Computational analysis of battery optimized reactor integral system
International Nuclear Information System (INIS)
Hwang, J. S.; Son, H. M.; Jeong, W. S.; Kim, T. W.; Suh, K. Y.
2007-01-01
Battery Optimized Reactor Integral System (BORIS) is being developed as a multi-purpose fast spectrum reactor cooled by lead (Pb). BORIS is an integral optimized reactor with an ultra-long life core. BORIS aims to satisfy various energy demands maintaining inherent safety with the primary coolant Pb, and improving economics. BORIS is being designed to generate 23 MW t h with 10 MW e for at least twenty consecutive years without refueling and to meet the Generation IV Nuclear Energy System goals of sustainability, safety, reliability, and economics. BORIS is conceptualized to be used as the main power and heat source for remote areas and barren lands, and also considered to be deployed for desalinisation purpose. BORIS, based on modular components to be viable for rapid construction and easy maintenance, adopts an integrated heat exchanger system operated by natural circulation of Pb without pumps to realize a small sized reactor. The BORIS primary system is designed through an optimization study. Thermal hydraulic characteristics during a reactor steady state with heat source and sink by core and heat exchanger, respectively, have been carried out by utilizing a computational fluid dynamics code and hand calculations based on first principles. This paper analyzes a transient condition of the BORIS primary system. The Pb coolant was selected for its lower chemical activity with air or water than sodium (Na) and good thermal characteristics. The reactor transient conditions such as core blockage, heat exchanger failure, and loss of heat sink, were selected for this study. Blockage in the core or its inlet structure causes localized flow starvation in one or several fuel assemblies. The coolant loop blockages cause a more or less uniform flow reduction across the core, which may trigger coolant temperature transient. General conservation equations were applied to model the primary system transients. Numerical approaches were adopted to discretized the governing
Naval application of battery optimized reactor integral system
International Nuclear Information System (INIS)
Kim, N. H.; Kim, T. W.; Son, H. M.; Suh, K. Y.
2007-01-01
Past civilian N.S. Savanna (80 MW t h), Otto-Hahn (38 MW t h) and Mutsu (36 MW t h) experienced stable operations under various sea conditions to prove that the reactors were stable and suitable for ship power source. Russian nuclear icebreakers such as Lenin (90 MW t h x2), Arukuchika (150 MW t h x2) showed stable operations under severe conditions during navigation on the Arctic Sea. These reactor systems, however, should be made even more efficient, compact, safe and long life, because adding support from the land may not be available on the sea. In order to meet these requirements, a compact, simple, safe and innovative integral system named Naval Application Vessel Integral System (NAVIS) is being designed with such novel concepts as a primary liquid metal coolant, a secondary supercritical carbon dioxide (SCO 2 ) coolant, emergency reactor cooling system, safety containment and so on. NAVIS is powered by Battery Optimized Reactor Integral System (BORIS). An ultra-small, ultra-long-life, versatile-purpose, fast-spectrum reactor named BORIS is being developed for a multi-purpose application such as naval power source, electric power generation in remote areas, seawater desalination, and district heating. NAVIS aims to satisfy special environment on the sea with BORIS using the lead (Pb) coolant in the primary system. NAVIS improves the economical efficiency resorting to the SCO 2 Brayton cycle for the secondary system. BORIS is operated by natural circulation of Pb without needing pumps. The reactor power is autonomously controlled by load-following operation without an active reactivity control system, whereas B 4 C based shutdown control rod is equipped for an emergency condition. SCO 2 promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. Therefore, the SCO 2 Brayton
Optimizing the Design of Small Fast Spectrum Battery-Type Nuclear Reactors
Directory of Open Access Journals (Sweden)
Staffan Qvist
2014-07-01
Full Text Available This study is focused on defining and optimizing the design parameters of inherently safe “battery” type sodium-cooled metallic-fueled nuclear reactor cores that operate on a single stationary fuel loading at full power for 30 years. A total of 29 core designs were developed with varying power and flow conditions, including detailed thermal-hydraulic, structural-mechanical and neutronic analysis. Given set constraints for irradiation damage, primary cycle pressure drop and inherent safety considerations, the attainable power range and performance characteristics of the systems are defined. The optimum power level for a core with a coolant pressure drop limit of 100 kPa and an irradiation damage limit of 200 DPA (displacements per atom is found to be 100 MWt/40 MWe. Raising the power level of an optimized core gives significantly higher attainable power densities and burnup, but severely decreases safety margins and increases the irradiation damage. A fully optimized inherently safe battery-type fast reactor core with an active height and diameter of 150 cm (2.6 m3, a pressure drop limit of 100 kPa and an irradiation damage limit of 300 DPA can be designed to operate at 150 MWt/60 MWe for 30 years, reaching an average discharge burnup of 100 MWd/kg-actinide.
International Nuclear Information System (INIS)
Kim, T. W.; Kim, N. H.; Suh, K. Y.
2007-01-01
Supercritical carbon dioxide (SCO 2 ) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. The SCO 2 Brayton cycle efficiency as high as 45% furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth lead-cooled Battery Optimized Reactor Integral System (BORIS) is being developed as an ultra-long-life, versatile-purpose, fast-spectrum reactor. BORIS is coupled to the SCO 2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO 2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO 2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45% was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO 2 going out from the low temperature recuperator. Development of Modular Optimized Brayton Integral System (MOBIS) is being devised as the SCO 2 Brayton cycle energy conversion cycle for BORIS. MOBIS consists of Loop Operating Brayton Optimization Study (LOBOS) for experimental Brayton cycle loop and Gas Advanced Turbine Operation Study (GATOS) for the SCO 2 turbine. Liquid-metal Energy Exchanger Integral System (LEXIS) serves to couple BORIS and MOBIS. LEXIS comprises Physical Aspect Thermal Operation System (PATOS) for SCO 2 thermal hydraulic characteristics, Shell-and-tube Overall Layout Optimization Study (SOLOS) for shell-and-tube heat exchanger, Printed
Optimization of station battery replacement
International Nuclear Information System (INIS)
Jancauskas, J.R.; Shook, D.A.
1994-01-01
During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability of quickly analyze proposed modifications and response to internal and external audits
Optimization of station battery replacement
Jancauskas, J. R.; Shook, D. A.
1994-08-01
During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability to quickly analyze proposed modifications and respond to internal and external audits.
Mirror hybrid reactor optimization studies
International Nuclear Information System (INIS)
Bender, D.J.
1976-01-01
A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U
Microgrid management architecture considering optimal battery dispatch
Paul, Tim George
Energy management and economic operation of microgrids with energy storage systems at the distribution level have attracted significant research interest in recent years. One of the challenges in this area has been the coordination of energy management functions with decentralized and centralized dispatch. In this thesis a distributed dispatch algorithm for a microgrid consisting of a photovoltaic source with energy storage which can work with a centralized dispatch algorithm that ensure stability of the microgrid is proposed. To this end, first a rule based dispatch algorithm is formulated which is based on maximum resource utilization and can work in both off grid and grid connected mode. Then a fixed horizon optimization algorithm which minimizes the cost of power taken from the grid is developed. In order to schedule the battery based on changes in the PV farm a predictive horizon methodology based optimization is designed. Further, the rule based and optimization based dispatch methodologies is linked to optimize the voltage deviations at the microgrid Point of Common Coupling (PCC). The main advantage of the proposed method is that, an optimal active power dispatch considering the nominal voltage bandwidth can be initiated for the microgrid in both grid connected or off grid mode of operation. Also, the method allows the grid operator to consider cost based optimal renewable generation scheduling and/or the maximum power extraction based modes of operation simultaneously or separately based on grid operating conditions and topologies. Further, the methods allows maintaining PCC voltage within the limits during these modes of operation and at the same time ensure that the battery dispatch is optimal.
Optimal energy management strategy for self-reconfigurable batteries
International Nuclear Information System (INIS)
Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter
2017-01-01
This paper proposes a novel energy management strategy for multi-cell high voltage batteries where the current through each cell can be controlled, called self-reconfigurable batteries. An optimized control strategy further enhances the energy efficiency gained by the hardware architecture of those batteries. Currently, achieving cell equalization by using the active balancing circuits is considered as the best way to optimize the energy efficiency of the battery pack. This study demonstrates that optimizing the energy efficiency of self-reconfigurable batteries is no more strongly correlated to the cell balancing. According to the features of this novel battery architecture, the energy management strategy is formulated as nonlinear dynamic optimization problem. To solve this optimal control, an optimization algorithm that generates the optimal discharge policy for a given driving cycle is developed based on dynamic programming and code vectorization. The simulation results show that the designed energy management strategy maximizes the system efficiency across the battery lifetime over conventional approaches. Furthermore, the present energy management strategy can be implemented online due to the reduced complexity of the optimization algorithm. - Highlights: • The energy efficiency of self-reconfigurable batteries is maximized. • The energy management strategy for the battery is formulated as optimal control problem. • Developing an optimization algorithm using dynamic programming techniques and code vectorization. • Simulation studies are conducted to validate the proposed optimal strategy.
Optimized batteries for cars with dual electrical architecture
Douady, J. P.; Pascon, C.; Dugast, A.; Fossati, G.
During recent years, the increase in car electrical equipment has led to many problems with traditional starter batteries (such as cranking failure due to flat batteries, battery cycling etc.). The main causes of these problems are the double function of the automotive battery (starter and service functions) and the difficulties in designing batteries well adapted to these two functions. In order to solve these problems a new concept — the dual-concept — has been developed with two separate batteries: one battery is dedicated to the starter function and the other is dedicated to the service function. Only one alternator charges the two batteries with a separation device between the two electrical circuits. The starter battery is located in the engine compartment while the service battery is located at the rear of the car. From the analysis of new requirements, battery designs have been optimized regarding the two types of functions: (i) a small battery with high specific power for the starting function; for this function a flooded battery with lead-calcium alloy grids and thin plates is proposed; (ii) for the service function, modified sealed gas-recombinant batteries with cycling and deep-discharge ability have been developed. The various advantages of the dual-concept are studied in terms of starting reliability, battery weight, and voltage supply. The operating conditions of the system and several dual electrical architectures have also been studied in the laboratory and the car. The feasibility of the concept is proved.
Optimization of a sequence of reactors
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui
1991-01-01
Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach......Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach...
Electrochemical model based charge optimization for lithium-ion batteries
Pramanik, Sourav; Anwar, Sohel
2016-05-01
In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.
Economic Optimization of Component Sizing for Residential Battery Storage Systems
Directory of Open Access Journals (Sweden)
Holger C. Hesse
2017-06-01
Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.
Optimal energy management strategy for battery powered electric vehicles
International Nuclear Information System (INIS)
Xi, Jiaqi; Li, Mian; Xu, Min
2014-01-01
Highlights: • The power usage for battery-powered electrical vehicles with in-wheel motors is maximized. • The battery and motor dynamics are examined emphasized on the power conversion and utilization. • The optimal control strategy is derived and verified by simulations. • An analytic expression of the optimal operating point is obtained. - Abstract: Due to limited energy density of batteries, energy management has always played a critical role in improving the overall energy efficiency of electric vehicles. In this paper, a key issue within the energy management problem will be carefully tackled, i.e., maximizing the power usage of batteries for battery-powered electrical vehicles with in-wheel motors. To this end, the battery and motor dynamics will be thoroughly examined with particular emphasis on the power conversion and power utilization. The optimal control strategy will then be derived based on the analysis. One significant contribution of this work is that an analytic expression for the optimal operating point in terms of the component and environment parameters can be obtained. Owing to this finding, the derived control strategy is also rendered a simple structure for real-time implementation. Simulation results demonstrate that the proposed strategy works both adaptively and robustly under different driving scenarios
Optimal power flow management for distributed energy resources with batteries
International Nuclear Information System (INIS)
Tazvinga, Henerica; Zhu, Bing; Xia, Xiaohua
2015-01-01
Highlights: • A PV-diesel-battery hybrid system is proposed. • Model minimizes fuel and battery wear costs. • Power flows are analysed in a 24-h period. • Results provide a practical platform for decision making. - Abstract: This paper presents an optimal energy management model of a solar photovoltaic-diesel-battery hybrid power supply system for off-grid applications. The aim is to meet the load demand completely while satisfying the system constraints. The proposed model minimizes fuel and battery wear costs and finds the optimal power flow, taking into account photovoltaic power availability, battery bank state of charge and load power demand. The optimal solutions are compared for cases when the objectives are weighted equally and when a larger weight is assigned to battery wear. A considerable increase in system operational cost is observed in the latter case owing to the increased usage of the diesel generator. The results are important for decision makers, as they depict the optimal decisions considered in the presence of trade-offs between conflicting objectives
NUSTRA - optimization code for nuclear reactor strategies
International Nuclear Information System (INIS)
Tusa, E.; Vira, J.
1979-02-01
A computer code is designed to solve the optimal reactor strategy corresponding to a given nuclear power program. As a novel feature the code includes capabilities for explicit uncertainty resolution. After a short description of the calculation methods this report gives the input instructions for the code. (author)
Optimizing small wind turbine performance in battery charging applications
Drouilhet, Stephen; Muljadi, Eduard; Holz, Richard; Gevorgian, Vahan
1995-05-01
Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.
Optimization of reserve lithium thionyl chloride battery electrochemical design parameters
Energy Technology Data Exchange (ETDEWEB)
Doddapaneni, N.; Godshall, N.A.
1987-01-01
The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15%) improved battery performance significantly (10% greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell peformance is illustrated. 5 refs., 9 figs., 3 tabs.
Optimization of reserve lithium thionyl chloride battery electrochemical design parameters
Doddapaneni, N.; Godshall, N. A.
The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15 percent) improved battery performance significantly (10 percent greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell performance is illustrated.
Fast reactor optimization using nonlinear programming
International Nuclear Information System (INIS)
Jakab, J.
1976-01-01
A considerable number of fast reactor optimization problems may be formulated as nonlinear programming problems, which allows the automation of the optimization process by using the computer for evaluation of intermediate results and decision making. The speeds are compared of various minimizing methods in dependence on the number of variables. A programme was written in Fortran for the IBM 360/40 computer based on the gradient quasi-Newton method which belongs to the penalty function method group. Numerical experiments showed that the speed of determining the constrained extreme depended on the penalty constant and on the number of variables and constraints. An excessively low value of the penalty constant results in a procedure failure while an excessively high value causes the slowing down of the convergence. Increasing the number of variables extends the procedure while the dependence of the procedure speed on the number of constraints alone is insignificant. (Z.M.)
DEFF Research Database (Denmark)
He, Guannan; Chen, Qixin; Kang, Chongqing
2016-01-01
Large-scale battery storage will become an essential part of the future smart grid. This paper investigates the optimal bidding strategy for battery storage in power markets. Battery storage could increase its profitability by providing fast regulation service under a performance-based regulation...... mechanism, which better exploits a battery’s fast ramping capability. However, battery life might be decreased by frequent charge–discharge cycling, especially when providing fast regulation service. It is profitable for battery storage to extend its service life by limiting its operational strategy to some...... degree. Thus, we incorporate a battery cycle life model into a profit maximization model to determine the optimal bids in day-ahead energy, spinning reserve, and regulation markets. Then a decomposed online calculation method to compute cycle life under different operational strategies is proposed...
Optimal control rod programs in power reactors
International Nuclear Information System (INIS)
Fadilah, S.M.; Lewins, J.
1975-01-01
Control rod programming is investigated with respect to optimising the power peaking factor and hence the utilisation of a nuclear reactor. A simplified diffusion model, initially with a finite number of regions, in cylindrical geometry, is used to enable optimal trajectories to be completely synthesised. The average discharge burnup problem is posed both as an external and as an internal optimisation. The connection between optimum power shape and the maximisation of the average discharge burnup is explored in a wider context. It is shown that optimum trajectories combine an initial singular solution of the Haling type with a terminal bang-bang solution. An extension to a higher number of regions and, on passing to the limit, to a diffusion model, provides an alternative proof of Haling's principle without the restriction to monotonic reactivity decrease with burnup. Numerical results in the two-region model are given to show the general scope of optimisation available. (author)
International Nuclear Information System (INIS)
Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.
1987-01-01
The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated
Computing Optimal Schedules of Battery Usage in Embedded Systems
Jongerden, M.R.; Mereacre, Alexandru; Bohnenkamp, H.C.; Haverkort, Boudewijn R.H.M.; Katoen, Joost P.
2010-01-01
The use of mobile devices is often limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries or battery cells over the load to exploit the recovery
Directory of Open Access Journals (Sweden)
Xinan Zhang
2016-10-01
Full Text Available The penetration of solar photovoltaic (PV systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS. With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB, which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.
Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor
Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz
2017-12-01
The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.
Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor
Directory of Open Access Journals (Sweden)
Grodzki Marcin
2017-12-01
Full Text Available The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit. A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.
Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai
2018-02-01
An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.
Neutron density optimal control of A-1 reactor analoque model
International Nuclear Information System (INIS)
Grof, V.
1975-01-01
Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)
Optimization of neutron flux distribution in Isotope Production Reactor
International Nuclear Information System (INIS)
Valladares, G.L.
1988-01-01
In order to optimize the thermal neutrons flux distribution in a Radioisotope Production and Research Reactor, the influence of two reactor parameters was studied, namely the Vmod / Vcomb ratio and the core volume. The reactor core is built with uranium oxide pellets (UO 2 ) mounted in rod clusters, with an enrichment level of ∼3 %, similar to LIGHT WATER POWER REATOR (LWR) fuel elements. (author) [pt
An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles
Directory of Open Access Journals (Sweden)
Yinghua Han
2014-01-01
Full Text Available Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed operating strategy enhances the availability and reliability at a low cost.
Energy Technology Data Exchange (ETDEWEB)
Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying
2016-08-01
This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.
Control parameter optimization for AP1000 reactor using Particle Swarm Optimization
International Nuclear Information System (INIS)
Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu
2016-01-01
Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization
Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.
2018-03-01
The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.
Neutron flux optimization in irradiation channels at NUR research reactor
International Nuclear Information System (INIS)
Meftah, B.; Zidi, T.; Bousbia-Salah, A.
2006-01-01
Optimization of neutron fluxes in experimental channels is of great concern in research reactor utilization. The general approach used at the NUR research reactor for neutron flux optimization in irradiation channels is presented. The approach is essentially based upon a judicious optimization of the core configuration combined with the improvement of reflector characteristics. The method allowed to increase the thermal neutron flux for radioisotope production purposes by more than 800%. Increases of up to 60% are also observed in levels of useful fluxes available for neutron diffraction experiments (small angle neutron scattering (SANS), neutron reflectometry, etc.). Such improvements in the neutronic characteristics of the NUR reactor opened new perspectives in terms of its utilization. More particularly, it is now possible to produce at industrial scales major radio-isotopes for medicine and industry and to perform, for the first time, material testing experiments. The cost of the irradiations in the optimized configuration is generally small when compared to those performed in the old configuration and an average reduction factor of about of 10 is expected in the case of production of Molybdenum-99 (isotope required for the manufacturing of Technetium-99 medical kits). In addition to these important results, safety analysis studies showed that the more symmetrical nature of the core geometry leads to a more adequately balanced reactivity control system and contributes quite efficiently to the operational safety of the NUR reactor. Results of comparisons between calculations and measurements for a series of parameters of importance in reactor operation and safety showed good agreement
Field Synergy Analysis and Optimization of the Thermal Behavior of Lithium Ion Battery Packs
Directory of Open Access Journals (Sweden)
Hongwen He
2017-01-01
Full Text Available In this study, a three dimensional (3D modeling has been built for a lithium ion battery pack using the field synergy principle to obtain a better thermal distribution. In the model, the thermal behavior of the battery pack was studied by reducing the maximum temperature, improving the temperature uniformity and considering the difference between the maximum and maximum temperature of the battery pack. The method is further verified by simulation results based on different environmental temperatures and discharge rates. The thermal behavior model demonstrates that the design and cooling policy of the battery pack is crucial for optimizing the air-outlet patterns of electric vehicle power cabins.
Numerical algorithm for optimization of positive electrode in lead-acid batteries
Murariu, Ancuta Teodora; Buimaga-Iarinca, Luiza; Morari, Cristian
2017-12-01
The positive electrode in lead-acid batteries is one of the most sensitive parts of the whole battery, since it is affected by various aggresive chemical processes during its life. Therefore, an optimal design of the positive electrode of the battery may have as efect a dramatic improvement of the properties of the battery - such as total capacity or endurance during its life. Our efforts dedicated to this goal cover a range of rather complex tasks, from the design based on numerical analysis to statistic analysis. We present the structure of the software implementation and the results obtained for three types of positive electrodes.
Optimization of a packed bed reactor for liquid waste treatment
International Nuclear Information System (INIS)
Schmidt, C.A.; Brower, M.J.; Coogan, J.J.; Tennant, R.A.
1993-01-01
The authors describe an optimization study of a packed bed reactor (PBR), developed for the treatment of hazardous liquid wastes. The focus is on the destruction of trichloroethylene (TCE). The PBR technology offers many distinct advantages over other processes: simple design, high destruction rates (99.99%), low costs, ambient pressure operation, easy maintenance and scaleability. The cost effectiveness, optimal operating parameters and scaleability were determined. As a second stage of treatment, a silent discharge plasma (SDP) reactor was installed to further treat offgases from the PBR. A primary advantage of this system is closed loop operation, where exhaust gases are continuously recycled and not released into the atmosphere
Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle
Directory of Open Access Journals (Sweden)
Bambang Wahono
2015-07-01
Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.
Optimization and control of a continuous polymerization reactor
Directory of Open Access Journals (Sweden)
L. A. Alvarez
2012-12-01
Full Text Available This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO, the Model Predictive Control (MPC and a Target Calculation (TC that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.
Modeling Stationary Lithium-Ion Batteries for Optimization and Predictive Control: Preprint
Energy Technology Data Exchange (ETDEWEB)
Raszmann, Emma; Baker, Kyri; Shi, Ying; Christensen, Dane
2017-02-22
Accurately modeling stationary battery storage behavior is crucial to understand and predict its limitations in demand-side management scenarios. In this paper, a lithium-ion battery model was derived to estimate lifetime and state-of-charge for building-integrated use cases. The proposed battery model aims to balance speed and accuracy when modeling battery behavior for real-time predictive control and optimization. In order to achieve these goals, a mixed modeling approach was taken, which incorporates regression fits to experimental data and an equivalent circuit to model battery behavior. A comparison of the proposed battery model output to actual data from the manufacturer validates the modeling approach taken in the paper. Additionally, a dynamic test case demonstrates the effects of using regression models to represent internal resistance and capacity fading.
Genetic algorithms applied to nuclear reactor design optimization
International Nuclear Information System (INIS)
Pereira, C.M.N.A.; Schirru, R.; Martinez, A.S.
2000-01-01
A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)
Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia
Energy Technology Data Exchange (ETDEWEB)
Shen, W.X. [School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan (Malaysia)
2009-01-15
Size optimization of solar array and battery in a standalone photovoltaic (SPV) system is investigated. Based on the energy efficiency model, the loss of power supply probability (LPSP) of the SPV system is calculated for different size combinations of solar array and battery. For the desired LPSP at the given load demand, the optimal size combination is obtained at the minimum system cost. One case study is given to show the application of the method in Malaysian weather conditions. (author)
Software for selection of optimal layouts of fast reactors
International Nuclear Information System (INIS)
Geraskin, N.I.; Kuz'min, A.M.; Morin, D.V.
1983-01-01
A complex program for the calculation and optimization of a two-dimensional cylindrical fast reactor consisting of two axial layers and having up to 10 zones of different compositions in each layer is described. Search for optimal parameters is performed by the successive linearization method based on the small perturbation theory and linear programming. The complex program is written for the BESM-6 computer in the FORTRAN language
Optimization of up-flow anaerobic sludge blanket reactor for ...
African Journals Online (AJOL)
Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite fermentation and distillation wastewater. ... Keywords: Composite wastewater, up-flow anaerobic sludge blanket (UASB), anaerobic biological treatment, biogas, granulated anaerobic sludge, industrial wastewater. African Journal of ...
Energy-saving management modelling and optimization for lead-acid battery formation process
Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.
2017-11-01
In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.
Optimization of air ducts for nuclear reactor power generation station
International Nuclear Information System (INIS)
Hirao, Katsumi; Yoshino, Hirokazu; Sonoda, Takayuki
1991-01-01
In the optimization study on the heating, ventilating and air conditions system in Nuclear Reactor Power Generation Station, proper arrangement of air ducts has been studied using the experimental and analytical investigation from a viewpoint of duct arrangement optimization. This study consists of two parts. Part I is optimization of air ducts in the corridors and Part II is optimization of air duct in each room. In part I, from viewpoints of confinement of radioactive materials in facilities having possible radioactive contamination and improvement of thermal environment for workers, the authors have studied air ducts system in which fresh air is supplied to corridors and heat removal and ventilation for each room are performed by transferring air from the corridors, instead of current ducts system with supply duct to each room. In part II, the condenser room with complex configuration and large space, and the electrical equipment room with simple space are selected for model areas. Based on these studies, experimental and analytical investigation (using a three-dimensional thermal hydraulic analysis) technique has been established, and the effective design method for duct arrangement of HVAC design has been verified for Boiling Water Reactor Power Station. The air-duct arrangements optimized in this study are applied to an Advanced Boiling Water Reactor Power Station in trial and reduction of the air-duct quantity is confirmed
Design Optimization of Radionuclide Nano-Scale Batteries
International Nuclear Information System (INIS)
Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.
2004-01-01
Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW--hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas
Study and optimization of an annular photocatalytic slurry reactor.
Camera-Roda, Giovanni; Santarelli, Francesco; Panico, Mauro
2009-05-01
The experimental results obtained for the photocatalytic degradation of a model organic dye in an annular slurry reactor are analyzed with the aid of a mathematical model. The model is used also to study the effects on the performances of many operative conditions: flow rate, photocatalyst concentration, power of the lamp, size of the photocatalytic particles, dimensions of the reactor. The investigation demonstrates that the rate of the process is often limited by the radiant energy transfer and that some simple rules can be followed in order to optimize different yields and the observed rate of reaction.
Automated Design and Optimization of Pebble-bed Reactor Cores
International Nuclear Information System (INIS)
Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.
2010-01-01
We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.
A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems
DEFF Research Database (Denmark)
Wognsen, Erik Ramsgaard; Haverkort, Boudewijn; Jongerden, Marijn
2015-01-01
An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact...... of usage (charge and discharge) profiles on cycle life. The wear score function can not only be used to rank different usage profiles, these rankings can also be used as a criterion for optimizing the overall lifetime of a battery-powered system. We perform such an optimization on a nano-satellite case...... checking and reinforcement learning to synthesize near-optimal scheduling strategies subject to possible hard timing-constaints. We use this to study the trade-off between optimal short-term dynamic payload selection and the operational life of the satellite....
Development and Optimization of Modular Hybrid Plasma Reactor
Energy Technology Data Exchange (ETDEWEB)
N/A
2013-01-02
INL developed a bench–scale, modular hybrid plasma system for gas-phase nanomaterials synthesis. The system was optimized for WO{sub 3} nanoparticle production and scale-model projection to a 300 kW pilot system. During the course of technology development, many modifications were made to the system to resolve technical issues that surfaced and also to improve performance. All project tasks were completed except two optimization subtasks. Researchers were unable to complete these two subtasks, a four-hour and an eight-hour continuous powder production run at 1 lb/hr powder-feeding rate, due to major technical issues developed with the reactor system. The 4-hour run was attempted twice, and on both occasions, the run was terminated prematurely. The termination was due to (1) heavy material condensation on the modular electrodes, which led to system operational instability, and (2) pressure buildup in the reactor due to powder clogging of the exhaust gas and product transfer line. The modular electrode for the plasma system was significantly redesigned to address the material condensation problem on the electrodes. However, the cause for product powder clogging of the exhaust gas and product transfer line led to a pressure build up in the reactor that was undetected. Fabrication of the redesigned modular electrodes and additional components was completed near the end of the project life. However, insufficient resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable {delta}- Al{sub 2}O{sub 3} from pure {alpha}-phase large Al{sub 2}O{sub 3} powder. The formation of {delta} -Al{sub 2}O{sub 3} was surprising because this phase is meta-stable and only formed between 973–1073 K, and {delta} -Al{sub 2}O{sub 3} is very difficult to synthesize as a single
Multi-cycle boiling water reactor fuel cycle optimization
Energy Technology Data Exchange (ETDEWEB)
Ottinger, K.; Maldonado, G.I. [University of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)
2013-07-01
In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)
Pebble bed reactor fuel cycle optimization using particle swarm algorithm
Energy Technology Data Exchange (ETDEWEB)
Tavron, Barak, E-mail: btavron@bgu.ac.il [Planning, Development and Technology Division, Israel Electric Corporation Ltd., P.O. Box 10, Haifa 31000 (Israel); Shwageraus, Eugene, E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2016-10-15
Highlights: • Particle swarm method has been developed for fuel cycle optimization of PBR reactor. • Results show uranium utilization low sensitivity to fuel and core design parameters. • Multi-zone fuel loading pattern leads to a small improvement in uranium utilization. • Thorium mixes with highly enriched uranium yields the best uranium utilization. - Abstract: Pebble bed reactors (PBR) features, such as robust thermo-mechanical fuel design and on-line continuous fueling, facilitate wide range of fuel cycle alternatives. A range off fuel pebble types, containing different amounts of fertile or fissile fuel material, may be loaded into the reactor core. Several fuel loading zones may be used since radial mixing of the pebbles was shown to be limited. This radial separation suggests the possibility to implement the “seed-blanket” concept for the utilization of fertile fuels such as thorium, and for enhancing reactor fuel utilization. In this study, the particle-swarm meta-heuristic evolutionary optimization method (PSO) has been used to find optimal fuel cycle design which yields the highest natural uranium utilization. The PSO method is known for solving efficiently complex problems with non-linear objective function, continuous or discrete parameters and complex constrains. The VSOP system of codes has been used for PBR fuel utilization calculations and MATLAB script has been used to implement the PSO algorithm. Optimization of PBR natural uranium utilization (NUU) has been carried out for 3000 MWth High Temperature Reactor design (HTR) operating on the Once Trough Then Out (OTTO) fuel management scheme, and for 400 MWth Pebble Bed Modular Reactor (PBMR) operating on the multi-pass (MEDUL) fuel management scheme. Results showed only a modest improvement in the NUU (<5%) over reference designs. Investigation of thorium fuel cases showed that the use of HEU in combination with thorium results in the most favorable reactor performance in terms of
Optimizing Battery Usage and Management for Long Life
Energy Technology Data Exchange (ETDEWEB)
Smith, Kandler; Shi, Ying; Wood, Eric; Pesaran, Ahmad
2016-06-16
This presentation discusses the impact of system design factors on battery aging and end of life. Topics include sizing of the state-of-charge operating window, cell balancing, and thermal management systems and their value in reducing pack degradation rates and cell imbalance growth over lifetime.
Optimizing Battery Usage and Management for Long Life
Energy Technology Data Exchange (ETDEWEB)
Smith, Kandler; Shi, Ying; Wood, Eric; Pesaran, Ahmad
2016-06-16
This presentation discusses the impact of system design factors on battery aging and end of life. Topics include sizing of the SOC operating window, cell balancing and thermal management systems and their value in reducing pack degradation rates and cell imbalance growth over lifetime.
Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units
Directory of Open Access Journals (Sweden)
Kehe Wu
2014-01-01
Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.
International Nuclear Information System (INIS)
Milosevic, M.
1964-01-01
Modifications done on the synchronous generators are related to the emergency power supply system, meaning one of the most important devices responsible for reactor safety. Without reducing the efficiency of the heavy water pumps the improved stability of generators operation was achieved by reducing the possibility of errors and simplifying manipulation. Condensator batteries were improved in order to decrease the leakage currents
Shape optimization of a sodium cooled fast reactor
International Nuclear Information System (INIS)
Schmitt, D.; Allaire, G.; Pantz, O.; Pozin, N.
2013-01-01
Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth. Usual optimization methods for core conception are based on a parametric description of a given core design. New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints. First studies show that these methods could be applied to sodium cooled core conception. In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a given realistic core layout. Its characteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas. (authors)
Optimizing advanced liquid metal reactors for burning actinides
International Nuclear Information System (INIS)
Bultman, J.H.
1994-10-01
In this report, the process to design an Advanced Liquid Metal Reactor (ALMR) for burning the transuranic part of nuclear waste is discussed. The influence of design parameters on ALMR burner performance is studied and the results are incorporated in a design schedule for optimizing ALMRs for burning transuranics. This schedule is used to design a metallic and an oxide fueled ALMR burner to burn as much as possible transurancis. The two designs burn equally well. (orig.)
New genetic algorithms (GA) to optimize PWR reactors
International Nuclear Information System (INIS)
Alim, Fatih; Ivanov, Kostadin; Levine, Samuel H.
2008-01-01
The objective of this study was to develop a unique scientific methodology as well as a practical tool for designing the loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and corresponding BP placement design that will achieve maximum cycle length while satisfying the safety constraints. To solve this optimization problem, a core reload optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed. This code is applicable for all types of PWR cores having different geometries and designs with an unlimited number of FA types in the inventory. GARCO has three modes: the user can optimize the core configuration (LP pattern) with or without BPs in the first mode; the second mode is the optimization of BP placement in the core and the last mode is the user can optimize LP and BP placements simultaneously in mode 3. In this study, the first mode finds the optimal LPs using the Haling Power Depletion Method (HPD) for placing BPs in the core. The second mode, which depletes the core accurately, places BPs in the selected optimum LP pattern. This methodology is applied only to the TMI-1 PWR. However, the improved Mode 1 GA option was applied to both the VVER-1000 and the TMI-1 to demonstrate and verify the advantages of the new enhancements in optimizing the LP pattern only. The 'Moby-Dick' code is used as reactor physics code for VVER-1000 analysis in this research. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1. The libraries of the BP designs used in SIMULATE-3 in this study were produced by Yilmaz (2005) [Yilmaz, S., 2005. Multilevel optimization of burnable poison utilization for advanced PWR fuel management. Ph.D. Thesis in
Optimal filtering, parameter tracking, and control of nonlinear nuclear reactors
International Nuclear Information System (INIS)
March-Leuba, C.; March-Leuba, J.; Perez, R.B.
1988-01-01
This paper presents a new formulation of a class of nonlinear optimal control problems in which the system's signals are noisy and some system parameters are changing arbitrarily with time. The methodology is validated with an application to a nonlinear nuclear reactor model. A variational technique based on Pontryagin's Maximum Principle is used to filter the noisy signals, estimate the time-varying parameters, and calculate the optimal controls. The reformulation of the variational technique as an initial value problem allows this microprocessor-based algorithm to perform on-line filtering, parameter tracking, and control
A grid for the accurate positioning of fuel batteries in a reactor core
International Nuclear Information System (INIS)
Berens, T.; Maansson, R.; Gunnarsson, C.
1976-01-01
A grid for the accurate positioning of the fuel batteries in a reactor core, said grid being constituted by a large member of so called first and second metal rails of rectangular cross-section, resting on their upper edge, said first rails being in parallel relationship and at right angles to said second rails, welded coupling and slots being provided at the intersections of said rails, characterized by relatively great height of said first rails and by the relatively small height of said second rails, and also by the construction of said slots in the high rails, said slots being in the form of elongated recesses, the height of which is smaller than the maximum height of the smaller rails, and one long said of which is provided with a few pins pointing towards the other long side and welded to the surface a small height rail located in said recess. (author)
Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System
Directory of Open Access Journals (Sweden)
Farouk Odeim
2015-06-01
Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.
Optimal operation of stationary and mobile batteries in distribution grids
International Nuclear Information System (INIS)
Wang, Yubo; Shi, Wenbo; Wang, Bin; Chu, Chi-Cheng; Gadh, Rajit
2017-01-01
Highlights: • A DSM minimizes both nodal operational cost and network power losses is proposed. • Uncertainties in distribution grids are captured with stochastic programming. • An ADMM based distributed method is applied for scalability and privacy preserving. - Abstract: The trending integrations of Battery Energy Storage System (BESS, stationary battery) and Electric Vehicles (EV, mobile battery) to distribution grids call for advanced Demand Side Management (DSM) technique that addresses the scalability concerns of the system and stochastic availabilities of EVs. Towards this goal, a stochastic DSM is proposed to capture the uncertainties in EVs. Numerical approximation is then used to make the problem tractable. To accelerate the computational speed, the proposed DSM is tightly relaxed to a convex form using second-order cone programming. Furthermore, in light of the continuous increasing problem size, a distributed method with a guaranteed convergence is applied to shift the centralized computational burden to distributed controllers. To verify the proposed DSM, real-life EV data collected on UCLA campus is used to test the proposed DSM in an IEEE benchmark test system. Numerical results demonstrate the correctness and merits of the proposed approach.
Optimized Design and Discussion on Middle and Large CANDLE Reactors
Directory of Open Access Journals (Sweden)
Xiaoming Chai
2012-08-01
Full Text Available CANDLE (Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor reactors have been intensively researched in the last decades [1–6]. Research shows that this kind of reactor is highly economical, safe and efficiently saves resources, thus extending large scale fission nuclear energy utilization for thousands of years, benefitting the whole of society. For many developing countries with a large population and high energy demands, such as China and India, middle (1000 MWth and large (2000 MWth CANDLE fast reactors are obviously more suitable than small reactors [2]. In this paper, the middle and large CANDLE reactors are investigated with U-Pu and combined ThU-UPu fuel cycles, aiming to utilize the abundant thorium resources and optimize the radial power distribution. To achieve these design purposes, the present designs were utilized, simply dividing the core into two fuel regions in the radial direction. The less active fuel, such as thorium or natural uranium, was loaded in the inner core region and the fuel with low-level enrichment, e.g. 2.0% enriched uranium, was loaded in the outer core region. By this simple core configuration and fuel setting, rather than using a complicated method, we can obtain the desired middle and large CANDLE fast cores with reasonable core geometry and thermal hydraulic parameters that perform safely and economically; as is to be expected from CANDLE. To assist in understanding the CANDLE reactor’s attributes, analysis and discussion of the calculation results achieved are provided.
Optimal thorium-fueled CANDU nuclear reactor fuel management
International Nuclear Information System (INIS)
Bonin, H.W.; Sesonske, A.
1985-01-01
The optimization of in-core fuel management for a thorium-fueled Canada deuterium uranium (CANDU) nuclear reactor was investigated by minimizing the total refueling rate at equilibrium with respect to criticality and power-peaking constraints. The computer code ASTERIX was written to solve the optimization problem, using a steepest descent technique with a moderate number of diffusion calculations required. Because of the presence of 233 Pa in the fuel, the diffusion calculations are nonlinear and are solved numerically by the specially written program CALYPSO. Simulation was performed on simple models of a CANDU 600-MW reactor, with the core divided into two or four refueling zones. Results indicated that the optimization method investigated did work out well and that potential savings of up to 14% in the feed rate are possible for the self-sufficient equilibrium thorium cycle fuel, with an optimum refueling rate of 1.372 X 10 -4 MgHE (heavy elements)/MWd. Sensitivity of the optimal discharge burnups to the value of the power-peaking constraint was significant
Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials
Energy Technology Data Exchange (ETDEWEB)
Wood, III, D. L.; Yoon, S. [A123 Systems, Inc.
2012-10-25
The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.
Experimental verification of Space Platform battery discharger design optimization
Sable, Dan M.; Deuty, Scott; Lee, Fred C.; Cho, Bo H.
1991-01-01
The detailed design of two candidate topologies for the Space Platform battery discharger, a four module boost converter (FMBC) and a voltage-fed push-pull autotransformer (VFPPAT), is presented. Each has unique problems. The FMBC requires careful design and analysis in order to obtain good dynamic performance. This is due to the presence of a right-half-plane (RHP) zero in the control-to-output transfer function. The VFPPAT presents a challenging power stage design in order to yield high efficiency and light component weight. The authors describe the design of each of these converters and compare their efficiency, weight, and dynamic characteristics.
Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems
DEFF Research Database (Denmark)
Dulout, Jeremy; Jammes, Bruno; Alonso, Corinne
2017-01-01
This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC micro...
Maximum gradient method for optimization of some reactor operating parameters
International Nuclear Information System (INIS)
Miasnikov, A.
1976-03-01
The method and the algorithm ensuing therefrom are described for the determination of the optimum operating state of a reactor. The optimum operating state is considered to be the extreme of the selected functional of the radial power distribution. The functional extreme is determined numerically, using a method which is one of the possible variants of the maximum gradient method. The radial distribution of the neutron absorption in regulating rods and the fuel element burnup are considered to be the variable parameters used in the optimization. (author)
Optimizing Battery Life for Electric UAVs using a Bayesian Framework
National Aeronautics and Space Administration — In summary, this paper lays a simple flight plan optimization strategy based on the particle filtering framework described in [5]. This is meant as a first step in...
Loading pattern optimization of PWR reactors using Artificial Bee Colony
International Nuclear Information System (INIS)
Safarzadeh, O.; Zolfaghari, A.; Norouzi, A.; Minuchehr, H.
2011-01-01
Highlights: → ABC algorithm is comparable to the canonical GA algorithm and PSO. → The performance of ABC shows that the algorithm is quiet promising. → The final band width of search fitness values by ABC is narrow. → The ABC algorithm is relatively easy to implement. - Abstract: In this paper a core reloading technique using Artificial Bee Colony algorithm, ABC, is presented in the context of finding an optimal configuration of fuel assemblies. The proposed method can be used for in-core fuel management optimization problems in pressurized water reactors. To evaluate the proposed technique, the power flattening of a VVER-1000 core is considered as an objective function although other variables such as K eff , power peaking factor, burn up and cycle length can also be taken into account. The proposed optimization method is applied to a core design optimization problem previously solved with Genetic and Particle Swarm Intelligence Algorithm. The results, convergence rate and reliability of the new method are quite promising and show that the ABC algorithm performs very well and is comparable to the canonical Genetic Algorithm and Particle Swarm Intelligence, hence demonstrating its potential for other optimization applications in nuclear engineering field as, for instance, the cascade problems.
Optimization of a PEMFC/battery pack power system for a bus application
International Nuclear Information System (INIS)
Barelli, Linda; Bidini, Gianni; Ottaviano, Andrea
2012-01-01
Highlights: ► A dynamic model of a PEMFC/battery system for bus traction has been developed. ► The model incorporates the dynamics of the fuel cell and the state of charge (SOC) of the battery pack. ► The system output power have been determined according to the real driving load demand of a bus during 12 h. ► The model has allowed the sizing of the fuel cell and the hydrogen tank with the SOC control strategy optimization. ► The PEMFC power that allows to optimize the operation in terms of both SOC control strategy and consumption is 33 kW e . -- Abstract: In a global environment context in which the urgent need to reduce pollutant emissions is of central relevance, it is becoming increasingly important the research for solutions, concerning the vehicular transport sector with low environmental impact. Fuel cell technology is expected to become a viable solution for these applications due to its environmental friendly characteristics. The present study concerns the traction system of a bus considering the case of hybrid solutions consisting of a proton exchange membrane fuel cell (PEMFC) in parallel with a battery pack. In particular, a dynamic model of a PEMFC/battery system is presented for the application under study. The model incorporates the dynamics of the fuel cell and the state of charge (SOC) of the battery pack. The fuel cell and the battery output power have been determined according to the real driving load demand of a bus taking into consideration a daily operation of 12 h. Such a model has allowed the correct dimensioning of the hybrid power system (giving a particular attention to the fuel cell and the hydrogen tank) together with the optimization of the SOC control strategy.
Design and axial optimization of nuclear fuel for BWR reactors
International Nuclear Information System (INIS)
Garcia V, M.A.
2006-01-01
In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the
Core Optimization of a Deep-Burn Pebble Bed Reactor
Energy Technology Data Exchange (ETDEWEB)
Brian Boer; Abderrafi M. Ougouag
2010-06-01
Achieving a high fuel burnup in the Deep-Burn (DB) pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum as compared to a ’standard’ UO2 fueled core. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. The DB concept focuses on the destruction of spent fuel transuranics in TRISO coated particle fueled gas-cooled reactors with the aim of a fractional fuel burnup of 60-70% in fissions per initial metal atom (FIMA), using a single-pass, multi in-core fuel (re)cycling scheme. In principle, the DB pebble bed concept employs the same reactor designs as the present low enriched uranium core designs, i.e. the 400 MWth Pebble Bed Modular Reactor (PBMR-400). A Pu and Minor Actinide fueled PBMR-400 design serves as the starting point for a core optimization study. The fuel temperature, power peak, temperature reactivity coefficients, and burnup capabilities of the modified designs are analyzed with the PEBBED code. A code-to-code coupling with the PASTA code allows for the analysis of the TRISO fuel performance for both normal and Loss Of Forced Cooling conditions. An improved core design is sought, maximizing the fuel discharge burnup, while retaining negative temperature reactivity feedback coefficients for the entire temperature range and avoiding high fuel temperatures (fuel failure probabilities).
Geometric-Process-Based Battery Management Optimizing Policy for the Electric Bus
Li, Yan; Wang, Jin-kuan; Han, Peng; Han, Ying-hua
2015-01-01
With the rapid development of the electric vehicle industry and promotive policies worldwide, the electric bus (E-bus) has been adopted in many major cities around the world. One of the most important factors that restrain the widespread application of the E-bus is the high operating cost due to the deficient battery management. This paper proposes a geometric-process-based (GP-based) battery management optimizing policy which aims to minimize the average cost of the operation on the premise ...
Optimization of Layered Cathode Materials for Lithium-Ion Batteries
Directory of Open Access Journals (Sweden)
Christian Julien
2016-07-01
Full Text Available This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − yLiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling.
Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles
Directory of Open Access Journals (Sweden)
Shuo Zhang
2014-10-01
Full Text Available The charging method of lithium-ion batteries used in electric vehicles (EVs significantly affects its commercial application. This paper aims to make three contributions to the existing literature. (1 In order to achieve an efficient charging strategy for lithium-ion batteries with shorter charging time and lower charring loss, the trade-off problem between charging loss and charging time has been analyzed in details through the dynamic programing (DP optimization algorithm; (2 To reduce the computation time consumed during the optimization process, we have proposed a database based optimization approach. After off-line calculation, the simulation results can be applied to on-line charge; (3 The novel database-based DP method is proposed and the simulation results illustrate that this method can effectively find the suboptimal charging strategies under a certain balance between the charging loss and charging time.
Optimal Power Scheduling for a Grid-Connected Hybrid PV-Wind-Battery Microgrid System
DEFF Research Database (Denmark)
Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Savaghebi, Mehdi
2016-01-01
In this paper, a lineal mathematical model is proposed to schedule optimally the power references of the distributed energy resources in a grid-connected hybrid PVwind-battery microgrid. The optimization of the short term scheduling problem is addressed through a mixed-integer linear programming...... mathematical model, wherein the cost of energy purchased from the main grid is minimized and profits for selling energy generated by photovoltaic arrays are maximized by considering both physical constraints and requirements for a feasible deployment in the real system. The optimization model is tested...
Numerical study of optimal equilibrium cycles for pressurized water reactors
International Nuclear Information System (INIS)
Mahlers, Y.P.
2003-01-01
An algorithm based on simulated annealing and successive linear programming is applied to solve equilibrium cycle optimization problems for pressurized water reactors. In these problems, the core reload scheme is represented by discrete variables, while the cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are treated as continuous variables. The enrichments are considered to be distinct in all feed fuel assemblies. The number of batches and their sizes are not fixed and also determined by the algorithm. An important feature of the algorithm is that all the parameters are determined by the solution of one optimization problem including both discrete and continuous variables. To search for the best reload scheme, simulated annealing is used. The optimum cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are determined for each reload pattern examined using successive linear programming. Numerical results of equilibrium cycle optimization for various values of the effective price of electricity and fuel reprocessing cost are studied
Directory of Open Access Journals (Sweden)
Mazhar Abbas
2016-10-01
Full Text Available Battery-operated systems are always concerned about the proper management and sizing of a battery. A Traditional Battery Management System (BMS only includes battery-aware task scheduling based on the discharge characteristics of a whole battery pack and do not take into account the mode of the load being served by the battery. On the other hand, an efficient and intelligent BMS should monitor the battery at a cell level and track the load with significant consideration of the load mode. Depending upon the load modes, the common modes of discharge (MOD of a battery identified so far are Constant Power Mode (CPM, Constant Current Mode (CCM and Constant Impedance Mode (CIM. This paper comparatively analyzes the discharging behavior of batteries at an individual cell level for different load modes. The difference in discharging behavior from mode to mode represents the study of the mode-dependent behavior of the battery before its deployment in some application. Based on simulation results, optimal capacity sizing and BMS operation of battery for an assumed situation in a remote microgrid has been proposed.
DEFF Research Database (Denmark)
Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte
2010-01-01
Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...... markets in some ways, is chosen as the studied power system in this paper. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studies in the paper. Simulation results show, that the proposed optimal operation strategy is an effective measure to achieve...... system (BESS) in relation to the real-time electricity price in order to achieve the maximum profits of the BESS. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may represent the future of electricity...
Directory of Open Access Journals (Sweden)
Yang Lijuan
2016-01-01
Full Text Available Fe3O4/carbon microspheres (Fe3O4/C were prepared by a facile hydrothermal reaction using cellulose and ferric trichloride as precursors. The resultant composite spheres have been investigated as anode materials for the lithium-ion batteries, and they show high capacity and good cycle stability (830mAhg−1 at a current density of 0.1C up to 70 cycles, as well as enhanced rate capability. The excellent electrochemical performance is attributed to the high structural stability and high rate of ionic/electronic conduction arising from the porous character and the synergetic effect of the carbon coated Fe3O4 structure and conductive carbon coating.
A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems
Ali M. Eltamaly; Mohamed A. Mohamed
2014-01-01
This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT) an...
Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems
Xu, D.; Kang, L.
2015-06-01
Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.
Optimal Sizing of Battery Storage Systems for Industrial Applications when Uncertainties Exist
Guido Carpinelli; Anna Rita di Fazio; Shahab Khormali; Fabio Mottola
2014-01-01
Demand response (DR) can be very useful for an industrial facility, since it allows noticeable reductions in the electricity bill due to the significant value of energy demand. Although most industrial processes have stringent constraints in terms of hourly active power, DR only becomes attractive when performed with the contemporaneous use of battery energy storage systems (BESSs). When this option is used, an optimal sizing of BESSs is desirable, because the investment costs can be signific...
Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries
Directory of Open Access Journals (Sweden)
Yan Li
2016-01-01
Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.
A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems
Directory of Open Access Journals (Sweden)
Ali M. Eltamaly
2014-01-01
Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.
Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries
Perez, Hector Eduardo
notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro
Optimization of Internal Cooling Fins for Metal Hydride Reactors
Directory of Open Access Journals (Sweden)
Vamsi Krishna Kukkapalli
2016-06-01
Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.
Directory of Open Access Journals (Sweden)
Xiao Yang
2017-11-01
Full Text Available The dynamic characteristics of power batteries directly affect the performance of electric vehicles, and the mathematical model is the basis for the design of a battery management system (BMS.Based on the electrode-averaged model of a lithium-ion battery, in view of the solid phase lithium-ion diffusion equation, the electrochemical model is simplified through the finite difference method. By analyzing the characteristics of the model and the type of parameters, the solid state diffusion kinetics are separated, and then the cascade parameter identifications are implemented with Particle Swarm Optimization. Eventually, the validity of the electrochemical model and the accuracy of model parameters are verified through 0.2–2 C multi-rates battery discharge tests of cell and road simulation tests of a micro pure electric vehicle under New European Driving Cycle (NEDC conditions. The results show that the estimated parameters can guarantee the output accuracy. In the test of cell, the voltage deviation of discharge is generally less than 0.1 V except the end; in road simulation test, the output is close to the actual value at low speed with the error around ±0.03 V, and at high speed around ±0.08 V.
International Nuclear Information System (INIS)
Jeong, Dongho; Lee, Jongsoo
2014-01-01
Safety, performance and lifetime of LSB (lithium secondary batteries) are affected by the adhesion of the active material to the electrode substance, and to the electrode deformation and the spring back limit in the electrode manufacturing process. This study explores the optimization process using decision tree analysis, an ANN (artificial neural network), and a multi-objective genetic algorithm. In the electrode design optimization, the objectives are to maximize the adhesion and to minimize the electrode deformation subjected to the allowable limit on the spring-back. Experimental data for use in design analysis and optimization is obtained via a measurement test. The decision tree analysis is first performed to extract major, effective parameters sensitive to adhesion force, electrode deformation and spring-back. The ANN-based approximate meta-models are then established for function approximations. The ANN-based causality analysis is further explored to determine dominant design variables for each of three design requirements for the optimization. A multi-objective optimization is finally conducted using ANN-based approximate meta-models. An optimized solution obtained from the numerical optimization process is compared with experimental data to verify the actual performance of the LSB in terms of physical and electro-chemical properties. - Highlights: • Electrode design for enhancing adhesion and electrode deformation performances. • Maximizing adhesion and minimizing deformation with allowable limit on spring-back. • Extraction of effective design parameters from data mining techniques. • Numerical optimization using experimental data of lithium secondary batteries. • Comparison of an optimized solution with an experimental result
Directory of Open Access Journals (Sweden)
Yuying Wang
2017-11-01
Full Text Available This paper presents an energy management strategy for plug-in hybrid electric vehicles (PHEVs that not only tries to minimize the energy consumption, but also considers the battery health. First, a battery model that can be applied to energy management optimization is given. In this model, battery health damage can be estimated in the different states of charge (SOC and temperature of the battery pack. Then, because of the inevitability that limiting the battery health degradation will increase energy consumption, a Pareto energy management optimization problem is formed. This multi-objective optimal control problem is solved numerically by using stochastic dynamic programming (SDP and particle swarm optimization (PSO for satisfying the vehicle power demand and considering the tradeoff between energy consumption and battery health at the same time. The optimization solution is obtained offline by utilizing real historical traffic data and formed as mappings on the system operating states so as to implement online in the actual driving conditions. Finally, the simulation results carried out on the GT-SUITE-based PHEV test platform are illustrated to demonstrate that the proposed multi-objective optimal control strategy would effectively yield benefits.
Energy Management System Optimization for Battery-Ultracapacitor Powered Electric Vehicle
Directory of Open Access Journals (Sweden)
Selim Koroglu
2017-03-01
Full Text Available Energy usage and environment pollution in the transportation are major problems of today’s world. Although electric vehicles are promising solutions to these problems, their energy management methods are complicated and need to be improved for the extensive usage. In this work, the heuristic optimization methods; Differential Evolution Algorithm, Genetic Algorithm and Particle Swarm Optimization, are used to provide an optimal energy management system for a battery/ultracapacitor powered electric vehicle without prior knowledge of the drive cycle. The proposed scheme has been simulated in Matlab and applied on the ECE driving cycle. The differences between optimization methods are compared with reproducible and measurable error criteria. Results and the comparisons show the effectiveness and the practicality of the applied methods for the energy management problem of the multi-source electric vehicles.
Optimization of steady-state beam-driven tokamak reactors
International Nuclear Information System (INIS)
Mikkelsen, D.R.; Singer, C.E.
1983-01-01
Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed that includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures that minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of β and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in a reactor the size of the International Tokamak Reactor, then the optimum temperatures are typically T /SUB e/ approx. = 12 to 15 keV and T /SUB i/ approx. = 17 to 21 keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for E /SUB b/ less than or equal to 400 keV, but rises only slowly above E /SUB b/ about 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to less than or equal to 85% of that allowed in steady-state reactors
Directory of Open Access Journals (Sweden)
Seonghoon Moon
2016-01-01
Full Text Available With the proliferation of high-performance, large-screen mobile devices, users’ expectations of having access to high-resolution video content in smooth network environments are steadily growing. To guarantee such stable streaming, a high cellular network bandwidth is required; yet network providers often charge high prices for even limited data plans. Moreover, the costs of smoothly streaming high-resolution videos are not merely monetary; the device’s battery life must also be accounted for. To resolve these problems, we design an optimal multi-interface selection system for streaming video over HTTP/TCP. An optimization problem including battery life and LTE data constraints is derived and then solved using binary integer programming. Additionally, the system is designed with an adoption of split-layer scalable video coding, which provides direct adaptations of video quality and prevents out-of-order packet delivery problems. The proposed system is evaluated using a prototype application in a real, iOS-based device as well as through experiments conducted in heterogeneous mobile scenarios. Results show that the system not only guarantees the highest-possible video quality, but also prevents reckless consumption of LTE data and battery life.
Battery management systems (BMS) optimization for electric vehicles (EVs) in Malaysia
Salehen, P. M. W.; Su'ait, M. S.; Razali, H.; Sopian, K.
2017-04-01
Following the UN Climate Change Conference 2009 in Copenhagen, Denmark, Malaysia seriously committed on "Go Green" campaign with the aim to reduce 40% GHG emission by the year 2020. Therefore, the National Green Technology Policy has been legalised in 2009 with transportation as one of its focused sectors, which include hybrid (HEVs), electric vehicles (EVs) and fuel cell vehicles with the purpose of to keep up with the worst scenario. While the number of registered cars has been increasing by 1 million yearly, the amount has doubled in the last two decades. Consequently, CO2 emission in Malaysia reaches up to 97.1% and will continue to increase mainly due to the activities in the transportation sector. Nevertheless, Malaysia is now moving towards on green car which battery-based EVs. This type of transportation mainly needs power performance optimization, which is controlled by the Batteries Management System (BMS). BMS is an essential module which leads to reliable power management, optimal power performance and safe vehicle that lead back for power optimization in EVs. Thus, this paper proposes power performance optimization for various setups of lithium-ion cathode with graphene anode using MATLAB/SIMULINK software for better management performance and extended EVs driving range.
Optimal Sizing and Control of Battery Energy Storage System for Peak Load Shaving
Directory of Open Access Journals (Sweden)
Chao Lu
2014-12-01
Full Text Available Battery Energy Storage System (BESS can be utilized to shave the peak load in power systems and thus defer the need to upgrade the power grid. Based on a rolling load forecasting method, along with the peak load reduction requirements in reality, at the planning level, we propose a BESS capacity planning model for peak and load shaving problem. At the operational level, we consider the optimal control policy towards charging and discharging power with two different optimization objectives: one is to diminish the difference between the peak load and the valley load, the other is to minimize the daily load variance. Particularly, the constraint of charging and discharging cycles, which is an important issue in practice, is taken into consideration. Finally, based on real load data, we provide simulation results that validate the proposed optimization models and control strategies.
Energy Technology Data Exchange (ETDEWEB)
O' Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; Margolis, Robert
2018-03-01
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt model is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.
Alaboina, Pankaj K.; Cho, Jong-Soo; Cho, Sung-Jin
2017-10-01
The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si-Fe-Mn nanomaterial alloy (Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high ( 2 mg cm-2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes. In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm-3) showed enhanced cycling stability with a high capacity retention of 100% over 100 cycles. [Figure not available: see fulltext.
Frachon, Emmanuel; Bondet, Vincent; Munier-Lehmann, Hélène; Bellalou, Jacques
2006-08-01
A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained with heating/cooling Peltier devices. Data from pH, DO, and turbidity sensors are collected on a FieldPoint (National Instruments) I/O interface and are processed and recorded by a LabVIEW program on a personal computer, which enables feedback control of the culture parameters. A high-density medium formulation was designed, which enabled us to grow E. coli to OD600 up to 100 in batch cultures with oxygen-enriched aeration. Accordingly, the biomass and the amount of recombinant protein produced in a 70-ml culture were at least equivalent to the biomass and the amount of recombinant protein obtained in a Fernbach flask with 1 liter of conventional medium. Thus, the microfermentor battery appears to be well suited for automated parallel cultures and process optimization, such as that needed for structural genomics projects.
Shape optimization of a Sodium Fast Reactor core
Directory of Open Access Journals (Sweden)
Dombre Emmanuel
2013-01-01
Full Text Available We apply in this paper a geometrical shape optimization method for the design of the core of a SFR (Sodium-cooled Fast Reactor in order to minimize a thermal counter-reaction known as the sodium void effect. In this kind of reactors, by increasing the temperature, the core may become liable to a strong increase of reactivity, a key-parameter governing the chain-reaction at quasi-static states. We first use the one group energy diffusion model and give the generalization to the two groups energy equation. We then give some numerical results in the case of the one group energy equation. Note that the application of our method leads to some designs whose interfaces can be parametrized by very smooth curves which can stand very far from realistic designs. We don’t explain here the method that it would be possible to use for recovering an operational design but there exists several penalization methods (see [2] that could be employed to this end. On applique dans cet article une méthode d’optimisation géométrique dans le cadre de la conception d’un cœur de réacteur SFR (Sodium-cooled Fast Reactor, i.e. réacteur à neutron rapide refroidi au sodium dans le but de minimiser une contre réaction thermique connue sous le nom d’effet de vidange sodium. Lorsqu’une augmentation de température survient, ce type de réacteur peut être sujet à une forte augmentation de réactivité, un paramètre clé dans le contrôle de la réaction en chaîne en régime quasi-statique. On a recours à l’équation de diffusion à un groupe puis on donne la généralisation du modèle d’optimisation pour l’équation de la diffusion à deux groupes d’énergie. On présente ensuite quelques résultats numériques obtenus dans le cas de l’équation à un groupe d’énergie. On note que l’application de cette méthode conduit à des designs de cœur présentant des interfaces très régulières qui sont loin d’un design de cœur faisable sur le
Optimization of a membrane reactor for hydrogen production with genetic algorithms
International Nuclear Information System (INIS)
Raceanu, Mircea; Iordache, Ioan; Curuia, Marian; Rasoi, Gabriel; Patularu, Laurentiu; Enache, Adrian
2009-01-01
Full text: Hydrogen is produced via steam reforming of hydrocarbons such as natural gas or methane by using conventional systems. Unfortunately, these systems need at least four different stages, consisting of three reactors and a purification system. Moreover, the steam reforming reaction is an endothermic thermodynamically limited system, meaning that high temperature energy supply is needed for complete conversion. Among different technologies related to production, separation and purification of H 2 , membrane technologies seem to really play a fundamental role. The specific thermodynamic limits are overcome using the so-called membrane reactors, systems in which both reaction and separation occur simultaneously. The hydrogen is driven across the membrane by the pressure difference, depending on the temperature, pressure and reactor length the methane can be completely converted and consequently very pure hydrogen is produced. A membrane reactor has two components which can be optimized namely, the membrane and the reactor dimensions. This paper presents a study on optimization of membrane reactor for enhancing the overall production. A mathematical heterogeneous model of the reactor was used for optimization of reactor performance. Genetic algorithms were used as powerful methods for optimization of complex problems. (authors)
Choosing the optimal parameters of subcritical reactors driven by accelerators
International Nuclear Information System (INIS)
Khudaverdyan, A.G.; Zhamkochyan, V.M.
1998-03-01
Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)
Optimal recharging strategy for battery-switch stations for electric vehicles in France
International Nuclear Information System (INIS)
Armstrong, M.; El Hajj Moussa, C.; Adnot, J.; Galli, A.; Riviere, P.
2013-01-01
Most papers that study the recharging of electric vehicles focus on charging the batteries at home and at the work-place. The alternative is for owners to exchange the battery at a specially equipped battery switch station (BSS). This paper studies strategies for the BSS to buy and sell the electricity through the day-ahead market. We determine what the optimal strategies would have been for a large fleet of EVs in 2010 and 2011, for the V2G and the G2V cases. These give the amount that the BSS should offer to buy or sell each hour of the day. Given the size of the fleet, the quantities of electricity bought and sold will displace the market equilibrium. Using the aggregate offers to buy and the bids to sell on the day-ahead market, we compute what the new prices and volumes transacted would be. While buying electricity for the G2V case incurs a cost, it would have been possible to generate revenue in the V2G case, if the arrivals of the EVs had been evenly spaced during the day. Finally, we compare the total cost of implementing the strategies with the cost of buying the same quantity of electricity from EDF. - Highlights: • Optimal strategies for buying/selling electricity through day-ahead auction market. • Given fleet size power bought and sold would change market price and volume. • New prices computed using aggregate offers to buy/sell power in 2010 and 2011. • Timing of arrival of EVs critical in V2G case. If evenly spaced BSS makes money. • Strategies are very robust even when French and German markets were coupled Nov. 2010
Power maximization of a spheric reflected reactor with optimized fuel distribution
International Nuclear Information System (INIS)
Reade, Joamar Rodrigues Vincent
1979-01-01
The maximum power of a spheric reflected reactor was determined using the theory of optimal control. The control variable employed was the fuel distribution, in accordance to constraints on the power density and on the concentration fuel. It was considered a thermal reactor with a fixed radius. The reactor was fuelled with U-235 and moderated with light water. The nuclear reactor was described by a diffusion theory model. The analytical solution was obtained for both two and four groups of energy and a FORTRAN program was developed to obtain the numerical results. (author)
Directory of Open Access Journals (Sweden)
Muhamad Zalani Daud
2014-01-01
Full Text Available This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV system with battery energy storage (BES. The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC. For the grid side VSC (G-VSC, two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
On Statistically Optimal Algorithms of Regulation for Different Regimes of a Pulsed Reactor
Popov, A K
2002-01-01
The special features of pulsed reactor power stabilization are considered for reactor and joint reactor and injector regimes. Statistically optimal algorithms of regulation are obtained for providing a minimum of the mean-square deviation of energy from its basic value for the future power pulse based on information obtained from the previous pulses taking into account the information aging rate. It is shown as a result of the based simplification that the optimal algorithm is realized by means of the regulator as an integrating element.
Optimization of a thermal power reactor by means of a non-linear programming model
International Nuclear Information System (INIS)
Pavelescu, M.; Dumitrescu, H.; Ghilea, S.
1977-01-01
The problem of optimizing a power reactor of the HWGCR type is dealt with. The reactor will be operated with a Roumanian vitroceramic fuel, essentially a mixture of UO 2 and SiO 2 , that has to meet a great number of irradiation behaviour and reliability requirements. The purpose of optimization is to find the optimum reactor structure for which fuel burnup during the first campaign is maximum with some restrictions on the reactor integral parameters, such as thermal power, fuel mass, and cell power density, as well as some lattice and cell parameters, e.g. the reactor radius and the fuel cell pitch. Due to the problem structure corresponding to a non-linear programming model the SUMT method has been used for solving it by means of the ORPN computing programme. (author)
Energy Technology Data Exchange (ETDEWEB)
Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko
1998-01-01
To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)
Extension of Load Follow Capability of a PWR Reactor by Optimal Control
Winokur, M.; Tepper, L.
1984-04-01
The problem of extending that part of the fuel life cycle during which a reactor is capable of sustaining load-follow operation is formulated as an optimal control problem. A two-node model representation of pressurized water reactor dynamics is used, leading to a set of non-linear ordinary differential equations. Differential Dynamic Programming is used to solve directly the resulting nonlinear optimization problem and obtain the trajectories of soluble boron concentration and control rod insertion. Results of computations performed for a reference reactor are presented, showing how the optimal control policy stretches the capability of the reactor to follow an average daily load curve towards the end of the fuel life cycle.
Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors
Directory of Open Access Journals (Sweden)
R. Gobbo
2004-12-01
Full Text Available The modeling, simulation, and dynamic optimization of an industrial reaction system for acetylene hydrogenation are discussed in the present work. The process consists of three adiabatic fixed-bed reactors, in series, with interstage cooling. These reactors are located after the compression and the caustic scrubbing sections of an ethylene plant, characterizing a front-end system; in contrast to the tail-end system where the reactors are placed after the de-ethanizer unit. The acetylene conversion and selectivity profiles for the reactors are optimized, taking into account catalyst deactivation and process constraints. A dynamic optimal temperature profile that maximizes ethylene production and meets product specifications is obtained by controlling the feed and intercoolers temperatures. An industrial acetylene hydrogenation system is used to provide the necessary data to adjust kinetics and transport parameters and to validate the approach.
International Nuclear Information System (INIS)
Abreu Pereira, Claudio Marcio Nascimento do; Schirru, Roberto; Martinez, Aquilino Senra
1999-01-01
Here is presented an engineering optimization tool based on a genetic algorithm, implemented according to the method proposed in recent work that has demonstrated the feasibility of the use of this technique in nuclear reactor core designs. The tool is simulator-independent in the sense that it can be customized to use most of the simulators which have the input parameters read from formatted text files and the outputs also written from a text file. As the nuclear reactor simulators generally use such kind of interface, the proposed tool plays an important role in nuclear reactor designs. Research reactors may often use non-conventional design approaches, causing different situations that may lead the nuclear engineer to face new optimization problems. In this case, a good optimization technique, together with its customizing facility and a friendly man-machine interface could be very interesting. Here, the tool is described and some advantages are outlined. (author)
International Nuclear Information System (INIS)
Moura, Scott J.; Fathy, Hosam K.; Stein, Jeffrey L.; Callaway, Duncan S.
2010-01-01
Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)
Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.
Ye, Jianchao; Baumgaertel, Andreas C; Wang, Y Morris; Biener, Juergen; Biener, Monika M
2015-02-24
Much progress has recently been made in the development of active materials, electrode morphologies and electrolytes for lithium ion batteries. Well-defined studies on size effects of the three-dimensional (3D) electrode architecture, however, remain to be rare due to the lack of suitable material platforms where the critical length scales (such as pore size and thickness of the active material) can be freely and deterministically adjusted over a wide range without affecting the overall 3D morphology of the electrode. Here, we report on a systematic study on length scale effects on the electrochemical performance of model 3D np-Au/TiO2 core/shell electrodes. Bulk nanoporous gold provides deterministic control over the pore size and is used as a monolithic metallic scaffold and current collector. Extremely uniform and conformal TiO2 films of controlled thickness were deposited on the current collector by employing atomic layer deposition (ALD). Our experiments demonstrate profound performance improvements by matching the Li(+) diffusivity in the electrolyte and the solid state through adjusting pore size and thickness of the active coating which, for 200 μm thick porous electrodes, requires the presence of 100 nm pores. Decreasing the thickness of the TiO2 coating generally improves the power performance of the electrode by reducing the Li(+) diffusion pathway, enhancing the Li(+) solid solubility, and minimizing the voltage drop across the electrode/electrolyte interface. With the use of the optimized electrode morphology, supercapacitor-like power performance with lithium-ion-battery energy densities was realized. Our results provide the much-needed fundamental insight for the rational design of the 3D architecture of lithium ion battery electrodes with improved power performance.
Evaluation of Advanced Control for Li-ion Battery Balancing Systems using Convex Optimization
DEFF Research Database (Denmark)
Pinto, Claudio; Barreras, Jorge Varela; Schaltz, Erik
2016-01-01
Typically, the unique objective pursued in either active or passive balancing is equalization of single cell charge. However, a balancing circuit may offer more control features, like virtual equalization of single cell internal resistance or thermal balancing. Such control features for balancing...... systems are evaluated in this paper by means of convex optimization. More than one hundred cases in a pure EV application are evaluated. Balancing circuits' efficiency models are implemented and realistic cell-to-cell parameter distributions are considered based on experimental data. Different battery...... sizes and driving cycles are considered. Balancing circuit topology is taken into account by selecting a specific category of energy transfer: cell-to-heat, bypass, cell-to-pack, pack-to-cell, cell-to-cell shared, cell-to-cell distributed or cell-to-pack-to-cell. In general, better results in terms...
Optimal design of hollow core–shell structural active materials for lithium ion batteries
Directory of Open Access Journals (Sweden)
Wenjuan Jiang
2015-01-01
Full Text Available To mitigate mechanical and chemical degradation of active materials, hollow core–shell structures have been applied in lithium ion batteries. Without embedding of lithium ions, the rigid coating shell can constrain the inward volume deformation. In this paper, optimal conditions for the full use of inner hollow space are identified in terms of the critical ratio of shell thickness and inner size and the state of charge. It is shown that the critical ratios are 0.10 and 0.15 for Si particle and tube (0.12 and 0.18 for Sn particle and tube, and above which there is lack of space for further lithiation.
Optimization of up-flow anaerobic sludge blanket reactor for ...
African Journals Online (AJOL)
aghomotsegin
2013-06-05
Jun 5, 2013 ... grown in the bottom part of UASB reactor were more compact and tense than those that occurred in the ... anaerobic sludge blanket (UASB), anaerobic biological treatment, biogas, granulated anaerobic sludge, industrial wastewater. INTRODUCTION ... structure of filaments of methanogenic bacteria,.
Optimizing Nuclear Reactor Operation Using Soft Computing Techniques
Entzinger, J.O.; Ruan, D.; Kahraman, Cengiz
2006-01-01
The strict safety regulations for nuclear reactor control make it di±cult to implement new control techniques such as fuzzy logic control (FLC). FLC however, can provide very desirable advantages over classical control, like robustness, adaptation and the capability to include human experience into
Optimized Control Rods of the BR2 Reactor
Energy Technology Data Exchange (ETDEWEB)
Kalcheva, Silva; Koonen, E.
2007-09-15
At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.
Optimized Control Rods of the BR2 Reactor
International Nuclear Information System (INIS)
Kalcheva, Silva; Koonen, E.
2007-01-01
At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.
Optimization of a fuel bundle within a CANDU supercritical water reactor
International Nuclear Information System (INIS)
Schofield, M.E.
2009-01-01
The supercritical water reactor is one of six nuclear reactor concepts being studied under the Generation IV International Forum. Generation IV nuclear reactors will improve the metrics of economics, sustainability, safety and reliability, and physical protection and proliferation resistance over current nuclear reactor designs. The supercritical water reactor has specific benefits in the areas of economics, safety and reliability, and physical protection. This work optimizes the fuel composition and bundle geometry to maximize the fuel burnup, and minimize the surface heat flux and the form factor. In optimizing these factors, improvements can be achieved in the areas of economics, safety and reliability of the supercritical water reactor. The WIMS-AECL software was used to model a fuel bundle within a CANDU supercritical water reactor. The Gauss' steepest descent method was used to optimize the above mentioned factors. Initially the fresh fuel composition was optimized within a 43-rod CANFLEX bundle and a 61-rod bundle. In both the 43-rod and 61-rod bundle scenarios an online refuelling scheme and non-refuelling scheme were studied. The geometry of the fuel bundles was then optimized. Finally, a homogeneous mixture of thorium and uranium fuel was studied in a 60-rod bundle. Each optimization process showed definitive improvements in the factors being studied, with the most significant improvement being an increase in the fuel burnup. The 43-rod CANFLEX bundle was the most successful at being optimized. There was little difference in the final fresh fuel content when comparing an online refuelling scheme and non-refuelling scheme. Through each optimization scenario the ratio of the fresh fuel content between the annuli was a significant determining cause in the improvements in the factors being optimized. The geometry optimization showed that improvement in the design of a fuel bundle is indeed possible, although it would be more advantageous to pursue it
Optimal Control of a Nuclear Power Reactor Core with a Coupled Nuclear Thermo-hydrodynamics Model
Koga, Ryuji
1976-01-01
An optimal control is giyen for regulating power distribution in a nuclear power reactor which has cylindrical geometry. The space dependence of the system isdescribed by expanding space depenident variables byHelmholtz modes. Results are obtained through the principleof optimality and are described by the Riccati-type algebraic equation that the optimal feedback coefficientsshould satisfy. Use of an integral equation as the systemequation makes it possible to deal with actual controllingappa...
Directory of Open Access Journals (Sweden)
ABDI, B.
2009-10-01
Full Text Available Electro-mechanical batteries have important advantages as compared with chemical batteries, especially in low earth orbit satellites applications. High speed slotless external rotor permanent magnet machines are used in these systems as Motor/Generator. Proper material and structure for space applications are introduced. A simplified analytic design method is given for this type of machines. Finally, the optimization of machine in order to have maximum efficiency and minimum volume and weight are given in this paper. Particle swarm optimization is used as the optimization algorithm and the finite element-based simulations are used to confirm the design and optimization process and show less than 1.2% error in parametric design.
DEFF Research Database (Denmark)
Xiao, Zhao xia; Nan, Jiakai; Guerrero, Josep M.
2017-01-01
the adjustment of the day-ahead scheduling and giving priority to the use of renewable energy. According to the forecast of the critical and noncritical load, the wind speed, and the solar irradiation, mixed integer linear programming (MILP) optimization method is used to solve the multi-objective optimization......A multiple time-scale optimization scheduling including day ahead and short time for an islanded microgrid is presented. In this paper, the microgrid under study includes photovoltaics (PV), wind turbine (WT), diesel generator (DG), batteries, and shiftable loads. The study considers the maximum...... efficiency operation area for the diesel engine and the cost of the battery charge/discharge cycle losses. The day-ahead generation scheduling takes into account the minimum operational cost and the maximum load satisfaction as the objective function. Short-term optimal dispatch is based on minimizing...
Directory of Open Access Journals (Sweden)
Xiaogang Wu
2017-06-01
Full Text Available In view of severe changes in temperature during different seasons in cold areas of northern China, the decay of battery capacity of electric vehicles poses a problem. This paper uses an electric bus power system with semi-active hybrid energy storage system (HESS as the research object and proposes a convex power distribution strategy to optimize the battery current that represents degradation of battery capacity based on the analysis of semi-empirical LiFePO4 battery life decline model. Simulation results show that, at a room temperature of 25 °C, during a daily trip organized by the Harbin City Driving Cycle including four cycle lines and four charging phases, the percentage of battery degradation was 9.6 × 10−3%. According to the average temperature of different months in Harbin, the percentage of battery degradation of the power distribution strategy proposed in this paper is 3.15% in one year; the electric bus can operate for 6.4 years until its capacity reduces to 80% of its initial value, and it can operate for 0.51 year more than the rule-based power distribution strategy.
Directory of Open Access Journals (Sweden)
Xuerui Ma
2017-07-01
Full Text Available A multi-mode power-split (MMPS hybrid electric vehicle (HEV has two planetary gearsets and clutches/grounds which results in several operation modes with enhanced electric drive capability and better fuel economy. Basically, the battery storage system is involved in different operation modes to satisfy the power demand and minimize the fuel consumption, whereas the complicated operation modes with frequent charging/discharging will absolutely influence the battery life because of degradation. In this paper, firstly, we introduce the solid electrolyte interface (SEI film growth model based on the previous study of the battery degradation principles and was verified according to the test data. We consider both the fuel economy and battery degradation as a multi-objective problem for MMPS HEV by normalization with a weighting factor. An instantaneous optimization is implemented based on the equivalent fuel consumption concept. Then the control strategy is implemented on a simulation framework integrating the MMPS powertrain model and the SEI film growth map model over some typical driving cycles, such as New European Driving Cycle (NEDC and Urban Dynamometer Driving Schedule (UDDS. Finally, the result demonstrates that these two objectives are conflicting and the trade-off reduces the battery degradation with fuel sacrifice. Additionally, the analysis reveals how the mode selection will reflect the battery degradation.
Directory of Open Access Journals (Sweden)
Hina Fathima
2015-01-01
Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.
A reliability assessment and optimization for a passive system of the very high temperature reactor
International Nuclear Information System (INIS)
Lee, Chan Suh; Lee, Hyung Suk; Jae, Moo Sung
2012-01-01
Most modern engineering systems are multidisciplinary and their analysis is very complex. This makes it difficult for users to make a decision optimization. Optimization is powerful design improvement tool that is available nowadays. There are many optimization programs in modern society and it is used in various fields. Recently, a response surface was used to perform reliability analysis of a passive cooling system. In this study, PIAnO (Process Integration, Automation and Optimization) is used for assessing a reliability and optimizing a reference gas cooled reactor
A reliability assessment and optimization for a passive system of the very high temperature reactor
Energy Technology Data Exchange (ETDEWEB)
Lee, Chan Suh; Lee, Hyung Suk; Jae, Moo Sung [Hanyang University, Seoul (Korea, Republic of)
2012-05-15
Most modern engineering systems are multidisciplinary and their analysis is very complex. This makes it difficult for users to make a decision optimization. Optimization is powerful design improvement tool that is available nowadays. There are many optimization programs in modern society and it is used in various fields. Recently, a response surface was used to perform reliability analysis of a passive cooling system. In this study, PIAnO (Process Integration, Automation and Optimization) is used for assessing a reliability and optimizing a reference gas cooled reactor
The source term and waste optimization of molten salt reactors with processing
International Nuclear Information System (INIS)
Gat, U.; Dodds, H.L.
1993-01-01
The source term of a molten salt reactor (MSR) with fuel processing is reduced by the ratio of processing time to refueling time as compared to solid fuel reactors. The reduction, which can be one to two orders of magnitude, is due to removal of the long-lived fission products. The waste from MSRs can be optimized with respect to its chemical composition, concentration, mixture, shape, and size. The actinides and long-lived isotopes can be separated out and returned to the reactor for transmutation. These features make MSRs more acceptable and simpler in operation and handling
Parameter and cost optimizations for a modular stellarator reactor
Hitchon, W. N. G.; Johnson, P. C.; Watson, C. J. H.
1983-02-01
The physical scaling and cost scaling of a modular stellarator reactor are described. It is shown that configurations based on l=2 are best able to support adequate beta, and physical relationships are derived which enable the geometry and parameters of an l=2 modular stellarator to be defined. A cost scaling for the components of the nuclear island is developed using Starfire (tokamak reactor study) engineering as a basis. It is shown that for minimum cost the stellarator should be of small aspect ratio. For a 4000 MWth plant, as Starfire, the optimum configuration is a 15 coil, 3 field period, l=2 device with a major radius of 16 m and a plasma minor radius of 2 m; and with a conservative wall loading of 2 MW/m2 and an average beta of 3.9%; the estimated cost per kilowatt (electrical) is marginally (7%) greater than Starfire.
Nuclear reactors project optimization based on neural network and genetic algorithm
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.
1997-01-01
This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs
Aspects on optimization of natural uranium fuel utilization in heavy water reactors
International Nuclear Information System (INIS)
1978-08-01
This paper is dealing with a possibility to decrease the natural uranium consumption of CANDU PHWR using the once-through cycle. This possibility is based on the utilization of slightly enriched uranium. The optimal two-zone structure of a reactor using natural uranium is found out. The optimal criterium is the maximization of the burnup (equivalent to minimization of uranium requirements) with a constraint on power density radial uniformity factor. As regards the enriched uranium, the optimal enrichment and the two-zone structure of a reactor which minimizes the natural uranium requirement with constraints on uniformity factor and maximum burnup are established. Corresponding to a maximum burnup of 16,000 MWd/t and 1% enrichment, the natural uranium requirement is found to be 10% less than that of the natural uranium reactor
Directory of Open Access Journals (Sweden)
Istadi Istadi
2011-01-01
Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/797
Optimal Sizing of Battery Storage Systems for Industrial Applications when Uncertainties Exist
Directory of Open Access Journals (Sweden)
Guido Carpinelli
2014-01-01
Full Text Available Demand response (DR can be very useful for an industrial facility, since it allows noticeable reductions in the electricity bill due to the significant value of energy demand. Although most industrial processes have stringent constraints in terms of hourly active power, DR only becomes attractive when performed with the contemporaneous use of battery energy storage systems (BESSs. When this option is used, an optimal sizing of BESSs is desirable, because the investment costs can be significant. This paper deals with the optimal sizing of a BESS installed in an industrial facility to reduce electricity costs. A four-step procedure, based on Decision Theory, was used to obtain a good solution for the sizing problem, even when facing uncertainties; in fact, we think that the sizing procedure must properly take into account the unavoidable uncertainties introduced by the cost of electricity and the load demands of industrial facilities. Three approaches provided by Decision Theory were applied, and they were based on: (1 the minimization of expected cost; (2 the regret felt by the sizing engineer; and (3 a mix of (1 and (2. The numerical applications performed on an actual industrial facility provided evidence of the effectiveness of the proposed procedure.
Benaouadj, M.; Aboubou, A.; Ayad, M. Y.; Bahri, M.; Boucetta, A.
2016-07-01
In this work, an optimal control (under constraints) based on the Pontryagin's maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control.Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.
International Nuclear Information System (INIS)
Benaouadj, M.; Aboubou, A.; Bahri, M.; Boucetta, A.; Ayad, M. Y.
2016-01-01
In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.
Energy Technology Data Exchange (ETDEWEB)
Benaouadj, M.; Aboubou, A.; Bahri, M.; Boucetta, A. [MSE Laboratory, Mohamed khiderBiskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)
2016-07-25
In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.
Directory of Open Access Journals (Sweden)
Mahdi Benaouadj
2017-03-01
Full Text Available In this work, an optimal control (under constraints based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DCDC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithium-ion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.
Passive safety optimization in liquid-sodium cooled reactors
International Nuclear Information System (INIS)
Cahalan, J. E.; Hahn, D.; Chang, W.-P.; Kwon, Y.-M.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.
2004-01-01
This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4)
Optimization of reactor pressure vessel internals segmentation in Korea
Energy Technology Data Exchange (ETDEWEB)
Lee, Byung-Sik [Dankook Univ., Chungnam (Korea, Republic of). Dept. of Nuclear Engineering
2017-11-15
One of the most challenging tasks during plant decommissioning is the removal of highly radioactive internal components from the reactor pressure vessel (RPV). For RPV internals dismantling, it is essential that all activities are thoroughly planned and discussed in the early stage of the decommissioning project. One of the key activities in the detailed planning is to prepare the segmentation and packaging plan that describes the sequential steps required to segment, separate, and package each individual component of RPV, based on an activation analysis and component characterization study.
Radiation protection optimization in the PWR type reactor dismantling
International Nuclear Information System (INIS)
Hilmoine, R.
1998-01-01
The studies made at the international level for the PWR type reactors, give dosimetric evaluations about 10 to 15 h.Sv for an immediate dismantling and around three to four times lower for a delayed dismantling according to the storage time. The technical hypothesis, the ambient dosimetry, the time of occupational exposure and the radioactive wastes management are not clearly specified so, Electricite de France has undertaken a more exhaustive study that takes into account, the radiation protection dimension in its universality from a complete radiological characterization in a standard installation. (N.C.)
Optimization of tritium breeding and shielding analysis to plasma in ITER fusion reactor
Energy Technology Data Exchange (ETDEWEB)
Indah Rosidah, M., E-mail: indah.maymunah@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id [Department of Nuclear Physics, Faculty of Mathematic and Natural Sciences, Institut Teknologi Bandung (Indonesia); Yazid, Putranto Ilham [Research and Development of Nuclear Association (Indonesia)
2015-09-30
The development of fusion energy is one of the important International energy strategies with the important milestone is ITER (International Thermonuclear Experimental Reactor) project, initiated by many countries, such as: America, Europe, and Japan who agreed to set up TOKAMAK type fusion reactor in France. In ideal fusion reactor the fuel is purely deuterium, but it need higher temperature of reactor. In ITER project the fuels are deuterium and tritium which need lower temperature of the reactor. In this study tritium for fusion reactor can be produced by using reaction of lithium with neutron in the blanket region. With the tritium breeding blanket which react between Li-6 in the blanket with neutron resulted from the plasma region. In this research the material used in each layer surrounding the plasma in the reactor is optimized. Moreover, achieving self-sufficiency condition in the reactor in order tritium has enough availability to be consumed for a long time. In order to optimize Tritium Breeding Ratio (TBR) value in the fusion reactor, there are several strategies considered here. The first requirement is making variation in Li-6 enrichment to be 60%, 70%, and 90%. But, the result of that condition can not reach TBR value better than with no enrichment. Because there is reduction of Li-7 percent when increasing Li-6 percent. The other way is converting neutron multiplier material with Pb. From this, we get TBR value better with the Be as neutron multiplier. Beside of TBR value, fusion reactor can analyze the distribution of neutron flux and dose rate of neutron to know the change of neutron concentration for each layer in reactor. From the simulation in this study, 97% neutron concentration can be absorbed by material in reactor, so it is good enough. In addition, it is required to analyze spectrum neutron energy in many layers in the fusion reactor such as in blanket, coolant, and divertor. Actually material in that layer can resist in high temperature
International Nuclear Information System (INIS)
Coban, Ramazan
2011-01-01
Research highlights: → A closed-loop fuzzy logic controller based on the particle swarm optimization algorithm was proposed for controlling the power level of nuclear research reactors. → The proposed control system was tested for various initial and desired power levels, and it could control the reactor successfully for most situations. → The proposed controller is robust against the disturbances. - Abstract: In this paper, a closed-loop fuzzy logic controller based on the particle swarm optimization algorithm is proposed for controlling the power level of nuclear research reactors. The principle of the fuzzy logic controller is based on the rules constructed from numerical experiments made by means of a computer code for the core dynamics calculation and from human operator's experience and knowledge. In addition to these intuitive and experimental design efforts, consequent parts of the fuzzy rules are optimally (or near optimally) determined using the particle swarm optimization algorithm. The contribution of the proposed algorithm to a reactor control system is investigated in details. The performance of the controller is also tested with numerical simulations in numerous operating conditions from various initial power levels to desired power levels, as well as under disturbance. It is shown that the proposed control system performs satisfactorily under almost all operating conditions, even in the case of very small initial power levels.
International Nuclear Information System (INIS)
Lima, Alan M.M. de; Freire, Fernando S.; Nicolau, Andressa S.; Schirru, Roberto
2017-01-01
The Nuclear reload of a Pressurized Water Reactor (PWR) occurs whenever the burning of the fuel elements can no longer maintain the criticality of the reactor, that is, it cannot maintain the Nuclear power plant operates within its nominal power. Nuclear reactor reload optimization problem consists of finding a loading pattern of fuel assemblies in the reactor core in order to minimize the cost/benefit ratio, trying to obtain maximum power generation with a minimum of cost, since in all reloads an average of one third of the new fuel elements are purchased. This loading pattern must also satisfy constraints of symmetry and security. In practice, it consists of the placing 121 fuel elements in 121 core positions, in the case of the Angra 1 Brazilian Nuclear Power Plant (NPP), making this new arrangement provide the best cost/benefit ratio. It is an extremely complex problem, since it has around 1% of great places. A core of 121 fuel elements has approximately 10 13 combinations and 10 11 great locations. With this number of possible combinations it is impossible to test all, in order to choose the best. In this work a system called ACO-GENES is proposed in order to optimization the Nuclear Reactor Reload Problem. ACO is successfully used in combination problems, and it is expected that ACO-GENES will show a robust optimization system, since in addition to optimizing ACO, it allows important prior knowledge such as K infinite, burn, etc. After optimization by ACO-GENES, the best results will be validated by a licensed reactor physics code and will be compared with the actual results of the cycle. (author)
Energy Technology Data Exchange (ETDEWEB)
Lima, Alan M.M. de; Freire, Fernando S.; Nicolau, Andressa S.; Schirru, Roberto, E-mail: alan@lmp.ufrj.br, E-mail: andressa@lmp.ufrj.br, E-mail: schirru@lmp.ufrj.br, E-mail: ffreire@eletronuclear.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)
2017-11-01
The Nuclear reload of a Pressurized Water Reactor (PWR) occurs whenever the burning of the fuel elements can no longer maintain the criticality of the reactor, that is, it cannot maintain the Nuclear power plant operates within its nominal power. Nuclear reactor reload optimization problem consists of finding a loading pattern of fuel assemblies in the reactor core in order to minimize the cost/benefit ratio, trying to obtain maximum power generation with a minimum of cost, since in all reloads an average of one third of the new fuel elements are purchased. This loading pattern must also satisfy constraints of symmetry and security. In practice, it consists of the placing 121 fuel elements in 121 core positions, in the case of the Angra 1 Brazilian Nuclear Power Plant (NPP), making this new arrangement provide the best cost/benefit ratio. It is an extremely complex problem, since it has around 1% of great places. A core of 121 fuel elements has approximately 10{sup 13} combinations and 10{sup 11} great locations. With this number of possible combinations it is impossible to test all, in order to choose the best. In this work a system called ACO-GENES is proposed in order to optimization the Nuclear Reactor Reload Problem. ACO is successfully used in combination problems, and it is expected that ACO-GENES will show a robust optimization system, since in addition to optimizing ACO, it allows important prior knowledge such as K infinite, burn, etc. After optimization by ACO-GENES, the best results will be validated by a licensed reactor physics code and will be compared with the actual results of the cycle. (author)
Contribution to the optimization of the coupling of nuclear reactors to desalination processes
International Nuclear Information System (INIS)
Dardour, S.
2007-04-01
This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)
First report on non-thermal plasma reactor scaling criteria and optimization models
Energy Technology Data Exchange (ETDEWEB)
Rosocha, L.A.; Korzekwa, R.A.
1998-01-13
The purpose of SERDP project CP-1038 is to evaluate and develop non-thermal plasma (NTP) reactor technology for Department of Defense (DoD) air emissions control applications. The primary focus is on oxides of nitrogen (NO{sub x}) and a secondary focus on hazardous air pollutants (HAPs), especially volatile organic compounds (VOCs). Example NO{sub x} sources are jet engine test cells (JETCs) and diesel engine powered electrical generators. Example VOCs are organic solvents used in painting, paint stripping, and parts cleaning. To design and build NTP reactors that are optimized for particular DoD applications, one must understand the basic decomposition chemistry of the target compound(s) and how the decomposition of a particular chemical species depends on the air emissions stream parameters and the reactor operating parameters. This report is intended to serve as an overview of the subject of reactor scaling and optimization and will discuss the basic decomposition chemistry of nitric oxide (NO) and two representative VOCs, trichloroethylene and carbon tetrachloride, and the connection between the basic plasma chemistry, the target species properties, and the reactor operating parameters (in particular, the operating plasma energy density). System architecture, that is how NTP reactors can be combined or ganged to achieve higher capacity, will also be briefly discussed.
A Techno-Economic Optimization of the Power Conversion System of a Very High Temperature Reactor
International Nuclear Information System (INIS)
Mansilla, Christine; Dumas, Michel; Werkoff, Francois
2006-01-01
Generation IV nuclear reactors will not be implemented unless they enable lower production costs than with the current systems. In such a context a techno-economic optimization method was developed and then applied to the power conversion system of a very high temperature reactor. Techno-economic optimization consists in minimizing an objective function that depends on technical variables and economic ones. The advantage of the techno-economic optimization is that it can take into account both investment costs and operating costs. A techno-economic model was implemented in a specific optimization software named Vizir, which is based on genetic algorithms. The calculation of the thermodynamic cycle is performed by a software named Tugaz. The results are the values of the decision variables that lead to a minimum cost, according to the model. The total production cost is evaluated. The influence of the various variables and constraints is also pointed out. (authors)
Directory of Open Access Journals (Sweden)
Yohwan Choi
2016-06-01
Full Text Available A self-sustainable base station (BS where renewable resources and energy storage system (ESS are interoperably utilized as power sources is a promising approach to save energy and operational cost in communication networks. However, high battery price and low utilization of ESS intended for uninterruptible power supply (UPS necessitates active utilization of ESS. This paper proposes a multi-functional framework of ESS using dynamic programming (DP for realizing a sustainable BS. We develop an optimal charging and discharging scheduling algorithm considering a detailed battery wear-out model to minimize operational cost as well as to prolong battery lifetime. Our approach significantly reduces total cost compared to the conventional method that does not consider battery wear-out. Extensive experiments for several scenarios exhibit that total cost is reduced by up to 70.6% while battery wear-out is also reduced by 53.6%. The virtue of the proposed framework is its wide applicability beyond sustainable BS and thus can be also used for other types of load in principle.
Optimization of fuel management and control poison of a nuclear power reactor by dynamic programming
International Nuclear Information System (INIS)
Lima, C.A.R. de.
1977-01-01
The distribution of fuel and control poison in a nuclear reactor was optimized by the method of Dynamic Programming. A 620 M We Pressurized Water Reactor similar to Angra-1 was studied. The reactor operation was simulated in a IBM-1130 computer. Two fuel shuffling schemes and three poison management schemes were simultaneously employed in the reactor divided into three regions of equal volume and two consecutive stages were studied in order to determine the influence of poison management on the optimum fuel management policy. When uniform poisoning on all the three regions was permitted the traditional out-in fuel management policy proved to be more economic. On introducing simultaneous poison management, the optimum fuel management sequence was found to be different. The results obtained indicate a stronger interaction between the fuel management and the poison management than anticipated in previous works. (author)
Possibilities of optimizing non-nuclear simulation of pressurized water reactor transients
International Nuclear Information System (INIS)
Silva Filho, E.
1985-01-01
The GKSS-Forschungszentrum Geesthacht GmbH has instituted the concept of a scaled test facility (volume scale factor of 1/100) of a typical PWR of the 1 300 MWe class for the purpose of studying small breaks Loss-of-Coolant Accidents (LOCA) and transients. Having in mind the goal of an optimization of this concept has been choosen a station blackout with and without reactor shutdown and a small break LOCA in a primary loop piping to investigate the thermohydraulic behaviour of the test facility in comparison to the reactor plant. The computer code RELAP 5/MOD 1 has been utilized to compare the test facility behaviour with the reactor plant one. Recommendations are given for minimization of distortions between test facility and reactor plant. (orig./HP) [de
Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor
International Nuclear Information System (INIS)
1999-01-01
Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers
On the Optimization of the Fuel Distribution in a Nuclear Reactor
DEFF Research Database (Denmark)
Thevenot, Laurent
2004-01-01
In this paper we give an optimality condition for the optimization problem of the distribution of fuel assemblies in a nuclear reactor by using the homogenization method. This study deals with purely fissile fuels and is based on the neutron transport equation modeling for continuous models....... In particular, we prove the differentiability of the leading eigenvalue of the neutron transport operator with respect to the design parameter, the configuration of the fuels....
Optimization of refueling loading pattern of uranium zirconium hydride research reactor
International Nuclear Information System (INIS)
Chen Wei; Xie Zhongsheng; Chen Da
1999-01-01
The orthogonal design method is used in the optimization of in-core fuel management. A code package of in-core fuel management in hexagonal geometry HEX-ORTH is developed. The loading pattern after the end of 3 cycle of Xi'an Pulsed Reactor is optimized using the HEX-ORTH. The optimistic loading pattern of the core are obtained as the objective function is Max(k eff BOC )
Utilization of niching methods of genetic algorithms in nuclear reactor problems optimization
International Nuclear Information System (INIS)
Sacco, Wagner Figueiredo; Schirru, Roberto
2000-01-01
Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to test existing niching techniques and two methods introduced herein, bearing in mind their eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. Tests are performed using widely known test functions and their results show that the new methods are quite promising, specially in real world problems like the nuclear reactor core reload. (author)
Genetic algorithm with fuzzy clustering for optimization of nuclear reactor problems
International Nuclear Information System (INIS)
Machado, Marcelo Dornellas; Sacco, Wagner Figueiredo; Schirru, Roberto
2000-01-01
Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to introduce a new niching technique based on the fuzzy clustering method FCM, bearing in mind its eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. tests are performed using widely known test functions and their results show that the new method is quite promising, specially to a future application in real world problems like the nuclear reactor core reload. (author)
Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study
DEFF Research Database (Denmark)
Okkels, Fridolin; Dufva, Martin; Bruus, Henrik
2011-01-01
In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved...... by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained...... and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....
Directory of Open Access Journals (Sweden)
Kutaiba Sabah Nimma
2018-04-01
Full Text Available In the revolution of green energy development, microgrids with renewable energy sources such as solar, wind and fuel cells are becoming a popular and effective way of controlling and managing these sources. On the other hand, owing to the intermittency and wide range of dynamic responses of renewable energy sources, battery energy-storage systems have become an integral feature of microgrids. Intelligent energy management and battery sizing are essential requirements in the microgrids to ensure the optimal use of the renewable sources and reduce conventional fuel utilization in such complex systems. This paper presents a novel approach to meet these requirements by using the grey wolf optimization (GWO technique. The proposed algorithm is implemented for different scenarios, and the numerical simulation results are compared with other optimization methods including the genetic algorithm (GA, particle swarm optimization (PSO, the Bat algorithm (BA, and the improved bat algorithm (IBA. The proposed method (GWO shows outstanding results and superior performance compared with other algorithms in terms of solution quality and computational efficiency. The numerical results show that the GWO with a smart utilization of battery energy storage (BES helped to minimize the operational costs of microgrid by 33.185% in comparison with GA, PSO, BA and IBA.
Fouty, Nicholas J; Carrasco, Juan C; Lima, Fernando V
2017-08-29
Due to the recent increase of natural gas production in the U.S., utilizing natural gas for higher-value chemicals has become imperative. Direct methane aromatization (DMA) is a promising process used to convert methane to benzene, but it is limited by low conversion of methane and rapid catalyst deactivation by coking. Past work has shown that membrane separation of the hydrogen produced in the DMA reactions can dramatically increase the methane conversion by shifting the equilibrium toward the products, but it also increases coke production. Oxygen introduction into the system has been shown to inhibit this coke production while not inhibiting the benzene production. This paper introduces a novel mathematical model and design to employ both methods in a multifunctional membrane reactor to push the DMA process into further viability. Multifunctional membrane reactors, in this case, are reactors where two different separations occur using two differently selective membranes, on which no systems studies have been found. The proposed multifunctional membrane design incorporates a hydrogen-selective membrane on the outer wall of the reaction zone, and an inner tube filled with airflow surrounded by an oxygen-selective membrane in the middle of the reactor. The design is shown to increase conversion via hydrogen removal by around 100%, and decrease coke production via oxygen addition by 10% when compared to a tubular reactor without any membranes. Optimization studies are performed to determine the best reactor design based on methane conversion, along with coke and benzene production. The obtained optimal design considers a small reactor (length = 25 cm, diameter of reaction tube = 0.7 cm) to subvert coke production and consumption of the product benzene as well as a high permeance (0.01 mol/s·m²·atm 1/4 ) through the hydrogen-permeable membrane. This modeling and design approach sets the stage for guiding further development of multifunctional membrane reactor
Energy Technology Data Exchange (ETDEWEB)
Nazaripouya, Hamidreza [Univ. of California, Los Angeles, CA (United States); Wang, Yubo [Univ. of California, Los Angeles, CA (United States); Chu, Peter [Univ. of California, Los Angeles, CA (United States); Pota, Hemanshu R. [Univ. of California, Los Angeles, CA (United States); Gadh, Rajit [Univ. of California, Los Angeles, CA (United States)
2016-07-26
This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy of the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.
Directory of Open Access Journals (Sweden)
Ling Ai Wong
2014-01-01
Full Text Available This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.
Optimized core design and fuel management of a pebble-bed type nuclear reactor
Boer, B.
2009-01-01
The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the
Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy
International Nuclear Information System (INIS)
Zhang, Wenbin; Li, Jianqiu; Xu, Liangfei; Ouyang, Minggao
2017-01-01
Highlights: • The hybridization of the fuel cell with the energy storage systems is realized for the tram. • A protype tram is tested based on an operation mode switching method. • An equivalent consumption minimization strategy is proposed and verified for optimization. - Abstract: This paper describes a hybrid tram powered by a Proton Exchange Membrane (PEM) fuel cell (FC) stack supported by an energy storage system (ESS) composed of a Li-ion battery (LB) pack and an ultra-capacitor (UC) pack. This configuration allows the tram to operate without grid connection. The hybrid tram with its full load is tested in the CRRC Qingdao Sifang Co.; Ltd. It firstly works on the operation mode switching method (OPMS) without energy regenerative and proper power management. Therefore, an equivalent consumption minimization strategy (ECMS) aimed at minimizing the hydrogen consumption is proposed to improve the characteristics of the tram. The results show that the proposed control system enhances drivability and economy, and is effective for application to this hybrid system.
Liu, Haodong
The progressive advancements in communication and transportation has changed human daily life to a great extent. While important advancements in battery technology has come since its first demonstration, the high energy demands needed to electrify the automotive industry have not yet been met with the current technology. One considerable bottleneck is the cathode energy density, the Li-rich layered oxide compounds xLi2MnO3.(1-x)LiMO 2 (M= Ni, Mn, Co) (0.5= Co) (0.5=discharge capacities greater than 280 mAh g-1 (almost twice the practical capacity of LiCoO 2). In this work, neutron diffraction under operando battery cycling is developed to study the lithium and oxygen dynamics of Li-rich compounds that exhibits oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show movement of oxygen and lattice contractions during the high voltage plateau until the end of charge. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer and transition metal layer are related to the different charge and discharge characteristics. In the second part, a combination of multi-modality surface sensitive tools was applied in an attempt to obtain a complete picture to understand the role of NH4F and Al2O3 surface co-modification on Li-rich. The enhanced discharge capacity of the modified material can be primary assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material was facilitated with pre-activated Mn3+ on the surface, and stabilization of the Ni redox pair. These insights will provide guidance for the surface modification in high voltage cathode battery materials of the future. In the last part, the idea of Li-rich has transferred to the Na-ion battery cathode. A new O3 - Na0.78Li0.18Ni0.25Mn 0.583Ow is prepared as the cathode material for Na-ion batteries, delivering exceptionally high
International Nuclear Information System (INIS)
Guenther, M.; Dong, Z.
2005-01-01
A push for electric vehicles has occurred in the past several decades due to various concerns about air pollution and the contribution of emissions to global climate change. Although electric cars and buses have been the focus of much of electric vehicle development, smaller vehicles are used extensively for transportation and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell - battery electric vehicle through MATLAB Simulink. The modelling and simulation provide valuable feedback to the design optimization of the fuel cell power system. A sampling based optimization algorithm was used to explore the viability and options of a low cost design for urban use. (author)
Energy Technology Data Exchange (ETDEWEB)
Garcia V, M.A
2006-07-01
In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the
Core optimization studies for a small heating reactor
International Nuclear Information System (INIS)
Galperin, A.
1986-11-01
Small heating reactor cores are characterized by a high contribution of the leakage to the neutron balance and by a large power density variation in the axial direction. A limited number of positions is available for the control rods, which are necessary to satisfy overall reactivity requirements subject to a safety related constraint on the maximum worth of each rod. Design approaches aimed to improve safety and fuel utilization performance of the core include separation of the cooling and moderating functions of the water with the core in order to reduce hot-to-cold reactivity shift and judicious application of the axial Gd zoning aimed to improve the discharge burnup distribution. Several design options are analyzed indicating a satisfactory solution of the axial burnup distribution problem. The feasibility of the control rod system including zircaloy, stainless steel, natural boron and possibly enriched boron rods is demonstrated. A preliminary analysis indicates directions for further improvements of the core performance by an additional reduction of the hot-to-cold reactivity shift and by a reduction of the depletion reactivity swing adopting a higher gadolinium concentration in the fuel or a two-batch fuel management scheme. (author)
An optimization strategy for refueling simulation of a Candu reactor
International Nuclear Information System (INIS)
Do Heon, Kim; Hangbok, Choi; Jong Kyung, KIm
2001-01-01
The AUTOREFUEL program can perform a large amount of refueling simulations within a short period, which is a strong advantage especially when a series of sensitivity calculations is needed. It also has the capability to keep the maximum channel and bundle powers less than the license limits. However, there is a chance that zone controller unit (ZCU) level exceeds the typical operating range during the refueling simulation because of incomplete modeling of the relationship between zone power and ZCU levels. In order to reserve a large enough operating margin of the reactor, the ZCU level should be kept within the typical operating range. Therefore, a deterministic method has been needed to accurately estimate the ZCU level during the refueling operation, which enables the optimum refueling channel selection. In this study, a fuel management method is proposed for the selection of refueling channels using the constraint on the ZCU level. The estimated ZCU level is used as a primary index for optimum channel selection. In this study, a generalized perturbation theory (GPT) program GENOVA, which was developed to perform the deterministic estimation of the ZCU level change due to a perturbation, is briefly described. Then, the refueling channel selection strategy proposed in this study is explained and the result of application to natural uranium CANDU-6 core refueling simulation is presented. (authors)
DEFF Research Database (Denmark)
Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Vasquez, Juan Carlos
2015-01-01
in the formulation of the total operating cost but an additional item that takes into account inevitable battery degradation. The speed of degradation depends on battery technology and its mission profile and this effect demands for eventual replacement of the stack. Therefore it can be mapped in additional...
A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems
Wognsen, Erik Ramsgaard; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.; Hansen, René Rydhof; Larsen, K.G.; Sankaranarayanan, Sriram; Vicario, Enrico
An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact of
OPTIMIZATION BALANCING DEVICES LI-ION BATTERIES FOR HYBRID AND ELECTRIC VEHICLES
Directory of Open Access Journals (Sweden)
R. P. Sharkovich
2016-01-01
Full Text Available The article discusses and proves the feasibility of using the proposed system balancing Li-ion battery consisting of a plurality of series-connected cells, applied to hybrid and electric transportation. The main objective of the system is to increase the performance and operating time of Li-ion batteries.
International Nuclear Information System (INIS)
Kerdraon, D.
2001-10-01
Accelerator Driven Systems (ADS), based on a proton accelerator and a sub-critical core coupled with a spallation target, offer advantages in order to reduce the nuclear waste radiotoxicity before repository closure. Many studies carried out on the ADS should lead to the definition of an experimental plan which would federate the different works in progress. This thesis deals with the neutronic Monte Carlo simulations with the MCNPX code to optimize such a system in view of a pilot reactor building. First, we have recalled the main neutronic properties of an hybrid reactor. The concept of gas-cooled eXperimental Accelerator Driven System (XADS) chosen for our investigations comes from the preliminary studies done by the Framatome company. In order to transmute minor actinides, we have considered the time evolution of the main fuels which could be reasonably used for the demonstration phases. The neutronic parameters of the reactor, concerning minor actinide transmutation, are reported. Also, we have calculated the characteristic times and the transmutation rates in the case of 99 Tc and 129 I isotopes. We have identified some neutronic differences between an experimental and a power ADS according to the infinite multiplication coefficient, the shape factor and the level of flux to extend the demonstrator concept. We have proposed geometric solutions to keep the radial shape factor of a power ADS acceptable. In the last part, beyond the experimental XADS scope, we have examined the possible transition towards an uranium/thorium cycle based on Molten Salt Reactors using a power ADS in order to generate the required 233 U proportion. (author)
International Nuclear Information System (INIS)
Jayalal, M.L.; Kumar, L. Satish; Jehadeesan, R.; Rajeswari, S.; Satya Murty, S.A.V.; Balasubramaniyan, V.; Chetal, S.C.
2011-01-01
Highlights: → We model design optimization of a vital reactor component using Genetic Algorithm. → Real-parameter Genetic Algorithm is used for steam condenser optimization study. → Comparison analysis done with various Genetic Algorithm related mechanisms. → The results obtained are validated with the reference study results. - Abstract: This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.
Cost-based optimization of a nuclear reactor core design: a preliminary model
International Nuclear Information System (INIS)
Sacco, Wagner F.; Alves Filho, Hermes; Pereira, Claudio M.N.A.
2007-01-01
A new formulation of a nuclear core design optimization problem is introduced in this article. Originally, the optimization problem consisted in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the radial power peaking factor in a three-enrichment zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. Here, we address the same problem using the minimization of the fuel and cladding materials costs as the objective function, and the radial power peaking factor as an operational constraint. This cost-based optimization problem is attacked by two metaheuristics, the standard genetic algorithm (SGA), and a recently introduced Metropolis algorithm called the Particle Collision Algorithm (PCA). The two algorithms are submitted to the same computational effort and their results are compared. As the formulation presented is preliminary, more elaborate models are also discussed (author)
Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui
2017-09-01
Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.
International Nuclear Information System (INIS)
Medeiros, Jose Antonio Carlos Canedo; Machado, Marcelo Dornellas; Lima, Alan Miranda M. de; Schirru, Roberto
2007-01-01
Predictive control systems are control systems that use a model of the controlled system (plant), used to predict the future behavior of the plant allowing the establishment of an anticipative control based on a future condition of the plant, and an optimizer that, considering a future time horizon of the plant output and a recent horizon of the control action, determines the controller's outputs to optimize a performance index of the controlled plant. The predictive control system does not require analytical models of the plant; the model of predictor of the plant can be learned from historical data of operation of the plant. The optimizer of the predictive controller establishes the strategy of the control: the minimization of a performance index (objective function) is done so that the present and future control actions are computed in such a way to minimize the objective function. The control strategy, implemented by the optimizer, induces the formation of an optimal control mechanism whose effect is to reduce the stabilization time, the 'overshoot' and 'undershoot', minimize the control actuation so that a compromise among those objectives is attained. The optimizer of the predictive controller is usually implemented using gradient-based algorithms. In this work we use the Particle Swarm Optimization algorithm (PSO) in the optimizer component of a predictive controller applied in the control of the xenon oscillation of a pressurized water reactor (PWR). The PSO is a stochastic optimization technique applied in several disciplines, simple and capable of providing a global optimal for high complexity problems and difficult to be optimized, providing in many cases better results than those obtained by other conventional and/or other artificial optimization techniques. (author)
Optimization of the steam generator project of a gas cooled nuclear reactor
International Nuclear Information System (INIS)
Sakai, Massao
1978-01-01
The present work is concerned with the modeling of the primary and secondary circuits of a gas cooled nuclear reactor in order to obtain the relation between the parameters of the two cycles and the steam generator performance. The procedure allows the optimization of the steam generator, through the maximization of the plant net power, and the application of the optimal control theory of dynamic systems. The heat balances for the primary and secondary circuits are carried out simultaneously with the optimized - design parameters of the steam generator, obtained using an iterative technique. (author)
Optimization and control of a novel upflow anaerobic solid-state (UASS) reactor
Energy Technology Data Exchange (ETDEWEB)
Mumme, J.; Linke, B. [Leibniz Inst. for Agricultural Engineering, Potsdam (Germany); Tolle, R. [Humboldt Univ., Berlin (Germany). Dept. of Biosystems Technology
2010-07-01
Optimization and control strategies for a newly developed upflow anaerobic solid-state (UASS) reactor equipped with liquor recirculation were investigated. The UASS reactor converts solid biomass into biogas while the particulate organic matter (POM) ascends in the form of a solid-state bed (SSB) driven by the adherence of self-produced micro gas bubbles. Performance data and technical characteristics were obtained from a technical scale semi-automatic 400 L UASS reactor that operated for 117 days with maize silage under thermophilic conditions at 55 degrees C. The process liquor was continuously recirculated through separate methanogenic reactors in order to prevent an accumulation of volatile fatty acids. Emphasis was placed on determining the gas and metabolite production. The volatile solids (VS) loading rate was fixed at 5 g per litre per day. The methane production rate of the UASS reactor stabilized between 1.5 and 2.0 L per litre per day. The average volatile solids (VS) methane yield of the maize silage was 380 L per kg. The liquor exchange was found to play an important role in the performance and stability of the digestion process. Although low exchange rates can cause process failure by acidification, high exchange rates have the risk of clogging inside the SSB. It was concluded that the UASS reactor is a viable solution for the digestion of various organic matter.
Optimization of the self-sufficient thorium fuel cycle for CANDU power reactors
Directory of Open Access Journals (Sweden)
Bergelson Boris R.
2008-01-01
Full Text Available The results of optimization calculations for CANDU reactors operating in the thorium cycle are presented in this paper. Calculations were performed to validate the feasibility of operating a heavy-water thermal neutron power reactor in a self-sufficient thorium cycle. Two modes of operation were considered in the paper: the mode of preliminary accumulation of 233U in the reactor itself and the mode of operation in a self-sufficient cycle. For the mode of accumulation of 233U, it was assumed that enriched uranium or plutonium was used as additional fissile material to provide neutrons for 233U production. In the self-sufficient mode of operation, the mass and isotopic composition of heavy nuclei unloaded from the reactor should provide (after the removal of fission products the value of the multiplication factor of the cell in the following cycle K>1. Additionally, the task was to determine the geometry and composition of the cell for an acceptable burn up of 233U. The results obtained demonstrate that the realization of a self-sufficient thorium mode for a CANDU reactor is possible without using new technologies. The main features of the reactor ensuring a self-sufficient mode of operation are a good neutron balance and moving of fuel through the active core.
Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.
Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo
2016-01-01
The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.
Optimization of binary breeder reactor VI - An acceptable project of binary breeder reactor
International Nuclear Information System (INIS)
Ishiguro, Y.; Dias, A.F.
1986-05-01
A binary breeder reactor that achieves desired characteristics reasonably well has been developed. Its design and characteristics are reported. Previous models showed several complications that result from introduction of 233 U/Th fuel in the core of a LMFBR, compared to purely Pu/U fueled ones. In this new model, the core is made larger to achieve higher breeding ratios and longer refueling intervals, the number of fuel assemblies is increased to accomodate a larger number of control rod assemblies required to compensate for reactivity losses and to control oscillations of the power densities, and, consequently, the fuel inventories are higher. High fuel burnups are achieved without too much complications in the refueling schedule and the power densities can be maintained reasonably constant over an operational cycle. Low sodium void reactivity reduce the potential for severe accidents and a reasonably efficient utilization of thorium can be realized. (Author) [pt
Optimization of hydride fueled pressurized water reactor cores
International Nuclear Information System (INIS)
Shuffler, Carter A.; Trant, Jarrod M.; Todreas, Neil E.
2005-01-01
Full text of publication follows: This paper reports the results of the thermal-hydraulic and economic analyses performed for hydride fueled PWR cores as part of a collaborative project on hydride fuels undertaken by MIT and UC Berkeley. The use of hydride fuels allows increased fuel to coolant ratios in a given core volume, and the achievement of higher burnups and thermal power from a core loading. A parametric study was developed to determine the optimum combination of lattice pitch, rod diameter, and channel shape - further referred to as geometry - for minimizing the cost of electricity associated with the use of UZrH 1.6 fuel in PWRs. Results of the steady-state and transient thermal hydraulic analyses are presented here. These are integrated with the results from fuel performance and neutronics studies into an economic model to reveal the desired optimal geometries. The thermal hydraulic analysis determines the maximum power that can be achieved for a given geometry, subject to steady-state and transient design constraints. Steady-state constraints include MDNBR, pressure drop, fuel temperature, and fuel rod vibrations. Transient constraints include the consideration of LOCA, LOFA, and over-power events. The fuel performance and neutronics analyses determine the maximum achievable burnup for a given geometry, subject to constraints on fuel internal pressure and fission gas release, clad oxidation, clad strain, and reactivity. All results are included in the economic model, which calculates the front and back end fuel cycle, operations and maintenance, and capital costs. Optimal designs include geometries where hydride fuel offers cost savings over oxide fuel, as well as geometries offering the lowest overall cost of electricity. All studies are performed for both UZrH 1.6 and UO 2 fuels, and the methodology is successfully validated by comparison of the predicted power, burnup, and cost of electricity for UO-2 fueled cores with corresponding data from
The optimization of CMC concentration as graphite binder on the anode of LiFePO4 battery
Hidayat, S.; Cahyono, T.; Mindara, J. Y.; Riveli, N.; Alamsyah, W.; Rahayu, I.
2017-05-01
Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and a longer lifetime compared to similar rechargeable battery systems. Graphite is commonly used as anode material in the Lithium-ion batteries, because of its excellent electrochemical characteristics and low cost fabrication. In this paper, we reported the optimization of the concentration of the CMC (carboxymethyl cellulose), that acts as the binder for graphite anode. Based on our experimental results, the best composition of graphite : C : CMC is 90 : 8 : 2 in weight %. Anode with such composition has, based on SEM measurement, a relatively good surface morphology, while it also has relatively high conductivity, about 2.68 S/cm. The result of cyclic voltammogram with a scan rate of 10 mV/s in the voltage range of 0 to 1 Volt, shows the peak of reduction voltage at 0.85 Volts and the peak voltage of oxidation is at -1.5 Volt. The performance of the battery system with LiFePO4 set as the cathode, shows that the working voltage is about 2.67 Volts at 1 mA current-loading, with the efficiency around 47%.
International Nuclear Information System (INIS)
Grágeda, Mario; González, Alonso; Alavia, Wilson; Ushak, Svetlana
2015-01-01
LiOH·H 2 O is used for preparation of alkaline batteries. The required characteristics of this compound are low levels of impurities and a specific particle size distribution. LiOH·H 2 O is produced from ore and brines. In northern Chile, lithium is produced from brines. This region presents particular desert climate conditions where water and energy are scarce. To help solve this problem, the conventional production process for battery grade LiOH·H 2 O was simulated and a modified process was developed, with an efficient consumption of energy and water, to improve the environmental sustainability of the plant, and greater process yield and product purity. Different configurations of the equipments were studied and for the best configurations the behavior of the modified process at different scenarios were simulated. It was found that the purity is independent of concentration used in feed to thickeners. The process yield increases in average 2.4% for modified process due to recycling operation. In modified process is obtained 28% more product mass, specific energy consumption decreases up to 4.8% and losses of Li/kg of product decreased by 83% compared to conventional process. The water consumption per kg of product in modified process is 1%–6.3%, being lower than in conventional process. The results presented can be considered as guidelines to address the optimization of the industrial process for obtaining the battery grade LiOH. - Highlights: • Water and energy are important resources in any sustainable industrial process. • High purity LiOH·H 2 O is a material for producing of lithium batteries. • Conventional and modified optimized processes for LiOH·H 2 O production were simulated. • Energy and water consumptions decrease for the modified process. • Optimal operational conditions of H 2 O, feed, pressure and energy were established
A system for obtaining an optimized pre design of nuclear reactor core
International Nuclear Information System (INIS)
Mai, L.A.
1989-01-01
This work proposes a method for obtaing a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one-energy-group, unidimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, refletor thickness, enrichement and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for futures works. (author) [pt
Automated procedure for selection of optimal refueling policies for light water reactors
International Nuclear Information System (INIS)
Lin, B.I.; Zolotar, B.; Weisman, J.
1979-01-01
An automated procedure determining a minimum cost refueling policy has been developed for light water reactors. The procedure is an extension of the equilibrium core approach previously devised for pressurized water reactors (PWRs). Use of 1 1/2-group theory has improved the accuracy of the nuclear model and eliminated tedious fitting of albedos. A simple heuristic algorithm for locating a good starting policy has materially reduced PWR computing time. Inclusion of void effects and use of the Haling principle for axial flux calculations extended the nuclear model to boiling water reactors (BWRs). A good initial estimate of the refueling policy is obtained by recognizing that a nearly uniform distribution of reactivity provides low-power peaking. The initial estimate is improved upon by interchanging groups of four assemblies and is subsequently refined by interchanging individual assemblies. The method yields very favorable results, is simpler than previously proposed BWR fuel optimization schemes, and retains power cost as the objective function
A system to obtain an optimized first design of a nuclear reactor core
International Nuclear Information System (INIS)
Mai, L.A.
1988-01-01
This work proposes a method for obtaining a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one energy-group, one-dimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, reflector thickness, enrichment and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for future works. (autor)
Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization
Blanchet, David; Fontaine, Bruno
2017-09-01
The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.
Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization
Directory of Open Access Journals (Sweden)
Blanchet David
2017-01-01
Full Text Available The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.
Optimization of a water-gas shift reactor over a Pt/ceria/alumina monolith
Energy Technology Data Exchange (ETDEWEB)
Quiney, A.S.; Germani, G.; Schuurman, Y. [Institut de Recherches sur la Catalyse-CNRS, 2 Avenue A. Einstein, 69626 Villeurbanne (France)
2006-10-06
The water-gas shift (WGS) reaction is an important step in the purification of hydrogen for fuel cells. It lowers the carbon monoxide content and produces extra hydrogen. The constraints of automotive applications render the commercial WGS catalysts unsuitable. Pt/ceria catalysts are cited as promising catalysts for onboard applications as they are highly active and non-pyrophoric. This paper reports on a power law rate expression for a Pt/CeO{sub 2}/Al{sub 2}O{sub 3} catalyst. This rate equation is used to compare different reactor configurations for an onboard water-gas shift reactor. A one-dimensional heterogeneous model that accounts for the interfacial and intraparticle gradients has been used to optimize a dual stage adiabatic monolith reactor. (author)
Evaluation of 'period-generated' control laws for the time-optimal control of reactor power
International Nuclear Information System (INIS)
Bernard, J.A.
1988-01-01
Time-Optimal control of neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. These laws are designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws'. Relative to time-optimal response, they function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The results of a systematic evaluation of these laws are presented. The behavior of each term in the control laws is shown and the capability of these laws to control properly the reactor power is demonstrated. Factors affecting the implementation of these laws, such as the prompt neutron lifetime and the differential reactivity worth of the actuators, are discussed. Finally, the results of an experimental study in which these laws were used to adjust the power of the 5 MWt MIT Research Reactor are shown. The information presented should be of interest to those designing high performance control systems for test, spacecraft, or, in certain instances, commercial reactors
Hurtado, F J; Kaiser, A S; Zamora, B
2015-03-15
Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. Copyright © 2014 Elsevier Ltd. All rights reserved.
A nuclear reactor core fuel reload optimization using Artificial-Ant-Colony Connective Networks
International Nuclear Information System (INIS)
Lima, Alan M.M. de; Schirru, Roberto
2005-01-01
A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly pattern that maximizes the number of full operational days. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is introduced to solve the nuclear reactor core fuel reload optimization problem. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)
Energy Technology Data Exchange (ETDEWEB)
Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Lujano, Juan; Zubi, Ghassan [Zaragoza Univ. (Spain). Electrical Engineerign Dept.
2010-07-01
This paper shows the optimization of a PV-Wind hybrid system with batteries storage to supply the electrical power to a small telecommunications station. The load demanded by the station is 100 W continuously. We have considered 6 different wind speed profiles, from 2 m/s average speed (low wind speed in many places in Spain) to 8 m/s average (very high wind speed, in few places in Spain) and 3 different irradiation profiles, from the lowest average daily irradiation in Spain, about 2.5 kWh/m{sup 2}/day, to the highest one in Spain, about 5 kWh/m{sup 2}/day. Therefore we have considered 6 x 3 = 18 combinations of wind speed and irradiation profiles. For each combination of wind speed and irradiation profiles, we have optimized the PV-Wind-Battery system to supply the power demand, considering some different PV panels, wind turbines and batteries. We have also considered in the optimization non-hybrid systems (PV-Battery systems and Wind-Battery systems). The simulation of the system performance has been done hourly. The optimal system for each combination of wind speed and irradiation is the one which can supply the whole demand of the telecommunications station with the lowest Net Present Cost of the system. Simulation and optimization has been done using HOGA (Hybrid Optimization by Genetic Algorithms) software, developed by some of the authors. The results show that, with actual prices of PV panels and wind turbines, in 13 of the 18 combinations of wind speed and irradiation profiles the optimal system is a hybrid system (it includes PV panels, wind turbine and batteries). In the other 5 combinations (the ones with lowest wind speed and/or highest irradiation), the optimal system is PV-Battery, i.e., without wind turbine. We conclude that, in most of the places in Spain, the optimal system to supply the demand of a communications station (with continous demand profile) is a hybrid system (PV-Wind-Batteries) instead of a PV-Batteries system or a Wind-Batteries
Incorporating single detector failure into the ROP detector layout optimization for CANDU reactors
International Nuclear Information System (INIS)
Kastanya, Doddy
2015-01-01
Highlights: • ROP TSP value needs to be adjusted when any detector in the system fails. • Single detector failure criterion has been incorporated into the detector layout optimization as a constraint. • Results show that the optimized detector layout is more robust with respect to its vulnerability to a single detector failure. • An early rejection scheme has been introduced to speed-up the optimization process. - Abstract: In CANDU ® reactors, the regional overpower protection (ROP) systems are designed to protect the reactor against overpower in the fuel which could reduce the safety margin-to-dryout. In the CANDU ® 600 MW (CANDU 6) design, there are two ROP systems in the core, each of which is connected to a fast-acting shutdown system. Each ROP system consists of a number of fast-responding, self-powered flux detectors suitably distributed throughout the core within vertical and horizontal flux detector assemblies. The placement of these ROP detectors is a challenging discrete optimization problem. In the past few years, two algorithms, DETPLASA and ADORE, have been developed to optimize the detector layout for the ROP systems in CANDU reactors. These algorithms utilize the simulated annealing (SA) technique to optimize the placement of the detectors in the core. The objective of the optimization process is typically either to maximize the TSP value for a given number of detectors in the system or to minimize the number of detectors in the system to obtain a target TSP value. One measure to determine the robustness of the optimized detector layout is to evaluate the maximum decrease (penalty) in TSP value when any single detector in the system fails. The smaller the penalty, the more robust the design is. Therefore, in order to ensure that the optimized detector layout is robust, the single detector failure (SDF) criterion has been incorporated as an additional constraint into the ADORE algorithm. Results from this study indicate that there is a
Incorporating single detector failure into the ROP detector layout optimization for CANDU reactors
Energy Technology Data Exchange (ETDEWEB)
Kastanya, Doddy, E-mail: Doddy.Kastanya@snclavalin.com
2015-12-15
Highlights: • ROP TSP value needs to be adjusted when any detector in the system fails. • Single detector failure criterion has been incorporated into the detector layout optimization as a constraint. • Results show that the optimized detector layout is more robust with respect to its vulnerability to a single detector failure. • An early rejection scheme has been introduced to speed-up the optimization process. - Abstract: In CANDU{sup ®} reactors, the regional overpower protection (ROP) systems are designed to protect the reactor against overpower in the fuel which could reduce the safety margin-to-dryout. In the CANDU{sup ®} 600 MW (CANDU 6) design, there are two ROP systems in the core, each of which is connected to a fast-acting shutdown system. Each ROP system consists of a number of fast-responding, self-powered flux detectors suitably distributed throughout the core within vertical and horizontal flux detector assemblies. The placement of these ROP detectors is a challenging discrete optimization problem. In the past few years, two algorithms, DETPLASA and ADORE, have been developed to optimize the detector layout for the ROP systems in CANDU reactors. These algorithms utilize the simulated annealing (SA) technique to optimize the placement of the detectors in the core. The objective of the optimization process is typically either to maximize the TSP value for a given number of detectors in the system or to minimize the number of detectors in the system to obtain a target TSP value. One measure to determine the robustness of the optimized detector layout is to evaluate the maximum decrease (penalty) in TSP value when any single detector in the system fails. The smaller the penalty, the more robust the design is. Therefore, in order to ensure that the optimized detector layout is robust, the single detector failure (SDF) criterion has been incorporated as an additional constraint into the ADORE algorithm. Results from this study indicate that there
The Great Deluge Algorithm applied to a nuclear reactor core design optimization problem
International Nuclear Information System (INIS)
Sacco, Wagner F.; Oliveira, Cassiano R.E. de
2005-01-01
The Great Deluge Algorithm (GDA) is a local search algorithm introduced by Dueck. It is an analogy with a flood: the 'water level' rises continuously and the proposed solution must lie above the 'surface' in order to survive. The crucial parameter is the 'rain speed', which controls convergence of the algorithm similarly to Simulated Annealing's annealing schedule. This algorithm is applied to the reactor core design optimization problem, which consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. This problem was previously attacked by the canonical genetic algorithm (GA) and by a Niching Genetic Algorithm (NGA). NGAs were designed to force the genetic algorithm to maintain a heterogeneous population throughout the evolutionary process, avoiding the phenomenon known as genetic drift, where all the individuals converge to a single solution. The results obtained by the Great Deluge Algorithm are compared to those obtained by both algorithms mentioned above. The three algorithms are submitted to the same computational effort and GDA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. One of the great advantages of this algorithm over the GA is that it does not require special operators for discrete optimization. (author)
Optimization of an off-grid hybrid PV-wind-diesel-battery system
Energy Technology Data Exchange (ETDEWEB)
Merei, Ghada [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); Sauer, Dirk Uwe [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); RWTH Aachen Univ. (Germany). Inst. for Power Generation and Storage Systems (PGS)
2012-07-01
The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents the modelling and optimisation of a stand-alone hybrid energy system. The system consists of photovoltaic (PV) panels and a wind turbine as renewable power sources, a diesel generator for back-up power and batteries to store excess energy and to improve the system reliability. For storage the technologies of lithium-ion, lead-acid, vanadium redox-flow or a combination thereof are considered. In order to use different battery technologies at once, a battery management system (BMS) is needed. The presented BMS minimises operation cost while taking into account different battery operating points and ageing mechanisms. The system is modelled and implemented in Matlab/Simulink. As input, the model uses data of the irradiation, wind speed and air temperature measured in ten minute intervals for ten years in Aachen, Germany. The load is assumed to be that of a rural UMTS/GSM base station for telecommunication. For a timeframe of 20 years, the performance is evaluated and the total costs are determined. Using a genetic algorithm, component sizes and settings are then varied and the system re-evaluated to minimise the overall cost. The optimisation results show that using batteries in combination with the renewables is economic and ecologic. However, the best solution is to combine redox-flow batteries with the renewables. In addition, a power supply system consisting only of batteries, PV and wind generators can satisfy the power demand.
The parallel processing impact in the optimization of the reactors neutronic by genetic algorithms
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.; Universidade Federal, Rio de Janeiro, RJ; Lapa, Celso M.F.; Mol, Antonio C.A.
2002-01-01
Nowadays, many optimization problems found in nuclear engineering has been solved through genetic algorithms (GA). The robustness of such methods is strongly related to the nature of search process which is based on populations of solution candidates, and this fact implies high computational cost in the optimization process. The use of GA become more critical when the evaluation process of a solution candidate is highly time consuming. Problems of this nature are common in the nuclear engineering, and an example is the reactor design optimization, where neutronic codes, which consume high CPU time, must be run. Aiming to investigate the impact of the use of parallel computation in the solution, through GA, of a reactor design optimization problem, a parallel genetic algorithm (PGA), using the Island Model, was developed. Exhaustive experiments, then 1500 processing hours in 550 MHz personal computers, have been done, in order to compare the conventional GA with the PGA. Such experiments have demonstrating the superiority of the PGA not only in terms of execution time, but also, in the optimization results. (author)
A new optimization method based on cellular automata for VVER-1000 nuclear reactor loading pattern
International Nuclear Information System (INIS)
Fadaei, Amir Hosein; Setayeshi, Saeed
2009-01-01
This paper presents a new and innovative optimization technique, which uses cellular automata for solving multi-objective optimization problems. Due to its ability in simulating the local information while taking neighboring effects into account, the cellular automata technique is a powerful tool for optimization. The fuel-loading pattern in nuclear reactor cores is a major optimization problem. Due to the immensity of the search space in fuel management optimization problems, finding the optimum solution requires a huge amount of calculations in the classical method. The cellular automata models, based on local information, can reduce the computations significantly. In this study, reducing the power peaking factor, while increasing the initial excess reactivity inside the reactor core of VVER-1000, which are two apparently contradictory objectives, are considered as the objective functions. The result is an optimum configuration, which is in agreement with the pattern proposed by the designer. In order to gain confidence in the reliability of this method, the aforementioned problem was also solved using neural network and simulated annealing, and the results and procedures were compared.
International Nuclear Information System (INIS)
Toyama, Masahiro; Kasai, Shigeo.
1978-01-01
Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)
Zandvoort, M.H.; Geerts, R.; Lettinga, G.; Lens, P.N.L.
2003-01-01
The effect of sub-optimal trace metal concentrations on the conversion of methanol in an upflow anaerobic sludge bed (UASB) reactor was investigated by studying the effect of decreased influent trace metal concentrations on the reactor efficiency, methanol conversion route and sludge
International Nuclear Information System (INIS)
Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.
1979-01-01
Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)
International Nuclear Information System (INIS)
Waintraub, Marcel; Pereira, Claudio M.N.A.; Baptista, Rafael P.
2005-01-01
This work presents the development of a distributed parallel genetic algorithm applied to a nuclear reactor core design optimization. In the implementation of the parallelism, a 'Message Passing Interface' (MPI) library, standard for parallel computation in distributed memory platforms, has been used. Another important characteristic of MPI is its portability for various architectures. The main objectives of this paper are: validation of the results obtained by the application of this algorithm in a nuclear reactor core optimization problem, through comparisons with previous results presented by Pereira et al.; and performance test of the Brazilian Nuclear Engineering Institute (IEN) cluster in reactors physics optimization problems. The experiments demonstrated that the developed parallel genetic algorithm using the MPI library presented significant gains in the obtained results and an accentuated reduction of the processing time. Such results ratify the use of the parallel genetic algorithms for the solution of nuclear reactor core optimization problems. (author)
International Nuclear Information System (INIS)
Jayalal, M.L.; Ramachandran, Suja; Rathakrishnan, S.; Satya Murty, S.A.V.; Sai Baba, M.
2015-01-01
Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the
Directory of Open Access Journals (Sweden)
Xueliang Huang
2013-01-01
Full Text Available As an important component of the smart grid, electric vehicles (EVs could be a good measure against energy shortages and environmental pollution. A main way of energy supply to EVs is to swap battery from the swap station. Based on the characteristics of EV battery swap station, the coordinated charging optimal control strategy is investigated to smooth the load fluctuation. Shuffled frog leaping algorithm (SFLA is an optimization method inspired by the memetic evolution of a group of frogs when seeking food. An improved shuffled frog leaping algorithm (ISFLA with the reflecting method to deal with the boundary constraint is proposed to obtain the solution of the optimal control strategy for coordinated charging. Based on the daily load of a certain area, the numerical simulations including the comparison of PSO and ISFLA are carried out and the results show that the presented ISFLA can effectively lower the peak-valley difference and smooth the load profile with the faster convergence rate and higher convergence precision.
Directory of Open Access Journals (Sweden)
Xin Liu
2017-01-01
Full Text Available Integrating wind generation, photovoltaic power, and battery storage to form hybrid power systems has been recognized to be promising in renewable energy development. However, considering the system complexity and uncertainty of renewable energies, such as wind and solar types, it is difficult to obtain practical solutions for these systems. In this paper, optimal sizing for a wind/PV/battery system is realized by trade-offs between technical and economic factors. Firstly, the fuzzy c-means clustering algorithm was modified with self-adapted parameters to extract useful information from historical data. Furthermore, the Markov model is combined to determine the chronological system states of natural resources and load. Finally, a power balance strategy is introduced to guide the optimization process with the genetic algorithm to establish the optimal configuration with minimized cost while guaranteeing reliability and environmental factors. A case of island hybrid power system is analyzed, and the simulation results are compared with the general FCM method and chronological method to validate the effectiveness of the mentioned method.
International Nuclear Information System (INIS)
Yousefi, Ahmad; Eslamloueyan, Reza; Kazerooni, Nooshin Moradi
2017-01-01
Concerns over environmental pollution and ever-increasing energy demand have urged the global community to tap clean-burning fuels among which dimethyl ether is a promising candidate for contribution in the transportation sector. Direct dimethyl ether synthesis from syngas, in which methanol production and dehydration take place simultaneously, is arguably the preferred route for large scale production. In this study, direct dimethyl ether synthesis is proposed in an industrial dual-type fluidized bed reactor. This configuration involves two fluidized bed reactors operating in different conditions. In the first catalytic reactor (water-cooled reactor), the synthesis gas is partly converted to methanol after being preheated by the reaction heat in the second reactor (gas-cooled reactor). A two-phase generalized comprehensive reactor model, comprised of the flow in three different regimes is applied and a smooth transition between flow regimes is provided based on the probabilistic averaging approach. The optimal operating conditions are sought by employing differential evolution algorithm as a robust optimization strategy. The dimethyl ether mole fraction is considered as the objective function during the optimization. The results show considerable dimethyl ether enhancement by 16% and 14% compared to the conventional direct dimethyl ether synthesis reactor and dual-type fixed bed dimethyl ether reactor arrangements, respectively. - Highlights: • Dual-type catalytic fluidized bed reactors for dimethyl ether synthesis is studied. • A two-phase comprehensive model comprised of flow in three regimes is used. • Probabilistic averaging approach is applied for smooth transitions between regimes. • Differential evolution method is employed to determine optimal operating conditions. • Production capacity is remarkably enhanced compared to conventional reactor.
International Nuclear Information System (INIS)
Hedayat, Afshin; Davilu, Hadi; Barfrosh, Ahmad Abdollahzadeh; Sepanloo, Kamran
2009-01-01
To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational
Energy Technology Data Exchange (ETDEWEB)
Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)
2009-12-15
To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational
Optimal sizing of battery storage for stand-alone hybrid (photo-voltaic + diesel) power systems
Shaahid, S. M.; Elhadidy, M. A.
2005-09-01
An important element of hybrid photo- voltaic(PV) + diesel sytem is battery storage. Size of battery storage plays a role in optimum operation of the hybrid system. Emphasis needs to be placed on this issue. In this perspective, hourly solar radiation data, for the period 1986 93 recorded at Dhahran, Saudi Arabia, have been analyzed to investigate the optimum size of battery storage capacity for hybrid (PV + diesel) power systems. Various sizing configurations have been simulated. The monthly average daily values of solar global radiation range from 3.61 to 7.96kWh/m2. As a case study, hybrid systems considered in the present analysis consist of 225m2 PV array area (panels/modules) supplemented with battery storage unit and diesel backup generators (to meet the load requirements of a typical residential building with annual electrical energy demand of 35,200kWh). The monthly average energy generated from the aforementioned hybrid system for different scenarios has been presented. More importantly, the study explores the influence of variation of battery storage capacity on hybrid power generation. The results exhibit a trade-off between size of the storage capacity and diesel power to be generated to cope with annual load distribution. Concurrently, the energy to be generated from the diesel generator and the number of operational hours of the diesel system to meet the load demand have been also addressed.The study shows that for optimum operation of diesel system, storage capacity equivalent to 12 18h of maximum monthly average hourly demand need to be used. It has been found that in the absence of battery bank, ˜58% of the load needs to be provided by the diesel system. However, use of 12h of battery storage (autonomy) reduces diesel energy generation by ˜49% and the number of hours of operation of the diesel system get reduced by about ˜82%. The findings of this study can be employed as a tool for sizing of battery storage for PV/diesel systems for other
Energy Technology Data Exchange (ETDEWEB)
Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu [Nuclear Safety Research Center, Japan Atomic Energy Agency, Ibaraki (Japan)
2017-03-15
Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.
Development of hydraulic analysis code for optimizing thermo-chemical is process reactors
International Nuclear Information System (INIS)
Terada, Atsuhiko; Hino, Ryutaro; Hirayama, Toshio; Nakajima, Norihiro; Sugiyama, Hitoshi
2007-01-01
The Japan Atomic Energy Agency has been conducting study on thermochemical IS process for water splitting hydrogen production. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h, is being designed conceptually as the next step of the IS process development. In design of the IS pilot plant, it is important to make chemical reactors compact with high performance from the viewpoint of plant cost reduction. A new hydraulic analytical code has been developed for optimizing mixing performance of multi-phase flow involving chemical reactions especially in the Bunsen reactor. Complex flow pattern with gas-liquid chemical interaction involving flow instability will be characterized in the Bunsen reactor. Preliminary analytical results obtained with above mentioned code, especially flow patterns induced by swirling flow agreed well with that measured by water experiments, which showed vortex breakdown pattern in a simplified Bunsen reactor. (author)
Directory of Open Access Journals (Sweden)
Grazia Leonzio
2017-10-01
Full Text Available Carbon dioxide conversion and utilization is gaining significant attention worldwide, not only because carbon dioxide has an impact on global climate change, but also because it provides a source for potential fuels and chemicals. Methanol is an important fuel that can be obtained by the hydrogenation of carbon dioxide. In this research, the modeling of a reactor to produce methanol using carbon dioxide and hydrogen is carried out by way of an ANOVA and a central composite design. Reaction temperature, reaction pressure, H2/CO2 ratio, and recycling are the chosen factors, while the methanol production and the reactor volume are the studied responses. Results show that the interaction AC is common between the two responses and allows improvement of the productivity in reducing the volume. A mathematical model for methanol production and reactor volume is obtained with significant factors. A central composite design is used to optimize the process. Results show that a higher productivity is obtained with temperature, CO2/H2 ratio, and recycle factors at higher, lower, and higher levels, respectively. The methanol production is equal to 33,540 kg/h, while the reactor volume is 6 m3. Future research should investigate the economic analysis of the process in order to improve productivity with lower costs.
Optimal initial fuel distribution in a thermal reactor for maximum energy production
International Nuclear Information System (INIS)
Moran-Lopez, J.M.
1983-01-01
Using the fuel burnup as objective function, it is desired to determine the initial distribution of the fuel in a reactor in order to obtain the maximum energy possible, for which, without changing a fixed initial fuel mass, the results for different initial fuel and control poison configurations are analyzed and the corresponding running times compared. One-dimensional, two energy-group theory is applied to a reflected cylindrical reactor using U-235 as fuel and light water as moderator and reflector. Fissions in both fast and thermal groups are considered. The reactor is divided into several annular regions, and the constant flux approximation in each depletion step is then used to solve the fuel and fission-product poisons differential equations in each region. The computer code OPTIME was developed to determine the time variation of core properties during the fuel cycle. At each depletion step, OPTIME calls ODMUG, [12] a criticality search program, from which the spatially-averaged neutron fluxes and control poison cross sections are obtained
International Nuclear Information System (INIS)
Sacco, Wagner F.; Oliveira, Cassiano R.E. de
2005-01-01
A new metaheuristic called 'Gravitational Attraction Algorithm' (GAA) is introduced in this article. It is an analogy with the gravitational force field, where a body attracts another proportionally to both masses and inversely to their distances. The GAA is a populational algorithm where, first of all, the solutions are clustered using the Fuzzy Clustering Means (FCM) algorithm. Following that, the gravitational forces of the individuals in relation to each cluster are evaluated and this individual or solution is displaced to the cluster with the greatest attractive force. Once it is inside this cluster, the solution receives small stochastic variations, performing a local exploration. Then the solutions are crossed over and the process starts all over again. The parameters required by the GAA are the 'diversity factor', which is used to create a random diversity in a fashion similar to genetic algorithm's mutation, and the number of clusters for the FCM. GAA is applied to the reactor core design optimization problem which consists in adjusting several reactor cell parameters in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering operational restrictions. This problem was previously attacked using the canonical genetic algorithm (GA) and a Niching Genetic Algorithm (NGA). The new metaheuristic is then compared to those two algorithms. The three algorithms are submitted to the same computational effort and GAA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. (author)
Optimization activities on design studies of LHD-type reactor FFHR
Energy Technology Data Exchange (ETDEWEB)
Sagara, A. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)], E-mail: sagara.akio@LHD.nifs.ac.jp; Mitarai, O. [Tokai University, 9-1-1 Toroku, Kumamoto 862-8652 (Japan); Tanaka, T.; Imagawa, S.; Kozaki, Y.; Kobayashi, M.; Morisaki, T.; Watanabe, T.; Takahata, K.; Tamura, H.; Yanagi, N.; Nishimura, K.; Chikaraishi, H.; Yamada, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Fukada, S. [Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Masuzaki, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Shishkin, A. [Kharkov Institute of Physics and Technology, Kharkov-108 (Ukraine); Igitkhanov, Y. [Max-Planck-Institute fuer Plasmaphysik, IPP-EURATOM Ass., Greifswald (Germany); Goto, T.; Ogawa, Y. [University of Tokyo, 5-1-5 Kashiwa, Chiba 277-8568 (Japan)] (and others)
2008-12-15
Recent activities on optimizing the base design of the large helical device (LHD)-type helical reactor FFHR (force free helical reactor) are presented. Three candidates to secure the blanket space are proposed with the aim of reactor size optimization without deteriorating {alpha}-heating efficiency and by taking cost analyses into account. In this way the key engineering aspects are investigated; from 3D blanket designs, it is demonstrated that the peaking factor of the neutron wall loading is 1.2-1.3 and a blanket covering ratio of over 90% is possible by proposing discrete pumping with a semi-closed shield (DPSS) concept. Helical blanket shaping along the divertor field lines is the next big issue. For large superconducting magnet systems under the maximum nuclear heating of 200 W/m{sup 3}, cable-in-conduit conductor (CICC) and alternative conductor designs are proposed with a robust design of cryogenic support posts. For access to ignited plasmas, new methods are proposed, in which a long rise-up time over 300 s reduces the heating power to 30 MW and a new proportional-integration-derivative (PID) control of the fueling can handle the thermally unstable plasma at high-density operation. This paper focuses on FFHR2m1, which is a modified version of FFHR.
Directory of Open Access Journals (Sweden)
Istadi Istadi
2009-06-01
Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115
Directory of Open Access Journals (Sweden)
Bambang Tri Nugroho
2009-06-01
Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31
Directory of Open Access Journals (Sweden)
Yong Li
2012-05-01
Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the
Directory of Open Access Journals (Sweden)
Yu-Shan Cheng
2018-02-01
Full Text Available Self-consumption of household photovoltaic (PV storage systems has become profitable for residential owners under the trends of limited feed-in power and decreasing PV feed-in tariffs. For individual PV-storage systems, the challenge mainly lies in managing surplus generation of battery and grid power flow, ideally without relying on error-prone forecasts for both generation and consumption. Considering the large variation in power profiles of different houses in a neighborhood, the strategy is also supposed to be beneficial and applicable for the entire community. In this study, an adaptable battery charging control strategy is designed in order to obtain minimum costs for houses without any meteorological or load forecasts. Based on fuzzy logic control (FLC, battery state-of-charge (SOC and the variation of SOC (∆SOC are taken as input variables to dynamically determine output charging power with minimum costs. The proposed FLC-based algorithm benefits from the charging battery as much as possible during the daytime, and meanwhile properly preserves the capacity at midday when there is high possibility of curtailment loss. In addition, due to distinct power profiles in each individual house, input membership functions of FLC are improved by particle swarm optimization (PSO to achieve better overall performance. A neighborhood with 74 houses in Germany is set up as a scenario for comparison to prior studies. Without forecasts of generation and consumption power, the proposed method leads to minimum costs in 98.6% of houses in the community, and attains the lowest average expenses for a single house each year.
Directory of Open Access Journals (Sweden)
E. Ali
2017-07-01
Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.
Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems
Khatib, M.G.; Hartel, Pieter H.
An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such
International Nuclear Information System (INIS)
Zavaljevski, N.
1985-01-01
Proposed optimization procedure is fast due to application of linear programming. Non-linear constraints which demand iterative application of linear programming are slowing down the calculation. Linearization can be done by different procedures starting from simple empirical rules for fuel in-core management to complicated general perturbation theory with higher order of corrections. A mathematical model was formulated for optimization of improved fuel cycle. A detailed algorithm for determining minimum of fresh fuel at the beginning of each fuel cycle is shown and the problem is linearized by first order perturbation theory and it is optimized by linear programming. Numerical illustration of the proposed method was done for the experimental reactor mostly for saving computer time
Optimization of pressurized water reactor shuffling by simulated annealing with heuristics
International Nuclear Information System (INIS)
Stevens, J.G.; Smith, K.S.; Rempe, K.R.; Downar, T.J.
1995-01-01
Simulated-annealing optimization of reactor core loading patterns is implemented with support for design heuristics during candidate pattern generation. The SIMAN optimization module uses the advanced nodal method of SIMULATE-3 and the full cross-section detail of CASMO-3 to evaluate accurately the neutronic performance of each candidate, resulting in high-quality patterns. The use of heuristics within simulated annealing is explored. Heuristics improve the consistency of optimization results for both fast- and slow-annealing runs with no penalty from the exclusion of unusual candidates. Thus, the heuristic application of designer judgment during automated pattern generation is shown to be effective. The capability of the SIMAN module to find and evaluate families of loading patterns that satisfy design constraints and have good objective performance within practical run times is demonstrated. The use of automated evaluations of successive cycles to explore multicycle effects of design decisions is discussed
International Nuclear Information System (INIS)
Pauzi, A M
2013-01-01
The neutron transport code, Monte Carlo N-Particle (MCNP) which was wellkown as the gold standard in predicting nuclear reaction was used to model the small nuclear reactor core called U -battery TM, which was develop by the University of Manchester and Delft Institute of Technology. The paper introduces on the concept of modeling the small reactor core, a high temperature reactor (HTR) type with small coated TRISO fuel particle in graphite matrix using the MCNPv4C software. The criticality of the core were calculated using the software and analysed by changing key parameters such coolant type, fuel type and enrichment levels, cladding materials, and control rod type. The criticality results from the simulation were validated using the SCALE 5.1 software by [1] M Ding and J L Kloosterman, 2010. The data produced from these analyses would be used as part of the process of proposing initial core layout and a provisional list of materials for newly design reactor core. In the future, the criticality study would be continued with different core configurations and geometries.
Directory of Open Access Journals (Sweden)
Michael F. Roberto
2013-12-01
Full Text Available Continuous flow reactors (CFRs are an emerging technology that offer several advantages over traditional batch synthesis methods, including more efficient mixing schemes, rapid heat transfer, and increased user safety. Of particular interest to the specialty chemical and pharmaceutical manufacturing industries is the significantly improved reliability and product reproducibility over time. CFR reproducibility can be attributed to the reactors achieving and maintaining a steady state once all physical and chemical conditions have stabilized. This work describes the implementation of a smart CFR with univariate physical and multivariate chemical monitoring that allows for rapid determination of steady state, requiring less than one minute. Additionally, the use of process analytical technology further enabled a significant reduction in the time and cost associated with offline validation methods. The technology implemented for this study is chemistry and hardware agnostic, making this approach a viable means of optimizing the conditions of any CFR.
Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report
International Nuclear Information System (INIS)
Hawari, Ayman
2014-01-01
This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can be easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.
Design and optimization of fuzzy-PID controller for the nuclear reactor power control
International Nuclear Information System (INIS)
Liu Cheng; Peng Jinfeng; Zhao Fuyu; Li Chong
2009-01-01
This paper introduces a fuzzy proportional-integral-derivative (fuzzy-PID) control strategy, and applies it to the nuclear reactor power control system. At the fuzzy-PID control strategy, the fuzzy logic controller (FLC) is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region and the genetic algorithm to improve the 'extending' precision through quadratic optimization for the membership function (MF) of the FLC. Thus the FLC tunes the gains of PID controller to adapt the model changing with the power. The fuzzy-PID has been designed and simulated to control the reactor power. The simulation results show the favorable performance of the fuzzy-PID controller.
DEFF Research Database (Denmark)
Zhu, Xinyu
(MAGs) (31 bacterial and 4 archaeal). The abundance of these MAGs dramatically varied in the communities adapted to different substrates. The shifts in microbial community composition indicate that MAGs have specific functional roles in AD food chain and their roles cannot always be physiologically...... full-scale and lab-scale AD reactors. The MAG was found in higher abundance during thermophilic reactor operations with relatively short hydraulic retention times. The phylogenetic assignment was based on 400 conserved genes and on 16S rRNA genes. The two methods concordantly showed that this MAG...... and dynamicity was directly used to solve technical challenges in AD operations. Fundamentally, deeper insights into the microbial metabolisms and ecology substantially expanded the current understanding of AD. The revealed knowledge provides pivotal prerequisites for future AD process control and optimization. ...
International Nuclear Information System (INIS)
Bhattacharyya, A.T.
1984-03-01
This work presents a systemanalytical investigation and shows how far a high temperature reactor can be integrated for achieving the optimal yield of kerogen from oil shale. About 1/3 of the produced components must be burnt out in order to have the required high temperature process heat. The works of IGT show that the hydrogen gasification of oil shale enables not only to reach oil shale of higher quality but also allows to achieve a higher extraction quantity. For this reason a hydro-gasification process has been calculated in this work in which not only hydrogen is used as the gasification medium but also two high temperature reactors are integrated as the source of high temperature heat. (orig.) [de
Methodology for the Integration of Safety in the Optimization of the Advanced Reactors Design
International Nuclear Information System (INIS)
Grinblat, P.; Schlamp, M.; Brasnarof, D.; Gimenez, M.
2003-01-01
In this work a new methodology has been developed and implemented for taking into account the safety levels of the reactor in a design optimization process, by using Design Maps.They represent a new technique for comparing critical variables in case an accidental sequenced happened, with limit values set by the design criteria.So a good balance is achieved, without allowing the economic performance search to cause a too risky reactor, and guaranteeing the competitiveness of it in spite of the safety costs.Up to the moment, there is no design tool able to accomplish this task in an integrated way.A computational tool based on this methodology has been implemented.These tool specially programmed routines allow carrying out the mentioned tasks
International Nuclear Information System (INIS)
Sinha, N.K.; Raj, Baldev
2011-01-01
Research highlights: → Production of thin fluoroelastomer profiles by cold feed extrusion and continuous cure involving microwave and hot air heating. → Use of peroxide curing in air during production. → Use of fluoroelastomers based on advanced polymer architecture (APA) for the production of profiles. → Use of the profiles in inflatable seals for critical application of Prototype Fast Breeder Reactor. → Tailoring of material formulation by synchronized optimization of material and production technologies to ensure that the produced seal ensures significant gains in terms of performance and safety in reactor under synergistic influences of temperature, radiation, air and sodium aerosol. - Abstract: The feasibility of producing thin-walled fluoroelastomer profiles under continuous, atmospheric-pressure vulcanization conditions in air has been demonstrated by successful manufacture of ∼2 m diameter test inflatable seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) using a 50/50 blend formulation of Viton GBL-200S/600S based on advanced polymer architecture (APA). A commercial cold feed screw extruder with 90 mm diameter screw was used along with continuous cure by microwave (2.45 GHz) and hot air heating (190 o C) at a line speed of 1 m/min to produce the seals. The blend formulation promises significant improvement in the performance and safety of the seals. This article depicts the relevant characteristics of the original inflatable seal compound that was used as reference to achieve the objectives through synchronized optimization of material and production technologies. The production trials are outlined and the blend formulation used with minor factory modifications to produce the test seals is reported. Progressive refinements of the original, Viton A-401C based compound to the blend formulation is presented along with an assessment of potential performance gains. Possible uses of the reported formulation and production technique for
Energy Technology Data Exchange (ETDEWEB)
Sinha, N.K., E-mail: nksinha@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India); Raj, Baldev, E-mail: dir@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India)
2011-03-15
Research highlights: Production of thin fluoroelastomer profiles by cold feed extrusion and continuous cure involving microwave and hot air heating. Use of peroxide curing in air during production. Use of fluoroelastomers based on advanced polymer architecture (APA) for the production of profiles. Use of the profiles in inflatable seals for critical application of Prototype Fast Breeder Reactor. Tailoring of material formulation by synchronized optimization of material and production technologies to ensure that the produced seal ensures significant gains in terms of performance and safety in reactor under synergistic influences of temperature, radiation, air and sodium aerosol. - Abstract: The feasibility of producing thin-walled fluoroelastomer profiles under continuous, atmospheric-pressure vulcanization conditions in air has been demonstrated by successful manufacture of {approx}2 m diameter test inflatable seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) using a 50/50 blend formulation of Viton GBL-200S/600S based on advanced polymer architecture (APA). A commercial cold feed screw extruder with 90 mm diameter screw was used along with continuous cure by microwave (2.45 GHz) and hot air heating (190 {sup o}C) at a line speed of 1 m/min to produce the seals. The blend formulation promises significant improvement in the performance and safety of the seals. This article depicts the relevant characteristics of the original inflatable seal compound that was used as reference to achieve the objectives through synchronized optimization of material and production technologies. The production trials are outlined and the blend formulation used with minor factory modifications to produce the test seals is reported. Progressive refinements of the original, Viton A-401C based compound to the blend formulation is presented along with an assessment of potential performance gains. Possible uses of the reported formulation and production technique for other large
Design optimization of backup seal for sodium cooled fast breeder reactor
International Nuclear Information System (INIS)
Sinha, N.K.; Ghosh, P.; Saha, A.; Mukhopadhyay, R.; Raj, Baldev; Chetal, S.C.
2012-01-01
Highlights: ► Design arrived from fourteen geometric options by finite element analysis. ► Seal geometry, size, compression, contact pressure, stress and compression load optimized. ► Effects of reduced fluoroelastomer strength at 110 °C, strain rate and stress-softening incorporated. ► Ageing, friction, tolerances, batch-to-batch/production variations in fluoroelastomer considered. ► Procedure applicable to other elastomeric seals of Fast Breeder Reactors. -- Abstract: Design optimization of static, fluoroelastomer backup seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) is depicted. 14 geometric variations of a solid trapezoidal cross-section were studied by finite element analysis (FEA) to arrive at a design with hollowness and double o-ring contours on the sealing face. The seal design with squeeze of 5 mm assures failsafe operation for at least 10 years under a differential pressure of 25 kPa and ageing influences of fluid (air), temperature (110 °C) and γ radiation (23 mGy/h) in reactor. Hybrid elements of 1 mm length, regular integration, Mooney–Rivlin material model and Poisson’s ratio of 0.493 were used in axisymmetric analysis scheme. Possible effects of reduced fluoroelastomer strength at 110 °C, ageing, friction, tolerances in reactor scale, testing conditions during FEA data generation and batch-to-batch/production variations in seal material were considered to ensure adequate safety margin at the end of design life. The safety margin and numerical prediction accuracy could be improved further by using properties of specimens extracted from seal. The approach is applicable to other low pressure, moderate temperature elastomeric sealing applications of PFBR, mostly operating under maximum strain of 50%.
Min, Kyoungmin; Seo, Seung-Woo; Choi, Byungjin; Park, Kwangjin; Cho, Eunseog
2017-05-31
Ni-rich layered oxides are attractive materials owing to their potentially high capacity for cathode applications. However, when used as cathodes in Li-ion batteries, they contain a large amount of Li residues, which degrade the electrochemical properties because they are the source of gas generation inside the battery. Here, we propose a computational approach to designing optimal coating materials that prevent gas evolution by removing residual Li from the surface of the battery cathode. To discover promising coating materials, the reactions of 16 metal phosphates (MPs) and 45 metal oxides (MOs) with the Li residues, LiOH, and Li 2 CO 3 are examined within a thermodynamic framework. A materials database is constructed according to density functional theory using a hybrid functional, and the reaction products are obtained according to the phases in thermodynamic equilibrium in the phase diagram. In addition, the gravimetric efficiency is calculated to identify coating materials that can eliminate Li residues with a minimal weight of the coating material. Overall, more MP and MO materials react with LiOH than with Li 2 CO 3 . Specifically, MPs exhibit better reactivity to both Li residues, whereas MOs react more with LiOH. The reaction products, such as Li-containing phosphates or oxides, are also obtained to identify the phases on the surface of a cathode after coating. On the basis of the Pareto-front analysis, P 2 O 5 could be an optimal material for the reaction with both Li residuals. Finally, the reactivity of the coating materials containing 3d/4d transition metal elements is better than that of materials containing other types of elements.
Wang, Bo; Wu, Di; Ekama, George A; Huang, Hao; Lu, Hui; Chen, Guang-Hao
2017-10-01
Sludge flotation is a notorious problem in anaerobic wastewater treatment that can occur under various operational conditions and even cause the anaerobic process to completely fail. Despite having been documented for over three decades, its causes and remedies remain elusive, particularly for low-gas-production anaerobic processes such as sulfidogenic and anammox processes. This paper systematically studies sludge flotation in an anaerobic sulfidogenic process for saline domestic sewage treatment. Three lab-scale sulfidogenic reactors were operated in parallel with different modes of mixing (hydraulic, mechanical and pneumatic) at various mixing intensity levels at shear rates ranging from 0.7 to 6.6 s -1 to investigate reactor performance and sludge properties and their relationships with sludge flotation potential. The results indicate that a sulfidogenic reactor with low flotation potential have sludge with low hydrophobicity, low viscosity, and low (more negative) surface charge, while the sludge particle surfaces have high compactness and low roughness. These sludge properties enabled a sludge flotation potential of less than 20% to be maintained. Furthermore, our results show that i) mixing and extracellular polymeric substances (EPS), ii) EPS and sludge properties, and iii) sludge properties and sludge flotation potential are all strongly correlated (all the Spearman's rank correlation coefficients (R s ) are either over 0.64 (if positively correlated) or under -0.64 (if negatively correlated), at the 95% confidence level). Accordingly, sludge flotation can be resolved by controlling reactor mixing. Our findings provide a method to optimize the design and operation of anaerobic sulfidogenic reactors that can be extended to similar low-gas-production anaerobic bioreactors. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Erdoes, P.
1977-01-01
This is one of a series of articles discussing aspects of nuclear engineering ranging from a survey of various reactor types for static and mobile use to mention of atomic thermo-electric batteries of atomic thermo-electric batteries for cardiac pacemakers. Various statistics are presented on power generation in Europe and U.S.A. and economics are discussed in some detail. Molten salt reactors and research machines are also described. (G.M.E.)
Particle swarm optimization with random keys applied to the nuclear reactor reload problem
International Nuclear Information System (INIS)
Meneses, Anderson Alvarenga de Moura; Fundacao Educacional de Macae; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto
2007-01-01
In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)
Particle swarm optimization with random keys applied to the nuclear reactor reload problem
Energy Technology Data Exchange (ETDEWEB)
Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)
A nuclear reactor core fuel reload optimization using artificial ant colony connective networks
Energy Technology Data Exchange (ETDEWEB)
Lima, Alan M.M. de [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: alanmmlima@yahoo.com.br; Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: schirru@lmp.ufrj.br; Carvalho da Silva, Fernando [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: fernando@con.ufrj.br; Medeiros, Jose Antonio Carlos Canedo [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: canedo@lmp.ufrj.br
2008-09-15
The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem.
Design of proportional-integral-derivative type optimal controller for a nuclear reactor
International Nuclear Information System (INIS)
Pal, Jayanta
1976-01-01
A theoretic approach to the design of a proportional integral derivative (PID) type optimal controller for a nuclear reactor is considered. A linearized version of the state-space model of a nuclear-reactor-plant is investigated which shows very 'sluggish' response (settling time of the order of 600 seconds) to changes in the power demand and frequency. It is shown that with a judicious choice of state variables a PID type optimal controller realisation is possible. A controller is designed to minimise the effects of (a) a sudden increase or decrease in the electrical power demand (b) change in frequency at grid. The above controller, designed for a tracking problem, reduces the steady-state error (in response to a step input) to zero and the dynamics of the system become 'faster' (setting time of the order of 100 seconds). The controller is also insensitive to changes in system parameters. The superiority in the performance of the system with the optimal PID controller as compared with that of the conventional regulator is conclusively established. (author)
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.; Lapa, Celso M.F.
2003-01-01
This work extends the research related to generic algorithms (GA) in core design optimization problems, which basic investigations were presented in previous work. Here we explore the use of the Island Genetic Algorithm (IGA), a coarse-grained parallel GA model, comparing its performance to that obtained by the application of a traditional non-parallel GA. The optimization problem consists on adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. Our IGA implementation runs as a distributed application on a conventional local area network (LAN), avoiding the use of expensive parallel computers or architectures. After exhaustive experiments, taking more than 1500 h in 550 MHz personal computers, we have observed that the IGA provided gains not only in terms of computational time, but also in the optimization outcome. Besides, we have also realized that, for such kind of problem, which fitness evaluation is itself time consuming, the time overhead in the IGA, due to the communication in LANs, is practically imperceptible, leading to the conclusion that the use of expensive parallel computers or architecture can be avoided
Poscharny, K.
2018-04-07
A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.
Directory of Open Access Journals (Sweden)
Weiqiang Dong
2016-09-01
Full Text Available A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV/wind turbine (WT/battery (B/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP have been addressed for sizing HS-BH from a more comprehensive perspective, considering the basic demand of load, the profit from hydrogen, which is produced by HS-BH, and an effective energy storage strategy. An improved ant colony optimization (ACO algorithm has been presented to solve the sizing problem of HS-BH. Finally, a simulation experiment has been done to demonstrate the developed results, in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang, China.
Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor
International Nuclear Information System (INIS)
Boer, Brian
2007-01-01
reactors, can also be applied to a commercial size reactor. The fuel temperatures of this design remain below the limits, both during nominal operation as well as during anticipated Depressurized Loss Of Forced Coolant (DLOFC) transients. However, it is shown that the fuel temperature during a DLOFC incident will reach the 1600 degrees C limit in a small part of the core after 22 hours without active intervention. Therefore, a further increase of the reactor power to raise the helium outlet temperature is unattractive. A one dimensional visco-elastic stress analysis code (PASTA) has been developed for analysis of mechanical stresses in the coatings of the particle fuel during irradiation. An analysis of the coating stresses in the PBMR design shows that there is sufficient room for an increase in operating temperature with regard to the SiC coating layer stress during nominal operation. An analysis of a VHTR design with increased helium outlet temperature shows that up to an outlet temperature of 1075 degrees C the SiC layer remains in compression during the entire lifetime of the coated particle. It was found that the graphite matrix in which the particles are embedded provides additional compressive stress to the SiC layer and delays the time point at which the compressive stress in this layers turns to tensile. This is beneficial for this main load barer of the particle, which is only expected to fail under high tensile stress. The total number of times that a certain pebble is (re)introduced in the core can be increased to flatten the axial power and the fuel temperature profile. The effect has been analyzed by linking the DALTON-THERMIX code system with fuel depletion analysis calculations using SCALE. For nominal operation a total of six pebble passes is optimal since the peak in the axial power profile in the top region of the core matches the cool helium temperatures in this region. For a DLOFC case, in which the maximum fuel temperature is determined largely by
Feasibility Study and Techno-Economic Optimization Model for Battery Thermal Management System
DEFF Research Database (Denmark)
Khan, Mohammad Rezwan; Nielsen, Mads Pagh; Kær, Søren Knudsen
2014-01-01
. Hence, the objective of this paper is to develop and detail the method of the feasibility for commissioning BTMS called “The decision tool frame-work” (DTF) and to investigate its sensitivity to major factors (e.g. lifetime and application requirement) which are well-known to influence the battery pack...... thermal performance, battery pack performance and ultimately the performance as well as utility of the desired application. This DTF is designed to provide a common frame-work of a BTMS manufacturer and designer to evaluate the options of different BTMS applicable for different applications and operating...... conditions. The results provide insight into the feasibility and the required specifi-cation and configuration of a BTMS....
Optimal Protection of Reactor Hall Under Nuclear Fuel Container Drop Using Simulation Methods
Directory of Open Access Journals (Sweden)
Králik Juraj
2014-12-01
Full Text Available This paper presents of the optimal design of the damping devices cover of reactor hall under impact of nuclear fuel container drop of type TK C30. The finite element idealization of nuclear power plant structure is used in software ANSYS. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall in comparison with the experimental results. The probabilistic and sensitivity analysis of the damping devices was considered on the base of the simulation methods in program AntHill using the Monte Carlo method.
Hu, Lei; Lu, Yue; Li, Xiaona; Liang, Jianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai
2017-03-01
Developing appropriate sulfur cathode materials in carbonate-based electrolyte is an important research subject for lithium-sulfur batteries. Although several microporous carbon materials as host for sulfur reveal the effect, methods for producing microporous carbon are neither easy nor well controllable. Moreover, due to the complexity and limitation of microporous carbon in their fabrication process, there has been rare investigation of influence on electrochemical behavior in the carbonate-based electrolyte for lithium-sulfur batteries by tuning different micropore size(0-2 nm) of carbon host. Here, we demonstrate an immediate carbonization process, self-activation strategy, which can produce microporous carbon for a sulfur host from alkali-complexes. Besides, by changing different alkali-ion in the previous complex, the obtained microporous carbon exhibits a major portion of ultramicropore (structure of the host material plays a vital role in confining sulfur molecule. When evaluated as cathode materials in a carbonate-based electrolyte for Li-S batteries, such microporous carbon/sulfur composite can provide high reversible capacity, cycling stability and good rate capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.
2015-01-01
Highlights: • An advanced version of firefly algorithm, EDFA, is proposed for the core pattern optimization problem. • The movement of each firefly toward the best firefly with a dynamic probability is the major improvement of EDFA. • LPO results represent the faster convergence and better performance of EDFA in comparison to CFA and DFA. - Abstract: Inspired by fireflies behavior in nature, a firefly algorithm has been developed for solving optimization problems. In this approach, each firefly movement is based on absorption of the other one. For enhancing the performance of firefly algorithm in the optimization process of nuclear reactor loading pattern optimization (LPO), we introduce a new variant of firefly algorithm, i.e. Effective Discrete Firefly Algorithm (EDFA). In EDFA, a new behavior is the movement of fireflies to current global best position with a dynamic probability, i.e. the movement of each firefly can be determined to be toward the brighter or brightest firefly’s position in any iteration of the algorithm. In this paper, our optimization objectives for the LPO are the maximization of K eff along with the minimization of the power peaking factor (PPF). In order to represent the increase of convergence speed of EDFA, basic firefly algorithms including the continuous firefly algorithm (CFA) and the discrete firefly algorithm (DFA) also have been implemented. Loading pattern optimization results of two well-known problems confirm better performance of EDFA in obtaining nearly optimized fuel arrangements in comparison to CFA and DFA. All in all, we can suggest applying the EDFA to other optimization problems of nuclear engineering field in order to investigate its performance in gaining considered objectives
Liu, Ping; Liu, Xinggao; Zhang, Zeyin; Wang, Yalin; Yang, Chunhua; Gui, Weihua
2018-03-01
Since a very slight violation of constraint could cause process safety and product quality problems in biochemical processes, an adaptive approach of fed-batch reactor production optimization that can strictly satisfy constraints over the entire operating time is presented. In this approach, an improved smooth function is proposed such that the inequality constraints can be transformed into smooth constraints. Based on this, only an auxiliary state is needed to monitor violations in the augmented performance index. Combined with control variable parameterization (CVP), the dynamic optimization is executed and constraint violations are examined by calculating the sensitivities of states to ensure that the inequality constraints are satisfied everywhere inside the time interval. Three biochemical production optimization problems, including the manufacturing of ethanol, penicillin and protein, are tested as illustrations. Meanwhile, comparisons with pure penalty CVP method, famous dynamic optimization toolbox DOTcvp and literature results are carried out. Research results show that the proposed method achieves better performances in terms of optimization accuracy and computation cost.
A two-dimensional fuel loading optimization method for the pressurized water reactor burnup cycle
International Nuclear Information System (INIS)
Stillman, J.A.; Chao, Y.A.; Downar, T.J.
1989-01-01
A method was developed and reported earlier that determines the optimum fuel and power distributions for a pressurized water reactor (PWR) burnup cycle. The backward diffusion calculation and the corewise Green's function method were used for the core model, which provided analytic derivatives for solving the nonlinear optimization problem using successive linear programming methods. The solution algorithm consisted of a reverse depletion strategy that begins at the end of cycle and solves simultaneously for the optimal fuel and burnable absorber distributions while the core is depleted to the beginning of cycle. These distributions were constrained by a maximum fuel power peaking and by the fuel and burnable absorber depletion characteristics. Additionally, the problem was formulated to consider specific numbers of feed and discharge assemblies by including penalty terms in the objective function. The resulting optimal solutions were shown to minimize the required fissile fuel inventory and burnable absorber lading for several PWR examples. Previously reported solutions were not required to meet some specified fuel batch size; therefore, the optimal solutions did not represent practical PWR problems. The purpose of the work reported in this paper is to investigate the effect of imposing batch size constraints on the optimization problem. Specifically, results are presented here for the case of a core consisting of three equal-sized fuel batches in which an equilibrium condition is imposed on the batch average burnups
Optimal relations of the parameters ensuring safety during reactor start-up
International Nuclear Information System (INIS)
Yurkevich, G.P.
2004-01-01
Procedure and equations for the determination of optimal ratio between parameters allowing safe removal of reactor in critical state are suggested. Initial pulse frequency of pulsed start-up channel and power of neutron source are decreased by reduced rate of changing reactivity during automatic start-up, disposition of pulsed neutron detector in the range with neutron flux density to 5·10 12 s -1 cm -2 at standard power, separate signal of period for the use in chains of automatic start-up and emergency protection, reduction of pulses frequency of the start-up channel (the frequency is equal to 4000 c -1 ). Procedure and equations for the determination of optimal parameters are effected with the account of statistic character of pulsed detector frequency and false outlet signal [ru
Optimization of a radially cooled pebble bed reactor - HTR2008-58117
International Nuclear Information System (INIS)
Boer, B.; Kloosterman, J. L.; Lathouwers, D.; Van Der Hagen, T. H. J. J.; Van Dam, H.
2008-01-01
By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained. The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal. The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as I cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling. Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop (Δp = -2.6 bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (ΔT = -50 deg. C) can be achieved
Optimization of a Small Modular Lead Fast Reactor with Steam Cycle for Remote Siting
International Nuclear Information System (INIS)
Feldman, Earl E.; Wei, Thomas Y. C.; Sienicki, James J.
2004-01-01
Parametric thermal-hydraulic studies needed to develop and optimize the design of a small modular 25 MWt lead-bismuth reactor plant have been performed. The starting point was the design of a liquid metal version of the secure transportable autonomous reactor (STAR-LM) plant of 300 to 400 MWt with a steam power cycle.1 The primary flow is driven entirely by natural convection. The new plant is to be extremely small so that its main components can be transported to the reactor site by truck. The analytical model includes the two major components of the primary loop, the reactor and a once-through steam generator, which is a shell-and-tube heat exchanger with straight vertical tubes. The modeling includes the changes between the beginning and the end of plant life due to the gradual buildup of a layer of magnetite on the surfaces of the fuel pins and on the outer surfaces of the steam generator tubes. Three reactor parametric studies were performed-one for each of three sets of reactor geometric parameters. In each study the pin-bundle pressure drop, the vertical height of the primary loop, the hydraulic diameter of the core, the number of fuel pins, and peak fuel and cladding temperatures were determined for a range of values of fuel pin linear power. Four steam generator parametric studies were performed. The first three have fixed tube inner diameters of 0.5, 1.0, and 1.5 cm, respectively. In the fourth study the tube inner diameter was allowed to vary and the margin to critical heat flux, CHF, was maintained at 20%. In the steam generator studies the independent parameters include tube length and tube-bundle pitch-to-diameter ratio and the dependent variables include steam generator cross-sectional area, the number of tubes, the vertical height of the primary loop, and the steam generator pressure drop. The results show that an acceptable optimum thermal-hydraulic design for a 25 MWt STAR-LM is feasible. (authors)
An optimized power conversion system concept of the integral, inherently-safe light water reactor
International Nuclear Information System (INIS)
Memmott, Matthew J.; Wilding, Paul R.; Petrovic, Bojan
2017-01-01
Highlights: • Three power conversion systems (PCS) for the I 2 S-LWR are presented. • An optimization analyses was performed to evaluate these PCS alternatives. • The ideal PCS consists of 5 turbines, and obtains an overall efficiency of 35.7%. - Abstract: The integral, inherently safe light water reactor (I 2 S-LWR) has been developed to significantly enhance passive safety capabilities while maintaining cost competitiveness relative to the current light water reactor (LWR) fleet. The compact heat exchangers of the I 2 S-LWR preclude boiling of the secondary fluid, which decreases the probability of heat exchanger failure, but this requires the addition of a flash drum, which negatively affects the overall plant thermodynamic efficiency. A state of the art Rankine cycle is proposed for the I 2 S-LWR to increase the thermodynamic efficiency by utilizing a flash drum with optimized operational parameters. In presenting this option for power conversion in the I 2 S-LWR power plant, the key metric used in rating the performance is the overall net thermodynamic efficiency of the cycle. In evaluating the flash-Rankine cycle, three basic industrial concepts are evaluated, one without an intermediate pressure turbine, one with an intermediate turbine and one reheat stream, and one with an intermediate turbine and two reheat streams. For each configuration, a single-path multi-variable optimization is undertaken to maximize the thermal efficiency. The third configuration with an intermediate turbine and 2 reheat streams is the most effective concept, with an optimized efficiency of 35.7%.
Directory of Open Access Journals (Sweden)
Sida Sun
2017-01-01
Full Text Available The optimization of radiation protection is an important task in both the design and operation of a nuclear power plant. Although this topic has been considerably investigated for pressurized water reactors, there are very few public reports on it for pebble-bed reactors. This paper proposes a routine that jointly optimizes the system design and radiation protection of High Temperature Reactor-Pebble-Bed Module (HTR-PM towards the As Low As Reasonably Achievable (ALARA principle. A systematic framework is also established for the optimization of radiation protection for pebble-bed reactors. Typical calculations for the radiation protection of radioactivity-related systems are presented to quantitatively evaluate the efficiency of the optimization routine, which achieve 23.3%~90.6% reduction of either dose rate or shielding or both of them. The annual collective doses of different systems are reduced through iterative optimization of the dose rates, designs, maintenance procedures, and work durations and compared against the previous estimates. The comparison demonstrates that the annual collective dose of HTR-PM is reduced from 0.490 man-Sv/a before optimization to 0.445 man-Sv/a after optimization, which complies with the requirements of the Chinese regulatory guide and proves the effectiveness of the proposed routine and framework.
Safety-Related Optimization and Analyses of an Innovative Fast Reactor Concept
Directory of Open Access Journals (Sweden)
Dalin Zhang
2012-06-01
Full Text Available Since a fast reactor core with uranium-plutonium fuel is not in its most reactive configuration under operating conditions, redistribution of the core materials (fuel, steel, sodium during a core disruptive accident (CDA may lead to recriticalities and as a consequence to severe nuclear power excursions. The prevention, or at least the mitigation, of core disruption is therefore of the utmost importance. In the current paper, we analyze an innovative fast reactor concept developed within the CP-ESFR European project, focusing on the phenomena affecting the initiation and the transition phases of an unprotected loss of flow (ULOF accident. Key phenomena for the initiation phase are coolant boiling onset and further voiding of the core that lead to a reactivity increase in the case of a positive void reactivity effect. Therefore, the first level of optimization involves the reduction, by design, of the positive void effect in order to avoid entering a severe accident. If the core disruption cannot be avoided, the accident enters into the transition phase, characterized by the progression of core melting and recriticalities due to fuel compaction. Dedicated features that enhance and guarantee a sufficient and timely fuel discharge are considered for the optimization of this phase.
Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.
Behin, Jamshid; Farhadian, Negin
2017-09-01
Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Talebi, Hosein; Sadat Kiai, S.M.
2017-01-01
Highlights: • Designing a high yield and feasible Dense Plasma Focus for driving the reactor. • Presenting a structural method to design the dual layer cylindrical blankets. • Finding, the blanket production energy, in terms of its geometrical and material parameters. • Designing a subcritical blanket with optimization of energy amplification in detail. - Abstract: A hybrid fission-fusion reactor with a Dense Plasma Focus (DPF) as a fusion core and the dual layer fissionable blanket as the energy multiplier were conceptually designed. A cylindrical DPF, energized by a 200 kJ bank energy, is considered to produce fusion neutron, and these neutrons drive the subcritical fission in the surrounding blankets. The emphasis has been placed on the safety and energy production with considering technical and economical limitations. Therefore, the k eff-t of the dual cylindrical blanket was defined and mathematically, specified. By applying the safety criterion (k eff-t ≤ 0.95), the geometrical and material parameters of the blanket optimizing the energy amplification were obtained. Finally, MCNPX code has been used to determine the detailed dimensions of the blankets and fuel rods.
Energy Technology Data Exchange (ETDEWEB)
Sacco, Wagner F.; Oliveira, Cassiano R.E. de [Georgia Institute of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering. Nuclear and Radiological Engineering Program]. E-mail: wagner.sacco@me.gatech.edu; cassiano.oliveira@nre.gatech.edu; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: cmnap@ien.gov.br
2005-07-01
A new metaheuristic called 'Gravitational Attraction Algorithm' (GAA) is introduced in this article. It is an analogy with the gravitational force field, where a body attracts another proportionally to both masses and inversely to their distances. The GAA is a populational algorithm where, first of all, the solutions are clustered using the Fuzzy Clustering Means (FCM) algorithm. Following that, the gravitational forces of the individuals in relation to each cluster are evaluated and this individual or solution is displaced to the cluster with the greatest attractive force. Once it is inside this cluster, the solution receives small stochastic variations, performing a local exploration. Then the solutions are crossed over and the process starts all over again. The parameters required by the GAA are the 'diversity factor', which is used to create a random diversity in a fashion similar to genetic algorithm's mutation, and the number of clusters for the FCM. GAA is applied to the reactor core design optimization problem which consists in adjusting several reactor cell parameters in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering operational restrictions. This problem was previously attacked using the canonical genetic algorithm (GA) and a Niching Genetic Algorithm (NGA). The new metaheuristic is then compared to those two algorithms. The three algorithms are submitted to the same computational effort and GAA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. (author)
Energy Technology Data Exchange (ETDEWEB)
Nebot Sanz, E.; Romero Garcia, L.I.; Quiroga Alonso, J.M.; Sales Marquez, D. (Departamento de Ingenieria Quimica, Universidad de Cadiz, Cadiz (Spain))
1994-01-01
In this work, the optimization of thermophilic anaerobic process, using Anaerobic Filter technology was studied. Feed of the Anaerobic Filter was wine-distillery wastewaters. The experiments developed were carried out at lab-scale downflow anaerobic filter reactors. Reactors were filled with a high porous plastic media (Flocor-R). The media support entities have a high surface/volume ratio. Test were run to determine the maximum organic load attainable in the system for wich both, the depurative efficiency and the methane production were optimum. Likewise, the effect of organic load on the anaerobic filter performance were studied. (Author) 15 refs. (Author)
A Modal Expansion Equilibrium Cycle Perturbation Method for Optimizing High Burnup Fast Reactors
Touran, Nicholas W.
This dissertation develops a simulation tool capable of optimizing advanced nuclear reactors considering the multiobjective nature of their design. An Enhanced Equilibrium Cycle (EEC) method based on the classic equilibrium method is developed to evaluate the response of the equilibrium cycle to changes in the core design. Advances are made in the consideration of burnup-dependent cross sections and dynamic fuel performance (fission gas release, fuel growth, and bond squeeze-out) to allow accuracy in high-burnup reactors such as the Traveling Wave Reactor. EEC is accelerated for design changes near a reference state through a new modal expansion perturbation method that expands arbitrary flux perturbations on a basis of λ-eigenmodes. A code is developed to solve the 3-D, multigroup diffusion equation with an Arnoldi-based solver that determines hundreds of the reference flux harmonics and later uses these harmonics to determine expansion coefficients required to approximate the perturbed flux. The harmonics are only required for the reference state, and many substantial and localized perturbations from this state are shown to be well-approximated with efficient expressions after the reference calculation is performed. The modal expansion method is coupled to EEC to produce the later-in-time response of each design perturbation. Because the code determines the perturbed flux explicitly, a wide variety of core performance metrics may be monitored by working within a recently-developed data management system called the ARMI. Through ARMI, the response of each design perturbation may be evaluated not only for the flux and reactivity, but also for reactivity coefficients, thermal hydraulics parameters, economics, and transient performance. Considering the parameters available, an automated optimization framework is designed and implemented. A non-parametric surrogate model using the Alternating Conditional Expectation (ACE) algorithm is trained with many design
Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.
Kamesh, Reddi; Rani, K Yamuna
2016-09-01
A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Thielman, Jeff; Ge, Ping; Wu, Qiao; Parme, Laurence
2005-01-01
The development of the Generation IV (Gen-IV) nuclear reactors has presented social, technical, and economical challenges to nuclear engineering design and research. To develop a robust, reliable nuclear reactor system with minimal environmental impact and cost, modularity has been gradually accepted as a key concept in designing high-quality nuclear reactor systems. While the establishment and reliability of a nuclear power plant is largely facilitated by the installment of standardized base units, the realization of modularity at the sub-system/sub-unit level in a base unit is still highly heuristic, and lacks consistent, quantifiable measures. In this work, an axiomatic design approach is developed to evaluate and optimize the reactor cavity cooling system (RCCS) of General Atomics' Gas Turbine-Modular Helium Reactor (GT-MHR) nuclear reactor, for the purpose of constructing a quantitative tool that is applicable to Gen-IV systems. According to Suh's axiomatic design theory, modularity is consistently represented by functional independence through the design process. Both qualitative and quantitative measures are developed here to evaluate the modularity of the current RCCS design. Optimization techniques are also used to improve the modularity at both conceptual and parametric level. The preliminary results of this study have demonstrated that the axiomatic design approach has great potential in enhancing modular design, and generating more robust, safer, and less expensive nuclear reactor sub-units
Analysis of the optimal fuel composition for the Indonesian experimental power reactor
Energy Technology Data Exchange (ETDEWEB)
Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.), Ibaraki (Japan); Sembiring, Tagor Malem [National Nuclear Energy Agency of Indonesia, Banten (Indonesia). Center for Nuclear Reactor Technology and Safety; Arbie, Bakri; Subki, Iyos [PT MOTAB Technology, Jakarta Barat (Indonesia)
2017-03-15
The optimal fuel composition of the 10 MWth Experimental Power Reactor (RDE), to be built by the Indonesian National Nuclear Energy Agency (BATAN), is a very important design parameter since it will directly affect the fuel cost, new and spent fuel storage capacity, and other back-end environmental burden. The RDE is a very small sized pebble-bed high temperature gas-cooled reactor (HTGR) with low enriched uranium (LEU) UO{sub 2} TRISO fuel under multipass or once-through-then-out fueling scheme. A scoping study on fuel composition parameters, namely heavy metal (HM) loading per pebble and uranium enrichment is conducted. All burnup, criticality calculations and core equilibrium search are carried out by using BATAN-MPASS, a general in-core fuel management code for pebble bed HTGRs, featured with many automatic equilibrium searching options as well as thermal-hydraulic calculation capability. The RDE User Requirement Document issued by BATAN is used to derive the main core design parameters and constraints. The scoping study is conducted over uranium enrichment in the range of 10 to 20 w/o and HM loading in the range of 4 g to 10 g/pebble. Fissile loading per unit energy generated (kg/GWd) is taken as the objective function for the present scoping study. The analysis results show that the optimal HM loading is around 8 g/pebble. Under the constraint of 80 GWd/t fuel discharge burnup imposed by the technical specification, the uranium enrichment for the optimal HM loading is approximately 13 w/o.
Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box–Behnken design
International Nuclear Information System (INIS)
Eisapour, M.; Keshtkar, A.; Moosavian, M.A.; Rashidi, A.
2013-01-01
Highlights: ► High amount of uranium recovery achieved using Acidithiobacillus ferrooxidans. ► ANOVA shows individual variables and their squares are statistically significant. ► The model can accurately predict the behavior of uranium recovery. ► The model shows that pulp density has the greatest effect on uranium recovery. - Abstract: To design industrial reactors, it is important to identify and optimize the effective parameters of the process. Therefore, in this study, a three-level Box–Behnken factorial design was employed combining with a response surface methodology to optimize pulp density, agitation speed and aeration rate in uranium bioleaching in a stirred tank reactor using a pure native culture of Acidithiobacillus ferrooxidans. A mathematical model was then developed by applying the least squares method using the software Minitab Version 16.1.0. The second order model represents the uranium recovery as a function of pulp density, agitation speed and aeration rate. An analysis of variance was carried out to investigate the effects of individual variables and their combined interactive effects on uranium recovery. The results showed that the linear and quadratic terms of variables were statistically significant whilst the interaction terms were statistically insignificant. The model estimated that a maximum uranium extraction (99.99%) could be obtained when the pulp density, agitation speed and aeration rate were set at optimized values of 5.8% w/v, 510 rpm and 250 l/h, respectively. A confirmatory test at the optimum conditions resulted in a uranium recovery of 95%, indicating a marginal error of 4.99%. Furthermore, control tests were performed to demonstrate the effect of A. ferrooxidans in uranium bioleaching process and showed that the addition of this microorganism greatly increases the uranium recovery
Energy Technology Data Exchange (ETDEWEB)
Kumar, Mathava [Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Philip, Ligy [Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)]. E-mail: ligy@iitm.ac.in
2006-08-21
A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 {+-} 0.2% and 75.88 {+-} 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 {+-} 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 {+-} 1%) and composted soil-II (moisture 45 {+-} 1%) it was 96.03 {+-} 0.23% and 94.84 {+-} 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate
Kumar, Mathava; Philip, Ligy
2006-08-21
A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58+/-0.2% and 75.88+/-0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1g/L and 75mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48+/-0.17% was observed in red soil reactor where as in composted soil-I (moisture 38+/-1%) and composted soil-II (moisture 45+/-1%) it was 96.03+/-0.23% and 94.84+/-0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of
International Nuclear Information System (INIS)
Kumar, Mathava; Philip, Ligy
2006-01-01
A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 ± 0.2% and 75.88 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 ± 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 ± 1%) and composted soil-II (moisture 45 ± 1%) it was 96.03 ± 0.23% and 94.84 ± 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of
Optimization of seed-blanket type fuel assembly for reduced-moderation water reactor
Energy Technology Data Exchange (ETDEWEB)
Shelley, Afroza; Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi
2003-10-01
Parametric studies have been performed for a PWR-type reduced-moderation water reactor (RMWR) with the seed-blanket type fuel assembles to achieve a high conversion ratio, negative void reactivity coefficient and a high burnup by using MOX fuel. From the viewpoint of reactor safety analysis, the fuel temperature coefficients were also studied. From the result of the burnup calculation, it has been seen that ratio of 40-50% of outer blanket in a seed-blanket assembly gives higher conversion ratio compared to the other combination of seed-blanket assembly. And the recommended number of (seed+blanket) layers is 20, in which the number of seed (S) layers is 15 (S15) and blanket (B) layers is 5 (B5). It was found that the conversion ratio of seed-blanket assembly decreases, when they are arranged looks like a flower shape (Hanagara). By the optimization of different parameters, S15B5 fuel assembly with the height of seed of 1000 mmx2, internal blanket of 150 mm and axial blanket of 400 mmx2 is recommended for a reactor of high conversion ratio. In this assembly, the gap of seed fuel rod is 1.0 mm and blanket fuel rod is 0.4 mm. In S15B5 assembly, the conversion ratio is 1.0 and the burnup is 38.18 GWd/t in (seed+internal blanket+outer blanket) region. However, the burnup is 57.45 GWd/t in (seed+internal blanket) region. The cycle length of the core is 16.46 effective full power in month (EFPM) by six batches and the enrichment of fissile Pu is 14.64 wt.%. The void coefficient is +21.82 pcm/%void, however, it is expected that the void coefficient will be negative if the radial neutron leakage is taken into account in the calculation. It is also possible to use S15B5 fuel assembly as a high burnup reactor 45 GWd/t in (seed+internal blanket+outer blanket) region, however, it is necessary to decrease the height of seed to 500 mmx2 to improve the void coefficient. In this reactor, the conversion ratio is 0.97 and void coefficient is +20.81 pcm/%void. The fuel temperature
Directory of Open Access Journals (Sweden)
Yuqing Yang
2015-09-01
Full Text Available With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs is still the main concern for accurate deployment. Thus, a battery energy storage system (BESS has to be involved to mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for BESS operation have been proposed, to assist with consuming the renewable energy, reduce the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. Besides, the electric vehicles (EVs considered as the auxiliary technique are also introduced to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation scheduling strategies were presented under the consideration with the constraints of BESS and the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and an improved particle swarm optimization (IPSO algorithm. Furthermore, the test system for the proposed strategies is a real distribution network with renewable energy integration. After simulation, the proposed scheduling strategies have been verified to be extremely effective for the enhancement of the distribution network characteristics.
Optimal Scheduling of a Multi-Carrier Energy Hub Supplemented By Battery Energy Storage Systems
DEFF Research Database (Denmark)
Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.
2017-01-01
systems (ESSs), and heating/cooling devices such as electrical heater, heat-pumps and absorption chillers. The optimal scheduling and management of the examined energy hub assets in line with electrical transactions with distribution network is modeled as a mixed-integer non-linear optimization problem...
International Nuclear Information System (INIS)
Hu, Chao; Jain, Gaurav; Zhang, Puqiang; Schmidt, Craig; Gomadam, Parthasarathy; Gorka, Tom
2014-01-01
Highlights: • We develop a data-driven method for the battery capacity estimation. • Five charge-related features that are indicative of the capacity are defined. • The kNN regression model captures the dependency of the capacity on the features. • Results with 10 years’ continuous cycling data verify the effectiveness of the method. - Abstract: Reliability of lithium-ion (Li-ion) rechargeable batteries used in implantable medical devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, physicians, and patients. To ensure Li-ion batteries in these devices operate reliably, it is important to be able to assess the battery health condition by estimating the battery capacity over the life-time. This paper presents a data-driven method for estimating the capacity of Li-ion battery based on the charge voltage and current curves. The contributions of this paper are three-fold: (i) the definition of five characteristic features of the charge curves that are indicative of the capacity, (ii) the development of a non-linear kernel regression model, based on the k-nearest neighbor (kNN) regression, that captures the complex dependency of the capacity on the five features, and (iii) the adaptation of particle swarm optimization (PSO) to finding the optimal combination of feature weights for creating a kNN regression model that minimizes the cross validation (CV) error in the capacity estimation. Verification with 10 years’ continuous cycling data suggests that the proposed method is able to accurately estimate the capacity of Li-ion battery throughout the whole life-time
AUTOLOAD, an automatic optimal pressurized water reactor reload design system with an expert module
International Nuclear Information System (INIS)
Li, Z.; Levine, S.H.
1994-01-01
An automatic optimal pressurized water reactor (PWR) reload design expert system AUTOLOAD has been developed. It employs two important new techniques. The first is a new loading priority scheme that defines the optimal placement of the fuel in the core that has the maximum end-of-cycle state k eff . The second is a new power-shape-driven progressive iteration method for automatically determining the burnable poison (BP) loading in the fresh fuel assemblies. The Haling power distribution is used in converting the theoretically optimal solution into the practical design, which meets the design constraints for the given fuel assemblies. AUTOLOAD is a combination of C and FORTRAN languages. It requires only the required cycle length, the maximum peak normalized power, the BP type, the number of fresh fuel assemblies, the assembly burnup, and BP histories of the available fuel assemblies as its input. Knowledge-based modules have been built into the expert system computer code to perform all of the tasks involved in reloading a PWR. AUTOLOAD takes only ∼ 30 CPU min on an IBM 3090 600s mainframe to accomplish a practical reload design. A maximum of 12.5% fresh fuel enrichment saving is observed compared with the core used by the utility
Model-based optimization of a sequencing batch reactor for biological nitrogen removal.
Souza, S M; Araújo, O Q F; Coelho, M A Z
2008-05-01
An optimal operating mode for a sequencing batch reactor was determined via a model-based optimization. Synthetic wastewater containing mainly organic matter (as glucose) and nitrogen (as ammonium chloride) was treated without any addition of an external carbon source to accomplish denitrification step. A simplified model was used to describe process dynamics, comprised of six ordinary differential equations and an empirical correlation for oxygen consumption rate. Batch cycle time was the chosen objective function to be minimized for a fixed volume of waste to be treated. Furthermore, as SBR operation is divided in two major phases - aerobic and anoxic, to achieve total pollutants removal within minimum time, these phases can be repeatedly alternated. To ensure availability of organic matter necessary for denitrification, these two phases were combined with feed steps. Different feed strategies were tested using one, two or three feed steps. A successive quadratic programming algorithm was used, and maximum values for final COD, nitrate and ammonium concentrations, as well as maximum feed pump flow rate were some the process constraints. One step feed strategy was indicated by the optimization leading to a batch cycle time of 5h.
Design an optimal controller for nuclear reactor using a digital computer
International Nuclear Information System (INIS)
Saleh, F.M.A.
1986-01-01
An attempt is carried out to design an optimal controller, for a model nuclear reactor at one hand, and a model nuclear power plant at another hand using a digital computer. The design philosophy adopted was to specify the system dynamics in terms of a desired system transfer function, and realizing the design synthesis through state-variable feedback technique, thus ensuring both stability and optimization in the state space sense. The control design was also tested by carrying out digital simulation transient response runs (step, ramp, impulse, etc.) and agreement between the predicted desirable response and actual response of the overall design was achieved. Furthermore the performance of the controller is verified against a reference non-linear model for purposes of assessing the accuracy of the linearized approximation model. The results show that state-variable feedback policy can rank as an effective optimal technique for designing control algorithm for an on-line computer of a nuclear power plant. 41 figs. 43 refs
Design and Optimization for the Windowless Target of the China Nuclear Waste Transmutation Reactor
Directory of Open Access Journals (Sweden)
Desheng Cheng
2016-04-01
Full Text Available A windowless spallation target can provide a neutron source and maintain neutron chain reaction for a subcritical reactor, and is a key component of China's nuclear waste transmutation of coupling accelerator and subcritical reactor. The main issue of the windowless target design is to form a stable and controllable free surface that can ensure that energy spectrum distribution is acquired for the neutron physical design when the high energy proton beam beats the lead–bismuth eutectic in the spallation target area. In this study, morphology and flow characteristics of the free surface of the windowless target were analyzed through the volume of fluid model using computational fluid dynamics simulation, and the results show that the outlet cross section size of the target is the key to form a stable and controllable free surface, as well as the outlet with an arc transition. The optimization parameter of the target design, in which the radius of outlet cross section is 60 ± 1 mm, is verified to form a stable and controllable free surface and to reduce the formation of air bubbles. This work can function as a reference for carrying out engineering design of windowless target and for verification experiments.
Optimization and analysis of low-leakage core management for pressurized water reactors
International Nuclear Information System (INIS)
Chang, Y.C.; Sesonske, A.
1984-01-01
Low-leakage extended burnup fuel management is a promising pressurized water reactor (PWR) improvement that yields better neutron economy than the traditional out-in fuel management scheme with resulting economic savings and a likely reduction in vessel fast neutron fluence. The Commonwealth Edison Zion-1 reactor was selected as representative of current operating PWRs and analyzed. A major objective was to develop and analyze optimum transition loading arrangements leading from present out-in management to the desired low-leakage scheme. A socalled ''wet'' burnable poison was used in the calculational model, which was based on various Electric Power Research Institute/Advanced Recycle Methodology Program modules. An accelerated direct search scheme was developed to optimize the loading pattern utilizing the initial boron concentration as the objective function, which would correspond to a maximum cycle length for a given number of loaded fresh assemblies. The equilibrium cycle, with 32 of 48 fresh assemblies loaded in the core interior, resulted in a 6.4% saving in fuel cycle costs compared with a threebatch out-in strategy, and a 3.8% saving compared with a four-batch out-in strategy. Therefore, the lowleakage option is a promising improvement and detailed design is justified
Optimization and analysis of low-leakage core management for pressurized water reactors
International Nuclear Information System (INIS)
Chang, Y.C.
1983-01-01
Low-leakage extended-burnup fuel management is a promising pressurized water reactor (PWR) improvement which yields better neutron economy than the traditional out-in fuel management scheme with resulting economic savings and a likely reduction in vessel fast neutron fluence. This reduction in leakage is accomplished by locating as many of the fresh assemblies as is practical in the core interior rather than on the periphery. The Commonwealth Edison Zion Unit-1 reactor was selected as representative of current operating PWRs and analyzed. A major objective was to develop and analyze optimum transition loading arrangements leading from present out-in management to the desired low-leakage scheme. The wet BP design, which yields a lower reactivity penalty than the dry BP design, was implemented in the calculational model which was generally based on various models in the Electric Power Research Institute Advanced Recycle Methodology Program. However, a direct search scheme was developed to optimize the loading pattern. The objective function of this search was the initial boron concentration which would correspond to a maximized cycle length for a given number of loaded fresh assemblies
International Nuclear Information System (INIS)
Ashe, T.L.; Baggenstoss, W.G.; Bons, R.
1990-01-01
Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kW e and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source
Energy Technology Data Exchange (ETDEWEB)
Manthiram, Arumugam; Landsberger, S.
2006-11-11
This project focuses on the use of the Prompt Gamma-ray Activation Analysis (PGAA) technique available at the Nuclear Engineering Teaching Laboratory of the University of Texas at Austin to precisely determine the hydrogen (proton) contents in layered oxide cathode samples obtained by chemical lithium extraction in order to obtain a better understanding of the factors limiting the practical capacities and overall performance of lithium ion battery cathodes. The project takes careful precautionary experimental measures to avoid proton contamination both from solvents used in chemical delithiation and from ambient moisture. The results obtained from PGAA are complemented by the data obtained from other techniques such as thermogravimetric analysis, redox titration, atomic absorption spectroscopy, X-ray diffraction, and mass spectroscopic analysis of the evolved gas on heating. The research results broaden our understanding of the structure-property-performance relationships of lithium ion battery cathodes and could aid the design and development of new better performing lithium ion batteries for consumer (portable and electric vehicles), military, and space applications.
International Nuclear Information System (INIS)
Konishi, Toshio; Kupitz, Juergen; Megahed, Mohamed M.
2003-01-01
Energy and water are essential elements for human existence. Increasing demands worldwide, especially in the developing world, are being intensified both in energy and in freshwater. In many developing countries, the option of combining nuclear energy with seawater desalination is being explored to tackle these two problems. In 1998, the International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the ''Optimization of the Coupling of Nuclear Reactors and Desalination Systems'', with the participation of research institutes from interested IAEA Member States. The Research Project focused on the following four main topics: (1) Nuclear reactor design intended for coupling with desalination systems (2) Optimization of thermal coupling of NSSS and desalination systems (3) Performance improvement of desalination systems for coupling (4) Advance desalination technologies for nuclear desalination. The current CRP has been evaluating various coupling configurations of nuclear reactors and desalination systems. Reactor types evaluated in the optimization include a PHWR, PWRs and dedicated heat reactors. The present paper summarizes the overall findings in the CRP, highlighting design optimisation, safety and some economic considerations. (author)
Golmohammadzadeh, Rabeeh; Rashchi, Fereshteh; Vahidi, Ehsan
2017-06-01
An environmentally-friendly route based on hydrometallurgy was investigated for the recovery of cobalt and lithium from spent lithium ion batteries (LIBs) using different organic acids (citric acid, Dl-malic acid, oxalic acid and acetic acid). In this investigation, response surface methodology (RSM) was utilized to optimize leaching parameters including solid to liquid ratio (S/L), temperature, acid concentration, type of organic acid and hydrogen peroxide concentration. Based on the results obtained from optimizing procedure, temperature was recognized as the most influential parameter. In addition, while 81% of cobalt was recovered, the maximum lithium recovery of 92% was achieved at the optimum leaching condition of 60°C, S/L: 30gL -1 , citric acid concentration: 2M, hydrogen peroxide concentration: 1.25Vol.% and leaching time: 2h. Furthermore, results displayed that ultrasonic agitation will enhance the recovery of lithium and cobalt. It was found that the kinetics of cobalt leaching is controlled by surface chemical reaction at temperatures lower than 45°C. However, diffusion through the product layer at temperatures higher than 45°C controls the rate of cobalt leaching. Rate of lithium reaction is controlled by diffusion through the product layer at all the temperatures studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu
2016-04-01
Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.
Bahaloo-Horeh, Nazanin; Mousavi, Seyyed Mohammad
2017-02-01
In the present study, spent medium bioleaching method was performed using organic acids produced by Aspergillus niger to dissolve Ni, Co, Mn, Li, Cu and Al from spent lithium-ion batteries (LIBs). Response surface methodology was used to investigate the effects and interactions between the effective factors of sucrose concentration, initial pH, and inoculum size to optimize organic acid production. Maximum citric acid, malic acid, and gluconic acid concentrations of 26,478, 1832.53 and 8433.76ppm, respectively, and a minimum oxalic acid concentration of 305.558ppm were obtained under optimal conditions of 116.90 (gl -1 ) sucrose concentration, 3.45% (vv -1 ) inoculum size, and a pH value of 5.44. Biogenically-produced organic acids are used for leaching of spent LIBs at different pulp densities. The highest metal recovery of 100% Cu, 100% Li, 77% Mn, and 75% Al occurred at 2% (wv -1 ) pulp density; 64% Co and 54% Ni recovery occurred at 1% (wv -1 ) pulp density. The bioleaching of metals from spent LIBs can decrease the environmental impact of this waste. The results of this study suggest that the process can be used for large scale industrial purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Lucas Evangelista Sita
2015-05-01
Full Text Available A chemical process has been applied to extract LiCoO2 powder from cathodes of spent lithium-ion batteries by dissolution of the binder that agglutinate the powder particle each other as well to the Al collector surface. As solvents dimethylformamide (DMF and N-methyilpirrolidone (NMP were employed and the variables, cathode area, solution temperature, ultrasound bath power and solution stirring were chosen to optimize the extraction process. NMP solutions presented best results for powder extraction than DMF solutions. At 100 oC and under mechanical stirring or low power ultrasound bath NMP solution optimizes the binder dissolution. Powder extractions under DMF solutions are slow and an increase in the powder extraction efficiency was observed for crushed cathodes on solutions under ultrasound bath, at medium power. Filtration processes can separate the decanted LiCoO2 powder extracted upon DMF dissolution while the powder in suspension in the NMP solutions is separated by centrifugation techniques.
Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries
Directory of Open Access Journals (Sweden)
Yongjin Jeong
2016-12-01
Full Text Available Porous carbon materials are used for many electrochemical applications due to their outstanding properties. However, research on controlling the pore structure and analyzing the carbon structures is still necessary to achieve enhanced electrochemical properties. In this study, mesoporous carbon nanotube (CNT-carbon nanofiber electrodes were developed by heat-treatment of electrospun starch with carbon nanotubes, and then applied as a binder-free electrochemical electrode for a lithium-ion battery. Using the unique lamellar structure of starch, mesoporous CNT-carbon nanofibers were prepared and their pore structures were controlled by manipulating the heat-treatment conditions. The activation process greatly increased the volume of micropores and mesopores of carbon nanofibers by etching carbons with CO2 gas, and the Brunauer-Emmett-Teller (BET specific area increased to about 982.4 m2·g−1. The activated CNT-carbon nanofibers exhibited a high specific capacity (743 mAh·g−1 and good cycle performance (510 mAh·g−1 after 30 cycles due to their larger specific surface area. This condition presents many adsorption sites of lithium ions, and higher electrical conductivity, compared with carbon nanofibers without CNT. The research suggests that by controlling the heat-treatment conditions and activation process, the pore structure of the carbon nanofibers made from starch could be tuned to provide the conditions needed for various applications.
DEFF Research Database (Denmark)
Dragicevic, Tomislav; Pandžić, Hrvoje; Škrlec, Davor
2014-01-01
This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported...
Directory of Open Access Journals (Sweden)
Adel Yahiaoui
2017-05-01
Full Text Available A method for optimal sizing of hybrid system consisting of a Photovoltaic (PV panel, diesel generator, Battery banks and load is considered in this paper. To this end a novel approach is proposed. More precisely a methodology for the design and simulation of the behavior of Hybrid system PV-Diesel-Battery banks to electrify an isolated rural site in southern Algeria Illizi (Djanet. This methodology is based on the concept of the loss power supply probability. Sizing and simulation are performed using MATLAB. The technique developed in this study is to determine the number of photovoltaic panels, diesel generators and batteries needed to cover the energy deficit and respond to the growing rural resident energy demand. The obtained results demonstrate the superior capabilities of this proposed method.
International Nuclear Information System (INIS)
Sekimizu, K.; Araki, T.; Tatemichi, S.I.
1987-01-01
Optimization of fuel assembly exchange machine movements during periodic refueling outage is discussed. The fuel assembly movements during a fuel shuffling were examined, and it was found that the fuel assembly movements consist of two different movement sequences;one is the ''PATH,'' which begins at a discharged fuel assembly and terminates at a fresh fuel assembly, and the other is the ''LOOP,'' where fuel assemblies circulate in the core. It is also shown that fuel-loading patterns during the fuel shuffling can be expressed by the state of each PATH, which is the number of elements already accomplished in the PATH actions. Based on this fact, a scheme to determine a fuel assembly movement sequence within the constraint was formulated using the artificial intelligence language PROLOG. An additional merit to the scheme is that it can simultaneously evaluate fuel assembly movement, due to the control rods and local power range monitor exchange, in addition to normal fuel shuffling. Fuel assembly movements, for fuel shuffling in a 540-MW(electric) boiling water reactor power plant, were calculated by this scheme. It is also shown that the true optimization to minimize the fuel exchange machine movements would be costly to obtain due to the number of alternatives that would need to be evaluated. However, a method to obtain a quasi-optimum solution is suggested
International Nuclear Information System (INIS)
Dayem, H.A.; Kern, E.A.; Markin, J.T.
1982-01-01
Optimization techniques are used to calculate measurement uncertainties for materials accountability instruments in a fast breeder reactor spent-fuel reprocessing plant. Optimal measurement uncertainties are calculated so that performance goals for detecting materials loss are achieved while minimizing the total instrument development cost. Improved materials accounting in the chemical separations process (111 kg Pu/day) to meet 8-kg plutonium abrupt (1 day) and 40-kg plutonium protracted (6 months) loss-detection goals requires: process tank volume and concentration measurements having precisions less than or equal to 1%; accountability and plutonium sample tank volume measurements having precisions less than or equal to 0.3%, short-term correlated errors less than or equal to 0.04%, and long-term correlated errors less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having precisions less than or equal to 0.4%, short-term correlated errors less than or equal to 0.1%, and long-term correlated errors less than or equal to 0.05%
Optimization of operation schemes in boiling water reactors using neural networks
International Nuclear Information System (INIS)
Ortiz S, J. J.; Castillo M, A.; Pelta, D. A.
2012-10-01
In previous works were presented the results of a recurrent neural network to find the best combination of several groups of fuel cells, fuel load and control bars patterns. These solution groups to each problem of Fuel Management were previously optimized by diverse optimization techniques. The neural network chooses the partial solutions so the combination of them, correspond to a good configuration of the reactor according to a function objective. The values of the involved variables in this objective function are obtained through the simulation of the combination of partial solutions by means of Simulate-3. In the present work, a multilayer neural network that learned how to predict some results of Simulate-3 was used so was possible to substitute it in the objective function for the neural network and to accelerate the response time of the whole system of this way. The preliminary results shown in this work are encouraging to continue carrying out efforts in this sense and to improve the response quality of the system. (Author)
2015-02-18
Ni/MH batteries, J. Power Sources (September 2004) 180e185. [21] T. Ikeya, N. Sawada, S. Takagi, J. Murakami , K. Kobayashi, et al., Multi-step constant...1998) 101e107. [22] T. Ikeya, N. Sawada, J. Murakami , K. Kobayashi, et al., Multi-step constant- current charging method for an electric vehicle
International Nuclear Information System (INIS)
Fujibayashi, Toru.
1976-01-01
Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)
International Nuclear Information System (INIS)
Evans, R.M.
1976-01-01
Disclosed is a neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch. 1 claim, 16 figures
Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion
Doaa M. Atia; Faten H. Fahmy; Ninet M. Ahmed; Hassen T. Dorrah
2014-01-01
In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hou...
Directory of Open Access Journals (Sweden)
Dongbin Lu
2014-01-01
Full Text Available The permanent magnet synchronous motor (PMSM has high efficiency and high torque density. Field oriented control (FOC is usually used in the motor to achieve maximum efficiency control. In the electric vehicle (EV application, the PMSM efficiency model, combined with the EV and road load system model, is used to study the optimal energy-saving control strategy, which is significant for the economic operation of EVs. With the help of GPS, IMU, and other information technologies, the road conditions can be measured in advance. Based on this information, the optimal velocity of the EV driven by PMSM can be obtained through the analytical algorithm according to the efficiency model of PMSM and the vehicle dynamic model in simple road conditions. In complex road conditions, considering the dynamic characteristics, the economic operating velocity trajectory of the EV can be obtained through the dynamic programming (DP algorithm. Simulation and experimental results show that the minimum energy consumption and global energy optimization can be achieved when the EV operates in the economic operation area.
International Nuclear Information System (INIS)
Dechelette, Franck; Morin, Franck; Laffont, Guy; Rodriguez, Gilles; Sanseigne, Emmanuel; Christin, Sebastien; Mognot, Xavier; Morcillo, Aurelien
2014-01-01
The research for technological improvement and innovation in sodium-cooled fast reactor is a matter of concern in fuel handling systems in a view to perform a better load factor of the reactor thanks to a quicker fuelling/defueling process. An optimized fuel handling route will also limit its investment cost. In that field, CEA has engaged some innovation study either of complete FHR or on the optimization of some specific components. This paper presents the study of three SFR fuel handling route fully described and compared to a reference FHR option. In those three FHR, two use a gas corridor to transfer spent and fresh fuel assembly and the third uses two casks with a sodium pot to evacuate and load an assembly in parallel. All of them are designed for the ASTRID reactor (1500 MWth) but can be extrapolated to power reactors and are compatible with the mutualization of one FHS coupled with two reactors. These three concepts are then inter-compared and evaluated with the reference FHR according to four criteria: performances, risk assessment, investment cost, and qualification time. This analysis reveals that the 'mixed way' FHR presents interesting solutions mainly in terms of design simplicity and time reduction. Therefore its study will be pursued for ASTRID as an alternative option. (authors)
International Nuclear Information System (INIS)
Machado, Marcelo D.; Dchirru, Roberto
2005-01-01
The nuclear reactor core reload optimization problem consists in finding a pattern of partially burned-up and fresh fuels that optimizes the plant's next operation cycle. This optimization problem has been traditionally solved using an expert's knowledge, but recently artificial intelligence techniques have also been applied successfully. The artificial intelligence optimization techniques generally have a single objective. However, most real-world engineering problems, including nuclear core reload optimization, have more than one objective (multi-objective) and these objectives are usually conflicting. The aim of this work is to develop a tool to solve multi-objective problems based on the Population-Based Incremental Learning (PBIL) algorithm. The new tool is applied to solve the Angra 1 PWR core reload optimization problem with the purpose of creating a Pareto surface, so that a pattern selected from this surface can be applied for the plant's next operation cycle. (author)
Energy Technology Data Exchange (ETDEWEB)
Gharari, Rahman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi [Nuclear Engineering Dept, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)
2016-10-15
In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.
International Nuclear Information System (INIS)
Gharari, Rahman; Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi
2016-01-01
In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor
Yetilmezsoy, Kaan
2012-08-01
An integrated multi-objective optimization approach within the framework of nonlinear regression-based kinetic modeling and desirability function was proposed to optimize an up-flow anaerobic sludge blanket (UASB) reactor treating poultry manure wastewater (PMW). Chen-Hashimoto and modified Stover-Kincannon models were applied to the UASB reactor for determination of bio-kinetic coefficients. A new empirical formulation of volumetric organic loading rate was derived for the first time for PMW to estimate the dimensionless kinetic parameter (K) in the Chen-Hashimoto model. Maximum substrate utilization rate constant and saturation constant were predicted as 11.83 g COD/L/day and 13.02 g COD/L/day, respectively, for the modified Stover-Kincannon model. Based on four process-related variables, three objective functions including a detailed bio-economic model were derived and optimized by using a LOQO/AMPL algorithm, with a maximum overall desirability of 0.896. The proposed optimization scheme demonstrated a useful tool for the UASB reactor to optimize several responses simultaneously. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Rahman Gharari
2016-10-01
Full Text Available In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II, is developed for the burnable poison placement (BPP optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (Keff for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.
Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)
Lizon-A-Lugrin, Laure
The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a
Alvarado, Judith Elizabeth
2017-01-01
The current commercial lithium ion battery utilizes “host-guest” electrodes that allow for the intercalation of lithium between the crystal lattice of the anode and cathode materials. The lithium ions are transported through the electrolyte medium during the charge/discharge process, Given their success, lithium ion batteries have now penetrated the electric vehicle market and large scale grid storage, which require batteries with much higher energy densities. To meet this demand, alternative...
International Nuclear Information System (INIS)
Wade, D.C.; Doctor, R. D.; Peddicord, K.L.
2003-01-01
The Secure Transportable Autonomous Reactor for Hydrogen production STAR-H2 is designed to fit into a sustainable global, mid-21st century hierarchical hub-spoke nuclear energy supply architecture based on nuclear fuel, hydrogen, and electricity energy carriers and having favorable energy security, ecological and nonproliferation features. It will produce hydrogen, oxygen and potable water to service cities and their surrounding regions under an assumed electrical generation network based on fuel cells and microturbines and an assumed transportation sector using hydrogen fueled vehicles. STAR-H2 is a long refueling interval (Battery) turnkey heat supply reactor intended for production of hydrogen by thermochemical water cracking. The reactor is a Pb-cooled, mixed U-TRU-Nitride-fueled, fast spectrum reactor delivering 400 MW th of heat at 800degC core outlet temperature. The primary coolant circulates by natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation and for rail shippability of the vessel. An intermediate low pressure He loop carries the heat to a Ca-Br thermochemical water cracking cycle for the manufacture of H 2 (and O 2 ). The water cracking cycle rejects heat at 550degC and that heat is used in a supercritical CO 2 Brayton cycle turbogenerator to provide hotel load electricity. A thermal desalinisation plant receives discharge heat at 125degC from the Brayton cycle and the brine provides for ultimate heat rejection from the cascaded thermodynamic cycles. The modified UT-3 cycle used in STAR-H2, called the Ca-Br cycle, operates at atmospheric pressure and 750-725degC, uses solid/gas separation steps and achieves about 44% efficiency. Unlike UT-3, it employs a single-stage HBr-dissociation step based on a plasma chemistry technique operating near ambient conditions. The STAR-H2 power plant will operate on a 20 year refueling interval
Optimization of NiFe2O4/rGO composite electrode for lithium-ion batteries
Li, Chen; Wang, Xia; Li, Shandong; Li, Qiang; Xu, Jie; Liu, Xiaomin; Liu, Changkun; Xu, Yuanhong; Liu, Jingquan; Li, Hongliang; Guo, Peizhi; Zhao, Xiu Song
2017-09-01
The combination of carbon compositing and the proper choice of binders in one system offer an effective strategy for improving electrode performance for lithium ion batteries (LIBs). Here, we focus on the optimization of reduced graphene oxide content in NiFe2O4/reduced graphene oxide (abbreviated to NiFe2O4/rGO) composites and the proper choice of binders to enhance the cycling stability of the NiFe2O4 electrode. The NiFe2O4/rGO composites were fabricated by a hydrothermal-annealing method, in which the mean size of spinel NiFe2O4 nanoparticles was approximately 20 nm. When tested as anode materials for LIBs, the NiFe2O4/rGO electrodes with carboxymethylcellulose (CMC) binder exhibited excellent lithium-storage performance including high reversible capacity, good cycling durability and high-rate capability. The capacity could be retained as high as 1105 mAh g-1 at a current density of 100 mA g-1 for over 50 cycles, even cycled at higher current density of 1000 mA g-1, a capacity of 800 mAh g-1can be obtained, whereas the electrode with the polyvinylidene fluoride (PVDF) binder suffered from rapid capacity decay under the same test conditions. As a result, the NiFe2O4/rGO composites with CMC binder electrode in this work are promising as anodes for high-performance LIBs, resulting from the synergistic effect of optimal graphene content and proper choice of binder.
Optimal sizing of hybrid PV/diesel/battery in ship power system
International Nuclear Information System (INIS)
Lan, Hai; Wen, Shuli; Hong, Ying-Yi; Yu, David C.; Zhang, Lijun
2015-01-01
Highlights: • An optimal sizing method is developed for a hybrid PV/diesel/ESS ship power system. • The output of PV along a navigation route is explored for the ship power system. • Five operating conditions of the load in the ship power system are modeled. • The impact of various prices of PV on cost is studied. - Abstract: Owing to the strict restrictions imposed by the Marine Pollution Protocol and the rapid development of renewable energy, the use of solar generation and energy storage systems in ship power systems has been increasingly attracting attention. However, the improper sizing of a hybrid power generation system in a ship power system will result in a high investment cost and increased greenhouse gas emission. This paper proposes a method for determining the optimal size of the photovoltaic (PV) generation system, the diesel generator and the energy storage system in a stand-alone ship power system that minimizes the investment cost, fuel cost and the CO 2 emissions. The power generation from PV modules on a ship relies on the date, local time, time zone, longitude and latitude along a navigation route and is different from the conditions of power systems on land. Thus, a method, which takes the seasonal and geographical variation of solar irradiations and temperatures along the route from Dalian in China to Aden in Yemen into account, for correcting the output of PV modules is developed in this paper. The proposed method considers five conditions along the navigation route to model the total ship load. Four cases are studied in details to demonstrate the applicability of the proposed algorithm.
Energy Technology Data Exchange (ETDEWEB)
Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)
2017-03-15
Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.
Energy Technology Data Exchange (ETDEWEB)
HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.
2002-08-18
Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.
International Nuclear Information System (INIS)
Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.
2016-01-01
Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO 2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO 2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO 2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO 2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO 2 emission and dump energy respectively when compared to a single big Diesel generator scenario.
Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.
Ghayal, Dyneshwar; Pandit, Aniruddha B; Rathod, Virendra K
2013-01-01
The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10(-3) (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.
Advanced fuel for fast breeder reactors: Fabrication and properties and their optimization
International Nuclear Information System (INIS)
1988-06-01
The present design for FBR fuel rods includes usually MOX fuel pellets cladded into stainless steel tubes, together with UO 2 axial blanket and stainless steel hexagonal wrappers. Mixed carbide, nitride and metallic fuels have been tested as alternative fuels in test reactors. Among others, the objectives to develop these alternative fuels are to gain a high breeding ratio, short doubling time and high linear ratings. Fuel rod and assembly designers are now concentrating on finding the combination of optimized fuel, cladding and wrapper materials which could result in improvement of fuel operational reliability under high burnups and load-follow mode of operation. The purpose of the meeting was to review the experience of advanced FBR fuel fabrication technology, its properties before, under and after irradiation, peculiarities of the back-end of the nuclear fuel cycle, and to outline future trends. As a result of the panel discussion, the recommendations on future Agency activities in the area of advanced FBR fuels were developed. A separate abstract was prepared for each of the 10 presentations of this meeting. Refs, figs and tabs
Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors
Jolodosky, Alejandra
The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically
Chemical Reactor Automation as a way to Optimize a Laboratory Scale Polymerization Process
Cruz-Campa, Jose L.; Saenz de Buruaga, Isabel; Lopez, Raymundo
2004-10-01
The automation of the registration and control of variables involved in a chemical reactor improves the reaction process by making it faster, optimized and without the influence of human error. The objective of this work is to register and control the involved variables (temperatures, reactive fluxes, weights, etc) in an emulsion polymerization reaction. The programs and control algorithms were developed in the language G in LabVIEW®. The designed software is able to send and receive RS232 codified data from the devices (pumps, temperature sensors, mixer, balances, and so on) to and from a personal Computer. The transduction from digital information to movement or measurement actions of the devices is done by electronic components included in the devices. Once the programs were done and proved, chemical reactions of emulsion polymerization were made to validate the system. Moreover, some advanced heat-estimation algorithms were implemented in order to know the heat caused by the reaction and the estimation and control of chemical variables in-line. All the information gotten from the reaction is stored in the PC. The information is then available and ready to use in any commercial data processor software. This work is now being used in a Research Center in order to make emulsion polymerizations under efficient and controlled conditions with reproducible results. The experiences obtained from this project may be used in the implementation of chemical estimation algorithms at pilot plant or industrial scale.
Meyer, Andreas; Pellaux, René; Potot, Sébastien; Becker, Katja; Hohmann, Hans-Peter; Panke, Sven; Held, Martin
2015-08-01
Microcompartmentalization offers a high-throughput method for screening large numbers of biocatalysts generated from genetic libraries. Here we present a microcompartmentalization protocol for benchmarking the performance of whole-cell biocatalysts. Gel capsules served as nanolitre reactors (nLRs) for the cultivation and analysis of a library of Bacillus subtilis biocatalysts. The B. subtilis cells, which were co-confined with E. coli sensor cells inside the nLRs, converted the starting material cellobiose into the industrial product vitamin B2. Product formation triggered a sequence of reactions in the sensor cells: (1) conversion of B2 into flavin mononucleotide (FMN), (2) binding of FMN by a RNA riboswitch and (3) self-cleavage of RNA, which resulted in (4) the synthesis of a green fluorescent protein (GFP). The intensity of GFP fluorescence was then used to isolate B. subtilis variants that convert cellobiose into vitamin B2 with elevated efficiency. The underlying design principles of the assay are general and enable the development of similar protocols, which ultimately will speed up the optimization of whole-cell biocatalysts.
PWR [pressurized water reactor] optimal reload configuration with an intelligent workstation
International Nuclear Information System (INIS)
Greek, K.J.; Robinson, A.H.
1990-01-01
In a previous paper, the implementation of a pressurized water reactor (PWR) refueling expert system that combined object-oriented programming in Smalltalk and a FORTRAN power calculation to evaluate loading patterns was discussed. The expert system applies heuristics and constraints that lead the search toward an optimal configuration. Its rate of improvement depends on the expertise coded for a search and the loading pattern from where the search begins. Due to its complexity, however, the solution normally cannot be served by a rule-based expert system alone. A knowledge base may take years of development before final acceptance. Also, the human pattern-matching capability to view a two-dimensional power profile, recognize an imbalance, and select an appropriate response has not yet been surpassed by a rule-based system. The user should be given the ability to take control of the search if he believes the solution needs a new direction and should be able to configure a loading pattern and resume the search. This paper introduces the workstation features of Shuffle important to aid the user to manipulate the configuration and retain a record of the solution
Energy Technology Data Exchange (ETDEWEB)
Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.; Fiarman, S.; Ramsey, E.; Wielopolski, L.; Laster, B.; Wheeler, F. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center; Brookhaven National Lab., Upton, NY (USA); EG and G Idaho, Inc., Idaho Falls, ID (USA))
1989-01-01
Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12} n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.
International Nuclear Information System (INIS)
Zhuchkov, A.A.; Al'masri, Kh.F.
2015-01-01
An implementation of fuzzy optimization in the reliability of multicriteria selections in control schemes of nuclear reactors and power plants has been presented. In particular, optimization based on the theory of fuzzy sets has been proposed for the majority schemes, taking into account various reasons of failures. Set of fuzzy algorithms has been suggested as a basic technology for ranking process according to standard criterion, which includes steps of construction of the rules, initial estimation, fuzzification, and defuzzification. Software implementations have been presented for the fuzzy approach using the MatLab package [ru
Guo, Sichang; Hu, Xiang; Hou, Yang; Wen, Zhenhai
2017-12-06
Significant "breathing effect" calls for exploring efficient strategies to address the intrinsic issues of silicon anode of lithium-ion batteries (LIBs). We here report a controllable synthetic route to fabricate the silicon-carbon hybrids, in which porous silicon nanoparticles (p-SiNPs) are loaded in void carbon spheres by forming the yolk-shell p-SiNPs@hollow carbon (HC) nanohybrids tunable. A set of controlled experiments accompanying with systematic characterizations demonstrate that the void space and mass loading of Si can be adjusted in an effective way so that the nanostructure can be optimized with achieving improved electrochemical performance as anode of lithium-ion batteries (LIBs). The optimized p-SiNPs@HC nanohybrids show excellent performance as anode for Li-ion battery, delivering a capacity of more than 1400 mA h g -1 after 100 cycles at 0.2 A g -1 and 720 mA h g -1 at a high current density of 4 A g -1 . The present work may provide us with an attractive and promising strategy for advancing Si-based anode materials due to advantages of tunable structure of silicon-carbon nanohybrids for optimizing electrochemical performance.
Cisneros, Anselmo Tomas, Jr.
and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of
Study of an optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak
International Nuclear Information System (INIS)
Hong, Bong Guen; Kim, Hoseok
2016-01-01
Highlights: • Optimum configuration of a transmutation reactor based on a low aspect ratio tokamak was found. • Inboard and outboard radial build are determined by plasma physics, engineering and neutronics constraints. • Radial build and equilibrium fuel cycle play a major role in determining the transmutation characteristics. - Abstract: We determine the optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak. For self-consistent determination of the radial build of the reactor components, we couple a tokamak systems analysis with a radiation transport calculation. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on neutron multiplication, the tritium-breeding ratio, and the power density. We show that the breeding blanket model has an effect on the radial build of a transmutation blanket. A burn cycle has to be determined to keep the fast neutron fluence plasma-facing material below its radiation damage limit. We show that the radial build of the transmutation reactor components and the equilibrium fuel cycle play a major role in determining the transmutation characteristics.
Optimization of a heat-pipe-cooled space radiator for use with a reactor-powered Stirling engine
International Nuclear Information System (INIS)
Moriarty, M.P.; French, E.P.
1987-01-01
The design optimization of a reactor-Stirling heat-pipe-cooled radiator is presented. The radiator is a self-deploying concept that uses individual finned heat pipe petals to reject waste heat from a Stirling engine. Radiator optimization methodology is presented, and the results of a parametric analysis of the radiator design variables for a 100-kW(e) system are given. The additional steps of optiminzing the radiator resulted in a net system mass savings of 3 percent. 5 references
Directory of Open Access Journals (Sweden)
H Javadikia
2017-05-01
reaction. Response surface methodology: Three important settings of reactor were considered to optimize reactor performance, which include: inlet flow to reactor, reactor rotational speed and the fluid cycle time in the system. Each set was considered at three levels. The factorial design was used to the analysis without any repeat, there will be 27 situations that because of the cost of analysis per sample by GC, practically not possible to do it. Therefore, response surface methodology was used by Design Expert software. In the other words, after defining the number of variables and their boundaries, software determined the number of necessary tests and the value of the relevant variables. Results and Discussion Three parameters include the inlet flow to reactor, reactor rotational speed and the fluid cycle time in the system were considered as input variables and performance of reactor as outcome in analyzing of extracted data from the reactor and GC by Design Expert software. The results of tests and optimization by software indicated that in 3.51 minutes as retention time of the raw material of biodiesel fuel in the system, the method of transesterification reaction had more than 88% Methyl ester and this represents an improvement in reaction time of biodiesel production. This method has very low retention time rather than biodiesel fuel production in conventional batch reactors that it takes 20 minutes to more than one hour. Conclusions According to the researches, efficiency of biodiesel fuel production in hydrodynamic cavitation reactors is higher than ultrasonic reactors so in this study, the settings of hydrodynamic reactor were investigated so that the settings were optimized in production of biodiesel fuel. Sunflower oil was used in this research. The molar ratio of Methanol to oil was 6 to 1 and sodium hydroxide as a catalyst was used. Three important settings of reactor were considered which include: inlet flow to reactor, reactor rotational speed and the
Directory of Open Access Journals (Sweden)
Mohsen Einan
2017-08-01
Full Text Available This paper presents a new control strategy for isolated micro-grids including wind turbines (WT, fuel cells (FC, photo-voltaic (PV and battery energy storage systems (BESS. FC have been used in parallel with BESSs in order to increase their lifetime and efficiency. The changes in some parameters such as wind speed, sunlight, and consumption, lead to improper performance of droop. To overcome this challenge, a new intelligent method using a combination of fuzzy controller and cuckoo optimization algorithm (COA techniques for active power controllers in isolated networks is proposed. In this paper, COA is compared with genetic algorithm (GA and particles swarm optimization algorithm (PSO. In order to show efficiency of the proposed controller, this optimal controller has been compared with droop, optimized droop, and conventional fuzzy methods, the dynamic analysis of the island is implemented to assess the behavior of isolated generations accurately and simulation results are reported.
An optimized design of rectangle pumping cell for nuclear reactor pumped laser
International Nuclear Information System (INIS)
Wan, J.-S.; Chen, L.-X.; Zhao, Z.-M.; Pan, X.-B.; Jing, C.-Y.; Zhao, X.-Q.; Liu, F.-H.
2003-01-01
Basing on our research of energy deposition in RPL (Reactor Pumped Laser) pumping cell and the laser power efficiency, a RPL test device on Pulsed Reactor has been designed. In addition, the laser beam power of the RPL test device is estimated in the paper. (author)
International Nuclear Information System (INIS)
Anton, V.
1979-12-01
The collapsing formulae for the optimization problems solved by means of the Pontryagin maximum principle in nuclear reactor dynamics are presented. A comparison with the corresponding formulae of the static case is given too. (author)
Optimization activities on design studies of LHD-type reactor FFHR
Energy Technology Data Exchange (ETDEWEB)
Sagara, A.; Kobayashi, M. [National Inst. for Fusion Science, Gifu (Japan); Mitarai, O. [Kyushyu Tokai Univ., Kumamoto (JP)] (and others)
2007-07-01
An overview of recent activities on optimizing the base design of LHD-type helical power reactor FFHR is presented, including key design improvements on blanket and divertor configurations, neutronics performance, large superconducting coils and cost models. New proposals of plasma operation candidates are also shown. In the reference design FFHR2m1 with the major radius R of 14 m, one of the main issues is the structural compatibility between blanket and divertor configurations. In particular, the blanket space at the inboard side is still insufficient due to the interference between the first walls and the ergodic layers surrounding the last closed flux surface. To overcome this problem, helical x-point divertor (HXD) has been proposed to remove the interference. In this concept, very effective screening of recycling neutrals with 99% ionization is expected according to 3D simulations. Another approach for obtaining larger clearance is also being examined by modifying the configurations of the helical coils. Neutronics performances on liquid breeder blanket have been also improved with optimizing the neutron multiplier to achieve the local TBR over 1.3 and a sufficient shielding efficiency of the fast neutron fluence of lower than 10{sup 22} n/m{sup 2} in 30 years. This issue on the blanket configurations also includes the issue on net cover rate of the inner wall for the total TBR over 1.2. For this requirement, the discrete pumping with semi-closed shield (DPSS) is proposed to achieve the net cover rate of over 0.9, which is very advantageous to suppress nuclear streaming. The other key issues are the engineering aspects on large superconducting coils. Poloidal coils positions are optimized to be compatible with 3D configurations of blankets within an acceptable total magnetic energy. Promising candidates of R and W (react and winding) of CICC (cable in conduit conductor), indirect cooling magnets with external dumping for quenching, and the LHD-type support
International Nuclear Information System (INIS)
Machado, Marcelo Dornellas
1999-04-01
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. In this work, a new learning mode, to be used by the Population-Based Incremental Learning (PBIL) algorithm, who combines mechanisms of standard genetic algorithm with simple competitive learning, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process know as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors. This problem can be interpreted as search of a load pattern to be used in the nucleus of the reactor in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)
International Nuclear Information System (INIS)
Maria A Goula; Olga A Bereketidou; Costas G Economopoulos; Olga A Bereketidou; Costas G Economopoulos
2006-01-01
Global climate changes caused by CO 2 emissions are currently debated around the world. Renewable sources of energy are being sought as alternatives to replace fossil fuels. Hydrogen is theoretically the best fuel, environmentally friendly and its combustion reaction leads only to the production of water. Bio-ethanol has been proven to be effective in the production of hydrogen via steam reforming reaction. In this research the steam reforming reaction of bio-ethanol is studied at low temperatures over 15,3 % Ni/La 2 O 3 catalyst. The reaction and kinetic analysis takes place in a fixed - bed reactor in 130 - 250 C in atmospheric pressure. This study lays emphasis on the design and the optimization of the fixed - bed reactor, including the total volume of the reactor, the number and length of the tubes and the degree of ethanol conversion. Finally, it is represented an approach of the total cost of the reactor, according to the design characteristics and the materials that can be used for its construction. (authors)
DEFF Research Database (Denmark)
Zhu, Xinyu
to identify, analyse and solve the operational challenges during the start-up of thermophilic up-flow anaerobic sludge blanket (UASB) reactors. To elucidate the microbial metabolisms, genome-centric metagenomics was applied to characterize methanogenic communities degrading a set of defined substrates....... In addition, the Ph.D. study also expands the understanding of AD microbial ecology by proposing and characterizing a novel Candidatus species ubiquitously present in AD systems. The start-up of thermophilic UASB reactors was investigated in lab-scale reactors inoculated with mesophilic granules. After...... composition in the granules during the temperature shift suggested that the majority of the mesophilic microbes could not tolerate the thermophilic conditions. Moreover, it was demonstrated that the fermentative thermophiles first evolved in the liquid phase of UASB reactor and then were encapsulated...
Energy Technology Data Exchange (ETDEWEB)
Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)
1997-12-31
This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)
Safety-Related Optimization and Analyses of an Innovative Fast Reactor Concept
Vezzoni, Barbara; Gabrielli, Fabrizio; Rineiski, Andrei; Marchetti, Marco; Chen, Xue-Nong; Flad, Michael; Maschek, Werner; Boccaccini, Claudia Matzerath; Zhang, Dalin
2012-01-01
Since a fast reactor core with uranium-plutonium fuel is not in its most reactive configuration under operating conditions, redistribution of the core materials (fuel, steel, sodium) during a core disruptive accident (CDA) may lead to recriticalities and as a consequence to severe nuclear power excursions. The prevention, or at least the mitigation, of core disruption is therefore of the utmost importance. In the current paper, we analyze an innovative fast reactor concept developed within th...
Use of adaptive diffusion theory based monitors in optimizing boiling water reactor core designs
International Nuclear Information System (INIS)
Congdon, S.P.; Martin, C.L.; Crowther, R.L.
1988-01-01
Three-dimensional coarse mesh models are routinely used to predict the performance of boiling water reactors. In the adaptive monitory model, the three-dimensional solutions are permanently adapted to incore probe data. The corrections resulting from the adaptive process lead to reliable predictions of future reactor states. The corrections can also be carried forward to future operating cycles. This can shorten the time required to introduce an validate new design and operating strategy improvements. (orig.) [de
Borhan, Hoseinali
Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may
International Nuclear Information System (INIS)
Silvennoinen, P.
1976-01-01
The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)
Kuz'min, A. M.; Moroko, V. I.
2013-12-01
This paper covers some specific features of the optimization problem with integer-valued and continuously changing parameters that has been formulated for a fast reactor operating under the steady-state regime of the uniform partial refueling. Effective algorithms for calculating the physical characteristics and an iterative procedure of constructing optimum values of parameters are proposed. The paper considers the solution of a problem on minimization of the loss of energy generation in a reactor of the BREST-800 type that occurs because average fuel burnup in fuel assemblies being removed does not achieve its maximum permissible level. For several core arrangements, the comparison with nonoptimum solutions is given and the role of various factors contributing to an increase in average fuel burnup is evaluated.
International Nuclear Information System (INIS)
Khayat, M.I.; March-Leuba, J.
1993-01-01
This paper documents some of the optimization studies performed to maximize the performance of the engineered safety features and scram systems to mitigate the consequences of large breaks in the primary cooling system of the advanced neutron source (ANS) reactor. The ANS is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the field of material science and engineering, biology, chemistry, material analysis, and nuclear science. To achieve the high neutron fluxes for these state-of-the-art experiments, the ANS design has a very high power density core (330 MW fission with an active volume of 67.6 ell) surrounded by a large heavy-water reflector, where most neutrons are moderated. This design maximizes the number of neutrons available for experiments but results in a low heat capacity core that creates unique challenges to the design of the plant protection system
International Nuclear Information System (INIS)
Meneses, Anderson Alvarenga de Moura; Schirru, Roberto
2005-01-01
This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)
Energy Technology Data Exchange (ETDEWEB)
Kumar Lahiri, S.; Khalfe, N. [National Inst. of Technology, Durgapur, West Bengal (India). Dept. of Chemical Engineering
2009-02-15
Process modeling and optimization strategies that integrate support vector regression (SVR) with differential evolution were used to model and optimize the commercial catalytic process for ethylene oxide (EO). EO is produced commercially in a shell and tube type EO reactor by reacting oxygen and ethylene at high temperature and pressure in the presence of a silver-based catalyst. The oxidation of ethylene involves a main reaction producing EO and an undesirable side reaction producing carbon dioxide. In this study, a process model was developed using an SVR method and genetic algorithms (GAs) that maximize the process performance. The optimized solutions, when verified in an actual industrial plant, resulted in a significant improvement in the EO production rate and catalyst selectivity. In the SVR-GA approach, an SVR model was constructed for correlating process data comprising values of operating and performance variables. Next, model inputs describing process operating variables were optimized using GAs to maximize the process performance. The GA has some unique advantages over the commonly used gradient-based deterministic optimization algorithms. The major advantage of the SVR-GA strategy is that modeling and optimization can be conducted exclusively from the historic process data wherein the detailed knowledge of reaction mechanism or kinetics is not required. 14 refs., 5 tabs., 7 figs.
International Nuclear Information System (INIS)
Yamamoto, Akio; Kanda, Keiji
1997-01-01
Analyses of an equilibrium cycle are useful for evaluating newly designed fuels, defining an envelope of core operating parameters, and so on. However, generation of a loading pattern for the equilibrium cycle is much more difficult than that of a single cycle. Therefore, a loading pattern optimization code for the equilibrium cycle of pressurized water reactors, OPAL, has been newly developed on the basis of the simulated annealing method. In order to verify the capability of the OPAL code, comparison with successive multicycle optimizations was performed while fixing the number of fresh fuel in each cycle. Through benchmark calculations, it was found that the result of the equilibrium cycle optimization was almost compatible with that of the successive multicycle optimization, when the definition of each objective function was similar. However, successive multicycle optimization includes some ambiguity due to limits on the number of calculated cycles, since it requires much computation time. Consequently, the equilibrium cycle optimization has advantages including the quantitative comparison of the core neutronic performances. (author)
International Nuclear Information System (INIS)
Tapu, C.
1979-01-01
The reference control system automatically adjusted to the reactor state and the reliability analysis of the control systems which survive the first defect with given solution for detecting all kinds of defects in the system with parallel redundancy, supply additional data on the high performance and largely available solutions. The results of the paper have been applied in the following cases: The reference control system automatically adapted to the reactor state has been tested with the VVR-S reactor and was patented. The solutions advanced for period and reactivity monitoring by the numerical technique were worked up during the training in France-CEN-Saclay and have been applied on the Ulysse reactor at INSTN (CERN-Saclay). At the same time, the papers published on these subjects have been cited in ''Revue General d'Electricite (February 1976)'' and in ''MCH/MENT 10 - Materiel Electronique Nucleaire pour tableau de commande et de controle (1976)'' issued by CEA France, as marking a progress in the control of nuclear power plants. The reliability analysis of the control system with parallel redundancy was performed during a specialization in France and on the basis of this analysis, the control system for the high flux reactor in Grenoble was selected. (author)
International Nuclear Information System (INIS)
Babazadeh, Davood; Boroushaki, Mehrdad; Lucas, Caro
2009-01-01
The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor (K eff ) in order to extract the maximum energy, and keeping the local power peaking factor (P q ) lower than a predetermined value to maintain fuel integrity. In this research, a new strategy based on Particle Swarm Optimization (PSO) algorithm has been developed to optimize the fuel core loading pattern in a typical VVER. The PSO algorithm presents a simple social model by inspiration from bird collective behavior in finding food. A modified version of PSO algorithm for discrete variables has been developed and implemented successfully for the multi-objective optimization of fuel loading pattern design with constraints of keeping P q lower than a predetermined value and maximizing K eff . This strategy has been accomplished using WIMSD and CITATION calculation codes. Simulation results show that this algorithm can help in the acquisition of a new pattern without contravention of the constraints.
DEFF Research Database (Denmark)
Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik
1999-01-01
Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... to optimize the reaction system with four process parameters, these being volume flow rate, water content in the substrates, reaction temperature and substrate ratio. The incorporation of acyl donors, product yields and the content of diacylglycerols were measured as the model responses. Enzyme activity...
DEFF Research Database (Denmark)
Dulout, Jeremy; Hernández, Adriana Carolina Luna; Anvari-Moghaddam, Amjad
2017-01-01
A new scheduling method is proposed to manage efficiently the integration of renewable sources in microgrids (MGs) with energy storage systems (ESSs). The purpose of this work is to take into account the main stress factors influencing the ageing mechanisms of a battery energy storage system (BES...
Influence of the poison management in the optimization of the fuel management in a nuclear reactor
International Nuclear Information System (INIS)
Silva Ipojuca, T. da.
1981-03-01
The global optimum fuel and poison management policy was determined by the method of Dynamic Programming. A 620 MWe Pressurized Water Reactor similar to Angra I was studied. The reactor core was divided into three regions of equal volume surrounded by a reflector. Two fuel shuffling schemes and three poison management schemes were simultaneously employed, and fifteen consecutive stages were studied. When uniform poisoning was permitted in all the three regions the out-in scheme of fuel shuffling was the best scheme along the cycles. For the first stages the poison management reduces the generated energy cost, but this reduction gets smaller along the cycles. (Author) [pt
Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading
DEFF Research Database (Denmark)
Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura
2017-01-01
This study evaluates the efficiency of four novel up-flow reactors for ex situ biogas upgrading converting externally provided CO2 and H2 to CH4, via hydrogenotrophic methanogenesis. The gases were injected through stainless steel diffusers combined with alumina ceramic sponge or through alumina...... and CO2, up to 3.6L/LREACTOR·d H2 loading rate. Specifically, reactors' CH4 content increased from 23 to 96% and the CH4 yield reached 0.25LCH4/LH2. High throughput 16S rRNA gene sequencing revealed predominance of bacteria belonging to Anaerobaculum genus and to uncultured order MBA08. Additionally...
International Nuclear Information System (INIS)
Sadighi, M.; Setayeshi, S.; Salehi, A.A.
2002-01-01
This paper presents a new method to solve the problem of finding the best configuration of fuel assemblies in a PWR (Pressurized Water Reactor) core. Finding an optimum solution requires a huge amount of calculations in classical methods. It has been shown that the application of continuous Hop field neural network accompanied by the Simulated Annealing method to this problem not only reduces the volume of the calculations, but also guarantees finding the best solution. In this study flattening of neutron flux inside the reactor core of Brusher NPP is considered as an objective function. The result shows the optimum core configuration which is in agreement with the pattern proposed by the designer
Energy Technology Data Exchange (ETDEWEB)
Ortiz S, J. J.; Castillo M, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Pelta, D. A., E-mail: juanjose.ortiz@inin.gob.mx [Universidad de Granada, Escuela Superior de Ingenierias, Informatica y Telecomunicacion, C/Daniel Saucedo Aranda s/n, 18071 Granada (Spain)
2012-10-15
In previous works were presented the results of a recurrent neural network to find the best combination of several groups of fuel cells, fuel load and control bars patterns. These solution groups to each problem of Fuel Management were previously optimized by diverse optimization techniques. The neural network chooses the partial solutions so the combination of them, correspond to a good configuration of the reactor according to a function objective. The values of the involved variables in this objective function are obtained through the simulation of the combination of partial solutions by means of Simulate-3. In the present work, a multilayer neural network that learned how to predict some results of Simulate-3 was used so was possible to substitute it in the objective function for the neural network and to accelerate the response time of the whole system of this way. The preliminary results shown in this work are encouraging to continue carrying out efforts in this sense and to improve the response quality of the system. (Author)
Optimization of binary breeder reactor. 1. Sodium void reactivity and Doppler effect in a new model
International Nuclear Information System (INIS)
Nascimento, J.A. do; Dias, A.F.; Ishiguro, Y.
1985-01-01
A model for the Binary Breeder Reactor (BBR) is examined for the inherent safety characteristics, sodium void reactivity and Doppler effect in the beginning of cycle and a hypothetical end of cycle. In addition to the standard fueling mode of the BBR, two others are considered: U 238 /U 233 -alternate fueling, and U 238 /PU-normal fueling of LMFBRs. (Author) [pt
Economic Optimizing Control for Single-Cell Protein Production in a U-Loop Reactor
DEFF Research Database (Denmark)
Drejer, André; Ritschel, Tobias Kasper Skovborg; Jørgensen, Sten Bay
2017-01-01
The production of single-cell protein (SCP) in a U-loop reactor by a methanotroph is a cost efficient sustainable alternative to protein from fish meal obtained by over-fishing the oceans. SCP serves as animal feed. In this paper, we present a mathematical model that describes the dynamics of SCP...
Directory of Open Access Journals (Sweden)
Hussein A. Kazem
2013-01-01
Full Text Available This paper presents a method for determining optimal sizes of PV array, wind turbine, diesel generator, and storage battery installed in a building integrated system. The objective of the proposed optimization is to design the system that can supply a building load demand at minimum cost and maximum availability. The mathematical models for the system components as well as meteorological variables such as solar energy, temperature, and wind speed are employed for this purpose. Moreover, the results showed that the optimum sizing ratios (the daily energy generated by the source to the daily energy demand for the PV array, wind turbine, diesel generator, and battery for a system located in Sohar, Oman, are 0.737, 0.46, 0.22, and 0.17, respectively. A case study represented by a system consisting of 30 kWp PV array (36%, 18 kWp wind farm (55%, and 5 kVA diesel generator (9% is presented. This system is supposed to power a 200 kWh/day load demand. It is found that the generated energy share of the PV array, wind farm, and diesel generator is 36%, 55%, and 9%, respectively, while the cost of energy is 0.17 USD/kWh.
Jongerden, M.R.; Haverkort, Boudewijn R.H.M.
2008-01-01
The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,
Energy Technology Data Exchange (ETDEWEB)
Pesaran, Ahmad
2016-06-14
This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.
Li, Fan; Upadhyaya, Belle R.; Perillo, Sergio R. P.
2012-04-01
Fault diagnosis is an important area in nuclear power industry for effective and continuous operation of power plants. Fault diagnosis approaches depend critically on the sensors that measure important process variables. Allocation of these sensors determines the effectiveness of fault diagnostic methods. However, the emphasis of most approaches is primarily on the procedure to perform fault detection and isolation (FDI) given a set of sensors. Little attention has been given to actual allocation of the sensors for achieving efficient FDI performance. This paper presents a graph-based approach as a solution for optimization of sensor selection to ensure fault observability, as well as fault resolution to a maximum possible extent. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships among the measurements and to characterize by a data hyper-plane. Fault directions for the different fault scenarios are obtained using singular value decomposition of the prediction errors, and fault isolation is then accomplished from new projections on these fault directions. Results of the helical coil steam generator (HCSG) system of the International Reactor Innovative and Secure (IRIS) nuclear reactor demonstrate the proposed FDI approach with optimized sensor selection, and its future application to large industrial systems.
Xing, Bao-Shan; Guo, Qiong; Zhang, Zheng-Zhe; Zhang, Jue; Wang, Hui-Zhong; Jin, Ren-Cun
2014-10-01
In this study, the individual and interactive effects of influent substrate concentration (TNinf), hydraulic retention time (HRT) and upflow velocity (Vup) on the performance of anaerobic ammonium oxidation (anammox) in a granule-based upflow anaerobic sludge blanket (UASB) reactor were investigated by employing response surface methodology (RSM) with a central composite design. The purpose of this work was to identify the optimal combination of TNinf, HRT and Vup with respect to the nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR). The reduced cubic models developed for the responses indicated that the optimal conditions corresponded to a TNinf content of 644-728mgNL(-1), an HRT of 0.90-1.25h, and a Vup of 0.60-1.79mh(-1). The results of confirmation trials were similar to the predictions of the developed models. These results provide useful information for improving the nitrogen removal performance of the anammox process in a UASB reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miranda, D.; Miranda, F.; Costa, C. M.; Almeida, A. M.; Lanceros-Méndez, S.
2016-06-01
Tailoring battery geometries is essential for many applications, as geometry influences the delivered capacity value. Two geometries, frame and conventional, have been studied and, for a given scan rate of 330C, the square frame shows a capacity value of 305,52 Ahm-2, which is 527 times higher than the one for the conventional geometry for a constant the area of all components.
Meng, Xinghua; Deng, Da
2017-02-15
Bioinspired synthesis has been attracting much attention. Here, we demonstrate a novel approach to directly use waste eggshells as a reactor system for controlled synthesis of nanostructures formed on different substrates. This approach can recycle and transform the "trash" of waste eggshells into "treasure" of unique reactor systems for nanofabrication. The eggshell reactor system can provide unique conditions for the formation of nanostructures on various substrates. Using Co(OH) 2 as a model, amorphous Co(OH) 2 nanorod arrays, which cannot be synthesized conventionally by direct mixing of precursors, have been successfully formed on various substrates, including Ni foam, metal foil, and glass. To illustrate their potential applications, we use the as-fabricated amorphous Co(OH) 2 nanorod arrays on Ni foam as (1) binder-free electrodes for rechargeable alkaline batteries, demonstrating impressively good electrochemical performances, and (2) electrocatalyst for oxygen evolution reaction, demonstrating improved electrocatalytic performances as compared to their crystalline counterpart. We believe the idea outlined here, using eggshell reactor system, can be further expanded to synthesize many different functional materials and precursors which can find additional applications, including self-cleaning, catalysis, sensor, electrochromic devices, etc.
International Nuclear Information System (INIS)
Macci, E.; Zirpolo, S.; Imparato, A.; Cacace, A.; Parry, D.; Walkden, P.
2002-01-01
In June 2000, an agreement was established between Sogin and BNFL to enable the two companies to co-operate, using their specific experiences in the decommissioning field, for the benefit of projects in Italy, the United Kingdom and for third markets. A decommissioning strategy for the Latina NPP was initially developed in a Phase 1 Study which produced a conceptual design for the decommissioning of the reactor. This study was completed in June 2000. Since then, a second study has been completed, which has further developed the strategy and produced preliminary designs for the early dismantling of the core and reactor building at Latina. The engineering and safety data were produced in order to support Sogin in the preparation of a safety case for plant decommissioning. This safety case was submitted to the Italian Regulator, ANPA, in February 2002. (author)
Application of Pareto optimization method for ontology matching in nuclear reactor domain
International Nuclear Information System (INIS)
Meenachi, N. Madurai; Baba, M. Sai
2017-01-01
This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.
Application of Pareto optimization method for ontology matching in nuclear reactor domain
Energy Technology Data Exchange (ETDEWEB)
Meenachi, N. Madurai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Planning and Human Resource Management Div.; Baba, M. Sai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Resources Management Group
2017-12-15
This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.
Simulation, Control and Optimization of Single Cell Protein Production in a U-Loop Reactor
DEFF Research Database (Denmark)
Engoulevent, Franck Guillaume; Jørgensen, John Bagterp
2012-01-01
In 2011, the world population passed 7 billions inhabitants. While this number witnesses the success of humankind on earth, it also rises among other things questions about food supply. Declining live stock in the wild, rising price of energy combined with climatic change give a new economic...... potential for alternative sources of protein production. Single cell protein (SCP) is protein produced by growth of micro organisms. Among these micro organisms, Methylococcus Capsulatus is particular interesting as it can grow on either methane or methanol and contains 70% protein. The U-Loop reactor...... report simulation results. In addition we design and compare dierent regulatory control systems for regulation of SCP production in the U-Loop reactor. The purpose of the regulatory control systems is to keep the process at a steady state and to reject disturbances. We design and implement such control...
A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors
International Nuclear Information System (INIS)
Rizwan-uddin; Nick Karancevic; Stefano Markidis; Joel Dixon; Cheng Luo; Jared Reynolds
2008-01-01
Many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important criterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals
Grazia Leonzio
2017-01-01
Carbon dioxide conversion and utilization is gaining significant attention worldwide, not only because carbon dioxide has an impact on global climate change, but also because it provides a source for potential fuels and chemicals. Methanol is an important fuel that can be obtained by the hydrogenation of carbon dioxide. In this research, the modeling of a reactor to produce methanol using carbon dioxide and hydrogen is carried out by way of an ANOVA and a central composite design. Reaction te...
Optimization of enrichment zones that maximize the regeneration profits in a fast reactor
International Nuclear Information System (INIS)
Jachic, J.
1983-01-01
Using a simplified model of Super Phenix reactor, the admissible limits of internal and external enrichment core without control rods, that assure an auto-stability related to fuel Doppler coefficient were determined. A Linear Programming System was developed to solve this problem, using the SIMPLEX method. The solution showed that the regeneration profits could be increased at least in 14% if the internal enrichment core decrease 0.97 and the external 0.3%. (E.G.) [pt
Optimization of binary breeder reactor. 2. Preliminary base for control analysis and fuel management
International Nuclear Information System (INIS)
Dias, A.F.; Nascimento, J.A. do; Ishiguro, Y.
1985-01-01
Neutronic calculations to verify the reactivity effects, of sodium voids and Doppler, with the variation of the composition of parasitic absorbers were done. A LMFBR type reactor loaded with mixed fuel, (U 233 -Th 232 )O 2 in the internal core and (U 238 -Pu 239 )O 2 in external core, was considered. In reactivity calculations the EXPANDA and CITATION computer codes were utilized. Buckling effects and importance of determination of the spatial selfshielding factors were analysed. (M.C.K.) [pt
A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors.
Energy Technology Data Exchange (ETDEWEB)
Rizwan-uddin; Nick Karancevic; Stefano Markidis; Joel Dixon; Cheng Luo; Jared Reynolds
2008-04-23
many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important crterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals.
CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR
Energy Technology Data Exchange (ETDEWEB)
B. Boer; A. M. Ougouag
2010-05-01
Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Schirru, Roberto; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia
1997-12-01
This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs.
International Nuclear Information System (INIS)
Yamamoto, Akio; Jagawa, Suetsugu; Sato, Daisuke; Sato, Hitoshi; Yamasaki, Masatoshi
2006-01-01
The theories of loading pattern optimization, the methods and the tools using by PWR and BWR are stated. Needs for core design and loading pattern optimization, operating of PWR/BWR, designs of loading pattern, optimization of the loading pattern and design variables, the basic theories of loading pattern optimization, the optimization tools of loading pattern in Japan are explained. The basic theories consist of the determinism methods, the probability methods and heuristic method. Four tools such as INSIGHT (PWR), Pearls th (PWR), FINELOAD (BWR) and ePrometheus (BWR) are described by outline, principles, characteristics, functions, and application examples. These tools are a great success of limiting the seek area and short-time calculation using the high speed simulation method of core functions. (S.Y.)
Final report-passive safety optimization in liquid sodium-cooled reactors
International Nuclear Information System (INIS)
Cahalana, J. E.; Hahn, D.
2007-01-01
This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety
International Nuclear Information System (INIS)
Gong Zhaohu; Wang Kan; Yao Dong
2011-01-01
Highlights: → We present a new Loading Pattern Optimization method - Interval Bound Algorithm (IBA). → IBA directly uses the reactivity of fuel assemblies and burnable poison. → IBA can optimize fuel assembly orientation in a coupled way. → Numerical experiment shows that IBA outperforms genetic algorithm and engineers. → We devise DDWF technique to deal with multiple objectives and constraints. - Abstract: In order to optimize the core loading pattern in Nuclear Power Plants, the paper presents a new optimization method - Interval Bound Algorithm (IBA). Similar to the typical population based algorithms, e.g. genetic algorithm, IBA maintains a population of solutions and evolves them during the optimization process. IBA acquires the solution by statistical learning and sampling the control variable intervals of the population in each iteration. The control variables are the transforms of the reactivity of fuel assemblies or the worth of burnable poisons, which are the crucial heuristic information for loading pattern optimization problems. IBA can deal with the relationship between the dependent variables by defining the control variables. Based on the IBA algorithm, a parallel Loading Pattern Optimization code, named IBALPO, has been developed. To deal with multiple objectives and constraints, the Dynamic Discontinuous Weight Factors (DDWF) for the fitness function have been used in IBALPO. Finally, the code system has been used to solve a realistic reloading problem and a better pattern has been obtained compared with the ones searched by engineers and genetic algorithm, thus the performance of the code is proved.
Geometric optimization of spallation targets for the MYRRHA reactor using MCNPX simulations
International Nuclear Information System (INIS)
Rebello Junior, Andre Luiz P.; Martinez, Aquilino S.; Golcalves, Alessandro C.
2013-01-01
The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and nd saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs. (author)
Geometric optimization of spallation targets for the MYRRHA reactor using MCNPX simulations
Energy Technology Data Exchange (ETDEWEB)
Rebello Junior, Andre Luiz P.; Martinez, Aquilino S.; Golcalves, Alessandro C., E-mail: junior.rebello@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear
2013-07-01
The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and nd saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs. (author)
DEFF Research Database (Denmark)
Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.
2002-01-01
For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...
International Nuclear Information System (INIS)
Hao Haoran; Yang Xiaoyong; Wang Jie; Ye Ping; Yu Xiaoli; Zhao Gang
2014-01-01
Helium turbine system is a promising method to covert the nuclear power generated by the High Temperature Gas Cooled Reactor (HTGR) into electricity with inherent safety, compact configuration and relative high efficiency. And the recuperator is one of the key components for the HTGR helium turbine system. It is used to recover the exhaust heat out of turbine and pass it to the helium from high pressure compressor, and hence increase the cycle’s efficiency dramatically. On the other hand, the pressure drop within the recuperator will reduce the cycle efficiency, especially on low pressure side of recuperator. It is necessary to optimize the design of recuperator to achieve better performance of HTGR helium turbine system. However, this optimization has to be performed with the restriction of the size of the pressure vessel which contains the power conversion unit. This paper firstly presents an analysis to investigate the effects of flow channel geometry, recuperator’s power and size on heat transfer and pressure drop. Then the relationship between the recuperator design and system performance is established with an analytical model, followed by the evaluations of the current recuperator designs of GT-MHR, GTHTR300 and PBMR, in which several effective technical measures to optimize the recuperator are compared. Finally it is found that the most important factors for optimizing recuperator design, i.e. the cross section dimensions and tortuosity of flow channel, which can also be extended to compact intermediate heat exchangers. It turns out that a proper optimization can increase the cycle’s efficiency by 1~2 percentage, which could also raise the economy and competitiveness of future commercial HTGR plants. (author)
International Nuclear Information System (INIS)
Shi Xueming; Wu Hongchun; Sun Shouhua; Liu Shuiqing
2003-01-01
The in-core fuel management optimization model based on the genetic algorithm has been established. An encode/decode technique based on the assemblies position is presented according to the characteristics of HFETR. Different reproduction strategies have been studied. The expert knowledge and the adaptive genetic algorithms are incorporated into the code to get the optimized loading patterns that can be used in HFETR
International Nuclear Information System (INIS)
Edwin Raj, R.; Robert Kennedy, Z.; Pillai, B.C.
2013-01-01
Highlights: ► Non-recyclable, hazards, under-utilized waste tyre was converted to useful fuel. ► Design of experiment was used to optimize the process parameters. ► Fuel compatibility for IC engines was tested by standard fuel testing procedures. ► Optimized process parameters were tested and the empirical model validated. - Abstract: Pyrolysis process offers solution to utilize huge quantity of worn out automobile tyres to produce fuel for energy needs. Shredded tyre wastes were subjected to pyrolysis at atmospheric pressure under inert gas atmosphere in a fluidized bed combustion setup. The shredded tyre particle size, the feed rate of the feed stock, and the pyrolysis temperature were varied systematically as per the designed experiment to study their influence on product yield. Maximizing the oil yield and subduing the gas and char yield is the objective to optimize the process parameters. A low pyrolysis temperature of 440 °C with low feed rate increases the residence time in the combustion reactor yielding maximum oil. The physical properties of raw pyrolysis oil, distilled oil and the evolved gases were done to find its suitability to utilize them as alternatives to the conventional fuels
Directory of Open Access Journals (Sweden)
Yoyok Dwi Setyo Pambudi
2016-01-01
Full Text Available A neural network-direct inverse control (NN-DIC has been simulated to automatically control the power level of nuclear reactors. This method has been tested on an Indonesian pool type multipurpose reactor, namely, Reaktor Serba Guna-GA Siwabessy (RSG-GAS. The result confirmed that this method still cannot minimize errors and shorten the learning process time. A new method is therefore needed which will improve the performance of the DIC. The objective of this study is to develop a particle swarm optimization-based direct inverse control (PSO-DIC to overcome the weaknesses of the NN-DIC. In the proposed PSO-DIC, the PSO algorithm is integrated into the DIC technique to train the weights of the DIC controller. This integration is able to accelerate the learning process. To improve the performance of the system identification, a backpropagation (BP algorithm is introduced into the PSO algorithm. To show the feasibility and effectiveness of this proposed PSO-DIC technique, a case study on power level control of RSG-GAS is performed. The simulation results confirm that the PSO-DIC has better performance than NN-DIC. The new developed PSO-DIC has smaller steady-state error and less overshoot and oscillation.
Energy Technology Data Exchange (ETDEWEB)
Maletta, Paulo G.M.; Leal, Marcos A.; Wakabayashi, Tetsuaki, E-mail: pgmm@cdtn.br, E-mail: amgr@cdtn.br, E-mail: leal@cdtn.br, E-mail: tw@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Guimaraes, Adriana M.; Silva, Teogenes A. da, E-mail: silvata@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Post Graduation Programme in Sciences and Technology of Radiations
2011-07-01
Worker and area monitoring have routinely been done around the CDTN TRIGA IPR-R1 research reactor aiming to optimize and assure radiation protection safety. As part of the implementation of the ALARA program, individual doses from planned practices were analyzed. Personnel dose equivalents, Hp(10), from up to 39 occupationally exposed workers were daily reported during their stay in the restricted area. Measurements were done with a RAD-60 Rados electronic personal dosimeter with a 1 {mu}Sv low detection limit. Results of about 5000 measurements in a year obtained during 2009 and 2010 showed that monthly doses did not exceed 60 {mu}Sv, except in very specific cases of non-routine practices. Results also suggested that values of 40, 100 and 800 {mu}Sv could be adopted as weekly, monthly and annual dose constraints. Considering that measured doses were very small when compared to the 20 mSv/year dose limit, it was concluded that the adoption of the dose constraints was enough to assume the compliance with the ALARA principle and that changes in the routine procedure or in the reactor facility design are not needed. (author)
Directory of Open Access Journals (Sweden)
Hsiao-Ching Chen
2011-01-01
Full Text Available An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435 as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31±2.07% and 82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.
Do existing research reactors teach us all about beam tube optimization?
International Nuclear Information System (INIS)
Roegler, Hans Joachim; Feltes, Wolfgang
1998-01-01
The contribution makes the attempt to analyse the data base available in the literature and in Siemens' own projects and to find out potential systematics from the existing research reactor with beam tubes, separated into reactors with different reflectors and distinguished for tangential and radial tubes and cold neutron sources, resp. Some generic calculations serve as gauging data. The contribution is not meant as critics on any design.The results might serve supporting designers and operators when evaluating the pros and cons of existing or planned design in terms of the optimum beam tubes. Existing lacks of systematics are evaluated in view of suitable explanations and constraints, which do not allow optimisation. Examples pf such constraints are the different material layers between fuel zone and reflector zone which have various reasons. The limited data in the literature plus the numerous lacks of precision of the representation of those data should be an incentive to improve the performed analysis by collecting more exact data and re-doing the evaluation before answering the title-question really. (author)
International Nuclear Information System (INIS)
Hamidi, S.; Babaei, H.
2003-01-01
Boron Neutron Capture Therapy is a binary from of radiation therapy for treatment of deep seated brain tumor, based on the nuclear reaction that occur when boron ( 10 B) is exposed to the thermal neutrons. The stable isotope 10 B is irradiated with low energy or thermal neutrons to yield 4 He nuclei (i.e a particles) and recoiling 7 Li ions. These are absorbed in tumor cells and released their energy in them and destroy tumor cells. This work has tried to optimize neutron flux from Tehran reactor in order to be used in a Boron Neutron Capture Therapy program. Fission converter plates (20% enriched Uranium) have been applied to increase the neutron flux
Wolfrum, Christian; Josten, Andre; Götz, Peter
2014-01-01
A computational fluid dynamics (CFD) model for the analysis of oligonucleotide synthesis in packed bed reactors was developed and used to optimize the scale up of the process. The model includes reaction kinetics data obtained under well defined conditions comparable to the situation in the packed bed. The model was validated in terms of flow conditions and reaction kinetics by comparison with experimental data. Experimental validation and the following model parameter studies by simulation were performed on the basis of a column with 0.3 g oligonucleotide capacity. The scale-up studies based on CFD modelling were calculated on a 440 g scale (oligonucleotide capacity). © 2014 American Institute of Chemical Engineers.
DEFF Research Database (Denmark)
Serban, I.; Teodorescu, Remus; Marinescu, C.
2012-01-01
This paper presents an original hardware-in-the-loop (HIL) solution for real-time testing and optimization of the frequency control mechanism in autonomous microgrids (MG), when battery energy storage systems (BESS) are integrated along classical and RES-based generators to stabilize the frequency....... The focus is on autonomous MGs that dynamically should perform similarly to the conventional power systems. During MG autonomous operation, the generators should accomplish the frequency control process, by means of their automatic generation control. However, RES-based generators have poor controllability...... of the involved mechanisms in the MG dynamics. An experimental test bench including a real-time digital simulator with BESS controller in the HIL structure is used for assessing the proposed system performances....
Energy Technology Data Exchange (ETDEWEB)
Dardour, S
2007-04-15
This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)
International Nuclear Information System (INIS)
Kozier, K.S.; Rosinger, H.E.
1988-01-01
This paper reviews the evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work. 19 refs
Lochmatter, Samuel; Holliger, Christof
2014-08-01
The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hu, Bin; Shkrob, Ilya A.; Zhang, Shuo; Zhang, Linghong; Zhang, Jingjing; Li, Yan; Liao, Chen; Zhang, Zhengcheng; Lu, Wenquan; Zhang, Lu
2018-02-01
Poly(acrylic acid) (PAA) based binders have been widely used for the high capacity silicon anodes of lithium-ion batteries. While numerous promising progress has been reported, there is no general guideline for choosing the right PAA binders for optimized cycling performance. In this report, aiming to optimize the cycling performance of the Si/graphite composite anodes (15 wt% Si), we systemically investigated a series of PAA binders by validating their molecular weights (MWs) and correlating them to the cycling performance of the anodes fabricated with such binders. The gel permeation chromatography (GPC) was used to validate the MWs of six PAA binders (PAA1 to PAA6). Those binders then underwent a series of characterizations, including rheology study, half-cell cycling, scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR). It is observed that the MWs of PAA binders not only affected the viscosities of the binder solutions but also impacted the cycling performance, possibly due to the cohesion changes. A range of 24-150 kDa is found to be optimal for minimizing the rate and extent of capacity fade and maintaining the cohesion in the electrode matrix despite the dramatic volumetric changes due to Si alloying.
International Nuclear Information System (INIS)
Karve, Atul A.; Keller, Paul M.; Turinsky, Paul J.; Maldonado, G. Ivan
2001-01-01
approach is that many histories, i.e., combinations of decision variables, must be evaluated, which implies that many core physics calculations are required to determine the family of near-optimum decisions. To reduce computer execution time, highly efficient, core physics models with only the fidelity required for the assigned task are utilized. Ideally, one would like to utilize the same core physics models for all nuclear problems for consistency and ease of usage, which may someday occur with increases in computational power and advances in computational reactor physics. In considering core physics models, a unique aspect for nuclear fuel management optimization applications is that many repetitive calculations need to be completed during the optimization search. This implies that considerable overhead can be tolerated to reduce the computational time per history since the overhead will be amortized over many histories. This feature can imply the employment of different solution approaches than normally utilized. How various suboptimum problems integrate in an attempt to address the global optimization problem is now explained. The out-of-core optimization OCEON-P code has a number of decision variables, but the only decision that carries-forward in the reload design process is the cycling scheme, i.e., batch sizes in each cycle of the planning horizon. Note that OCEON-P is the only optimization code within the suite that truly does multicycle optimization and so can meaningfully evaluate and minimize levelized fuel cycle cost. The FORMOSA-L code optimizes the lattice, normally constrained to follow a specified reactivity versus burnup. This constraint provides the linkage to the core-wide analysis but is problematic to obtain. There currently does not exist within the suite of codes one that addresses the suboptimum problem of bundle design, which other researchers have addressed to a limited extent. With our current capabilities, a number of different bundle designs
DEFF Research Database (Denmark)
Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.
2002-01-01
For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...
Optimal refueling principle of research and test reactors and its application
International Nuclear Information System (INIS)
Peng Feng; Sun Shouhua; Bu Yongxi
1993-01-01
Based on basic formula for core refueling, the optimal refueling principle for cores with fuel assemblies of different burnup are suggested. Some conclusions derived from this principle are given. Calculation formula for different refueling scheme and computation programme are derived and used for the HFETR typical core loading with different refueling scheme. With the suggested core fuel consuming index, core fuel managements of 24 cycles in 10 years operation of HFETR were analyzed. Results show that the application of optimal refueling principle can greatly save the fuel consuming. Direction of HFETR core fuel management research was also di cussed
Optimized phases for reactor dismantling – an efficient and sustainable concept
International Nuclear Information System (INIS)
Krüger, S.; Winter, J.
2013-01-01
D&D projects are driven by costs, to implement an optimization process from the very beginning is key. Optimized strategy and sequencing of the dismantling (hot to cold) will provide serious economical savings . Larger dismantling packages will reduce interfaces and ease the coordination efforts on site. Early usage of mobile systems will ease the large-scale release for dismantling Social transition has to be addressed with priority and to be planned at an early phase in the D&D planning Concept, Planning & Project Management will influence the success of the project much more than the used technique
Optimization of a Monte Carlo Model of the Transient Reactor Test Facility
Energy Technology Data Exchange (ETDEWEB)
Smith, Kristin; DeHart, Mark; Goluoglu, Sedat
2017-03-01
The ultimate goal of modeling and simulation is to obtain reasonable answers to problems that don’t have representations which can be easily evaluated while minimizing the amount of computational resources. With the advances during the last twenty years of large scale computing centers, researchers have had the ability to create a multitude of tools to minimize the number of approximations necessary when modeling a system. The tremendous power of these centers requires the user to possess an immense amount of knowledge to optimize the models for accuracy and efficiency.This paper seeks to evaluate the KENO model of TREAT to optimize calculational efforts.
Development and optimization of models for full-range reactor simulator
International Nuclear Information System (INIS)
Vidlicka, R.
1989-01-01
The full-scale WWER-440 reactor simulator in Trnava, Czechoslovakia, comprises 20 models describing the primary circuit and 20 models describing the secondary circuit of nuclear power plants. With respect to the prospects of its further improvement, the main drawback of the adopted simulator conception is the inclusion of special electronics in the creation of the models. Also, the informative part of the simulator was imperfectly solved till 1987: the information system ORION, employed in nuclear power plants, was substituted by tables displayed on monochrome monitors. Now the ORION system is included. A further improvement emerged from the reconstruction owing to the use of a better computer with a larger memory capacity, which enabled part of the models to be transferred from the electronics to computer programs. The potential for applying complex programs to the description of the individual technological units of nuclear power plants improved as well. (Z.M.)
Optimization of the fuel cell of a spectral shift controlled reactor
International Nuclear Information System (INIS)
Alcala, F.
1984-01-01
Some low enriched uranium-graphite watercooled cells are analyzed from the point of view of both neutronic and thermal behavior. Such cells are of greater interest if their reactivity control is carried out by means of spectral shifting. This may be achieved by changing the relative concentration of a mixture of heavy and light water used as a coolant that flows through a system of tubes arranged in the graphite blocks. The increase of the relative fraction of light water during the burnup cycle extends the length of the cycle and makes it less proliferative. Performance of a cell of this kind is compared with that of a typical pressurized water reactor cell having the same type of fuel, degree of enrichment, specific power, and total power output
Optimization of biogas production from wheat straw stillage in UASB reactor
Energy Technology Data Exchange (ETDEWEB)
Kaparaju, Prasad; Serrano, Maria; Angelidaki, Irini [Institute of Environment and Resources, Technical University of Denmark, Building 115, DK-2800 Kgs. Lyngby (Denmark)
2010-12-15
In the present study, thermophilic anaerobic digestion of wheat straw stillage was investigated. Methane potential of stillage was determined in batch experiments at two different substrate concentrations. Results showed that higher methane yields of 324 ml/g-(volatile solids) VS{sub added} were obtained at stillage concentrations of 12.8 g-VS/L than at 25.6 g-VS/l. Continuous anaerobic digestion of stillage was performed in an up-flow anaerobic sludge blanket (UASB) reactor at 55 C with 2 days hydraulic retention time. Results showed that both substrate concentration and organic loading rate (OLR) influenced process performance and methane yields. Maximum methane yield of 155 ml CH{sub 4}/g-COD was obtained at stillage mixtures with water of 25% (v/v) in the feed and at an OLR of 17.1 g-COD/(l.d). Soluble chemical oxygen demand (SCOD) removal at this OLR was 76% (w/w). Increase in OLR to 41.2 g-COD/(l.d) and/or stillage concentration in the feed to 33-50% (v/v) resulted in low methane yields or complete process failure. The results showed that thermophilic anaerobic digestion of wheat straw stillage alone for methane production is feasible in UASB reactor at an OLR of 17.1 g-COD/(l.d) and at substrate concentration of 25% in the feed. The produced methane could improve the process energy and economics of a bioethanol plant and also enable to utilize the stillage in a sustainable manner. (author)
Optimization of biogas production from wheat straw stillage in UASB reactor
International Nuclear Information System (INIS)
Kaparaju, Prasad; Serrano, Maria; Angelidaki, Irini
2010-01-01
In the present study, thermophilic anaerobic digestion of wheat straw stillage was investigated. Methane potential of stillage was determined in batch experiments at two different substrate concentrations. Results showed that higher methane yields of 324 ml/g-(volatile solids) VS added were obtained at stillage concentrations of 12.8 g-VS/L than at 25.6 g-VS/l. Continuous anaerobic digestion of stillage was performed in an up-flow anaerobic sludge blanket (UASB) reactor at 55 o C with 2 days hydraulic retention time. Results showed that both substrate concentration and organic loading rate (OLR) influenced process performance and methane yields. Maximum methane yield of 155 ml CH 4 /g-COD was obtained at stillage mixtures with water of 25% (v/v) in the feed and at an OLR of 17.1 g-COD/(l.d). Soluble chemical oxygen demand (SCOD) removal at this OLR was 76% (w/w). Increase in OLR to 41.2 g-COD/(l.d) and/or stillage concentration in the feed to 33-50% (v/v) resulted in low methane yields or complete process failure. The results showed that thermophilic anaerobic digestion of wheat straw stillage alone for methane production is feasible in UASB reactor at an OLR of 17.1 g-COD/(l.d) and at substrate concentration of 25% in the feed. The produced methane could improve the process energy and economics of a bioethanol plant and also enable to utilize the stillage in a sustainable manner.
A thorium breeder reactor concept for optimal energy extraction from uranium and thorium
International Nuclear Information System (INIS)
Jagannnathan, V.; Lawande, S.V.
1999-01-01
An attractive thorium breeder reactor concept has been evolved from simple physics based guidelines for induction of thorium in a major way in an otherwise enriched uranium reactor. D 2 O moderator helps to maximise reactivity for a given enrichment. A relatively higher flux level compared to LWRs offers the advantage of higher rate of 233 U production in thoria rods. Thus fresh thoria clusters consider no feed enrichment. In an equilibrium core, a full batch of pure thoria clusters are loaded during each fuel cycle. They undergo irradiation for about one year duration. By this time they accumulate nearly 70% of the asymptotic stable concentration of 233 U, if they face a flux level of the order of 10 14 n/cm 2 /sec. In the next fuel cycle, these thoria rods in ring cluster form are juxtaposed with the fresh enriched fuel rods, also in ring cluster form. Such integrated fuel assemblies are then irradiated for four or five fuel cycles, at the end of which U as well as Th rods attain a reasonably high burnup of about 30-32 MWD/kg. The core characteristics are quite attractive. The core excess reactivity remains low due to large thoria inventory which makes the net burnup reactivity load to be below 1%. The core is capable of being operated in an annual batch mode of operation like a LWR. The control requirement during power operation is negligible. Xenon over-ride requirement is low and can be managed by partial withdrawal of a few thoria clusters. Void reactivity is nearly zero or negative by the optimum design of the fuel cluster. Reactivity changes due to temperatures of fuel, coolant and moderator are also small. (author)
International Nuclear Information System (INIS)
Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.
2006-01-01
Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography
Energy Technology Data Exchange (ETDEWEB)
Machado, Marcelo Dornellas; Sacco, Wagner Figueiredo; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear
2000-07-01
Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to introduce a new niching technique based on the fuzzy clustering method FCM, bearing in mind its eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. tests are performed using widely known test functions and their results show that the new method is quite promising, specially to a future application in real world problems like the nuclear reactor core reload. (author)
Basak, Shibabrata; Jansen, Jacob; Kabiri, Yoones; Zandbergen, Henny W
2018-05-01
The key to understanding the performance of Li-O 2 batteries is to study the chemical and structural properties of their discharge product(s) at the nanometer scale. Using TEM for this purpose poses challenges due to the sensitivity of samples to air and electron beams. This paper describes our use of in situ EELS to evaluate experimental procedures to reduce electron-beam degradation and presents methods to deal with air sensitivity. Our results show that Li 2 O 2 decomposition is dependent on the total dose and is approximately 4-5 times more pronounced at 80 than at 200 kV. We also demonstrate the benefits of using low-dose-rate STEM. We show further that a "graphene cell", which encapsulates the sample within graphene sheets, can protect the sample against air and e-beam damage. Copyright © 2018 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Dan Qin
2017-01-01
Full Text Available Recycling and reusing of poly (ethylene terephthalate (PET fabrics waste are essential for reducing serious waste of resources and environmental pollution caused by low utilization rate. The liquid-phase polymerization method has advantages of short process flow, low energy consumption, and low production cost. However, unlike prepolymer, the material characteristics of PET fabrics waste (complex composition, high intrinsic viscosity, and large quality fluctuations make its recycling a technique challenge. In this study, the falling film-rotating disk combined reactor is proposed, and the continuous liquid-phase polymerization is modeled by optimizing and correcting existing models for the final stage of PET polymerization to improve the product quality in plant production. Through modeling and simulation, the weight analysis of indexes closely related to the product quality (intrinsic viscosity, carboxyl end group concentration, and diethylene glycol content was investigated to optimize the production process in order to obtain the desired polymer properties and meet specific product material characteristics. The model could be applied to other PET wastes (e.g., bottles and films and extended to investigate different aspects of the recycling process.
Time-optimal control of nuclear reactor power with adaptive proportional- integral-feedforward gains
International Nuclear Information System (INIS)
Park, Moon Ghu; Cho, Nam Zin
1993-01-01
A time-optimal control method which consists of coarse and fine control stages is described here. During the coarse control stage, the maximum control effort (time-optimal) is used to direct the system toward the switching boundary which is set near the desired power level. At this boundary, the controller is switched to the fine control stage in which an adaptive proportional-integral-feedforward (PIF) controller is used to compensate for any unmodeled reactivity feedback effects. This fine control is also introduced to obtain a constructive method for determining the (adaptive) feedback gains against the sampling effect. The feedforward control term is included to suppress the over-or undershoot. The estimation and feedback of the temperature-induced reactivity is also discussed
Design and Realization of a Smart Battery Management System
C. Chen; K.L. Man; T.O. Ting; Chi-Un Lei; T. Krilavicius; T.T. Jeong; J.K. Seon; Sheng-Uei Guan; Prudence W.H. Wong
2012-01-01
Battery management system (BMS) emerges a decisive system component in battery-powered applications, such as (hybrid) electric vehicles and portable devices. However, due to the inaccurate parameter estimation of aged battery cells and multi-cell batteries, current BMSs cannot control batteries optimally, and therefore affect the usability of products. In this paper, we proposed a smart management system for multi-cell batteries, and discussed the development of our research study in three di...
International Nuclear Information System (INIS)
Dias, A.F.; Ishiguro, Y.
1986-04-01
Comparative analyses of a commercial-size Pu/U-fueled liquid metal fast breeder reactor and two binary breeder reactors with different numbers of enrichment zones have been done. Principal parameters of comparison are safety and breeding characteristics and reactivity losses during an operational cycle. The comparison shows that in a binary breeder reactor, good breeding characteristics in both cycles, Pu/U and U/Th, in addition to a possibility of an efficient utilization of thorium, and superior inherent safety than current LMFBRs can be achieved. (Author) [pt
International Nuclear Information System (INIS)
Moore, B.R.; Turinsky, P.J.
1998-01-01
Boiling water reactor (BWR) loading pattern assessment requires solving the two-group, nodal form of the neutron diffusion equation and drift-flux form of the fluid equations simultaneously because these equation sets are strongly coupled via nonlinear feedback. To reduce the computational burden associated with the calculation of the core attributes (that is, core eigenvalue and thermal margins) of a perturbed BWR loading pattern, the analytical and numerical aspects of a higher order generalized perturbation theory (GPT) method, which correctly addresses the strong nonlinear feedbacks of two-phase flow, have been established. Inclusion of Jacobian information in the definition of the generalized flux adjoints provides for a rapidly convergent iterative method for solution of the power distribution and eigenvalue of a loading pattern perturbed from a reference state. Results show that the computational speedup of GPT compared with conventional forward solution methods demanding consistent accuracy is highly dependent on the number of spatial nodes utilized by the core simulator, varying from superior to inferior performance as the number of nodes increases
Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor
International Nuclear Information System (INIS)
Castro, Vinicius Alexandre de
2014-01-01
Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)
An automated optimization of core fuel loading pattern for pressurized water reactors
International Nuclear Information System (INIS)
Chen Renji
1988-11-01
An optimum method was adopted to search for an optimum fuel loading pattern in pressurized water reactors. A radial power peak factor was chosen as the objective function of the optimum loading. The direct search method with shuffling rules is used to find optimum solution. The search for an optimum loading pattern with the smallest radial power peak by exchanging fuel assemblies was made. The search process is divided into two steps. In the first step fresh fuels or high reactivity fuels are arranged which are placed in core interior to have a reasonable fuel loading pattern. To further reduce the radial power peak factor, the second step will be necessary to rearrange the exposed lower reactivity fuel around the assemblies which has the radial power peak. In optimum process 1.5 group coarse mesh diffusion theory or two group nodal Green function diffusion theory is utilized to calculate the two dimensional power distribution after each shuffle. Also, above two methods are combinatively utilized to calculate the state quantity. It is not only true to save CPU time, but also can obtian exact results. Besides above function, the code MSOFEL is used to search critical boron concentration and to predict burn-up. The code has been written with FORTRAN-4. The optimum loading pattern was chosen for OCONEE and QINSHAN nuclear power plants as reference examples. The validity and feasibility of MSOFEL was demonstrated
Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...
Directory of Open Access Journals (Sweden)
ZANARIAH MOHD DOM
2014-06-01
Full Text Available Medium-chain acylglycerols (or glycerides are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD with the presence of oil palm mesocarp lipase (OPML which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol are optimize in order to determine the factors that have significant effects on the reaction condition and high yield of MCA. Response surface methodology (RSM was applied to optimize the reaction conditions. The reaction conditions, namely, the reaction time (30-240 min, enzyme load (0.5-1.5 kg, silica gel load (0.2-1.0 kg, and solvent amount (200-600 vol/wt. Reaction time, enzyme loading and solvent amount strongly effect MCA synthesis (p0.05 influence on MCA yield. Best-fitting models were successfully established for MCA yield (R 2 =0.9133. The optimum MCA yield were 75% from the predicted value and 75.4% from the experimental data for 6 kg enzyme loading, a reaction time of 135min and a solvent amount of 350 vol/wt at 65ºC reaction temperature. Verification of experimental results under optimized reaction conditions were conducted, and the results agreed well with the predicted range. Esterification products (mono-, di- and triacylglycerol from the PBR were identified using Thin Layer Chromatography method. The chromatograms showed the successful fractionation of esterified products in this alternative method of process esterification.
Pagnanelli, Francesca; Moscardini, Emanuela; Altimari, Pietro; Abo Atia, Thomas; Toro, Luigi
2017-02-01
Experimental results of leaching tests using waste fractions obtained by mechanical pretreatment of lithium ion batteries (LIB) were reported. Two physical pretreatments were performed at pilot scale in order to recover electrodic powders: the first including crushing, milling, and sieving and the second granulation, and sieving. Recovery yield of electrodic powder was significantly influenced by the type of pretreatment. About 50% of initial LIB wastes was recovered by the first treatment (as electrodic powder with size extraction. Solid/liquid ratios and sulfuric acid concentrations were changed according to factorial designs at constant temperature (80°C). Optimized conditions for quantitative extraction (>99%) of Co and Li from Sample 1 are 1/10g/mL as solid/liquid ratio and +50% stoichiometric excess of acid (1.1M). Using the same solid/liquid ratio, +100% acid excess (1.2M) is necessary to extract 96% of Co and 86% of Li from Sample 2. Best conditions for leaching of Sample 2 using glucose are +200% acid excess (1.7M) and 0.05M glucose concentration. Optimized conditions found in this work are among the most effective reported in the literature in term of Co extraction and reagent consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Sayed, M.M., E-mail: M.M.Sayed@ieee.org; Saad, M.S.; Emara, H.M.; Abou El-Zahab, E.E.
2013-09-15
Highlights: • A modified version of the BBO was proposed. • A novel method for interval type-2 FLC design tuned by MBBO was proposed. • The performance of the ETRR-2 was improved by using IT2FLC tuned by MBBO. -- Abstract: Power stabilization is a critical issue in nuclear reactors. The conventional proportional derivative (PD) controller is currently used in the Egyptian second testing research reactor (ETRR-2). In this paper, we propose a modified biogeography-based optimization (MBBO) algorithm to design the interval type-2 fuzzy logic controller (IT2FLC) to improve the performance of the Egyptian second testing research reactor (ETRR-2). Biogeography-based optimization (BBO) is a novel evolutionary algorithm that is based on the mathematical models of biogeography. Biogeography is the study of the geographical distribution of biological organisms. In the BBO model, problem solutions are represented as islands, and the sharing of features between solutions is represented as immigration and emigration between the islands. A modified version of the BBO is applied to design the IT2FLC to get the optimal parameters of the membership functions of the controller. We test the optimal IT2FLC obtained by modified biogeography-based optimization (MBBO) using the integral square error (ISE) and is compared with the currently used PD controller.
Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed
2016-12-01
Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.
Directory of Open Access Journals (Sweden)
Vacheva Gergana
2017-01-01
Full Text Available While the number of the vehicle actuated with liquid fuels are settled, the count of electric vehicles is increasing. For the present moment most of them are scheduled for daily urban usage. This paper presents an analytical approach for estimation of the impact of electrical vehicle (EV battery charging on the distribution grid. Based on the EV charge profile, load curve and local distributed generation the grid nodes, the time variation of grid parameters is obtained. A set of typical load profiles of EV charging modes is studied and presented. A software implementation and a 24h case study of low voltage distribution network with EV charging devices is presented in order to illustrate the approach and the impacts of EV charging on the grid. In the current paper an approach using variable nonlinear algebraic equations for dynamic time domain analysis of the charge of the electric vehicles is presented. Based on the results, the challenges due to EV charging in distribution networks including renewable energy sources are discussed. This approach is widely applicable for various EV charging and distributed energy resources studies considering control algorithms, grid stability analysis, smart grid power management and other power system analysis problems.
International Nuclear Information System (INIS)
2005-06-01
Project (CRP) on Optimization of the Coupling of Nuclear Reactors and Desalination Systems with participation of institutes from nine Member States. The CRP was initiated as a step forward for facilitating an early deployment in developing countries, where nuclear desalination is being considered as an option to cope with fresh water deficit as well as energy in the coming decade. The CRP has enabled the IAEA and participating institutes to accumulate relevant information on the latest research and development in the field of nuclear desalination and share it with interested Member States. The CRP has produced optimum coupling configurations of nuclear and desalination systems, evaluated their performance and identified technical features, which may require further assessment for detailed specifications of large-scale nuclear desalination plants. This publication highlights the outcomes of projects under this CRP and draw lessons and suggestions for further investigation for deployment of nuclear desalination
International Nuclear Information System (INIS)
Yilmaz, Serkan; Ivanov, Kostadin; Levine, Samuel; Mahgerefteh, Moussa
2006-01-01
An efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poison (BP) placement optimization problem in the reference Three Mile Island-1 (TMI-1) core. Core BP optimization problem means developing a BP loading map for a given core loading pattern that minimizes the total Gadolinium (Gd) amount in the core without violating any design constraints. The number of UO 2 /Gd 2 O 3 pins and Gd 2 O 3 concentrations for each fresh fuel location in the core are the decision variables. The objective function was to minimize the total amount of Gd in the core together with the residual Gd reactivity binding at the End-of-Cycle (EOC). The constraints are to keep the maximum peak pin power during the core depletion and soluble boron (SOB) concentration at the Beginning of Cycle (BOC) both less than their limit values. The innovation of this study was to search all of the possible UO 2 /Gd 2 O 3 fuel assembly designs with variable number of UO 2 /Gd 2 O 3 fuel pins and concentration of Gd 2 O 3 in the overall decision space. The use of different fitness functions guided the solution towards desired (good solutions) region in the solution space, which accelerated the GA solution. The main objective of this study was to develop a practical and efficient GA tool and to apply this tool to designing an optimum BP pattern for a given core loading
Zhilenkov, A. A.; Chernyi, S. G.; Nyrkov, A. P.; Sokolov, S. S.
2017-10-01
Nitrides of group III elements are a very suitable basis for deriving light-emitting devices with the radiating modes lengths of 200-600 nm. The use of such semiconductors allows obtaining full-color RGB light sources, increasing record density of a digital data storage device, getting high-capacity and efficient sources of white light. Electronic properties of such semi-conductors allow using them as a basis for high-power and high-frequency transistors and other electronic devices, the specifications of which are competitive with those of SiC-based devices. Only since 2000, the technology of cultivation of crystals III-N of group has come to the level of wide recognition by both abstract science, and the industry that has led to the creation of the multi-billion dollar market. And this is despite a rather low level of development of the production technology of devices on the basis of III-N of materials. The progress that has happened in the last decade requires the solution of the main problem, constraining further development of this technology today - ensuring cultivation of III-N structures of necessary quality. For this purpose, it is necessary to solve problems of the analysis and optimization of processes in installations of epitaxial growth, and, as a result, optimization of its constructions.
Directory of Open Access Journals (Sweden)
Felipe Cerdas
2018-01-01
Full Text Available The quest towards increasing the energy density of traction battery technologies has led to the emergence and diversification of battery materials. The lithium sulfur battery (LSB is in this regard a promising material for batteries due to its specific energy. However, due to its low volumetric energy density, the LSB faces challenges in mobility applications such as electric vehicles but also other transportation modes. To understand the potential environmental implication of LSB batteries, a comparative Life Cycle Assessment (LCA was performed. For this study, electrodes for both an NMC111 with an anode graphite and a LSB battery cell with a lithium metal foil as anode were manufactured. Data from disassembly experiments performed on a real battery system for a mid-size passenger vehicle were used to build the required life cycle inventory. The energy consumption during the use phase was calculated using a simulative approach. A set of thirteen impact categories was evaluated and characterized with the ReCiPe methodology. The results of the LCA in this study allow identification of the main sources of environmental problems as well as possible strategies to improve the environmental impact of LSB batteries. In this regard, the high requirements of N-Methyl-2-pyrrolidone (NMP for the processing of the sulfur cathode and the thickness of the lithium foil were identified as the most important drivers. We make recommendations for necessary further research in order to broaden the understanding concerning the potential environmental implication of the implementation of LSB batteries for mobility applications.
International Nuclear Information System (INIS)
Abdel-Aal, M.M.Z.
2004-01-01
Automation in large, complex systems such as chemical plants, electrical power generation, aerospace and nuclear plants has been steadily increasing in the recent past. automated diagnosis and control forms a necessary part of these systems,this contains thousands of alarms processing in every component, subsystem and system. so the accurate and speed of diagnosis of faults is an important factors in operation and maintaining their health and continued operation and in reducing of repair and recovery time. using of artificial intelligence facilitates the alarm classifications and faults diagnosis to control any abnormal events during the operation cycle of the plant. thesis work uses the artificial neural network as a powerful classification tool. the work basically is has two components, the first is to effectively train the neural network using particle swarm optimization, which non-derivative based technique. to achieve proper training of the neural network to fault classification problem and comparing this technique to already existing techniques
International Nuclear Information System (INIS)
Willem Janssens, Ir.; Crutzen, Y.; Farfaletti-Casali, F.; Matera, R.
1991-01-01
The design optimization study of an innovative divertor concept for future experimental tokamak-type fusion devices is both an answer to the actual problems encountered in the multilayer divertor proposals and an illustration of a rational modelling philosophy and optimization strategy for the development of a new divertor structure. Instead of using mechanical attachment or metallurgical bonding of the protective material to the heat sink as in most actual divertor concepts, the so-called brush divertor in this study uses an array of unidirectional fibers penetrating in both the protective armor and the underling composite heat sink. Although the approach is fully concentrated on the divertor performance, including both a description of its function from the theoretical point of view and an overview of the problems related to the materials choice and evaluation, both the approach followed in the numerical modelling and the judgment of the results are thought to be valid also for other applications. Therefore the spin-off of the study must be situated in both the technological progress towards a feasible divertor solution, which introduces no additional physical uncertainties, and in the general area of the thermo-mechanical finite-element modelling on both macro-and microscale. The brush divertor itself embodies the use, and thus the modelling, of advanced materials such as tailor-made metal matrix composites and dispersion strengthened metals, and is shown to offer large potential advantages, demanding however and experimental validation under working conditions. It is clearly indicated where the need originates for an integrated experimental program which must allow to verify the basic modelling assumptions in order to arrive at the use of numerical computation as a powerful and realistic tool of structural testing and life-time prediction
García-Quismondo, Enrique; Santos, Cleis; Lado, Julio; Palma, Jesús; Anderson, Marc A
2013-10-15
Capacitive deionization (CDI) is a rapidly emerging desalination technology that promises to deliver clean water while storing energy in the electrical double layer (EDL) near a charged surface in a capacitive format. Whereas most research in this subject area has been devoted to using CDI for removing salts, little attention has been paid to the energy storage aspect of the technology. However, it is energy storage that would allow this technology to compete with other desalination processes if this energy could be stored and reused efficiently. This requires that the operational aspects of CDI be optimized with respect to energy used both during the removal of ions as well as during the regeneration cycle. This translates into the fact that currents applied during deionization (charging the EDL) will be different from those used in regeneration (discharge). This paper provides a mechanistic analysis of CDI in terms of energy consumption and energy efficiencies during the charging and discharging of the system under several scenarios. In a previous study, we proposed an operational buffer mode in which an effective separation of deionization and regeneration steps would allow one to better define the energy balance of this CDI process. This paper reports on using this concept, for optimizing energy efficiency, as well as to improve upon the electro-adsorption of ions and system lifetime. Results obtained indicate that real-world operational modes of running CDI systems promote the development of new and unexpected behavior not previously found, mainly associated with the inhomogeneous distribution of ions across the structure of the electrodes.
Fan, Chao-Ying; Xiao, Pin; Li, Huan-Huan; Wang, Hai-Feng; Zhang, Lin-Lin; Sun, Hai-Zhu; Wu, Xing-Long; Xie, Hai-Ming; Zhang, Jing-Ping
2015-12-23
In this work, the chemical interaction of cathode and lithium polysulfides (LiPSs), which is a more targeted approach for completely preventing the shuttle of LiPSs in lithium-sulfur (Li-S) batteries, has been established on the electrode level. Through simply posttreating the ordinary sulfur cathode in atmospheric environment just for several minutes, the Au nanoparticles (Au NPs) were well-decorated on/in the surface and pores of the electrode composed of commercial acetylene black (CB) and sulfur powder. The Au NPs can covalently stabilize the sulfur/LiPSs, which is advantageous for restricting the shuttle effect. Moreover, the LiPSs reservoirs of Au NPs with high conductivity can significantly control the deposition of the trapped LiPSs, contributing to the uniform distribution of sulfur species upon charging/discharging. The slight modification of the cathode with <3 wt % Au NPs has favorably prospered the cycle capacity and stability of Li-S batteries. Moreover, this cathode exhibited an excellent anti-self-discharge ability. The slight decoration for the ordinary electrode, which can be easily accessed in the industrial process, provides a facile strategy for improving the performance of commercial carbon-based Li-S batteries toward practical application.
Murugan, Bala; S., Manoharan
2016-01-01
This paper proposes a Optimal Power Flow Management control for Grid Connected Photovoltaic/Wind turbine/ Diesel generator (GCPWD) Hybrid System with hybrid storage system. The energy system having a photo voltaic (PV) panel, wind turbine (WT) and diesel generator (DG) for continuous power flow management. A diesel generator is added to ensure uninterrupted power supply due to the discontinuous nature of solar and wind resources. The developed Grid Connected Photovoltaic/Wind turbine/ Diesel ...
Directory of Open Access Journals (Sweden)
Chengfen Zhang
2015-01-01
Full Text Available Dry-type air-core reactor is now widely applied in electrical power distribution systems, for which the optimization design is a crucial issue. In the optimization design problem of dry-type air-core reactor, the objectives of minimizing the production cost and minimizing the operation cost are both important. In this paper, a multiobjective optimal model is established considering simultaneously the two objectives of minimizing the production cost and minimizing the operation cost. To solve the multi-objective optimization problem, a memetic evolutionary algorithm is proposed, which combines elitist nondominated sorting genetic algorithm version II (NSGA-II with a local search strategy based on the covariance matrix adaptation evolution strategy (CMA-ES. NSGA-II can provide decision maker with flexible choices among the different trade-off solutions, while the local-search strategy, which is applied to nondominated individuals randomly selected from the current population in a given generation and quantity, can accelerate the convergence speed. Furthermore, another modification is that an external archive is set in the proposed algorithm for increasing the evolutionary efficiency. The proposed algorithm is tested on a dry-type air-core reactor made of rectangular cross-section litz-wire. Simulation results show that the proposed algorithm has high efficiency and it converges to a better Pareto front.
International Nuclear Information System (INIS)
Ferrada, Juan J.; Reiersen, Wayne T.
2011-01-01
U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment
International Nuclear Information System (INIS)
Novosel, D.
2006-01-01
In this paper is presented development and optimization of the tube end effector design which should consist of 4 ultrasonic transducers, 4 Eddy Current's transducers and Radiation Proof Dot Camera. Basically, designing was conducted by main input requests, such as: inner diameter of a tested reactor pressure vessel head penetration tube, dimensions of a transducers and maximum allowable vertical movement of a manipulator connection rod in order to cover all inner tube surface. As is obvious, for ultrasonic testing should be provided the thin layer of liquid material (in our case water was chosen) which is necessary to make physical contact between transducer surface and investigated inner tube surface. By help of Computational Fluid Dynamics, determined were parameters of geometry, as the most important factor of transducer housing, hydraulically parameters for water supply and primary drain together implemented into this housing, movement of the end effectors (vertical and cylindrical) and finally, necessary equipment which has to provide all hydraulically and pneumatic requirements. As the cylindrical surface of the inner tube diameter was liquefied and contact between transducer housing and tested tube wasn't ideally covered, water leakage could occur in downstream direction. To reduce water leakage, which is highly contaminated, developed was second water drain by diffuser assembly which is driven by Venturi pipe, commercially called vacuum generator. Using the Computational Fluid Dynamic, obtained was optimized geometry of diffuser control volume with the highest efficiency, in other words, unobstructed fluid flux. Afterwards, the end effectors system was synchronized to the existing operable system for NDT methods all invented and designed by INETEC. (author)
International Nuclear Information System (INIS)
Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Sheibani, S.
2011-01-01
Highlights: ► A UASB was successfully used for treatment of petroleum refinery effluent. ► Response surface methodology was applied to design and analysis of experiments. ► System was modeled between efficient factors include HRT, influent COD and V up . ► UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m 3 d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V up ) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V up of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.
Kolesnichenko, Ya. I.; Lutsenko, V. V.; Wobig, H.; Yakovenko, V.
2002-02-01
This work investigates circulating-particle-induced Alfvén instabilities in optimized stellarators of the Wendelstein line [F. Wagner, Trans. Fusion Tech. 33, 67 (1998)]. A general expression for the growth rate of the instabilities is obtained and analyzed. It is shown that the absence of the axial symmetry makes it possible that various types of Alfvén eigenmodes will be destabilized; both the kind of destabilized Alfvén eigenmodes and the type of the resonances driving the instability may differ from those in tokamaks. In particular, an important role of the helicity-induced resonance is predicted. The discovered new resonances may considerably increase the instability growth rate of both the "gap" modes and the eigenmodes residing below cylindrical Alfvén continuum. The upper limits of the local energy losses of circulating α-particles caused by various Alfvén instabilities in a four-period Helias reactor [C. D. Beidler et al., in Fusion Energy 2000, 18th International Atomic Energy Agency Conference Proceedings, Sorrento, 2000 (International Atomic Energy Agency, Vienna, 2001), Report IAEA-CN-77/FT/4] are evaluated. It is found that certain destabilized Alfvén eigenmodes will affect only alphas with the energy well below 3.5 MeV, which seems to open a possibility to remove the helium ash by exciting the corresponding Alfvén eigenmodes by either energetic particles or an antenna system.
International Nuclear Information System (INIS)
Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J.K.
2011-01-01
In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH 3 -N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1 L/min and contact time of 5.5 h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH 3 -N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
Energy Technology Data Exchange (ETDEWEB)
Aziz, Shuokr Qarani [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia); Aziz, Hamidi Abdul, E-mail: cehamidi@eng.usm.my [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia); Yusoff, Mohd Suffian; Bashir, Mohammed J.K. [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia)
2011-05-15
In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH{sub 3}-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1 L/min and contact time of 5.5 h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH{sub 3}-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
Energy Technology Data Exchange (ETDEWEB)
Rastegar, S.O. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mousavi, S.M., E-mail: mousavi_m@modares.ac.ir [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shojaosadati, S.A. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheibani, S. [R and T Management Department, National Iranian Oil Refining and Distribution Company, Tehran (Iran, Islamic Republic of)
2011-12-15
Highlights: Black-Right-Pointing-Pointer A UASB was successfully used for treatment of petroleum refinery effluent. Black-Right-Pointing-Pointer Response surface methodology was applied to design and analysis of experiments. Black-Right-Pointing-Pointer System was modeled between efficient factors include HRT, influent COD and V{sub up}. Black-Right-Pointing-Pointer UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m{sup 3} d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V{sub up}) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V{sub up} of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.
International Nuclear Information System (INIS)
Gomez, A.
2008-01-01
With the increase in environmental considerations, such as the control of greenhouse emissions, and with the decrease in the fossil energy resources, hydrogen is currently considered as a promising energy vector. One of the main technological challenges of a future hydrogen economy is its large scale production without fossil fuel emissions. Under this context, nuclear energy is particularly adapted for hydrogen massive production by thermochemical cycles or high temperature electrolysis. One of the selected nuclear systems is the Very High Temperature Reactor (950 C/1200 C), cooled with helium, and dedicated to hydrogen production or to hydrogen electricity cogeneration. The main objective of this investigation, within the framework of a collaboration between CEA, French Atomic Agency (Cadarache) and LGC (Toulouse), consists in defining a technico-economic optimization methodology of electricity-hydrogen cogeneration systems, in order to identify and propose promising development strategies. Among the massive production processes of hydrogen, the thermochemical cycle Iodine-Sulphur has been considered. Taking into account the diversity of the used energies (i.e., heat and electricity) on the one hand and of the produced energies (hydrogen and electricity) on the other hand of the studied cogeneration system, an exergetic approach has been developed due to its ability to consider various energy forms on the same thermodynamical basis. The CYCLOP software tool (CEA) is used for the thermodynamic modelling of these systems. The economic criterion, calculated using the SEMER software tool (CEA), is based on the minimization of the total production site cost over its lifespan i.e., investment, operating costs and nuclear fuel cost. Capital investment involves the development of cost functions adapted to specific technologies and their specific operating conditions. The resulting optimization problems consist in maximizing the energy production, while minimizing the
Directory of Open Access Journals (Sweden)
Kil To Chong
2013-10-01
Full Text Available The main objective of the present work is to apply a sliding mode controller (SMC to medium voltage and high power output energy recovery Li-ion power accumulator battery pack testing systems (ERLPABTSs, which are composed of a three-level neutral-point-clamped (NPC three-phase voltage source inverter (VSI and a two-level buck-boost converter without an isolating transformer. An inner current decoupled control scheme for the aforementioned system is proposed and two sliding mode planes for active and reactive current control are designed based on the control scheme. An optimized switching table for current convergence is used according to the error sign of the equivalent input voltage and feedback voltage. The proposed ERLPABTS could be used to integrate discharging energy into the power grid when performing high accuracy current testing. The active and reactive power references for the grid-connected inverter are determined based on the discharging energy from the DC-DC converter. Simulations and experiments on a laboratory hardware platform using a 175 kW insulated gate bipolar transistor (IGBT-based ERLPABTS have been implemented and verified, and the performance is found satisfactory and superior to conventional ERLPABPTS.
Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Kiggans, Jim; Wood, David L
2013-09-01
Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW=2000 g mol(-1) and 5.0 wt% PEI with MW=10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity. Copyright © 2013 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Lima, Alan M.M. de; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: alan@lmp.ufrj.br; schirru@lmp.ufrj.br
2005-07-01
A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly pattern that maximizes the number of full operational days. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is introduced to solve the nuclear reactor core fuel reload optimization problem. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)
Energy Technology Data Exchange (ETDEWEB)
Chapot, Jorge Luiz C. [ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil); Carvalho Da Silva, Fernando; Schirru, Roberto [COPPE/UFRJ-Nuclear, Rio de Janeiro, RJ (Brazil)
1999-05-01
A Genetic Algorithm (GA) based system, coupling the computer codes GENESIS 5.0 and ANC through the interface ALGER has been developed aiming at pressurized water reactor's (PWR) fuel management optimization. An innovative codification, the List Model (LM), has been incorporated into the system. LM avoids the use of heuristic crossover operators and only generates valid nonrepetitive loading patterns in the reactor core. The LM has been used to solve the Traveling Salesman Problem (TSP). The results got for a benchmark problem were very satisfactory, in terms of precision and computational costs. The GENESIS/ALGER/ANC system has been successfully tested in optimization studies for Angra 1 power plant reloads.
International Nuclear Information System (INIS)
Ramos, R L; Villanueva, A J; Buiront, L
2012-01-01
The minor actinides (MA) burn up optimization in the European Sodium Fast Reactor (ESFR) core was studied by adding different moderating materials in the Minor Actinides Bearing Blanket subassemblies (MABB SA) using the ERANOS neutron code package. These SA are of hexagonal shape and are composed of pellets inside of pins. These pellets contain a mixture of uranium dioxide (UO 2 ) and americium dioxide (AmO 2 ). If some of these pins are replaced by other identical ones containing moderating material instead of minor actinides, a shift in the spectrum towards lower energies is expected, which might enhance the burn up performance. The results of this work demonstrated that the use of compounds of hydrogen and magnesium as moderators produces a shift in the neutron spectrum, improving the porcentual minor actinides consumption. ZrH 2 moderator material was found to exhibit the best performances for this propose, followed by MgO and MgAl 2 O 4 , in that order. The use of SiC, BeO, TiC, LiO 2 and ZrC material produced no effect on the shift of the neutron spectrum. For safety reasons, it seems hardly realistic to use hydrogenous compounds in sodium fast reactors. So, compounds with magnesium are selected to be placed into the pins to improve the porcentual minor actinides consumption. The ESFR core is composed by 817 SA, 453 of them are fuel SA, 247 are reflectors SA, 84 are MABB (Minor Actinides Bearing Blankets) SA and 33 are control and shutdown rods. When about half of the total pins in each MABB were substituted by moderator pins with MgO pellets (135 of 271 pins), the porcentual consumption of minor actinides was of 30.85 %, i.e., 227.22 kg of minor actinides were consumed out of 736.65 kg in the initial configuration. In the case where all the pins of the MABB contained pellets of minor actinides, the porcentual consumption of minor actinides was of 21.26 %, i.e., 312.13 kg of minor actinides were consumed of 1467.87 kg in the initial configuration (author)
A Micro-Grid Battery Storage Management
DEFF Research Database (Denmark)
Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez
2013-01-01
systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...
Directory of Open Access Journals (Sweden)
Yi-Ning Zhang
2017-02-01
Full Text Available Response Surface Methodology (RSM is introduced to optimize the control rod positions in a pressurized water reactor (PWR core. The widely used 3D-IAEA benchmark problem is selected as the typical PWR core and the neutron flux field is solved. Besides, some additional thermal parameters are assumed to obtain the temperature distribution. Then the total and local entropy production is calculated to evaluate the energy dissipation. Using RSM, three directions of optimization are taken, which aim to determine the minimum of power peak factor Pmax, peak temperature Tmax and total entropy production Stot. These parameters reflect the safety and energy dissipation in the core. Finally, an optimization scheme was obtained, which reduced Pmax, Tmax and Stot by 23%, 8.7% and 16%, respectively. The optimization results are satisfactory.
Efficiency-optimized CO2 separation in IGCC power plants by water-gas shift membrane reactors
International Nuclear Information System (INIS)
Schiebahn, Sebastian Thomas
2013-01-01
The conversion of solid fuels such as coal and biomass into syngas in the integrated gasification combined cycle (IGCC) process is carried out at elevated pressure. Since, from a thermodynamic point of view, this is a crucial prerequisite for an efficient CO 2 separation step, IGCC has great potential for incorporating CO 2 separation with a low energy consumption. However, studies predict efficiency penalties in the range of 6-11 %-points depending on the respective gasification process utilized, thus revealing that the thermodynamic potential is not fully exploited. In this thesis, a specially adapted IGCC power plant concept for the optimized implementation of gas separation membranes was developed and investigated in order to evaluate the extent to which the auxiliary boundary conditions can be advantageously designed. To create a standard of comparison, a reference IGCC power plant as well as a Selexol-based CO 2 scrubbing process were designed and simulated, resulting in an overall efficiency reduction from 48.0 % to 38.4 %. This corresponds to an increase of 25 % in coal consumption. The analysis of the simulation results revealed that, besides the auxiliary demand of Selexol scrubbing and CO 2 compression subsequent to the low pressure regeneration of the solvent, the main contributor to the loss is the water-gas shift reaction. To reduce this high efficiency penalty, an integration concept was developed to optimize the use of the gas permeation membrane, with parameters better adapted to its special characteristics and mode of operation. The design process resulted in the use of an H 2 -selective membrane, which was combined with the water-gas shift reaction to create the water-gas shift membrane reactor (WGS-MR), and which was swept with recirculated flue gas at elevated pressure in countercurrent 4-End mode. In addition, the ''membrane steam recuperator'' was introduced as a new process unit and integrated to enhance the steam utilization within the
Energy Technology Data Exchange (ETDEWEB)
Waintraub, Marcel; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: marcel@ien.gov.br; cmnap@ien.gov.br; Baptista, Rafael P. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: rafael@ien.gov.br
2005-07-01
This work presents the development of a distributed parallel genetic algorithm applied to a nuclear reactor core design optimization. In the implementation of the parallelism, a 'Message Passing Interface' (MPI) library, standard for parallel computation in distributed memory platforms, has been used. Another important characteristic of MPI is its portability for various architectures. The main objectives of this paper are: validation of the results obtained by the application of this algorithm in a nuclear reactor core optimization problem, through comparisons with previous results presented by Pereira et al.; and performance test of the Brazilian Nuclear Engineering Institute (IEN) cluster in reactors physics optimization problems. The experiments demonstrated that the developed parallel genetic algorithm using the MPI library presented significant gains in the obtained results and an accentuated reduction of the processing time. Such results ratify the use of the parallel genetic algorithms for the solution of nuclear reactor core optimization problems. (author)
International Nuclear Information System (INIS)
Khalaquzzaman, M.; Kang, Hyun Gook; Kim, Man Cheol; Seong, Poong Hyun
2011-01-01
Research highlights: → Risk, cost, and public risk perception are incorporated to optimize test frequency. → Protection system unavailability decreases with an increasing test frequency. → CDF and spurious trip rate increase with human errors. → Shorter interval tests are notably beneficial when the human error level is very low. → Test error, moderator temperature coefficient, trip cost are key factors. - Abstract: Techniques for optimizing the frequency of periodic surveillance testing of nuclear power plant (NPP) safety systems have been receiving increased attention and growing importance because of the need to reduce system unavailability and maintenance cost. Economic losses from maintenance human errors should be included in estimating periodic testing and maintenance costs because the losses increase with maintenance human errors. This paper proposes a method for optimizing periodic testing intervals of a digital reactor protection system by balancing risk and cost of periodic surveillance tests, in which maintenance human error and public risk perception have been reflected. The risk and costs were estimated from both plant operator and socio-economic standpoints. This model determines the optimal testing frequency for the minimum value of an objective function that consists of all costs, including the monetary values of the consequence of maintenance human errors and reactor core damage. We present a case study using our model for the OPR1000 plant. The study results show the significance of reducing human errors in periodic testing and maintenance. The proposed method is expected to be useful to NPP operators as well as regulators for evaluating the optimal periodic testing frequency of a nuclear reactor protection system and for obtaining information needed in decision making processes.
Models for Battery Reliability and Lifetime
Energy Technology Data Exchange (ETDEWEB)
Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.
2014-03-01
Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.
Advanced integrated battery testing and simulation
Liaw, Bor Yann; Bethune, Keith P.; Yang, Xiao Guang
The recent rapid expansion in the use of portable electronics, computers, personal data assistants, cellular phones, power tools, and even electric and hybrid vehicles creates a strong demand on fast deployment of battery technologies at an unprecedented rate. To facilitate such a development integrated battery testing and simulation (IBTS) using computer modeling is an effective tool to improve our capability of rapid prototyping battery technology and facilitating concurrent product development. In this paper, we will present a state-of-the-art approach to use IBTS for improvements in battery cell design, operation optimization, and even charge control for advanced batteries.
Battery-Aware Scheduling of Mixed Criticality Systems
DEFF Research Database (Denmark)
Wognsen, Erik Ramsgaard; Hansen, Rene Rydhof; Larsen, Kim Guldstrand
2014-01-01
Wireless systems such as satellites and sensor networks are often battery-powered. To operate optimally they must therefore take the performance properties of real batteries into account. Additionally, these systems, and therefore their batteries, are often exposed to loads with uncertain timings...... model we also calculate an upper bound on the attainable number of task instances from a battery, and we provide a battery-aware scheduler that wastes no energy on instances that are not guaranteed to make their deadlines....
... recovery. Alternative Names Swallowing batteries References Hess JM, Lowell MJ. Esophagus, stomach and duodenum. In: Marx JA, ... Jacob L. Heller, MD, MHA, Emergency Medicine, Virginia Mason Medical Center, Seattle, WA. Also reviewed by David ...
International Nuclear Information System (INIS)
Wade, D. C.; Doctor, R. D.; Sienicki, J. J.; Matonis, D. T.; Faibish, R. S.; Moisseytsev, A. V.
2004-01-01
The STAR-H2 concept is devised to attain Gen-IV goals by responding to foreseen mid century needs and market conditions. It is targeted for support of urban centers in developing countries and is designed to fit within a hierarchical hub-spoke architecture based on regional fuel cycle centers, nuclear fuel and hydrogen as long distance energy carriers and distributed electricity generation to mesh with urban energy distribution infrastructures using grid delivery of electricity, hydrogen, potable water, and communications (and sewage return) through a common grid of easements. Long (20 year) refueling interval and full core cassette refueling supported from client country consortia-owned regional fuel cycle (front and back end) service centers, operating under international oversight are intended to make nuclear-based energy security available to countries which don't wish to emplace an indigenous front to back fuel cycle infrastructure. The regional centers, infrequent cassette refueling and full transuranic recycle (both reload and spent fuel cassettes meet the spent fuel standard of self protection) are intended to provide barriers to misuse of materials and facilities for military purposes. Fuel cassette refueling and shipments are conducted by Regional Center personnel. Reactor fissile self sufficient operation and full transuranic multi recycle both extracts the full energy content of the uranium ore, and consigns only fission products to waste. Small to mid sizing permits incremental deployments where capital financing is dear and/or indigenous infrastructure is at an early stage of development. Modular construction, factory fabrication, and delivery of a turnkey heat source reactor to the client's site where a non safety grade balance of plant has already been emplaced by local labor to local standards will facilitate rapid assembly and initiation of revenue generation. The concept employs extensive levels of passive safety to be consistent with a worldwide
Directory of Open Access Journals (Sweden)
M. Ugrina
2018-01-01
Full Text Available In highly congested industrial sites where significant volumes of effluents have to be treated in the minimum contact time, the application of a multi-stage batch reactor is suggested. To achieve better balance between capacity utilization and cost efficiency in design optimization, a two-stage batch reactor is usually the optimal solution. Thus, in this paper, a two-stage batch sorption design approach was applied to the experimental data of cadmium and zinc uptake onto iron-modified zeolite. The optimization approach involves the application of the Vermeulen’s approximation model and mass balance equation to kinetic data. A design analysis method was developed to optimize the removal efficiency and minimum total contact time by combining the time required in the two-stages, in order to achieve the maximum percentage of cadmium and zinc removal using a fixed mass of zeolite. The benefits and limitations of the two-stage design approach have been investigated and discussed
International Nuclear Information System (INIS)
Barati, Ramin
2014-01-01
Highlights: • An innovative optimization technique for multi-objective optimization is presented. • The technique utilizes combination of CA and quasi-simulated annealing. • Mass and deformation of fuel plate are considered as objective functions. • Computational burden is significantly reduced compared to classic tools. - Abstract: This paper presents a new and innovative optimization technique utilizing combination of cellular automata (CA) and quasi-simulated annealing (QSA) as solver concerning conceptual design optimization which is indeed a multi-objective optimization problem. Integrating CA and QSA into a unified optimizer tool has a great potential for solving multi-objective optimization problems. Simulating neighborhood effects while taking local information into account from CA and accepting transitions based on decreasing of objective function and Boltzmann distribution from QSA as transition rule make this tool effective in multi-objective optimization. Optimization of fuel plate safety design while taking into account major goals of conceptual design such as improving reliability and life-time – which are the most significant elements during shutdown – is a major multi-objective optimization problem. Due to hugeness of search space in fuel plate optimization problem, finding optimum solution in classical methods requires a huge amount of calculation and CPU time. The CA models, utilizing local information, require considerably less computation. In this study, minimizing both mass and deformation of fuel plate of a multipurpose research reactor (MPRR) are considered as objective functions. Results, speed, and qualification of proposed method are comparable with those of genetic algorithm and neural network methods applied to this problem before
Energy Technology Data Exchange (ETDEWEB)
Melgar Santa Cecilia, P. A.; Velazquez, J.; Ahnert Iglesias, C.
2014-07-01
In the schemes of low leakage, currently used in the majority of PWR reactors, it makes use of absorbent consumables for the effective control of the factors of peak, the critical concentration of initial boron and the moderator temperature coefficient. One of the most used absorbing is the oxide of gadolinium, which is integrated within the fuel pickup. Occurs a process of optimization of fuel elements with oxide of gadolinium, which allows for a smaller number of configurations with a low peak factor for bar. (Author)
International Nuclear Information System (INIS)
Coban, Ramazan
2014-01-01
Highlights: • A multifeedback-layer neural network controller is presented for a research reactor. • Off-line learning of the MFLNN is accomplished by the PSO algorithm. • The results revealed that the MFLNN–PSO controller has a remarkable performance. - Abstract: In this paper, an artificial neural network controller is presented using the Multifeedback-Layer Neural Network (MFLNN), which is a recently proposed recurrent neural network, for neutronic power level control of a nuclear research reactor. Off-line learning of the MFLNN is accomplished by the Particle Swarm Optimization (PSO) algorithm. The MFLNN-PSO controller design is based on a nonlinear model of the TRIGA Mark-II research reactor. The learning and the test processes are implemented by means of a computer program at different power levels. The simulation results obtained reveal that the MFLNN-PSO controller has a remarkable performance on the neutronic power level control of the reactor for tracking the step reference power trajectories
International Nuclear Information System (INIS)
Hummel, D.W.; Novog, D.R.
2012-01-01
A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO 2 in ThO 2 ) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO 2 (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)
Energy Technology Data Exchange (ETDEWEB)
Hummel, D.W.; Novog, D.R. [McMaster Univ., Hamilton, Ontario (Canada)
2012-07-01
A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO{sub 2} in ThO{sub 2}) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO{sub 2} (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)
Applications of porous electrodes to metal-ion removal and the design of battery systems
International Nuclear Information System (INIS)
Trost, G.G.
1983-09-01
This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 μg Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected
Energy Technology Data Exchange (ETDEWEB)
Hogerton, John
1964-01-01
This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.
Energy Technology Data Exchange (ETDEWEB)
Kerdraon, D
2001-10-01
Accelerator Driven Systems (ADS), based on a proton accelerator and a sub-critical core coupled with a spallation target, offer advantages in order to reduce the nuclear waste radiotoxicity before repository closure. Many studies carried out on the ADS should lead to the definition of an experimental plan which would federate the different works in progress. This thesis deals with the neutronic Monte Carlo simulations with the MCNPX code to optimize such a system in view of a pilot reactor building. First, we have recalled the main neutronic properties of an hybrid reactor. The concept of gas-cooled eXperimental Accelerator Driven System (XADS) chosen for our investigations comes from the preliminary studies done by the Framatome company. In order to transmute minor actinides, we have considered the time evolution of the main fuels which could be reasonably used for the demonstration phases. The neutronic parameters of the reactor, concerning minor actinide transmutation, are reported. Also, we have calculated the characteristic times and the transmutation rates in the case of {sup 99}Tc and {sup 129}I isotopes. We have identified some neutronic differences between an experimental and a power ADS according to the infinite multiplication coefficient, the shape factor and the level of flux to extend the demonstrator concept. We have proposed geometric solutions to keep the radial shape factor of a power ADS acceptable. In the last part, beyond the experimental XADS scope, we have examined the possible transition towards an uranium/thorium cycle based on Molten Salt Reactors using a power ADS in order to generate the required {sup 233}U proportion. (author)
Safety analysis and optimization of the core fuel reloading for the Moroccan TRIGA Mark-II reactor
International Nuclear Information System (INIS)
Nacir, B.; Boulaich, Y.; Chakir, E.; El Bardouni, T.; El Bakkari, B.; El Younoussi, C.
2014-01-01
Highlights: • Additional fresh fuel elements must be added to the reactor core. • TRIGA reactor could safely operate around 2 MW power with 12% fuel elements. • Thermal–hydraulic parameters were calculated and the safety margins are respected. • The 12% fuel elements will have no influence on the safety of the reactor. - Abstract: The Moroccan TRIGA MARK II reactor core is loaded with 8.5% in weight of uranium standard fuel elements. Additional fresh fuel elements must periodically be added to the core in order to remedy the observed low power and to return to the initial reactivity excess at the End Of Cycle. 12%-uranium fuel elements are available to relatively improve the short fuel lifetime associated with standard TRIGA elements. These elements have the same dimensions as standards elements, but with different uranium weight. The objective in this study is to demonstrate that the Moroccan TRIGA reactor could safely operate, around 2 MW power, with new configurations containing these 12% fuel elements. For this purpose, different safety related thermal–hydraulic parameters have been calculated in order to ensure that the safety margins are largely respected. Therefore, the PARET model for this TRIGA reactor that was previously developed and combined with the MCNP transport code in order to calculate the 3-D temperature distribution in the core and all the most important parameters like the axial distribution of DNBR (Departure from Nucleate Boiling Ratio) across the hottest channel. The most important conclusion is that the 12% fuel elements utilization will have no influence on the safety of the reactor while working around 2 MW power especially for configurations based on insertions in C and D-rings
International Nuclear Information System (INIS)
Niu Yunlong; Wei Qianglin; Liu Yibao; Wang Aixing; Zhang Peng
2014-01-01
This paper calculated the effects of different coolants to neutron energy spectrum in different position of the transmutation reactor by Monte Carlo N-Particle Transport Code (MCNP5). After having chosen the coolant and particular parameters, different nuclides in fuel rods of the transmutation reactor were calculated and compared. According to the actual situation, nuclides of 99 Tc and 241 Am were chosen and compared. Then the nonuniform-arrangement scheme of different spent fuels were proposed. By comparison of the diagram, it is found that it is more effective to promote the neutron utilization in the reactor by the non-uniform arrangement scheme, which is more reasonable than traditional uniform one. Thus, it would be helpful for transmutation technology by the application of the scheme. (authors)
Optimization of the binary breeder reactor. VIII annular core fueled with 233U - 238U and Pu-238U
International Nuclear Information System (INIS)
Nascimento, J.A. do; Ishiguro, Y.
1988-04-01
First cycle burnup characteristics of a 1200 MWe binary breeder reactor with annular core fueled with metallic 233 U- 238 U-Zr, Pu- 238 U-Zr and Th in the blankets have been analysed. The Doppler effect is small as expected in a metal fueled fast reactor. The sodium void reactivity is, in general, smaller than in metal fueled homogeneous fast reactors of 1 m core height. The estimates of the required and available control rod worths show a large shutdown margin throughout the operational cycle. There are flexibilities in the blanket fueling and well balanced breeding in the two cycles, uranium and thorium, with doubling times of about 20 years are possible. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
Meneses, Anderson Alvarenga de Moura; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: ameneses@con.ufrj.br; schirru@lmp.ufrj.br
2005-07-01
This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)
International Nuclear Information System (INIS)
Miladinović, Marija R.; Stamenković, Olivera S.; Banković, Predrag T.; Milutinović-Nikolić, Aleksandra D.; Jovanović, Dušan M.; Veljković, Vlada B.
2016-01-01
Highlights: • Sunflower oil methanolysis in a continuous packed bed reactor was optimized. • Thermally-activated, low-cost quicklime bits were used as a catalyst. • Process was optimized by 3 3 full factorial design and Box-Behnken design. • Box-Behnken design is recommended for optimizing biodiesel production processes. • FAME content in the ester phase obtained under the optimum conditions was >98%. - Abstract: The effect of the residence time (i.e. liquid flow rate through the reactor), methanol-to-oil molar ratio and reaction temperature on the fatty acid methyl esters (FAMEs) content at the output of a continuous packed bed tubular reactor was modeled by the response surface methodology (RSM) combined with the 3 3 full factorial design (FFD) with replication or the Box-Behnken design (BBD) with five center points. The methanolysis of sunflower oil was carried out at the residence time of 1.0, 1.5 and 2.0 h, the methanol-to-oil molar ratios of 6:1, 12:1 and 18:1 and the reaction temperature of 40, 50 and 60 °C under the atmospheric pressure. Based on the used experimental designs, the model equations containing only linear and two-factor interaction terms were developed for predicting the FAME content, which were validated through the use of the unseen data. Applying the analysis of variance (ANOVA), all three factors were shown to have a significant influence on the FAME content. Acceptable statistical predictability and accuracy resulted from both designs since the values of the coefficient of determination were close to unity while the values of the mean relative percentage deviation were relatively low (<±10%). In addition, both designs predicted the maximum FAME content of above 99%, which agreed closely with the actual FAME content (98.8%). The same optimal reaction temperature (60 °C) and residence time (2.0 h) were determined by both designs while the BBD model suggested a slightly lower methanol-to-oil molar ratio (12.2:1) than the 3 3 FFD
Directory of Open Access Journals (Sweden)
Armando Díaz-Concepción
2015-09-01
Full Text Available En el presente trabajo se realiza la modelación, simulación y optimización de un reactor utilizado en las plantas para la obtención de un alimento animal, sobre la base de la predigestión del bagacillo de caña y el hidróxido de calcio en presencia de vapor denominado PREDICAL utilizando grafos dicromáticos. Se obtuvo el modelo matemático para el diseño del reactor, donde se vinculan las variables geométricas y tecnológicas. El modelo formulado permitió la optimización de la variable costo a partir de minimizar la variable geométrica diámetro exterior del reactor. Palabras claves: modelación reactor tipo tornillo sinfin, grafos dicromáticos, modelo matemático________________________________________________________________________________AbstractThe present work performs modeling, simulation and optimization of a reactor used in plants for the obtencion of animal feed. It's made on the basis of pre-digestion of cane bagasse and calcium hydroxide in the presence of steam called PREDICAL and using dichromatic graphs. It was achieved the mathematical model for the design of the reactor, where are linked geometric and technological variables. The model developed allowed cost optimization based on minimize the geometric variable outside diameter of the reactor. Key words: worm type reactor modeling, dichromatic graphs, mathematical model.
Batteries: Overview of Battery Cathodes
Energy Technology Data Exchange (ETDEWEB)
Doeff, Marca M
2010-07-12
The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as
Jang, J D; Barford, J P; Lindawati; Renneberg, R
2004-03-15
A bench scale reactor using a sequencing batch reactor process was used to evaluate the applicability of biosensors for the process optimization of biological carbon and nitrogen removal. A commercial biochemical oxygen demand (BOD) biosensor with a novel microbial membrane was used to determine the duration of each phase by measuring samples in real time in an SBR cycle with filling/anoxic-anaerobic/aerobic/sludge wasting/settling/withdrawal periods. Possible strategies to increase the efficiency for the biological removal of carbon and nitrogen from synthetic wastewater have been developed. The results show that application of a BOD biosensor enables estimation of organic carbon, in real time, allowing the optimization or reduction the SBR cycle time. Some typical consumption patterns for organic carbon in the non-aeration phase of a typical SBR operation were identified. The rate of decrease of BOD measured using a sensor BOD, was the highest in the initial glucose breakdown period and during denitrification. It then slowed down until a 'quiescent period' was observed, which may be considered as the commencement of the aeration period. Monitoring the BOD curve with a BOD biosensor allowed the reduction of the SBR cycle time, which leads to an increase in the removal efficiency. By reducing the cycle time from 8 to 4 h cycle, the removal efficiencies of nitrate, glucose, and phosphorus in a given time interval, were increased to nearly double, while the removal of nitrogen ammonium was increased by one-third.
Sipaun, S.
2017-01-01
Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.
Liu, Lilu; Qi, Xingguo; Ma, Qiang; Rong, Xiaohui; Hu, Yong-Sheng; Zhou, Zhibin; Li, Hong; Huang, Xuejie; Chen, Liquan
2016-12-07
A non-sintered method with toothpaste electrode for improving electrode ionic conductivity and reducing interface impedance is introduced in solid-state rechargeable batteries. At 70 °C, this novel solid-state battery can deliver a capacity of 80 mAh g -1 in a voltage range of 2.5-3.8 V at 0.1C rate using layered oxide Na 0.66 Ni 0.33 Mn 0.67 O 2 , Na-β″-Al 2 O 3 and sodium metal as cathode, electrolyte and anode, respectively. Moreover, the battery shows a superior stability and high reversibility, with a capacity retention of 90% after 10 000 cycles at 6C rate and a capacity of 79 mAh g -1 is recovered when the current rate is returned to 0.1C. Furthermore, a very thick electrode with active material mass loading of 6 mg cm -2 also presents a reasonable electrochemical performance. These results demonstrate that this is a promising approach to solve the interface problem and would open a new route in designing the next generation solid-state battery.
Juhasz, Albert J.
2007-01-01
In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is
International Nuclear Information System (INIS)
Sapper, E.
1976-05-01
The finite element method as a modern and effective aid in calculating the neutron flux in a nuclear reactor is discussed. The advantage of this method lies mainly in the fact that with various kinds of finite elements it is easy to approximate complicated geometries, and in the fact that unknown functions can be approximated within the elements with the aid of test polynomials of any degree or form, something which results in the solution being highly accurate. (orig./RW) [de
The battery recycling loop: a European perspective
Ahmed, F.
Restricting the loss of lead into the environment is essential and European legislation has reacted by requiring the recycling of lead/acid batteries. With the forecast of strong growth in the battery market over the next decade, secondary lead output will need to increase substantially to supply this demand. Battery recycling rates are vulnerable, however, to low lead prices and restrictive legislation. Effective recycling schemes are required to ensure maximum recovery and several are successfully in operation. Environmentally sound technology exists to recycle the lead and polypropylene components of batteries. A full range of lead and lead alloys are available to the battery industry from secondary material and now challenge primary products in most battery applications. It is important to optimize recycling efficiency and minimize environmental damage.
Pearce, Charles
2009-01-01
Focuses on mathematical structure, and on real-world applications. This book includes developments in several optimization-related topics such as decision theory, linear programming, turnpike theory, duality theory, convex analysis, and queuing theory.
Directory of Open Access Journals (Sweden)
Ho-Young Kim
2017-07-01
Full Text Available Improving the performance of power systems has become a challenging task for system operators in an open access environment. This paper presents an optimization approach for solving the multi-objective scheduling problem using a modified non-dominated sorting genetic algorithm in a hybrid network of meshed alternating current (AC/wind farm grids. This approach considers voltage and power control modes based on multi-terminal voltage source converter high-voltage direct current (MTDC and battery energy storage systems (BESS. To enhance the hybrid network station performance, we implement an optimal process based on the battery energy storage system operational strategy for multi-objective scheduling over a 24 h demand profile. Furthermore, the proposed approach is formulated as a master problem and a set of sub-problems associated with the hybrid network station to improve the overall computational efficiency using Benders’ decomposition. Based on the results of the simulations conducted on modified institute of electrical and electronics engineers (IEEE-14 bus and IEEE-118 bus test systems, we demonstrate and confirm the applicability, effectiveness and validity of the proposed approach.
Roy, Ken
2010-01-01
Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…
Batteries for Electric Vehicles
Conover, R. A.
1985-01-01
Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.
Functional materials for rechargeable batteries.
Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun
2011-04-19
There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A class-based search for the in-core fuel management optimization of a pressurized water reactor
Energy Technology Data Exchange (ETDEWEB)
Alvarenga de Moura Meneses, Anderson, E-mail: ameneses@lmp.ufrj.b [Federal University of Rio de Janeiro, COPPE, Nuclear Engineering Program, CP 68509, CEP 21.941-972, Rio de Janeiro, RJ (Brazil); Rancoita, Paola [IDSIA (Dalle Molle Institute for Artificial Intelligence), Galleria 2, 6982 Manno-Lugano, TI (Switzerland); Mathematics Department, Universita degli Studi di Milano (Italy); Schirru, Roberto [Federal University of Rio de Janeiro, COPPE, Nuclear Engineering Program, CP 68509, CEP 21.941-972, Rio de Janeiro, RJ (Brazil); Gambardella, Luca Maria [IDSIA (Dalle Molle Institute for Artificial Intelligence), Galleria 2, 6982 Manno-Lugano, TI (Switzerland)
2010-11-15
The In-Core Fuel Management Optimization (ICFMO) is a prominent problem in nuclear engineering, with high complexity and studied for more than 40 years. Besides manual optimization and knowledge-based methods, optimization metaheuristics such as Genetic Algorithms, Ant Colony Optimization and Particle Swarm Optimization have yielded outstanding results for the ICFMO. In the present article, the Class-Based Search (CBS) is presented for application to the ICFMO. It is a novel metaheuristic approach that performs the search based on the main nuclear characteristics of the fuel assemblies, such as reactivity. The CBS is then compared to the one of the state-of-art algorithms applied to the ICFMO, the Particle Swarm Optimization. Experiments were performed for the optimization of Angra 1 Nuclear Power Plant, located at the Southeast of Brazil. The CBS presented noticeable performance, providing Loading Patterns that yield a higher average of Effective Full Power Days in the simulation of Angra 1 NPP operation, according to our methodology.
A class-based search for the in-core fuel management optimization of a pressurized water reactor
International Nuclear Information System (INIS)
Alvarenga de Moura Meneses, Anderson; Rancoita, Paola; Schirru, Roberto; Gambardella, Luca Maria
2010-01-01
The In-Core Fuel Management Optimization (ICFMO) is a prominent problem in nuclear engineering, with high complexity and studied for more than 40 years. Besides manual optimization and knowledge-based methods, optimization metaheuristics such as Genetic Algorithms, Ant Colony Optimization and Particle Swarm Optimization have yielded outstanding results for the ICFMO. In the present article, the Class-Based Search (CBS) is presented for application to the ICFMO. It is a novel metaheuristic approach that performs the search based on the main nuclear characteristics of the fuel assemblies, such as reactivity. The CBS is then compared to the one of the state-of-art algorithms applied to the ICFMO, the Particle Swarm Optimization. Experiments were performed for the optimization of Angra 1 Nuclear Power Plant, located at the Southeast of Brazil. The CBS presented noticeable performance, providing Loading Patterns that yield a higher average of Effective Full Power Days in the simulation of Angra 1 NPP operation, according to our methodology.
International Nuclear Information System (INIS)
Yamamoto, Akio
2001-01-01
Because of recent enhancements of optimization algorithms and great improvements in computer hardware, loading pattern (LP) optimization methods are being used as practical design tools both in the pressurized water reactor (PWR) and boiling water reactor (BWR) industries. LP optimization methods are mainly used for the following in-core fuel management activities in Japan: 1. minimization of fuel cycle costs; 2. evaluation of various in-core fuel management scenarios; 3. estimation of the number of feed assemblies needed during several successive cycles for fuel ordering; 4. evaluation of fuel bids. Although engineers can perform these analyses, the major motivations to utilize LP optimization methods are the reduction of manpower and the establishment of engineer-independent LP quality. These are important in today's in-core fuel management tasks. In the following sections, activities related to LP optimization research in Japan are briefly described. The major activity of PWR LP optimization research in Japan is development of the INSIGHT system. The INSIGHT system is an integrated scoping analysis tool for PWRs developed by Nuclear Fuel Industries (NFI). The INSIGHT system is a graphical user interface (GUI)-based interactive design tool that includes LP optimization, automated multicycle analysis, an interactive LP design, core follow, an integrated database, and some auxiliary functions. The INSIGHT system was mainly written in the C++ language and consists of ∼400 000 lines of source code. The GALLOP code is the LP optimization module of the INSIGHT system. An automated multicycle analysis is performed by the MCA code in INSIGHT. The MCA code performs a fuel and burnable poison (BP) inventory search by automatically invoking the GALLOP code, which makes LPs. The MCA code can deal with various constraints that have appeared in practical in-core fuel management, e.g., limitations of fuel/BP stock, forced fuel loading/discharge, limitations of core safety
Enrique Quiroga-González; Jürgen Carstensen; Helmut Föll
2013-01-01
Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001%) over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity...
Bozzi, A; Yuranova, T; Lais, P; Kiwi, J
2005-04-01
This study addresses the pre-treatment of toxic and recalcitrant compounds found in the waste waters arriving at a treating station for industrial effluents containing chlorinated aromatics and non-aromatic compounds, anilines, phenols, methyl-tert-butyl-ether (MTBE). By reducing the total organic carbon (TOC) of these waste waters the hydraulic load for the further bacterial processing in the secondary biological treatment is decreased. The TOC decrease and discoloration of the waste waters was observed only under light irradiation in the reactor by immobilized Fenton processes on Fe/C-fabrics but not in the dark. The energy of activation for the degradation of the waste waters was of 4.2 kcal/mol. The degradation of the waste waters was studied in the reactor as a function of (a) the amount of oxidant used (H2O2), (b) the recirculation rate, (c) the solution pH and (d) the applied temperature. With these parameters taken as input factors, statistical modeling allows one to estimate the most economic use of the oxidant and electrical energy to degrade these waste waters. The concentration of the most abundant organic pollutants during waste waters degradation was followed by gas chromatography/mass spectrometry (GC-MS). The ratio of the biological oxygen demand to the total organic carbon BOD5/TOC increased significantly due to the Fe/C-fabric catalyzed treatment from an initial value of 2.03 to 2.71 (2 h). The reactor results show that the recirculation rate has no influence on the TOC decrease of the treated waters but affects the BOD increase of these solutions.
International Nuclear Information System (INIS)
Bilej, D.V.; Fridman, N.A.; Kolykhanov, V.N.; Skalozubov, V.I.
2004-01-01
This article generalises the basic results of a long-term teamwork with respect to a scientific and technical substantiation of perfection of the regulations of safe operation power units with VVER. This perfection is concerning a periodicity and volumes of tests of safety systems when a reactor works at full power. The article shows that the application of the probabilistic approaches connected to minimisation of a risk criterion function is an effective methodical base for the optimisation. For certain safety systems of serial power units with VVER 1000 the results of calculated substantiations are presented
International Nuclear Information System (INIS)
2011-10-01
This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. This CD-ROM attached to the printed IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.
International Nuclear Information System (INIS)
Legros, F.
2008-01-01
In GEN IV studies on future fission nuclear reactors, two concepts using helium as a coolant have been selected: GFR and VHTR. Among radioactive impurities and dusts, helium can contain H 2 , CO, CH 4 , CO 2 , H 2 O, O 2 , as well as nitrogenous species. To optimize the reactor functioning and lifespan, it is necessary to control the coolant chemical composition using a dedicated purification system. A pilot designed at the CEA allows studying this purification system. Its design includes three unit operations: H 2 and CO oxidation on CuO, then two adsorption steps. This study aims at providing a detailed analysis of the first and second purification steps, which have both been widely studied experimentally at laboratory scale. A first modelling based on a macroscopic approach was developed to represent the behaviour of the reactor and has shown that the CuO fixed bed conversion is dependent on the chemistry (mass transfer is not an issue) and is complete. The results of the structural analysis of the solids allow considering the CuO as particles made of 200 nm diameter grains. Hence, a new model at grain scale is proposed. It is highlighted that the kinetic constants from these two models are related with a scale factor which depends on geometry. A competition between carbon monoxide and hydrogen oxidation has been shown. Activation energies are around 30 kJ.mol-1. Simulation of the simultaneous oxidations leads to consider CO preferential adsorption. A similar methodology has been applied for CO 2 and H 2 O adsorption. The experimental isotherms showed a Langmuir type adsorption. Using this model, experimental and theoretical results agree. (author) [fr
International Nuclear Information System (INIS)
Rydh, Carl Johan; Sanden, Bjoern A.
2005-01-01
Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)
International Nuclear Information System (INIS)
Deaton, R.L.; Silver, G.L.
1975-01-01
A radioactive battery is described that is comprised of a container housing an electrolyte, two electrodes immersed in the electrolyte and insoluble radioactive material disposed adjacent one electrode. Insoluble radioactive material of different intensity of radioactivity may be disposed adjacent the second electrode. If hydrobromic acid is used as the electrolyte, Br 2 will be generated by the radioactivity and is reduced at the cathode: Br 2 + 2e = 2 Br - . At the anode Br - is oxidized: 2Br - = Br 2 + 2e. (U.S.)
Pyka, N M; Rogov, A
2002-01-01
Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Garcia, Lorena P. Rodriguez; Llanes, Jesus Salomon; Hernandez, Carlos R. Garcia, E-mail: dperez@instec.cu, E-mail: dmilian@instec.cu, E-mail: lorenapilar@instec.cu, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Lira, Carlos A. Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Rodriguez, Manuel Cadavid, E-mail: mcadavid2001@yahoo.com [Tecnologia Nuclear Medica Spa, TNM (Chile)
2015-07-01
{sup 99m}Tc is the most common radioisotope used in nuclear medicine. It is a very useful radioisotope, which is used in about 30-40 million procedures worldwide every year. Medical diagnostic imaging techniques using {sup 99m}Tc represent approximately 80% of all nuclear medicine procedures. Although {sup 99m}Tc can be produced directly on a cyclotron or other type of particle accelerator, currently is almost exclusively produced from the beta-decay of its 66-h parent {sup 99}Mo. {sup 99}Mo production system in an Aqueous Homogeneous Reactor (AHR) is potentially advantageous because of its low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing and purification characteristics. In this paper, an AHR conceptual design using Low Enriched Uranium (LEU) is studied and optimized for the production of {sup 99}Mo. Aspects related with the neutronic behavior such as optimal reflector thickness, critical height, medical isotopes production and the reactivity feedback introduced in the solution by the volumetric expansion of the fuel solution due to thermal expansion of the fuel solution and the void volume generated by radiolytic gas bubbles were evaluated. Thermal-hydraulics studies were carried out in order to show that sufficient cooling capacity exists to prevent fuel overheating. The neutronic and thermal-hydraulics calculations have been performed with the MCNPX computational code and the version 14 of ANSYS CFX respectively. The neutronic calculations demonstrated that the reactor is able to produce 370 six-day curies of {sup 99}Mo in 5 days operation cycles and the CFD simulation demonstrated that the heat removal systems provide sufficient cooling capacity to prevent fuel overheating, the maximum temperature reached by the fuel (89.29 deg C) was smaller to the allowable temperature limit (90 deg C). (author)
Energy Technology Data Exchange (ETDEWEB)
Ould Bilal, B.; Sambou, V.; Ndiaye, P.A.; Kebe, C.M.F. [Centre International de Formation et de Recherche en Energie Solaire (C.I.F.R.E.S), ESP BP: 5085 Dakar Fann (Senegal); Ndongo, M. [Centre de Recherche Appliquee aux Energies Renouvelables de l' Eau et du Froid (CRAER)/FST/Universite de Nouakchott (Mauritania)
2010-10-15
Potou is an isolated site, located in the northern coast of Senegal. The populations living in this area have no easy access to electricity supply. The use of renewable energies can contribute to the improvement of the living conditions of these populations. The methodology used in this paper consists in Sizing a hybrid solar-wind-battery system optimized through multi-objective genetic algorithm for this site and the influence of the load profiles on the optimal configuration. The two principal aims are: the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP). To study the load profile influence, three load profiles with the same energy (94 kW h/day) have been used. The achieved results show that the cost of the optimal configuration strongly depends on the load profile. For example, the cost of the optimal configuration decreases by 7% and 5% going from profile 1 to 2 and for those ones going from 1 to 3. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, Young Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2007-10-15
Zr-2.5Nb pressure tubes are the most critical components that determine the design life of CANADU (CAnadian Natural Uranium) reactors. The initial design target for the Zr-2.5Nb pressure tubes is to suppress the diametral creep through a texture control which may trade off the other performances that can be overcome by introducing a change in the components design. To this end, they are made by the extrusion process at high temperatures to have a circumferential texture with most of the basal poles oriented towards their circumferential direction. However, this circumferential texture causes them to be very susceptible to delayed hydride cracking (DHC) and to have a higher axial elongation. Against the initial design target, their costly refurbishments are planned in several commercial CANDU reactors before their design life of 30 years, due to the unexpectedly faster creep rate and axial elongation. This fact casts a question over the validity of the design philosophy that the diametral creep of the Zr-2.5Nb pressure tube is governed by the texture. The aim of this work is to elucidate the governing factor of creep of the Zr-2.5Nb tubes and to find a way of making improved Zr-2.5Nb pressure tubes with a lower diametral creep and axial elongation. To this end, we scrutinized Holt's experiment where the in-reactor creep behaviors of the Zr-2.5Nb micro-pressure tube (MPT) with a circumferential texture was compared with that of the Zr-2.5Nb fuel sheath (FS) with a radial texture. Accounting for the fact that thermal creep of Zr-2.5Nb alloy is affected by the Nb concentration in the {beta}-Zr, we demonstrate that the reduced creep is not dictated by the circumferential texture but by the increased Nb concentration in the {alpha}-Zr. This study suggests that the optimized manufacturing procedure of the Zr-2.5Nb tube would improve their in-reactor performances, extending their design life to over 30 years when compared to that of the current design of the