Computational analysis of battery optimized reactor integral system
International Nuclear Information System (INIS)
Battery Optimized Reactor Integral System (BORIS) is being developed as a multi-purpose fast spectrum reactor cooled by lead (Pb). BORIS is an integral optimized reactor with an ultra-long life core. BORIS aims to satisfy various energy demands maintaining inherent safety with the primary coolant Pb, and improving economics. BORIS is being designed to generate 23 MWth with 10 MWe for at least twenty consecutive years without refueling and to meet the Generation IV Nuclear Energy System goals of sustainability, safety, reliability, and economics. BORIS is conceptualized to be used as the main power and heat source for remote areas and barren lands, and also considered to be deployed for desalinisation purpose. BORIS, based on modular components to be viable for rapid construction and easy maintenance, adopts an integrated heat exchanger system operated by natural circulation of Pb without pumps to realize a small sized reactor. The BORIS primary system is designed through an optimization study. Thermal hydraulic characteristics during a reactor steady state with heat source and sink by core and heat exchanger, respectively, have been carried out by utilizing a computational fluid dynamics code and hand calculations based on first principles. This paper analyzes a transient condition of the BORIS primary system. The Pb coolant was selected for its lower chemical activity with air or water than sodium (Na) and good thermal characteristics. The reactor transient conditions such as core blockage, heat exchanger failure, and loss of heat sink, were selected for this study. Blockage in the core or its inlet structure causes localized flow starvation in one or several fuel assemblies. The coolant loop blockages cause a more or less uniform flow reduction across the core, which may trigger coolant temperature transient. General conservation equations were applied to model the primary system transients. Numerical approaches were adopted to discretized the governing equations
Naval application of battery optimized reactor integral system
International Nuclear Information System (INIS)
Past civilian N.S. Savanna (80 MWth), Otto-Hahn (38 MWth) and Mutsu (36 MWth) experienced stable operations under various sea conditions to prove that the reactors were stable and suitable for ship power source. Russian nuclear icebreakers such as Lenin (90 MWth x2), Arukuchika (150 MWth x2) showed stable operations under severe conditions during navigation on the Arctic Sea. These reactor systems, however, should be made even more efficient, compact, safe and long life, because adding support from the land may not be available on the sea. In order to meet these requirements, a compact, simple, safe and innovative integral system named Naval Application Vessel Integral System (NAVIS) is being designed with such novel concepts as a primary liquid metal coolant, a secondary supercritical carbon dioxide (SCO2) coolant, emergency reactor cooling system, safety containment and so on. NAVIS is powered by Battery Optimized Reactor Integral System (BORIS). An ultra-small, ultra-long-life, versatile-purpose, fast-spectrum reactor named BORIS is being developed for a multi-purpose application such as naval power source, electric power generation in remote areas, seawater desalination, and district heating. NAVIS aims to satisfy special environment on the sea with BORIS using the lead (Pb) coolant in the primary system. NAVIS improves the economical efficiency resorting to the SCO2 Brayton cycle for the secondary system. BORIS is operated by natural circulation of Pb without needing pumps. The reactor power is autonomously controlled by load-following operation without an active reactivity control system, whereas B4C based shutdown control rod is equipped for an emergency condition. SCO2 promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. Therefore, the SCO2 Brayton cycle efficiency
Optimizing the Design of Small Fast Spectrum Battery-Type Nuclear Reactors
Staffan Qvist
2014-01-01
This study is focused on defining and optimizing the design parameters of inherently safe â€œbatteryâ€ type sodium-cooled metallic-fueled nuclear reactor cores that operate on a single stationary fuel loading at full power for 30 years. A total of 29 core designs were developed with varying power and flow conditions, including detailed thermal-hydraulic, structural-mechanical and neutronic analysis. Given set constraints for irradiation damage, primary cycle pressure drop and inherent safety ...
International Nuclear Information System (INIS)
Supercritical carbon dioxide (SCO2) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. Therefore, the high SCO2 Brayton cycle efficiency as high as 45 % furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth BORIS (Battery Optimized Reactor Integral System) is being developed as a multipurpose reactor. BORIS, an integral-type optimized fast reactor with an ultra long life core, is coupled to the SCO2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW pre-cooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45 % was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO2 going out from the low temperature recuperator. Test loop SOLOS (Shell-and-tube Overall Layout Optimization Study) is utilized to develop advanced techniques needed to adopt the shell-and-tube type heat exchanger in the secondary loop of BORIS by studying the SCO2 behavior from both thermal and hydrodynamic points of view. Concurrently, a computational fluid dynamics (CFD) code analysis is being conducted to develop an optimal analytical method of the SCO2 turbine efficiency having the parameters of flow characteristics of SCO2 passing through buckets of the turbine. These simultaneous experimental and analytical methods for designing
Optimizing the Design of Small Fast Spectrum Battery-Type Nuclear Reactors
Directory of Open Access Journals (Sweden)
Staffan Qvist
2014-07-01
Full Text Available This study is focused on defining and optimizing the design parameters of inherently safe “battery” type sodium-cooled metallic-fueled nuclear reactor cores that operate on a single stationary fuel loading at full power for 30 years. A total of 29 core designs were developed with varying power and flow conditions, including detailed thermal-hydraulic, structural-mechanical and neutronic analysis. Given set constraints for irradiation damage, primary cycle pressure drop and inherent safety considerations, the attainable power range and performance characteristics of the systems are defined. The optimum power level for a core with a coolant pressure drop limit of 100 kPa and an irradiation damage limit of 200 DPA (displacements per atom is found to be 100 MWt/40 MWe. Raising the power level of an optimized core gives significantly higher attainable power densities and burnup, but severely decreases safety margins and increases the irradiation damage. A fully optimized inherently safe battery-type fast reactor core with an active height and diameter of 150 cm (2.6 m3, a pressure drop limit of 100 kPa and an irradiation damage limit of 300 DPA can be designed to operate at 150 MWt/60 MWe for 30 years, reaching an average discharge burnup of 100 MWd/kg-actinide.
International Nuclear Information System (INIS)
Supercritical carbon dioxide (SCO2) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. The SCO2 Brayton cycle efficiency as high as 45% furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth lead-cooled Battery Optimized Reactor Integral System (BORIS) is being developed as an ultra-long-life, versatile-purpose, fast-spectrum reactor. BORIS is coupled to the SCO2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45% was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO2 going out from the low temperature recuperator. Development of Modular Optimized Brayton Integral System (MOBIS) is being devised as the SCO2 Brayton cycle energy conversion cycle for BORIS. MOBIS consists of Loop Operating Brayton Optimization Study (LOBOS) for experimental Brayton cycle loop and Gas Advanced Turbine Operation Study (GATOS) for the SCO2 turbine. Liquid-metal Energy Exchanger Integral System (LEXIS) serves to couple BORIS and MOBIS. LEXIS comprises Physical Aspect Thermal Operation System (PATOS) for SCO2 thermal hydraulic characteristics, Shell-and-tube Overall Layout Optimization Study (SOLOS) for shell-and-tube heat exchanger, Printed-circuit Overall
Optimal control of nuclear reactors
International Nuclear Information System (INIS)
The modern control theory is applied to the design of control systems for experimental nuclear reactors that do not belong to power reactors, the component forms of optimal control systems for nuclear reactors are demonstrated. The adoption of output quadratic integral criterion and incomplete state feedback technique can make these systems both efficient and economical. Moreover, approximate handling methods are given so as to simplify the calculations in design. In addition, the adoptable reference values of parameters are given in the illustration
Nickel-Cadmium Battery Operation Management Optimization Using Robust Design
Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador
1996-01-01
In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.
Microgrid management architecture considering optimal battery dispatch
Paul, Tim George
Energy management and economic operation of microgrids with energy storage systems at the distribution level have attracted significant research interest in recent years. One of the challenges in this area has been the coordination of energy management functions with decentralized and centralized dispatch. In this thesis a distributed dispatch algorithm for a microgrid consisting of a photovoltaic source with energy storage which can work with a centralized dispatch algorithm that ensure stability of the microgrid is proposed. To this end, first a rule based dispatch algorithm is formulated which is based on maximum resource utilization and can work in both off grid and grid connected mode. Then a fixed horizon optimization algorithm which minimizes the cost of power taken from the grid is developed. In order to schedule the battery based on changes in the PV farm a predictive horizon methodology based optimization is designed. Further, the rule based and optimization based dispatch methodologies is linked to optimize the voltage deviations at the microgrid Point of Common Coupling (PCC). The main advantage of the proposed method is that, an optimal active power dispatch considering the nominal voltage bandwidth can be initiated for the microgrid in both grid connected or off grid mode of operation. Also, the method allows the grid operator to consider cost based optimal renewable generation scheduling and/or the maximum power extraction based modes of operation simultaneously or separately based on grid operating conditions and topologies. Further, the methods allows maintaining PCC voltage within the limits during these modes of operation and at the same time ensure that the battery dispatch is optimal.
Intelligent Battery Management System Analyzing & Optimizing of Multicell Battery Voltage
Deepthi, C; P.M.Sarma; M. Chakravarthy
2013-01-01
The battery management system (BMS) is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a batt...
Optimized batteries for cars with dual electrical architecture
Douady, J. P.; Pascon, C.; Dugast, A.; Fossati, G.
During recent years, the increase in car electrical equipment has led to many problems with traditional starter batteries (such as cranking failure due to flat batteries, battery cycling etc.). The main causes of these problems are the double function of the automotive battery (starter and service functions) and the difficulties in designing batteries well adapted to these two functions. In order to solve these problems a new concept — the dual-concept — has been developed with two separate batteries: one battery is dedicated to the starter function and the other is dedicated to the service function. Only one alternator charges the two batteries with a separation device between the two electrical circuits. The starter battery is located in the engine compartment while the service battery is located at the rear of the car. From the analysis of new requirements, battery designs have been optimized regarding the two types of functions: (i) a small battery with high specific power for the starting function; for this function a flooded battery with lead-calcium alloy grids and thin plates is proposed; (ii) for the service function, modified sealed gas-recombinant batteries with cycling and deep-discharge ability have been developed. The various advantages of the dual-concept are studied in terms of starting reliability, battery weight, and voltage supply. The operating conditions of the system and several dual electrical architectures have also been studied in the laboratory and the car. The feasibility of the concept is proved.
Optimization of a Vanadium Redox Flow Battery with Hydrogen generation
Wrang, Daniel
2016-01-01
We consider the modelling and optimal control of energy storage systems, in this study a Vanadium Redox Flow Battery. Such a battery can be introduced in the electrical grid to be charged when demand is low and discharged when demand is high, increasing the overall efficiency of the network while reducing costs and emission of greenhouse gases. The model of the battery proposed in this study is less complex than the majority of models on batteries and energy storage systems found in literatur...
Optimization of batteries for plug-in hybrid electric vehicles
English, Jeffrey Robb
This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity
Optimal control of reactor temperatures using reactivity
International Nuclear Information System (INIS)
Modern control theory provides for better system performance through feedback of the internal system states, state feedback. The classical reactor power control loop normally adjusts control rod reactivity to change power through feedback of the output variable only, output feedback. Improved plant performance could be achieved with tight control of reactor temperatures as well. A new technique to improve performance of reactor temperatures is presented in this paper, which modifies reactor power demand signal to the classical control with optimal state feedback
Electrochemical model based charge optimization for lithium-ion batteries
Pramanik, Sourav; Anwar, Sohel
2016-05-01
In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.
Optimization of a sequence of reactors
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui
1991-01-01
Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach......Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach...
Optimal power flow management for distributed energy resources with batteries
International Nuclear Information System (INIS)
Highlights: • A PV-diesel-battery hybrid system is proposed. • Model minimizes fuel and battery wear costs. • Power flows are analysed in a 24-h period. • Results provide a practical platform for decision making. - Abstract: This paper presents an optimal energy management model of a solar photovoltaic-diesel-battery hybrid power supply system for off-grid applications. The aim is to meet the load demand completely while satisfying the system constraints. The proposed model minimizes fuel and battery wear costs and finds the optimal power flow, taking into account photovoltaic power availability, battery bank state of charge and load power demand. The optimal solutions are compared for cases when the objectives are weighted equally and when a larger weight is assigned to battery wear. A considerable increase in system operational cost is observed in the latter case owing to the increased usage of the diesel generator. The results are important for decision makers, as they depict the optimal decisions considered in the presence of trade-offs between conflicting objectives
Optimal energy management strategy for battery powered electric vehicles
International Nuclear Information System (INIS)
Highlights: • The power usage for battery-powered electrical vehicles with in-wheel motors is maximized. • The battery and motor dynamics are examined emphasized on the power conversion and utilization. • The optimal control strategy is derived and verified by simulations. • An analytic expression of the optimal operating point is obtained. - Abstract: Due to limited energy density of batteries, energy management has always played a critical role in improving the overall energy efficiency of electric vehicles. In this paper, a key issue within the energy management problem will be carefully tackled, i.e., maximizing the power usage of batteries for battery-powered electrical vehicles with in-wheel motors. To this end, the battery and motor dynamics will be thoroughly examined with particular emphasis on the power conversion and power utilization. The optimal control strategy will then be derived based on the analysis. One significant contribution of this work is that an analytic expression for the optimal operating point in terms of the component and environment parameters can be obtained. Owing to this finding, the derived control strategy is also rendered a simple structure for real-time implementation. Simulation results demonstrate that the proposed strategy works both adaptively and robustly under different driving scenarios
Optimal charge control strategies for stationary photovoltaic battery systems
Li, Jiahao; Danzer, Michael A.
2014-07-01
Battery systems coupled to photovoltaic (PV) modules for example fulfill one major function: they locally decouple PV generation and consumption of electrical power leading to two major effects. First, they reduce the grid load, especially at peak times and therewith reduce the necessity of a network expansion. And second, they increase the self-consumption in households and therewith help to reduce energy expenses. For the management of PV batteries charge control strategies need to be developed to reach the goals of both the distribution system operators and the local power producer. In this work optimal control strategies regarding various optimization goals are developed on the basis of the predicted household loads and PV generation profiles using the method of dynamic programming. The resulting charge curves are compared and essential differences discussed. Finally, a multi-objective optimization shows that charge control strategies can be derived that take all optimization goals into account.
Multivariable optimization of fusion reactor blankets
International Nuclear Information System (INIS)
The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% 6Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO2 breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO2 breeding blanket enriched to 34% 6Li
Fe/V Redox Flow Battery Electrolyte Investigation and Optimization
Energy Technology Data Exchange (ETDEWEB)
Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.
2013-05-01
Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.
Optimal control structure of combustion in coke oven battery
International Nuclear Information System (INIS)
Big energetic aggregates require a complicated control system, which provide an effective running or production. Among these aggregates belongs the coke - oven battery. This article contains a proposal of the two - level control system. The basic control is realized by a direct digital control. The advanced control continuously optimizes regulator parameters of the basic control. The present control system has been verified in real conditions of a coking plant. (authors)
Optimally moderated nuclear fission reactor and fuel source therefor
Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.
2008-07-22
An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.
Design of a lithium-ion battery pack for PHEV using a hybrid optimization method
International Nuclear Information System (INIS)
Highlights: • We propose an optimization method for hybrid vehicle battery pack design. • A hybrid gradient-free and gradient-based optimization method is used. • Balance between active material and electrolyte determines battery optimality. • Optimized battery pack satisfies energy and power requirements exactly. • Optimized batteries show 14–18% improvement in properties over initial designs. - Abstract: This paper outlines a method for optimizing the design of a lithium-ion battery pack for hybrid vehicle applications using a hybrid numerical optimization method that combines multiple individual optimizers. A gradient-free optimizer (ALPSO) is coupled with a gradient-based optimizer (SNOPT) to solve a mixed-integer nonlinear battery pack design problem. This method enables maximizing the properties of a battery pack subjected to multiple safety and performance constraints. The optimization framework is applied to minimize the mass, volume and material costs. The optimized pack design satisfies the energy and power constraints exactly and shows 13.9–18% improvement in battery pack properties over initial designs. The optimal pack designs also performed better in driving cycle tests, resulting in 23.1–32.8% increase in distance covered per unit of battery performance metric, where the metric is either mass, volume or material cost
An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles
Yinghua Han; Jinkuan Wang; Qiang Zhao; Peng Han
2014-01-01
Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stoch...
Scaling behavior of optimally structured catalytic microfluidic reactors
DEFF Research Database (Denmark)
Okkels, Fridolin; Bruus, Henrik
2007-01-01
In this study of catalytic microfluidic reactors we show that, when optimally structured, these reactors share underlying scaling properties. The scaling is predicted theoretically and verified numerically. Furthermore, we show how to increase the reaction rate significantly by distributing the...
Modeling separator membranes physical characteristics for optimized lithium ion battery performance
Miranda, D; Costa, C. M.; Almeida, A. M.; Lanceros-Méndez, S.
2015-01-01
The effect of varying separator membrane physical parameters such as degree of porosity, tortuosity and thickness, on battery delivered capacity was studied in order to optimize performance of lithium-ion batteries. This was achieved by a theoretical mathematical model relating the Bruggeman coefficient with the degree of porosity and tortuosity. The inclusion of the separator membrane in the simulation model of the battery system does not affect the delivered capacity of the battery. Th...
Optimized anion exchange membranes for vanadium redox flow batteries.
Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan
2013-08-14
In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance. PMID:23799776
An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles
Directory of Open Access Journals (Sweden)
Yinghua Han
2014-01-01
Full Text Available Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed operating strategy enhances the availability and reliability at a low cost.
Optimization of Charging Current and SOH Estimation for Lead Acid Batteries
Directory of Open Access Journals (Sweden)
Amin Rezaei Pish Robat
2012-02-01
Full Text Available In this paper a new model-based approach is used to optimize the charging current of lead acid batteries for use in hybrid electric. The used model is a dynamical nonlinear model and so steepest descent, as a nonlinear optimization technique, is used to design the desired current profile. To verify the results, Unscented Kalman Filter is used to estimate battery capacity as a criterion of the state of health of the battery. Simulation results show that in comparison with multi level charging current, the proposed approach improves the state of health of the battery, up to 2.5% in the first 100 charge/discharge cycle
Optimal recharge and driving strategies for a battery-powered electric vehicle
Directory of Open Access Journals (Sweden)
Lee W. R.
1999-01-01
Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.
International Nuclear Information System (INIS)
The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated
Flow Simulation and Optimization of Plasma Reactors for Coal Gasification
Institute of Scientific and Technical Information of China (English)
冀春俊; 张英姿; 马腾才
2003-01-01
This paper reports a 3-d numerical simulation system to analyze the complicatedflow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phaseflow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components' concentration are obtained and a different plasma reactor configuration isproposed to optimize the flow parameters. The numerical simulation results show an improvedconversion ratio of the coal gasification. Different kinds of chemical reaction models are used tosimulate the complex flow inside the reactor. It can be concluded that the numerical simulationsystem can be very useful for the design and optimization of the plasma reactor.
Optimization of methanol yield from a Lurgi reactor
Energy Technology Data Exchange (ETDEWEB)
Chen, L.; Jiang, Q.; Song, Z. [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing (China); Posarac, D. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver (Canada)
2011-05-15
Methanol is an important chemical with the potential to become an alternative fuel. An optimization study was performed for a Lurgi methanol synthesis reactor using the commercial process simulator Aspen Plus. The optimization routine is coupled with a steady-state model of the methanol synthesis reactor. Syngas inlet temperature, steam drum pressure, and cooling water volumetric flow rate were optimized so that methanol production in the reactor outlet was maximized. The methanol yield increased by 7.04 %. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying
2016-08-01
This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.
Rahman, Md Ashiqur; Anwar, Sohel; Izadian, Afshin
2016-03-01
In this paper, a gradient-free optimization technique, namely particle swarm optimization (PSO) algorithm, is utilized to identify specific parameters of the electrochemical model of a Lithium-Ion battery with LiCoO2 cathode chemistry. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, over-discharged battery, over-charged battery, etc. It is important for a battery management system to have these parameter changes fully captured in a bank of battery models that can be used to monitor battery conditions in real time. Here the PSO methodology has been successfully applied to identify four electrochemical model parameters that exhibit significant variations under severe operating conditions: solid phase diffusion coefficient at the positive electrode (cathode), solid phase diffusion coefficient at the negative electrode (anode), intercalation/de-intercalation reaction rate at the cathode, and intercalation/de-intercalation reaction rate at the anode. The identified model parameters were used to generate the respective battery models for both healthy and degraded batteries. These models were then validated by comparing the model output voltage with the experimental output voltage for the stated operating conditions. The identified Li-Ion battery electrochemical model parameters are within reasonable accuracy as evidenced by the experimental validation results.
Optimization of neutron flux distribution in Isotope Production Reactor
International Nuclear Information System (INIS)
In order to optimize the thermal neutrons flux distribution in a Radioisotope Production and Research Reactor, the influence of two reactor parameters was studied, namely theVmod/Vcomb ratio and the core volume. The reactor core is built with uranium oxide pellets (UO2) mounted in rod clusters, with an enrichment level of ∼3 %, similar to LIGHT WATER POWER REATOR (LWR) fuel elements. (author)
Roy, Juan Van; De Breucker, Sven; Driesen, Johan
2011-01-01
The interest in electric vehicles (EVs) experiences a strong growth. Batteries of EVs will be charged at home, which means there will be an increase in the household power consumption. This impact on the distribution and transmission grid can be minimized by e.g. (i) a coordinated charging strategy and (ii) choosing an optimal battery size for each vehicle. A second drawback of EVs are the high cost and weight of the batteries. This paper proposes some allocation scenarios to allocate battery...
Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle
Directory of Open Access Journals (Sweden)
Bambang Wahono
2015-07-01
Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.
Geometric-Process-Based Battery Management Optimizing Policy for the Electric Bus
Directory of Open Access Journals (Sweden)
Yan Li
2015-01-01
Full Text Available With the rapid development of the electric vehicle industry and promotive policies worldwide, the electric bus (E-bus has been adopted in many major cities around the world. One of the most important factors that restrain the widespread application of the E-bus is the high operating cost due to the deficient battery management. This paper proposes a geometric-process-based (GP-based battery management optimizing policy which aims to minimize the average cost of the operation on the premise of meeting the required sufficient battery availability. Considering the deterioration of the battery after repeated charging and discharging, this paper constructs the model of the operation of the E-bus battery as a geometric process, and the premaintenance time has been considered with the failure repairment time to enhance the GP-based battery operation model considering the battery cannot be as good as new after the two processes. The computer simulation is carried out by adopting the proposed optimizing policy, and the result verifies the effectiveness of the policy, denoting its significant performance on the application of the E-bus battery management.
Optimal parametric sensitivity control for a fed-batch reactor
Stigter, J.D.; Keesman, K. J.
2001-01-01
The paper presents a method to derive an optimal parametric sensitivity controller for optimal estimation of a set of parameters in an experiment. The method is demonstrated for a fed batch bio-reactor case study for optimal estimation of the saturation constant Ks and, albeit intuitively, the parameter combination "mu-max X/Y" where mu-max is the maximum growth rate [g/min], Y is the yield coefficient [g/g], and X is the (constant) biomass [g].
Optimal management of stationary lithium-ion battery system in electricity distribution grids
Purvins, Arturs; Sumner, Mark
2013-11-01
The present article proposes an optimal battery system management model in distribution grids for stationary applications. The main purpose of the management model is to maximise the utilisation of distributed renewable energy resources in distribution grids, preventing situations of reverse power flow in the distribution transformer. Secondly, battery management ensures efficient battery utilisation: charging at off-peak prices and discharging at peak prices when possible. This gives the battery system a shorter payback time. Management of the system requires predictions of residual distribution grid demand (i.e. demand minus renewable energy generation) and electricity price curves (e.g. for 24 h in advance). Results of a hypothetical study in Great Britain in 2020 show that the battery can contribute significantly to storing renewable energy surplus in distribution grids while being highly utilised. In a distribution grid with 25 households and an installed 8.9 kW wind turbine, a battery system with rated power of 8.9 kW and battery capacity of 100 kWh can store 7 MWh of 8 MWh wind energy surplus annually. Annual battery utilisation reaches 235 cycles in per unit values, where one unit is a full charge-depleting cycle depth of a new battery (80% of 100 kWh).
Optimal reload and depletion method for pressurized water reactors
International Nuclear Information System (INIS)
A new method has been developed to automatically reload and deplete a PWR so that both the enriched inventory requirements during the reactor cycle and the cost of reloading the core are minimized. This is achieved through four stepwise optimization calculations: 1) determination of the minimum fuel requirement for an equivalent three-region core model, 2) optimal selection and allocation of fuel requirement for an equivalent three-region core model, 2) optimal selection and allocation of fuel assemblies for each of the three regions to minimize the cost of the fresh reload fuel, 3) optimal placement of fuel assemblies to conserve regionwise optimal conditions and 4) optimal control through poison management to deplete individual fuel assemblies to maximize EOC k/sub eff/. Optimizing the fuel cost of reloading and depleting a PWR reactor cycle requires solutions to two separate optimization calculations. One of these minimizes the enriched fuel inventory in the core by optimizing the EOC k/sub eff/. The other minimizes the cost of the fresh reload cost. Both of these optimization calculations have now been combined to provide a new method for performing an automatic optimal reload of PWR's. The new method differs from previous methods in that the optimization process performs all tasks required to reload and deplete a PWR
Modeling and Optimal Control of a Redox Flow Battery
Wrang, Daniel; Faulwasser, Timm; Billeter, Julien; Amstutz, Véronique; Vrubel, Heron; Battistel, Alberto; Girault, Hubert; Bonvin, Dominique
2016-01-01
Vanadium Redox Flow Batteries (VRFB) can be used as energy storage device, for example to account for wind or solar power fluctuations. In VRFBs charge is stored in two tanks containing two different vanadium solutions. This approach decouples the storage capacity and the power supply which is dependent only on the number and size of the cells [1]. A control specific model of a VRFB is proposed, which captures the essential dynamic properties of the battery while ignoring all fluid mechanica...
Fast-power-reactor optimization by the game theory
International Nuclear Information System (INIS)
In the first stage of the use of fast breeder reactor - because fissile-material amounts are small - we are interested in fast breeder reactors which achieve minimum fissile-material mass, with maximum power. This problem shows a two-matrix-game structure. First, we determine a competive-game solution and second, a cooperative-game solution, obtaining in this way the optimum distribution of the fissile and fertile materials in the multizone fast reactors. Another optimization problem which is solved in this paper is finding the reactor structure for which the power non-uniformity factor and the flux non-uniformity factor are minimum. This is, also, a mathematical two-matrix game and it is solved as above. The two optimization problems have different solutions. (author)
Constructal method to optimize solar thermochemical reactor design
Energy Technology Data Exchange (ETDEWEB)
Tescari, S.; Mazet, N. [PROMES-CNRS, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan (France); Neveu, P. [PROMES-CNRS, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan (France); Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France)
2010-09-15
The objective of this study is the geometrical optimization of a thermochemical reactor, which works simultaneously as solar collector and reactor. The heat (concentrated solar radiation) is supplied on a small peripheral surface and has to be dispersed in the entire reactive volume in order to activate the reaction all over the material. A similarity between this study and the point to volume problem analyzed by the constructal approach (Bejan, 2000) is evident. This approach was successfully applied to several domains, for example for the coupled mass and conductive heat transfer (Azoumah et al., 2004). Focusing on solar reactors, this work aims to apply constructal analysis to coupled conductive and radiative heat transfer. As a first step, the chemical reaction is represented by a uniform heat sink inside the material. The objective is to optimize the reactor geometry in order to maximize its efficiency. By using some hypothesis, a simplified solution is found. A parametric study provides the influence of different technical and operating parameters on the maximal efficiency and on the optimal shape. Different reactor designs (filled cylinder, cavity and honeycomb reactors) are compared, in order to determine the most efficient structure according to the operating conditions. Finally, these results are compared with a CFD model in order to validate the assumptions. (author)
A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems
DEFF Research Database (Denmark)
Wognsen, Erik Ramsgaard; Haverkort, Boudewijn; Jongerden, Marijn;
2015-01-01
usage (charge and discharge) profiles on cycle life. The wear score function can not only be used to rank different usage profiles, these rankings can also be used as a criterion for optimizing the overall lifetime of a battery-powered system. We perform such an optimization on a nano-satellite case...
Directory of Open Access Journals (Sweden)
Hu Jianjun
2014-01-01
Full Text Available Aimed to achieve good thermal stability of lithium batteries in electric vehicles under the conditions of high-power. This study established a three-dimensional, transient heat dissipation model for Lithium-ion battery package in the three-dimensional Cartesian coordinate system based on theoretical knowledge of thermodynamics and heat transfer. With the help of the numerical simulation theoretical of CFD, the flow and temperature field of force air cooling Lithium-ion battery pack was simulated with the heat source obtained from dynamic performance simulations of Pure Electric Vehicles (PEVs under 15% climbing conditions. For the issues of high temperature rise and large temperature difference, optimal programs to improve the cooling effect of Lithium-ion battery pack were proposed. Simulation results indicate that the optimal measures make heat dissipation well and temperature distribution uniform, which satisfies the application requirement in PEVs.
Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms
Severino, Bernardo; Gana, Felipe; Palma-Behnke, Rodrigo; Estévez, Pablo A.; Calderón-Muñoz, Williams R.; Orchard, Marcos E.; Reyes, Jorge; Cortés, Marcelo
2014-12-01
Lithium-battery energy storage systems (LiBESS) are increasingly being used on electric mobility and stationary applications. Despite its increasing use and improvements of the technology there are still challenges associated with cost reduction, increasing lifetime and capacity, and higher safety. A correct battery thermal management system (BTMS) design is critical to achieve these goals. In this paper, a general framework for obtaining optimal BTMS designs is proposed. Due to the trade-off between the BTMS's design goals and the complex modeling of thermal response inside the battery pack, this paper proposes to solve this problem using a novel Multi-Objective Particle Swarm Optimization (MOPSO) approach. A theoretical case of a module with 6 cells and a real case of a pack used in a Solar Race Car are presented. The results show the capabilities of the proposal methodology, in which improved designs for battery packs are obtained.
Kriging-based algorithm for nuclear reactor neutronic design optimization
International Nuclear Information System (INIS)
Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.
Design Optimization of Radionuclide Nano-Scale Batteries
International Nuclear Information System (INIS)
Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW--hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas
Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle
Bambang Wahono; Kristian Ismail; Harutoshi Ogai
2015-01-01
This paper presents the construction of a battery state of charge (SOC) prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during t...
Optimal Charging Strategy for EVs with Batteries at Different States of Health
Tianxiang, Jiang; Putrus, Ghanim; Zhiwei, Gao; Conti, Matteo; McDonald, Stephen
2013-01-01
The electric vehicle (EV) is targeted as an efficient method of decreasing CO2 emission and reducing dependence on fossil fuel. Compared with filling up the internal combustion engine (ICE) vehicle, the EV power charging time is usually long. However,to the best of our knowledge, the current charging strategy does not consider the battery state of health (SOH). It is noted that a high charging current rate may damage the battery life. Motivated by this, an optimal charging strategy is propose...
Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units
2014-01-01
An optimal capacity allocation of large-scale wind-photovoltaic- (PV-) battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net...
The PBIL algorithm applied to a nuclear reactor design optimization
International Nuclear Information System (INIS)
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
Genetic algorithms applied to nuclear reactor design optimization
International Nuclear Information System (INIS)
A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)
Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units
Directory of Open Access Journals (Sweden)
Kehe Wu
2014-01-01
Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.
Large-Scale Optimization of Complex Separator and Reactor Networks
Ghougassian, Paul Gougas
2013-01-01
The generation of globally optimal designs which can minimize capital and/or operating cost expenditures is a highly sought after objective within the chemical industry. A methodology which can systematically generate such globally optimal solutions to objective functions commonly encountered in the chemical industry is the IDEAS framework. The IDEAS framework decomposes a process network into an operator, OP network, where the unit operations (reactors, distillation columns, heat exchangers,...
Optimal startup control of a jacketed tubular reactor.
Hahn, D. R.; Fan, L. T.; Hwang, C. L.
1971-01-01
The optimal startup policy of a jacketed tubular reactor, in which a first-order, reversible, exothermic reaction takes place, is presented. A distributed maximum principle is presented for determining weak necessary conditions for optimality of a diffusional distributed parameter system. A numerical technique is developed for practical implementation of the distributed maximum principle. This involves the sequential solution of the state and adjoint equations, in conjunction with a functional gradient technique for iteratively improving the control function.
Optimizing Battery Usage and Management for Long Life
Energy Technology Data Exchange (ETDEWEB)
Smith, Kandler; Shi, Ying; Wood, Eric; Pesaran, Ahmad
2016-06-16
This presentation discusses the impact of system design factors on battery aging and end of life. Topics include sizing of the SOC operating window, cell balancing and thermal management systems and their value in reducing pack degradation rates and cell imbalance growth over lifetime.
Optimizing Battery Usage and Management for Long Life
Energy Technology Data Exchange (ETDEWEB)
Smith, Kandler; Shi, Ying; Wood, Eric; Pesaran, Ahmad
2016-06-16
This presentation discusses the impact of system design factors on battery aging and end of life. Topics include sizing of the state-of-charge operating window, cell balancing, and thermal management systems and their value in reducing pack degradation rates and cell imbalance growth over lifetime.
MODELING, SIMULATION AND OPTIMIZATION OF FCC DOWNER REACTOR
Directory of Open Access Journals (Sweden)
Shishir Sinha
2010-08-01
Full Text Available Downer reactor, in which gas and solids move downward co-currently, has unique features such as itaccommodates high-severity operation at the initial stage with the benefit of near plug flow reactor.Literature have shown the downer could have advantages over riser. The purpose of downer reactor isto reduce the contact time to reduce the thermal cracking and eliminate back mixing to reduce dry gasformation and narrow the contact time distribution. In the present paper, mathematical model for downerreactor have been developed, in which a five-lump model is used to characterize the feed and the products,where gas oil crack to give lighter fractions and coke. There are present nine kinetic parameters and onecatalyst deactivation activity. The integrated reactor steady state model makes gross assumption aboutthe hydrodynamics, using Runga Kutta method. Optimization study of FCCU downer reactor to maximize itsprofitability and satisfy real-life constraints Non dominated sorting genetic algorithm (NSGA-II is used, whichis used to solve a two objective function optimization problem in this paper. The objective functions usedare maximization of the gasoline yield, minimization of the catalyst flow rate. The optimal results obtainedhere provide physical insights that can help one in obtaining and interpreting such solutions.
Optimization of ultra-long cycle fast reactor core
International Nuclear Information System (INIS)
An optimization of an ultra-long cycle fast reactor (UCFR) design with a power rate of 1000 MW (electric), UCFR-1000, has been performed to increase the safety of UCFR. Firstly, geometric optimization has been performed to decrease its peaking factors so that the peak temperatures measured by thermal hydraulic feedback are within the limit of design basis event (DBE). Secondly, fuel composition optimization has been performed by adopting Pressurized Water Reactor (PWR) spent fuel as a blanket material instead of natural uranium. Lastly, a small-size UCFR with a power rate of 100 MWe, UCFR-100, has been proposed for developing a short term deployable nuclear reactor. The major optimization process for UCFR-100 is decreasing maximum neutron flux and fast neutron fluence. The optimized UCFR-1000 has been enlarged radially and shortened axially from the initial UCFR design and this modification makes the burning speed of active core movement slower. It has been confirmed that a full-power operation of 60 years without refueling is feasible for both UCFR-1000 and UCFR-100 core designs by a breed-and-burn strategy. By the design optimization study, the reductions of maximum neutron flux, fast neutron fluence, and axial power peaking have been achieved, which are favorable for the safety of the UCFR. (author)
International Nuclear Information System (INIS)
This paper presents genetic algorithm (GA) based optimization of energy management for grid connected photovoltaic (PV) systems without battery storage. The major objective of this work is to minimize energy cost by maximizing objective function of GA considering both energy consumption and generation. In objective function calculation, PV module output power obtained by model of PV modules and previous power recordings from the PV system were employed. In the system, some electrical appliances and lights are in the energy consumption side and photovoltaic energy source connected to the grid is in the energy generation side. A simulation study was implemented to obtain energy cost savings using GA optimization in a commercial building. Due to the cost of the batteries, PV system is implemented without battery storage. Therefore, by adapting fluctuating PV energy generation with the time -flexible loads , an effort was aimed to develop a smart -grid strategy. Key words: energy management , PV system, genetic algorithms, optimization, load scheduling
Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System
Directory of Open Access Journals (Sweden)
Farouk Odeim
2015-06-01
Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.
Dynamic optimization of a copolymerization reactor using tabu search.
Anand, P; Rao, M Bhagvanth; Venkateswarlu, Ch
2015-03-01
A novel multistage dynamic optimization strategy based on meta-heuristic tabu search (TS) is proposed and evaluated through sequential and simultaneous implementation procedures by applying it to a semi-batch styrene-acrylonitrile (SAN) copolymerization reactor. The adaptive memory and responsive exploration features of TS are exploited to design the dynamic optimization strategy and compute the optimal control policies for temperature and monomer addition rate so as to achieve the desired product quality parameters expressed in terms of single and multiple objectives. The dynamic optimization results of TS sequential and TS simultaneous implementation strategies are analyzed and compared with those of a conventional optimization technique based on iterative dynamic programming (IDP). The simulation results demonstrate the usefulness of TS for optimal control of transient dynamic systems. PMID:25466914
Optimization of the ARIES-CS compact stellarator reactor parameters
International Nuclear Information System (INIS)
optimum reactor size are the minimum distance between coils, neutron and radiative power flux to the wall, and the beta limit. A reactor systems/optimization code is used to optimize the reactor parameters for minimum cost of electricity subject to a large number of physics, engineering, materials, and reactor component constraints. Different transport models, reactor component models, and costing algorithms are used to test sensitivities to different models and assumptions. A 1-D power balance code is used to study the path to ignition and the effect of different plasma and confinement assumptions including density and temperature profiles, impurity density levels and peaking near the outside, confinement scaling, beta limits, alpha particle losses, etc. for each plasma and coil configuration. Variations on two different magnetic configurations were analyzed in detail: a three-field-period (M = 3) NCSX-based plasma with coils modified to allow a larger plasma-coil spacing, and an M = 2 plasma with coils that are closer to the plasma on the outboard side with less toroidal excursion. The reactors have major radii R in the 7-9 m range with an improved blanket and shield concept and an advanced superconducting coil approach. The results show that compact stellarator reactors should be cost competitive with tokamak reactors. (author)
Optimization of air ducts for nuclear reactor power generation station
International Nuclear Information System (INIS)
In the optimization study on the heating, ventilating and air conditions system in Nuclear Reactor Power Generation Station, proper arrangement of air ducts has been studied using the experimental and analytical investigation from a viewpoint of duct arrangement optimization. This study consists of two parts. Part I is optimization of air ducts in the corridors and Part II is optimization of air duct in each room. In part I, from viewpoints of confinement of radioactive materials in facilities having possible radioactive contamination and improvement of thermal environment for workers, the authors have studied air ducts system in which fresh air is supplied to corridors and heat removal and ventilation for each room are performed by transferring air from the corridors, instead of current ducts system with supply duct to each room. In part II, the condenser room with complex configuration and large space, and the electrical equipment room with simple space are selected for model areas. Based on these studies, experimental and analytical investigation (using a three-dimensional thermal hydraulic analysis) technique has been established, and the effective design method for duct arrangement of HVAC design has been verified for Boiling Water Reactor Power Station. The air-duct arrangements optimized in this study are applied to an Advanced Boiling Water Reactor Power Station in trial and reduction of the air-duct quantity is confirmed
Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity
International Nuclear Information System (INIS)
This paper examines the problem of optimizing the charge pattern of a plug-in hybrid electric vehicle (PHEV), defined as the timing and rate with which the PHEV obtains electricity from the power grid. The optimization goal is to simultaneously minimize (i) the total cost of fuel and electricity and (ii) the total battery health degradation over a 24-h naturalistic drive cycle. The first objective is calculated for a previously-developed stochastic optimal PHEV power management strategy, whereas the second objective is evaluated through an electrochemistry-based model of anode-side resistive film formation in lithium-ion batteries. The paper shows that these two objectives are conflicting, and trades them off using a non-dominated sorting genetic algorithm. As a result, a Pareto front of optimal charge patterns is obtained. The effects of electricity price and trip schedule on the optimal Pareto points and the PHEV charge patterns are analyzed and discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Xu, Wu; Xiao, Jie; Zhang, Jian; Wang, Deyu; Zhang, Jiguang
2009-07-07
The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte has reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.
Optimizations of Battery-Based Intrusion Protection Systems
Nelson, Theresa Michelle
2008-01-01
As time progresses, small mobile devices become more prevalent for both personal and industrial use, providing malicious network users with new and exciting venues for security exploits. Standard security applications, such as Norton Antivirus and MacAfee, require computing power, memory space, and operating system complexity that are not present in small mobile devices. Recently, the Battery-Sensing Intrusion Protection System (B-SIPS) was devised as a means to correct the inability of small...
Mathematical game type optimization of powerful fast reactors
International Nuclear Information System (INIS)
To obtain maximum speed of putting into operation fast breeders it is recommended on the initial stage of putting into operation these reactors to apply lower power which needs less fission materials. That is why there is an attempt to find a configuration of a high-power reactor providing maximum power for minimum mass of fission material. This problem has a structure of the mathematical game with two partners of non-zero-order total and is solved by means of specific aids of theory of games. Optimal distribution of fission and breeding materials in a multizone reactor first is determined by solution of competitive game and then, on its base, by solution of the cooperation game. The second problem the solution for which is searched is developed from remark on the fact that a reactor with minimum coefficient of flux heterogenity has a configuration different from the reactor with power coefficient heterogenity. Maximum burn-up of fuel needs minimum heterogenity of the flux coefficient and the highest power level needs minimum coefficient of power heterogenity. That is why it is possible to put a problem of finding of the reactor configuration having both coefficients with minimum value. This problem has a structure of a mathematical game with two partners of non-zero-order total and is solved analogously giving optimal distribution of fuel from the new point of view. In the report is shown that both these solutions are independent which is a result of the aim put in the problem of optimization. (author)
Multi-cycle boiling water reactor fuel cycle optimization
Energy Technology Data Exchange (ETDEWEB)
Ottinger, K.; Maldonado, G.I. [University of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)
2013-07-01
In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)
Bat algorithm for the fuel arrangement optimization of reactor core
International Nuclear Information System (INIS)
Highlights: • For the first time, bat algorithm has been developed for the core pattern optimization problem. • BANEC results present the strength of BA in gaining semioptimized LPs consuming suitable run time. • Numerical results reveal the acceptable performance and reliability of BA for the LPO problem. - Abstract: In this paper, we develop a novel optimization algorithm, Bat Algorithm (BA), in order to implement in the Loading Pattern Optimization (LPO) of nuclear reactor core. For performing the fuel management optimization, we define a fitness function considering the multiplication factor maximizing and power peaking factor minimizing objectives simultaneously. For this purpose, we prepared a computer program i.e. Bat Algorithm Nodal Expansion Code (BANEC) in order to gain the possible maximum fitness value for the LPO operation. Fuel arrangement optimization using BANEC has been performed for two PWR test cases including KWU and BIBLIS reactors. Numerical results of BANEC confirm that the BA has a great strength to obtain a semioptimized core pattern as respect to considered objective functions during suitable consuming run time. At last, the results show that BA is a very promising algorithm for LPO problems and has the potential to use in other nuclear engineering optimization problems
Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials
Energy Technology Data Exchange (ETDEWEB)
Wood, III, D. L.; Yoon, S. [A123 Systems, Inc.
2012-10-25
The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.
DEFF Research Database (Denmark)
Dragicevic, Tomislav; Pandžić, Hrvoje; Škrlec, Davor;
2014-01-01
by a central energy storage system (ESS), consisting of a battery and a fuel cell. The optimization is carried out as a robust mixed-integer linear program (RMILP), and results in different optimal solutions, depending on budgets of uncertainty, each of which yields different RES and storage......This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported...... capacities. These solutions are then tested against a set of possible outcomes, thus simulating the future operation of the system. Since battery cycling is inevitable in this application, an algorithm that counts the number of cycles and associated depths of discharges (DoD) is applied to the optimization...
Development and Optimization of Modular Hybrid Plasma Reactor
Energy Technology Data Exchange (ETDEWEB)
N/A
2013-01-02
INL developed a bench–scale, modular hybrid plasma system for gas-phase nanomaterials synthesis. The system was optimized for WO{sub 3} nanoparticle production and scale-model projection to a 300 kW pilot system. During the course of technology development, many modifications were made to the system to resolve technical issues that surfaced and also to improve performance. All project tasks were completed except two optimization subtasks. Researchers were unable to complete these two subtasks, a four-hour and an eight-hour continuous powder production run at 1 lb/hr powder-feeding rate, due to major technical issues developed with the reactor system. The 4-hour run was attempted twice, and on both occasions, the run was terminated prematurely. The termination was due to (1) heavy material condensation on the modular electrodes, which led to system operational instability, and (2) pressure buildup in the reactor due to powder clogging of the exhaust gas and product transfer line. The modular electrode for the plasma system was significantly redesigned to address the material condensation problem on the electrodes. However, the cause for product powder clogging of the exhaust gas and product transfer line led to a pressure build up in the reactor that was undetected. Fabrication of the redesigned modular electrodes and additional components was completed near the end of the project life. However, insufficient resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable {delta}- Al{sub 2}O{sub 3} from pure {alpha}-phase large Al{sub 2}O{sub 3} powder. The formation of {delta} -Al{sub 2}O{sub 3} was surprising because this phase is meta-stable and only formed between 973–1073 K, and {delta} -Al{sub 2}O{sub 3} is very difficult to synthesize as a single
Devillers, Bertrand; Gunduz, Deniz
2011-01-01
Energy harvesting has emerged as a powerful technology for complementing current battery-powered communication systems in order to extend their lifetime. In this paper a general framework is introduced for the optimization of communication systems in which the transmitter is able to harvest energy from its environment. Assuming that the energy arrival process is known non-causally at the transmitter, the structure of the optimal transmission scheme, which maximizes the amount of transmitted d...
Optimal Sizing and Control of Battery Energy Storage System for Peak Load Shaving
Chao Lu; Hanchen Xu; Xin Pan; Jie Song
2014-01-01
Battery Energy Storage System (BESS) can be utilized to shave the peak load in power systems and thus defer the need to upgrade the power grid. Based on a rolling load forecasting method, along with the peak load reduction requirements in reality, at the planning level, we propose a BESS capacity planning model for peak and load shaving problem. At the operational level, we consider the optimal control policy towards charging and discharging power with two different optimization objectives: o...
Shape optimization of a sodium cooled fast reactor
Schmitt, Damien; Allaire, Grégoire; Pantz, Olivier; Pozin, Nicolas
2014-06-01
Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth.(1, 2) Usual optimization methods for core conception are based on a parametric description of a given core design(3).(4) New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints.(5, 6) First studies show that these methods could be applied to sodium cooled core conception.(7) In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a get realistic core layout. Its caracteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas.
Fuel management optimization in CANDU reactors cooled with light water
International Nuclear Information System (INIS)
This research has two main goals. First, we wanted to introduce optimization tools in the diffusion code DONJON, mostly for fuel management. The second objective is more practical. The optimization capabilities are applied to the fuel management problem for different CANDU reactors at refueling equilibrium state. Two kinds of approaches are considered and implemented in this study to solve optimization problems in the code DONJON. The first methods are based on gradients and on the quasi-linear mathematical programming. The method initially developed in the code OPTEX is implemented as a reference approach for the gradient based methods. However, this approach has a major drawback. Indeed, the starting point has to be a feasible point. Then, several approaches have been developed to be more general and not limited by the initial point choice. Among the different methods we developed, two were found to be very efficient: the multi-step method and the mixte method. The second kind of approach are the meta-heuristic methods. We implemented the tabu search method. Initially, it was designed to optimize combinatory variable problems. However, we successfully used it for continuous variables. The major advantage of the tabu method over the gradient methods is the capability to exit from local minima. Optimisation of the average exit burnup has been performed for CANDU-6 and ACR-700 reactors. The fresh fuel enrichment has also been optimized for ACR-700. Results match very well what the reactor physics can predict. Moreover, a comparison of the two totally different types of optimization methods validated the results we obtained. (author)
Optimal filtering, parameter tracking, and control of nonlinear nuclear reactors
International Nuclear Information System (INIS)
This paper presents a new formulation of a class of nonlinear optimal control problems in which the system's signals are noisy and some system parameters are changing arbitrarily with time. The methodology is validated with an application to a nonlinear nuclear reactor model. A variational technique based on Pontryagin's maximum principle is used to filter the noisy signals, estimate the time-varying parameters, and calculate the optimal controls. The reformulation of the variational technique as an initial value problem allows this microprocessor-based algorithm to perform on-line filtering, parameter tracking, and control
A supercomputing application for reactors core design and optimization
International Nuclear Information System (INIS)
Advanced nuclear reactor designs are often intuition-driven processes where designers first develop or use simplified simulation tools for each physical phenomenon involved. Through the project development, complexity in each discipline increases and implementation of chaining/coupling capabilities adapted to supercomputing optimization process are often postponed to a further step so that task gets increasingly challenging. In the context of renewal in reactor designs, project of first realization are often run in parallel with advanced design although very dependant on final options. As a consequence, the development of tools to globally assess/optimize reactor core features, with the on-going design methods accuracy, is needed. This should be possible within reasonable simulation time and without advanced computer skills needed at project management scale. Also, these tools should be ready to easily cope with modeling progresses in each discipline through project life-time. An early stage development of multi-physics package adapted to supercomputing is presented. The URANIE platform, developed at CEA and based on the Data Analysis Framework ROOT, is very well adapted to this approach. It allows diversified sampling techniques (SRS, LHS, qMC), fitting tools (neuronal networks...) and optimization techniques (genetic algorithm). Also data-base management and visualization are made very easy. In this paper, we'll present the various implementing steps of this core physics tool where neutronics, thermo-hydraulics, and fuel mechanics codes are run simultaneously. A relevant example of optimization of nuclear reactor safety characteristics will be presented. Also, flexibility of URANIE tool will be illustrated with the presentation of several approaches to improve Pareto front quality. (author)
Optimizing advanced liquid metal reactors for burning actinides
International Nuclear Information System (INIS)
In this report, the process to design an Advanced Liquid Metal Reactor (ALMR) for burning the transuranic part of nuclear waste is discussed. The influence of design parameters on ALMR burner performance is studied and the results are incorporated in a design schedule for optimizing ALMRs for burning transuranics. This schedule is used to design a metallic and an oxide fueled ALMR burner to burn as much as possible transurancis. The two designs burn equally well. (orig.)
Parameter estimation and optimal experimental design in flow reactors
Carraro, Thomas
2005-01-01
In this work we present numerical techniques, based on the finite element method, for the simulation of reactive flows in a chemical flow reactor as well as for the identification of the kinetic of the reactions using measurements of observable quantities. We present the case of a real experiment in which the reaction rate is estimated by means of concentration measurements. We introduce methods for the optimal experimental design of experiments in the context of reactive flows modeled by par...
Applications of prognostics for maintenance optimization of research reactors
International Nuclear Information System (INIS)
The optimization of operation especially maintenance and surveillance of various components and systems of research reactors using prognostic have been emphasized in this study to save cost and time while keeping safety and reliability high. This study is focused on the research reactors due to margin of cost competitiveness and regulation. The feasibility study has been performed in order to find the potential candidates from research reactors, on which prognostic can be implemented. System and components has been classified into category I and category II, based on the nature of working during the operation of research reactor. The systems of category I are those which, either full or part of them, remain in working condition during normal operation of a research reactor. For instance, instrumentation and control components of safety, protection and monitoring systems belong to this category. Contrary to this, the systems which remain standby during normal operation and start operation on safety signals are grouped in category II. Motor operated valves, pumps of emergency system and vital power system are well suited examples. The online and offline prognostics have been proposed as a work approach for category I and category II systems respectively. (author)
Geometric-Process-Based Battery Management Optimizing Policy for the Electric Bus
Yan Li; Jin-kuan Wang; Peng Han; Ying-hua Han
2015-01-01
With the rapid development of the electric vehicle industry and promotive policies worldwide, the electric bus (E-bus) has been adopted in many major cities around the world. One of the most important factors that restrain the widespread application of the E-bus is the high operating cost due to the deficient battery management. This paper proposes a geometric-process-based (GP-based) battery management optimizing policy which aims to minimize the average cost of the operation on the premise ...
Modeling and Optimal Operation of Distributed Battery Storage in Low Voltage Grids
Fortenbacher, Philipp; Mathieu, Johanna L.; Andersson, Göran
2016-01-01
Due to high power in-feed from photovoltaics, it can be expected that more battery systems will be installed in the distribution grid in near future to mitigate voltage violations and thermal line and transformer overloading. In this paper, we present a two-stage centralized model predictive control scheme for distributed battery storage that consists of a scheduling entity and a real-time control entity. To guarantee secure grid operation, we solve a robust multi-period optimal power flow (O...
Optimal control of battery for grid-connected wind-storage system
L. Liang; Zhong, J.
2012-01-01
The penetration level of large-scale wind farms is restricted by the output uncertainties of wind power generations. Energy storage systems with fast response time and high operation efficiencies, such as, flywheel and battery could be used as one of the solutions for large-scale wind power integration to power grid. To mitigate the power fluctuation of wind farm, an optimal control method of battery energy storage system is proposed for grid-connected wind system in this paper. Based on one-...
Optimizing Battery Life for Electric UAVs using a Bayesian Framework
National Aeronautics and Space Administration — In summary, this paper lays a simple flight plan optimization strategy based on the particle filtering framework described in [5]. This is meant as a first step in...
International Nuclear Information System (INIS)
There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements
Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles
Directory of Open Access Journals (Sweden)
Shuo Zhang
2014-10-01
Full Text Available The charging method of lithium-ion batteries used in electric vehicles (EVs significantly affects its commercial application. This paper aims to make three contributions to the existing literature. (1 In order to achieve an efficient charging strategy for lithium-ion batteries with shorter charging time and lower charring loss, the trade-off problem between charging loss and charging time has been analyzed in details through the dynamic programing (DP optimization algorithm; (2 To reduce the computation time consumed during the optimization process, we have proposed a database based optimization approach. After off-line calculation, the simulation results can be applied to on-line charge; (3 The novel database-based DP method is proposed and the simulation results illustrate that this method can effectively find the suboptimal charging strategies under a certain balance between the charging loss and charging time.
Transient cycle fuel management optimization of a pressurized water reactor
International Nuclear Information System (INIS)
This paper concerns with how to optimally determine enrichments of fuel assembly (FA) batches of beginning-of-life (BOL) and reload cycle cores of a pressurized water reactor (PWR) plant which runs on a multi-batch, multi-cycle fuel management scheme. As a way to determine the optimum FA enrichments, a multi-cycle, multi-objective FA loading pattern (LP) optimization problem for the transient cycle cores involving the BOL and the reload cycle cores of the PWR plant is solved by the adaptively constrained discontinuous penalty function-based (ACDPF-based) multi-objective simulated annealing (MOSA) algorithm in combination with the commercial core neutronics design code ASTRA (Advanced Static and Transient Reactor Analyzer). The applicability and the effectiveness of the ACDPF-based MOSA algorithm is examined in terms of its solution to the first three transient cycle FA LP optimization problem of Yonggwang Nuclear Unit 4 (YGN4) a PWR plant in Korea. The practicality and usefulness of the ACDPF-based MOSA algorithm as an optimizer to determine optimum enrichments of BOL and reload cycle cores are discussed. (author)
Yasser Maklad
2014-01-01
Intermittency is an apparent characteristic of some renewable energy sources and this specifically applies to solar, wind and tidal renewable sources. Thus, battery storage is a real important element of any photo voltaic (PV) energy generation systems. As well, sizing of battery storage plays a vital role in achieving an optimal operation of such a system. Emphasis is greatly required to proper sizing of battery storage. In this context, daily global solar radiation data, for (14) years duri...
Optimized Design and Discussion on Middle and Large CANDLE Reactors
Directory of Open Access Journals (Sweden)
Xiaoming Chai
2012-08-01
Full Text Available CANDLE (Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor reactors have been intensively researched in the last decades [1–6]. Research shows that this kind of reactor is highly economical, safe and efficiently saves resources, thus extending large scale fission nuclear energy utilization for thousands of years, benefitting the whole of society. For many developing countries with a large population and high energy demands, such as China and India, middle (1000 MWth and large (2000 MWth CANDLE fast reactors are obviously more suitable than small reactors [2]. In this paper, the middle and large CANDLE reactors are investigated with U-Pu and combined ThU-UPu fuel cycles, aiming to utilize the abundant thorium resources and optimize the radial power distribution. To achieve these design purposes, the present designs were utilized, simply dividing the core into two fuel regions in the radial direction. The less active fuel, such as thorium or natural uranium, was loaded in the inner core region and the fuel with low-level enrichment, e.g. 2.0% enriched uranium, was loaded in the outer core region. By this simple core configuration and fuel setting, rather than using a complicated method, we can obtain the desired middle and large CANDLE fast cores with reasonable core geometry and thermal hydraulic parameters that perform safely and economically; as is to be expected from CANDLE. To assist in understanding the CANDLE reactor’s attributes, analysis and discussion of the calculation results achieved are provided.
New genetic algorithms (GA) to optimize PWR reactors
International Nuclear Information System (INIS)
The Haling Power Distribution (HPD) has been applied in a unique process to greatly accelerate the in-core fuel management optimization calculations. These calculations involve; the arrangement of fuel assemblies (FAs) and the placement of Burnable Poisons (BPs) in the fresh FAs. The HPD deals only with the arrangement of FAs. The purpose of this paper is to describe past uses of the HPD, provide an example selected from many similar calculations to explain why and how it can be used, and also to show its effectiveness as a filter in the GARCO GA code. The GARCO (Genetic Algorithm Reactor Core Optimization) is an innovative GA code that was developed by modifying the classical representation of the genotype and GA operators. A reactor physics code evaluates the LPs in the population using the HPD Method, which rapidly depletes the core in a single depletion step with a constant power distribution. The HPD is used basically in GARCO as a filter to eliminate invalid LPs created by the genetic operators, to choose a reference LP for BP optimization, and to create an initial population for simultaneous optimization of the LP and BP placement into the core. The accurate depletion calculation of the LP with BPs is done with the coupled lattice and reactor physics CASMO-4/SIMULATE3 package. However, the fact that these codes validate safety of the core with the added BP placement design also validates the use of the HPD method. The calculations are applied to the TMI-1 core as an example PWR providing concrete results
The optimal control of ITU TRIGA Mark II Reactor
International Nuclear Information System (INIS)
In this study, optimal control of ITU TRIGA Mark-II Reactor is discussed. A new controller has been designed for ITU TRIGA Mark-II Reactor. The controller consists of main and auxiliary controllers. The form is based on Pontragyn's Maximum Principle and the latter is based on PID approach. For the desired power program, a cubic function is chosen. Integral Performance Index includes the mean square of error function and the effect of selected period on the power variation. YAVCAN2 Neutronic - Thermal -Hydraulic code is used to solve the equations, namely 11 equations, dealing with neutronic - thermal - hydraulic behavior of the reactor. For the controller design, a new code, KONTCAN, is written. In the application of the code, it is seen that the controller controls the reactor power to follow the desired power program. The overshoot value alters between 100 W and 500 W depending on the selected period. There is no undershoot. The controller rapidly increases reactivity, then decreases, after that increases it until the effect of temperature feedback is compensated. Error function varies between 0-1 kW. (author)
Optimal coordinate operation control for wind–photovoltaic–battery storage power-generation units
International Nuclear Information System (INIS)
Highlights: • Adopt ‘rainflow’ calculation method to establish the battery cycle life model and quantitatively calculate the life wreck. • Minimize unit cost of power generation through enhanced gravitational search algorithm. • Analyze the relationship between renewable resource potential and the economic efficiency of power generation unit. - Abstract: An optimal coordinate operation control method for large-scale wind–photovoltaic (PV)–battery storage power generation units (WPB-PGUs) connected to a power grid with rated power output was proposed to address the challenges of poor stability, lack of decision-making, and low economic benefits. The “rainflow” calculation method was adopted to establish the battery cycle life model and to calculate quantitatively the life expectancy loss in the operation process. To minimize unit cost of power generation, this work optimized the output period of the equipment and strategy of battery charging and discharging with consideration of working conditions, generation equipment characteristics, and load demand by using the enhanced gravitational search algorithm (EGSA). A case study was conducted on the basis of data obtained using WPB-PGU in Zhangbei, China. Results showed that the proposed method could effectively minimize the unit cost of a WPB-PGU under different scenarios and diverse meteorological conditions. The proposed algorithm has high calculation accuracy and fast convergence speed
Martel, François; Kelouwani, Sousso; Dubé, Yves; Agbossou, Kodjo
2015-01-01
This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.
The shutdown reactor: Optimizing spent fuel storage cost
International Nuclear Information System (INIS)
Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wet and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec's findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest
DEFF Research Database (Denmark)
Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte
2010-01-01
Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...... system (BESS) in relation to the real-time electricity price in order to achieve the maximum profits of the BESS. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may represent the future of electricity...... markets in some ways, is chosen as the studied power system in this paper. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studies in the paper. Simulation results show, that the proposed optimal operation strategy is an effective measure to achieve...
Loading pattern optimization of PWR reactors using Artificial Bee Colony
International Nuclear Information System (INIS)
Highlights: → ABC algorithm is comparable to the canonical GA algorithm and PSO. → The performance of ABC shows that the algorithm is quiet promising. → The final band width of search fitness values by ABC is narrow. → The ABC algorithm is relatively easy to implement. - Abstract: In this paper a core reloading technique using Artificial Bee Colony algorithm, ABC, is presented in the context of finding an optimal configuration of fuel assemblies. The proposed method can be used for in-core fuel management optimization problems in pressurized water reactors. To evaluate the proposed technique, the power flattening of a VVER-1000 core is considered as an objective function although other variables such as Keff, power peaking factor, burn up and cycle length can also be taken into account. The proposed optimization method is applied to a core design optimization problem previously solved with Genetic and Particle Swarm Intelligence Algorithm. The results, convergence rate and reliability of the new method are quite promising and show that the ABC algorithm performs very well and is comparable to the canonical Genetic Algorithm and Particle Swarm Intelligence, hence demonstrating its potential for other optimization applications in nuclear engineering field as, for instance, the cascade problems.
Vehicle trajectory optimization for hybrid vehicles taking into account battery state-of-charge
MENSING, Felicitas; TRIGUI, Rochdi; Bideaux, Eric
2012-01-01
Hybrid vehicles are found to be one solution to reduce fuel consumption in the transportation sector. Eco-driving is a concept that is immediately applicable by drivers to improve the efficiency of their vehicle. In this work the potential of eco-driving for hybrid drive train vehicles is discussed. The operation of hybrid vehicles is strongly dependent on their energy management and therefore on battery state-of-charge. Here, the velocity trajectory will be optimized taking into account b...
Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems
Xu, D.; Kang, L.
2015-06-01
Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.
Genetic Algorithm Based Charge Optimization of Lithium-Ion Batteries in Small Satellites
Jain, Saurabh; Simon, Dan
2005-01-01
Small spacecraft that are powered by solar energy have limitations because of the size of their solar panels. With the limitations on the solar panel size, it is generally hard to comply with the demands from all the satellite subsystems, payloads and batteries at the same time. To overcome these problems we have developed and adopted a power management optimization scheme that runs in real time in the satellite. The proposed power management scheme primarily involves scheduling of loads (var...
Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector
International Nuclear Information System (INIS)
Highlights: • A feasibility study on a stand-alone solar–battery power generation system is carried out. • An in-house developed calculation code able to estimate photovoltaic panels behaviour is described. • The feasibility of replacing grid electricity with hybrid system is examined. • Guidelines for optimal photovoltaic design are given. • Guidelines for optimal storage sizing in terms of batteries number and capacity are given. - Abstract: The penetration of renewable sources into the grid, particularly wind and solar, have been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. The study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. In particular, this paper presents first results for photovoltaic (PV)/battery (B) hybrid configuration. The main objective of this paper is focused on PV/B system, to recommend hybrid system optimal design in terms of PV module number, PV module tilt, number and capacity of batteries to minimize or, if possible, to neglect grid supply. This paper is the early stage of a theoretical and experimental study in which two different hybrid power system configurations will be evaluated and compared: (i) PV/B system and (ii) PV/B/fuel cell (FC) system. The aim of the overall study will be the definition of the
Mitchell, Sarah L.; Ortiz, Michael
2016-09-01
This study utilizes computational topology optimization methods for the systematic design of optimal multifunctional silicon anode structures for lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such this work considers two design objectives, the first being minimum compliance under design dependent volume expansion, and the second maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the influence of the minimum structural feature size and prescribed volume fraction are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the structural and conduction design criteria. The weighted sum method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. A rigid frame structure was found to be an excellent compromise between the structural and conduction design criteria, providing both the required structural rigidity and direct conduction pathways. The developments and results presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.
Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries
Directory of Open Access Journals (Sweden)
Yan Li
2016-01-01
Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.
A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems
Directory of Open Access Journals (Sweden)
Ali M. Eltamaly
2014-01-01
Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.
Design and axial optimization of nuclear fuel for BWR reactors
International Nuclear Information System (INIS)
In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the
Optimal Power Scheduling for a Grid-Connected Hybrid PV-Wind-Battery Microgrid System
DEFF Research Database (Denmark)
Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Savaghebi, Mehdi;
2016-01-01
In this paper, a lineal mathematical model is proposed to schedule optimally the power references of the distributed energy resources in a grid-connected hybrid PVwind-battery microgrid. The optimization of the short term scheduling problem is addressed through a mixed-integer linear programming...... mathematical model, wherein the cost of energy purchased from the main grid is minimized and profits for selling energy generated by photovoltaic arrays are maximized by considering both physical constraints and requirements for a feasible deployment in the real system. The optimization model is tested by...... using a real-time simulation of the model and uploaded it in a digital control platform. The results show the economic benefit of the proposed optimal scheduling approach in two different scenarios....
International Nuclear Information System (INIS)
Thermal management is crucial for the operation of electric vehicles because lithium ion batteries are vulnerable to excessive heat generation during fast charging or other severe scenarios. In this work, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack. A numerical model is developed and comprehensively validated with experimental results. This model is then employed to investigate the thermal performance of the HPTMS under steady state and transient conditions. It is found that a cylinder vortex generator placed in front of the heat pipe condensers in the coolant stream improves the temperature uniformity. The uses of cooper heat spreaders and cooling fins greatly improve the performance of the thermal management system. Experiments and transient simulations of heat pipe thermal management system integrated with batteries prove that the improved HPTMS is capable for thermal management of batteries during fast charging. The air-cooled HPTMS is infeasible for thermal management of batteries during fast charging at the pack level due to the limitation of low specific heat capacity. - Highlights: • We develop a numerical model for optimizing a heat pipe thermal management system for fast charging batteries. • The numerical model is comprehensively validated with experimental data. • A cylinder vortex generator is placed at the inlet of the cooling stream to improve the temperature uniformity. • We validate the effectiveness of the optimized system with integration of prismatic batteries
Optimization of research reactor availability and reliability: Recommended practices
International Nuclear Information System (INIS)
For a select (and growing) population of research reactor organizations, an unplanned, forced, or otherwise inadvertent reactor shutdown or power reduction is a significant event - so significant that these organizations are willing to proactively invest resources to reduce these occurrences to a minimum. This report focuses on operation and maintenance programmes and best practices that have led to demonstrated performance improvements. The effort to develop the material relied on inputs from representatives of operating organizations with heavily utilized research reactors involved in activities that are highly sensitive to inadvertent automatic shutdowns, reductions in power, forced outages or unplanned outage extensions. The content of this report reflects efforts to achieve operational excellence. The relevance and importance of related safety and security programmes were repeatedly emphasized throughout the development of this report. The unanimous agreement from all involved is that fully developed and well implemented safety and security programmes, with all the relevant attributes including a well established safety culture and integral management system, among others, are an absolute prerequisite to optimize availability and reliability. Details about such programmes may be found in specifically referenced documents, as well as general references included in a bibliography. Other than these references, it is not the objective of this report to provide any recommendations, guidelines or practices aimed solely at improving facility safety. This report was developed over the course of two meetings in September 2006 and April 2007. Participants included operation and maintenance managers representing heavily utilized facilities with demonstrated operation and maintenance performance excellence. In these meetings a general outline was developed and then expanded to cover a range of programmes and activities that the participants identified as significant to
Optimization of a combined electrocoagulation-electroflotation reactor.
Jiménez, C; Sáez, C; Cañizares, P; Rodrigo, M A
2016-05-01
This work studies the efficiency of an electroflotation process for the separation of the solids produced during the electrocoagulation treatment of three different types of wastewater: kaolin suspension, coloured organic solution and oil-in-water emulsion. Additionally, a combined electrocoagulation-electroflotation reactor is designed and optimized taking into account the effect of current density, residence time, pollutant concentration and the ratio floated/settled solids. To do this, an experimental design with response surface methodology (RSM) has been used. Results show that electroflotation is a good alternative to the removal of oil microdrops and dyes, but it is not recommended for the separation of solids formed during electrocoagulation of colloid suspensions due to its high density. It has been found that the use of aluminium leads to better results than the use of iron in the treatment of oil-in-water emulsions and coloured solutions. In these cases, the use of a combined electrocoagulation-electroflotation reactor is recommended and the effect of the main inputs has been studied. PMID:26846247
Optimal Operation Method for Microgrid with Wind/PV/Diesel Generator/Battery and Desalination
Directory of Open Access Journals (Sweden)
Qingfeng Tang
2014-01-01
Full Text Available The power supply mode of island microgrid with a variety of complementary energy resources is one of the most effective ways to solve the problem of future island power supply. Based on the characteristics of seawater desalination system and water demand of island residents, a power allocation strategy for seawater desalination load, storage batteries, and diesel generators is proposed with the overall consideration of the economic and environmental benefits of system operation. Furthermore, a multiobjective optimal operation model for the island microgrid with wind/photovoltaic/diesel/storage and seawater desalination load is also proposed. It first establishes the objective functions which include the life loss of storage batteries and the fuel cost of diesel generators. Finally, the model is solved by the nondominated sorting genetic algorithm (NSGA-II. The island microgrid in a certain district is taken as an example to verify the effectiveness of the proposed optimal method. The results provide the theoretical and technical basis for the optimal operation of island microgrid.
Institute of Scientific and Technical Information of China (English)
刘燕平; 欧阳陈志; 江清柏; 梁波
2015-01-01
Single cell temperature difference of lithium-ion battery (LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics (CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.
SWAN-PPL, Fusion Reactor 1-D Particle Transport Optimization
International Nuclear Information System (INIS)
1 - Description of problem or function: Given the material density profiles which describe a one-dimensional reference system with a neutron source, SWAN will calculate, and optionally implement, density changes so as to optimize a single functional parameter of the system. 2 - Method of solution: The one-dimensional discrete-ordinate transport code ANISN is used to calculate flux and adjoint distributions for specified sources. The code SWIF calculates first-order estimates of the effect of material density changes on a goal functional, and from these evaluates effectiveness functions for the substitution of one material for another. Density distribution changes are then calculated which would optimize the goal functional, optionally subject to a constraint of holding another functional constant (to first order). 3 - Restrictions on the complexity of the problem: SWAN is not designed to analyze critical systems; it assumes that there is a fixed source, as in shielding or fusion reactor applications. Otherwise it is compatible with ANISN. All arrays are variably-dimensioned, so that there are no restrictions on individual dimensions
Redelbach, Martin; Özdemir, Enver Doruk; Friedrich, Horst E.
2014-01-01
There are ambitious greenhouse gas emissions (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. Th...
International Nuclear Information System (INIS)
The mathematical modeling of automatic control systems of reactor facility WWER-1000 with various regulator types is considered. The linear and nonlinear models of neutron power control systems of nuclear reactor WWER-1000 with various group numbers of delayed neutrons are designed. The results of optimization of direct quality indexes of neutron power control systems of nuclear reactor WWER-1000 are designed. The identification and optimization of level control systems with various regulator types of steam generator are executed
Enhancement of a semi-batch chemical reactor efficiency through its dimensions optimization
Macků, Lubomír; Novosad, David
2015-01-01
Efficiency of manufacturing processes is very important in today's competitive world with hard economic rules. In chemical engineering area the efficiency depends on the production heart, which is often a chemical reactor. In this paper authors describe process of optimal semi-batch exothermic reactor dimensions finding. The task is to find reactor dimensions which lead to process efficiency improving, i.e. to processing the greater chemicals amount in the same or shorter time. The optimizing...
Optimal recharging strategy for battery-switch stations for electric vehicles in France
International Nuclear Information System (INIS)
Most papers that study the recharging of electric vehicles focus on charging the batteries at home and at the work-place. The alternative is for owners to exchange the battery at a specially equipped battery switch station (BSS). This paper studies strategies for the BSS to buy and sell the electricity through the day-ahead market. We determine what the optimal strategies would have been for a large fleet of EVs in 2010 and 2011, for the V2G and the G2V cases. These give the amount that the BSS should offer to buy or sell each hour of the day. Given the size of the fleet, the quantities of electricity bought and sold will displace the market equilibrium. Using the aggregate offers to buy and the bids to sell on the day-ahead market, we compute what the new prices and volumes transacted would be. While buying electricity for the G2V case incurs a cost, it would have been possible to generate revenue in the V2G case, if the arrivals of the EVs had been evenly spaced during the day. Finally, we compare the total cost of implementing the strategies with the cost of buying the same quantity of electricity from EDF. - Highlights: • Optimal strategies for buying/selling electricity through day-ahead auction market. • Given fleet size power bought and sold would change market price and volume. • New prices computed using aggregate offers to buy/sell power in 2010 and 2011. • Timing of arrival of EVs critical in V2G case. If evenly spaced BSS makes money. • Strategies are very robust even when French and German markets were coupled Nov. 2010
Guo, Zhen; Liaw, Bor Yann; Qiu, Xinping; Gao, Lanlan; Zhang, Changshui
2015-01-01
An effective optimum charging technique for lithium ion batteries using a universal voltage protocol (UVP) that can accommodate cell aging is presented here. This charging method demands less learning to varying state-of-health (SOH) conditions with potential to improve charging efficiency and cycle life. The simplicity of UVP makes the implementation easier than the conventional constant current-constant voltage (CC-CV)-based methods. Here, the mathematical formulation, optimization targets (e.g. minimal time) and constraints (terminal voltages and other instrumental and cell electrochemistry-limited ones) are explained from the protocol design considerations. An equivalent circuit model was used and its parameters derived from the analysis of test data, which could yield a nonlinear varying current profile (VCP) by simulation and a genetic algorithm-based optimization. Both UVP and VCP were used in the validation to illustrate better charging efficiency and capacity retention, which showed a much improved cycle life.
Optimal Planning Strategy for Large PV/Battery System Based on Long-Term Insolation Forecasting
Yona, Atsushi; Uchida, Kosuke; Senjyu, Tomonobu; Funabashi, Toshihisa
Photovoltaic (PV) systems are rapidly gaining acceptance as some of the best alternative energy sources. Usually the power output of PV system fluctuates depending on weather conditions. In order to control the fluctuating power output for PV system, it requires control method of energy storage system. This paper proposes an optimization approach to determine the operational planning of power output for PV system with battery energy storage system (BESS). This approach aims to obtain more benefit for electrical power selling and to smooth the fluctuating power output for PV system. The optimization method applies genetic algorithm (GA) considering PV power output forecast error. The forecast error is based on our previous works with the insolation forecasting at one day ahead by using weather reported data, fuzzy theory and neural network(NN). The validity of the proposed method is confirmed by the computer simulations.
Optimal vehicle control strategy of a fuel cell/battery hybrid city bus
Energy Technology Data Exchange (ETDEWEB)
Xu, Liangfei; Li, Jianqiu; Hua, Jianfeng; Li, Xiangjun; Ouyang, Minggao [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)
2009-09-15
In this article, an optimal vehicle control strategy based on a time-triggered controller area network (TTCAN) system for a polymer electrolyte membrane (PEM) fuel cell/nickel-metal hydride (Ni-MH) battery powered city bus is presented. Aiming at improving the fuel economy of the city bus, the control strategy comprises an equivalent consumption minimization strategy (ECMS) and a braking energy regeneration strategy (BERS). On the basis of the introduction of a battery equivalent hydrogen consumption model incorporating a charge-sustaining coefficient, an analytical solution to the equivalent consumption minimization problem is given. The proposed strategy has been applied in several city buses for the Beijing Olympic Games of 2008. Results of the ''China city bus typical cycle'' testing show that, the ECMS and the BERS lowered hydrogen consumption by 2.5% and 15.3% respectively, compared with a rule-based strategy. The BERS contributes much more than the ECMS to the fuel economy, because the fuel cell system does not leave much room for the optimal algorithm in improving the efficiency. (author)
Optimization of Performance Characteristics of Hybrid Wind Photovoltaic System with Battery Storage
Directory of Open Access Journals (Sweden)
C. Kathirvel
2014-03-01
Full Text Available This study concentrates on the Design and Implementation of a multi source hybrid Wind-Photovoltaic stand alone system with proposed energy management strategy. The method of investigation concerned with the definition of the system topology, interconnection of the various sources with maximum energy transfer, optimum control and energy management in order to maintain the DC bus voltage into a fixed value. An Energy management strategy was proposed using the Fuzzy logic controller such that enhancement in the performance of the system and optimization can be done. The Fuzzy logic controller takes the input from Solar (irradiation, Wind (speed, Power demand and the battery voltage which controls the respective subsystem and formulates into different operational modes of energy management. The role of Fuzzy threshold controller is to adjust continuously the threshold value for optimal performance based on expected wind, solar conditions, battery voltage and power demand. It is shown that when the fuzzy logic controller is used, the proposed DC bus voltage regulation strategy with different modes of operation have fast response and efficient operation which leads to a reduced operating cost.
International Nuclear Information System (INIS)
Two steps integrated optimization algorithm on the basis of the improvement genetic algorithm (GA) was developed for BWR core optimization. It showed good convergence performance keeping with global search capability. When the method was applied to 1356MWe BWR design, optimization was realized by the practical cost. An integer combinatorial optimization using MAA (Multi Agent Algorithm) was developed. MAA was introduced to the first-step part of two-step GA and the convergence performance increased. An idea of MAA proposed by us gets a hint from humane behavior in the group. The reactor design and reactor control of BWR, the coordinative optimization, its application to the practical plant and the next generation reactor control system are explained. (S.Y.)
Optimal design study of cylindrical finned reactor for solar adsorption cooling machine
Energy Technology Data Exchange (ETDEWEB)
Allouache, N. [Univ. des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar (Algeria). Faculte de Genie Mecanique et de Genie des Procedes; Al Mers, A. [Moulay Ismail Univ., Meknes (Morocco). Ecole National Superieure d' Art et Metiers
2010-07-01
Solid adsorption cooling machines use medium temperature industrial waste heat together with a renewable energy source, such as solar energy. The adsorption cooling machine consists of an evaporator, a condenser and a reactor containing a solid adsorbent. In this study, a model was developed for thermodynamic performance analysis and optimization of a cylindrical finned solar reactor in an adsorption refrigerator working with activated carbon-ammonia. The heat and mass transfer in the adsorption cooling machine was determined. The model was validated using experimental results. The study investigated the sensitivity of the machine performance versus the geometrical configuration of the reactor. The study showed that for an optimized reactor, a higher fin number significantly reduces the heat losses of the reactor. It was concluded that the solar coefficient of performance (COP) of an optimized reactor can reach 45 per cent when the number of fins varies between 5 and 6. 10 refs., 4 figs.
Optimization of steady-state beam-driven tokamak reactors
International Nuclear Information System (INIS)
Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed that includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures that minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of β and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in a reactor the size of the International Tokamak Reactor, then the optimum temperatures are typically T /SUB e/ approx. = 12 to 15 keV and T /SUB i/ approx. = 17 to 21 keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for E /SUB b/ less than or equal to 400 keV, but rises only slowly above E /SUB b/ about 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to less than or equal to 85% of that allowed in steady-state reactors
International Nuclear Information System (INIS)
Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)
Optimization of steady-state beam-driven tokamak reactors
International Nuclear Information System (INIS)
Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed which includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures which minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of β and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in an INTOR-sized reactor, then the optimum temperatures are typically T/sub e/ approx. = 12 to 15 keV and T/sub i/ approx. = keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for E/sub b/ less than or equal to 400 keV, but rises only slowly above E/sub b/ approx. 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to less than or equal to 85% of that allowed in steady-state reactors
International Nuclear Information System (INIS)
Highlights: • Instantaneous optimization method based on efficiency maps is proposed. • The energy sent to or supplied from the hybrid energy source is focused. • The efficiency of this energy is introduced as a new cost function to be maximized. • The results of our method are compared to that of DP, ECMS and MPC methods. • Our method provides competitive results with a lower computational load. - Abstract: This paper presents an instantaneous optimization algorithm based on the knowledge of the efficiency maps of the internal combustion engine (ICE) and the generator for the energy management system in hybrid electric vehicles. The proposed method formulates a new cost function representing the analytical expression of the overall energy efficiency of the hybrid energy source (i.e. ICE/generator set + battery pack) which is calculated based on the energy flow at the DC bus. Engine operating points are determined by assessing not only the efficiency map of the engine but also the efficiency map of the generator and the charge/discharge efficiency of the battery pack in order to maximize the efficiency of the energy delivered from the hybrid energy source to the drive system. The performance of the proposed method is analyzed and demonstrated on a hybrid electric bus developed in MATLAB/Simulink for different driving cycle conditions and the results have been compared with alternative optimization methods such as equivalent consumption minimization strategy (ECMS), model predictive control (MPC) and dynamic programming (DP) approach. The simulation results show that the proposed method provides a competitive performance with a lower computational burden compared to the alternative methods for different state of charge (SOC) ranges and drive cycle conditions
Jing, Minghua; Wei, Zengfu; Su, Wei; He, Hongxiang; Fan, Xinzhuang; Qin, Ye; Liu, Jianguo; Yan, Chuanwei
2016-08-01
In order to improve the utilization rate of the electrolyte and further reduce the energy storage cost, the physicochemical properties, electrochemical characteristics and charge/discharging behaviors of VFB with different concentration of VOSO4 and H2SO4 were investigated systematically. The physicochemical characterizations show that the viscosity increases with the increasing concentration of VOSO4 and H2SO4, and the conductivity increases with the increasing concentration of H2SO4 while decreases with the increasing concentration of VOSO4. Both CV and EIS results demonstrate that the electrolyte with 1.6 mol L-1 VOSO4 and 2.8 mol L-1 H2SO4 presents the best electrochemical performance because of the coupling effect of the viscosity, conductivity and electrochemical activity. Different with the half-cell electrochemical tests, the battery performance of VFB is not only dependent on the electrochemical activity of electrode/electrolyte interface, but also closely related to the conductivity of electrolyte and diffusion rates of the active particles between anolyte and catholyte. Taking the battery efficiencies and capacity into consideration, VFB with 1.6 mol L-1 VOSO4 and 2.8 mol L-1 H2SO4 exhibits the optimal electrochemical performance. The accomplishment of this work not only gives data support to the fundamental research of VFB, but also provides theoretical direction to the engineering application of VFB.
Maheshwari, Arpit; Dumitrescu, Mihaela Aneta; Destro, Matteo; Santarelli, Massimo
2016-03-01
Battery models are riddled with incongruous values of parameters considered for validation. In this work, thermally coupled electrochemical model of the pouch is developed and discharge tests on a LiFePO4 pouch cell at different discharge rates are used to optimize the LiFePO4 battery model by determining parameters for which there is no consensus in literature. A discussion on parameter determination, selection and comparison with literature values has been made. The electrochemical model is a P2D model, while the thermal model considers heat transfer in 3D. It is seen that even with no phase change considered for LiFePO4 electrode, the model is able to simulate the discharge curves over a wide range of discharge rates with a single set of parameters provided a dependency of the radius of the LiFePO4 electrode on discharge rate. The approach of using a current dependent radius is shown to be equivalent to using a current dependent diffusion coefficient. Both these modelling approaches are a representation of the particle size distribution in the electrode. Additionally, the model has been thermally validated, which increases the confidence level in the selection of values of parameters.
Optimized Design and Discussion on Middle and Large CANDLE Reactors
Xiaoming Chai; Yong Zhang; Mingyu Yan
2012-01-01
CANDLE (Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor) reactors have been intensively researched in the last decades [1–6]. Research shows that this kind of reactor is highly economical, safe and efficiently saves resources, thus extending large scal...
Shape optimization of a Sodium Fast Reactor core
Directory of Open Access Journals (Sweden)
Dombre Emmanuel
2013-01-01
Full Text Available We apply in this paper a geometrical shape optimization method for the design of the core of a SFR (Sodium-cooled Fast Reactor in order to minimize a thermal counter-reaction known as the sodium void effect. In this kind of reactors, by increasing the temperature, the core may become liable to a strong increase of reactivity, a key-parameter governing the chain-reaction at quasi-static states. We first use the one group energy diffusion model and give the generalization to the two groups energy equation. We then give some numerical results in the case of the one group energy equation. Note that the application of our method leads to some designs whose interfaces can be parametrized by very smooth curves which can stand very far from realistic designs. We don’t explain here the method that it would be possible to use for recovering an operational design but there exists several penalization methods (see [2] that could be employed to this end. On applique dans cet article une méthode d’optimisation géométrique dans le cadre de la conception d’un cœur de réacteur SFR (Sodium-cooled Fast Reactor, i.e. réacteur à neutron rapide refroidi au sodium dans le but de minimiser une contre réaction thermique connue sous le nom d’effet de vidange sodium. Lorsqu’une augmentation de température survient, ce type de réacteur peut être sujet à une forte augmentation de réactivité, un paramètre clé dans le contrôle de la réaction en chaîne en régime quasi-statique. On a recours à l’équation de diffusion à un groupe puis on donne la généralisation du modèle d’optimisation pour l’équation de la diffusion à deux groupes d’énergie. On présente ensuite quelques résultats numériques obtenus dans le cas de l’équation à un groupe d’énergie. On note que l’application de cette méthode conduit à des designs de cœur présentant des interfaces très régulières qui sont loin d’un design de cœur faisable sur le
Optimized conventional island design for the European Pressurized Water Reactor
International Nuclear Information System (INIS)
German and French designers agreed in 1989 to jointly develop a standardized nuclear island for the European Pressurized Water Reactor (EPR). With the support of German and French utilities and safety authorities, the basic design was started 1995 and was finalized by the end of 1998. In parallel with these efforts, the German utilities group contracted the Power Generation Group (KWU) of Siemens AG to develop an optimized conventional island for the EPR. The main objective of the EPR design, i.e. to be able to compete economically with other nuclear power plant designs and fossil-fuel power plants and at the same time to increase nuclear safety, has been achieved. The results of these optimization efforts on the conventional island side can be summarized in the following points: - The plant's electrical generating capacity was increased without any need of additional or new special tools or equipment. - The entire development and implementation process, i.e. from plant design work all the way through to plant service and maintenance, was reviewed and improved without any restricting operational or maintenance aspects. - The efficiency of the steam, condensate and feedwater cycle, including the steam turbine and heat sink, was increased by introducing, among other design changes, the new 3DS/3DV blade design. - Common general European codes and related national codes and standards were applied to the designing, sizing, approval and documentation of all conventional island components. - Only specialized personnel with global turn-key know-how were involved. The result is a nuclear power plant with a gross electrical generating capacity of 1850 MW (for a site equippped with cooling tower), a gross efficiency rate of 37.8 percent and a net efficiency of 35.9 percent. The performance figures of the improved design demonstrate the following: - The EPR is economically competitive with modern fossil-fuel power plants. - The EPR is much less dependent on fuel cycle costs
Biological sulfuric acid transformation: Reactor design and process optimization.
Stucki, G; Hanselmann, K W; Hürzeler, R A
1993-02-01
As an alternative to the current disposal technologies for waste sulfuric acid, a new combination of recycling processes was developed. The strong acid (H(2)SO(4)) is biologically converted with the weak acid (CH(3)COOH) into two volatile weak acids (H(2)S, H(2)CO(3)) by sulfate-reducing bacteria. The transformation is possible without prior neutralization of the sulfuric acid. The microbially mediated transformation can be followed by physiochemical processes for the further conversion of the H(2)S.The reduction of sulfate to H(2)S is carried out under carbon-limited conditions at pH 7.5 to 8.5. A fixed-bed biofilm column reactor is used in conjunction with a separate gas-stripping column which was installed in the recycle stream. Sulfate, total sulfide, and the carbon substrate (in most cases acetate) were determined quantitatively. H(2)S and CO(2) are continually removed by stripping with N(2). Optimal removal is achieved under pH conditions which are adjusted to values below the pK(a)-values of the acids. The H(2)S concentration in the stripped gas was 2% to 8% (v/v) if H(2)SO(4) and CH(3)COOH are fed to the recycle stream just before the stripping column.Microbiol conversion rates of 65 g of sulfate reduced per liter of bioreactor volume per day are achieved and bacterial conversion efficiencies for sulfate of more than 95% can be maintained if the concentration of undissociated H(2)S is kept below 40 to 50 mg/L. Porous glass spheres, lava beads, and polyurethane pellets are useful matrices for the attachment of the bacterial biomass. Theoretical aspects and the dependence of the overall conversion performance on selected process parameters are illustrated in the Appendix to this article. PMID:18609554
Directory of Open Access Journals (Sweden)
ABDI, B.
2009-10-01
Full Text Available Electro-mechanical batteries have important advantages as compared with chemical batteries, especially in low earth orbit satellites applications. High speed slotless external rotor permanent magnet machines are used in these systems as Motor/Generator. Proper material and structure for space applications are introduced. A simplified analytic design method is given for this type of machines. Finally, the optimization of machine in order to have maximum efficiency and minimum volume and weight are given in this paper. Particle swarm optimization is used as the optimization algorithm and the finite element-based simulations are used to confirm the design and optimization process and show less than 1.2% error in parametric design.
Optimal design of hollow core–shell structural active materials for lithium ion batteries
Directory of Open Access Journals (Sweden)
Wenjuan Jiang
2015-01-01
Full Text Available To mitigate mechanical and chemical degradation of active materials, hollow core–shell structures have been applied in lithium ion batteries. Without embedding of lithium ions, the rigid coating shell can constrain the inward volume deformation. In this paper, optimal conditions for the full use of inner hollow space are identified in terms of the critical ratio of shell thickness and inner size and the state of charge. It is shown that the critical ratios are 0.10 and 0.15 for Si particle and tube (0.12 and 0.18 for Sn particle and tube, and above which there is lack of space for further lithiation.
Fuel reactor modelling in chemical-looping combustion of coal: 2. simulation and optimization
García Labiano, Francisco; Diego Poza, Luis F. de; Gayán Sanz, Pilar; Abad Secades, Alberto; Adánez Elorza, Juan
2013-01-01
Chemical-Looping Combustion of coal (CLCC) is a promising process to carry out coal combustion with carbon capture. The process should be optimized in order to maximize the carbon capture and the combustion efficiency in the fuel reactor, which will depend on the reactor design and the operational conditions. In this work, a mathematical model of the fuel reactor is used to make predictions about the performance of the CLCC process and simulate the behaviour of the system ...
Hina Fathima; Palanisamy, K
2015-01-01
Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The ...
Choosing the optimal parameters of subcritical reactors driven by accelerators
International Nuclear Information System (INIS)
Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)
Optimization of a membrane reactor for hydrogen production with genetic algorithms
International Nuclear Information System (INIS)
Full text: Hydrogen is produced via steam reforming of hydrocarbons such as natural gas or methane by using conventional systems. Unfortunately, these systems need at least four different stages, consisting of three reactors and a purification system. Moreover, the steam reforming reaction is an endothermic thermodynamically limited system, meaning that high temperature energy supply is needed for complete conversion. Among different technologies related to production, separation and purification of H2, membrane technologies seem to really play a fundamental role. The specific thermodynamic limits are overcome using the so-called membrane reactors, systems in which both reaction and separation occur simultaneously. The hydrogen is driven across the membrane by the pressure difference, depending on the temperature, pressure and reactor length the methane can be completely converted and consequently very pure hydrogen is produced. A membrane reactor has two components which can be optimized namely, the membrane and the reactor dimensions. This paper presents a study on optimization of membrane reactor for enhancing the overall production. A mathematical heterogeneous model of the reactor was used for optimization of reactor performance. Genetic algorithms were used as powerful methods for optimization of complex problems. (authors)
Directory of Open Access Journals (Sweden)
Hina Fathima
2015-01-01
Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.
Optimization research on CEFR whole-range reactor period protection function
International Nuclear Information System (INIS)
To solve the problem of false short period alarm of China Experimental Fast Reactor (CEFR) neutron instrumentation system (NIS), optimization research on the CEFR whole-range reactor period protection function was done through theoretical calculation and analysis according to the characteristics of CEFR NIS. In addition, the NIS was simulated using Matlab/Simulink software, and the results show that the optimized scheme is accurate and feasible. (authors)
Adapting computational optimization concepts from aeronautics to nuclear fusion reactor design
Baelmans M.; Reiter D.; Dekeyser W.
2012-01-01
Even on the most powerful supercomputers available today, computational nuclear fusion reactor divertor design is extremely CPU demanding, not least due to the large number of design variables and the hybrid micro-macro character of the flows. Therefore, automated design methods based on optimization can greatly assist current reactor design studies. Over the past decades, “adjoint methods” for shape optimization have proven their virtue in the field of aerodynamics. Applications include drag...
Modified divergence theorem for analysis and optimization of wall reflecting cylindrical UV reactor
Directory of Open Access Journals (Sweden)
Milanović Đurđe R.
2011-01-01
Full Text Available In this paper, Modified Divergence Theorem (MDT, known in earlier literature as Gauss-Ostrogradsky theorem, was formulated and proposed as a general approach to electromagnetic (EM radiation, especially ultraviolet (UV radiation reactor modeling. Formulated mathematical model, based on MDT, for multilamp UV reactor was applied to all sources in a reactor in order to obtain intensity profiles at chosen surfaces inside reactor. Applied modification of MDT means that intensity at a real opaque or transparent surface or through a virtual surface, opened or closed, from different sides of the surface are added and not subtracted as in some other areas of physics. Derived model is applied to an example of the multiple UV sources reactor, where sources are arranged inside a cylindrical reactor at the coaxial virtual cylinder, having the radius smaller than the radius of the reactor. In this work, optimization of a reactor means maximum transfer of EM energy sources into the fluid for given fluid absorbance and fluid flow-dose product. Obtained results, for in advanced known water quality, gives unique solution for an optimized model of a multilamp reactor geometry. As everyone can easily verify, MDT is very good starting point for every reactor modeling and analysis.
Institute of Scientific and Technical Information of China (English)
Ali Darvishi; Razieh Davand; Farhad Khorasheh; Moslem Fattahi
2016-01-01
An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re-actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of smal diameter tubes immersed in a shel through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefin over V2O5/γ-Al2O3 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa-rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100%conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run-away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl-ene production in an industrial scale reactor.
Automatic optimized reload and depletion method for a pressurized water reactor
International Nuclear Information System (INIS)
A new method has been developed to automatically reload and deplete a pressurized water reactor (PWR) so that both the enriched inventory requirements during the reactor cycle and the cost of reloading the core are minimized. This is achieved through four stepwise optimization calculations: (a) determination of the minimum fuel requirement for an equivalent three-region core model, (b) optimal selection and allocation of fuel assemblies for each of the three regions to minimize the reload cost, (c) optimal placement of fuel assemblies to conserve regionwise optimal conditions, and (d) optimal control through poison management to deplete individual fuel assemblies to maximize end-of-cycle k /SUB eff/ . The new method differs from previous methods in that the optimization process automatically performs all tasks required to reload and deplete a PWR. In addition, the previous work that developed optimization methods principally for the initial reactor cycle was modified to handle subsequent cycles with fuel assemblies having burnup at beginning of cycle. Application of the method to the fourth reactor cycle at Three Mile Island Unit 1 has shown that both the enrichment and the number of fresh reload fuel assemblies can be decreased and fully amortized fuel assemblies can be reused to minimize the fuel cost of the reactor
Optimization of the core of a 600 MV HTGR reactor
International Nuclear Information System (INIS)
Through a thermal analysis, several reactor core parameters are considered, viz.: cooling channel diameter, juel channel diameter, distance between two channels power generated for lenght unit, etc. Using several criteria, the best solution or solutions are chosen
Development of a graphical interface computer code for reactor fuel reloading optimization
International Nuclear Information System (INIS)
This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)
Power maximization of a spheric reflected reactor with optimized fuel distribution
International Nuclear Information System (INIS)
The maximum power of a spheric reflected reactor was determined using the theory of optimal control. The control variable employed was the fuel distribution, in accordance to constraints on the power density and on the concentration fuel. It was considered a thermal reactor with a fixed radius. The reactor was fuelled with U-235 and moderated with light water. The nuclear reactor was described by a diffusion theory model. The analytical solution was obtained for both two and four groups of energy and a FORTRAN program was developed to obtain the numerical results. (author)
Benaouadj, M.; Aboubou, A.; Ayad, M. Y.; Bahri, M.; Boucetta, A.
2016-07-01
In this work, an optimal control (under constraints) based on the Pontryagin's maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control.Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.
Weight optimal design of the primary coolant system for a pressurized water reactor
International Nuclear Information System (INIS)
Highlights: • Weight of the reactor coolant system is reduced by 13.15%. • Influences of the design variables to the weight are studied by sensitivity analyses. • Accurate component mathematical models are built. - Abstract: In order to reduce the component sizes for high power reactors, optimization methodology is employed in the preliminary design of a nuclear power plant, by which one can find the best combination of the operation and the structural parameters. This not only meets design requirements, but also satisfies safety regulations. In this work, a thermal hydraulic model for the reactor core was developed to improve the optimization process, and to provide parameters for the weight estimation of the reactor vessel. Meanwhile, functional relationships involving component weights and the operation as well as the structural parameters of the reactor coolant system were established and verified. Parameters, having a great impact on the net weight of reactor coolant system, were picked out as the design variables by the sensitivity analyses, and were optimized by means of genetic algorithm. An optimal scheme was obtained, by which 13.15% of the net weight of the reactor coolant system is reduced
Optimal recharge and driving strategies for a battery-powered electric vehicle
Lee, W R; Wang, S.; Teo, K L
1999-01-01
A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an opti...
Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors
Directory of Open Access Journals (Sweden)
Gobbo R.
2004-01-01
Full Text Available The modeling, simulation, and dynamic optimization of an industrial reaction system for acetylene hydrogenation are discussed in the present work. The process consists of three adiabatic fixed-bed reactors, in series, with interstage cooling. These reactors are located after the compression and the caustic scrubbing sections of an ethylene plant, characterizing a front-end system; in contrast to the tail-end system where the reactors are placed after the de-ethanizer unit. The acetylene conversion and selectivity profiles for the reactors are optimized, taking into account catalyst deactivation and process constraints. A dynamic optimal temperature profile that maximizes ethylene production and meets product specifications is obtained by controlling the feed and intercoolers temperatures. An industrial acetylene hydrogenation system is used to provide the necessary data to adjust kinetics and transport parameters and to validate the approach.
Optimal design of metal hydride reactors based on CFD–Taguchi combined method
International Nuclear Information System (INIS)
Highlights: ► A 3D CFD model was established for metal hydride reactors. ► The CFD–Taguchi method was used to optimize the structure parameters of the reactors. ► The reactor performance is most sensitive to the number of heat exchanger tubes. ► The CFD–Taguchi method is found effective to search for the optimum design scheme. - Abstract: In this paper, Taguchi method, an optimization procedure successfully applied in many fields, was used to optimize the design parameters of the metal hydride thermal energy storage reactors. The performance of metal hydride reactors was evaluated by numerical simulations based on an established 3D CFD model. The parameters under investigation were the number of heat exchanger tubes (N), the heat exchanger tube diameter (do) and the heat exchanger tube pitch (S), all of which involved three levels. The optimization objective was to maximize the average heat storage rate per unit mass (Q.ave) of the metal hydride thermal energy storage reactors. Performance statistics with regard to each parameter was obtained. The analysis results indicated that the most important parameter affecting Q.ave was the number of heat exchanger tubes, followed by the heat exchanger tube diameter. The optimal conditions for the metal hydride reactor were determined by the CFD–Taguchi combined method. The optimal parameters of the reactor were given as following: N was 10, S was 18 mm and do was 8 mm, and accordingly the maximum value of Q.ave was 3.287 W kg−1.
Energy Technology Data Exchange (ETDEWEB)
Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko
1998-01-01
To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)
Directory of Open Access Journals (Sweden)
Yohwan Choi
2016-06-01
Full Text Available A self-sustainable base station (BS where renewable resources and energy storage system (ESS are interoperably utilized as power sources is a promising approach to save energy and operational cost in communication networks. However, high battery price and low utilization of ESS intended for uninterruptible power supply (UPS necessitates active utilization of ESS. This paper proposes a multi-functional framework of ESS using dynamic programming (DP for realizing a sustainable BS. We develop an optimal charging and discharging scheduling algorithm considering a detailed battery wear-out model to minimize operational cost as well as to prolong battery lifetime. Our approach significantly reduces total cost compared to the conventional method that does not consider battery wear-out. Extensive experiments for several scenarios exhibit that total cost is reduced by up to 70.6% while battery wear-out is also reduced by 53.6%. The virtue of the proposed framework is its wide applicability beyond sustainable BS and thus can be also used for other types of load in principle.
Optimization of decontamination strategy for CANDU-PHW reactors
International Nuclear Information System (INIS)
Theoretical models of the decontamination process are developed and combined with an existing model of 60Co production in CANDU PHW reactors to predict the effects of decontamination on long term 60Co build-up in reactor primary heat transport systems. The effects of decontamination interval, decontamination factor, and post-decontamination corrosion release are calculated. An optimum decontamination strategy for a Pickering G.S. type reactor is developed on the basis of a cost-benefit analysis. This study indicates that the optimum decontamination interval is approximately six years. This optimum interval is relatively insensitive to variations in the costs of personnel exposure, the cost of a decontamination, the decontamination factor, and the post-decontamination corrosion model used. (author)
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem. PMID:25054184
Optimization of coupling desalination systems with a nuclear reactor
International Nuclear Information System (INIS)
In 2002, CNSTN (Tunisian National Centre for Nuclear Sciences and Technologies) and CEA-France signed an agreement to jointly pursue, under the aegis of IAEA's Interregional Cooperation Programme INT/4/134, nuclear desalination feasibility studies for the Skhira site in the south of Tunisia. To carry out the technical programme of the agreement, known as the TUNDESAL Project, a mixed team of experts from CEA and from CNSTN as well as from the Tunisian electric utility (STEG) and the water utility (SONEDE) was formed. It was further agreed that the Tunisian experts would partially complete their work at CEA laboratories with IAEA financial assistance (at the Advanced Water Reactor Studies Laboratory, LFEA, of the Innovative Reactor Studies Service, SERI, in the Nuclear Energy Division at the Cadarache Atomic Centre). This feasibility study considers the following tasks: - Pre-dimensioning of the nuclear reactor and desalination processes, compatible with Tunisian electricity needs and required water production capacity at The Skhira site; - Coupling of the selected nuclear reactor to desalination processes and system optimisation; - Economic evaluation of the integrated systems elaborated above; - Safety verification studies of coupled systems. The first three tasks are completed. The fourth task related to safety analysis will be finalized by end 2004
Optimized Control Rods of the BR2 Reactor
International Nuclear Information System (INIS)
At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.
Optimized Control Rods of the BR2 Reactor
Energy Technology Data Exchange (ETDEWEB)
Kalcheva, Silva; Koonen, E.
2007-09-15
At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.
Hu Jianjun; Li Tao; Li Jing
2014-01-01
Aimed to achieve good thermal stability of lithium batteries in electric vehicles under the conditions of high-power. This study established a three-dimensional, transient heat dissipation model for Lithium-ion battery package in the three-dimensional Cartesian coordinate system based on theoretical knowledge of thermodynamics and heat transfer. With the help of the numerical simulation theoretical of CFD, the flow and temperature field of force air cooling Lithium-ion battery pack was simula...
Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Vasquez, Juan Carlos; Josep M. Guerrero
2015-01-01
This paper proposes a control scheme which minimizes the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What distinguishes approach presented here from conventional strategies is that not only the price of electricity is considered in the formulation of the total operating cost but an additional item that takes into account inevitable battery degradation. The speed of degradation depends on battery technology and its mission profile and thi...
Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes
Somnhot, Parina
2012-01-01
Lithium-ion batteries possess high energy and power densities, making them ideal candidates for energy storage requirements in various military applications. Commercially produced lithium-ion battery anodes are commonly graphitic carbon-based. However, graphitic carbons are limited in surface area and possess slow intercalation kinetics. The energy and power density demands of future technologies require improved lithium-ion battery performance. Carbon nanomaterials, such as carbide-derived c...
Ropotar, Marcel; Kravanja, Zdravko
2012-01-01
This paper describes the development of a robust and efficient reactor model suitable for representing batch and plugflow reactors (PFRs) in different applications. These would range from the nonlinear (NLP) dynamic optimization of a stand-alone batch reactor up to the mixed-integer nonlinear (MINLP) synthesis of a complex reactor network in overall process schemes. Different schemes for the Orthogonal Collocation on Finite Element (OCFE) and various model formulations, in the case of MINLP m...
International Nuclear Information System (INIS)
A push for electric vehicles has occurred in the past several decades due to various concerns about air pollution and the contribution of emissions to global climate change. Although electric cars and buses have been the focus of much of electric vehicle development, smaller vehicles are used extensively for transportation and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell - battery electric vehicle through MATLAB Simulink. The modelling and simulation provide valuable feedback to the design optimization of the fuel cell power system. A sampling based optimization algorithm was used to explore the viability and options of a low cost design for urban use. (author)
Singh, R.; Abbod, M; W. Balachandran
2016-01-01
This paper presents a design scheme of controlling – optimization system for solar – wind distribution renewable energy sources, its transmission, charging – discharging Battery Energy Storage System and connection to the grid distribution. The distribution renewable energy sources employs the Voltage Base Self – Intervention technique for solar – wind distribution renewable energy sources. The Hierarchical Switching Control Process technique is employed to switch, control, manage – supervise...
Optimization of the sipping test procedure for WWER-type reactors
International Nuclear Information System (INIS)
The endeavour to provide for a lower activity level of the fission products in the power reactor coolant during operation is associated with timely identification and unloading of failed fuel elements from the core. In this connection studies have been performed to optimize the sipping test procedures existing for the WWER-440 and WWER-1000 type reactors. Possible incorrectness in the sipping test is discussed, some methods for increasing accuracy and reliability of the results are proposed. (orig.)
Nuclear reactors project optimization based on neural network and genetic algorithm
International Nuclear Information System (INIS)
This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs
On an optimized neutron shielding for an advanced molten salt fast reactor design
International Nuclear Information System (INIS)
The molten salt reactor technology has gained renewed interest. In contrast to the historic molten salt reactors, the current projects are based on designing a molten salt fast reactor. Thus the shielding becomes significantly more challenging than in historic concepts. One very interesting and innovative result of the most recent EURATOM project on molten salt reactors – EVOL – is the fluid flow optimized design of the inner core vessel using curved blanket walls. The developed structure leads to a very uniform flow distribution. The design avoids all core internal structures. On the basis of this new geometry a model for neutron physics calculation is presented and applied for a shielding optimization. Based on these results an optimized shielding strategy is developed for the molten salt fast reactor to keep the fluence in the safety related outer vessel below expected limit values. A lifetime of 80 years can be assured, but the size of the core/blanket system has to be significantly increased and will finally be comparable to a sodium cooled fast reactor. The HELIOS results are verified against Monte-Carlo calculations with very satisfactory agreement for a deep penetration problem. (author)
Design optimization and modification of reactor trip protection system of nuclear power unit of WWER
International Nuclear Information System (INIS)
When carrying out periodic test of nuclear power unit reactor trip protection system, it is necessary to disconnect trip breakers in turn. There are big risks in such kind of periodic tests and many unplanned trip events happened because of malfunction of equipment in reactor trip protection system periodic tests of foreign and domestic nuclear power units under operation, which caused great economic loss. The paper introduces the practical results of design optimization and modification of reactor trip protection system of a nuclear power unit of WWER. (authors)
Optimization of the Westinghouse/Stone and Webster prototype large breeder reactor
International Nuclear Information System (INIS)
The optimization of the Westinghouse/Stone and Webster Prototype Large Breeder Reactor (PLBR) is described. This reactor plant, designed for ERDA and EPRI, resulted from optimization and tradeoffs on plant size, number of loops, steam cycles, system temperature, pump location, refueling concept, reactor shut-down system logic, control system logic, steam generating system, residual heat removal system, core arrangement and reactor vessel. The result is a three loop LMFBR rated at 1000 MWe gross with sodium entering the reactor vessel at 6500F (3450C) and leaving at 9500F) (5100C). The reactor vessel has a flat closure head on top, containing three rotating plugs on which are mounted the upper internals structure and the in-vessel transfer machine. The core has three radial layers of core material separating four radial blanket regions. An inclined refueling chute penetrates the reactor vessel. Plant efficiency of 37% is achieved with the use of once-through steam generators operating in the modified Sulzer mode, producing 2200 psi, 8500F (15.2 x 106 pa/4550C) steam. The residual heat removal system (RHRS) consists of three independent heat removal paths in which the intermediate sodium is cooled in air blast heat exchangers (author)
Directory of Open Access Journals (Sweden)
Istadi Istadi
2011-01-01
Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/797
International Nuclear Information System (INIS)
LiOH·H2O is used for preparation of alkaline batteries. The required characteristics of this compound are low levels of impurities and a specific particle size distribution. LiOH·H2O is produced from ore and brines. In northern Chile, lithium is produced from brines. This region presents particular desert climate conditions where water and energy are scarce. To help solve this problem, the conventional production process for battery grade LiOH·H2O was simulated and a modified process was developed, with an efficient consumption of energy and water, to improve the environmental sustainability of the plant, and greater process yield and product purity. Different configurations of the equipments were studied and for the best configurations the behavior of the modified process at different scenarios were simulated. It was found that the purity is independent of concentration used in feed to thickeners. The process yield increases in average 2.4% for modified process due to recycling operation. In modified process is obtained 28% more product mass, specific energy consumption decreases up to 4.8% and losses of Li/kg of product decreased by 83% compared to conventional process. The water consumption per kg of product in modified process is 1%–6.3%, being lower than in conventional process. The results presented can be considered as guidelines to address the optimization of the industrial process for obtaining the battery grade LiOH. - Highlights: • Water and energy are important resources in any sustainable industrial process. • High purity LiOH·H2O is a material for producing of lithium batteries. • Conventional and modified optimized processes for LiOH·H2O production were simulated. • Energy and water consumptions decrease for the modified process. • Optimal operational conditions of H2O, feed, pressure and energy were established
Smith, Joshua; Hinterberger, Michael; Hable, Peter; Koehler, Juergen
2014-12-01
Extended battery system lifetime and reduced costs are essential to the success of electric vehicles. An effective thermal management strategy is one method of enhancing system lifetime increasing vehicle range. Vehicle-typical space restrictions favor the minimization of battery thermal management system (BTMS) size and weight, making their production and subsequent vehicle integration extremely difficult and complex. Due to these space requirements, a cooling plate as part of a water-glycerol cooling circuit is commonly implemented. This paper presents a computational fluid dynamics (CFD) model and multi-objective analysis technique for determining the thermal effect of coolant flow rate and inlet temperature in a cooling plate-at a range of vehicle operating conditions-on a battery system, thereby providing a dynamic input for one-dimensional models. Traditionally, one-dimensional vehicular thermal management system models assume a static heat input from components such as a battery system: as a result, the components are designed for a set coolant input (flow rate and inlet temperature). Such a design method is insufficient for dynamic thermal management models and control strategies, thereby compromising system efficiency. The presented approach allows for optimal BMTS design and integration in the vehicular coolant circuit.
Maintenance optimization of the RP-10 reactor shutdown safety system
International Nuclear Information System (INIS)
This study examines the shutdown system of the 10 MW nuclear research reactor of the Instituto Peruano de Energia Nuclear (IPEN) in order to minimize the total cost with respect to the test interval. The total cost is comprised of the testing cost and the unsafe failure cost. The unsafe failure cost is evaluated as the expected cost of the consequences of the standby failure mode of the shutdown system, and the occurrence of a representative initial event which consist by an uncontrolled positive reactivity insertion during the start up. (author)
Passive Safety Optimization in Liquid Sodium-Cooled Reactors
International Nuclear Information System (INIS)
The governing equations and the solutions schemes are developed for the three-dimensional thermal-hydraulic model.A detailed constitutive relations are also developed through the analysis with a CFD code. The developed model is able to obtain a detailed thermal hydraulic information in a subassemlby of a liquid metal-cooled reactor core. The model has been integrated with the system analysis codes SASSYS-1 and SSC-K to be validated for the SHRT-17 test performed in the EBR-II reactor. The baseline analyses were performed with the customary thermal-hydraulic model and with the new model for the reference design of KALIMER-150. The results point out that increased detail in the thermal-hydraulic analysis must be matched by increased detail in the reactivity feedback modeling, especially the radial core expansion model, in order to provide distinguishable differences. The analyses performed to identify certain key safety features have indicated that the adjustment of core restraint system is able to provide beneficial bending of hexcans, resulting in enhanced negative reactivity feedback in unprotected accidents. Tasks were performed to identify and assess the implications for plant safety of proposed specific approaches for reducing capital and operating costs of next generation sodium-cooled fast reactors. A new plant design of the sodium-cooled reactor concept is developed utilizing a gas turbine Brayton cycle, which uses supercritical carbon dioxide (S-CO2) as the working fluid. In addition, the design innovations are incorporated in modular sodium-to-supercritical carbon dioxide heat exchangers that enable the traditional intermediate heat transport circuit to be eliminated. Several evaluations and analyses for the safety design and efficiency suggest that the developed system is safe and cost-effective. Test plans are developed for the measurement of phenomenological data describing freezing of molten metallic fuel, melt relocation and interaction with steel
Optimization of OTTO Fuel Management in Pebble-Bed Reactors Using Particle Swarm Algorithm
International Nuclear Information System (INIS)
Pebble-Bed nuclear reactors feature highly flexible in-core fuel management capabilities due to on-line fueling and thermo-mechanical robust fuel design. Fuel pebbles with various fissile and fertile materials can be loaded into the reactor core at different rates. The fuel pebbles may be recirculated in the core several times until reaching their target burnup, or reach their target burnup in single pass through the core (OTTO- Once-Through-Then-Out fueling Scheme). Pebble-bed reactors have relatively efficient neutron economy since they operate with low excess reactivity and hence minimize the use of neutron poisons and control rods. Moreover, the fuel pebble robust design permits high burnup levels (up to 140000 MWD/THM). The flexibility of the fuel management operations allows enhancing fuel utilization. Traditionally fuel cycle design decisions were made using expert opinions and parametric studies. In this work, we have used the Particle Swarm Optimization (PSO) algorithm to optimize fuel utilization of pebble-bed reactors running OTTO fuel management. Optimization was carried out also for cores with Th232 as fertile material. Preliminary calculations were performed for a large core with 2 radial fuel loading zones. Results of the optimal fuel utilization performed for cores with UO2 fuel and cores with (Th- U)O2. Future work will include optimization of cores fuelled with separate seed (U) and blanket (Th) fuel pebbles and with advanced modular core configuration, like the PBMR400
International Nuclear Information System (INIS)
Research highlights: → A closed-loop fuzzy logic controller based on the particle swarm optimization algorithm was proposed for controlling the power level of nuclear research reactors. → The proposed control system was tested for various initial and desired power levels, and it could control the reactor successfully for most situations. → The proposed controller is robust against the disturbances. - Abstract: In this paper, a closed-loop fuzzy logic controller based on the particle swarm optimization algorithm is proposed for controlling the power level of nuclear research reactors. The principle of the fuzzy logic controller is based on the rules constructed from numerical experiments made by means of a computer code for the core dynamics calculation and from human operator's experience and knowledge. In addition to these intuitive and experimental design efforts, consequent parts of the fuzzy rules are optimally (or near optimally) determined using the particle swarm optimization algorithm. The contribution of the proposed algorithm to a reactor control system is investigated in details. The performance of the controller is also tested with numerical simulations in numerous operating conditions from various initial power levels to desired power levels, as well as under disturbance. It is shown that the proposed control system performs satisfactorily under almost all operating conditions, even in the case of very small initial power levels.
Thorium conversion optimization in two-fluid molten-salt reactor
International Nuclear Information System (INIS)
Molten-Salt Reactors (MSR) are an attractive reactor system for various purposes. They can be designed to be operated in a fast neutron spectrum for spent fuel transmutation or in a thermal spectrum. Thermal MSRs provide an ideal platform for conversion of thorium to 233U. Flowing salt can be continuously reprocessed to minimize neutron losses due to neutron absorption in fission products. This study deals with a static neutronic optimization of a Two-Fluid MSR concept. Such a reactor features two separated molten-salt streams in the reactor core. One salt contains fissile material 233U, the other thorium. Separation of these streams improves the conversion capabilities of MSRs. Such a design was analysed for Molten-Salt Breeder Reactor (MSBR) development. This reactor was not realized, but it is used as a reference for this study. Monte-Carlo code MCNP5 was used to model a simplified MSBR core and for calculation of the breeding capabilities of this design. Several basic geometric parameters were selected for evaluation of their effect on characteristics of the reactor. Based on this analysis, an improved designed was prepared with shorter fissile material doubling time. The whole analysis was carried out for fresh fuel composition. It is possible to expect that on-line fuel reprocessing will limit fuel composition changes during reactor operation. Only effect of 233Pa accumulation on the thorium conversion was studied for several fuel reprocessing rates. (author)
Energy Technology Data Exchange (ETDEWEB)
Sayyah, A. [Department of Radiation Application, Shahid Beheshti University (Iran, Islamic Republic of); Rahmani, F., E-mail: FRahamni@kntu.ac.in [K.N. Toosi University of Technology, Department of Physics (Iran, Islamic Republic of); Khalafi, H. [Nuclear Science and Technology Research Institute (NSTRI) (Iran, Islamic Republic of)
2015-09-01
Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.
International Nuclear Information System (INIS)
Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW
Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira
2015-10-01
The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ-1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ-1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ-1 higher, respectively, than in the PBD reactor at 53 J l-1. The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment.
Optimal axial enrichment distribution of the boiling water reactor fuel under the Haling strategy
International Nuclear Information System (INIS)
The axial enrichment distribution of boiling water reactor fuel is optimized to improve uranium utilization subject to constraints on thermal margins. It is assumed that the reactor is operated under the Haling strategy, so that determination of the enrichment distribution can be decoupled from the poison management. This nonlinear optimization problem is solved using a method of approximation programming, where each iteration step is formulated in terms of linear goal programming to handle infeasible problems. The core is represented by an axial one-dimensional model. The average enrichment of a two-region fuel can be slightly reduced by increasing the enrichment of the lower half rather than the upper half. The optimal solutions for a 24-region fuel, in which the enrichments of indivdual nodes can differ from one another, display double-humped enrichment distributions. The natural uranium blanket design is also investigated, and it is concluded that blanketed fuel is practically optimal using the Haling strategy
Optimality of affine control system of several species in competition on a Sequential Batch Reactor
Rodriguez, J. C.; Ramirez, Hector; Gajardo, Pedro; Rapaport, Alain
2014-01-01
In this paper we analyze the optimalty of affine control system of several species in competition for a single substrate on a Sequential Batch Reactors (SBR), with the objective being to reach a given (low) level of the substrate. We allow controls to be bounded measurable functions of time plus possible impulses. A suitable modification of the dynamics leads to a slightly different optimal control problem, without impulsive controls, for which we apply different optimality conditions de-rive...
International Nuclear Information System (INIS)
Predictive control systems are control systems that use a model of the controlled system (plant), used to predict the future behavior of the plant allowing the establishment of an anticipative control based on a future condition of the plant, and an optimizer that, considering a future time horizon of the plant output and a recent horizon of the control action, determines the controller's outputs to optimize a performance index of the controlled plant. The predictive control system does not require analytical models of the plant; the model of predictor of the plant can be learned from historical data of operation of the plant. The optimizer of the predictive controller establishes the strategy of the control: the minimization of a performance index (objective function) is done so that the present and future control actions are computed in such a way to minimize the objective function. The control strategy, implemented by the optimizer, induces the formation of an optimal control mechanism whose effect is to reduce the stabilization time, the 'overshoot' and 'undershoot', minimize the control actuation so that a compromise among those objectives is attained. The optimizer of the predictive controller is usually implemented using gradient-based algorithms. In this work we use the Particle Swarm Optimization algorithm (PSO) in the optimizer component of a predictive controller applied in the control of the xenon oscillation of a pressurized water reactor (PWR). The PSO is a stochastic optimization technique applied in several disciplines, simple and capable of providing a global optimal for high complexity problems and difficult to be optimized, providing in many cases better results than those obtained by other conventional and/or other artificial optimization techniques. (author)
Optimization of tritium breeding and shielding analysis to plasma in ITER fusion reactor
Energy Technology Data Exchange (ETDEWEB)
Indah Rosidah, M., E-mail: indah.maymunah@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id [Department of Nuclear Physics, Faculty of Mathematic and Natural Sciences, Institut Teknologi Bandung (Indonesia); Yazid, Putranto Ilham [Research and Development of Nuclear Association (Indonesia)
2015-09-30
The development of fusion energy is one of the important International energy strategies with the important milestone is ITER (International Thermonuclear Experimental Reactor) project, initiated by many countries, such as: America, Europe, and Japan who agreed to set up TOKAMAK type fusion reactor in France. In ideal fusion reactor the fuel is purely deuterium, but it need higher temperature of reactor. In ITER project the fuels are deuterium and tritium which need lower temperature of the reactor. In this study tritium for fusion reactor can be produced by using reaction of lithium with neutron in the blanket region. With the tritium breeding blanket which react between Li-6 in the blanket with neutron resulted from the plasma region. In this research the material used in each layer surrounding the plasma in the reactor is optimized. Moreover, achieving self-sufficiency condition in the reactor in order tritium has enough availability to be consumed for a long time. In order to optimize Tritium Breeding Ratio (TBR) value in the fusion reactor, there are several strategies considered here. The first requirement is making variation in Li-6 enrichment to be 60%, 70%, and 90%. But, the result of that condition can not reach TBR value better than with no enrichment. Because there is reduction of Li-7 percent when increasing Li-6 percent. The other way is converting neutron multiplier material with Pb. From this, we get TBR value better with the Be as neutron multiplier. Beside of TBR value, fusion reactor can analyze the distribution of neutron flux and dose rate of neutron to know the change of neutron concentration for each layer in reactor. From the simulation in this study, 97% neutron concentration can be absorbed by material in reactor, so it is good enough. In addition, it is required to analyze spectrum neutron energy in many layers in the fusion reactor such as in blanket, coolant, and divertor. Actually material in that layer can resist in high temperature
Optimization of tritium breeding and shielding analysis to plasma in ITER fusion reactor
International Nuclear Information System (INIS)
The development of fusion energy is one of the important International energy strategies with the important milestone is ITER (International Thermonuclear Experimental Reactor) project, initiated by many countries, such as: America, Europe, and Japan who agreed to set up TOKAMAK type fusion reactor in France. In ideal fusion reactor the fuel is purely deuterium, but it need higher temperature of reactor. In ITER project the fuels are deuterium and tritium which need lower temperature of the reactor. In this study tritium for fusion reactor can be produced by using reaction of lithium with neutron in the blanket region. With the tritium breeding blanket which react between Li-6 in the blanket with neutron resulted from the plasma region. In this research the material used in each layer surrounding the plasma in the reactor is optimized. Moreover, achieving self-sufficiency condition in the reactor in order tritium has enough availability to be consumed for a long time. In order to optimize Tritium Breeding Ratio (TBR) value in the fusion reactor, there are several strategies considered here. The first requirement is making variation in Li-6 enrichment to be 60%, 70%, and 90%. But, the result of that condition can not reach TBR value better than with no enrichment. Because there is reduction of Li-7 percent when increasing Li-6 percent. The other way is converting neutron multiplier material with Pb. From this, we get TBR value better with the Be as neutron multiplier. Beside of TBR value, fusion reactor can analyze the distribution of neutron flux and dose rate of neutron to know the change of neutron concentration for each layer in reactor. From the simulation in this study, 97% neutron concentration can be absorbed by material in reactor, so it is good enough. In addition, it is required to analyze spectrum neutron energy in many layers in the fusion reactor such as in blanket, coolant, and divertor. Actually material in that layer can resist in high temperature
Optimization of tritium breeding and shielding analysis to plasma in ITER fusion reactor
Indah Rosidah, M.; Suud, Zaki; Yazid, Putranto Ilham
2015-09-01
The development of fusion energy is one of the important International energy strategies with the important milestone is ITER (International Thermonuclear Experimental Reactor) project, initiated by many countries, such as: America, Europe, and Japan who agreed to set up TOKAMAK type fusion reactor in France. In ideal fusion reactor the fuel is purely deuterium, but it need higher temperature of reactor. In ITER project the fuels are deuterium and tritium which need lower temperature of the reactor. In this study tritium for fusion reactor can be produced by using reaction of lithium with neutron in the blanket region. With the tritium breeding blanket which react between Li-6 in the blanket with neutron resulted from the plasma region. In this research the material used in each layer surrounding the plasma in the reactor is optimized. Moreover, achieving self-sufficiency condition in the reactor in order tritium has enough availability to be consumed for a long time. In order to optimize Tritium Breeding Ratio (TBR) value in the fusion reactor, there are several strategies considered here. The first requirement is making variation in Li-6 enrichment to be 60%, 70%, and 90%. But, the result of that condition can not reach TBR value better than with no enrichment. Because there is reduction of Li-7 percent when increasing Li-6 percent. The other way is converting neutron multiplier material with Pb. From this, we get TBR value better with the Be as neutron multiplier. Beside of TBR value, fusion reactor can analyze the distribution of neutron flux and dose rate of neutron to know the change of neutron concentration for each layer in reactor. From the simulation in this study, 97% neutron concentration can be absorbed by material in reactor, so it is good enough. In addition, it is required to analyze spectrum neutron energy in many layers in the fusion reactor such as in blanket, coolant, and divertor. Actually material in that layer can resist in high temperature
Evaluation of Anaerobic Biofilm Reactor Kinetic Parameters Using Ant Colony Optimization.
Satya, Eswari Jujjavarapu; Venkateswarlu, Chimmiri
2013-09-01
Fixed bed reactors with naturally attached biofilms are increasingly used for anaerobic treatment of industry wastewaters due their effective treatment performance. The complex nature of biological reactions in biofilm processes often poses difficulty in analyzing them experimentally, and mathematical models could be very useful for their design and analysis. However, effective application of biofilm reactor models to practical problems suffers due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, an inverse modeling approach based on ant colony optimization is proposed and applied to estimate the kinetic and film thickness model parameters of wastewater treatment process in an anaerobic fixed bed biofilm reactor. Experimental data of pharmaceutical industry wastewater treatment process are used to determine the model parameters as a consequence of the solution of the rigorous mathematical models of the process. Results were evaluated for different modeling configurations derived from the combination of mathematical models, kinetic expressions, and optimization algorithms. Analysis of results showed that the two-dimensional mathematical model with Haldane kinetics better represents the pharmaceutical wastewater treatment in the biofilm reactor. The mathematical and kinetic modeling of this work forms a useful basis for the design and optimization of industry wastewater treating biofilm reactors. PMID:24065871
Multidimensional optimization of fusion reactors using heterogenous codes and engineering software
Hartwig, Zachary; Olynyk, Geoffrey; Whyte, Dennis
2012-10-01
Magnetic confinement fusion reactors are tightly coupled systems. The parameters under a designer's control, such as magnetic field, wall temperature, and blanket thickness, simultaneously affect the behavior, performance, and components of the reactor, leading to complex tradeoffs and design optimizations. In addition, the engineering analyses require non-trivial, self-consistent inputs, such as reactor geometry, to ensure high fidelity between the various physics and engineering design codes. We present a framework for analysis and multidimensional optimization of fusion reactor systems based on the coupling of heterogeneous codes and engineering software. While this approach is widely used in industry, most code-coupling efforts in fusion have been focused on plasma and edge physics. Instead, we use a simplified plasma model to concentrate on how fusion neutrons and heat transfer affect the design of the first wall, breeding blanket, and magnet systems. The framework combines solid modeling, neutronics, and engineering multiphysics codes and software, linked across Windows and Linux clusters. Initial results for optimizing the design of a compact, high-field tokamak reactor based on high-temperature demountable superconducting coils and a liquid blanket are presented.
Contribution to the optimization of the coupling of nuclear reactors to desalination processes
International Nuclear Information System (INIS)
This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)
International Nuclear Information System (INIS)
This paper presents a model describing the heat and mass transfer in cylindrical finned reactor of solar adsorption refrigerator. Giving the meteorological data as boundary conditions on the reactor; the model computes the solar coefficient of performance (COPs). The validity of the model has been tested by using experimental results. An analysis of the sensitivity of the COPs versus the geometrical parameters of the reactor (radius of the reactor, fins thickness and fins number) is mad. Then the model is applied to optimize the solar reactor. The COPs is used as an optimization criterion. The geometrical parameters where the COPs of the machine reach a maximum have been calculated
Frachon, Emmanuel; Bondet, Vincent; Munier-Lehmann, Hélène; Bellalou, Jacques
2006-01-01
A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained wit...
Feasibility Study and Techno-Economic Optimization Model for Battery Thermal Management System
DEFF Research Database (Denmark)
Khan, Mohammad Rezwan; Nielsen, Mads Pagh; Kær, Søren Knudsen
2014-01-01
The paper investigates the feasibility of employing a battery thermal management system (BTMS) in different applications based on a techno economic analysis considering the battery lifetime and application profile, i.e. current requirement. The preliminary objective is to set the decision criteria...... lifetime. Hence, the objective of this paper is to develop and detail the method of the feasibility for commissioning BTMS called “The decision tool frame-work” (DTF) and to investigate its sensitivity to major factors (e.g. lifetime and application requirement) which are well-known to influence the...... battery pack thermal performance, battery pack performance and ultimately the performance as well as utility of the desired application. This DTF is designed to provide a common frame-work of a BTMS manufacturer and designer to evaluate the options of different BTMS applicable for different applications...
Boiling Water Reactor Fuel Assembly Axial Design Optimization Using Tabu Search
International Nuclear Information System (INIS)
In this paper the implementation of the tabu search (TS) optimization method to a boiling water reactor's (BWR's) fuel assembly (FA) axial design is described. The objective of this implementation is to test the TS method for the search of optimal FA axial designs. This implementation has been linked to the reactor core simulator CM-PRESTO in order to evaluate each design proposed in a reactor cycle operation. The evaluation of the proposed fuel designs takes into account the most important safety limits included in a BWR in-core analysis based on the Haling principle. Results obtained show that TS is a promising method for solving the axial design problem. However, it merits further study in order to find better adaptation of the TS method for the specific problem
Genetic algorithm with fuzzy clustering for optimization of nuclear reactor problems
International Nuclear Information System (INIS)
Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to introduce a new niching technique based on the fuzzy clustering method FCM, bearing in mind its eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. tests are performed using widely known test functions and their results show that the new method is quite promising, specially to a future application in real world problems like the nuclear reactor core reload. (author)
Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study
DEFF Research Database (Denmark)
Okkels, Fridolin; Dufva, Martin; Bruus, Henrik
2011-01-01
In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved by...... introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and...... tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....
Utilization of niching methods of genetic algorithms in nuclear reactor problems optimization
International Nuclear Information System (INIS)
Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to test existing niching techniques and two methods introduced herein, bearing in mind their eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. Tests are performed using widely known test functions and their results show that the new methods are quite promising, specially in real world problems like the nuclear reactor core reload. (author)
Set of programmes for optimization of fast power reactor core parameters by two-stage method
International Nuclear Information System (INIS)
The report deals with application of calculation procedures which use a two-stage method for optimization of fast power reactor core parameters. The program package RBR-80 used here is designed for optimization of breeding in a fast power reactor. In particular, calculation cost was a major consideration in selecting the most desirable programme structure and procedures for optimization calculation. The first part of the report addresses the two-stage method, which is effective especially for reducing the calculation cost. The theoretical models for RBR-80 are described in the second part. The basic model and optimization model for a BN-type fast power reactor operating in an equilibrium state are given as various forms of approximated equations for distribution of neutrons and isotopes. The third part shows some algorithms designed for non-linear programming, centering on the application of an iterative linearization algorithm and another similar approximation algorithm. Practical calculation procedures are described in the fourth part. Two groups of data are used for the mathematical model of a fast neutron power reactor. One of them contains data on discrete range, physical constants, etc., while the other covers internal control vectors. Some results of actual calculations are presented in the final part of the report. (Nogami, K.)
Optimization of 200 kW medical isotope production reactor design
International Nuclear Information System (INIS)
One of the primary methods of producing medical isotopes such as 99Mo and 131I is by irradiating uranium targets in heterogeneous reactors. Homogeneous aqueous reactors present a potential alternative to medical isotope production. In response to the global demand for medical isotopes, a concept design of the 200 kW medical isotope production reactor (MIPR) was accomplished by Nuclear Power Institute of China in 2000. Further R and D work was completed in subsequent years, including the optimization of design, reactor thermohydraulic experiments, gas circulation system experiments, etc. Compared with the normal isotope production method such as target irradiation, the MIPR can produce more types of isotope at lower cost and with less radioactive waste generation. (author)
Optimization of fuel management and control poison of a nuclear power reactor by dynamic programming
International Nuclear Information System (INIS)
The distribution of fuel and control poison in a nuclear reactor was optimized by the method of Dynamic Programming. A 620 M We Pressurized Water Reactor similar to Angra-1 was studied. The reactor operation was simulated in a IBM-1130 computer. Two fuel shuffling schemes and three poison management schemes were simultaneously employed in the reactor divided into three regions of equal volume and two consecutive stages were studied in order to determine the influence of poison management on the optimum fuel management policy. When uniform poisoning on all the three regions was permitted the traditional out-in fuel management policy proved to be more economic. On introducing simultaneous poison management, the optimum fuel management sequence was found to be different. The results obtained indicate a stronger interaction between the fuel management and the poison management than anticipated in previous works. (author)
Parametrization for optimization of reload patterns for boiling water reactors
International Nuclear Information System (INIS)
Parametrization of the reload patterns for BWRs is attempted with the aim of optimizing them. This is done in two stages. The first involves an algorithm for the construction of a reload pattern out of a given set of fuel bundles. It is designed to construct patterns which feature low leakage loading (LLL) and a chequerboard arrangement of fresh and exposed fuel bundles in the central region. The characteristics of the reload patterns can be manipulated by means of only two input parameters. The dependence of the Haling power peaking and the cycle energy of the ''biparametric reload patterns (BRP)'' on the two input parameters is shown through case studies. The ranges of these characteristic quantities and their mutual relation are given by case studies for both the general as well as the optimum BRPs. A preliminary optimization procedure for BRPs is presented. This method is augmented by a multi-parametric algorithm to reshuffle the radial exposure distribution interactively so as to exhaust any possibility of improvement in a given reload pattern. When tested against this procedure, the optimum BRPs are seen to have only limited scope for improvement, showing that they are very close to the optimum reload pattern. The extent of possible improvement is illustrated. The entire procedure is incorporated in a 2-D code CORECOOK. The computer time needed for optimization of a reload pattern is comparable to that required for one routine 3-D core followup calculation. This algorithm has been used for obtaining the reload patterns for all five cores in the BWRs at Tarapur (India) since 1988. (Author)
Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor
International Nuclear Information System (INIS)
Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers
An optimization strategy for refueling simulation of a Candu reactor
International Nuclear Information System (INIS)
The AUTOREFUEL program can perform a large amount of refueling simulations within a short period, which is a strong advantage especially when a series of sensitivity calculations is needed. It also has the capability to keep the maximum channel and bundle powers less than the license limits. However, there is a chance that zone controller unit (ZCU) level exceeds the typical operating range during the refueling simulation because of incomplete modeling of the relationship between zone power and ZCU levels. In order to reserve a large enough operating margin of the reactor, the ZCU level should be kept within the typical operating range. Therefore, a deterministic method has been needed to accurately estimate the ZCU level during the refueling operation, which enables the optimum refueling channel selection. In this study, a fuel management method is proposed for the selection of refueling channels using the constraint on the ZCU level. The estimated ZCU level is used as a primary index for optimum channel selection. In this study, a generalized perturbation theory (GPT) program GENOVA, which was developed to perform the deterministic estimation of the ZCU level change due to a perturbation, is briefly described. Then, the refueling channel selection strategy proposed in this study is explained and the result of application to natural uranium CANDU-6 core refueling simulation is presented. (authors)
Optimization of the steam generator project of a gas cooled nuclear reactor
International Nuclear Information System (INIS)
The present work is concerned with the modeling of the primary and secondary circuits of a gas cooled nuclear reactor in order to obtain the relation between the parameters of the two cycles and the steam generator performance. The procedure allows the optimization of the steam generator, through the maximization of the plant net power, and the application of the optimal control theory of dynamic systems. The heat balances for the primary and secondary circuits are carried out simultaneously with the optimized - design parameters of the steam generator, obtained using an iterative technique. (author)
International Nuclear Information System (INIS)
Highlights: → We model design optimization of a vital reactor component using Genetic Algorithm. → Real-parameter Genetic Algorithm is used for steam condenser optimization study. → Comparison analysis done with various Genetic Algorithm related mechanisms. → The results obtained are validated with the reference study results. - Abstract: This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.
Kadyk, Thomas; Eikerling, Michael
2015-08-14
The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs. PMID:26156571
Directory of Open Access Journals (Sweden)
Xueliang Huang
2013-01-01
Full Text Available As an important component of the smart grid, electric vehicles (EVs could be a good measure against energy shortages and environmental pollution. A main way of energy supply to EVs is to swap battery from the swap station. Based on the characteristics of EV battery swap station, the coordinated charging optimal control strategy is investigated to smooth the load fluctuation. Shuffled frog leaping algorithm (SFLA is an optimization method inspired by the memetic evolution of a group of frogs when seeking food. An improved shuffled frog leaping algorithm (ISFLA with the reflecting method to deal with the boundary constraint is proposed to obtain the solution of the optimal control strategy for coordinated charging. Based on the daily load of a certain area, the numerical simulations including the comparison of PSO and ISFLA are carried out and the results show that the presented ISFLA can effectively lower the peak-valley difference and smooth the load profile with the faster convergence rate and higher convergence precision.
Energy Technology Data Exchange (ETDEWEB)
Garcia V, M.A
2006-07-01
In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the
International Nuclear Information System (INIS)
Highlights: • This paper presents a new method useful for the optimization of complex dynamic systems. • The method uses the strengths of; genetic algorithms (GA), and regression splines. • The method is applied to the design of a gas cooled fast breeder reactor design. • Tools like Java, R, and codes like MCNP, Matlab are used in this research. - Abstract: A module based optimization method using genetic algorithms (GA), and multivariate regression analysis has been developed to optimize a set of parameters in the design of a nuclear reactor. GA simulates natural evolution to perform optimization, and is widely used in recent times by the scientific community. The GA fits a population of random solutions to the optimized solution of a specific problem. In this work, we have developed a genetic algorithm to determine the values for a set of nuclear reactor parameters to design a gas cooled fast breeder reactor core including a basis thermal–hydraulics analysis, and energy transfer. Multivariate regression is implemented using regression splines (RS). Reactor designs are usually complex and a simulation needs a significantly large amount of time to execute, hence the implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using RS in conjunction with GA. Due to using RS, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a multivariate regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The reactor parameters are given by the, radius of a fuel pin cell, isotopic enrichment of the fissile material in the fuel, mass flow rate of the coolant, and temperature of the coolant at the core inlet. And, the optimization objectives for the reactor core are, high breeding of U-233 and Pu-239 in
Jussen, Daniel; Soltner, Helmut; Stute, Birgit; Wiechert, Wolfgang; von Lieres, Eric; Pohl, Martina
2016-08-10
Enzymatic parameter determination is an essential step in biocatalytic process development. Therefore higher throughput in miniaturized devices is urgently needed. An ideal microfluidic device should combine easy immobilization and retention of a minimal amount of biocatalyst with a well-mixed reaction volume. Together, all criteria are hardly met by current tools. Here we describe a microfluidic reactor (μMORE) which employs magnetic particles for both enzyme immobilization and efficient mixing using two permanent magnets placed in rotating cylinders next to the a glass chip reactor. The chip geometry and agitation speed was optimized by investigation of the mixing and retention characteristics using simulation and dye distribution analysis. Subsequently, the μMORE was successfully applied to determine critical biocatalytic process parameters in a parallelized manner for the carboligation of benzaldehyde and acetaldehyde to (S)-2-hydroxy-1-phenylpropan-1-one with less than 5μg of benzoylformate decarboxylase from Pseudomonas putida immobilized on magnetic beads. Here, one run of the device in six parallelized glass reactors took only 2-3h for an immobilized enzyme with very low activity (∼2U/mg). The optimized parameter set was finally tested in a 10mL enzyme membrane reactor, demonstrating that the μMORE provides a solid data base for biocatalytic process optimization. PMID:27288595
Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.
Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo
2016-01-01
The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor. PMID:27191576
Rahmani, Faezeh; Khosravinia, Hossein
2016-08-01
Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm-2 of Nickle-63 (63Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure.
Optimization calculation for in-core burnable absorber fuel loading for pressurized water reactor
International Nuclear Information System (INIS)
Genetic algorithms (GA) and tabu search (TS) algorithm are applied to optimize the burnable absorber fuel loading problem for nuclear power plant reactor. The tenth-cycle of Daya-Bay Nuclear Power Station is taken as the example, and three general kinds of burnable absorber, i.e., boron, Gd2O3 and IFBA, are optimized using GA separately. Calculation results demonstrate that GA is effective for optimizing the burnable absorber loading and the IFBA works the best for PWR. Finally a hybrid optimization method that combined with GA and TS is used. The initial optimized results of GA are taken as the initial point of TS searching. This method saves much calculation time. (authors)
Possibilities to optimize sodium cooled fast reactors with respect to Actinide burning
International Nuclear Information System (INIS)
The optimization of fast reactor cores with respect to the destruction of Minor Actinides starts from the question, whether the neutron spectrum can be hardened by changing the core geometry, core size or fuel type. Spectrum hardening would increase the destruction (fission) of actinides compared to their further production due to capture processes. Reference point of this study is the European Fast Reactor EFR. It is shown that a flat core geometry with metal fuel would offer an optimum and that small power units, i. e. smaller cores are most favourable
Preliminary Investigation of an Optimally Scramming Control Rod for Gas-Cooled Reactors
International Nuclear Information System (INIS)
A passively safe control rod for gas-cooled reactors is proposed. This Optimally Scramming Control Rod (OSCR) is lifted out of the core region by the core coolant and descends back into the core when the coolant flow is not sufficient for core cooling purposes or in the event of depressurization. It is shown that for the current design of the OSCR, the reactor can be operated under normal lower power conditions down to about 80% of total power. It is also shown that cold shutdown can be achieved with rods of sufficiently low mass to allow naturally passive operation of the concept. (authors)
Optimization of the self-sufficient thorium fuel cycle for CANDU power reactors
Directory of Open Access Journals (Sweden)
Bergelson Boris R.
2008-01-01
Full Text Available The results of optimization calculations for CANDU reactors operating in the thorium cycle are presented in this paper. Calculations were performed to validate the feasibility of operating a heavy-water thermal neutron power reactor in a self-sufficient thorium cycle. Two modes of operation were considered in the paper: the mode of preliminary accumulation of 233U in the reactor itself and the mode of operation in a self-sufficient cycle. For the mode of accumulation of 233U, it was assumed that enriched uranium or plutonium was used as additional fissile material to provide neutrons for 233U production. In the self-sufficient mode of operation, the mass and isotopic composition of heavy nuclei unloaded from the reactor should provide (after the removal of fission products the value of the multiplication factor of the cell in the following cycle K>1. Additionally, the task was to determine the geometry and composition of the cell for an acceptable burn up of 233U. The results obtained demonstrate that the realization of a self-sufficient thorium mode for a CANDU reactor is possible without using new technologies. The main features of the reactor ensuring a self-sufficient mode of operation are a good neutron balance and moving of fuel through the active core.
Optimization and control of a novel upflow anaerobic solid-state (UASS) reactor
Energy Technology Data Exchange (ETDEWEB)
Mumme, J.; Linke, B. [Leibniz Inst. for Agricultural Engineering, Potsdam (Germany); Tolle, R. [Humboldt Univ., Berlin (Germany). Dept. of Biosystems Technology
2010-07-01
Optimization and control strategies for a newly developed upflow anaerobic solid-state (UASS) reactor equipped with liquor recirculation were investigated. The UASS reactor converts solid biomass into biogas while the particulate organic matter (POM) ascends in the form of a solid-state bed (SSB) driven by the adherence of self-produced micro gas bubbles. Performance data and technical characteristics were obtained from a technical scale semi-automatic 400 L UASS reactor that operated for 117 days with maize silage under thermophilic conditions at 55 degrees C. The process liquor was continuously recirculated through separate methanogenic reactors in order to prevent an accumulation of volatile fatty acids. Emphasis was placed on determining the gas and metabolite production. The volatile solids (VS) loading rate was fixed at 5 g per litre per day. The methane production rate of the UASS reactor stabilized between 1.5 and 2.0 L per litre per day. The average volatile solids (VS) methane yield of the maize silage was 380 L per kg. The liquor exchange was found to play an important role in the performance and stability of the digestion process. Although low exchange rates can cause process failure by acidification, high exchange rates have the risk of clogging inside the SSB. It was concluded that the UASS reactor is a viable solution for the digestion of various organic matter.
International Nuclear Information System (INIS)
In the feasibility studies on Commercialized Fast Reactor Cycle Systems, a compact reactor vessel is investigated in terms of economical improvement of a sodium cooled loop type fast reactor. In order to compact reactor vessel, a simple fuel handling system is considered using 'a column type UIS (Upper Inner Structure) with a slit'. Gas entrainment due to high flow velocity in the UIS slit is one of major point of reactor vessel design. A 1/20th scaled model water experiment for reactor vessel upper plenum was performed to evaluate flow through a slit in the column type UIS, fundamental behavior of reactor upper plenum flow, and survey some devices which reduce flow velocity through the slit and optimize flow in the plenum. In the flow visualization tests, tracer particles were added to the water, and illuminated by the halogen lump light sheet. The flow visualized images were captured with a digital video camera. The visualization was done at a slit of UIS, opposite side of the UIS slit, front and side of hot leg (HL), front of slit and so on. We obtained fluid vertical velocity and fluctuation strength in the UIS slit using Ultrasound Velocity Profile monitor (UVP). The results are as follows. 1) In the test condition (Reynolds number; 2,500-5,000 at core outlet), flow field in the UIS slit was nearly identical in spite of core outlet velocity change. It is believed that this small scaled model test is adequate to see the flow pattern in the plenum and effect of the flow control devices. 2) An outer shroud was set on the UIS, which was perforated plate, and covered the UIS from middle to bottom except for the slit direction. The shroud had effects to bend the jet through the UIS slit toward the reactor vessel wall and also to flatten flow exiting from the UIS. 3) Flow guide was set beside of the slit of UIS baffle plate to reduce the jet velocity in the UIS slit using Coanda effect. The maximum effect was seen by using around shape guide. 4) There cylinders were
Directory of Open Access Journals (Sweden)
Yong Li
2012-05-01
Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the
Neutronic design analyses for a dual-coolant blanket concept: Optimization for a fusion reactor DEMO
International Nuclear Information System (INIS)
Highlights: ► Dual-Coolant He/Pb15.7Li breeding blanket for a DEMO fusion reactor is studied. ► An iterative process optimizes neutronic responses minimizing reactor dimension. ► A 3D toroidally symmetric geometry has been generated from the CAD model. ► Overall TBR values support the feasibility of the conceptual model considered. ► Power density in TF coils is below load limit for quenching. - Abstract: The generation of design specifications for a DEMO reactor, including breeding blanket (BB), vacuum vessel (VV) and magnetic field coils (MFC), requires a consistent neutronic optimization of structures between plasma and MFC. This work targets iteratively to generate these neutronic specifications for a Dual-Coolant He/Pb15.7Li breeding blanket design. The iteration process focuses on the optimization of allowable space between plasma scrapped-off-layer and VV in order to generate a MFC/VV/BB/plasma sustainable configuration with minimum global system volumes. Two VV designs have been considered: (1) a double-walled option with light-weight stiffeners and (2) a thick massive one. The optimization process also involves VV materials, looking to warrant radiation impact operational limits on the MFC. The resulting nuclear responses: peak nuclear heating in toroidal field (TF) coil, tritium breeding ratio (TBR), power amplification factor and helium production in the structural material are provided.
Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems
Khatib, Mohammed G.; Hartel, Pieter H.
2010-01-01
An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such
DEFF Research Database (Denmark)
Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Vasquez, Juan Carlos;
2015-01-01
This paper proposes a control scheme which minimizes the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What distinguishes approach presented here from conventional strategies is that not only the price of electricity is considered in the...
On the optimization of a steady-state bootstrap-reactor
International Nuclear Information System (INIS)
A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r0 ≡ PCD/Pα BS≡IBS/I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 1020 m-3, fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for rBS/I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab
A system to obtain an optimized first design of a nuclear reactor core
International Nuclear Information System (INIS)
This work proposes a method for obtaining a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one energy-group, one-dimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, reflector thickness, enrichment and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for future works. (autor)
Automated procedure for selection of optimal refueling policies for light water reactors
International Nuclear Information System (INIS)
An automated procedure determining a minimum cost refueling policy has been developed for light water reactors. The procedure is an extension of the equilibrium core approach previously devised for pressurized water reactors (PWRs). Use of 1 1/2-group theory has improved the accuracy of the nuclear model and eliminated tedious fitting of albedos. A simple heuristic algorithm for locating a good starting policy has materially reduced PWR computing time. Inclusion of void effects and use of the Haling principle for axial flux calculations extended the nuclear model to boiling water reactors (BWRs). A good initial estimate of the refueling policy is obtained by recognizing that a nearly uniform distribution of reactivity provides low-power peaking. The initial estimate is improved upon by interchanging groups of four assemblies and is subsequently refined by interchanging individual assemblies. The method yields very favorable results, is simpler than previously proposed BWR fuel optimization schemes, and retains power cost as the objective function
Transient analyses for a molten salt fast reactor with optimized core geometry
International Nuclear Information System (INIS)
Highlights: • MSFR core is analyzed by fully coupling neutronics and thermal-hydraulics codes. • We investigated four types of transients intensively with the optimized core geometry. • It demonstrates MSFR has a high safety potential. - Abstract: Molten salt reactors (MSRs) have encountered a marked resurgence of interest over the past decades, highlighted by their inclusion as one of the six candidate reactors of the Generation IV advanced nuclear power systems. The present work is carried out in the framework of the European FP-7 project EVOL (Evaluation and Viability Of Liquid fuel fast reactor system). One of the project tasks is to report on safety analyses: calculations of reactor transients using various numerical codes for the molten salt fast reactor (MSFR) under different boundary conditions, assumptions, and for different selected scenarios. Based on the original reference core geometry, an optimized geometry was proposed by Rouch et al. (2014. Ann. Nucl. Energy 64, 449) on thermal-hydraulic design aspects to avoid a recirculation zone near the blanket which accumulates heat and very high temperature exceeding the salt boiling point. Using both fully neutronics thermal-hydraulic coupled codes (SIMMER and COUPLE), we also re-confirm the efforts step by step toward a core geometry without the recirculation zone in particular as concerns the modifications of the core geometrical shape. Different transients namely Unprotected Loss of Heat Sink (ULOHS), Unprotected Loss of Flow (ULOF), Unprotected Transient Over Power (UTOP), Fuel Salt Over Cooling (FSOC) are intensively investigated and discussed with the optimized core geometry. It is demonstrated that due to inherent negative feedbacks, an MSFR plant has a high safety potential
Transient analyses for a molten salt fast reactor with optimized core geometry
Energy Technology Data Exchange (ETDEWEB)
Li, R., E-mail: rui.li@kit.edu [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Wang, S.; Rineiski, A.; Zhang, D. [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Merle-Lucotte, E. [Laboratoire de Physique Subatomique et de Cosmologie – IN2P3 – CNRS/Grenoble INP/UJF, 53, rue des Martyrs, 38026 Grenoble (France)
2015-10-15
Highlights: • MSFR core is analyzed by fully coupling neutronics and thermal-hydraulics codes. • We investigated four types of transients intensively with the optimized core geometry. • It demonstrates MSFR has a high safety potential. - Abstract: Molten salt reactors (MSRs) have encountered a marked resurgence of interest over the past decades, highlighted by their inclusion as one of the six candidate reactors of the Generation IV advanced nuclear power systems. The present work is carried out in the framework of the European FP-7 project EVOL (Evaluation and Viability Of Liquid fuel fast reactor system). One of the project tasks is to report on safety analyses: calculations of reactor transients using various numerical codes for the molten salt fast reactor (MSFR) under different boundary conditions, assumptions, and for different selected scenarios. Based on the original reference core geometry, an optimized geometry was proposed by Rouch et al. (2014. Ann. Nucl. Energy 64, 449) on thermal-hydraulic design aspects to avoid a recirculation zone near the blanket which accumulates heat and very high temperature exceeding the salt boiling point. Using both fully neutronics thermal-hydraulic coupled codes (SIMMER and COUPLE), we also re-confirm the efforts step by step toward a core geometry without the recirculation zone in particular as concerns the modifications of the core geometrical shape. Different transients namely Unprotected Loss of Heat Sink (ULOHS), Unprotected Loss of Flow (ULOF), Unprotected Transient Over Power (UTOP), Fuel Salt Over Cooling (FSOC) are intensively investigated and discussed with the optimized core geometry. It is demonstrated that due to inherent negative feedbacks, an MSFR plant has a high safety potential.
Optimal homogenization of perfusion flows in microfluidic bio-reactors; a numerical study
Okkels, Fridolin; Bruus, Henrik
2009-01-01
To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continuously feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for e.g. cell culturing and analysis, and in feeding bio-arrays.
A nuclear reactor core fuel reload optimization using Artificial-Ant-Colony Connective Networks
International Nuclear Information System (INIS)
A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly pattern that maximizes the number of full operational days. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is introduced to solve the nuclear reactor core fuel reload optimization problem. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)
International Nuclear Information System (INIS)
Experimental reactors in the world enable researchers to meet the needs of industry and institutions not only by providing support to the existing nuclear infrastructure (Gen.2) but also by preparing the future generation (Gen.3, Gen.4) or even by responding to other needs as well (supports with fusion, medical applications). It is for this specific purpose that the Jules Horowitz Polyvalent Irradiation Reactor is now being built at the CEA Cadarache Research Center (located in the south of France). This Material Testing Reactor (MTR type) is designed to irradiate materials or fuel samples for various experimental tests. The reactor will also produce Mo99 radioelements that will supply 25% to 50% of current European needs. The goal of this paper is to describe a fuel irradiation loop, now under study, that will be designed to carry out power ramps tests to provide technical support to the Generation 2 and 3 nuclear power plants. In order to increase its irradiation capacity (2 to 3 per cycle), this loop takes into account the requirements that will lead to the optimization of all experimental processes in the facility (such as non-destructive examinations before and after the test, specific loading tools). All these considerations are being taken into account in order to offer to the customer's complete and optimized conditions in terms of experimental irradiations processes. (author)
International Nuclear Information System (INIS)
The molten salt reactor (MSR) is an attractive breeder reactor. A graphite-moderated MSR can reach breeding because of the online salt processing and refueling. These features give difficulties when the breeding gain (BG) of the MSR is evaluated. The inventory of the core and external stockpiles have to be treated separately in order to quantify the breeding performance of the reactor. In this paper, an improved BG definition is given and it is compared with definitions used earlier. The improved definition was used in an optimization study of the graphite - salt lattice of the core. The aim of the optimization is a passively safe, self-breeder reactor. The fuel channel diameter, graphite volume and thorium concentration were varied while the temperature feedback coefficient of the core, BG - as defined in the paper - and the lifetime of the graphite were calculated. There is a small range of lattices which provide both negative temperature feedback and breeding. Furthermore, breeding is possible only at low power densities in case of the salt processing efficiencies set in this study. In this range of power the lifetime of the graphite is between 12 and 20 years.
Optimization strategies for sustainable fuel cycle of the BR2 Reactor
International Nuclear Information System (INIS)
The objective of the present study is to achieve a sustainable fuel cycle in a long term of reactor operation applying advanced in-core loading strategies. The optimization criteria concern mainly enhancement of nuclear safety by means of reactivity margins and minimization of the operational fuel cycle cost at a given (constant) power level and same or longer cycle length. An important goal is also to maintain the same or to improve the experimental performances. Current developments are focused on optimization of control rods localization; optimization of fresh and burnt fuel assemblies in-core distribution; optimization of azimuth and axial fuel burn up strategies, including fuel assembly rotating and flipping upside down. (authors)
International Nuclear Information System (INIS)
In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)
International Nuclear Information System (INIS)
The analysis of alternate CANDU fuels along with natural uranium-based fuel was carried out from the view point of optimal in-core fuel management at approach to refuelling equilibrium. The alternate fuels considered in the present work include thorium containing oxide mixtures (MOX), plutonium-based MOX, and Pressurised Water Reactor (PWR) spent fuel recycled in CANDU reactors (Direct Use of spent PWR fuel in CANDU (DUPIC)); these are compared with the usual natural UO2 fuel. The focus of the study is on the 'Approach to Refuelling Equilibrium' period which immediately follows the initial commissioning of the reactor. The in-core fuel management problem for this period is treated as an optimization problem in which the objective function is the refuelling frequency to be minimized by adjusting the following decision variables: the channel to be refuelled next, the time of the refuelling and the number of fresh fuel bundles to be inserted in the channel. Several constraints are also included in the optimisation problem which is solved using Perturbation Theory. Both the present 37-rod CANDU fuel bundle and the proposed CANFLEX bundle designs are part of this study. The results include the time to reach refuelling equilibrium from initial start-up of the reactor, the average discharge burnup, the average refuelling frequency and the average channel and bundle powers relative to natural UO2. The model was initially tested and the average discharge burnup for natural UO2 came within 2% of the industry accepted 199 MWh/kgHE. For this type of fuel, the optimization exercise predicted the savings of 43 bundles per full power year. In addition to producing average discharge burnups and other parameters for the advanced fuels investigated, the optimisation model also evidenced some problem areas like high power densities for fuels such as the DUPIC. Perturbation Theory has proven itself to be an accurate and valuable optimization tool in predicting the time between
Evolutionary Strategy for Feeding Trajectory Optimization of Fed-batch Reactors
Directory of Open Access Journals (Sweden)
Tamás Varga
2007-12-01
Full Text Available Safe and optimal operation of complex production processes is one of the mostimportant research and development problems in process engineering. This problem is themost relevant at the design of the optimal feeding profile of fed-batch chemical reactorsdue to the nonlinear and unstable dynamical behavior of the processes. This paper showsthat how the optimal feeding policy can be determined in fed-batch reactors by sequentialquadratic programming, classical evolutionary strategy (ES and the advanced version ofES that is based on covariance matrix adaptation. A multi-objective function was createdand the search space was constrained in case of all of the three applied algorithms. Theswitching times between states in the feeding trajectory and the feed rates in each statewere manipulated to find the global minima of the objective function. To obtain the optimalfeeding policy the first-principle model of a pilot fed-batch reactor was implemented inMATLAB and applied as a dynamic simulator of the process. Off-line optimization processwas carried out in case of different dosing time distribution. As the results show asignificant improvement can be achieved in process performance applying advanced ESbased optimization algorithms to generate feeding trajectories.
The parallel processing impact in the optimization of the reactors neutronic by genetic algorithms
International Nuclear Information System (INIS)
Nowadays, many optimization problems found in nuclear engineering has been solved through genetic algorithms (GA). The robustness of such methods is strongly related to the nature of search process which is based on populations of solution candidates, and this fact implies high computational cost in the optimization process. The use of GA become more critical when the evaluation process of a solution candidate is highly time consuming. Problems of this nature are common in the nuclear engineering, and an example is the reactor design optimization, where neutronic codes, which consume high CPU time, must be run. Aiming to investigate the impact of the use of parallel computation in the solution, through GA, of a reactor design optimization problem, a parallel genetic algorithm (PGA), using the Island Model, was developed. Exhaustive experiments, then 1500 processing hours in 550 MHz personal computers, have been done, in order to compare the conventional GA with the PGA. Such experiments have demonstrating the superiority of the PGA not only in terms of execution time, but also, in the optimization results. (author)
Space and time optimization of nuclear reactors by means of the Pontryagin principle
International Nuclear Information System (INIS)
A numerical method is being presented for solving space dependent optimization problems concerning a functional for one dimensional geometries in the few group diffusion approximation. General dimensional analysis was applied to derive relations for the maximum of a functional and the limiting values of the constraints. Two procedures were given for calculating the anisotropic diffusion coefficients in order to improve the results of the diffusion approximation. In this work two procedures were presented for collapsing the microscopic multigroup cross sections, one general and another specific to the space dependent optimization problems solved by means of the Pontryagin maximum principle. Neutron spectrum optimization is performed to ensure the burnup of Pu239 isotope produced in a thermal nuclear reactor. A procedure is also given for the minimization of finite functional set by means of the Pontryagin maximum principle. A method for determining the characteristics of fission Pseudo products is formulated in one group and multigroup cases. This method is applied in the optimization of the burnup in nuclear reactors with fuel electric cells. A procedure to mjnimze the number of the fuel burnup equations is described. The optimization problems presented and solved in this work point to the efficiency of the maximum principle. Each problem on method presented in the various chapters is accompanied by considerations concerning dual problems and possibilities of further research development. (author)
Wohl, M. L.; Celnik, J.; Schamberger, R. D.
1972-01-01
Optimization calculations to determine minimum 4 pi spherical-shell weights were performed at 200-, 375-, and 550-megawatt-thermal reactor power levels. Monte Carlo analyses were performed for a reactor power level corresponding to 375 megawatts. Power densities for the spherical reactor model used varied from 64.2 to 256 watts per cubic centimeter. The dose rate constraint in the optimization calculations was 0.25 mrem per hour at 9.14 meters from the reactor center. The resulting shield weights were correlated with the reactor power levels and power densities by a regression analysis. The optimum shield weight for a 375-megawatt, 160-watt-per-cubic-centimeter reactor was 202,000 kilograms.
Optimal Operation Method for Microgrid with Wind/PV/Diesel Generator/Battery and Desalination
2014-01-01
The power supply mode of island microgrid with a variety of complementary energy resources is one of the most effective ways to solve the problem of future island power supply. Based on the characteristics of seawater desalination system and water demand of island residents, a power allocation strategy for seawater desalination load, storage batteries, and diesel generators is proposed with the overall consideration of the economic and environmental benefits of system operation. Furthermore, ...
A dynamic plug flow reactor model for a vanadium redox flow battery cell
Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie
2016-04-01
A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.
International Nuclear Information System (INIS)
To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational
Левчук, Игорь Леонидович
2015-01-01
In this paper it is investigated an influence of the temperature of the reaction mixture at the inlets of a catalytic reforming reactor block on increment of aromatic hydrocarbons at outlets of separate reactors. It is found that for each reactor of a catalytic reforming exists some optimal temperature of the initial mixture from the standpoint of the increment of aromatics, which does not exceed a noticeable increase of flavoring materials, however, increases the rate of deactivation of the ...
International Nuclear Information System (INIS)
This work presents the development of a distributed parallel genetic algorithm applied to a nuclear reactor core design optimization. In the implementation of the parallelism, a 'Message Passing Interface' (MPI) library, standard for parallel computation in distributed memory platforms, has been used. Another important characteristic of MPI is its portability for various architectures. The main objectives of this paper are: validation of the results obtained by the application of this algorithm in a nuclear reactor core optimization problem, through comparisons with previous results presented by Pereira et al.; and performance test of the Brazilian Nuclear Engineering Institute (IEN) cluster in reactors physics optimization problems. The experiments demonstrated that the developed parallel genetic algorithm using the MPI library presented significant gains in the obtained results and an accentuated reduction of the processing time. Such results ratify the use of the parallel genetic algorithms for the solution of nuclear reactor core optimization problems. (author)
Energy Technology Data Exchange (ETDEWEB)
Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)
2015-01-15
Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the
International Nuclear Information System (INIS)
Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the
Pattern optimization of PWR reactor using hybrid parallel Artificial Bee Colony
International Nuclear Information System (INIS)
Highlights: • The flying direction of each bee is improved through combination of individual and community flying experience. • The probability of selecting food sources by onlooker is enhanced by roulette-wheel mechanism. • We used parallel computation to further improve the algorithm’s performance. • The computational performance of the new parallel hybrid algorithm shows a speedup of 4.63 on 6 processors. • The proposed optimization method is applied to the cycle length maximization of a VVER-1000 reactor. - Abstract: In this paper, we propose a core reloading of pressurized water reactors technique based on a hybrid Artificial Bee Colony (ABC) algorithm. Our approach integrates the merits of both ABC algorithm and Particle Swarm Optimization (PSO). The neighborhood search scheme of the algorithm is improved by location of personally encountered the most flowers and location of highest concentration of flowers explored by the intact swarm. The probability of selecting food sources by onlooker in the proposed algorithm is enhanced through using roulette-wheel mechanism. To address the drawback of most optimization algorithms, this method has been parallelized, so that the runtimes may be greatly reduced by using a multiprocessor computer cluster. The proposed optimization method is applied to the cycle length maximization of a VVER-1000 core. Simulation results show that the proposed ABC method could have the advantages of original ABC, and is capable of producing low cost, fast, and reasonably accurate solutions
Adapting computational optimization concepts from aeronautics to nuclear fusion reactor design
Directory of Open Access Journals (Sweden)
Baelmans M.
2012-10-01
Full Text Available Even on the most powerful supercomputers available today, computational nuclear fusion reactor divertor design is extremely CPU demanding, not least due to the large number of design variables and the hybrid micro-macro character of the flows. Therefore, automated design methods based on optimization can greatly assist current reactor design studies. Over the past decades, “adjoint methods” for shape optimization have proven their virtue in the field of aerodynamics. Applications include drag reduction for wing and wing-body configurations. Here we demonstrate that also for divertor design, these optimization methods have a large potential. Specifically, we apply the continuous adjoint method to the optimization of the divertor geometry in a 2D poloidal cross section of an axisymmetric tokamak device (as, e.g., JET and ITER, using a simplified model for the plasma edge. The design objective is to spread the target material heat load as much as possible by controlling the shape of the divertor, while maintaining the full helium ash removal capabilities of the vacuum pumping system.
Meshram, Pratima; Pandey, B D; Mankhand, T R
2016-05-01
Nickel-metal hydride batteries (Ni-MH) contain not only the base metals, but valuable rare earth metals (REMs) viz. La, Sm, Nd, Pr and Ce as well. In view of the importance of resource recycling and assured supply of the contained metals in such wastes, the present study has focussed on the leaching of the rare earth metals from the spent Ni-MH batteries. The conditions for the leaching of REMs from the spent batteries were optimized as: 2M H2SO4, 348K temperature and 120min of time at a pulp density (PD) of 100g/L. Under this condition, the leaching of 98.1% Nd, 98.4% Sm, 95.5% Pr and 89.4% Ce was achieved. Besides the rare earth metals, more than 90% of base metals (Ni, Co, Mn and Zn) were also leached out in this condition. Kinetic data for the dissolution of all the rare earth metals showed the best fit to the chemical control shrinking core model. The leaching of metals followed the mechanism involving the chemical reaction proceeding on the surface of particles by the lixiviant, which was corroborated by the XRD phase analysis and SEM-EDS studies. The activation energy of 7.6, 6.3, 11.3 and 13.5kJ/mol was acquired for the leaching of neodymium, samarium, praseodymium and cerium, respectively in the temperature range 305-348K. From the leach liquor, the mixed rare earth metals were precipitated at pH∼1.8 and the precipitated REMs was analyzed by XRD and SEM studies to determine the phases and the morphological features. PMID:26746588
Franck Dechelette; Franck Morin; Guy Laffont; Gilles Rodriguez; Emmanuel Sanseigne; Sébastien Christin; Xavier Mognot; Aurélien Morcillo
2014-01-01
International audience The research for technological improvement and innovation in sodium-cooled fast reactor is a matter of concern in fuel handling systems in a view to perform a better load factor of the reactor thanks to a quicker fuelling/defueling process. An optimized fuel handling route will also limit its investment cost. In that field, CEA has engaged some innovation study either of complete FHR or on the optimization of some specific components. This paper presents the study of...
International Nuclear Information System (INIS)
Highlights: • A new 3D modeling for Mg-based metal hydride reactor is proposed. • Hydriding kinetics of Mg-based alloys is modeled based on the experimental data. • Helical coil heat exchanger has better heat transfer effect than traditional one. • The reactor with smaller non-dimensional pitch has favorable performance. - Abstract: Magnesium based metal hydride has been viewed as one of the most commonly-used materials in the practical applications of hydrogen energy systems. The heat and mass transfer processes have significant effects on the hydrogen storage performance of magnesium based metal hydride reactors. Incorporating helical coil heat exchanger into the reactor could be an effective way to improve the performance of heat and mass transfer. In this work, a new three-dimensional model for magnesium based metal hydride reactor with helical coil heat exchanger is proposed and solved using the commercial software package COMSOL Multiphysics V3.5a. The comparison of hydrogen storage behaviors between the reactors incorporating the traditional straight pipe and new helical coil heat exchangers is firstly conducted based on the numerical simulation. The comparison results show that the helical coil heat exchanger has better effect on improving the characteristics of reactor than the straight pipe heat exchanger due to its secondary circulation. The effects of key parameters, including the initial conditions, heat transfer coefficients of heat transfer fluid and helical coil geometry on the characteristics of reactor with the helical coil heat exchanger are also analyzed systematically. It is discovered that larger initial hydrogen pressure and lower initial temperature are beneficial to the improvement of hydrogen absorption kinetics, because of the greater driving force for the hydriding reaction. The results of optimal design suggest that smaller non-dimensional pitch, the ratio of helical pitch to helical diameter, improves the heat and mass transfer
International Nuclear Information System (INIS)
For energy demand in the economic development of China in 21 Century, for seeking the strategy to develop nuclear energy in China, according to the nuclear resources in China and the perspective of international nuclear technology development, the optimization of the combination of three kinds of advanced reactors, namely, HTGR, FBR, and fusion-fission hybrid reactors in the development of nuclear energy in China was investgated. Three alternative stra tegies with different priorities were suggested
International Nuclear Information System (INIS)
Proposed optimization procedure is fast due to application of linear programming. Non-linear constraints which demand iterative application of linear programming are slowing down the calculation. Linearization can be done by different procedures starting from simple empirical rules for fuel in-core management to complicated general perturbation theory with higher order of corrections. A mathematical model was formulated for optimization of improved fuel cycle. A detailed algorithm for determining minimum of fresh fuel at the beginning of each fuel cycle is shown and the problem is linearized by first order perturbation theory and it is optimized by linear programming. Numerical illustration of the proposed method was done for the experimental reactor mostly for saving computer time
Optimization of pressurized water reactor shuffling by simulated annealing with heuristics
International Nuclear Information System (INIS)
Simulated-annealing optimization of reactor core loading patterns is implemented with support for design heuristics during candidate pattern generation. The SIMAN optimization module uses the advanced nodal method of SIMULATE-3 and the full cross-section detail of CASMO-3 to evaluate accurately the neutronic performance of each candidate, resulting in high-quality patterns. The use of heuristics within simulated annealing is explored. Heuristics improve the consistency of optimization results for both fast- and slow-annealing runs with no penalty from the exclusion of unusual candidates. Thus, the heuristic application of designer judgment during automated pattern generation is shown to be effective. The capability of the SIMAN module to find and evaluate families of loading patterns that satisfy design constraints and have good objective performance within practical run times is demonstrated. The use of automated evaluations of successive cycles to explore multicycle effects of design decisions is discussed
Constructal optimization for a solid-gas reactor based on triangular element
Institute of Scientific and Technical Information of China (English)
2008-01-01
Entropy generation minimization for heat and mass transfer process in a solid-gas reactor is carried out based on constructal theory by using triangular elemental area. The aspect ratio of the triangular elemental area is optimized under constraint conditions. A number of optimal triangular elements are assembled to a new large rectangular area, which is optimised again. The procedure is repeated until the control-volume is covered, and the complete analytical results are obtained. The effects of some parameters on minimum entropy generation are analysed by nu-merical examples. The results show that smaller entropy generation can be ob-tained when the optimization for a given volume is carried out on the basis of tri-angular elements than those obtained on the basis of rectangular elements.
International Nuclear Information System (INIS)
Interval Bound Algorithm is a well performance algorithm to optimize reactor reloading pattern problem. In order to improve the performance of the algorithm further, this paper added 'elitism strategy' to it. The numerical result showed that the improved algorithm became better than the basic algorithm in terms of both solution quality and convergence speed. Moreover, in order to solve multi-modal reloading pattern optimization problem, the multi-interval-model was added to the algorithm. The numerical result also illustrated that the re-improved algorithm was able to find multi-modal optimization solutions simultaneously without increasing of calculation load. With the two improvement measures, Interval Bound Algorithm has performed better in realistic application. (authors)
Optimizing the fuel management in a VVER-1000 reactor using an artificial neural network
International Nuclear Information System (INIS)
Highlights: ► The analysis technique was developed to find the optimum core configuration. ► Using Hopfield neural network to optimize fuel management in VVER/1000 reactor. ► Coupling the nuclear code and Hopfield neural network to find the optimum core. - Abstract: The present work investigates an appropriate way to solve the problem of optimizing fuel management in a VVER/1000 reactor. To automate this procedure, a computer program has been developed. This program suggests an optimal core configuration which is determined according to established safety constraints. The suggested solution is based on the use of coupled programs, one of which is the nuclear code, for making a database and modeling the core, and another one is the Hopfield neural network. An objective function is developed based on the following two basic parameters: (1) Power Peaking Factor (PPF) and (2) evaluation of the effective multiplication factor (keff). The procedure uses the optimized parameters in order to find configurations in which keff is maximized. The penalty function is applied to limit the value of local PPF in the neighborhood fuel assemblies. Therefore, in this paper we proposed a new approach for the use of Hopfield neural network to guide the heuristic search, and for evaluating the obtained results pertaining to the first core. The results show that applying the Hopfield Neural Network Artificial (HNNA) led us to the appropriate PPF and keff. Therefore, we achieved to a set of two basic parameters PPF and keff as effective factors on satisfying the safety constraints of VVER/1000 reactor core. These calculations have been performed for hot full power (without xenon and equilibrium xenon) conditions.
Design optimization of ferritic alloy LMFBR fuel assemblies as affected by in-reactor deformation
International Nuclear Information System (INIS)
Because of the relatively high resistance to irradiation-induced creep and swelling exhibited by the high strength ferritic alloy HT-9, it is a major structural material candidate for use in Liquid Metal Fast Breeder Reactor (LMFBR) fuel assembly hexagonal ducts, principally to minimize the duct dilation due to the nuclear environment. The design of a fuel assembly with an HT-9 duct can be performed as part of an overall plant performance optimization to achieve minimum plant operational costs. Such evaluations were performed to quantify the effect on fuel cycle costs of possible future changes to either the current estimates of HT-9 swelling and creep or to the uncertainty band widths of creep and swelling. The evaluations were conducted using a reactor system design computer code capable of implementing core design tradeoff studies to obtain a minimum cost optimization of the reactor system performance. The results of the study quantify the incentive for minimum creep and swelling and the incentive to obtain sufficient data to minimize the creep and swelling uncertainty band widths
Directory of Open Access Journals (Sweden)
Istadi Istadi
2009-06-01
Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115
The effects of core zoning on optimization of design analysis of molten salt reactor
International Nuclear Information System (INIS)
Highlights: • 1/8 of core is simulated by MCNP and thermal-hydraulic code simultaneously. • Effects of core zoning are studied by dividing the core into two regions. • Both the neutronics and thermal-hydraulic behavior are investigated. • The flat flux distribution is achieved in the optimization analysis. • The flat flux can lead to worse thermal-hydraulic behavior occasionally. - Abstract: The molten salt reactor (MSR) is one of six advanced reactor types in the frame of the Generation 4 International Forum. In this study, a multiple-channel analysis code (MAC) is developed to analyze thermal-hydraulics behavior and MCNP4c is used to study the neutronics behavior of Molten Salt Reactor Experiment (MSRE). The MAC calculates thermal-hydraulic parameters, namely temperature distribution, flow distribution and pressure drop. The MCNP4c performs the analysis of effective multiplication factor, neutron flux, power distribution and conversion ratio. In this work, the modification of core configuration is achieved by different core zoning and various fuel channel diameters, contributing to flat flux distribution. Specifically, the core is divided into two regions and the effects of different core zoning on the both neutronics and thermal-hydraulic behavior of moderated molten salt reactor are investigated. We conclude that the flat flux distribution cannot always guarantee better performance in thermal-hydraulic perspective and can decreases the graphite lifetime significantly
Finding optimal of the Egyptian second nuclear reactor core patterns using genetic algorithm
International Nuclear Information System (INIS)
The second Egyptian research reactor ETRR-2 went critical on the 27th of November 1997. The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and the assessment of the safety of this reactor. Fuel management reloads for Egypt's second research reactor have been carried out according to the fuel management scheme suggested by the reactor designer (INVAP). The start up core consists of three different fuel types, while the equilibrium core has only one fuel type called standard fuel. The fuel management scheme consists in considering the core as being partitioned into eight zones. Each zone will correspond to a chain of fuel movements. In each fuel cycle two of these chains will be involved, in which eight fuel elements will be moved, from them two spent fuel elements will be extracted and two fresh fuel elements will be inserted in the core. In this paper we solve a model as a one big nonlinear multi objective discrete optimization problem using genetic algorithm. Results are compared with INVAP values. (authors)
Liao, Wuxia; Wang, Ning; Wang, Taisheng; Xu, Jia; Han, Xudong; Liu, Zhenyu; Zhang, Xuming; Yu, Weixing
2016-01-01
This paper reports a biomimetic design of microchannels in the planar reactors with the aim to optimize the photocatalytic efficiency of water purification. Inspired from biology, a bifurcated microchannel has been designed based on the Murray's law to connect to the reaction chamber for photocatalytic reaction. The microchannels are designed to have a constant depth of 50 μm but variable aspect ratios ranging from 0.015 to 0.125. To prove its effectiveness for photocatalytic water purification, the biomimetic planar reactors have been tested and compared with the non-biomimetic ones, showing an improvement of the degradation efficiency by 68%. By employing the finite element method, the flow process of the designed microchannel reactors has been simulated and analyzed. It is found that the biomimetic design owns a larger flow velocity fluctuation than that of the non-biomimetic one, which in turn results in a faster photocatalytic reaction speed. Such a biomimetic design paves the way for the design of more efficient planar reactors and may also find applications in other microfluidic systems that involve the use of microchannels. PMID:26958102
Particle swarm optimization with random keys applied to the nuclear reactor reload problem
International Nuclear Information System (INIS)
In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)
International Nuclear Information System (INIS)
An automated system for designing a loading pattern (LP) for boiling water reactors (BWRs) given a reference LP and control rod (CR) sequence has been developed. This system employs the advanced nodal code SIMULATE-3 and a BWR LP optimization code FINELOAD-3, which uses a simple linear perturbation method and a modified Tabu search method to select potential optimized LP candidates. Both of these unique methods of FINELOAD-3 were developed to achieve an effective BWR LP optimization strategy and to have high computational efficiency. FINELOAD-3 also adjusts deep CR positions to compensate for the core reactivity deviation caused by fuel shuffling. The objective function is to maximize the end-of-cycle core reactivity while satisfying the specified thermal margins and cold shutdown margin constraints. This optimization system realized the practical application for real BWR LP design. Computer time needed to obtain an optimized LP for a typical BWR/5 octant core with 15 depletion steps is ∼4 h using an engineering workstation. This system was extensively tested for real BWR reload core designs and showed that the developed LPs using this system are equivalent or better than the manually optimized LPs
DEFF Research Database (Denmark)
Serban, I.; Teodorescu, Remus; Marinescu, C.
2012-01-01
This paper presents an original hardware-in-the-loop (HIL) solution for real-time testing and optimization of the frequency control mechanism in autonomous microgrids (MG), when battery energy storage systems (BESS) are integrated along classical and RES-based generators to stabilize the frequency...
International Nuclear Information System (INIS)
This work presents a systemanalytical investigation and shows how far a high temperature reactor can be integrated for achieving the optimal yield of kerogen from oil shale. About 1/3 of the produced components must be burnt out in order to have the required high temperature process heat. The works of IGT show that the hydrogen gasification of oil shale enables not only to reach oil shale of higher quality but also allows to achieve a higher extraction quantity. For this reason a hydro-gasification process has been calculated in this work in which not only hydrogen is used as the gasification medium but also two high temperature reactors are integrated as the source of high temperature heat. (orig.)
Methodology for the Integration of Safety in the Optimization of the Advanced Reactors Design
International Nuclear Information System (INIS)
In this work a new methodology has been developed and implemented for taking into account the safety levels of the reactor in a design optimization process, by using Design Maps.They represent a new technique for comparing critical variables in case an accidental sequenced happened, with limit values set by the design criteria.So a good balance is achieved, without allowing the economic performance search to cause a too risky reactor, and guaranteeing the competitiveness of it in spite of the safety costs.Up to the moment, there is no design tool able to accomplish this task in an integrated way.A computational tool based on this methodology has been implemented.These tool specially programmed routines allow carrying out the mentioned tasks
Optimization of operational water chemistry for supercritical-water cooled reactor
International Nuclear Information System (INIS)
The paper summaries the experimental results obtained within the project 'PRAMEK'. The project is focused on the study of the compatibility of the construction material of fossil-fueled supercritical water cooled power plants and water chemistry, that is currently used and optimization the dosing of the chemical species to the working circuit. The experience from the project enables to evaluate the water chemistry for Supercritical water cooled reactor (SCWR) and the transfer of the operational experience to the operation of the future nuclear power plant. The used materials are candidate for the SCWR and used in the industrial scale in the Ledvice power plant (fossil fuelled) with the supercritical parameters of the medium. It illustrates the future behaviour in the SCWR plant. The influence of the irradiation will be tested in future within the supercritical water loop in the reactor LVR-15. (author)
Directory of Open Access Journals (Sweden)
Michael F. Roberto
2013-12-01
Full Text Available Continuous flow reactors (CFRs are an emerging technology that offer several advantages over traditional batch synthesis methods, including more efficient mixing schemes, rapid heat transfer, and increased user safety. Of particular interest to the specialty chemical and pharmaceutical manufacturing industries is the significantly improved reliability and product reproducibility over time. CFR reproducibility can be attributed to the reactors achieving and maintaining a steady state once all physical and chemical conditions have stabilized. This work describes the implementation of a smart CFR with univariate physical and multivariate chemical monitoring that allows for rapid determination of steady state, requiring less than one minute. Additionally, the use of process analytical technology further enabled a significant reduction in the time and cost associated with offline validation methods. The technology implemented for this study is chemistry and hardware agnostic, making this approach a viable means of optimizing the conditions of any CFR.
An approach using quantum ant colony optimization applied to the problem of nuclear reactors reload
Energy Technology Data Exchange (ETDEWEB)
Silva, Marcio H.; Lima, Alan M.M. de; Schirru, Roberto; Medeiros, J.A.C.C., E-mail: marciohenrique@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b, E-mail: canedo@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoramento de Processos
2009-07-01
The basic concept behind the nuclear reactor fuel reloading problem is to find a configuration of new and used fuel elements, to keep the plant working at full power by the largest possible duration, within the safety restrictions. The main restriction is the power peaking factor, which is the limit value for the preservation of the fuel assembly. The QACO{sub A}lfa algorithm is a modified version of Quantum Ant Colony Optimization (QACO) proposed by Wang et al, which uses a new actualization method and a pseudo evaporation step. We examined the QACO{sub A}lfa behavior associated to physics of reactors code RECNOD when applied to this problem. Although the QACO have been developed for continuous functions, the binary model used in this work allows applying it to discrete problems, such as the mentioned above. (author)
Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report
Energy Technology Data Exchange (ETDEWEB)
Hawari, Ayman [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Ougouag, Abderrafi [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2014-07-08
This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can be easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.
Further optimization studies of experimental dynamic responses measured on the HTGC Dragon reactor
International Nuclear Information System (INIS)
This report considers some measurements made of the dynamics of the HTGC Dragon reactor and the optimization of a mathematical model which represents the reactor, by altering the parameters until a least squares fit between the experimental responses and the mathematical model is obtained. The experimental information was processed in various ways. The experimental response to an impulse, step or periodic sine wave change in reactivity was processed as an impulse, step or periodic sine wave response respectively and compared with a similar response from the model. In other studies the result of a binary cross correlation experiment (effectively an impulse response input) was processed as a frequency response and this experimental frequency response was compared with the frequency response from the mathematical model. It was possible therefore to compare the optimum values of parameters, obtained for different forms of perturbing signal and for different methods of processing and to relate the optima obtained to the problem of parameter estimation. (author)
An approach using quantum ant colony optimization applied to the problem of nuclear reactors reload
International Nuclear Information System (INIS)
The basic concept behind the nuclear reactor fuel reloading problem is to find a configuration of new and used fuel elements, to keep the plant working at full power by the largest possible duration, within the safety restrictions. The main restriction is the power peaking factor, which is the limit value for the preservation of the fuel assembly. The QACOAlfa algorithm is a modified version of Quantum Ant Colony Optimization (QACO) proposed by Wang et al, which uses a new actualization method and a pseudo evaporation step. We examined the QACOAlfa behavior associated to physics of reactors code RECNOD when applied to this problem. Although the QACO have been developed for continuous functions, the binary model used in this work allows applying it to discrete problems, such as the mentioned above. (author)
Directory of Open Access Journals (Sweden)
Yuqing Yang
2015-09-01
Full Text Available With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs is still the main concern for accurate deployment. Thus, a battery energy storage system (BESS has to be involved to mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for BESS operation have been proposed, to assist with consuming the renewable energy, reduce the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. Besides, the electric vehicles (EVs considered as the auxiliary technique are also introduced to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation scheduling strategies were presented under the consideration with the constraints of BESS and the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and an improved particle swarm optimization (IPSO algorithm. Furthermore, the test system for the proposed strategies is a real distribution network with renewable energy integration. After simulation, the proposed scheduling strategies have been verified to be extremely effective for the enhancement of the distribution network characteristics.
Lagrangian Approach to Jet Mixing and Optimization of the Reactor for Production of Carbon Nanotubes
Povitsky, Alex; Salas, Manuel D.
2001-01-01
This study was motivated by an attempt to optimize the High Pressure carbon oxide (HiPco) process for the production of carbon nanotubes from gaseous carbon oxide, The goal is to achieve rapid and uniform heating of catalyst particles by an optimal arrangement of jets. A mixed Eulerian and Lagrangian approach is implemented to track the temperature of catalyst particles along their trajectories as a function of time. The FLUENT CFD software with second-order upwind approximation of convective terms and an algebraic multigrid-based solver is used. The poor performance of the original reactor configuration is explained in terms of features of particle trajectories. The trajectories most exposed to the hot jets appear to be the most problematic for heating because they either bend towards the cold jet interior or rotate upwind of the mixing zone. To reduce undesirable slow and/or oscillatory heating of catalyst particles, a reactor configuration with three central jets is proposed and the optimal location of the central and peripheral nozzles is determined.
A nuclear reactor core fuel reload optimization using artificial ant colony connective networks
Energy Technology Data Exchange (ETDEWEB)
Lima, Alan M.M. de [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: alanmmlima@yahoo.com.br; Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: schirru@lmp.ufrj.br; Carvalho da Silva, Fernando [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: fernando@con.ufrj.br; Medeiros, Jose Antonio Carlos Canedo [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: canedo@lmp.ufrj.br
2008-09-15
The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem.
A Coupled Calculation System for Optimal In-Core Fuel Management in Research Reactors
International Nuclear Information System (INIS)
The paper presents a coupled method to solve the problem of finding an optimal configuration of fuel elements in research reactor cores. Finding the optimal solution always requires a huge amount of calculations by traditional methods. Thus, in performing this work, the investigated way followed to overcome such difficulties, was a judicious combination of the artificial neural network (ANN) technique, together with the well known stochastic method which is simulated annealing (SA). It has been shown that the most distinguishing and attractive feature of such a system is the computational efficiency and an increasing probability in obtaining optimized solutions with reasonable error. Neural network offers a very fast core parameter prediction tool with reasonable accuracy, and the simulated annealing method offers a very effective searching procedure which avoids local minimum. A series of tests have been performed using a modified core configuration of the benchmark 10 MW IAEA low enriched uranium (LEU) research reactor and the result achieved is the optimum configuration of the studied core. (author)
A nuclear reactor core fuel reload optimization using artificial ant colony connective networks
International Nuclear Information System (INIS)
The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem
International Nuclear Information System (INIS)
This work extends the research related to generic algorithms (GA) in core design optimization problems, which basic investigations were presented in previous work. Here we explore the use of the Island Genetic Algorithm (IGA), a coarse-grained parallel GA model, comparing its performance to that obtained by the application of a traditional non-parallel GA. The optimization problem consists on adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. Our IGA implementation runs as a distributed application on a conventional local area network (LAN), avoiding the use of expensive parallel computers or architectures. After exhaustive experiments, taking more than 1500 h in 550 MHz personal computers, we have observed that the IGA provided gains not only in terms of computational time, but also in the optimization outcome. Besides, we have also realized that, for such kind of problem, which fitness evaluation is itself time consuming, the time overhead in the IGA, due to the communication in LANs, is practically imperceptible, leading to the conclusion that the use of expensive parallel computers or architecture can be avoided
International Nuclear Information System (INIS)
Highlights: • Propose an optimize 2-D model for CANDU lattice cell. • Propose a new 3-D simulation model for CANDU reactivity devices. • Implement other acceleration techniques for reactivity device simulations. • Reactivity device incremental cross sections for advanced CANDU fuels with thorium. - Abstract: Several 2D cell and 3D supercell models for reactivity device simulation have been proposed along the years for CANDU-6 reactors to generate 2-group cross section databases for finite core calculations in diffusion. Although these models are appropriate for natural uranium fuel, they are either too approximate or too expensive in terms of computer time to be used for optimization studies of advanced fuel cycles. Here we present a method to optimize the 2D spatial mesh to be used for a collision probability solution of the transport equation for CANDU cells. We also propose a technique to improve the modeling and accelerate the evaluation, in deterministic transport theory, of the incremental cross sections and diffusion coefficients associated with reactivity devices required for reactor calculations
Design optimization of backup seal for sodium cooled fast breeder reactor
International Nuclear Information System (INIS)
Highlights: ► Design arrived from fourteen geometric options by finite element analysis. ► Seal geometry, size, compression, contact pressure, stress and compression load optimized. ► Effects of reduced fluoroelastomer strength at 110 °C, strain rate and stress-softening incorporated. ► Ageing, friction, tolerances, batch-to-batch/production variations in fluoroelastomer considered. ► Procedure applicable to other elastomeric seals of Fast Breeder Reactors. -- Abstract: Design optimization of static, fluoroelastomer backup seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) is depicted. 14 geometric variations of a solid trapezoidal cross-section were studied by finite element analysis (FEA) to arrive at a design with hollowness and double o-ring contours on the sealing face. The seal design with squeeze of 5 mm assures failsafe operation for at least 10 years under a differential pressure of 25 kPa and ageing influences of fluid (air), temperature (110 °C) and γ radiation (23 mGy/h) in reactor. Hybrid elements of 1 mm length, regular integration, Mooney–Rivlin material model and Poisson’s ratio of 0.493 were used in axisymmetric analysis scheme. Possible effects of reduced fluoroelastomer strength at 110 °C, ageing, friction, tolerances in reactor scale, testing conditions during FEA data generation and batch-to-batch/production variations in seal material were considered to ensure adequate safety margin at the end of design life. The safety margin and numerical prediction accuracy could be improved further by using properties of specimens extracted from seal. The approach is applicable to other low pressure, moderate temperature elastomeric sealing applications of PFBR, mostly operating under maximum strain of 50%.
International Nuclear Information System (INIS)
Based on constructal theory, the disc-shaped solid–gas reactors combined heat and mass transfer are investigated in this paper. Radial- and branched-pattern of the discs are considered, and the two pattern discs are optimized based on entropy generation rate minimization. The results show that there exist a minimum value of the entropy generation rate and the corresponding optimal construct of the reactor. The minimum entropy generation rate increases with the increase in the radius of the first order disc; therefore, a proper radius of the first order disc should be adopted according to the practical demand of the reactor. The performance of the reactor can be improved by increasing the material amount of the integrated collector or reducing the number of elemental tributaries and the thermodynamic parameter η. The design pattern of the disc depends on the relationship of the critical radius and disc radius. Moreover, the heat transfer or mass transfer models are special cases of the heat and mass transfer model in this paper. - Highlights: • Heat and mass transfer process for disc-shaped solid–gas reactors is optimized. • Entropy generation rate minimization is taken as optimization objective. • Optimal constructs of the disc-shaped solid-gas reactors are obtained. • There exists a critical radius which determines the design pattern of the disc
International Nuclear Information System (INIS)
Highlights: • An advanced version of firefly algorithm, EDFA, is proposed for the core pattern optimization problem. • The movement of each firefly toward the best firefly with a dynamic probability is the major improvement of EDFA. • LPO results represent the faster convergence and better performance of EDFA in comparison to CFA and DFA. - Abstract: Inspired by fireflies behavior in nature, a firefly algorithm has been developed for solving optimization problems. In this approach, each firefly movement is based on absorption of the other one. For enhancing the performance of firefly algorithm in the optimization process of nuclear reactor loading pattern optimization (LPO), we introduce a new variant of firefly algorithm, i.e. Effective Discrete Firefly Algorithm (EDFA). In EDFA, a new behavior is the movement of fireflies to current global best position with a dynamic probability, i.e. the movement of each firefly can be determined to be toward the brighter or brightest firefly’s position in any iteration of the algorithm. In this paper, our optimization objectives for the LPO are the maximization of Keff along with the minimization of the power peaking factor (PPF). In order to represent the increase of convergence speed of EDFA, basic firefly algorithms including the continuous firefly algorithm (CFA) and the discrete firefly algorithm (DFA) also have been implemented. Loading pattern optimization results of two well-known problems confirm better performance of EDFA in obtaining nearly optimized fuel arrangements in comparison to CFA and DFA. All in all, we can suggest applying the EDFA to other optimization problems of nuclear engineering field in order to investigate its performance in gaining considered objectives
Operational experience and programmes for optimal utilization of the Nigeria Research Reactor-1
International Nuclear Information System (INIS)
The Nigeria Research Reactor-1 (NIRR-1) is the nation's first nuclear reactor and it is sited at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. It is a Miniature Neutron Source Reactor (MNSR) that attained criticality on February 03, 2004 and was licensed to operate at a maximum power of 31 kW three days a week in June 01, 2004. This presentation enumerates the measures put in place to ensure safe operation and adequate maintenance regime as well as the strategic plans for optimal utilization of the reactor. Some of these measures, which bothers on safe operation and sustainable maintenance culture that have been implemented include: strict adherence to the periodic preventive maintenance routines; standard procedures for pre-startup, startup and shut down procedures; provision of a quick access to reactor top to facilitate rapid response in case of emergency, especially in the case of rod-stuck incident. Similarly, on the basis of experience gained since the commissioning vis-a-vis the neutron flux spectrum characteristics of the MNSRs, experimental protocols are presented for the analysis of elements producing short-lived, medium-lived and long-lived activation products in geologic materials with negligible nuclear interferences especially for the analysis of Al in the presence of Si. Furthermore, research and development activities in core physics analysis and thermal hydraulics with regards to conversion from the current HEU core to a LEU core under the aegis of the IAEA Coordinated Research Project entitled 'Conversion of MNSR to LEU' are outlined. (author)
Operational experience and programmes for optimal utilization of the Nigeria Research Reactor-1
International Nuclear Information System (INIS)
The Nigeria Research Reactor-1 (NIRR-1) is the nation's first nuclear reactor and it is sited at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. It is a Miniature Neutron Source Reactor (MNSR) that attained criticality on February 03, 2004 and was licensed to operate at a maximum power of 31 kW three days a week in June 01, 2004. This presentation enumerates the measures put in place to ensure safe operation and adequate maintenance regime as well as the strategic plans for optimal utilization of the reactor. Some of these measures, which bothers on safe operation and sustainable maintenance culture that have been implemented include: strict adherence to the periodic preventive maintenance routines; standard procedures for pre-startup, startup and shut down procedures; provision of a quick access to reactor top to facilitate rapid response in case of emergency, especially in the case of rod-stuck incident. Similarly, on the basis of experience gained since the commissioning vis-a-vis the neutron flux spectrum characteristics of the MNSRs, experimental protocols are presented for the analysis of elements producing short-lived, medium-lived and long-lived activation products in geologic materials with negligible nuclear interferences especially for the analysis of Mg and Al in the presence of Al and Si respectively. Furthermore, research and development activities in core physics analysis and thermal hydraulics with regards to conversion from the current HEU core to a LEU core under the aegis of the IAEA Coordinated Research Project entitled 'Conversion of MNSR to LEU' are outlined. (author)
Optimal Protection of Reactor Hall Under Nuclear Fuel Container Drop Using Simulation Methods
Directory of Open Access Journals (Sweden)
Králik Juraj
2014-12-01
Full Text Available This paper presents of the optimal design of the damping devices cover of reactor hall under impact of nuclear fuel container drop of type TK C30. The finite element idealization of nuclear power plant structure is used in software ANSYS. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall in comparison with the experimental results. The probabilistic and sensitivity analysis of the damping devices was considered on the base of the simulation methods in program AntHill using the Monte Carlo method.
Optimization of the distribution of bars with gadolinium oxide in reactor fuel elements PWR
International Nuclear Information System (INIS)
In the schemes of low leakage, currently used in the majority of PWR reactors, it makes use of absorbent consumables for the effective control of the factors of peak, the critical concentration of initial boron and the moderator temperature coefficient. One of the most used absorbing is the oxide of gadolinium, which is integrated within the fuel pickup. Occurs a process of optimization of fuel elements with oxide of gadolinium, which allows for a smaller number of configurations with a low peak factor for bar. (Author)
Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor
International Nuclear Information System (INIS)
reactors, can also be applied to a commercial size reactor. The fuel temperatures of this design remain below the limits, both during nominal operation as well as during anticipated Depressurized Loss Of Forced Coolant (DLOFC) transients. However, it is shown that the fuel temperature during a DLOFC incident will reach the 1600 degrees C limit in a small part of the core after 22 hours without active intervention. Therefore, a further increase of the reactor power to raise the helium outlet temperature is unattractive. A one dimensional visco-elastic stress analysis code (PASTA) has been developed for analysis of mechanical stresses in the coatings of the particle fuel during irradiation. An analysis of the coating stresses in the PBMR design shows that there is sufficient room for an increase in operating temperature with regard to the SiC coating layer stress during nominal operation. An analysis of a VHTR design with increased helium outlet temperature shows that up to an outlet temperature of 1075 degrees C the SiC layer remains in compression during the entire lifetime of the coated particle. It was found that the graphite matrix in which the particles are embedded provides additional compressive stress to the SiC layer and delays the time point at which the compressive stress in this layers turns to tensile. This is beneficial for this main load barer of the particle, which is only expected to fail under high tensile stress. The total number of times that a certain pebble is (re)introduced in the core can be increased to flatten the axial power and the fuel temperature profile. The effect has been analyzed by linking the DALTON-THERMIX code system with fuel depletion analysis calculations using SCALE. For nominal operation a total of six pebble passes is optimal since the peak in the axial power profile in the top region of the core matches the cool helium temperatures in this region. For a DLOFC case, in which the maximum fuel temperature is determined largely by
International Nuclear Information System (INIS)
Highlights: • Point to area flow optimization problem is solved for coupled heat and mass transfer. • Optimal solid/gas reactor geometry is found by minimizing the exergy destruction. • New defined properties permit easy pre-designing. • The method is applied to industrial high temperature thermal storage. - Abstract: High temperature heat storage is one of the key points for the development of solar power plants. Using reversible solid–gas chemical reactions is a promising solution to achieve high energy density and to reduce the storage volume. In order to achieve the high energy density, heat and mass transfer networks have to be optimized. In fact, such a reactive material presents antagonist behaviors for heat conductivity and gas permeability: increasing the reactive material density (i.e. the energy density) increases heat conductivity, but dramatically decreases permeability. An optimum has to be found. A method, combining constructal approach and exergy analysis is presented in this paper and applied to a solid/gas reactor, exchanging heat and matter (gas) with its surrounding. The gas is produced by the conversion of a solid S1 in a solid S2, implying a reaction heat. The method consists in evaluating the global entropy production of an elemental volume and minimizing it under two constraints: a given power density (kW/m3) and a given volume (i.e. given storage capacity), using Lagrange multipliers method. Then, a construction is done. The optimal shape and the number of elemental volumes constituting the reactor are searched. Taking into account heat and mass transfers, two networks emerge from the optimal construction: a heat conductive material network and a gas diffusers networks. The size of the conductive ‘fins’ and gas diffusers only depends on the properties of the reactive material (heat conductivity, permeability), the reactive gas (viscosity, pressure) and the heat of reaction. One important result is that global exergy
Optimization of a radially cooled pebble bed reactor - HTR2008-58117
International Nuclear Information System (INIS)
By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained. The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal. The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as I cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling. Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop (Δp = -2.6 bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (ΔT = -50 deg. C) can be achieved
Nzisabira, Jonathan; Louvigny, Yannick; Duysinx, Pierre
2008-01-01
The acceptance of Electric and Hybrid Electric Vehicle is related to their eco-efficiency, i.e. their ability to both reduce environmental impact while also providing a sufficient user satisfaction. The objective of this study is to provide a rationale design tool based on a multidisciplinary optimization approach to support the design of hybrid electric powertrain to simultaneously maximize user satisfaction complex criteria and minimize the Eco-score. In order to carry out the optimization ...
Development of methodology to optimize management of failed fuels in light water reactors
International Nuclear Information System (INIS)
Fuel cladding is one of the key components in a fission reactor that confines radioactive materials inside a fuel tube. During reactor operation, however, cladding is sometimes breached, and radioactive materials leak from the fuel pellet into the coolant water through the breach. The primary coolant water is therefore monitored so that any leak is quickly detected; coolant water is periodically sampled, and the concentration of radioactive iodine 131 (I-131), for example, is measured. Depending on the measured leakage concentration, the faulty fuel assembly with leaking rod is removed from the reactor and replaced immediately or at the next refueling. In the present study, an effort has been made to develop a methodology to optimize the management for replacement of faulty fuel assemblies due to cladding failures using measured leakage concentration. A model numerical equation is proposed to describe the time evolution of an increase in I-131 concentration due to cladding failures and is then solved using the Monte Carlo method as a function of sampling rate. Our results indicate that, to achieve rationalized management of failed fuels, higher resolution to detect a small amount of I-131 is not necessarily required, but more frequent sampling is favorable. (author)
International Nuclear Information System (INIS)
The neutron transport code, Monte Carlo N-Particle (MCNP) which was wellkown as the gold standard in predicting nuclear reaction was used to model the small nuclear reactor core called U-batteryTM, which was develop by the University of Manchester and Delft Institute of Technology. The paper introduces on the concept of modeling the small reactor core, a high temperature reactor (HTR) type with small coated TRISO fuel particle in graphite matrix using the MCNPv4C software. The criticality of the core were calculated using the software and analysed by changing key parameters such coolant type, fuel type and enrichment levels, cladding materials, and control rod type. The criticality results from the simulation were validated using the SCALE 5.1 software by [1] M Ding and J L Kloosterman, 2010. The data produced from these analyses would be used as part of the process of proposing initial core layout and a provisional list of materials for newly design reactor core. In the future, the criticality study would be continued with different core configurations and geometries.
Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu
2016-04-01
Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.
Directory of Open Access Journals (Sweden)
Lucas Evangelista Sita
2015-05-01
Full Text Available A chemical process has been applied to extract LiCoO2 powder from cathodes of spent lithium-ion batteries by dissolution of the binder that agglutinate the powder particle each other as well to the Al collector surface. As solvents dimethylformamide (DMF and N-methyilpirrolidone (NMP were employed and the variables, cathode area, solution temperature, ultrasound bath power and solution stirring were chosen to optimize the extraction process. NMP solutions presented best results for powder extraction than DMF solutions. At 100 oC and under mechanical stirring or low power ultrasound bath NMP solution optimizes the binder dissolution. Powder extractions under DMF solutions are slow and an increase in the powder extraction efficiency was observed for crushed cathodes on solutions under ultrasound bath, at medium power. Filtration processes can separate the decanted LiCoO2 powder extracted upon DMF dissolution while the powder in suspension in the NMP solutions is separated by centrifugation techniques.
Safety-Related Optimization and Analyses of an Innovative Fast Reactor Concept
Directory of Open Access Journals (Sweden)
Dalin Zhang
2012-06-01
Full Text Available Since a fast reactor core with uranium-plutonium fuel is not in its most reactive configuration under operating conditions, redistribution of the core materials (fuel, steel, sodium during a core disruptive accident (CDA may lead to recriticalities and as a consequence to severe nuclear power excursions. The prevention, or at least the mitigation, of core disruption is therefore of the utmost importance. In the current paper, we analyze an innovative fast reactor concept developed within the CP-ESFR European project, focusing on the phenomena affecting the initiation and the transition phases of an unprotected loss of flow (ULOF accident. Key phenomena for the initiation phase are coolant boiling onset and further voiding of the core that lead to a reactivity increase in the case of a positive void reactivity effect. Therefore, the first level of optimization involves the reduction, by design, of the positive void effect in order to avoid entering a severe accident. If the core disruption cannot be avoided, the accident enters into the transition phase, characterized by the progression of core melting and recriticalities due to fuel compaction. Dedicated features that enhance and guarantee a sufficient and timely fuel discharge are considered for the optimization of this phase.
Nuclear analysis and optimization of the molten-salt fusion hybrid reactor
International Nuclear Information System (INIS)
An improved method of studying the neutronic characteristics of fusion hybrid reactor blankets has been developed. Two major improvements over previous analysis methods have been accomplished. The first of these improvements is the introduction of one-dimensional, homogenized-region blanket neutronic models in which resonance and spatial self-shielding effects are treated explicitly. The second improvement involves the application of an iterative gradient-ascent based optimization scheme. In this method, key blanket dimensions and concentrations are automatically varied in a search for a configuration which maximizes neutronic performance. The specific fusion hybrid blanket design to which these new methods of analysis are applied in an evolution of the U-233 producing molten-salt-in-tubes concept studied by Lawrence Livermore National Laboratory (LLNL). Optimistic analysis techniques initially predicted the fissile fuel production capacity of this blanket to be 6400 kg of U-233 per year when driven by a 3000 MW tandem mirror fusion driver. The improved and more realistic analysis techniques employed in this study predict that an optimized molten-salt blanket design will produce over 6700 kg of U-233 per year when driven by the same tandem mirror device. Finally, the techniques and data base developed in this study have been designed to be easily extended to the task of performing future, more extensive analysis. Such an analysis might involve the minimization of fuel costs in an entire fusion hybrid reactor complex. 20 refs., 10 figs., 14 tabs
Energy Technology Data Exchange (ETDEWEB)
Herb, Frieder; Jossen, Andreas [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Ulm (Germany); Frank, Achim [Voith Siemens Hydro Power Generation, Heidenheim (Germany); Nitsche, Christof [Mercedes-Benz Technology GmbH, Filderstadt (Germany)
2009-07-01
This article investigates the influence of different hybrid control strategies for Fuel-Cell-Hybrid cars with regard to the lifetime of fuel cell and battery, as well as hydrogen consumption in different driving cycles. The hybrid control strategies are mainly focusing on the power split between fuel cell and battery. The investigation was done using a vehicle simulation model with vehicle data from the Advisor model. New defined performance parameters reflect lifetime of fuel cell and battery and are shown in a net diagram. Additionally, the influence of lifetime and hybrid control strategy was investigated by an artificial neural network created with real driving data of a fuel cell car. The connection between performance parameters and controlling parameters is discussed. (orig.)
International Nuclear Information System (INIS)
This paper presents a study on optimization of a fixed bed tri-reformer reactor (TR). This reactor has been used instead of conventional steam reformer (CSR) and auto thermal reformer (CAR). A theoretical investigation has been performed in order to evaluate the optimal operating conditions and enhancement of methane conversion, hydrogen production and desired H2/CO ratio as a synthesis gas for methanol production. A mathematical heterogeneous model has been used to simulate the reactor. The process performance under steady state conditions was analyzed with respect to key operational parameters (inlet temperature, O2/CH4, CO2/CH4 and steam/CH4 ratios). The influence of these parameters on gas temperature, methane conversion, hydrogen production and H2/CO ratio was investigated. Model validation was carried out by comparison of the reforming model results with industrial data of CSR. Differential evolution (DE) method was applied as a powerful method for optimization. Optimum feed temperature and reactant ratios (CH4/CO2/H2O/O2) are 1100 K and 1/1.3/2.46/0.47 respectively. The optimized TR has enhanced methane conversion by 3.8% relative to industrial reformers in a single reactor. Methane conversion, hydrogen yield and H2/CO ratio in optimized TR are 97.9%, 1.84 and 1.7 respectively. The optimization results of tri-reformer were compared with the corresponding predictions from process simulation software operated at the same feed conditions.
International Nuclear Information System (INIS)
Highlights: • An optimized process for tritium-containing waste water collection of High-Temperature Gas-cooled Reactor was developed. • The optimized process and verification experiment using the HTR-10 were presented in detail. • A large quantity of high-dose tritium-containing waste water was successfully collected in commissioning experiment of the improved HTR-10. • The optimized process was proved to be reliable to avoid the large emission of radioactive waste water to the environment. - Abstract: An optimized process for tritium-containing waste water collection of High-Temperature Gas-cooled Reactor (HTGR) was developed and experimentally verified using the 10 MW High-Temperature Gas-cooled Reactor-test module (HTR-10). Compared with the previous process, an auxiliary molecular sieve bed was added in helium purification regeneration system and new operation process was proposed to collect tritium-containing waste water. In this paper, the optimized process and verification experiment were presented in detail. In commissioning experiment of the improved HTR-10, a large quantity of high-dose tritium-containing waste water was successfully collected in the water separator of helium purification regeneration system, with the specific activity being 6.1 × 109 Bq/L. The verification experiment confirms that the optimized process is effective and reliable for the demonstration plant design of High Temperature Gas-cooled Reactor-Pebble bed module (HTR-PM) to avoid the large emission of detrimentally radioactive waste water to the environment
Directory of Open Access Journals (Sweden)
Sheng S. Zhang
2012-12-01
Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.
Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box–Behnken design
International Nuclear Information System (INIS)
Highlights: ► High amount of uranium recovery achieved using Acidithiobacillus ferrooxidans. ► ANOVA shows individual variables and their squares are statistically significant. ► The model can accurately predict the behavior of uranium recovery. ► The model shows that pulp density has the greatest effect on uranium recovery. - Abstract: To design industrial reactors, it is important to identify and optimize the effective parameters of the process. Therefore, in this study, a three-level Box–Behnken factorial design was employed combining with a response surface methodology to optimize pulp density, agitation speed and aeration rate in uranium bioleaching in a stirred tank reactor using a pure native culture of Acidithiobacillus ferrooxidans. A mathematical model was then developed by applying the least squares method using the software Minitab Version 16.1.0. The second order model represents the uranium recovery as a function of pulp density, agitation speed and aeration rate. An analysis of variance was carried out to investigate the effects of individual variables and their combined interactive effects on uranium recovery. The results showed that the linear and quadratic terms of variables were statistically significant whilst the interaction terms were statistically insignificant. The model estimated that a maximum uranium extraction (99.99%) could be obtained when the pulp density, agitation speed and aeration rate were set at optimized values of 5.8% w/v, 510 rpm and 250 l/h, respectively. A confirmatory test at the optimum conditions resulted in a uranium recovery of 95%, indicating a marginal error of 4.99%. Furthermore, control tests were performed to demonstrate the effect of A. ferrooxidans in uranium bioleaching process and showed that the addition of this microorganism greatly increases the uranium recovery
International Nuclear Information System (INIS)
Highlights: ► We propose a mathematical model for optimal sizing of small wind energy systems. ► No other previous work has considered all the aspects included in this paper. ► The model considers several parameters about batteries. ► Wind speed variability is considered by means of ARMA model. ► The results show how to minimize the expected energy that is not supplied. - Abstract: In this paper, a mathematical model for stochastic simulation and optimization of small wind energy systems is presented. This model is able to consider the operation of the charge controller, the coulombic efficiency during charge and discharge processes, the influence of temperature on the battery bank capacity, the wind speed variability, and load uncertainty. The joint effect of charge controller operation, ambient temperature, and coulombic efficiency is analyzed in a system installed in Zaragoza (Spain), concluding that if the analysis without considering these factors is carried out, the reliability level of the physical system could be lower than expected, and an increment of 25% in the battery bank capacity would be required to reach a reliability level of 90% in the analyzed case. Also, the effect of the wind speed variability and load uncertainty in the system reliability is analyzed. Finally, the uncertainty in the battery bank lifetime and its effect on the net present cost are discussed. The results showed that, considering uncertainty of 17.5% in the battery bank lifetime calculated using the Ah throughput model, about 12% of uncertainty in the net present cost is expected. The model presented in this research could be a useful stochastic simulation and optimization tool that allows the consideration of important uncertainty factors in techno-economic analysis.
International Nuclear Information System (INIS)
This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.
Energy Technology Data Exchange (ETDEWEB)
Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)
2014-12-15
This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.
International Nuclear Information System (INIS)
The process steps fiber graphite production with tarpitch as raw material are mesophase forming from tar pitch, fiber forming, carbon fiber forming and graphitization of fiber. The mesophase forming at 400 - 550°C so fixed carbon on the mesophase was getting 99.15 % from 98.9 % as fixed carbon on tar pitch. The first step of optimation is identification of graphite fiber capacity production with mesophase reactor capacity. The selection some mesophase reactor capacity, which is optimal, based on value change study of heating utility technical coefficient. The heating utility technical coefficient are Uc (overall heat transfer coefficient of clean condition), Ud (overall heat transfer coefficient of design) and Ar area of heat transfer in the mesophase reactor ). The result of calculation, more higher mesophase reactor capacity so the Uc is bigger but it is not for Ud dan Ar. The Ud dan Ar are effluence with the design condition. Based on the dynamic analysis for selected reactor 132,68 Ib/batch, 199 Ib/batch, 265 Ib/batch and 397,98 Ib/batch. The optimal capacity of mesophase reactor is 265 Ib/batch, it means plant capacity graphite fiber 100 ton/year. The dynamic analysis based on mass balance mathematical model and heat balance mathematical model. The numerical solution use matlab program. (author)
Nzisabira, Jonathan; Louvigny, Yannick; Duysinx, Pierre
2009-01-01
The main objective of vehicle powertrain hybridization is to improve the fuel consumption and environment pollutants impact (Eco-score) without decreasing the vehicle performances and other user satisfaction criteria. The Eco efficiency is a global index which accounts for both environmental impacts and user satisfaction. The Hybrid vehicles ability to overcome these two requirements depends on the optimal choice of their key mechanical, electric or hydraulic components. Some energy storage ...
International Nuclear Information System (INIS)
A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 ± 0.2% and 75.88 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 ± 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 ± 1%) and composted soil-II (moisture 45 ± 1%) it was 96.03 ± 0.23% and 94.84 ± 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of
Directory of Open Access Journals (Sweden)
Dongbin Lu
2014-01-01
Full Text Available The permanent magnet synchronous motor (PMSM has high efficiency and high torque density. Field oriented control (FOC is usually used in the motor to achieve maximum efficiency control. In the electric vehicle (EV application, the PMSM efficiency model, combined with the EV and road load system model, is used to study the optimal energy-saving control strategy, which is significant for the economic operation of EVs. With the help of GPS, IMU, and other information technologies, the road conditions can be measured in advance. Based on this information, the optimal velocity of the EV driven by PMSM can be obtained through the analytical algorithm according to the efficiency model of PMSM and the vehicle dynamic model in simple road conditions. In complex road conditions, considering the dynamic characteristics, the economic operating velocity trajectory of the EV can be obtained through the dynamic programming (DP algorithm. Simulation and experimental results show that the minimum energy consumption and global energy optimization can be achieved when the EV operates in the economic operation area.
International Nuclear Information System (INIS)
Highlights: • Original cycling conditions combining cut-off potential and involved capacity • Influence of capacity limitation is investigated for lithiation and delithiation • Importance of a reduced delithiation cut-off voltage is demonstrated • At C/5 rate, 1800 cycles are reached without electrode or electrolyte optimization • A 1 C rate, 2000 cycles are reached with electrolyte containing VC additive - Abstract: The cycling conditions of silicon nanowires anode are investigated and a set of conditions is proposed in order to improve the cycle life of these electrodes, without any structure or surface optimization. Limitation of lithiation or delithiation to an intermediate value of 900 mAh g−1 allows to perform up to 1850 cycles at C/5 rate, which represents a significant increase of the electrode cycle life compared to that observed for standard cycling. This behavior is still attractive at higher current rate. At 1 C rate, it is proved that combining the lithiation-limited cycling with an upper cut-off voltage of 0.8 V improves the capacity retention by a factor 2. When using these optimized conditions, combined with a simple adding of fluoroethylene carbonate or vinylene carbonate in the electrolyte, a compact solid electrolyte interphase is formed upon cycling and an exceptional capacity retention is observed, reaching respectively 1500 and more than 2000 cycles
Optimization of partial nitritation in a continuous flow internal loop airlift reactor.
Jin, Ren-Cun; Xing, Bao-Shan; Ni, Wei-Min
2013-11-01
In the present study, the performance of the partial nitritation (PN) process in a continuous flow internal loop airlift reactor was optimized by applying the response surface method (RSM). The purpose of this work was to find the optimal combination of influent ammonium (NH4(+)-Ninf), dissolved oxygen (DO) and the alkalinity/ammonium ratio (Alk/NH4(+)-N) with respect to the effluent nitrite to ammonium molar ratio and nitrite accumulation ratio. Based on the RSM results, the reduced cubic model and the quadratic model developed for the responses indicated that the optimal conditions were a DO content of 1.1-2.1 mg L(-1), an Alk/NH4(+)-N ratio of 3.30-5.69 and an NH4(+)-Ninf content of 608-1039 mg L(-1). The results of confirmation trials were close to the predictions of the developed models. Furthermore, three types of alkali were comparatively explored for use in the PN process, and bicarbonate was found to be the best alkalinity source. PMID:24012847
A multi-level parallel computation of reactor cores using GPU for loading pattern optimization
International Nuclear Information System (INIS)
Efficient and rapid computation of multiple loading patterns using GPU is studied aiming application to loading pattern optimization of LWR. The loading pattern has significant impacts on safety and economy of a reactor. However, design of loading pattern is a combinatorial optimization problem, thus it is computationally intensive task. In order to address this issue, efficient and rapid computation method of loading patterns using massively parallel computing capability of GPU is studied in the present paper. Though GPU has higher computational performance than CPU, but different computational algorithm and coding approach are necessary to maximize the performance of GPU, due to different architecture of GPU. In the present study, a multi-level parallel computing approach is examined considering hardware architecture of GPU, i.e., parallel computing is carried out not only in spatial mesh-wise, but also in loading pattern-wise. In other words, multiple loading patterns are simultaneously computed and domain (mesh-wise) decomposition is applied to each loading pattern. With the present approach, computational efficiency using GPU is approximately four times higher than that of CPU. The present core analysis algorithm can be used for screening of poor loading patterns in optimization process. (author)
Fuel management optimization for the WWR-M research reactor in Kiev
International Nuclear Information System (INIS)
Core loading patterns, number and types of fuel assemblies in the core as well as discharged fuel burnup are determined for the WWR-M research reactor in Kiev by the optimization procedure providing high neutron flux under the safety and fuel constraints. For neutronics calculation, the iterational hybrid method combining diffusion model with higher approximations of neutron transport equation is applied. The results of calculation are shown to be consistent with the results of measurement. To determine the best placement of fuel assemblies in the core, successive mixed-integer linear programming and backward diffusion calculation is used. An example of maximization of thermal neutron flux in large channels in the core is demonstrated. (author)
Optimizing the determination of the neutrino mixing angle θ13 from reactor data
Khan, Amir N.; McKay, Douglas W.; Ralston, John P.
2014-07-01
The technical breakthroughs of multiple detectors developed by Daya Bay and RENO collaborations have gotten great attention. Yet the optimal determination of neutrino mixing parameters from reactor data depends on the statistical method and demands equal attention. We find that a straightforward method using minimal parameters will generally outperform a multi-parameter method by delivering more reliable values with sharper resolution. We review standard confidence levels and statistical penalties for models using extra parameters, and apply those rules to our analysis. We find that the methods used in recent work of the Daya Bay and RENO collaborations have several undesirable properties. The existing work also uses nonstandard measures of significance which we are unable to explain. A central element of the current methods consists of variationally fitting many more parameters than data points. As a result, the experimental resolution of sin2(2θ13) is degraded. The results also become extremely sensitive to certain model parameters that can be adjusted arbitrarily. The number of parameters to include in evaluating significance is an important issue that has generally been overlooked. The measures of significance applied previously would be consistent if and only if all parameters but one were considered to have no physical relevance for the experiment's hypothesis test. Simpler, more transparent methods can improve the determination of the mixing angle θ13 from reactor data, and exploit the advantages from superb hardware technique of the experiments. We anticipate that future experimental analysis will fully exploit those advantages.
Optimization of reactor coolant shutdown chemistry practices for crud inventory management
International Nuclear Information System (INIS)
This report describes reactor coolant shutdown chemistry control practices at Comanche Peak Steam Electric Station (CPSES, TXU-Generation, USA). The shutdown evolution is managed from a process control perspective to achieve conditions most favorable to crud decomposition and to avoiding re-precipitation of metals. The report discusses the evolution of current industry practices and the necessity for greater emphasis on shutdown chemistry control in response to Axial Offset Anomaly and growth of ex-core radiation fields during outage conditions. Nuclear Industry experience with axial offset anomaly (AOA), radiation field growth and unexpected behavior of crud during reactor shutdowns has encouraged the refinement of chemistry control practices during plant shutdown and startup. The strong implication of nickel rich crud as a cause of AOA and unexpected crud behavior has resulted in a focus on nickel inventory management. The goals for Comanche Peak Steam Electric Station (CPSES) include maintaining solubility of metals and radioisotopes, maximizing nickel removal and effective cleanup with demineralizers. This paper provides results and lessons learned from long term efforts to optimize the shutdown process. (authors)
International Nuclear Information System (INIS)
Accelerator Driven subcritical System (ADS) is recognized as an efficient nuclear waste transmutation device. Supported by the Strategic Priority Research Program of 'the Future Advanced Nuclear Fission Energy-ADS transmutation system', the China LEAd-based Research Reactor (CLEAR-I) is proposed. Along with the approaching of the CLEAR-I design, the radiation shielding for CLEAR-I is updated and optimized step by step to meet with new shielding requirements. Employing the modeling program MCAM and calculation system VisualBUS developed by FDS Team, the shielding capability was verified using Monte Carlo method. As shown from the results, the fast neutron flux for components in reactor vessel is under the limitation and the neutron radiation for mechanism in containing room has been as low as possible. After shutdown for 7 days, the dose rate in most area of containing room is lower than 100 μSv/hr, allowing hands on operation. Replacement of components such as the spallation target in containing room is possible. (author)
International Nuclear Information System (INIS)
Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kWe and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source
Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor
Energy Technology Data Exchange (ETDEWEB)
Betzler, Benjamin R [ORNL; Ade, Brian J [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Sunny, Eva E [ORNL
2015-01-01
Monte Carlo based depletion tools used for the high-fidelity modeling and simulation of the High Flux Isotope Reactor (HFIR) come at a great computational cost; finding sufficient approximations is necessary to make the use of these tools feasible. The optimization of the neutronics and depletion model for the HFIR is based on two factors: (i) the explicit representation of the involute fuel plates with sets of polyhedra and (ii) the treatment of depletion mixtures and control element position during depletion calculations. A very fine representation (i.e., more polyhedra in the involute plate approximation) does not significantly improve simulation accuracy. The recommended representation closely represents the physical plates and ensures sufficient fidelity in regions with high flux gradients. Including the fissile targets in the central flux trap of the reactor as depletion mixtures has the greatest effect on the calculated cycle length, while localized effects (e.g., the burnup of specific isotopes or the power distribution evolution over the cycle) are more noticeable consequences of including a critical control element search or depleting burnable absorbers outside the fuel region.
Fuel Management Optimization of Pebble-Bed Reactors Using Particle Swarm Algorithm
International Nuclear Information System (INIS)
A procedure for the optimization of pebble bed reactors fuel management, utilizing PSO algorithm has been developed. This procedure has been used for optimizing the natural uranium utilization of a large 3000MWth core, operating with an OTTO fuel management scheme. Low enriched uranium and thorium fuel cycles have been investigated. Thorium was assumed to be loaded in the form of mixed Th-U oxide fuel and also in separate Th pebbles. The optimization results indicate that thorium introduction does not improve natural uranium utilization when constraining uranium enrichment to non-proliferation level of 20%, however it does decrease Pu production by 50% compared to the low enriched uranium cycle. Only 3% improvement in natural uranium utilization is gained with mixed oxide of highly enriched uranium and thorium fuel. In this case, Pu production is reduced by 95%. When introducing Th to the fuel, higher uranium enrichments are required, up to the 20% when constrained by the proliferation limit or more than 70% when unconstrained. This enriched uranium demand increases natural uranium requirements for the enrichment process, which is compensated by reduced overall core uranium loading. Optimized Th introduction also results in longer fuel residence time at to core, for the efficient buildup of U233. Th introduction also effects moderation ratio, from high value of 550 for LEU case, it reduces down to 497 and 461for the proliferation constrained Th-MOX and SEP cases and down to 297 for the unconstrained Th- MOX case respectively. Th-MOX and SEP cases may have lower fuel costs by up to 17%. Fuel management with fuel loading in two zones has only slightly improved performance since in this large core, the radial flux distribution is already relatively uniform. MEDUL fuel cycle axial distribution resembles the cosine shape with reduced power density and hence maximum fuel temperatures
A coupled calculational system for optimal in-core fuel management in research reactors
International Nuclear Information System (INIS)
In-core fuel management is one of the frequently complex task faced during a useful life of a nuclear reactor, because of the huge number of possible patterns (configurations) existing for a particular fuel set and its associated decision which should be taken about the potential good pattern satisfying established safety constraints. Thus, a sensible way to handle safely such kind of problem one have to provide an automatic procedure to generate appropriate reload pattern in nuclear reactor core. In the present work, the investigated way followed to solve this problem, was the combination use of the well known stochastic method which is Simulated Annealing (SA), together with Artificial Neural Network (ANN) technique. The strategy, which is inspired from Kim's paper, was proposed to solve adequately this problem. It requires two calculational stages involved by the use of coupled method connected to each other. In the first stage, an adaptive back-propagation network (BPN), is used to predicts safety core parameters Pmax and Keff. The BPN receives the allowed configurations from a previous calculation using heuristics rules and thereafter predicts Pmax and Keff very quickly. The Simulated Annealing method, in a second stage, determines whether a current candidate is better than the reference one based on the predicted results and consequently on value of the objective function stated. The most distinguishing and attractive feature of such system is the computational efficiency in obtaining optimized loading patterns with adequate fidelity. Neural network offers very fast prediction of core parameters with reasonable accuracy, and simulated annealing method offers very effective searching procedure which avoid local minimum. An objective function was developed based on two performance parameters: cycle length which can be determined through the evaluation of the effective multiplication factor Keff and power peaking factor Pmax. The system uses optimization of
Implementation of risk management in Korean next generation reactor design and optimization process
International Nuclear Information System (INIS)
The Korean Next Generation Reactor (KNGR), as a part of the national long-term R and D program launched in 1992, is being developed to meet the electricity demands in the coming years. The KNGR project has successfully finished its second phase and initiated the third phase in 1999. At the beginning of phase III of the KNGR design development project, the design alternatives were studied and the design requirements from the conceptual and basic design were also reviewed to reinforce the economic competitiveness while maintaining the safety goals. Implementation of comprehensive risk management is an executive management decision and performing design specific Probabilistic Safety Assessment (PSA) is an integral part of risk management program. In KNGR design and optimization process, PSA method was used extensively for this purpose. This paper exemplifies the use of PSA in the decision making process and summarizes the effort for design optimization focusing on the integration of safety, operations and cost goals for the development of KNGR
International Nuclear Information System (INIS)
Highlights: • The temperature feedback coefficient with different moderation ratios for TMSR in thermal neutron region is optimized. • The breeding ratio and doubling time of a thermal TMSR with three different reprocessing schemes are analyzed. • The smaller hexagon size and larger salt fraction with more negative feedback coefficient can better satisfy the safety demands. • A shorter reprocessing time can achieve a better breeding ratio in a thermal TMSR. • The graphite moderator lifespan is compared with other MSRs and discussed. - Abstract: Molten salt reactor (MSR) has fascinating features: inherent safety, no fuel fabrication, online fuel reprocessing, etc. However, the graphite moderated MSR may present positive feedback coefficient which has severe implications for the transient behavior during operation. In this paper, the feedback coefficient and the breeding ratio are optimized based on the fuel-to-graphite ratio variation for a thorium based MSR (TMSR). A certain thermal core with negative feedback coefficient and relative high initial breeding ratio is chosen for the reprocessing scheme analysis. The breeding performances for the TMSR under different online fuel reprocessing efficiencies and frequencies are evaluated and compared with other MSR concepts. The results indicate that the thermal TMSR can get a breeding ratio greater than 1.0 with appropriate reprocessing scheme. The low fissile inventory in thermal TMSR leads to a short doubling time and low transuranic (TRU) inventory. The lifetime of graphite used for the TMSR is also discussed
AXIAL: a system for boiling water reactor fuel assembly axial optimization using genetic algorithms
International Nuclear Information System (INIS)
A system named AXIAL is developed based on the genetic algorithms (GA) optimization method, using the 3D steady state simulator code Core-Master-PRESTO (CM-PRESTO) to evaluate the objective function. The feasibility of this methodology is investigated for a typical boiling water reactor (BWR) fuel assembly (FA). The axial location of different fuel compositions is found in order to minimize the FA mean enrichment needed to obtain the cycle length under the safety constraints. Thermal limits are evaluated at the end of cycle using the Haling calculation; the hot excess reactivity and the shutdown margin at the beginning of cycle are also evaluated. The implemented objective function is very flexible and complete, incorporating all the thermal and reactivity limits imposed during fuel design analysis; furthermore, additional constraints can be easily introduced in order to obtain an improved solution. The results show a small improvement in the FA average enrichment obtained with the system related to the reference case that has been studied. The results show that the system converge to an optimal solution, it is observed that the mean fuel enrichment decreases while all the constraints are satisfied. A comparison was also performed using one-point and two-points crossover operator and the results of a sensitivity study for different mutation percentage are also showed
International Nuclear Information System (INIS)
Optimization techniques are used to calculate measurement uncertainties for materials accountability instruments in a fast breeder reactor spent-fuel reprocessing plant. Optimal measurement uncertainties are calculated so that performance goals for detecting materials loss are achieved while minimizing the total instrument development cost. Improved materials accounting in the chemical separations process (111 kg Pu/day) to meet 8-kg plutonium abrupt (1 day) and 40-kg plutonium protracted (6 months) loss-detection goals requires: process tank volume and concentration measurements having precisions less than or equal to 1%; accountability and plutonium sample tank volume measurements having precisions less than or equal to 0.3%, short-term correlated errors less than or equal to 0.04%, and long-term correlated errors less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having precisions less than or equal to 0.4%, short-term correlated errors less than or equal to 0.1%, and long-term correlated errors less than or equal to 0.05%
Optimizing Reactors Selection and Sequencing:Minimum Cost versus Minimum Volume
Institute of Scientific and Technical Information of China (English)
Rachid Chebbi
2014-01-01
The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie’s cost correlations three typical cases were considered based on the profile of the reaction rate reciprocal versus conversion. Significant differences were found compared to the classical approach targeting minimum total reactor volume.
International Nuclear Information System (INIS)
The nuclear reactor core reload optimization problem consists in finding a pattern of partially burned-up and fresh fuels that optimizes the plant's next operation cycle. This optimization problem has been traditionally solved using an expert's knowledge, but recently artificial intelligence techniques have also been applied successfully. The artificial intelligence optimization techniques generally have a single objective. However, most real-world engineering problems, including nuclear core reload optimization, have more than one objective (multi-objective) and these objectives are usually conflicting. The aim of this work is to develop a tool to solve multi-objective problems based on the Population-Based Incremental Learning (PBIL) algorithm. The new tool is applied to solve the Angra 1 PWR core reload optimization problem with the purpose of creating a Pareto surface, so that a pattern selected from this surface can be applied for the plant's next operation cycle. (author)
Jenny, Richard M; Jasper, Micah N; Simmons, Otto D; Shatalov, Max; Ducoste, Joel J
2015-10-15
Alternative disinfection sources such as ultraviolet light (UV) are being pursued to inactivate pathogenic microorganisms such as Cryptosporidium and Giardia, while simultaneously reducing the risk of exposure to carcinogenic disinfection by-products (DBPs) in drinking water. UV-LEDs offer a UV disinfecting source that do not contain mercury, have the potential for long lifetimes, are robust, and have a high degree of design flexibility. However, the increased flexibility in design options will add a substantial level of complexity when developing a UV-LED reactor, particularly with regards to reactor shape, size, spatial orientation of light, and germicidal emission wavelength. Anticipating that LEDs are the future of UV disinfection, new methods are needed for designing such reactors. In this research study, the evaluation of a new design paradigm using a point-of-use UV-LED disinfection reactor has been performed. ModeFrontier, a numerical optimization platform, was coupled with COMSOL Multi-physics, a computational fluid dynamics (CFD) software package, to generate an optimized UV-LED continuous flow reactor. Three optimality conditions were considered: 1) single objective analysis minimizing input supply power while achieving at least (2.0) log10 inactivation of Escherichia coli ATCC 11229; and 2) two multi-objective analyses (one of which maximized the log10 inactivation of E. coli ATCC 11229 and minimized the supply power). All tests were completed at a flow rate of 109 mL/min and 92% UVT (measured at 254 nm). The numerical solution for the first objective was validated experimentally using biodosimetry. The optimal design predictions displayed good agreement with the experimental data and contained several non-intuitive features, particularly with the UV-LED spatial arrangement, where the lights were unevenly populated throughout the reactor. The optimal designs may not have been developed from experienced designers due to the increased degrees of
Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...
Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor
Mkhabela, Peter Tshepo
The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis
Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)
Lizon-A-Lugrin, Laure
The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a
Analysis of the optimization of the secondary hot piping for a sodium fast reactor
International Nuclear Information System (INIS)
Mod. 9Cr-1Mo steel (T91) is a candidate material for Sodium Fast Reactor (SFR) components and in particular for secondary hot piping. As compared to austenitic stainless steels used in the past reactors, 9Cr-1Mo steel's good conductivity and low thermal expansion let the possibility to reduce the size of the loops and thus to gain on the costs. In order to validate this choice, it is necessary, firstly to verify that this alloy can resist the planned environmental and operating conditions, secondly to check its supply, fabrication and welding possibilities and finally to ensure that the existing design codes cover mechanical design rules. A large R and D program on mod. 9Cr-1Mo steel has been undertaken in France, in order to characterize the behavior of this material and of its welded junctions in operating conditions representative of SFR. In this program, a numerical analysis on secondary hot piping design has been carried out using a stainless steel 316L(N) (used in the previous SFRs Phenix and Super Phenix) and a mod. 9Cr-1Mo steel. The aim of this study was to optimize the secondary hot piping by minimizing the size of the loop and by comparing both candidate materials. This analysis deals with the secondary piping considered for the European Fast Reactor (EFR) and the design has been made for realistic operating conditions of EFR for a period of 60 years. The analysis is based on the creep-fatigue damage and the application of the RCC-MR rules. The results show that the use of mod. 9Cr-1Mo steel has generally an advantage for moderate temperature (below 525 deg. C). On the contrary, when the temperature is more important, stainless steel 316L(N) presents lower damage than 9Cr steel. Indeed, thanks to advantageous thermal properties of mod 9Cr-1Mo steel, the stress state due to mechanical and thermal loading for this material is 20 to 30% lower than this of 316L(N) stainless steel. But at high temperatures this benefit is too low to compensate for the lower
Directory of Open Access Journals (Sweden)
Franck Dechelette
2014-01-01
Full Text Available The research for technological improvement and innovation in sodium-cooled fast reactor is a matter of concern in fuel handling systems in a view to perform a better load factor of the reactor thanks to a quicker fuelling/defueling process. An optimized fuel handling route will also limit its investment cost. In that field, CEA has engaged some innovation study either of complete FHR or on the optimization of some specific components. This paper presents the study of three SFR fuel handling route fully described and compared to a reference FHR option. In those three FHR, two use a gas corridor to transfer spent and fresh fuel assembly and the third uses two casks with a sodium pot to evacuate and load an assembly in parallel. All of them are designed for the ASTRID reactor (1500 MWth but can be extrapolated to power reactors and are compatible with the mutualisation of one FHS coupled with two reactors. These three concepts are then intercompared and evaluated with the reference FHR according to four criteria: performances, risk assessment, investment cost, and qualification time. This analysis reveals that the “mixed way” FHR presents interesting solutions mainly in terms of design simplicity and time reduction. Therefore its study will be pursued for ASTRID as an alternative option.
International Nuclear Information System (INIS)
An implementation of fuzzy optimization in the reliability of multicriteria selections in control schemes of nuclear reactors and power plants has been presented. In particular, optimization based on the theory of fuzzy sets has been proposed for the majority schemes, taking into account various reasons of failures. Set of fuzzy algorithms has been suggested as a basic technology for ranking process according to standard criterion, which includes steps of construction of the rules, initial estimation, fuzzification, and defuzzification. Software implementations have been presented for the fuzzy approach using the MatLab package
International Nuclear Information System (INIS)
Maximizing renewables in the country's power system has been a key political agenda in Japan after the Fukushima nuclear disaster. This paper investigates the potential of PV resource, which could be systematically integrated into the Japanese power system, using a high time-resolution optimal power generation mix model. The model allows us to explicitly consider actual PV and wind output variability in 10-min time resolution for 365 days. Simulation results show that, as PV expands, the growth of PV integration into the grid slows down when the installed PV capacity is more than the scale of the peak demand, although Japan has immense potential of installable PV capacity – equivalent to 40 times of the peak. Secondly, the results imply that a large-scale PV integration potentially decreases the usage ratio of LNG combined cycle (LNGCC) in specific seasons, which is a challenge for utility companies to ensure that LNGCC is used as a profitable compensating generator for PV variability. Finally, a sensitivity analysis on rechargeable battery cost suggests that the reason for suppressing the PV output instead of storing its surplus output by the battery can be attributed to the high battery cost; hence, the improvement of its economic performance is significant to integrate the massive PV energy. - Highlights: • The authors develop a high time-resolution optimal power generation mix model. • The model can consider renewable variability in 10-min resolution for 365 days. • As PV expands, the growth of PV integration into the grid shows a slowdown. • PV integration decreases the usage ratio of the LNG combined cycle in specific seasons. • The reason for suppressing PV output is the high battery cost
International Nuclear Information System (INIS)
The attenuation of nuclear radiation emanating from the reactor core and secondary radiation produced in the structural material is the main task of radiation shield in nuclear reactors. In this regard one can use a shield with optimum mixture of materials or multi-layer shields with optimum thickness. The objective function in shield optimization is generally volume, cost or weight, and the most important constraint is the reduction of the radiation field intensity less than a predetermined value. In this project the computer program SHLDOPT has been developed to find the optimum thicknesses of the shield layers. In the program, dose distribution in various shield layers up to the outer surface of the shield has been calculated using three dimensional linear interpolation, assuming dose in each layer varies exponentially with attenuation coefficients depending on the thicknesses of the desired layer and preceding and following layers. Regarding the speed and accuracy of the dose calculation in the program, the rejection with complete search method has been used as the optimization scheme. Dose attenuation factors used in the input file of SHLDOPT have calculated by the computer code ANISN in P3 and S 8 approximation. In order to rely on the results of SHLDOPT program the calculated dose distribution in different layers of the Bushehr reactor shield have been compared with ANISN code results. The reasonable agreement shows that the program and its dose attenuation coefficient library work properly. Therefore SHKOPT has been applied to find the optimum shield layer thicknesses of Bushehr nuclear reactor for three objectives of volume mass and cost. Dose rate at the outermost shield surface have been considered to be less than 50 n Sv/sec. The calculated thicknesses have been compared with designed values of Kraft We rk Union. The results show that the radiation shield of Bushehr nuclear reactor is not necessarily optimized according to mass or volume, and it is more
Comparison of optimized ECCD for different launch locations in a next step tokamak reactor plasma
International Nuclear Information System (INIS)
Utilization of electron cyclotron radiofrequency sources for current drive and the stabilization of neoclassical tearing modes (NTMs) in next step devices rests on the current density and current drive efficiency attainable. Optimization is reported of electron cyclotron driven current density and current drive efficiency with respect to source frequency as well as toroidal and poloidal launch angles for two launcher positions: an 'upper port' position above the midplane and a 'midplane' position at the height of the magnetic axis. The plasma parameters were chosen to be representative of the next step towards a fusion reactor (B=5.3 T, e>1.0x1020 m-3, R=6.2 m). The modelling is performed with the TORAY code, launching a cone of electron cyclotron rays to account for a finite angular spectrum of injected waves. Current drive at each location is obtained with the Cohen linear model, which includes the effects of toroidal trapping, relativity and wave polarization. For the two launch locations, optimized central current drive efficiency is approximately equal. At plasma radius ρ=0.835a for stabilization of the q=2 NTM, the current density is 2.3 times greater and the integrated efficiency is 1.5 times greater for upper port launch relative to midplane launch. A broader range of frequencies for good current drive efficiency is obtained for upper port launch, and this will be reflected by a broader range of operating magnetic field at fixed electron cyclotron source frequency. Twenty megawatts of electron cyclotron power satisfy the criteria for control of NTMs. (author)
Optimal configuration of power distribution of a research reactors by depleted uranium use
International Nuclear Information System (INIS)
A nuclear reactor project requires that the thermal power density distribution be as uniform as possible in order to minimize temperature peaks which limit the total power. This work describes the calculations aimed at determining an optimized distribution of depleted uranium in a graphite-moderated, air cooled cylindrical core loaded with natural uranium. Cross section calculations were performed with the Hammer code while 3D flux and power distributions were generated with the CITATION code. It has been found that the use of depleted uranium renders a more uniform flux and power distribution. The effect, which results from a decrease in the power density (and consequently, also in the temperature) in the hottest channels, allows the overall power to be further raised within the safety limits. In addition, the proposed method also provides a means to arbitrarily reduce the excess reactivity when necessary. Finally, it also leads to the creation of an over moderated region with higher thermal neutron fluxes which could be used for irradiation experiments. (author)
Meyer, Andreas; Pellaux, René; Potot, Sébastien; Becker, Katja; Hohmann, Hans-Peter; Panke, Sven; Held, Martin
2015-08-01
Microcompartmentalization offers a high-throughput method for screening large numbers of biocatalysts generated from genetic libraries. Here we present a microcompartmentalization protocol for benchmarking the performance of whole-cell biocatalysts. Gel capsules served as nanolitre reactors (nLRs) for the cultivation and analysis of a library of Bacillus subtilis biocatalysts. The B. subtilis cells, which were co-confined with E. coli sensor cells inside the nLRs, converted the starting material cellobiose into the industrial product vitamin B2. Product formation triggered a sequence of reactions in the sensor cells: (1) conversion of B2 into flavin mononucleotide (FMN), (2) binding of FMN by a RNA riboswitch and (3) self-cleavage of RNA, which resulted in (4) the synthesis of a green fluorescent protein (GFP). The intensity of GFP fluorescence was then used to isolate B. subtilis variants that convert cellobiose into vitamin B2 with elevated efficiency. The underlying design principles of the assay are general and enable the development of similar protocols, which ultimately will speed up the optimization of whole-cell biocatalysts.
Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.
Ghayal, Dyneshwar; Pandit, Aniruddha B; Rathod, Virendra K
2013-01-01
The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10(-3) (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated. PMID:22922070
Advanced fuel for fast breeder reactors: Fabrication and properties and their optimization
International Nuclear Information System (INIS)
The present design for FBR fuel rods includes usually MOX fuel pellets cladded into stainless steel tubes, together with UO2 axial blanket and stainless steel hexagonal wrappers. Mixed carbide, nitride and metallic fuels have been tested as alternative fuels in test reactors. Among others, the objectives to develop these alternative fuels are to gain a high breeding ratio, short doubling time and high linear ratings. Fuel rod and assembly designers are now concentrating on finding the combination of optimized fuel, cladding and wrapper materials which could result in improvement of fuel operational reliability under high burnups and load-follow mode of operation. The purpose of the meeting was to review the experience of advanced FBR fuel fabrication technology, its properties before, under and after irradiation, peculiarities of the back-end of the nuclear fuel cycle, and to outline future trends. As a result of the panel discussion, the recommendations on future Agency activities in the area of advanced FBR fuels were developed. A separate abstract was prepared for each of the 10 presentations of this meeting. Refs, figs and tabs
Automatic boiling water reactor loading pattern design using ant colony optimization algorithm
International Nuclear Information System (INIS)
An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.
Automatic boiling water reactor loading pattern design using ant colony optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Wang, C.-D. [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China); Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)], E-mail: jdwang@iner.gov.tw; Lin Chaung [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China)
2009-08-15
An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.
Gujarathi, Ashish M.; Purohit, S.; Srikanth, B.
2015-06-01
Detailed working principle of jumping gene adaptation of differential evolution (DE-JGa) is presented. The performance of the DE-JGa algorithm is compared with the performance of differential evolution (DE) and modified DE (MDE) by applying these algorithms on industrial problems. In this study Reactor network design (RND) problem is solved using DE, MDE, and DE-JGa algorithms: These industrial processes are highly nonlinear and complex with reference to optimal operating conditions with many equality and inequality constraints. Extensive computational comparisons have been made for all the chemical engineering problems considered. The results obtained in the present study show that DE-JGa algorithm outperforms the other algorithms (DE and MDE). Several comparisons are made among the algorithms with regard to the number of function evaluations (NFE)/CPU- time required to find the global optimum. The standard deviation and the variance values obtained using DE-JGa, DE and MDE algorithms also show that the DE-JGa algorithm gives consistent set of results for the majority of the test problems and the industrial real world problems.
PWR [pressurized water reactor] optimal reload configuration with an intelligent workstation
International Nuclear Information System (INIS)
In a previous paper, the implementation of a pressurized water reactor (PWR) refueling expert system that combined object-oriented programming in Smalltalk and a FORTRAN power calculation to evaluate loading patterns was discussed. The expert system applies heuristics and constraints that lead the search toward an optimal configuration. Its rate of improvement depends on the expertise coded for a search and the loading pattern from where the search begins. Due to its complexity, however, the solution normally cannot be served by a rule-based expert system alone. A knowledge base may take years of development before final acceptance. Also, the human pattern-matching capability to view a two-dimensional power profile, recognize an imbalance, and select an appropriate response has not yet been surpassed by a rule-based system. The user should be given the ability to take control of the search if he believes the solution needs a new direction and should be able to configure a loading pattern and resume the search. This paper introduces the workstation features of Shuffle important to aid the user to manipulate the configuration and retain a record of the solution
Borhan, Hoseinali
Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may
International Nuclear Information System (INIS)
Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use
International Nuclear Information System (INIS)
Highlights: ► Simulation of one-sixth of VVER reactor core by MCNP4C code based on symmetry of it by information of FSAR. ► Calculation of neutron flux and Keff of VVER reactor and transferring the results as inputs to WIMS-D4 code. ► Transferring the cross sections calculated by WIMS-D4 as inputs to CITATION code by assessing the genetic responses. ► Defining a mathematical model and developing a new method based on genetic algorithm for core fuel loading pattern. ► Determination of the best status of interchanging the fuel assemblies for acceptable responses to attain maximum energy. - Abstract: In this investigation, there are two prime objectives. These objectives are: firstly, enhancing the core effective multiplication factor (Keff), secondly, keeping the Pq lower than a predetermined value to maintain the fuel integrity, and consequently attaining maximum energy so that these two objectives satisfy optimizing to design the core fuel loading pattern better. In this research, on one hand, a new method has been developed to determine optimized status of the core fuel loading pattern based on the genetic algorithm in a typical VVER-1000 reactor. On the other hand, a simple discrete mathematical model in the first stage has been defined in order to clarify the performance of this complex problem, and the optimization of the given model by simulation, and through computer programming, that is, based on genetic algorithm method. The program of analyzing the core fuel pattern optimization of VVER-1000 reactor is as follows. First, one-sixth of VVER reactor core is simulated by MCNP4C code based on its symmetry, through information of FSAR. Using the given simulation obtained from the MCNP4C code, the neutron flux and Keff of the mentioned reactor are resulted. Then the input files of WIMS-D4 code are created according to the initial data of one-sixth of the symmetry of VVER reactor core fuel assemblies, based on its material characteristics. Then the
International Nuclear Information System (INIS)
Nuclear reactors are in nature nonlinear and their parameters vary with time as a function of power, fuel burnup, and control rod worth. Therefore, these characteristics must be considered if large power variations occur in power plant working regimes (for example in load following conditions). In this paper a Fuzzy Adaptive Robust Optimal Controller (FAROC) based on a proposed modified dynamic non-singleton fuzzy logic systems is presented. A Robust Optimal Self-Tuning Regulator (ROSTR) response is used as a reference trajectory to determine the feedback, feedforward and observer gains of the fuzzy controller. The fuzzy controller displays good stability and performance for a wide range of operation as well as considerable reduction in computation time in regard to ROSTR. It also increases the load follow capability of nuclear reactor. (author)
Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin
2016-08-01
Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.
International Nuclear Information System (INIS)
The main objectives of this research thesis are the management and reduction of uncertainties associated with measurements performed by means of a fission-chamber type sensor. The author first recalls the role of experimental reactors in nuclear research, presents the various sensors used in nuclear detection (photographic film, scintillation sensor, gas ionization sensor, semiconducting sensor, other types of radiation sensors), and more particularly addresses neutron detection (activation sensor, gas filling sensor). In a second part, the author gives an overview of the state of the art of neutron measurement by fission chamber in a mock-up reactor (signal formation, processing and post-processing, associated measurements and uncertainties, return on experience of measurements by fission chamber on Masurca and Minerve research reactors). In a third part, he reports the optimization of two intrinsic parameters of this sensor: the thickness of fissile material deposit, and the pressure and nature of the filler gas. The fourth part addresses the improvement of measurement electronics and of post-processing methods which are used for result analysis. The fifth part deals with the optimization of spectrum index measurements by means of a fission chamber. The impact of each parameter is quantified. Results explain some inconsistencies noticed in measurements performed on the Minerve reactor in 2004, and allow the improvement of biases with computed values
Optimization of a heat-pipe-cooled space radiator for use with a reactor-powered Stirling engine
International Nuclear Information System (INIS)
The design optimization of a reactor-Stirling heat-pipe-cooled radiator is presented. The radiator is a self-deploying concept that uses individual finned heat pipe petals to reject waste heat from a Stirling engine. Radiator optimization methodology is presented, and the results of a parametric analysis of the radiator design variables for a 100-kW(e) system are given. The additional steps of optiminzing the radiator resulted in a net system mass savings of 3 percent. 5 references
International Nuclear Information System (INIS)
The Secure Transportable Autonomous Reactor for Hydrogen production STAR-H2 is designed to fit into a sustainable global, mid-21st century hierarchical hub-spoke nuclear energy supply architecture based on nuclear fuel, hydrogen, and electricity energy carriers and having favorable energy security, ecological and nonproliferation features. It will produce hydrogen, oxygen and potable water to service cities and their surrounding regions under an assumed electrical generation network based on fuel cells and microturbines and an assumed transportation sector using hydrogen fueled vehicles. STAR-H2 is a long refueling interval (Battery) turnkey heat supply reactor intended for production of hydrogen by thermochemical water cracking. The reactor is a Pb-cooled, mixed U-TRU-Nitride-fueled, fast spectrum reactor delivering 400 MWth of heat at 800degC core outlet temperature. The primary coolant circulates by natural circulation; the 400 MWth heat rating is set by dual requirements for natural circulation; the 400 MWth heat rating is set by dual requirements for natural circulation and for rail shippability of the vessel. An intermediate low pressure He loop carries the heat to a Ca-Br thermochemical water cracking cycle for the manufacture of H2 (and O2). The water cracking cycle rejects heat at 550degC and that heat is used in a supercritical CO2 Brayton cycle turbogenerator to provide hotel load electricity. A thermal desalinisation plant receives discharge heat at 125degC from the Brayton cycle and the brine provides for ultimate heat rejection from the cascaded thermodynamic cycles. The modified UT-3 cycle used in STAR-H2, called the Ca-Br cycle, operates at atmospheric pressure and 750-725degC, uses solid/gas separation steps and achieves about 44% efficiency. Unlike UT-3, it employs a single-stage HBr-dissociation step based on a plasma chemistry technique operating near ambient conditions. The STAR-H2 power plant will operate on a 20 year refueling interval
Cisneros, Anselmo Tomas, Jr.
and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of
DBD reactor design and optimization in continuous AP-PECVD from HMDSO/N2/N2O mixture
Hotmar, Petr; Caquineau, Hubert; Cozzolino, Raphaël; Gherardi, Nicolas
2016-02-01
Dielectric barrier discharge (DBD) deposition of thin films is increasingly studied as a promising alternative to other non-thermal processes such as low-pressure plasma-enhanced chemical vapor deposition (PECVD) or wet-coating. In this paper we demonstrate how optimizing gas injection in the DBD results in an improvement in the reactor performance. We propose to confine the precursor gas close to the deposition substrate by an additional gas flow. The performance of this design is studied though simulation of mass transport. To optimize the deposited thickness, gas cost and reactor clogging, we assess the influence of the confinement, total gas flow rate and DBD length. The confinement is found to reduce reactor clogging, even for long DBD, and increase the deposit thickness. This increase in thickness requires a proportionate increase in the gas flow-rate, making the gas-cost the main limitation of the proposed design. We show, however, that by fine-tuning the operating conditions a beneficial compromise can be obtained between the three optimization objectives.
Optimization activities on design studies of LHD-type reactor FFHR
International Nuclear Information System (INIS)
An overview of recent activities on optimizing the base design of LHD-type helical power reactor FFHR is presented, including key design improvements on blanket and divertor configurations, neutronics performance, large superconducting coils and cost models. New proposals of plasma operation candidates are also shown. In the reference design FFHR2m1 with the major radius R of 14 m, one of the main issues is the structural compatibility between blanket and divertor configurations. In particular, the blanket space at the inboard side is still insufficient due to the interference between the first walls and the ergodic layers surrounding the last closed flux surface. To overcome this problem, helical x-point divertor (HXD) has been proposed to remove the interference. In this concept, very effective screening of recycling neutrals with 99% ionization is expected according to 3D simulations. Another approach for obtaining larger clearance is also being examined by modifying the configurations of the helical coils. Neutronics performances on liquid breeder blanket have been also improved with optimizing the neutron multiplier to achieve the local TBR over 1.3 and a sufficient shielding efficiency of the fast neutron fluence of lower than 1022 n/m2 in 30 years. This issue on the blanket configurations also includes the issue on net cover rate of the inner wall for the total TBR over 1.2. For this requirement, the discrete pumping with semi-closed shield (DPSS) is proposed to achieve the net cover rate of over 0.9, which is very advantageous to suppress nuclear streaming. The other key issues are the engineering aspects on large superconducting coils. Poloidal coils positions are optimized to be compatible with 3D configurations of blankets within an acceptable total magnetic energy. Promising candidates of R and W (react and winding) of CICC (cable in conduit conductor), indirect cooling magnets with external dumping for quenching, and the LHD-type support posts for the
Risk management and maintenance optimization of nuclear reactor cooling piping system
Augé, L.; Capra, B.; Lasne, M.; Bernard, O.; Bénéfice, P.; Comby, R.
2006-11-01
Seaside nuclear power plants have to face the ageing of nuclear reactor cooling piping systems. In order to minimize the duration of the production unit shutdown, maintenance operations have to be planned well in advance. In a context where owners of infrastructures tend to extend the life span of their goods while having to keep the safety level maximum, Oxand brings its expertise and know-how in management of infrastructures life cycle. A dedicated methodology relies on several modules that all participate in fixing network optimum replacement dates: expertise on ageing mechanisms (corrosion, cement degradation...) and the associated kinetics, expertise on impacts of ageing on functional integrity of piping systems, predictive simulation based on experience feedback, development of monitoring techniques focused on actual threats. More precisely, Oxand has designed a patented monitoring technique based on optic fiber sensors, which aims at controlling the deterioration level of piping systems. This preventive maintenance enables the owner to determine criteria for network replacement based on degradation impacts. This approach helps the owner justify his maintenance strategy and allows him to demonstrate the management of safety level. More generally, all monitoring techniques used by the owners are developed and coupled to predictive simulation tools, notably thanks to processes based on Bayesian approaches. Methodologies to evaluate and optimize operation budgets, depending on predictions of future functional deterioration and available maintenance solutions are also developed and applied. Finally, all information related to infrastructure ageing and available maintenance options are put together to reach the right solution for safe and performing infrastructure management.
Risk management and maintenance optimization of nuclear reactor cooling piping system
International Nuclear Information System (INIS)
Seaside nuclear power plants have to face the ageing of nuclear reactor cooling piping systems. In order to minimize the duration of the production unit shutdown, maintenance operations have to be planned well in advance. In a context where owners of infrastructures tend to extend the life span of their goods while having to keep the safety level maximum, Oxand brings its expertise and know-how in management of infrastructures life cycle. A dedicated methodology relies on several modules that all participate in fixing network optimum replacement dates: expertise on ageing mechanisms (corrosion, cement degradation...) and the associated kinetics, expertise on impacts of ageing on functional integrity of piping systems, predictive simulation based on experience feedback, development of monitoring techniques focused on actual threats. More precisely, Oxand has designed a patented monitoring technique based on optic fiber sensors, which aims at controlling the deterioration level of piping systems. This preventive maintenance enables the owner to determine criteria for network replacement based on degradation impacts. This approach helps the owner justify his maintenance strategy and allows him to demonstrate the management of safety level. More generally, all monitoring techniques used by the owners are developed and coupled to predictive simulation tools, notably thanks to processes based on Bayesian approaches. Methodologies to evaluate and optimize operation budgets, depending on predictions of future functional deterioration and available maintenance solutions are also developed and applied. Finally, all information related to infrastructure ageing and available maintenance options are put together to reach the right solution for safe and performing infrastructure management. (authors)
International Nuclear Information System (INIS)
Purpose: To provide a spray cooling structure wherein the steam phase in a bwr reactor vessel can sufficiently be cooled and the upper cap and flanges in the vessel can be cooled rapidly which kept from direct contaction with cold water. Constitution: An apertured shielding is provided in parallel spaced apart from the inner wall surface at the upper portion of a reactor vessel equipped with a spray nozzle, and the lower end of the shielding and the inner wall of the vessel are closed to each other so as to store the cooling water. Upon spray cooling, cooling water jetting out from the nozzle cools the vapor phase in the vessel and then hits against the shielding. Then the cooling water mostly falls as it is, while partially enters through the apertures to the back of the shielding plate, abuts against stoppers and falls down. The stoppers are formed in an inverted L shape so that the spray water may not in direct contaction with the inner wall of the vessel. (Horiuchi, T.)
International Nuclear Information System (INIS)
The collapsing formulae for the optimization problems solved by means of the Pontryagin maximum principle in nuclear reactor dynamics are presented. A comparison with the corresponding formulae of the static case is given too. (author)
An optimized design of rectangle pumping cell for nuclear reactor pumped laser
Energy Technology Data Exchange (ETDEWEB)
Wan, J.-S.; Chen, L.-X.; Zhao, Z.-M.; Pan, X.-B.; Jing, C.-Y.; Zhao, X.-Q.; Liu, F.-H. [Northwest Institute of Nuclear Technology, Xi' an (China)
2003-03-01
Basing on our research of energy deposition in RPL (Reactor Pumped Laser) pumping cell and the laser power efficiency, a RPL test device on Pulsed Reactor has been designed. In addition, the laser beam power of the RPL test device is estimated in the paper. (author)
International Nuclear Information System (INIS)
Highlights: ► ADORE is an algorithm for CANDU ROP Detector Layout Optimization. ► ADORE-GA is a Genetic Algorithm variant of the ADORE algorithm. ► Robustness test of ADORE-GA algorithm is presented in this paper. - Abstract: The regional overpower protection (ROP) systems protect CANDU® reactors against overpower in the fuel that could reduce the safety margin-to-dryout. The overpower could originate from a localized power peaking within the core or a general increase in the global core power level. The design of the detector layout for ROP systems is a challenging discrete optimization problem. In recent years, two algorithms have been developed to find a quasi optimal solution to this detector layout optimization problem. Both of these algorithms utilize the simulated annealing (SA) algorithm as their optimization engine. In the present paper, an alternative optimization algorithm, namely the genetic algorithm (GA), has been implemented as the optimization engine. The implementation is done within the ADORE algorithm. Results from evaluating the effects of using various mutation rates and crossover parameters are presented in this paper. It has been demonstrated that the algorithm is sufficiently robust in producing similar quality solutions.
Martel, François; Dubé, Yves; Kelouwani, Sousso; Jaguemont, Joris; Agbossou, Kodjo
2016-06-01
This work evaluates the performance of a plug-in hybrid electric vehicle (PHEV) energy management process that relies on the active management of the degradation of its energy carriers - in this scenario, a lithium-ion battery pack and a polymer electrolyte membrane fuel cell (PEMFC) - to produce a near economically-optimal vehicle operating profile over its entire useful lifetime. This solution is obtained through experimentally-supported PHEV models exploited by an optimal discrete dynamic programming (DDP) algorithm designed to efficiently process vehicle usage cycles over an extended timescale. Our results demonstrate the economic and component lifetime gains afforded by our strategy when compared with alternative rule-based PHEV energy management benchmarks.
Zhang, Honglai; Li, Zhaohui; Yu, Shishun; Xiao, Qizhen; Lei, Gangtie; Ding, Yanhuai
2016-01-01
Carbon-encapsulated LiMn2O4 (LMO@C) spheres were prepared using polymer microgel reactor, in which Mn2+ ions are hydrolyzed in situ to form Mn(OH)2, and followed by annealing at a high temperature. The LMO@C spheres are constructed with the spinel LiMn2O4 nanospheres that embedded in a porous carbon matrix uniformly. Owing to possessing three-dimensional (3D) electron-conductive and 3D ion-conductive networks, the LMO@C spheres exhibit high rate capability. They can deliver the specific capacities of 142, 137, 126, 107, and 91 mAh g-1 at the rates of 0.1C, 1C, 5C, 10C, and 20C (1C = 148 mA g-1), respectively. Owing to carbon encapsulation, the LMO@C spheres can retain 80% of the initial capacity at 1C rate after 1000 cycles at 25 °C, displaying stable cycling performance. The results suggest that the LMO@C spheres are promising cathode materials for high-power lithium-ion batteries.
International Nuclear Information System (INIS)
Designing and optimising a reactor core is rather complex as it involves neutronics, thermal-hydraulics and thermomechanics. In order to tentatively overcome these difficulties, a new approach based on simplified models, is being developed aiming in optimising both core performance (core volume, in-cycle Pu inventory..) and core safety characteristics (neutronics coefficients, core pressure drop, transient response..) of a Fast Neutron Reactor. This new approach, called FARM (Fast Reactor Methodology) is currently used for studying a Helium-Cooled Fast Reactor core with carbide fuel pins, and a SiC-based CMC (Ceramic Matrix Composite) cladding. This method has demonstrated that, for a given initial set of specifications (thermal power, inlet coolant temperature, He pressure), 10 optimization variables are sufficient to estimate fair core design features. All simplified models are built from reference CEA codes (ERANOS for neutronics, METEOR for fuel thermomechanics) by way of polynomial interpolations derived from physical analytical considerations. Some safety aspects are also considered in the analysis using analytical descriptions (decay heat removal by natural convection, thermal inertia of the core, etc...). With a multi-criterion genetic algorithm, the 10 optimization variables are then searched for improving both neutronics and safety characteristics. This new methodology allows less accurate, but optimized, core design features to be obtained and proves they are the best that fulfil all the requirements. The first series of studies justify several safety trends already considered in the conventional method (minimisation of pressure drop). Current results confirm that such an approach is possible, and leads to new core designs, similar to the reference core, but with better performance (at least, supply pumping power reduced by 30%, for the same core performance). (authors)
International Nuclear Information System (INIS)
Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading
Energy Technology Data Exchange (ETDEWEB)
Lee, Kwang Su; Yoo, Changkyoo [Kyung Hee University, Yongin (Korea, Republic of); Kim, Minhan [Pangaea21 Ltd., Seongnam (Korea, Republic of); Kim, Jongrack [UnUsoft Ltd., Seoul (Korea, Republic of)
2014-10-15
Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.
International Nuclear Information System (INIS)
Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. In this work, a new learning mode, to be used by the Population-Based Incremental Learning (PBIL) algorithm, who combines mechanisms of standard genetic algorithm with simple competitive learning, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process know as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors. This problem can be interpreted as search of a load pattern to be used in the nucleus of the reactor in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)
International Nuclear Information System (INIS)
Most of the strategies yet implemented to optimal fuel loading pattern design in nuclear power reactors, are based on maximizing the core effective multiplication factor (Keff) to extract maximum energy and lowering the local power peaking factor (Pq) from a predetermined value. However, a new optimization criterion could be of interest, aiming at maximum burn-up of the plutonium content in fuel assemblies, i.e., minimization of remaining plutonium in spent fuel at the end of cycle (EOC). In this research, we developed a new strategy for optimal fuel core loading pattern of a VVER-1000 reactor, based on multi-objective optimization: lowering the Pq, maximization of the Keff and minimization of remaining plutonium (Pu) in fuels at EOC. This strategy has been implemented considering exact calculations of fuel burn-up during the equilibrium cycle using WIMSD and CITATION calculation codes. We used the genetic algorithm to find the optimum fuel loading pattern. Simulation results show that this strategy can reduce the remaining Pu of the fuels at EOC while considering limitations on core power peaking and multiplication factor
Energy Technology Data Exchange (ETDEWEB)
Mohseni, Niloofar [Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Boroushaki, Mehrdad [Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)], E-mail: boroushaki@sharif.edu; Ghofrani, Mohammad B.; Raji, Mohammad H. [Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)
2008-02-15
Most of the strategies yet implemented to optimal fuel loading pattern design in nuclear power reactors, are based on maximizing the core effective multiplication factor (K{sub eff}) to extract maximum energy and lowering the local power peaking factor (P{sub q}) from a predetermined value. However, a new optimization criterion could be of interest, aiming at maximum burn-up of the plutonium content in fuel assemblies, i.e., minimization of remaining plutonium in spent fuel at the end of cycle (EOC). In this research, we developed a new strategy for optimal fuel core loading pattern of a VVER-1000 reactor, based on multi-objective optimization: lowering the P{sub q}, maximization of the K{sub eff} and minimization of remaining plutonium (Pu) in fuels at EOC. This strategy has been implemented considering exact calculations of fuel burn-up during the equilibrium cycle using WIMSD and CITATION calculation codes. We used the genetic algorithm to find the optimum fuel loading pattern. Simulation results show that this strategy can reduce the remaining Pu of the fuels at EOC while considering limitations on core power peaking and multiplication factor.
International Nuclear Information System (INIS)
The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor (Keff) in order to extract the maximum energy, and keeping the local power peaking factor (Pq) lower than a predetermined value to maintain fuel integrity. In this research, a new strategy based on Particle Swarm Optimization (PSO) algorithm has been developed to optimize the fuel core loading pattern in a typical VVER. The PSO algorithm presents a simple social model by inspiration from bird collective behavior in finding food. A modified version of PSO algorithm for discrete variables has been developed and implemented successfully for the multi-objective optimization of fuel loading pattern design with constraints of keeping Pq lower than a predetermined value and maximizing Keff. This strategy has been accomplished using WIMSD and CITATION calculation codes. Simulation results show that this algorithm can help in the acquisition of a new pattern without contravention of the constraints.
Energy Technology Data Exchange (ETDEWEB)
Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)
1997-12-31
This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)
Design measures in evolutionary water cooled reactors to optimize for economic viability
International Nuclear Information System (INIS)
Since the mid 1980s, there have been various efforts to develop evolutionary water cooled reactors based on the current operating plant experience. To sustain and improve the economic viability, particular attention has been paid to the following aspects in developing evolutionary water cooled reactors: design simplification and increased operating margins, standardization in design as well as construction and operation, integration of operating plant insights, and consideration of safety, operability and constructability during the design stage. This paper reviews each item and discusses several examples from some of the evolutionary water cooled reactors being developed. (author)
International Nuclear Information System (INIS)
This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)
International Nuclear Information System (INIS)
Analyses of an equilibrium cycle are useful for evaluating newly designed fuels, defining an envelope of core operating parameters, and so on. However, generation of a loading pattern for the equilibrium cycle is much more difficult than that of a single cycle. Therefore, a loading pattern optimization code for the equilibrium cycle of pressurized water reactors, OPAL, has been newly developed on the basis of the simulated annealing method. In order to verify the capability of the OPAL code, comparison with successive multicycle optimizations was performed while fixing the number of fresh fuel in each cycle. Through benchmark calculations, it was found that the result of the equilibrium cycle optimization was almost compatible with that of the successive multicycle optimization, when the definition of each objective function was similar. However, successive multicycle optimization includes some ambiguity due to limits on the number of calculated cycles, since it requires much computation time. Consequently, the equilibrium cycle optimization has advantages including the quantitative comparison of the core neutronic performances. (author)
Energy Technology Data Exchange (ETDEWEB)
Pesaran, Ahmad
2016-06-14
This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.
Sakti, Apurba; Michalek, Jeremy J.; Fuchs, Erica R. H.; Whitacre, Jay F.
2015-01-01
We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery and pack designs for electric vehicle applications. We develop models of power capability and manufacturing operations to identify the minimum cost cell and pack designs for a variety of plug-in hybrid electric vehicle (PHEV) and battery electric vehicle (BEV) requirements. We find that economies of scale in battery manufacturing are reached quickly at a production volume of ∼200-300 MWh annually. Increased volume does little to reduce unit costs, except potentially indirectly through factors such as experience, learning, and innovation. We also find that vehicle applications with larger energy requirements are able to utilize cheaper cells due in part to the use of thicker electrodes. The effect on cost can be substantial. In our base case, we estimate pack-level battery production costs of ∼545 kWh-1 for a PHEV with a 10 mile (16 km) all-electric range (PHEV10) and ∼230 kWh-1 for a BEV with a 200 mile (320 km) all-electric range (BEV200). This 58% reduction, from 545 kWh-1 to 230 kWh-1, is a larger effect than the uncertainty represented by our optimistic and pessimistic scenarios. Electrodes thicker than about 100 or 125 microns are not currently used in practice due to manufacturing and durability concerns, but relaxing this constraint could further lower the cost of larger capacity BEV200 packs by up to an additional 8%.
Yuqing Yang; Weige Zhang; Jiuchun Jiang; Mei Huang; Liyong Niu
2015-01-01
With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs) is still the main concern for accurate deployment. Thus, a battery energy storage syst...
Novel photocatalytic reactor for degradation of DDT in water and its optimization model
Institute of Scientific and Technical Information of China (English)
Wei-hai PANG; Nai-yun GAO; Yang DENG; Yu-lin TANG
2009-01-01
A novel photocatalytic reactor was developed to remove(1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane)(DDT)from water.In the reactor,a cenosphere was used to support TiO2,film made by means of slo-gel.Because the cenospheres were coated with TiO2,their specific gravity was slightly increased from the original O.6-0.8 to 0.8-0.9,so that they were able to be suspended in water.With the mixed operation of a bubbler,the water in the reactor was in a well-fluidized state.The bottom of the reactor is a sand filter bed.which can be used to prevent the photocatalyst from being lost.A mathematical model of the reactor has been developed in the two primary influential factors:ultraviolet(UV)light intensity and photocatalyst concentration.Wich such a model.the reactor can be designed more reasonably.
全钒液流电池流场模拟与优化%Simulation and optimization of flow field of all vanadium redox flow battery
Institute of Scientific and Technical Information of China (English)
马相坤; 张华民; 邢枫; 孙晨曦
2012-01-01
The structure of flow field is one of the key factors that affect the performance of all vanadium redox flow battery. A two-dimensional model for the flow field of all vanadium redox flow battery was proposed based on CFD technology. The distribution of electrolyte in electrode in the specified structure of flow field could be obtained by the proposed model. The flow field was optimized to enhance the distributional uniformity of electrolyte in electrode. The conclusion indicates that the distributional uniformity can be improved by increasing the number of distributional ports and extending the length of inlet vertical channel. Meanwhile, the effects of width of distributional channel and flow rate on distributional uniformity of electrolyte were considered. The conclusion has great guidance for the design of flow field of all vanadium redox flow battery.%流场结构是影响全钒液流电池性能的关键问题之一.基于CFD技术建立全钒液流电池流场的二维数学模型,通过模拟获得在给定流场结构下电解液在石墨毡电极内的分布规律,优化流场结构提高电解液在石墨毡电极内分布的均匀性.研究结果表明,增加分配口个数和延长入口竖直主流道的长度能够有效提高电解液的分配均匀性；同时考察了分配流道宽度和流量对电解液分配均匀性的影响;所得结论对全钒液流电池流场结构设计具有重要的指导意义.
Optimization of a Potential New Core of the TRIGA Mark II Reactor Vienna
Energy Technology Data Exchange (ETDEWEB)
Khan, R.; Villa, M.; Bock, H.; Abele, H.; Steinhauser, G. [Vienna University of Technology-Atominstitut, Vienna (Austria)
2011-07-01
The TRIGA Mark II Vienna is one of the last TRIGA reactors utilizing a mixed core with High Enrich Uranium (HEU) fuel. Due to the US Fuel Return Program, the Vienna University of Technology/Atominstitut (ATI) is obliged to return its HEU fuel by 2019. There is no final decision on any further utilization of the Vienna research reactor beyond that point. However, of all possible scenarios of the future, the conversion of the current core into Low Enriched Uranium (LEU) fuel and the complete replacement of all existing 83 burned FE(s) by new fresh FE(s) are investigated herein. This paper presents detailed reactor design calculations for three different reactor cores. The core 1 employs 104-type, core 2 uses 108-type and core 3 is loaded with mixed TRIGA fuels (i.e. 104 and 108). The combination of the Monte Carlo based neutronics code MCNP5, Oak Ridge Isotope Generation and depletion code ORIGEN2 and diffusion theory based reactor physics program TRIGLAV is used for this study. On the basis of this neutronics study, the amount of fuel required for a possible future reactor operation and its cost minimization is presented in this paper. The criticality, core excess reactivity, length of initial life cycle and thermal flux density distribution is simulated for three different cores. Keeping the utilization of existing fourteen 104-type FE(s) (i.e. six burned and eight fresh FE(s)) in view, the core 3 is found the most economical, enduring and safe option for future of the TRIGA Mark II reactor in Vienna. (author)
Optimization of a Potential New Core of the TRIGA Mark II Reactor Vienna
International Nuclear Information System (INIS)
The TRIGA Mark II Vienna is one of the last TRIGA reactors utilizing a mixed core with High Enrich Uranium (HEU) fuel. Due to the US Fuel Return Program, the Vienna University of Technology/Atominstitut (ATI) is obliged to return its HEU fuel by 2019. There is no final decision on any further utilization of the Vienna research reactor beyond that point. However, of all possible scenarios of the future, the conversion of the current core into Low Enriched Uranium (LEU) fuel and the complete replacement of all existing 83 burned FE(s) by new fresh FE(s) are investigated herein. This paper presents detailed reactor design calculations for three different reactor cores. The core 1 employs 104-type, core 2 uses 108-type and core 3 is loaded with mixed TRIGA fuels (i.e. 104 and 108). The combination of the Monte Carlo based neutronics code MCNP5, Oak Ridge Isotope Generation and depletion code ORIGEN2 and diffusion theory based reactor physics program TRIGLAV is used for this study. On the basis of this neutronics study, the amount of fuel required for a possible future reactor operation and its cost minimization is presented in this paper. The criticality, core excess reactivity, length of initial life cycle and thermal flux density distribution is simulated for three different cores. Keeping the utilization of existing fourteen 104-type FE(s) (i.e. six burned and eight fresh FE(s)) in view, the core 3 is found the most economical, enduring and safe option for future of the TRIGA Mark II reactor in Vienna. (author)
Battery Management Based on Genetic Algorithm Optimization%基于遗传算法的电池管理策略
Institute of Scientific and Technical Information of China (English)
赵向阳; 王杏玄; 罗文
2015-01-01
Energy storage system can improve the capacity of renewable energy resources in the micro-grid like so-lar energy, wind energy and so forth. Conventional researches consider only the standard deviation of the interactive power between micro-grid and distribution network. Analyzing the charging and discharging strategy of the battery to get the lowest cost and the highest profit from the micro-grid, it is important to consider the battery capacity, the in-itial state of charge and the optimization effect, then the most economic model of the interaction power is established in the maximum power tracking of the output of the wind turbine. Genetic algorithm, an efficient global optimization search algorithm, based on natural selection and genetic theory, has the advantages of fast convergence, simple calculation, versatility and so on. Finally, an algorithm example on the battery state and power balance constraints optimizes battery scheduling to minimize the interactive power cost by the genetic algorithm. Thus the interactive power economy can be improved greatly on the basis of keeping the interaction power volatility at a certain value. The result shows that this research can play a guiding role in making a more comprehensive storage battery strategy of charging and discharging in the future.%电池储能可提高风、光等可再生能源在微电网中的接入水平，常规研究只考虑了通过储能控制微电网与配电网交互功率的波动性。研究含新能源发电的微电网与配电网交互功率成本最低或收益最高的蓄电池充放电策略及电池容量、初始荷电状态与优化效果的问题，建立了在最大功率跟踪风机出力情况下的交换功率最经济模型。在求解算法方面，采用以自然选择和遗传理论为基础的高效全局寻优搜索的遗传算法，以电池充放电功率、荷电状态和系统功率平衡为约束。最后针对风电和负荷波动的影响，经算例证明，
Application of genetic algorithm in the core optimization of high flux engineering test reactor
International Nuclear Information System (INIS)
Application of GA in HFETR core optimization design has been discussed. A part of parameters used in program has been taken from the code used in MJTR core LP optimization program. In the same time, two new techniques, imaginary core technique and symmetric mutation operator, have been introduced. ICT has been used to reduce the calculation time of optimization, while SMO has been used to increase the engineering applicability of the core design. The optimization result shows that the conversion ratio and radioisotope output have been increased more than 10%, and the optimal LP is symmetric and practical, and satisfies the engineering requirement
International Nuclear Information System (INIS)
Tin dioxide (SnO2) is one of the most promising anode materials for the next generation Li-ion batteries due to its high capacity. To solve the problems caused by the large volume change (over 300%) and the aggregation of the tin particles formed during cycling, nano SnO2/C composites are proved to be ideal anode materials for high performance Li-ion batteries. However, it is still a challenge to disperse ultrasmall (<6 nm) SnO2 nanoparticles with uniform size in carbon matrix. Here, we report a facile hydrothermal way to get such optimized nano SnO2/C composite, in which well dispersed ultrasmall SnO2 nanocrystals (3∼5 nm) are embedded in a conductive carbon matrix. With this anode, we demonstrate a high stable capacity of 928 mAh g−1 based on the total mass of the composite at a current density of 500 mA g−1. At high current density of 2 A g−1, this composite anode shows a capacity of 853 mAh g−1 in the first charge, in such high current density, we can even get a capacity retention of more than 91% (779 mAh g−1) after 1000 cycles
International Nuclear Information System (INIS)
The prototype ASTRID (Advances Sodium Technological Reactor for Industrial Demonstration) sets out to demonstrate the progress made in SFR technology at industrial scale by qualifying innovative options, some of which still remain open in the areas requiring improvements, especially safety and operability. Among all ASTRID requirements, two are specifically impacting the Fuel Handling Systems (FHS) : the reactor load factor (up to 90%) and the investment costs of the prototype (the ratio of the Fuel Handling System to the total reactor investment cost is estimated to be from 15% to 20%. A large set of fuel handling routes has been investigated. The options considered include in-vessel fuel handling systems (under rotating plugs) and options for the transfer of fuel between the reactor vessel and the external storage. The work performed realized a characterization of solutions, a performance review and an analysis of the advantages and drawbacks of the options compared to a so-called starting reference solution (SRS option) based upon well-known French SFR options or some option already envisaged in French project i.e. EFR reactor. The conclusion of this technological feasibility study is presented later for each option, and a macro-criteria grid analysis has been performed to highlight the innovative options enabled to be pursued for ASTRID. The following options were investigated: a cover core structure (CCS) designed in two independent parts, design of the “Dual Location Rotor” and design of the “Simultaneous Handling of two assemblies”. (author)
Jongerden, M.R.; Haverkort, B.R.
2008-01-01
The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However, with these models one can only compute lifetimes for specific discharge profiles, and not for workloads in general. In this paper, we give an overview of the different battery models that are availabl...
Safety analysis of neutron flux optimization in irradiation channels at the NUR research reactor
Directory of Open Access Journals (Sweden)
Zergoug Tewfik
2006-01-01
Full Text Available Prior to core reloading, planned power upgrading, or as a part of required analyses of past events, accurate safety evaluations should be carried out. Generally speaking, the content of a safety report has to be modified whenever a new type or design of fuel is to be used in a reactor core. As the existing plants have well established licensing procedures, including well founded analysis methods, the application of new analysis methods has to be thoroughly evaluated, with specific emphasis on their capability of producing results beneficial to reactor operation. The detailed study presented here was carried out so as to insure that the allowed operational safety limits of the NUR research reactor are not exceeded under any circumstances.
Münkel, Ronja; Schmid-Staiger, Ulrike; Werner, Achim; Hirth, Thomas
2013-11-01
Microalgae are discussed as a potential renewable feedstock for biofuel production. The production of highly concentrated algae biomass with a high fatty acid content, accompanied by high productivity with the use of natural sunlight is therefore of great interest. In the current study an outdoor pilot plant with five 30 L Flat Panel Airlift reactors (FPA) installed southwards were operated in 2011 in Stuttgart, Germany. The patented FPA reactor works on the basis of an airlift loop reactor and offers efficient intermixing for homogeneous light distribution. A lipid production process with the microalgae Chlorella vulgaris (SAG 211-12), under nitrogen and phosphorous deprivation, was established and evaluated in regard to the fatty acid content, fatty acid productivity and light yield. In the first set of experiments limitations caused by restricted CO₂ availability were excluded by enriching the media with NaOH. The higher alkalinity allows a higher CO₂ content of supplied air and leads to doubling of fatty acid productivity. The second set of experiments focused on how the ratio of light intensity to biomass concentration in the reactor impacts fatty acid content, productivity and light yield. The specific light availability was specified as mol photons on the reactor surface per gram biomass in the reactor. This is the first publication based on experimental data showing the quantitative correlation between specific light availability, fatty acid content and biomass light yield for a lipid production process under nutrient deprivation and outdoor conditions. High specific light availability leads to high fatty acid contents. Lower specific light availability increases fatty acid productivity and biomass light yield. An average fatty acid productivity of 0.39 g L⁻¹ day⁻¹ for a 12 days batch process with a final fatty acid content of 44.6% [w/w] was achieved. Light yield of 0.4 g mol photons⁻¹ was obtained for the first 6 days of
In-core fuel management optimization of a Very High Temperature pebble-bed Reactor
International Nuclear Information System (INIS)
A new calculation procedure was developed to reduce the power peak in the core of a Very High Temperature pebble-bed Reactor. The procedure consists in several coupled computational codes, which are used iteratively until convergence is reached. This procedure combines the fuel depletion and the neutronic behavior of the fuel in the reactor core, modeling once-through-then-out cycles as well as cycles in which pebbles are recirculated through the core an arbitrary number of times, obtaining the asymptotic fuel-loading pattern directly, without any intermediate loading pattern. (Author)
MATTEOLI CAMILLA; Martin, Oliver; SIMONOVSKI IGOR
2012-01-01
In this paper a design of a divertor cooling finger for a fusion reactor is looked at with the aim of reducing the thermo-mechanical stresses. The function of a divertor in a fusion reactor is to reduce the dilution of the plasma by removing alpha particles, helium and other impurities. In addition, this component has to remove approximately 15% of the total thermal power. The divertor is therefore exposed to a significant thermal load, and during the operation it has to be actively cooled, w...
Structural optimization design of reactor pressure vessel nozzle over the use of ANSYS
International Nuclear Information System (INIS)
Using ANSYS APDL language to establish nozzle model parametrically, outside radius and fillet of nozzle as (design variables, local membrane on fillet as constraints, volume of nozzle as) objective function, choosing the suitable design optimization arithmetic (or combination) to make the design optimization of nozzle. Within the limitation, the best result will take volume 45% off. Combination of finite element and optimization techniques, rejecting the traditional passive checking method, searching the best solution in the space, this method is effective. (authors)
Energy Technology Data Exchange (ETDEWEB)
Ortiz S, J. J.; Castillo M, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Pelta, D. A., E-mail: juanjose.ortiz@inin.gob.mx [Universidad de Granada, Escuela Superior de Ingenierias, Informatica y Telecomunicacion, C/Daniel Saucedo Aranda s/n, 18071 Granada (Spain)
2012-10-15
In previous works were presented the results of a recurrent neural network to find the best combination of several groups of fuel cells, fuel load and control bars patterns. These solution groups to each problem of Fuel Management were previously optimized by diverse optimization techniques. The neural network chooses the partial solutions so the combination of them, correspond to a good configuration of the reactor according to a function objective. The values of the involved variables in this objective function are obtained through the simulation of the combination of partial solutions by means of Simulate-3. In the present work, a multilayer neural network that learned how to predict some results of Simulate-3 was used so was possible to substitute it in the objective function for the neural network and to accelerate the response time of the whole system of this way. The preliminary results shown in this work are encouraging to continue carrying out efforts in this sense and to improve the response quality of the system. (Author)
International Nuclear Information System (INIS)
This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.
Energy Technology Data Exchange (ETDEWEB)
Esquivel-Estrada, Jaime, E-mail: jaime.esquivel@fi.uaemex.m [Facultad de Ingenieria, Universidad Autonoma del Estado de Mexico, Cerro de Coatepec S/N, Toluca de Lerdo, Estado de Mexico 50000 (Mexico); Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Ortiz-Servin, Juan Jose, E-mail: juanjose.ortiz@inin.gob.m [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Castillo, Jose Alejandro; Perusquia, Raul [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico)
2011-01-15
This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.
Zhu, Liang; Zhou, Jiaheng; Yu, Haitian; Xu, Xiangyang
2015-01-01
The hydraulic shear acts as an important selection pressure in aerobic sludge granulation. The effects of the hydraulic shear rate and reactor configuration on structural characteristics of aerobic granule in view of the hydromechanics. The hydraulic shear analysis was proposed to overcome the limitation of using superficial gas velocity (SGV) to express the hydraulic shear stress. Results showed that the stronger hydraulic shear stress with SGV above 2.4 cm s(-1) promoted the microbial aggregation, and favoured the structural stability of the granular sludge. According to the hydraulic shear analysis, the total shear rate reached (0.56-2.31)×10(5) s(-1) in the granular reactor with a larger ratio of height to diameter (H/D), and was higher than that in the reactor with smaller H/D, where the sequencing airlift bioreactor with smaller H/D had a high total shear rate under the same SGV. Results demonstrated that the granular reactor could provide a stronger hydraulic shear stress which promotes the formation and structural stability of aerobic granules. PMID:25558911
International Nuclear Information System (INIS)
The objective of this study is to develop nuclear heating measurement methods in Zero Power experimental reactors. This paper presents the analysis of Thermo- Luminescent Detectors (TLDs) and Optically Stimulated Luminescent Detectors (OSLDs) experiments in the MINERVE research reactors at the French Atomic Energy and Alternative Energies Commission center in Cadarache. The experimental sources of uncertainties on the dose have been reduced by using the optimum conditions of charged particle equilibrium (CPE) of the calibration step and reactor measurement for each detector types; by improving the process of the TLDs/OSLDs reading and calibration processes. The interpretation of these measurements needs to take into account several correction factors related to both the environment of calibration step and the type of detectors used. Similarly, the correction due to the neutrons contributions to the total dose integrated by the detectors is evaluated with Monte Carlo calculation methods. These calculations are based on MCNP simulations of neutron-gamma and gamma-electron transport coupled particles using ENDF/B-VI nuclear data library. TLDs and OSLDs are positioned inside aluminum or hafnium pillboxes. Comparisons between calculated and measured integral gamma-ray absorbed doses by TLDs in these new experiments are carried out in the MINERVE reactor in the surrounding aluminum material. They show that calculations slightly overestimate the measurements by about 8 %. By using OSLDs, the calculation slightly overestimates the measurement by about 6 %. (authors)
Czech Academy of Sciences Publication Activity Database
Gogová, Zuzana; Hanika, Jiří; Markoš, J.
Vukovar: Intech, 2010 - (Brito, A.), s. 209-232 ISBN 978-953-7619-68-8 Institutional research plan: CEZ:AV0Z40720504 Keywords : multifunctional reactor * bubbles * GLR productivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://sciyo.com/books
International Nuclear Information System (INIS)
Highlights: • A new method useful for the parametric analysis and optimization of reactor core designs. • This uses the strengths of genetic algorithms (GA), and regression splines. • The method is applied to the core fuel pin cell of a PHWR design. • Tools like java, R, and codes like Serpent, Matlab are used in this research. - Abstract: An analysis and optimization of a set of neutronics parameters of a thorium-fueled pressurized heavy water reactor core fuel has been performed. The analysis covers a detailed pin-cell analysis of a seed-blanket configuration, where the seed is composed of natural uranium, and the blanket is composed of thorium. Genetic algorithms (GA) is used to optimize the input parameters to meet a specific set of objectives related to: infinite multiplication factor, initial breeding ratio, and specific nuclide’s effective microscopic cross-section. The core input parameters are the pitch-to-diameter ratio, and blanket material composition. Recursive partitioning of decision trees (rpart) multivariate regression model is used to perform a predictive analysis of the samples generated from the GA module. Reactor designs are usually complex and a simulation needs a significantly large amount time to execute, hence implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using rpart in conjunction with GA. Due to using rpart, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The rpart model is implemented as a library using R programming language. The results suggest that the initial breeding ratio tends to increase due to a harder neutron spectrum, however a softer neutron spectrum is desired to limit the
Institute of Scientific and Technical Information of China (English)
阳岳希; 胡泽春; 宋永华
2012-01-01
The optimal operation of battery swapping and charging station for electric bus involves many processes, such as bus service, battery swapping, battery charging, and so on. The daily battery swapping demand was quantitatively analyzed based on factors including the operating pattern and electricity consumption characteristics of electric buses. The optimal battery swapping order was determined for equal battery usage and charging convenience. A two-stage and a bi-objective mathematic optimization models for battery recharging with minimize charging cost as the primary objective were established, and the smoothing of the charging load curve was also considered. Other factors that have influences on optimal charging schedule such as the starting time, reserved battery number for uncertainties were analyzed. Case study results show that the proposed method can Feduce daily charging cost substantially and mitigate the impacts of charging load on the grid.%公交车充换电站的优化运行涉及公交运营、电池更换和电池充电等多个方面.考虑公交车的运行规律和耗电特性等因素,定量分析了车辆的日换电需求,并基于均衡使用电池和有利于电池充电的原则,推导了电池优化更换的顺序.以充电成本最小为首要目标,综合考虑平滑充电负荷曲线,分别建立了两阶段和双目标优化充电模型.对优化充电的起始时间、备用电池数量等因素对优化结果的影响进行了分析.算例仿真结果表明,该方法可有效降低充电成本和充电负荷对电网的影响.
International Nuclear Information System (INIS)
This study was based on a 'pancake' type fast reactor core design of 600 MW(e), which had been optimized for Pu burning with a feed Pu vector appropriate to once-through irradiation of MOX fuel in a PWR. The purpose of the study was to investigate the effects of varying the Pu vector, examining various methods of offsetting the effects of such a change, and finally to produce fuel cycles optimized for the different qualities of Pu vector within the same basic design. In addition to the reference (once-through) Pu vector, two extreme Pu vectors were examined: high quality Pu from military stockpiles; low quality Pu corresponding to the equilibrium point of multiple recycling in a Pu burning fast reactor. Variations in Pu quality were overcome by changing the fuel inventory - replacing some of the fuel by diluent material, and altering the fuel pin size. Using absorber material (10B4C) as diluent improves the rod worth shutdown margin but degrades the Na void and Doppler safety parameters, a non-absorber diluent has the opposite effects, so a mix of the 2 material types was used to optimize the core characteristics. Of the non-absorber diluent materials examined, ZrH gave significantly better performance than all others; 11B4C was the second choice for non-absorber diluent, because of its compatibility with 10B4C absorber. It was not possible to accommodate the lower quality (multi-recycled) Pu vector without a significant increase in the fuel pin volume. It was not generally possible, especially with the increased fuel pin size, to achieve positive rod worth shutdown margins - this was overcome by increasing the number of control rods. For the higher quality Pu vectors to maintain ratings within limits, it was necessary to adopt hollow fuel pellets, or else to use the diluent material as an inert matrix in the fuel pellets. (J.P.N.)
Optimization of enrichment zones that maximize the regeneration profits in a fast reactor
International Nuclear Information System (INIS)
Using a simplified model of Super Phenix reactor, the admissible limits of internal and external enrichment core without control rods, that assure an auto-stability related to fuel Doppler coefficient were determined. A Linear Programming System was developed to solve this problem, using the SIMPLEX method. The solution showed that the regeneration profits could be increased at least in 14% if the internal enrichment core decrease 0.97 and the external 0.3%. (E.G.)
A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors
International Nuclear Information System (INIS)
Many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important criterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals
A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors.
Energy Technology Data Exchange (ETDEWEB)
Rizwan-uddin; Nick Karancevic; Stefano Markidis; Joel Dixon; Cheng Luo; Jared Reynolds
2008-04-23
many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important crterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals.
Directory of Open Access Journals (Sweden)
H. Movahedyan, A. Assadi, M. M. Amin
2008-10-01
Full Text Available Abstract: Chlorinated phenols in many industrial effluents are usually difficult to be removed by conventional biological treatment processes. Performance of the aerobic sequencing batch reactor treating 4-chlorophenol containing wastewater at different loadings rates from 0.0075 to 1.2 g4CP/L.d was evaluated. The sequencing batch reactor was operated with fill, react, settle and decant phases in the order of 10:370:90:10 min, respectively, for a cycle time of 8 h at 10 days solid retention time and 16 h hydraulic retention time in the stable period. The effects of 4-chlorophenol loadings on the 4-chlorophenol and chemical oxygen demand removal percents, yield coefficient (Y, biomass variation and sludge volume index were investigated. High chemical oxygen demand removal efficiencies (95±3.5% and approximately complete 4-chlorophenol removal (>99% were observed even in the absence of growth substrate. The degradation of 4-chlorophenol led to formation of 5-chloro-2-hydroxymuconic semialdehyde, which was more oxidized, indicating complete disappearance of 4-chlorophenol via meta-cleavage pathway. A compact sludge with excellent settleability (sludge volume index=47±6.1 mL/g developed during entire acclimation period. High removal efficiencies with sequencing batch reactor may be due to enforced short term unsteady state conditions coupled with periodic exposure of the microorganisms to defined process conditions which facilitate the required metabolic pathways for treating xenobiotics containing wastewater.
CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR
Energy Technology Data Exchange (ETDEWEB)
B. Boer; A. M. Ougouag
2010-05-01
Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.
DEFF Research Database (Denmark)
Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.;
2002-01-01
ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first......For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...
International Nuclear Information System (INIS)
The in-core fuel management optimization model based on the genetic algorithm has been established. An encode/decode technique based on the assemblies position is presented according to the characteristics of HFETR. Different reproduction strategies have been studied. The expert knowledge and the adaptive genetic algorithms are incorporated into the code to get the optimized loading patterns that can be used in HFETR
International Nuclear Information System (INIS)
Highlights: • Systematic approach is proposed to control optimally the automotive power systems. • Energy management algorithms are based on Pontryagin’s Minimum Principle. • Both single and hybrid energy storage systems are investigated. • State constraints on the supercapacitor are considered in the control design. • Real-time control strategies are directly derived from offline optimal algorithms. - Abstract: The objective of this work is to show how to control the electric power systems of a vehicle in such a manner that their power flows should be optimized in the sense of energy efficiency. As will be seen, the control problem considered in this work can be formulated as an optimization problem in the presence of several constraints. A systematic approach based on optimal control will be adopted to design the energy management strategies. Then, by means of these strategies, the electric energy will be generated and stored in the most appropriate manner so that the overall energy consumption and eventually the pollutant emissions can be minimized for a given driving cycle. To this end, both non-causal optimization method using the knowledge of the entire driving cycle and causal one are developed for two case studies with different structures of energy storage system. These strategies are then evaluated in an advanced simulation environment to point out their effectiveness
Final report-passive safety optimization in liquid sodium-cooled reactors.
Energy Technology Data Exchange (ETDEWEB)
Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.
2007-08-13
This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety
Singh, Neelam; Galande, Charudatta; Miranda, Andrea; Mathkar, Akshay; Gao, Wei; Reddy, Arava Leela Mohana; Vlad, Alexandru; Ajayan, Pulickel M.
2012-01-01
If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials...
International Nuclear Information System (INIS)
Highlights: ► Non-recyclable, hazards, under-utilized waste tyre was converted to useful fuel. ► Design of experiment was used to optimize the process parameters. ► Fuel compatibility for IC engines was tested by standard fuel testing procedures. ► Optimized process parameters were tested and the empirical model validated. - Abstract: Pyrolysis process offers solution to utilize huge quantity of worn out automobile tyres to produce fuel for energy needs. Shredded tyre wastes were subjected to pyrolysis at atmospheric pressure under inert gas atmosphere in a fluidized bed combustion setup. The shredded tyre particle size, the feed rate of the feed stock, and the pyrolysis temperature were varied systematically as per the designed experiment to study their influence on product yield. Maximizing the oil yield and subduing the gas and char yield is the objective to optimize the process parameters. A low pyrolysis temperature of 440 °C with low feed rate increases the residence time in the combustion reactor yielding maximum oil. The physical properties of raw pyrolysis oil, distilled oil and the evolved gases were done to find its suitability to utilize them as alternatives to the conventional fuels
International Nuclear Information System (INIS)
approach is that many histories, i.e., combinations of decision variables, must be evaluated, which implies that many core physics calculations are required to determine the family of near-optimum decisions. To reduce computer execution time, highly efficient, core physics models with only the fidelity required for the assigned task are utilized. Ideally, one would like to utilize the same core physics models for all nuclear problems for consistency and ease of usage, which may someday occur with increases in computational power and advances in computational reactor physics. In considering core physics models, a unique aspect for nuclear fuel management optimization applications is that many repetitive calculations need to be completed during the optimization search. This implies that considerable overhead can be tolerated to reduce the computational time per history since the overhead will be amortized over many histories. This feature can imply the employment of different solution approaches than normally utilized. How various suboptimum problems integrate in an attempt to address the global optimization problem is now explained. The out-of-core optimization OCEON-P code has a number of decision variables, but the only decision that carries-forward in the reload design process is the cycling scheme, i.e., batch sizes in each cycle of the planning horizon. Note that OCEON-P is the only optimization code within the suite that truly does multicycle optimization and so can meaningfully evaluate and minimize levelized fuel cycle cost. The FORMOSA-L code optimizes the lattice, normally constrained to follow a specified reactivity versus burnup. This constraint provides the linkage to the core-wide analysis but is problematic to obtain. There currently does not exist within the suite of codes one that addresses the suboptimum problem of bundle design, which other researchers have addressed to a limited extent. With our current capabilities, a number of different bundle designs
International Nuclear Information System (INIS)
Based on SimPort simulation platform of nuclear power plant, a simulation model for Digital Power Regulating System (DPRS) of China Advanced Research Reactor (CARR) was established. By simulating the transient state of DPRS using this model, the adjusting parameters for the digital PID controller were determined. According to the features of the driving mechanism, the effects of the driving accuracy of the control rod and the displacement delay between electromagnetic coil and armature upon system stability and the regulating performance were analyzed, furthermore, their stability limit values were obtained respectively. The research results of this paper have some engineering practical value. (authors)
Automatic optimization of a nuclear reactor reload using the algorithm Ant-Q
International Nuclear Information System (INIS)
The nuclear fuel reload optimization is a NP-Complete combinatorial optimization problem. For decades this problem was solved using an expert's knowledge. From the eighties, however there have been efforts to automatic fuel reload and the more recent ones show the Genetic Algorithm's (GA) efficiency on this problem. Following this trend, our aim is to optimization nuclear fuel reload using Ant-Q, artificial theory based algorithms. Ant-Q's results on the Traveling salesman Problem, which is conceptuality similar to fuel reload, are better than GA's. Ant-Q was tested in real application on the cycle 7 reload of Angra I. Comparing Ant-Q result with the GA's, it can be verified that, even without a local heuristics, the former algorithm, as it superiority comparing the GA in Angra I show. Is a valid technique to solve the nuclear fuel reload problem. (author)
Optimized calibration of neutronic-thermodynamic simulator for low power fast reactors
International Nuclear Information System (INIS)
Aiming to a general optimization of the project, controlled fuel depletion and management and yet motivated the feasibility of application of the SIRZ simulator to solve such problem, we present here an optimized and systematic calibration of this simulator. Are shown explicitly the control variables and the corresponding calibration equations for the buckling factors. After iterative linearizations, the resultant Linear Programming Problems were solved by the SIMPLEX Method. The results show that the optimum calibration is easily obtained if convergence control parameters are adequately chosen. (Author)
Optimized phases for reactor dismantling – an efficient and sustainable concept
International Nuclear Information System (INIS)
D&D projects are driven by costs, to implement an optimization process from the very beginning is key. Optimized strategy and sequencing of the dismantling (hot to cold) will provide serious economical savings . Larger dismantling packages will reduce interfaces and ease the coordination efforts on site. Early usage of mobile systems will ease the large-scale release for dismantling Social transition has to be addressed with priority and to be planned at an early phase in the D&D planning Concept, Planning & Project Management will influence the success of the project much more than the used technique
Institute of Scientific and Technical Information of China (English)
张志宏; 夏晓彬; 蔡军; 王建华; 李长园; 葛良全; 张庆贤
2015-01-01
The Chinese Academy of Science has launched a thorium-based molten-salt reactor (TMSR) research project with a mission to research and develop a fission energy system of the fourth generation. The TMSR project intends to construct a liquid fuel molten-salt reactor (TMSR-LF), which uses fluoride salt as both the fuel and coolant, and a solid fuel molten-salt reactor (TMSR-SF), which uses fluoride salt as coolant and TRISO fuel. An optimized 2 MWth TMSR-LF has been designed to solve major technological challenges in the Th-U fuel cycle. Preliminary conceptual shielding design has also been performed to develop bulk shielding. In this study, the radiation dose and temperature distribution of the shielding bulk due to the core were simulated and analyzed by performing Monte Carlo simulations and computational fluid dynamics (CFD) analysis. The MCNP calculated dose rate and neutron and gamma spectra indicate that the total dose rate due to the core at the external surface of the concrete wall was 1.91 µSv/h in the radial direction, 1.16 µSv/h above and 1.33 µSv/h below the bulk shielding. All the radiation dose rates due to the core were below the design criteria. Thermal analysis results show that the temperature at the outermost surface of the bulk shielding was 333.86 K, which was below the required limit value. The results indicate that the designed bulk shielding satisfies the radiation shielding requirements for the 2 MWth TMSR-LF.
International Nuclear Information System (INIS)
This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. The CD-ROM attached to this IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.
DEFF Research Database (Denmark)
Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik;
1999-01-01
optimize the reaction system with four process parameters, these being volume flow rate, water content in the substrates, reaction temperature and substrate ratio. The incorporation of acyl donors, product yields and the content of diacylglycerols were measured as the model responses. Enzyme activity was......Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied to...... not identical for the sequential experiments in the same enzyme bed due to the deactivation of the Lipozyme IM. Therefore, the results were normalized based on enzyme deactivation models. Well-fitting quadratic models were obtained after normalizing the data for the incorporation of oleic acid and the...
International Nuclear Information System (INIS)
This work deals with optimization of a detector system for use with the fourier reverse time of flight (RTOF) diffractometer facility recently installed at the ETRR-1 reactor. The detector system of the diffractometer was designed for detecting neutrons scattered from the sample. It consists of 4 independent scintillation detector elements arranged according to the time focusing geometry in order to increase the luminosity of the diffractometer for the given resolution. Each of the detector elements is made of 1 mm thick 6 Li-glass scintillator (NE-912) whose surface area is 200 mm2. The present detector system ensures reliable identification and separation of thermal neutron pulses from fast neutrons and gamma- quanta. It was found from measurements with Fe sample that it is possible to make neutron diffraction measurement, within one hour using the present detector system and with resultion 0.5%. 6 FIGS
International Nuclear Information System (INIS)
Recent progress on the experimental identification and physics interpretation of 3D effects of magnetic field geometry/topology on divertor transport is overviewed. In this paper, the 3D effects are elucidated as a consequence of competition between transports parallel (∥) and perpendicular (⊥ ) to magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition process has strong impacts on the divertor functions, such as density regime, impurity screening, and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Based on the experiments and numerical simulations, key parameters governing the 3D transport physics for the individual divertor functions, are discussed, suggesting demanding issues to be addressed for divertor optimization in future reactors. (author)
Do existing research reactors teach us all about beam tube optimization?
International Nuclear Information System (INIS)
The contribution makes the attempt to analyse the data base available in the literature and in Siemens' own projects and to find out potential systematics from the existing research reactor with beam tubes, separated into reactors with different reflectors and distinguished for tangential and radial tubes and cold neutron sources, resp. Some generic calculations serve as gauging data. The contribution is not meant as critics on any design.The results might serve supporting designers and operators when evaluating the pros and cons of existing or planned design in terms of the optimum beam tubes. Existing lacks of systematics are evaluated in view of suitable explanations and constraints, which do not allow optimisation. Examples pf such constraints are the different material layers between fuel zone and reflector zone which have various reasons. The limited data in the literature plus the numerous lacks of precision of the representation of those data should be an incentive to improve the performed analysis by collecting more exact data and re-doing the evaluation before answering the title-question really. (author)
International Nuclear Information System (INIS)
Worker and area monitoring have routinely been done around the CDTN TRIGA IPR-R1 research reactor aiming to optimize and assure radiation protection safety. As part of the implementation of the ALARA program, individual doses from planned practices were analyzed. Personnel dose equivalents, Hp(10), from up to 39 occupationally exposed workers were daily reported during their stay in the restricted area. Measurements were done with a RAD-60 Rados electronic personal dosimeter with a 1 μSv low detection limit. Results of about 5000 measurements in a year obtained during 2009 and 2010 showed that monthly doses did not exceed 60 μSv, except in very specific cases of non-routine practices. Results also suggested that values of 40, 100 and 800 μSv could be adopted as weekly, monthly and annual dose constraints. Considering that measured doses were very small when compared to the 20 mSv/year dose limit, it was concluded that the adoption of the dose constraints was enough to assume the compliance with the ALARA principle and that changes in the routine procedure or in the reactor facility design are not needed. (author)
Directory of Open Access Journals (Sweden)
Hsiao-Ching Chen
2011-01-01
Full Text Available An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435 as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31±2.07% and 82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.
Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...
International Nuclear Information System (INIS)
Highlights: → Development of a 3D multi group computer model for pressurized water reactor (PWR). → Particle swarm optimization method is used in the model for finding the optimum fuel loading pattern. → A typical PWR core is analyzed using this computer model for two cycles. → The results are not very sensitive to either number of particles or iterations used. → A number of experiments have to be performed to arrive at the best global fitness. - Abstract: A three dimensional multi-energy group computer model PRISHA, which solves the neutron diffusion equations using finite difference method is developed for Pressurized Water Reactor (PWR). This computer code can find an optimum loading of a group of fresh fuel assemblies along with fuel assemblies of different exposures. The successive line over relaxation (SLOR) method is used to solve neutron diffusion equations. After validation of this part of computer code against an IAEA - PWR benchmark problem with 177 fuel assemblies in the core, particle swarm optimization (PSO) method is incorporated in the code for finding the optimum fuel loading pattern. A typical PWR core with 157 fuel assemblies, where 289 fuel pins are arranged in 17 x 17 rectangular arrays in a fuel assembly, was analyzed using this computer model for two cycles using PSO method. Different numbers of particles and iterations were used in PSO method. The results are found to be not very sensitive to either the number of particles or the number of iterations used in PSO method for considered case. However, a number of experiments have to be performed to arrive at the best global fitness parameter. Reasonably low power peaking factors were obtained for both the cycles.
Lochmatter, Samuel; Holliger, Christof
2014-08-01
The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. PMID:24784454
Directory of Open Access Journals (Sweden)
M Hajsardar
2016-06-01
Full Text Available Background and Objectives: In order to optimize wastewater nitrogen removal and to reduce the problems of entering nutrients in final receptors, for example, a lake, partial nitrification, as a novel nitrogen removal method, was studied. Materials and Methods: The efficiency of simultaneous nitrification and denitrification (SND in partial nitrification through nitrification/denitrification in fixed-film reactor was surveyed. In this process, ammonium was converted to nitrite by ammonium oxidizing bacteria (AOB but the activity of nitrite oxidizing bacteria (NOB was limited at low dissolved oxygen (DO level. The inflection points of oxidation-reduction potential (ORP profile were used as the indicators of process optimization. Results: This research showed that in period 2 at fixed DO level of 0.5 mg/L, nitrite accumulation rate (NAR was higher than period 1 in which DO was declined from 1 to 0.5 mg/L. In contrast to period 1, SND efficiency was reduced in period 2. In period 3, by increment of the carbon to nitrogen ratio (C/N to 12.5, NAR increased to 71.4 % and SND efficiency increased to 96.7%. In the long term analysis of proposed method, SND efficiency was, at least, 90%. Conclusion: Proper C/N ratio and minimum DO level resulted in higher nitrogen removal efficiencies than the operation in which DO was decreased during aerobic phase. By using a fixed-film reactor and without considering an anoxic step, at DO level of 0.5 mg/L, maximum SND efficiency and maximum NAR would be achieved.
Golmohammad, M.; Mirhabibi, A.; Golestanifard, F.; Kelder, E. M.
2016-01-01
The synthesis of iron oxide nanoparticles via coprecipitation was studied by exploiting a factorial design of experiment methodology to investigate the influence of pH, medium temperature, Fe3+/Fe2+ ratio, and reaction time on the crystallite size. X-ray diffraction revealed that crystallite size decreased with increased pH and the Fe3+/Fe2+ ratio more significantly. This approach enabled us to make a reliable and reproducible protocol for optimizing the synthesis of monodispersed maghemite nanoparticles. Fourier transform infrared spectra and simultaneous thermal analysis results suggested the coexistence of two kinds of binding energies between surfactant (oleic acid) molecules and the maghemite nanoparticles. Brunauer-Emmett-Teller surface area and high-resolution transmission electron microscope results disclosed that the average particle size of the optimized sample was around 8 nm. Galvanostatic charge-discharge cycling for the optimized sample, and the sample with average particle size of 19 nm showed reversible capacities of 430 mAh g-1 and 340 mAh g-1 at 500 mA g-1, respectively, which is attributed to the narrower size distribution and smaller particle size of the optimized sample.
International Nuclear Information System (INIS)
We suggest a method to overcome this problem of optimization by varying reloading patterns by characterizing each particular reloading pattern by a set of intermediate parameters that are numbers. Plots of the objective function versus the intermediate parameters can be made. When the intermediate parameters represent the reloading patterns in a unique way, the optimum of the objective function can be found by interpolation within such plots and we can find the optimal reloading pattern in terms of intermediate parameters. These have to be transformed backwards to find an optimal reloading pattern. The intermediate parameters are closely related to the time averaged neutron flux shape in the core during an equilibrium cycle. This flux shape is characterized by a set of ratios of the space averaged fluxes in the fuel zones and the space averaged flux in the zone with the fresh fuel elements. An advantage of this choice of intermediate parameters is that it permits analytical calculation of equilibrium cycle fuel densities in the fuel zones for any applied reloading patten characterized by a set of equilibrium cycle average flux ratios and thus, provides analytical calculations of fuel management objective functions. The method is checked for the burnup of one fissile nuclide in a reactor core with the geometry of the PWR at Borssele. For simplicity, neither the conversion of fuel, nor the buildup of fission products were taken into account in this study. Since these phenomena can also be described by the equilibrium cycle average flux ratios, it is likely that this method can be extended to a more realistic method for global in core fuel management optimization. (orig./GL)
B#: A battery emulator and power-profiling instrument
Park, C. S.; Liu, J. F.; Chou, P H
2005-01-01
B# (B sharp) is a programmable power supply that emulates battery behavior. It measures current load, calls a battery simulation program to compute voltage in real time, and controls a linear regulator to mimic a battery's voltage output. The instrument enables validation of battery-aware power optimization techniques with accurate, controllable, reproducible results.
Energy Technology Data Exchange (ETDEWEB)
Dardour, S
2007-04-15
This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)
Siontorou, Christina G.; Karydi, Angeliki
2012-12-01
This work deals with the endogenous estimation of the Safety Coefficient Ge = Vd/Vm, where Vd is the design volume and Vm is the mean volume of liquid of a biochemical reactor operating at industrial level. The Vd-value is estimated through Monte Carlo simulation while Vm-value is obtained by means of material balances and biochemical kinetics. A case example on waste water biological treatment is presented, referring to a well-mixed bioreactor followed by a clarifier. The Ge-values finally estimated are in the lower part of the (exogenously determined) region as suggested in the relevant technical literature, implying a significant saving of investment capital, which forms the principle component of fixed cost. Similar applications are also mentioned in brief.
International Nuclear Information System (INIS)
Based on SimPort simulation platform of nuclear power plant, a simulation model for Digital Power Regulating System (DPRS) of China Advanced Research Reactor (CARR) was established. The transient state of DPRS was simulation studied using this model. According to the characteristics of the driving mechanism of the control rods, the effects of the driving precision of the control rod and its displacement delay upon the system stability were analyzed. Considering the process requirements of CARR and the function characteristic of DRPS, the adjusting parameters for the digital PID controller and the stability limits of the driving mechanism of the control rods were obtained. The sampling period of the digital PID controller is 100 ms and its proportion gain is 300. The stability limit of the driving precision of the control rod is 0.4 mm. The stability limit of displacement delay between electromagnetic coil and armature is 6.0 mm. (authors)
Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study
Energy Technology Data Exchange (ETDEWEB)
Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)
2012-05-15
The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Light water reactor pressure vessel (RPV) material properties reduced by long-term exposure to neutron irradiation can be recovered through a thermal annealing treatment. This technique to extend RPV life, discussed in this report, provides a complementary approach to analytical methodologies to evaluate RPV integrity. RPV annealing has been successfully demonstrated in the former Soviet Union and on a limited basis by the US (military applications only). The process of demonstrating the technical feasibility of annealing commercial US RPVs is being pursued through a cooperative effort between the nuclear industry and the US Department of Energy (USDOE) Plant Lifetime Improvement (PLIM) Program. Presently, two projects are under way through the USDOE PLIM Program to demonstrate the technical feasibility of annealing commercial US RPVS, (1) annealing re-embrittlement data base development and (2) heat transfer boundary condition experiments
Energy Technology Data Exchange (ETDEWEB)
Besanger, Travis R. [Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ont. L8S 4M1 (Canada); Hodgson, Richard J. [Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ont. L8S 4M1 (Canada); Green, James R.A. [Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ont. L8S 4M1 (Canada); Brennan, John D. [Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ont. L8S 4M1 (Canada)]. E-mail: brennanj@mcmaster.ca
2006-03-30
Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low {mu}L/min range. Using the enzyme {gamma}-glutamyl transpeptidase ({gamma}-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by {approx}2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k {sub cat} and decreases in K {sub M}, switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography.
Optimization of multi-group cross sections for fast reactor analysis
International Nuclear Information System (INIS)
The selection of the number of broad energy groups, collapsed broad energy group boundaries, and their associated evaluation into collapsed macroscopic cross sections from a general 238-group ENDF/B-VII library dramatically impacted the k eigenvalue for fast reactor analysis. An analysis was undertaken to assess the minimum number of energy groups that would preserve problem physics; this involved studies using the 3D deterministic transport parallel code PENTRAN, the 2D deterministic transport code SCALE6.1, the Monte Carlo based MCNP5 code, and the YGROUP cross section collapsing tool on a spatially discretized MOX fuel pin comprised of 21% PUO2-UO2 with sodium coolant. The various cases resulted in a few hundred pcm difference between cross section libraries that included the 238 multi-group reference, and cross sections rendered using various reaction and adjoint weighted cross sections rendered by the YGROUP tool, and a reference continuous energy MCNP case. Particular emphasis was placed on the higher energies characteristic of fission neutrons in a fast spectrum; adjoint computations were performed to determine the average per-group adjoint fission importance for the MOX fuel pin. This study concluded that at least 10 energy groups for neutron transport calculations are required to accurately predict the eigenvalue for a fast reactor system to within 250 pcm of the 238 group case. In addition, the cross section collapsing/weighting schemes within YGROUP that provided a collapsed library rendering eigenvalues closest to the reference were the contribution collapsed, reaction rate weighted scheme. A brief analysis on homogenization of the MOX fuel pin is also provided, although more work is in progress in this area. (authors)
Optimization of biogas production from wheat straw stillage in UASB reactor
International Nuclear Information System (INIS)
In the present study, thermophilic anaerobic digestion of wheat straw stillage was investigated. Methane potential of stillage was determined in batch experiments at two different substrate concentrations. Results showed that higher methane yields of 324 ml/g-(volatile solids) VSadded were obtained at stillage concentrations of 12.8 g-VS/L than at 25.6 g-VS/l. Continuous anaerobic digestion of stillage was performed in an up-flow anaerobic sludge blanket (UASB) reactor at 55 oC with 2 days hydraulic retention time. Results showed that both substrate concentration and organic loading rate (OLR) influenced process performance and methane yields. Maximum methane yield of 155 ml CH4/g-COD was obtained at stillage mixtures with water of 25% (v/v) in the feed and at an OLR of 17.1 g-COD/(l.d). Soluble chemical oxygen demand (SCOD) removal at this OLR was 76% (w/w). Increase in OLR to 41.2 g-COD/(l.d) and/or stillage concentration in the feed to 33-50% (v/v) resulted in low methane yields or complete process failure. The results showed that thermophilic anaerobic digestion of wheat straw stillage alone for methane production is feasible in UASB reactor at an OLR of 17.1 g-COD/(l.d) and at substrate concentration of 25% in the feed. The produced methane could improve the process energy and economics of a bioethanol plant and also enable to utilize the stillage in a sustainable manner.
Optimization of Co-content in C14 Laves phase multi-component alloys for NiMH battery application
International Nuclear Information System (INIS)
The structural, electrochemical, and gas phase hydrogen storage properties of predominantly C14 crystalline phase alloys with partial replacement by Co (up to 2.5 at%) are reported. Minor phases, including C15 and cubic TiNi, were found by X-ray diffraction and contributed to the improved hydrogen diffusion through the alloy. The optimal Co-content of between 1.0 and 1.5 at% provides easy activation, high gas phase capacity, and a high discharge capacity. An optimized alloy formula also provided the smallest metallic nickel cluster size embedded in the surface oxide and the largest number of nickel clusters. In sealed cell studies, a Co-content of 1.5% gives the best performance in formation, cycle life, and charge retention, but has worse specific power and low temperature performance than some other compositions. The high-rate dischargeabilities at lower rates were found to be limited by surface reactions, not bulk diffusion.
Fuel cycle optimization in pressurized water reactors under forced outrage conditions
International Nuclear Information System (INIS)
Nuclear fuel management being a vital aspect of economic nuclear power, it is important for the nuclear fuel manager to dispose of the necessary tools for reaching the right decisions. The problem can be defined as ''Optimization of energy output from a specific amount of U-235''. As part of this research project the computer program SCOPE was used to optimize the loading pattern with the aim of attaining maximum energy output for full depletion of reactivity. The program is extremely useful for a case where the enrichment cannot be changed, such as in a forced outage. Other available methods tend to be too cumbersome for such events, so frequent in the operation of commercial nuclear power plants. (B.G.)
Yong Li; Xiangjun Li; Fang Chen; Xiwang Cui; Xiaojuan Han
2012-01-01
Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and th...
Thermal—hydraulic Optimization of Water—cooled Center COnductor Post for Spherical Tokamaks Reactor
Institute of Scientific and Technical Information of China (English)
柯严; 吴宜灿; 等
2002-01-01
This paper proposes a conceptual structure of segmental water-cooled Center Conductor Post(CCP) to be flexble in installment and replacement.Thermal-hydraulic optimization and sensitivity analysis of key parameters are performed based on a reference fusion transmutation system with 100MW fusion power.Numerical simulation by using a commercial code PHOENICS has been carried out to be close to the thermal-hydraulic analytical results of the CCP mid-part.
Thermal-hydraulic Optimization of Water-cooled Center Conductor Post for Spherical Tokamaks Reactor
Institute of Scientific and Technical Information of China (English)
柯严; 吴宜灿; 黄群英; 郑善良
2002-01-01
This paper proposes a conceptual structure of segmental water-cooled Center Con ductor Post (CCP) to be flexible in installment and replacement. Thermal-hydraulic optimization and sensitivity analysis of key parameters are performed based on a reference fusion transmutation system with 100 MW fusion power. Numerical simulation by using a commercial code PHOEN]CS has been carried out to be close to the thermal-hydraulic analytical results of the CCP mid-part.
Energy Technology Data Exchange (ETDEWEB)
Machado, Marcelo Dornellas; Sacco, Wagner Figueiredo; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear
2000-07-01
Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to introduce a new niching technique based on the fuzzy clustering method FCM, bearing in mind its eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. tests are performed using widely known test functions and their results show that the new method is quite promising, specially to a future application in real world problems like the nuclear reactor core reload. (author)
Energy Technology Data Exchange (ETDEWEB)
Sacco, Wagner Figueiredo; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear
2000-07-01
Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to test existing niching techniques and two methods introduced herein, bearing in mind their eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. Tests are performed using widely known test functions and their results show that the new methods are quite promising, specially in real world problems like the nuclear reactor core reload. (author)
Prada, Eric
2012-01-01
Secondary batteries are the electrochemical systems that store electricity onboard ofelectrified vehicles. Understanding battery aging mechanisms impact on power/energyperformances is of significant importance to design safe, cost-efficient and durable energystorage systems. This research and development approach relies on numerical models. In thisPhD work, a simplified electrochemical and thermal battery model including agingmechanisms is developed for a commercial LiFePO4-graphite (LFP/C) L...
International Nuclear Information System (INIS)
Highlights: ► The automatic procedure was developed to design the radial enrichment and gadolinia (Gd) distribution of fuel lattice. ► The method is based on a particle swarm optimization algorithm and local search. ► The design goal were to achieve the minimum local peaking factor. ► The number of fuel pins with Gd and Gd concentration are fixed to reduce search complexity. ► In this study, three axial sections are design and lattice performance is calculated using CASMO-4. - Abstract: The axial section of fuel assembly in a boiling water reactor (BWR) consists of five or six different distributions; this requires a radial lattice design. In this study, an automatic procedure based on a particle swarm optimization (PSO) algorithm and local search was developed to design the radial enrichment and gadolinia (Gd) distribution of the fuel lattice. The design goals were to achieve the minimum local peaking factor (LPF), and to come as close as possible to the specified target average enrichment and target infinite multiplication factor (k∞), in which the number of fuel pins with Gd and Gd concentration are fixed. In this study, three axial sections are designed, and lattice performance is calculated using CASMO-4. Finally, the neutron cross section library of the designed lattice is established by CMSLINK; the core status during depletion, such as thermal limits, cold shutdown margin and cycle length, are then calculated using SIMULATE-3 in order to confirm that the lattice design satisfies the design requirements.
Preethi, V; Kanmani, S
2016-10-01
Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. PMID:27562700
Wang, Rongchang; Xiao, Fan; Wang, Yanan; Lewandowski, Zbigniew
2016-09-01
The goal of this study was to investigate the effect of transmembrane gas pressure (P g) on the specific ammonium removal rate in a membrane-aerated biofilm reactor (MABR). Our experimental results show that the specific ammonium removal rate increased from 4.98 to 9.26 gN m(-2) day(-1) when P g increased from 2 to 20 kPa in an MABR with a biofilm thickness of approximately 600 μm. However, this improvement was not linear; there was a threshold of P g separating the stronger and weaker effects of P g. The ammonium removal rate was improved less significantly when P g was over the threshold, indicating that there is an optimal threshold of P g for maximizing ammonium removal in an MABR. The change in oxygen penetration depth (d p) is less sensitive to P g in the ammonia-oxidizing active layer than in the inactive layer in membrane-aerated biofilm. The location of the P g threshold is at the same point as the thickness of the active layer on the curve of d p versus P g; thus, the active layer thickness and the optimal P g can be determined on the basis of the changes in the slope of d p to P g. PMID:27170321
Huang, Cong; Li, Zhi-Ling; Chen, Fan; Liu, Qian; Zhao, You-Kang; Gao, Ling-Fang; Chen, Chuan; Zhou, Ji-Zhong; Wang, Ai-Jie
2016-01-01
In this study, two lab-scale UASB reactors were established to testify S(0) recovery efficiency, and one of which (M-UASB) was improved from the previous T-UASB by shortening reactor height once S(2-) over oxidation was observed. After the height was shortened from 60 to 30cm, S(0) recovery rate was improved from 7.4% to 78.8%, and while, complete removal of acetate, nitrate and S(2-) was simultaneously maintained. Meanwhile, bacterial community distribution was homogenous throughout the reactor, with denitrifying sulfide oxidization bacteria predominant, such as Thauera and Azoarcus spp., indicating the optimized condition for S(0) recovery. The effective control of working height/volume in reactors plays important roles for the efficient regulation of S(0) recovery during DSR process. PMID:26497112
Advanced CANDU reactor: an optimized energy source of oil sands application
International Nuclear Information System (INIS)
Atomic Energy of Canada Limited (AECL) is developing the ACR-700TM (Advanced CANDU Reactor-700TM) to meet customer needs for reduced capital cost, shorter construction schedule, high capacity factor while retaining the benefits of the CANDU experience base. The ACR-700 is based on the concept of CANDU horizontal fuel channels surrounded by heavy water moderator. The major innovation of this design is the use of slightly enriched uranium fuel in a CANFLEX bundle that is cooled by light water. This ensures: higher main steam pressures and temperatures providing higher thermal efficiency; a compact and simpler reactor design with reduced capital costs and shorter construction schedules; and reduced heavy water inventory compared to existing CANDU reactors. ACR-700 is not only a technically advanced and cost effective solution for electricity generating utilities, but also a low-cost, long-life and sustainable steam source for increasing Alberta's Oil Sand production rates. Currently practiced commercial surface mining and extraction of Oil Sand resources has been well established over the last three decades. But a majority of the available resources are somewhat deeper underground require in-situ extraction. Economic removal of such underground resources is now possible through the Steam Assisted Gravity Drainage (SAGD) process developed and proto-type tested in-site. SAGD requires the injection of large quantities of high-pressure steam into horizontal wells to form reduced viscosity bitumen and condensate mixture that is then collected at the surface. This paper describes joint AECL studies with CERI (Canadian Energy Research Institute) for the ACR, supplying both electricity and medium-pressure steam to an oil sands facility. The extensive oil sands deposits in northern Alberta are a very large energy resource. Currently, 30% of Canda's oil production is from the oil sands and this is expected to expand greatly over the coming decade. The bitumen deposits in the
International Nuclear Information System (INIS)
An optimization of the specific capacity exhibited by the best layered lithiated cobalt nitride Li2.20Co0.40N is proposed by using a conditioning electrochemical oxidation up to 1.1 V before cycling in the 1.1 V–0.02 V potential range. This initial charge process allows the Co3+/Co2+ redox couple to be involved in the cycling process in addition to the Co2+/Co+ couple as in the 1 V–0.02 V voltage range. A new electrochemical fingerprint is obtained with a single step at 0.4/0.8 V for the discharge-charge process and a specific capacity of 300 mAh g−1 at C/5 which constitutes a huge improvement compared to 130 mAh g−1 recovered in the conventional 1 V–0.02 V potential window. This high capacity value and the excellent capacity retention of 100% over at least 75 cycles make Li2.20Co0.40N a promising anode material for Li-ion batteries
Chen, Renjie; Huang, Yongxin; Xie, Man; Zhang, Qianyun; Zhang, XiaoXiao; Li, Li; Wu, Feng
2016-06-29
Traditional Prussian blue (Fe4[Fe(CN)6]3) synthesized by simple rapid precipitation shows poor electrochemical performance because of the presence of vacancies occupied by coordinated water. When the precipitation rate is reduced and polyvinylpyrrolidone K-30 is added as a surface active agent, the as-prepared Prussian blue has fewer vacancies in the crystal structure than in that of traditional Prussian blue. It has a well-defined face-centered-cubic structure, which can provide large channels for Na(+) insertion/extraction. The material, synthesized by slow precipitation, has an initial discharge capacity of 113 mA h g(-1) and maintains 93 mA h g(-1) under a current density of 50 mA g(-1) after 150 charge-discharge cycles. After further optimization by a chemical etching method, the complex nanoporous structure of Prussian blue has a high Brunauer-Emmett-Teller surface area and a stable structure to achieve high specific capacity and long cycle life. Surprisingly, the electrode shows an initial discharge capacity of 115 mA h g(-1) and a Coulombic efficiency of approximately 100% with capacity retention of 96% after 150 cycles. Experimental results show that Prussian blue can also be used as a cathode for Na-ion batteries. PMID:27267656
Gabrielli, Giulio; Axmann, Peter; Diemant, Thomas; Behm, Rolf Jürgen; Wohlfahrt-Mehrens, Margret
2016-07-01
Morphologically optimized LiNi0.5 Mn1.5 O4 (LMNO-0) particles were treated with LiNbO3 to prepare a homogeneously coated material (LMNO-Nb) as cathode in batteries. Graphite/LMNO-Nb full cells present a twofold higher cycling life than cells assembled using uncoated LMNO-0 (graphite/LMNO-0 cell): Graphite/LMNO-0 cells achieve 80 % of the initial capacity after more than 300 cycles whereas for graphite/LMNO-Nb cells this is the case for more than 600 cycles. Impedance spectroscopy measurements reveal significantly lower film and charge-transfer resistances for graphite/LMNO-Nb cells than for graphite/LMNO-0 cells during cycling. Reduced resistances suggest slower aging related to film thickening and increase of charge-transfer resistances when using LMNO-Nb cathodes. Tests at 45 °C confirm the good electrochemical performance of the investigated graphite/LMNO cells while the cycling stability of full cells is considerably lowered under these conditions. PMID:27254109
Directory of Open Access Journals (Sweden)
Kil To Chong
2013-10-01
Full Text Available The main objective of the present work is to apply a sliding mode controller (SMC to medium voltage and high power output energy recovery Li-ion power accumulator battery pack testing systems (ERLPABTSs, which are composed of a three-level neutral-point-clamped (NPC three-phase voltage source inverter (VSI and a two-level buck-boost converter without an isolating transformer. An inner current decoupled control scheme for the aforementioned system is proposed and two sliding mode planes for active and reactive current control are designed based on the control scheme. An optimized switching table for current convergence is used according to the error sign of the equivalent input voltage and feedback voltage. The proposed ERLPABTS could be used to integrate discharging energy into the power grid when performing high accuracy current testing. The active and reactive power references for the grid-connected inverter are determined based on the discharging energy from the DC-DC converter. Simulations and experiments on a laboratory hardware platform using a 175 kW insulated gate bipolar transistor (IGBT-based ERLPABTS have been implemented and verified, and the performance is found satisfactory and superior to conventional ERLPABPTS.
Directory of Open Access Journals (Sweden)
ZANARIAH MOHD DOM
2014-06-01
Full Text Available Medium-chain acylglycerols (or glycerides are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD with the presence of oil palm mesocarp lipase (OPML which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol are optimize in order to determine the factors that have significant effects on the reaction condition and high yield of MCA. Response surface methodology (RSM was applied to optimize the reaction conditions. The reaction conditions, namely, the reaction time (30-240 min, enzyme load (0.5-1.5 kg, silica gel load (0.2-1.0 kg, and solvent amount (200-600 vol/wt. Reaction time, enzyme loading and solvent amount strongly effect MCA synthesis (p0.05 influence on MCA yield. Best-fitting models were successfully established for MCA yield (R 2 =0.9133. The optimum MCA yield were 75% from the predicted value and 75.4% from the experimental data for 6 kg enzyme loading, a reaction time of 135min and a solvent amount of 350 vol/wt at 65ºC reaction temperature. Verification of experimental results under optimized reaction conditions were conducted, and the results agreed well with the predicted range. Esterification products (mono-, di- and triacylglycerol from the PBR were identified using Thin Layer Chromatography method. The chromatograms showed the successful fractionation of esterified products in this alternative method of process esterification.
Simulation, Control and Optimization of Single Cell Protein Production in a U-Loop Reactor
DEFF Research Database (Denmark)
Engoulevent, Franck Guillaume; Jørgensen, John Bagterp
2012-01-01
In 2011, the world population passed 7 billions inhabitants. While this number witnesses the success of humankind on earth, it also rises among other things questions about food supply. Declining live stock in the wild, rising price of energy combined with climatic change give a new economic...... systems based upon PID and MPC technology. In particular, we design these control systems such that they can be used as the regulatory layer in a process control hierarchy and enable resilient transition from one operating point to another. The optimal operating points are determined by the real...
A Micro-Grid Battery Storage Management
DEFF Research Database (Denmark)
Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez;
2013-01-01
systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...
Immobilized photocatalyst structure assuring optimal light distribution in a solar reactor
Directory of Open Access Journals (Sweden)
A. S. El-Kalliny
2014-02-01
Full Text Available Immobilized TiO2 photocatalyst with a high specific surface area was prepared on stainless steel woven meshes in order to be used packed in layers for water purification. Immobilization of such a complex shape needs a special coating technique. For this purpose, dip coating and electrophoretic deposition (EPD techniques were used. The EPD technique gave the TiO2 coating films better homogeneity and adhesion, fewer cracks, and higher •OH formation than the dip coating technique. The woven mesh structure packed in layers guaranteed an efficient light-penetration in water treatment reactor. A simple equation model was used to describe the distribution of light through the mesh layers in the presence of absorbing medium (e.g., colored water with humic acids. Maximum three or four coated meshes were enough to harvest the solar UV light from 300 nm to 400 nm with a high penetration efficiency. The separation distance between the mesh layers played an important role in the efficiency of solar light penetration through the coated mesh layers, especially in case of colored water contaminated with high concentrations of humic acid.
Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor
International Nuclear Information System (INIS)
Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)
Production and optimization of biodiesel using mixed immobilized biocatalysts in packed bed reactor.
Bakkiyaraj, S; Syed, Mahin Basha; Devanesan, M G; Thangavelu, Viruthagiri
2016-05-01
Vegetable oils are used as raw materials for biodiesel production using transesterification reaction. Several methods for the production of biodiesel were developed using chemical (alkali and acidic compounds) and biological catalysts (lipases). Biodiesel production catalyzed by lipases is energy and cost-saving processes and is carried out at normal temperature and pressure. The need for an efficient method for screening larger number of variables has led to the adoption of statistical experimental design. In the present study, packed bed reactor was designed to study with mixed immobilized biocatalysts to have higher productivity under optimum conditions. Contrary to the single-step acyl migration mechanism, a two-step stepwise reaction mechanism involving immobilized Candida rugosa lipase and immobilized Rhizopus oryzae cells was employed for the present work. This method was chosen because enzymatic hydrolysis followed by esterification can tolerate high free fatty acid containing oils. The effects of flow rate and bed height on biodiesel yield were studied using two factors five-level central composite design (CCD) and response surface methodology (RSM). Maximum biodiesel yield of 85 and 81 % was obtained for jatropha oil and karanja oil with the optimum bed height and optimum flow rate of 32.6 cm and 1.35 L/h, and 32.6 cm and 1.36 L/h, respectively. PMID:25940482
International Nuclear Information System (INIS)
An efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poison (BP) placement optimization problem in the reference Three Mile Island-1 (TMI-1) core. Core BP optimization problem means developing a BP loading map for a given core loading pattern that minimizes the total Gadolinium (Gd) amount in the core without violating any design constraints. The number of UO2/Gd2O3 pins and Gd2O3 concentrations for each fresh fuel location in the core are the decision variables. The objective function was to minimize the total amount of Gd in the core together with the residual Gd reactivity binding at the End-of-Cycle (EOC). The constraints are to keep the maximum peak pin power during the core depletion and soluble boron (SOB) concentration at the Beginning of Cycle (BOC) both less than their limit values. The innovation of this study was to search all of the possible UO2/Gd2O3 fuel assembly designs with variable number of UO2/Gd2O3 fuel pins and concentration of Gd2O3 in the overall decision space. The use of different fitness functions guided the solution towards desired (good solutions) region in the solution space, which accelerated the GA solution. The main objective of this study was to develop a practical and efficient GA tool and to apply this tool to designing an optimum BP pattern for a given core loading
International Nuclear Information System (INIS)
Highlights: • A modified version of the BBO was proposed. • A novel method for interval type-2 FLC design tuned by MBBO was proposed. • The performance of the ETRR-2 was improved by using IT2FLC tuned by MBBO. -- Abstract: Power stabilization is a critical issue in nuclear reactors. The conventional proportional derivative (PD) controller is currently used in the Egyptian second testing research reactor (ETRR-2). In this paper, we propose a modified biogeography-based optimization (MBBO) algorithm to design the interval type-2 fuzzy logic controller (IT2FLC) to improve the performance of the Egyptian second testing research reactor (ETRR-2). Biogeography-based optimization (BBO) is a novel evolutionary algorithm that is based on the mathematical models of biogeography. Biogeography is the study of the geographical distribution of biological organisms. In the BBO model, problem solutions are represented as islands, and the sharing of features between solutions is represented as immigration and emigration between the islands. A modified version of the BBO is applied to design the IT2FLC to get the optimal parameters of the membership functions of the controller. We test the optimal IT2FLC obtained by modified biogeography-based optimization (MBBO) using the integral square error (ISE) and is compared with the currently used PD controller
Energy Technology Data Exchange (ETDEWEB)
Sayed, M.M., E-mail: M.M.Sayed@ieee.org; Saad, M.S.; Emara, H.M.; Abou El-Zahab, E.E.
2013-09-15
Highlights: • A modified version of the BBO was proposed. • A novel method for interval type-2 FLC design tuned by MBBO was proposed. • The performance of the ETRR-2 was improved by using IT2FLC tuned by MBBO. -- Abstract: Power stabilization is a critical issue in nuclear reactors. The conventional proportional derivative (PD) controller is currently used in the Egyptian second testing research reactor (ETRR-2). In this paper, we propose a modified biogeography-based optimization (MBBO) algorithm to design the interval type-2 fuzzy logic controller (IT2FLC) to improve the performance of the Egyptian second testing research reactor (ETRR-2). Biogeography-based optimization (BBO) is a novel evolutionary algorithm that is based on the mathematical models of biogeography. Biogeography is the study of the geographical distribution of biological organisms. In the BBO model, problem solutions are represented as islands, and the sharing of features between solutions is represented as immigration and emigration between the islands. A modified version of the BBO is applied to design the IT2FLC to get the optimal parameters of the membership functions of the controller. We test the optimal IT2FLC obtained by modified biogeography-based optimization (MBBO) using the integral square error (ISE) and is compared with the currently used PD controller.
Optimization of N18 Zirconium Alloy for Fuel Cladding of Water Reactors
Institute of Scientific and Technical Information of China (English)
B.X. Zhou; M. Y. Yao; Z.K. Li; X.M. Wang; J. Zhoua; C.S. Long; Q. Liu; B.F. Luan
2012-01-01
In order to optimize the microstructure and composition of N18 zirconium alloy （Zr-1Sn-0.35Nb-0.35Fe-0.1Cr, in mass fraction, %）, which was developed in China in 1990s, the effect of microstructure and composition variation on the corrosion resistance of the N18 alloy has been investigated. The autoclave corrosion tests were carried out in super heated steam at 400 ~C/10.3 MPa, in deionized water or lithiated water with 0.01 mol/L LiOH at 360 ~C/18.6 MPa. The exposure time lasted for 300-550 days according to the test temperature. The results show that the microstructure with a fine and uniform distribution of second phase particles （SPPs）, and the decrease of Sn content from 1% （in mass fraction, the same as follows） to 0.8% are of benefit to improving the corrosion resistance; It is detrimental to the corrosion resistance if no Cr addition. The addition of Nb content with upper limit （0.35%） is beneficial to improving the corrosion resistance. The addition of Cu less than 0.1% shows no remarkable influence upon the corrosion resistance for N18 alloy. Comparing the corrosion resistance of the optimized N18 with other commercial zirconium alloys, such as Zircaloy-4, ZIRLO, E635 and Ell0, the former shows superior corrosion resistance in all autoclave testing conditions mentioned above. Although the data of the corrosion resistance as fuel cladding for high burn-up has not been obtained yet, it is believed that the optimized N18 alloy is promising for the candidate of fuel cladding materials as high burn-up fuel assemblies. Based on the theory that the microstructural evolution of oxide layer during corrosion process will affect the corrosion resistance of zirconium alloys, the improvement of corrosion resistance of the N18 alloy by obtaining the microstructure with nano-size and uniform distribution of SPPs, and by decreasing the content of Sn and maintaining the content of Cr is discussed.
International Nuclear Information System (INIS)
Automation in large, complex systems such as chemical plants, electrical power generation, aerospace and nuclear plants has been steadily increasing in the recent past. automated diagnosis and control forms a necessary part of these systems,this contains thousands of alarms processing in every component, subsystem and system. so the accurate and speed of diagnosis of faults is an important factors in operation and maintaining their health and continued operation and in reducing of repair and recovery time. using of artificial intelligence facilitates the alarm classifications and faults diagnosis to control any abnormal events during the operation cycle of the plant. thesis work uses the artificial neural network as a powerful classification tool. the work basically is has two components, the first is to effectively train the neural network using particle swarm optimization, which non-derivative based technique. to achieve proper training of the neural network to fault classification problem and comparing this technique to already existing techniques
International Nuclear Information System (INIS)
The design optimization study of an innovative divertor concept for future experimental tokamak-type fusion devices is both an answer to the actual problems encountered in the multilayer divertor proposals and an illustration of a rational modelling philosophy and optimization strategy for the development of a new divertor structure. Instead of using mechanical attachment or metallurgical bonding of the protective material to the heat sink as in most actual divertor concepts, the so-called brush divertor in this study uses an array of unidirectional fibers penetrating in both the protective armor and the underling composite heat sink. Although the approach is fully concentrated on the divertor performance, including both a description of its function from the theoretical point of view and an overview of the problems related to the materials choice and evaluation, both the approach followed in the numerical modelling and the judgment of the results are thought to be valid also for other applications. Therefore the spin-off of the study must be situated in both the technological progress towards a feasible divertor solution, which introduces no additional physical uncertainties, and in the general area of the thermo-mechanical finite-element modelling on both macro-and microscale. The brush divertor itself embodies the use, and thus the modelling, of advanced materials such as tailor-made metal matrix composites and dispersion strengthened metals, and is shown to offer large potential advantages, demanding however and experimental validation under working conditions. It is clearly indicated where the need originates for an integrated experimental program which must allow to verify the basic modelling assumptions in order to arrive at the use of numerical computation as a powerful and realistic tool of structural testing and life-time prediction
García-Quismondo, Enrique; Santos, Cleis; Lado, Julio; Palma, Jesús; Anderson, Marc A
2013-10-15
Capacitive deionization (CDI) is a rapidly emerging desalination technology that promises to deliver clean water while storing energy in the electrical double layer (EDL) near a charged surface in a capacitive format. Whereas most research in this subject area has been devoted to using CDI for removing salts, little attention has been paid to the energy storage aspect of the technology. However, it is energy storage that would allow this technology to compete with other desalination processes if this energy could be stored and reused efficiently. This requires that the operational aspects of CDI be optimized with respect to energy used both during the removal of ions as well as during the regeneration cycle. This translates into the fact that currents applied during deionization (charging the EDL) will be different from those used in regeneration (discharge). This paper provides a mechanistic analysis of CDI in terms of energy consumption and energy efficiencies during the charging and discharging of the system under several scenarios. In a previous study, we proposed an operational buffer mode in which an effective separation of deionization and regeneration steps would allow one to better define the energy balance of this CDI process. This paper reports on using this concept, for optimizing energy efficiency, as well as to improve upon the electro-adsorption of ions and system lifetime. Results obtained indicate that real-world operational modes of running CDI systems promote the development of new and unexpected behavior not previously found, mainly associated with the inhomogeneous distribution of ions across the structure of the electrodes. PMID:24015835
International Nuclear Information System (INIS)
Project (CRP) on Optimization of the Coupling of Nuclear Reactors and Desalination Systems with participation of institutes from nine Member States. The CRP was initiated as a step forward for facilitating an early deployment in developing countries, where nuclear desalination is being considered as an option to cope with fresh water deficit as well as energy in the coming decade. The CRP has enabled the IAEA and participating institutes to accumulate relevant information on the latest research and development in the field of nuclear desalination and share it with interested Member States. The CRP has produced optimum coupling configurations of nuclear and desalination systems, evaluated their performance and identified technical features, which may require further assessment for detailed specifications of large-scale nuclear desalination plants. This publication highlights the outcomes of projects under this CRP and draw lessons and suggestions for further investigation for deployment of nuclear desalination
International Nuclear Information System (INIS)
U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment
Models for Battery Reliability and Lifetime
Energy Technology Data Exchange (ETDEWEB)
Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.
2014-03-01
Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Aziz, Shuokr Qarani [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia); Aziz, Hamidi Abdul, E-mail: cehamidi@eng.usm.my [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia); Yusoff, Mohd Suffian; Bashir, Mohammed J.K. [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia)
2011-05-15
In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH{sub 3}-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1 L/min and contact time of 5.5 h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH{sub 3}-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K
2011-05-15
In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions. PMID:21420786
International Nuclear Information System (INIS)
In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH3-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1 L/min and contact time of 5.5 h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH3-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
International Nuclear Information System (INIS)
The present work deals with the optimization of a detector system for use with the Fourier reverse time of flight (RTOF) diffractometer facility recently installed at the ETRR-1 reactor. The detector system of the diffractometer is designed for detecting neutrons scattered from the sample at an angle 20-90 degree and consists of 4 independent scintillation detector elements; arranged according to the time focusing geometry in order to increase the luminosity of the diffractometer for the given resolution. Each of the detector elements is made of 1 mm thick 6Li-glass scintillator (NE-912) whose surface area is 200 200 mm2. The present detector system ensures reliable identification and separation of thermal neutron pulses from those due to fast neutrons and gamma-quanta. It has been found from measurements with a diamond powder sample, that it is possible to obtain a neutron diffraction pattern within 30 minutes using the present detector system and with resolution approx 0.54%
International Nuclear Information System (INIS)
The accident at the Three Mile Island (TMI) led to install some data processing and display equipment to assist control room personnel in rapidly evaluating the safety status. And also to place in the plant for providing operators with technical support and an emergency response center for radiological environmental assessments and determination of recommended public protective action during emergency. In practice, most of the countries possessing nuclear power plants including USA have partially or wholly adopted US NRC regulations and guidelines for Emergency Response Facility(ERF). Also the Korea nuclear power plants are implementing or operating ERF and SPDS after analyzing US NRC regulations and guideline since TMI accident. So this paper first been reviewed Korea Regulations, US NRC published codes and standards related to ERF (TSC/OSC). Finally this paper is described the design optimization of general arrangement in emergency response facility to improve emergency response capability in Korea Next Generation Reactor(APR-1400), which are best suitable for our domestic situation and also enhance the emergency response capability of ERF
Institute of Scientific and Technical Information of China (English)
曾正; 赵荣祥; 杨欢; 金磊
2012-01-01
针对传统配电网对电动汽车高渗透率的应对方案进行了研究.分析、对比并评价了峰谷电价调节方案、电动汽车和电网之间交互(V2G)方案和换电池方案,结果表明换电池方案具有明显的技术经济优势.同时认为微电网是实现换电站低碳、绿色、高效运行的一种有效方式,提出了一种以运行成本最低为目标,以功率平衡、电池管理、安装容量为约束的微电网型换电站中各分布式电源的最优规划模型.最后,利用一个数值算例验证了所提模型的有效性.%The responsive schemes of distribution network to the high penetration of electric vehicles are investigated. Three schemes are analyzed, compared and evaluated, i.e. peak-valley price regulation, V2G (Vehicle to Grid) and battery swap. Results show that,the battery swap scheme has obvious technical and economic advantages. The microgrid is considered as the best way to realize the green operation of battery swap stations with low emission and high efficiency. An optimal planning model is presented for the distribution of power sources in the microgrid for battery swap stations, which takes the minimal operating cost as its objective and the power balance,battery management and installation capacity as its constraints. A numerical case study verifies its effectiveness and validity.
含电动汽车换电站的微电网孤岛运行优化%Optimal operation of islanded microgrid with battery swap stations
Institute of Scientific and Technical Information of China (English)
曹一家; 苗轶群; 江全元
2012-01-01
The intermittence of renewable power supply , such as PV (PhotoVoltaic) and wind power, may result in power surplus or shortfall in islanded microgrid. The important components of microgrid, such as ESS(Energy Storage Station),BSS(Battery Swap Station).Uninterruptible Load),etc.,are analyzed and modeled, and with the constrains of power balance and reserve,the optimal operation model of microgrid with BSSs, ESSs or Ils is established. CPLEX is applied to solve this MILP(Mixed Integer Linear Programming) problem. Case study is carried out respectively for microgrid with BSS and that with ESS,which shows that,through coordinated optimization, the islanded microgrid with BSS as the energy storage device is cheaper and more reliable,and integrates more renewable energy sources.%由于风电、光伏等可再生能源具有间歇性,独立运行的微电网会经常出现功率缺额或过剩,给系统运行带来不利影响.对微电网内重要单元,如电池储能电站、电动汽车换电站、可中断负荷等分别进行了分析并建模,结合系统功率平衡、备用需求等约束,建立微电网独立运行优化模型,利用CPLEX软件求解该混合整数规划问题.算例中对以电动汽车换电站和电池储能电站作为储能单元的微电网分别进行讨论,结果表明,相比传统电池储能电站,电动汽车换电站作为储能装置,通过协调优化,可以提高微电网的可再生能源接纳能力,提高微电网可靠性,并更具经济性.
Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan
2016-05-01
A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5h for effluent standardization of 500, 1000, 1500 and 2500mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings. PMID:26943932
Pearce, Charles
2009-01-01
Focuses on mathematical structure, and on real-world applications. This book includes developments in several optimization-related topics such as decision theory, linear programming, turnpike theory, duality theory, convex analysis, and queuing theory.
Efficiency-optimized CO2 separation in IGCC power plants by water-gas shift membrane reactors
International Nuclear Information System (INIS)
The conversion of solid fuels such as coal and biomass into syngas in the integrated gasification combined cycle (IGCC) process is carried out at elevated pressure. Since, from a thermodynamic point of view, this is a crucial prerequisite for an efficient CO2 separation step, IGCC has great potential for incorporating CO2 separation with a low energy consumption. However, studies predict efficiency penalties in the range of 6-11 %-points depending on the respective gasification process utilized, thus revealing that the thermodynamic potential is not fully exploited. In this thesis, a specially adapted IGCC power plant concept for the optimized implementation of gas separation membranes was developed and investigated in order to evaluate the extent to which the auxiliary boundary conditions can be advantageously designed. To create a standard of comparison, a reference IGCC power plant as well as a Selexol-based CO2 scrubbing process were designed and simulated, resulting in an overall efficiency reduction from 48.0 % to 38.4 %. This corresponds to an increase of 25 % in coal consumption. The analysis of the simulation results revealed that, besides the auxiliary demand of Selexol scrubbing and CO2 compression subsequent to the low pressure regeneration of the solvent, the main contributor to the loss is the water-gas shift reaction. To reduce this high efficiency penalty, an integration concept was developed to optimize the use of the gas permeation membrane, with parameters better adapted to its special characteristics and mode of operation. The design process resulted in the use of an H2-selective membrane, which was combined with the water-gas shift reaction to create the water-gas shift membrane reactor (WGS-MR), and which was swept with recirculated flue gas at elevated pressure in countercurrent 4-End mode. In addition, the ''membrane steam recuperator'' was introduced as a new process unit and integrated to enhance the steam utilization within the entire
International Nuclear Information System (INIS)
This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank
International Nuclear Information System (INIS)
The battery for the power supply of heart pacemakers consists of a cylindrical case with a thermoelectric module consisting of thermoelectric elements which are fastened to each other in the form of a thermal column and a heat source made of PU-238. In order to reduce the radial sensitivity to shocks of the battery, a spring cage is arranged around the heat source at the free end of the module. Cushioning against longitudinal shocks is provided by another spring. (DG)
Institute of Scientific and Technical Information of China (English)
陈光堂; 邱晓燕; 林伟
2012-01-01
储能系统是微电网的重要组成部分,其对微电网的稳定性、经济性与安全性有着非常重要的影响.以含钒液流储能电池(vanadium redox flow battery,VRB)系统的微电网为研究对象,建立了含钒电池储能微电网多目标负荷优化分配模型.以某微电网为例,分析讨论了钒电池对微电网带来的经济效益,同时研究了运行模式、控制策略和优化目标中权重等诸多因素对微电网负荷优化分配结果的影响,验证了所建立模型的有效性.%Energy storage system is an important component of microgrid and it greatly impacts the stability, security and economic operation of microgrid. Taking a microgrid containing energy storage system composed of vanadium redox flow battery (VRB) as research object, a multi-objective load distribution optimization model of microgrid with energy storage system composed of vanadium redox flow battery (VRB) is built. The economic benefit bought to microgrid by VRB is analyzed and researched, meanwhile the influences of the factors such as operating modes, control strategy and the weights of optimization objectives on load distribution optimization of microgrid are researched too, thus the effectiveness of the built model is verified.
Applications of porous electrodes to metal-ion removal and the design of battery systems
Energy Technology Data Exchange (ETDEWEB)
Trost, G.G.
1983-09-01
This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.
Applications of porous electrodes to metal-ion removal and the design of battery systems
International Nuclear Information System (INIS)
This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 μg Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected
Energy Technology Data Exchange (ETDEWEB)
Andres Diaz, J.; Quintero, Ruben; Melian, Manuel [Centro de Investigaciones Tecnologicas, Nucleares y Ambientales, La Habana (Cuba). E-mail: jadiaz@ctn.isctn.edu.cu; Rosete, Alejandro [Centro de Estudios de Ingenieria de Sistemas (CEIS), La Habana (Cuba). E-mail: rosete@ceis.ispjae.edu.cu
2000-07-01
In this work the general-purpose optimization method, Hill Climbing, was applied to the Fuel Management Optimization problem in PWR reactors, WWER type. They were carried out a series of experiments in order to study the performance of Hill Climbing. It was proven two starting point for initialize the search: a reload configuration by project and a reload configuration generated with the application of a minimal knowledge of the problem. It was also studied the effect of imposing constraints based on the physics of the reactor in order to reduce the number of possible solutions to be generated. The operator used in Hill Climbing was defined as a binary exchange of fuel assemblies. For the simulation of each generated configuration, the tridimensional simulator program SPPS-1 was used. It was formulated an objective function with power peaking constraint to guide the search. As results, a methodology ws proposed for the In-core Fuel Management Optimization in hexagonal geometry, and the feasibility of the application of the Hill Climbing to this type of problem was demonstrated. (author)
Optimal Strategy for Economic Operation of Electric Bus Battery Swapping Station%快换式电动公交充电站经济运行优化策略
Institute of Scientific and Technical Information of China (English)
杨少兵; 吴命利; 姜久春; 赵伟
2014-01-01
备用电池数量、充电时长是影响换电站换电能力的主要因素。基于车辆进站流量分析，提出了描述换电需求和电池充电产量的函数，进一步分析了两者之间的关系，提出了针对电价峰段的充电控制方法。以北京奥运电动公交充电站为例阐述了经济运行优化策略的应用步骤，并编写了计算机仿真程序进行验证。结果表明：所提经济运行优化策略在满足任意时刻换电需求的条件下可显著降低电价峰段用电量，较大幅度地减少换电站的电费支出。同时，该策略所包含的算法及边界条件非常清晰，容易嵌入充电管理系统实现换电站的经济运行优化控制。%The reserved battery number and the charging duration are main factors to affect the energy supply capacity of electric bus battery swapping station. Based on the analysis of vehicle flow, two formulas are presented to describe required battery amount and charged battery amount respectively. Moreover, with analyzing the relation between the two formulas, a charging control method for the peak period is provided. According to the field test data and statistical results of the electric bus swapping station for 2008 Beijing Olympic Games, the procedures of optimal strategy for economic operation have been given. Then a computer simulation program is prepared to verify the strategy. Simulation results show that the proposed strategy can reduce power consumption of peak periods and electricity costs markedly while it meets the condition at swapping demand. In addition, the algorithm and boundary conditions are very clear, and it is easy to be embedded into a charging management system to implement economic optimization for bus battery swapping stations.
International Nuclear Information System (INIS)
A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO2 in ThO2) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO2 (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)
Manoshin, S. A.; Belushkin, A. V.; Kulikov, S. A.; Shabalin, E. P.; Walther, K.; Scheffzuek, C.; Zhuravlev, V. V.
2009-09-01
Neutron guides are widely used to transport the neutrons from the moderator to the sample. Due to the constructive features of the ring corridor of the fast pulsed reactor IBR-2, the minimal distance between the moderator and the guide entrance is around 6 m. The main goal of the paper is to optimize the neutron optical system between the moderator and the entrance of the new neutron guides. Using Monte Carlo simulations we calculate the possible best gain of the neutron flux density at the guide exit. After the described optimization process, the optimal system is obtained. The recommendations for construction of the new beam line are provided too. Similar technique and the proposed system could be easily adapted for another similar beam line at the neutron sources.
Energy Technology Data Exchange (ETDEWEB)
Haussener, S.
2007-03-15
A solar reactor for the first step of the zinc/zinc-oxide thermochemical redox cycle is analysed and dimensioned in terms of maximization of efficiency and reaction conversion. Zinc-oxide particles carried in an inert carrier gas, in our case argon, enter the reactor in absorber tubes and are heated by concentrated solar radiation mainly due to radiative heat transfer. The particles dissociate and, in case of complete conversion, a gas mixture of argon, zinc and oxygen leaves the reactor. The aim of this study is to find an optimal design of the reactor regarding efficiency, materials and economics. The number of absorber tubes and their dimensions, the cavity dimension and its material as well as the operating conditions should be determined. Therefore 2D and 3D simulations of an 8 kW reactor are implemented. The gases are modeled as ideal gases with temperature-dependent properties. Absorption and scattering of the particle gas mixture are calculated by Mie-theory. Radiative heat transfer is included in the simulation and implemented with the aid of the discrete ordinates (DO) method. The mixture is modeled as ideal mixture and the reaction with an Arrhenius-type ansatz. Temperature distribution, reaction efficiency (heat used for zinc-oxide reaction divided by input) and tube efficiency (heat going into absorber tubes divided by input) as well as reaction conversion are analyzed to find the most promising reactor design. The results show that the most significant factors for efficiencies, conversion and absorber fluid temperature are concentration of the solar incoming radiation, zinc-oxide mass flow, the number of tubes and their dimension. Higher concentration leads to solely positive effects. Zinc-oxide mass flow variations indicate the existence of an optimal flow rate for each reactor design which maximizes efficiencies and conversion. Higher zinc-oxide mass flow leads, on one hand, to higher tube efficiency but on the other hand to lower temperatures in
Barwal, Anjali; Chaudhary, Rubina
2016-05-01
An attempt of response surface methodology (RSM) has been made for more effective utilization and optimization for considerable reduction of operational conditions such as reaction time, aeration time, energy consumption, etc. for municipal wastewater treatment process using moving bed biofilm reactor (MBBR). A mathematical-statistical model was developed for the second-order response surface through the fit of a polynomial function and a central composite design (CCD) in the form of a full factorial design. CCD was employed to assess the interactive effects of the three main independent operational parameters, including biocarrier filling rate (0-70 %), aeration rate (0.21-0.42 m(3) h(-1)), and reactor run time (1-15 days), on the removal efficiency of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total Kjeldahl nitrogen (TKN). Analysis of variance expressed a high coefficient of determination (R (2) = 0.84-0.95), thereby indicating that the model is significant. Using a desirability function for the highest COD (93 %), BOD (96 %), and TKN (69 %) removal, the optimum carrier filling rate, aeration rate, and reactor run time were identified to be 40 %, 0.21 m(3) h(-1), and 7 days, respectively. It shows that RSM can be a suitable method to optimize the operational parameters of MBBR with enhanced removal efficiency and less power consumption. PMID:26857006
International Nuclear Information System (INIS)
Highlights: • A multifeedback-layer neural network controller is presented for a research reactor. • Off-line learning of the MFLNN is accomplished by the PSO algorithm. • The results revealed that the MFLNN–PSO controller has a remarkable performance. - Abstract: In this paper, an artificial neural network controller is presented using the Multifeedback-Layer Neural Network (MFLNN), which is a recently proposed recurrent neural network, for neutronic power level control of a nuclear research reactor. Off-line learning of the MFLNN is accomplished by the Particle Swarm Optimization (PSO) algorithm. The MFLNN-PSO controller design is based on a nonlinear model of the TRIGA Mark-II research reactor. The learning and the test processes are implemented by means of a computer program at different power levels. The simulation results obtained reveal that the MFLNN-PSO controller has a remarkable performance on the neutronic power level control of the reactor for tracking the step reference power trajectories
Zweibaum, Nicolas
The development of advanced nuclear reactor technology requires understanding of complex, integrated systems that exhibit novel phenomenology under normal and accident conditions. The advent of passive safety systems and enhanced modular construction methods requires the development and use of new frameworks to predict the behavior of advanced nuclear reactors, both from a safety standpoint and from an environmental impact perspective. This dissertation introduces such frameworks for scaling of integral effects tests for natural circulation in fluoride-salt-cooled, high-temperature reactors (FHRs) to validate evaluation models (EMs) for system behavior; subsequent reliability assessment of passive, natural- circulation-driven decay heat removal systems, using these validated models; evaluation of life cycle carbon dioxide emissions as a key environmental impact metric; and recommendations for further work to apply these frameworks in the development and optimization of advanced nuclear reactor designs. In this study, the developed frameworks are applied to the analysis of the Mark 1 pebble-bed FHR (Mk1 PB-FHR) under current investigation at the University of California, Berkeley (UCB). (Abstract shortened by UMI.).
Energy Technology Data Exchange (ETDEWEB)
Melgar Santa Cecilia, P. A.; Velazquez, J.; Ahnert Iglesias, C.
2014-07-01
In the schemes of low leakage, currently used in the majority of PWR reactors, it makes use of absorbent consumables for the effective control of the factors of peak, the critical concentration of initial boron and the moderator temperature coefficient. One of the most used absorbing is the oxide of gadolinium, which is integrated within the fuel pickup. Occurs a process of optimization of fuel elements with oxide of gadolinium, which allows for a smaller number of configurations with a low peak factor for bar. (Author)