistribution of the electric motor electrical supply between the SC and AB. (orig.)

  11. Experimental Demonstration of Coexistence of Microwave Wireless Communication and Power Transfer Technologies for Battery-Free Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Satoshi Yoshida

    2013-01-01

    Full Text Available This paper describes experimental demonstrations of a wireless power transfer system equipped with a microwave band communication function. Battery charging using the system is described to evaluate the possibility of the coexistence of both wireless power transfer and communication functions in the C-band. A battery-free wireless sensor network system is demonstrated, and a high-power rectifier for the system is also designed and evaluated in the S-band. We have confirmed that microwave wireless power transfer can coexist with communication function.

  12. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  13. Fuzzy logic control of stand-alone photovoltaic system with battery storage

    Science.gov (United States)

    Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.

    Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

  14. A wind-PV-battery hybrid power system at Sitakunda in Bangladesh

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Ghosh, Himangshu Ranjan

    2009-01-01

    The measured wind data of Local Government Engineering Department (LGED) for 2006 at 30 m height shows a good prospect for wind energy extraction at the site. For a few months and hours the speed is below the cut in speeds of the available turbines in the market. The predicted solar radiation data from directly related measured cloud cover and sunshine duration data of Bangladesh Meteorological Department (BMD) for 1992-2003 indicates that a reliable power system can be developed over the year if the solar energy technology is merged with the wind energy technologies for this site. This research work has studied on optimization of a wind-photovoltaic-battery hybrid system and its performance for a typical community load. The assessment shows that least cost of energy (COE) is about USD 0.363/kWh for a community using 169 kWh/day with 61 kW peak and having minimum amount of access or unused energy. Moreover, compared to the existing fossil fuel-based electricity supply, such an environment friendly system can mitigate about 25 t CO 2 /yr. The analysis also indicates that wind-PV-battery is economically viable as a replacement for conventional grid energy supply for a community at a minimum distance of about 17 km from grid.

  15. Synchronization method for grid integrated battery storage systems during asymmetrical grid faults

    Directory of Open Access Journals (Sweden)

    Popadić Bane

    2017-01-01

    Full Text Available This paper aims at presenting a robust and reliable synchronization method for battery storage systems during asymmetrical grid faults. For this purpose, a Matlab/Simulink based model for testing of the power electronic interface between the grid and the battery storage systems has been developed. The synchronization method proposed in the paper is based on the proportional integral resonant controller with the delay signal cancellation. The validity of the synchronization method has been verified using the advanced laboratory station for the control of grid connected distributed energy sources. The proposed synchronization method has eliminated unfavourable components from the estimated grid angular frequency, leading to the more accurate and reliable tracking of the grid voltage vector positive sequence during both the normal operation and the operation during asymmetrical grid faults. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Integrated and Interdisciplinary Research entitled: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  16. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage

    DEFF Research Database (Denmark)

    Sun, Kai; Zhang, Li; Xing, Yan

    2011-01-01

    on improved dc bus signaling is proposed for a modular photovoltaic (PV) generation system with battery energy storage elements. In this paper, the modular PV generation system is composed of three modular dc/dc converters for PV arrays, two grid-connected dc/ac converters, and one dc/dc converter for battery......, grid-connected inversion, and islanding with constant voltage (CV) generation.The power balance of the system under extreme conditions such as the islanding operation with a full-charged battery is taken into account in this control strategy. The dc bus voltage level is employed as an information......Modular generation system, which consists of modular power conditioning converters, is an effective solution to integrate renewable energy sources with conventional utility grid to improve reliability and efficiency, especially for photovoltaic generation. A distributed control strategy based...

  17. Recent Developments of Photovoltaics Integrated with Battery Storage Systems and Related Feed-In Tariff Policies: A Review

    Directory of Open Access Journals (Sweden)

    Angel A. Bayod-Rújula

    2017-01-01

    Full Text Available The paper presents a review of the recent developments of photovoltaics integrated with battery storage systems (PV-BESs and related to feed-in tariff policies. The integrated photovoltaic battery systems are separately discussed in the regulatory context of Germany, Italy, Spain, United Kingdom, Australia, and Greece; the attention of this paper is focused on those integrated systems subject to incentivisation policies such as feed-in tariff. Most of the contributions reported in this paper consider already existing incentive schemes; the remaining part of the contributions proposes interesting and novel feed-in tariff schemes. All the contributions provide an important resource for carrying out further research on a new era of incentive policies in order to promote storage technologies and integrated photovoltaic battery systems in smart grids and smart cities. Recent incentive policies adopted in Germany, Italy, Spain, and Australia are also discussed.

  18. HST Replacement Battery Initial Performance

    Science.gov (United States)

    Krol, Stan; Waldo, Greg; Hollandsworth, Roger

    2009-01-01

    The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,

  19. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    International Nuclear Information System (INIS)

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, Paul

    2017-01-01

    Highlights: •Commercially available PV-battery system is installed in mid-sized UK home. •PV generation and household electricity demand recorded for one year. •More than fifty long-term ageing experiments on commercial batteries undertaken. •Comprehensive battery degradation model based on long-term ageing data validated. •PV-Battery system is shown not be economically viable. -- Abstract: Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, it remains unclear when and under which conditions battery storage can be profitably operated within residential photovoltaic systems. This fact is particularly pertinent when battery degradation is considered within the decision framework. In this work, a commercially available coupled photovoltaic lithium-ion battery system is installed within a mid-sized UK family home. Photovoltaic energy generation and household electricity demand is recorded for more than one year. A comprehensive battery degradation model based on long-term ageing data collected from more than fifty long-term degradation experiments on commercial Lithium-ion batteries is developed. The comprehensive model accounts for all established modes of degradation including calendar ageing, capacity throughput, ambient temperature, state of charge, depth of discharge and current rate. The model is validated using cycling data and exhibited an average maximum transient error of 7.4% in capacity loss estimates and 7.3% in resistance rise estimates for over a year of cycling. The battery ageing model is used to

  20. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    the sole sources of power, whose variations influence the system variables. Since both subsystems have different dynamics, their respective responses are expected to impact differently the whole system behavior. The dispatchability of the battery-supported system as well as its stability and reliability during gusts and/or cloud passage is also discussed. In the fifth step, the goal is to determine to what extent the overall power quality of the grid would be affected by a proliferation of Utility-interactive hybrid system and whether recourse to bulky or individual filtering and voltage controller is necessary. The final stage of the research includes a steady-state analysis of two-year operation (May 96--Apr 98) of the system, with a discussion on system reliability, on any loss of supply probability, and on the effects of the randomness in the wind and solar radiation upon the system design optimization.

  1. Identification of the Most Effective Point of Connection for Battery Energy Storage Systems Focusing on Power System Frequency Response Improvement

    Directory of Open Access Journals (Sweden)

    Thiago Pieroni

    2018-03-01

    Full Text Available With the massive penetration of intermittent generation (wind and solar, the reduction of Electrical Power Systems’ (EPSs inertial frequency response represents a new challenge. One alternative to deal with this scenario may be the application of a Battery Energy Storage System (BESS. However, the main constraint for the massive deployment of BESSs is the high acquisition cost of these storage systems which in some situations, can preclude their use in transmission systems. The main goal of this paper is to propose a systematic procedure to include BESSs in power system aiming to improve the power system frequency response using full linear models and geometric measures. In this work, a generic battery model is developed in a two-area test system with assumed high wind penetration and full conventional generators models. The full power system is linearized, and the geometric measures of controllability associated with of the frequency regulation mode are estimated. Then, these results are used to identify the most effective point of connection for a BESS aiming at the improvement of the power system frequency response. Nonlinear time-domain simulations are carried out to evaluate and validate the results.

  2. Crystallization of aluminum hydroxide in the aluminum-air battery: Literature review, crystallizer design and results of integrated system tests

    Science.gov (United States)

    Maimoni, A.

    1988-03-01

    The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.

  3. Synthesis of CaCrO{sub 4} powders for the cathode material of the thermal battery by GNP and electrochemical characteristics of Ca/LiCl-KCl/CaCrO{sub 4} thermal battery system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe

    2000-04-01

    Thermal batteries are one of the devices employing solid electrolyte that are not nonconductive at ambient temperature, and activated by electrochemical reaction when the sufficient heat is supplied to electrolyte to melt. The demand of thermal batteries would be increased because it is cost effective and highly reliable in that no maintenance is necessary, electric power can be generated as necessary and no self discharge unlike the other primary batteries. These thermal batteries are used to the military purposes and satellite communication systems and as an emergency power sources, applied to the important places where power supply should not be interrupted, such as hospital, powder plants, ships and portable communication devices. Therefore, the purpose of this study was focused to obtain the manufacturing technologies of thermal battery on our own, after manufacturing the CaCrO{sub 4} produced by GNP and investigating the electrochemical characteristics of Ca/LiCl-KCl+CaCrO{sub 4}/Ni.

  4. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Weiqiang Dong

    2016-09-01

    Full Text Available A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV/wind turbine (WT/battery (B/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP have been addressed for sizing HS-BH from a more comprehensive perspective, considering the basic demand of load, the profit from hydrogen, which is produced by HS-BH, and an effective energy storage strategy. An improved ant colony optimization (ACO algorithm has been presented to solve the sizing problem of HS-BH. Finally, a simulation experiment has been done to demonstrate the developed results, in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang, China.

  5. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    thus modified drilling rig diesel generator power-plant can be reduced by about 12% compared to current practice in the field relying on human operator-based decision making, which would also result in proportional reduction of carbon-dioxide emissions. Finally, the analysis has also shown that the return-of-investment period for the considered battery energy storage system might be between one and two years depending on the power-plant utilization (duty) ratio.

  6. Plant systems/components modularization study. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort.

  7. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized

  8. Plant systems/components modularization study. Final report

    International Nuclear Information System (INIS)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort

  9. Experimental study on the application of phase change material in the dynamic cycling of battery pack system

    International Nuclear Information System (INIS)

    Yan, Jiajia; Li, Ke; Chen, Haodong; Wang, Qingsong; Sun, Jinhua

    2016-01-01

    Highlights: • Two temperature peaks are observed in the single battery during the dynamic cycling. • The cooling performance of PCM system is superior to the natural convection system. • Increasing the laying-aside time is beneficial to the cooling performance of PCM system. • The optimal phase change temperature of PCM is recommended as 45 °C. - Abstract: The thermal performance of phase change material (PCM) based battery thermal management system in dynamic cycling is investigated, and several factors influencing the PCM system are discussed in detail. It is established that the surface temperature of a single battery has two temperature peaks during one charge/discharge cycle, while it disappears in the PCM system for the temperature buffering of PCM. In addition, the cooling performance of the PCM system is superior to that of natural convection system especially at a high current rate. Moreover, increasing the laying-aside time properly between each cycling step is beneficial to the cooling performance of the PCM system. Additionally, PCM with a phase change temperature of 45 °C is recommended to be used in the real battery pack system.

  10. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    Science.gov (United States)

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  11. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin.

    Science.gov (United States)

    Kim, Jeonghyun; Salvatore, Giovanni A; Araki, Hitoshi; Chiarelli, Antonio M; Xie, Zhaoqian; Banks, Anthony; Sheng, Xing; Liu, Yuhao; Lee, Jung Woo; Jang, Kyung-In; Heo, Seung Yun; Cho, Kyoungyeon; Luo, Hongying; Zimmerman, Benjamin; Kim, Joonhee; Yan, Lingqing; Feng, Xue; Xu, Sheng; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Paik, Ungyu; Rogers, John A

    2016-08-01

    Recent advances in materials, mechanics, and electronic device design are rapidly establishing the foundations for health monitoring technologies that have "skin-like" properties, with options in chronic (weeks) integration with the epidermis. The resulting capabilities in physiological sensing greatly exceed those possible with conventional hard electronic systems, such as those found in wrist-mounted wearables, because of the intimate skin interface. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The work reported here introduces active optoelectronic systems that function without batteries and in an entirely wireless mode, with examples in thin, stretchable platforms designed for multiwavelength optical characterization of the skin. Magnetic inductive coupling and near-field communication (NFC) schemes deliver power to multicolored light-emitting diodes and extract digital data from integrated photodetectors in ways that are compatible with standard NFC-enabled platforms, such as smartphones and tablet computers. Examples in the monitoring of heart rate and temporal dynamics of arterial blood flow, in quantifying tissue oxygenation and ultraviolet dosimetry, and in performing four-color spectroscopic evaluation of the skin demonstrate the versatility of these concepts. The results have potential relevance in both hospital care and at-home diagnostics.

  12. Development of a polymer battery with high energy density for mobile and stationary applications. Final report. Entwicklung einer Polymerbatterie hoher Energiedichte fuer mobile und stationaere Anwendungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Naegele, D.; Bittihn, R.

    1989-01-01

    In this research project, from the many electrically conducting polymers synthesized during the last few years, a selection were to be tested for their suitability as active electrode material. It was necessary to examine various combinations of electrodes and electrolytes for their electrochemical properties for this purpose (polyacetylene, polythiophene, poly (3-methyl) tiophene, polyparaphenylene, phthalocyanine, polypyrol, poly (1.1 to 2 thienyl) ferrocene). Apart from the technical tests, the mechanisms of the electrochemical reactions had to be cleared up as far as possible. For example, it was to be made clear which reactions led to the quite high self-discharge rates of those polymer electrode materials. From these basic investigations, a selection was to be made of technically interesting materials and battery systems. The next step was building laboratory samples, which were intended to make a realistic estimate of the competitiveness of these systmes with the secondary batteries now on the market possible from the energy and power densities achieved. (orig./MM).

  13. A conceptual design of Final Focus Systems for linear colliders

    International Nuclear Information System (INIS)

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  14. Beam dynamics in the SLC final focus system

    International Nuclear Information System (INIS)

    Bambade, P.S.

    1987-06-01

    The SLC luminosity is reached by colliding beams focused to about 2 μm transverse sizes. The Final Focus System (FFS) must enable, beyond its basic optical design, the detection and correction of errors accumulated in the system. In this paper, after summarizing the design, we review the sensitivity to such errors and the ability to correct them. The overall tuning strategy involves three phases: single beam spot minimization, steering the beams in collision and luminosity optimization with beam-beam effects

  15. LithoRec. Recycling of lithium-ion batteries. Within the R and D program ''Promotion of research and development in the field of electric mobility''. Final report

    International Nuclear Information System (INIS)

    Kwade, Arno; Baerwaldt, Gunnar

    2012-01-01

    In the project ''LithoRec - Recycling of lithium-ion batteries'' several methods were evaluated for recycling of traction batteries. The planning of dismantling of the battery systems in LithoRec comprised besides the pure system planning also first investigations of the automation of dismantling steps, inter alia, with the prototypical realization of a gripper system for the removal of the battery cells. Processes for disassembling the cells and separating the active materials of the metal foils has been investigated in the laboratory and established with respect to the shredding of the cells in the pilot-plant scale. For hydrometallurgical treatment of separated coating powder of lithium-ion batteries in LithoRec a pilot plant has been realized. Ecological and economical balances on the basis of investigations carried out in the laboratory or pilot plant scale showed positive results. For the separation of the battery systems to the levels of the cathodic active material powder, a consistent approach was developed, which showed very good results in laboratory equipment. [de

  16. Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery

    Directory of Open Access Journals (Sweden)

    Mohamed Daowd

    2014-04-01

    Full Text Available Lithium-based batteries are considered as the most advanced batteries technology, which can be designed for high energy or high power storage systems. However, the battery cells are never fully identical due to the fabrication process, surrounding environment factors and differences between the cells tend to grow if no measures are taken. In order to have a high performance battery system, the battery cells should be continuously balanced for maintain the variation between the cells as small as possible. Without an appropriate balancing system, the individual cell voltages will differ over time and battery system capacity will decrease quickly. These issues will limit the electric range of the electric vehicle (EV and some cells will undergo higher stress, whereby the cycle life of these cells will be shorter. Quite a lot of cell balancing/equalization topologies have been previously proposed. These balancing topologies can be categorized into passive and active balancing. Active topologies are categorized according to the active element used for storing the energy such as capacitor and/or inductive component as well as controlling switches or converters. This paper proposes an intelligent battery management system (BMS including a battery pack charging and discharging control with a battery pack thermal management system. The BMS user input/output interfacing. The battery balancing system is based on battery pack modularization architecture. The proposed modularized balancing system has different equalization systems that operate inside and outside the modules. Innovative single switched capacitor (SSC control strategy is proposed to balance between the battery cells in the module (inside module balancing, IMB. Novel utilization of isolated bidirectional DC/DC converter (IBC is proposed to balance between the modules with the aid of the EV auxiliary battery (AB. Finally an experimental step-up has been implemented for the validation of the

  17. The Final Focus Test Beam laser referene system

    International Nuclear Information System (INIS)

    Bressler, V.E.; Ruland, R.E.

    1993-05-01

    The original design for the SLAC linac included an alignment reference system with 270 diffraction gratings situated along the 3000 meter linac. These gratings have provided SLAC with a global reference line repeatable to within 200 micro meters. For the Final Focus Test Beam, this laser system has been extended and 13 new diffraction gratings have been installed. Improvements targets and the availability of new instruments allows us to evaluate the performance of the laser reference system at the 510 micro meter level. An explanation of the system and the results of our evaluation are presented

  18. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    OpenAIRE

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, P. A. (Paul A.)

    2017-01-01

    Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, ...

  19. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  20. The Integration and Control of Multifunctional Stationary PV-Battery Systems in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Mulder, Grietus; Van Mierlo, Joeri

    2013-01-01

    The paper investigates the potential of using lumped stationary battery energy storage systems (BESS) in the public low-voltage distribution grid in order to defer upgrades needed in case of large penetration of electric vehicle (EV), electrified heat pump (HP) in presence of photovoltaic (PV....... The objective of this paper is to develop and detail the method of optimum sizing energy storage for grid connected distribution systems using newly devised BESS control protocol and investigate its sensitivity to factors which are known to influence energy system performance and hence storage requirements......) panel on the view of techno economic optimal sizing taking the consideration of season-based diurnal dynamics. The BESS is primarily dimensioned for the peak shaving operation targeted for the counterbalance of overloading of transformer; BESS also participates in arbitrage (buy low, sell high...